Cornell ENGRD 1170
Quiz 2
Dec 3, 2009

Directions. To ease your TA's grading and to maximize your score, please:

- Draw Free body diagrams whenever you use balance of forces or balance of moments.
- Be (I) neat, (II) clear and (III) well organized.
- TIMELY REDUCE and box in your answers (Don't leave simplifiable algebraic expressions).
- Make appropriate Matlab code clear and correct.
 You can use shortcut notation like \(\theta = 18 \) instead of, say, \(\text{theta} = 18 \).
 Small syntax errors will have small penalties.
- Clearly define any needed dimensions \((l, h, d, \ldots) \), coordinates \((x, y, r, \theta \ldots) \), variables \((v, m, t, \ldots) \),
 base vectors \((\hat{i}, \hat{j}, \hat{e}_r, \hat{e}_\theta, \hat{\lambda}, \hat{n} \ldots) \) and signs \((\pm) \) with sketches, equations or words.
- Justify your results so a grader can distinguish an informed answer from a guess.
- If a problem seems poorly defined, clearly state any reasonable assumptions (that do not oversimplify the problem).
- Work for partial credit (from 60–100%, depending on the problem)
 - Put your answer in terms of well defined variables even if you have not substituted in the numerical values.
 - Reduce the problem to a clearly defined set of equations to solve.
 - Provide Matlab code which would generate the desired answer (and explain the nature of the output).

Put your name on each extra sheet, fold it in, and refer to it at the relevant problem.
Note the last page is blank for your use. Ask for more extra paper if you need it.
1a) A car with mass \(m \) has motor, gears and wheels such that the forward force the wheels can supply is

\[F_w = F_0 - c'v \]

where \(F_0 \) and \(c' \) are constants and \(v \) is the speed of the car. Also acting on the car is air drag following the law

\[F_d = \frac{1}{2} c_d \rho Av^2 \]

where \(c_d \) is the drag coefficient of the car, \(\rho \) is the density of air and \(A \) is the frontal area of the car. Answer all of the following questions in terms of some or all of the constants given above.

1a) Just when the car starts what is its forward acceleration \(a_{\text{start}} \)?

\[\begin{align*}
V = 0 &\Rightarrow F_w = F_0 - c'v = 0 \\
F = ma &\Rightarrow a = \frac{F_0}{m} \quad \text{start}
\end{align*} \]

1b) What is the top speed \(v_{\text{top}} \) the car can reach on level ground?

\[\begin{align*}
0 &= a = \frac{F}{m} = \frac{F_0 - c'v - F_d}{m} &\Rightarrow F_0 - c'v - F_d = 0 \\
\Rightarrow dV^2 + c'v - F_0 &= 0 &\Rightarrow V^2 = \frac{-c' \pm \sqrt{c'^2 + 4F_0}}{2d} \\
\Rightarrow V &= \left(\frac{2F_0}{c'} \right)^{\frac{1}{2}} \quad \text{use } + \text{ to get positive answer}
\end{align*} \]

1c) As the car goes faster and faster, when its speed is \(v \) (for some \(v < v_{\text{top}} \)) what is its acceleration \(a \)? (Answer in terms of the constants given as well as the speed \(v \)).

\[a = \frac{F}{m} = \frac{F_0 - c'v - \frac{1}{2} c_d \rho A v^2}{m} \]

1d) Make a plot of \(v \) vs \(t \) and of \(x \) vs \(t \) for the car given that it starts at \(x = 0 \) and \(v = 0 \). The plots don't need to be quantitatively accurate, but just need to have the right general shapes (curved the right way with well labeled asymptotes).
2) a) Assume you could change nothing but the gear box in the car from the previous problem (e.g., same motor, same wheels, same total mass, same air, same shape car). If you picked just the right dissipation-free gear box, how fast could you make the top speed of the car? Answer in terms of some or all of \(m, F_0, c', p, A \) and \(c_d \)?

With the right gear \(G \) you could get \(P_p \) from the motor. \(N_0 \)

What is \(P_p \)?

\[
\text{peak wheel power} = \text{dissipation} \\
P_p = F_d V \\
F_0^2/(4 c) = (d V^2) V \\
\Rightarrow \quad V_{kp} = \left(\frac{F_0^2}{4 c d} \right)^{1/3}, \quad d = \frac{1}{2} g \cdot c \cdot A
\]

b) Why not just equip cars with such a gear and no others? That is, why isn't that particular gear box not the best for all purposes? Be as specific as you can be.

This gear maximizes top speed but not, say, peak acceleration at the start. At low speeds you want a lower gear (bigger reduction) to get better acceleration. The only reason to have higher gears than this is for downhill (or possibly to improve efficiency).
3) Draw any 3 bar truss that you like. Apply any non-zero load that you like. Carefully calculate the tension in any bar that you like. Your problem and solution need to be so clear that your work can be quickly evaluated and graded. You may use numbers or symbols (your choice) to define lengths, angles and loads. Draw big and clear.

FBD of joint B

\[\sum F_y = 0 \Rightarrow -F_B - \frac{T_{CB} \cos 45^\circ}{\sqrt{2}/2} = 0 \]

\[T_{CB} = \sqrt{2} F_B \]

Bar CB has compression of \(\sqrt{2} F_B \)
3) (cont'd)

Common errors

1) \[\text{truss held too well}\]

2) \[\text{or}\]

3) \[\text{Load in middle of box}\]
4) A glass of water, not totally full, is on a scale. You slowly put a finger into the water without touching the glass. When you put your finger in the water does the reading on the scale go up (how much?), down (how much?) or stay the same. Your answer must include convincing reasoning. Define and variables you need (e.g., density of water, density of finger, volume of water in the glass, area of the bottom of the glass, etc).

Looking at FBD before the finger

by linear momentum balance (LMB) for glass

\[M_g = R_{before} \]

weight of water and glass

Reach from balance

I. This is what balance measures

from FBD after

Finger gets and upward buoyant force \(F_B \) from water

\[F_B = \text{Volume of finger inside water} \times \text{density of water} \times g \]

\[F_B = V_f \rho_w g \]
Water gets a downward force F_B, as reach to force it applies on the finger.

\[F_B + Mg = R_{\text{after}} \]

\[\text{this is what the balance measures now} \]

:. change in reading

\[= R_{\text{after}} - R_{\text{before}} = F_B \]

\[= \text{Finger Power } g \]

:. reading increases by this amount.
5) Two parallel plates with areas \(A \) are separated a distance \(h \) from each other with a viscous fluid in between with viscosity \(\mu \). The bottom plate is fixed and the top one is dragged in its plane with speed \(v \). What is the force needed to drag the plate? Assume the plates are very small, that \(h \) is much smaller than that and that \(v \) is small (Kirby lecture).

\[F_{\text{drag}} = \mu A \frac{v}{h} \]
6) Comment critically on any one point from Professor Zellman Warhaft's lecture about Engineering and society. Explain it clearly as if to someone who did not see the lecture (e.g., Prof. Ruina who did not see the lecture). Answer the best you can in no more than 5 minutes.

Prof. Warhaft said "Be careful not to confuse "ethical" or "moral" with legal. On the one hand he is surely correct, there are situations where all would agree that the right thing to do is also illegal. So much do we agree about this that we expect legal leniency if, for example, a person J-walks to catch a mugger. On the other hand, society wouldn't function if we did not default to assuming, generally, that the right thing to do is the legal thing."
7) Describe an experiment to measure the Young's modulus E of a given material. How would you load what shape of material? What would you measure? Write a formula for E in terms of the quantities you would measure. Draw clear sketches with all quantities clearly defined by the sketch or in words.

\[\sigma = E \varepsilon \quad \text{or} \quad \Delta l = \frac{F \Delta l}{A E} \]

Tension Test

\[\sigma = \frac{F}{A} = \frac{F}{h^2} \quad \Rightarrow \quad E = \frac{\sigma}{\varepsilon} = \frac{F/h^2}{\Delta l/l} \]

\[\varepsilon = \frac{\Delta l}{l} \]

\[E = \frac{F l}{(\Delta l) h^2} \]

Pull & measure lengthening
7) Describe an experiment to measure the Young's modulus E of a given material. How would you load what shape of material? What would you measure? Write a formula for E in terms of the quantities you would measure. Draw clear sketches with all quantities clearly defined by the sketch or in words.

procedure
1) take a rod with rectangular crosssection with
2) place it like shown above (as in lab)
3) load it in middle by a weight (giving force F)
4) measure the deflection s of centre of beam
with respect to original position without the weight

\[s = \frac{FL^3}{4Elwh^3} \quad \quad E = \frac{FL^3}{18wh^3} \]

5) take a few readings, get average.
8) Write Matlab commands that would draw a round circle.

```matlab
theta = 7 * linspace (0, 2 * pi, 101);
x = cos (theta);
y = sin (theta);
plot (x, y);
axis ('equal')
```

9) Circle all of the things on the following list that can be purchased from McMaster Carr: Clock, spring, valve, solder, drill bit, scissors, pulley, bicycle, tricycle, tweezers, magnifying glass, scale, coat hook, office chair, toilet plunger, the Swedish National flag, and a USB flash drive.

(McMaster Carr has everything!
(well, a lot of things))