4.5.9 Beam ABCD is simply supported at B and C and has overhangs at each end (see figure). The span length is L and each overhang has length \(\frac{L}{3} \). A uniform load of intensity \(q \) acts along the entire length of the beam.

Draw the shearing force and bending moment diagrams for this beam.

PROB. 4.5.9

Solution

Span length = distance between B and C = L.

Length of each overhang = \(\frac{L}{3} \).

FBD for beam ABCD.

By symmetry: \(R_B = R_C = \frac{38qL}{16} \)

In general detail:

\[M_B = 0 = -q\left(L + \frac{L}{3} + \frac{L}{3}\right) + R_B + R_C \]

or \(R_B + R_C = \frac{5L}{3}q \)

To find other equations to solve for reactions, do moment balance about B.

(Anticlockwise moments (+))

\[EM_B = 0 \]

\[+ q\left(\frac{L}{2}\right)R_C + R_C\left(\frac{L}{2}\right) - q\left(\frac{L}{3} + \frac{L}{3}\right)\left(\frac{L}{2}\right) = 0 \]

\[2 \]

\[\text{Note: the moment due to a distributed load with constant magnitude is } \frac{qL^2}{2} \] where \(q \) is the magnitude and \(L \) is the distance from the point about which moment is taken.

To draw shear force diagram, start from either end and take cuts! (ie Method 1: FBD’s)

\[M = \frac{qL^2}{2} \]

\[V = qL \]

Cut A-A.

\[M = -qL^2 \]

Using (1) and (2) Draw shear force diagram.

Cut B-B.

\[\frac{qL^2}{2} \]

Use (2) and (3) to draw bending moment diagram. Not to scale.
Method 2:

Use the equations: $\frac{dv}{dx} = -q$, $\frac{dm}{dx} = v$

Integrate, find out v and M in terms of x and v in terms of x.

In this problem $q = q_o$ (a constant).

\[
\frac{dv}{dx} = -q, \quad 0 \leq x \leq \frac{L}{3}
\]

Integrate, $v = v(0) - \int_0^x q \, dx = v(0) - qx$

To calculate $v(0)$, use $v = 0$ at $x = 0$, so $v_0 = 0$.

So $v = -qx$, $0 \leq x \leq \frac{L}{3}$.

Similarly

$\frac{dm}{dx} = v \Rightarrow M = \int_0^x v \, dx + M_o$.

Use $v = -qx \Rightarrow M = M(0) + \int_0^x (-qx) \, dx$ or $M = M(0) - qx^2$.

To calculate $M(0)$ use $M = 0$ at $x = 0$.

So $M = -\frac{qL^2}{2}$, $0 \leq x \leq \frac{L}{3}$.

Now $V(\frac{L}{3}) = \frac{-qL^2 + 5qL}{6}$.

$V(\frac{L}{3})$, jump in V due to reaction at B (KB).

Similarly $V = \frac{-qL^2 - qL}{2}$.

So $V = V(\frac{L}{3}) + q(L - L/3)$

$V = \frac{qL}{2} + \frac{qL}{6} - qx$

or $V = \frac{5qL}{6} - qx$.

Integrate for M

$M = M(\frac{L}{3}) + \int_{\frac{L}{3}}^x (\frac{5qL}{6} - qx) \, dx$

or $M = M(\frac{L}{3}) + \frac{5qL}{6}(x - \frac{L}{3}) - \frac{qL^3}{2}(x - \frac{L}{3})^2$

$M(\frac{L}{3}) = \frac{-qL^2}{18}$.

So $M = \frac{-qL^2 + 5qL}{6}(x - \frac{L}{3}) - \frac{qL^3}{2}(x - \frac{L}{3})^2$

or $M = \frac{-qL^2 + 5qL}{6}x - \frac{qL^3}{18}$.
4.5-10 Draw the shear-force and bending-moment diagrams for a cantilever beam AB supporting a linearly varying load of maximum intensity q_0 (see figure).

Solution

FBD for the Cantilever Beam

$\begin{align*}
\Sigma F_Y &= 0 \Rightarrow V_B = -q(x) = (q_0 + \frac{q_0}{L}x) \frac{L}{2} = 0 \\
\Sigma M &= 0 \Rightarrow M_B = \left. \frac{1}{2} (q_0 + \frac{q_0}{L}x) \frac{L^2}{2} \right|_0^L = \frac{q_0 L^2}{2} \frac{L}{2} = \frac{q_0 L^3}{6} \\
\end{align*}$

Now to draw shear force & bending moment diagram take a cut $(n-n)$ & look at V & M.

Method 1

FBD for Section A $(n-n)$

$\begin{align*}
\Sigma F_Y &= 0 \Rightarrow V + \frac{1}{2} \frac{q_0 x}{L} \frac{x}{2} = 0 \\
\frac{q_0}{L} x = 0 \\
V &= -\frac{q_0 x^2}{2L} \\
\end{align*}$

$\begin{align*}
\Sigma M &= 0 \Rightarrow M = \frac{1}{2} \frac{q_0 x^2}{L} \frac{x}{2} - 0 \\
M &= \frac{-q_0 x^2}{6L} \\
\end{align*}$

Method 2

Use $\frac{dV}{dx} = -q$ & $\frac{dM}{dx} = V$.

Here q is a function of x.

$\begin{align*}
q &= \frac{q_0 x}{L} \\
\frac{dV}{dx} &= -\frac{q_0 x}{L} \\
V &= V(0) - \frac{q_0 x^2}{2L} \\
V(0) &= 0 \Rightarrow V = \frac{q_0 x^2}{2L} \\
\end{align*}$

So $V = \frac{-q_0 x^2}{2L}$.

$m = m(0) + \int V \, dx$

So $m = m(0) - \int \frac{q_0 x^2}{2L} dx$

$m(0) = 0 \Rightarrow m = -\frac{q_0 x^3}{6L}$

$m(0) = 0 \Rightarrow m = -\frac{q_0 x^3}{6L}$

Use (1) & (3) to plot Bending moment & Shear force diagrams.
5.4-2 A copper wire having diameter $d = 3$ mm is bent into a circle and held with the ends just touching (see figure). If the maximum permissible strain in the copper is $e_{max} = 0.004$, what is the shortest length L of wire that can be used?

Solution:

\[e = \frac{d}{2} = \frac{3 \times 10^{-3}}{2} = \frac{3 \times 10^{-3}}{2} = 0.004 \]

Now

\[e_{max} = e \cdot \frac{d}{2} = \frac{e d}{2} \]

or

\[L_{min} = \frac{\pi d}{e_{max}} = \frac{\pi (3 \times 10^{-3})}{0.004} \]

or

\[L_{min} = 2.36 \text{ m} \]

PROB. 5.4-2

5.5-4 A simply supported beam AB with span length $L = 3.75$ m carries a uniform load of intensity $q = 6.4$ kN/m (see figure).

(a) Calculate the maximum bending stress σ_{max} due to the load q if the beam has a rectangular cross section with width $b = 150$ mm and height $h = 300$ mm.

(b) Does the stress increase or decrease if the thickness of the beam is increased?

Solution:

The maximum bending stress occurs where the bending moment is maximum.

So

\[\sigma_{max} = \frac{M_{max}}{I} \]

\[2Fy = 0 \]

\[M_{max} = \frac{qL^2}{2} = 0 \]

\[\frac{RA}{L} = \frac{qL}{2} \]

\[\frac{RB}{L} = \frac{qL}{2} \]

PROB. 5.5-4
5.5.6 A freight-car axle AB is loaded as shown in the figure, with the forces P representing the car loads (transmitted through the axle boxes) and the forces R representing the rail loads (transmitted through the wheels). The diameter of the axle is $d = 80$ mm, the wheel gauge is $L = 1.45$ m, and the distance between the forces P and R is $b = 200$ mm.

Calculate the maximum bending stress σ_{max} in the axle if $P = 46.5$ kN.

Solution: $R = P = 46.5$ kN.

The bending moment diagram looks like this: