Your name:

Cornell TAM 2030

No calculators, books or notes allowed. 5 Problems, 150 minutes total.

Final Exam

May 8, 2009 (Clarifications added on 5/9/09)

Directions. To ease your TA's grading and to maximize your score, please:

- Draw **Free body diagrams** whenever force, moment, linear momentum, or angular momentum balance are used.
- Use correct vector notation.
- \checkmark + Be (I) neat, (II) clear and (III) well organized.
- □ TIDILY REDUCE and box in your answers (Don't leave simplifiable algebraic expressions).
- >> Make appropriate Matlab code clear and correct. You can use shortcut notation like " $\dot{\theta}_7 = 18$ " instead of, say, "theta7dot = 18". Small syntax errors will have small penalties.
- $\uparrow \qquad \text{Clearly define any needed dimensions } (\ell, h, d, ...), \text{ coordinates } (x, y, r, \theta ...), \text{ variables } (v, m, t, ...), \\ \text{base vectors } (\hat{i}, \hat{j}, \hat{e}_r, \hat{e}_\theta, \hat{\lambda}, \hat{n} ...) \text{ and signs } (\pm) \text{ with sketches, equations or words.}$
- \rightarrow Justify your results so a grader can distinguish an informed answer from a guess.
- If a problem seems *poonly diefined*, clearly state any reasonable assumptions (that do not oversimplify the problem).
- \approx Work for **partial credit** (from 60–100%, depending on the problem)
 - Put your answer is in terms of well defined variables even if you have not substituted in the numerical values.
 - Reduce the problem to a clearly defined set of equations to solve.
 - Provide Matlab code which would generate the desired answer (and explain the nature of the output).
- Put your name on each extra sheet, fold it in, and refer to it at the relevant problem. Note the last page is **blank** for your use. Ask for more extra paper if you need it.

Problem 1:	/25
Problem 2:	/25
Problem 3:	/25
Problem 4:	/25

Problem 5: <u>/25</u>

1) A uniform disk with mass m and diameter R rolls back and forth in a trough with radius R. Assuming small oscillations what is the period of oscillation. Answer in terms of some or all of R, g and m.

g \checkmark R

2) A small bead *m* slides without friction on a straight rod which is rotating at constant ω about a point on the rod. Neglect gravity. 2D. Find \ddot{r} in terms of some or all of *r*, \dot{r} and ω .

W _x / C

3) A uniform stick with mass m and length ℓ swings from a frictionless hinge at 0.

a) Find the equation of motion. That is, find $\ddot{\theta}$ in terms of some or all of θ , $\dot{\theta}$, ℓ , *m* and *g*.

b) The partial free body diagram shows some conceivable reaction forces at O. With θ positive as shown, which of these, could be several or all, are you confident are in the wrong direction (a,b,c,d,e,f,g)? Justify your answer in a manner that is fully convincing.

4) A rear-wheel drive car attempts to drive uphill. Assume it does not tip over. What is the steepest slope γ it can go up without the rear wheel sliding? Answer in terms of some or all of m, c, d, h, g, μ and the moment of inertia about the center of mass I.

5) A particle *m* is acted on by gravity and a cubic drag force $F_D = cv^3$ that opposes its motion. Find \ddot{x} in terms of some or all of *x*, *y*, \dot{x} , \dot{y} , *m*, *g* and *c*.

