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Figure 9.48: A two mass system. We de-
fine and so that the system is in
equilibrium when .
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Figure 9.49: Motions of the masses from
for three different initial

conditions, all released from rest (

a) ,
b) , and
c) .
Filename:tfig-simplenormalmode

only the forces from the outside; the interaction forces cancel because
they come in equal and opposite (action and reaction) pairs. So we
get:

external tot CM (9.56)

So the center-of-mass of a system (a system that may be deforming
wildly) obeys the same simple governing equation as a single particle.
Although our demonstration here was for particles in one dimension.
The result holds for any bodies of any type in 1,2, or 3 dimensions.

Normal modes

Systems with many moving parts often move in complicated ways.
Consider the two mass system shown in . By drawing free
body diagrams and writing linear momentum balance for the two
masses we can write the equations of motion in matrix form (see

) as

where

and

Example: Complicated motion.
If we put the initial condition

and

we get the motion shown in a. Both masses move in a complicated way
and not synchronously with each other.

On the other hand, all such systems, if started in just the right way,
will move in a simple way.

Example: Simple motion: a normal mode.
If we put the initial condition

and

we get the motion shown in b. Both masses move in a simple sine
wave, synchronously and in phase with each other.

That this system has this simple motion is intuitively apparent. If both of
the equal masses are displaced equal amounts both have the same restoring force.
So both move equal amounts in the ensuing motion. And nothing disturbs this
symmetry as time progresses. In fact the frequency of vibration is exactly that
of a single spring and mass (with the same and ).

A given system can have more than one such simple motion.
Example: Another normal mode.
If we put the initial condition

and
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we get the motion shown in c. Both masses move in a simple sine wave,
synchronously and exactly out of phase with each other. Being exactly out of
phase is actually a form of being exactly in phase, but with a negative amplitude.

This motion is also intuitive. Each mass has restoring force of . One
from a spring at the end and because each mass experiences a spring with

half the length (and thus twice the stiffness) in the middle (because the middle
of the middle spring doesn’t move in this symmetric motion).

The system above is about the simplest for demonstration of normal
mode vibrations. But more complicated elastic systems always have
such simple normal mode vibrations.

All elastic systems with mass have normal mode vibrations in which
all masses

have simple harmonic motion
with the same frequency as all the other masses, and
exactly in (or out) of phase with all of the other masses

Thus the first and second normal modes from b,c can be writ-
ten as

cos
cos

First normal mode

and
cos
cos

Second normal mode

where, by the physical reasoning in the examples we know that
and . We could equally well have used the sine

function instead of cosine.

Superposition of normal modes

Note that the governing equation ( ) is ‘linear’ in that the sum
of any two solutions is a solution. If we add the two solutions from

b,c we have a solution. And if divide that sum by two we get
a solution. And not just any solution, but the solution in a.
The top curve is the sum of the bottom two divided by two (The curves
for and need to be added separately).

For more complicated systems it is not so easy to guess the normal
modes. Most any initial condition will result in a complicated mo-
tion. Nonetheless the concept of normal modes applies to any system
governed by the system of equations ( ):

Any collection of springs and masses connected any which way has
normal mode vibrations. And because elastic solids are the continuum
equivalent of a collection of springs and masses, the concept applies to
all elastic structures. Here are the basic facts
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An elastic system with degrees of freedom has independent
normal modes.

In each normal mode all the points move with the same angular
frequency and exactly in phase.

Any motion of the system is a superposition of normal modes (a
sum of motions each of which is a normal mode).

Example: Musical instruments
The pitch of a bell is determined by that normal mode of the bell that has the

lowest natural frequency. Similarly for violin and piano strings, marimba keys,
kettle drums and the air-column in a tuba.

A recipe for finding the normal modes of more complex systems is
given in box 9.7 on page 494.

Normal modes and single-degree-of-freedom
systems

Any complex elastic system has simple normal mode motions. And all
motions of the system can be represented as a superposition of normal
modes. Hence sometimes we can think of every system as if it is a
single degree of freedom system. For example, if a complex elastic
system is forced, it will resononate if the frequency of forcing matches
any of its normal mode (or natural) frequencies.
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9.7 THEORY
The math of, and how to find, normal modes

Consider a system of masses and springs whose motions
are governed by

where . For definiteness
we are just thinking of masses in a line, but the concepts
are actually more general.

The basic approach is, and this the real approach used
by the professionals, to guess that there are normal mode
solutions and see if they exist. A normal mode solution, all
masses moving sinusoidally and synchronously, would look
like this

cos
cos

cos

Upper case bold (to distinguish it from lower case veloc-
ity) is a list of constants . We could have used
sin just as well as cos for our guess. Now we plug our guess
into the governing equations to see if it is a good guess:

cos cos

cos cos

cos

This equation has to hold true for all therefor the constant
column vector inside the brackets must be zero:

At this point the reasoning depends on knowing some lin-
ear algebra. We’ll just pretend that you do. If you don’t,
trust us and hold on to these facts until you learn better
what they are about in a math class. The matrix is in-
vertible, in fact the inverse of is with the diagonal
elements replaced by their reciprocals. So we can multiply
through by to get:

where we used that = the identity matrix,
and that . Defining the product
and substituting we get the classic eigenvalue problem:

(9.57)

There is a lot to know about . Its a famous
equation. says that is a vector that, when
multiplied by gives itself back again, multiplied by a
constant. For the special vector , being multiplied by the
matrix is equivalent to being multiplied by the scalar

.
Because is positive semi-definite (if you don’t know

what that means, let it go) and symmetric a bunch of things
follow. In particular, Given there are linear indepen-
dent and mutually orthogonal eigen vectors
with associated eigen values . Each eigen vec-

tor has an associated eigen value .
In the case of our vibration problem the eigen vectors

are called modes or eigen modes or mode shapes or nor-
mal modes. The word ‘normal’ is because of modes being
‘normal’ (orthogonal) to each other.

Recipe for finding normal
modes

Given the matrices and proceed as follows.

Calculate

Use a math computer program to find the eigenval-
ues and eigenvectors of , call these and .
Usually this is a single command, like:

eig(B)

For each between 1 and write each normal mode
as cos or as sin

For example, if

and

then, for any values of and , the computer will return
for the eigen values and eigenvectors of :

with and with


















