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5 problems, 25% points each, and 150.0 minutes.

Please follow these directions to ease grading and to maximize your score.

a) No calculators, books or notes allowed. A blank page for tentative scrap work is provided at the back.
Ask for extra scrap paper if you need it. If you want to hand in extra sheets, put your name on each
“sheet and refer to that sheet in the problem book for the relevant problems.

b) Full credit if

N . . :
" —free body diagrams— are drawn whenever force, moment, linear momentum, or angular mo-

mentum balance are used;
o  correct vector notation is used; when appropriate;

T—  any dimensions, coordinates, variables and base vectors that you add are clearly defined;
all signs and directions are well defined with sketches and/or words;

reasonable justification, enough to distinguish an informed answer from a guess, is given;
you clearly state any reasonable assumptions if a problem seems poorly defined;

work is 1. ) neat,
IL. ) clear, and
1I1.) well organized,

o &l w

« your answers are TipiLy RepUceD (Don’t leave simplifiable algebraic expressions.);
O your answers are in; and
> Matlab code, if asked for, is clear and correct. To ease grading and save space, your Matlab code
can use shortcut notation like “¢7 = 18” instead of, say, “theta7dot = 18”. You will be penalized,
but not heavily, for minor syntax errors.

c¢) Substantial partial credit if your answer is in terms of well defined variables and you have not substi-
tuted in the numerical values. Substantial partial credit if you reduce the problem to a clearly defined
set of equations to solve.
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1) (25 points) Due to forcing from a motor (not shown) the sup-
port hinge C of a pendulum oscillates horizontally according to x¢ =
A cos(At). The pendulum is a uniform rod with mass m and length £.

a)(20 pts) In terms of some or all of A,A,g,m,£,t,6 and @ find 6.

b) (X 'gts) Assuming small angles, find the steady-state amplitude of
forced oscillation (neglect the terms usually neglected in such situa-

tions).
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Figure 0.1: Pendulum with moving sup-
port.
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2) (25 points) Two equal masses are held in place by three equal

springs. They can only move horizontally.

a) By any means you like find as many normal modes of this system
as you can. Describe these normal modes in any precise way you like
with words or equations (using variables you define).

'b) For each of these modes find the period of oscillation.
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Figure 0.2: Two masses and " three

springs.
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Chapter 9. Dynamics in 1D 9.4. Coupled motions in 1D 491

only the forces from the outside; the interaction forces cancel because
they come in equal and opposite (action and reaction) pairs. So we
get:

Z Feyternal = Zaimi = MtotdCM- (956)

So the center-of-mass of a system (a system that may be deforming
wildly) obeys the same simple governing equation as a single particle.
Although our demonstration here was for particles in one dimension.
The result holds for any bodies of any type in 1,2, or 3 dimensions.

Normal modes

Systems with many moving parts often move in complicated ways.
Consider the two mass system shown in Fig. 9.48. By drawing free
body diagrams and writing linear momentum balance for the two
masses we can write the equations of motion in matrix form (see
eqn. (9.53)) as

[M]X + [K]x =0

m 0 -2k k
[M]=|:0 mi| and [K]z[ k —2k]'

Example: Complicated motion.
If we put the initial condition

where

1
X0 = and vy =
0

we get the motion shown in Fig. 9.49a. Both masses move in a complicated way
and not synchronously with each other.

On the other hand, all such systems, if started in just the right way,
will move in a simple way.

Example: Simple motion: a normal mode.
If we put the initial condition

1
X0 = and vy =
1

we get the motion shown in Fig. 9.49b. Both masses move in a simple sine
wave, synchronously and in phase with each other.

That this system has this simple motion is intuitively apparent. If both of
the equal masses are displaced equal amounts both have the same restoring force.
So both move equal amounts in the ensuing motion. And nothing disturbs this
symmetry as time progresses. In fact the frequency of vibration is exactly that
of a single spring and mass (with the same k and m).

A given system can have more than one such simple motion.

Example: Another normal mode.
If we put the initial condition

1 0
xXo = and vy =

—x Fx

Figure 9.48: A two mass system. We de-
fine x1 and x2 so that the system is in
equilibrium when x1 = x2 = 0.

Filename:tfigure-f93£2

X1

X2

Displacement of masses &

=2
=

FAAL
VY

Displacement of masses

©)

v

Q

2

=

G

o 1Tx;

=

(5]

£

(0]

£ 20

F0+ I

a0 t
X2

Figure 9.49: Motions of the masses from
Fig.9.48 for three different initial
conditions, all released from rest (vi =
vy = 0)

a)x1 =1, x2= 0,
b)x; =1, x2= 1, and
c)x1 =1, xo =—1.
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we get the motion shown in Fig. 9.49c. Both masses move in a simple sine wave,
synchronously and exactly out of phase with each other. Being exactly out of
phase is actually a form of being exactly in phase, but with a negative amplitude.

This motion is also intuitive. Each mass has restoring force of 3kAx. One
k from a spring at the end and 2k because each mass experiences a spring with
half the length (and thus twice the stiffness) in the middle (because the middle
of the middle spring doesn’t move in this symmetric motion).

The system above is about the simplest for demonstration of normal
mode vibrations. But more complicated elastic systems always have
such simple normal mode vibrations.

All elastic systems with mass have normal mode vibrations in which
all masses

e have simple harmonic motion
e with the same frequency as all the other masses, and

e exactly in (or out) of phase with all of the other masses

Thus the first and second normal modes from Fig. 9.49b,c can be writ-

ten as
x1(f) | | cosAqt and xi(f) | _ Ccos At
x2(1) | | cosAqt x2(t) |~ | —cosAxt
First normal mode Second normal mode

where, by the physical reasoning in the examples we know that Ay =
Vk/m and Ay, = /3k/m. We could equally well have used the sine

function instead of cosine.

Superposition of normal modes

Note that the governing equation (egn. (9.4)) is ‘linear’ in that the sum
of any two solutions is a solution. If we add the two solutions from
Fig. 9.49b,c we have a solution. And if divide that sum by two we get
a solution. And not just any solution, but the solution in Fig. 9.49a.
The top curve is the sum of the bottom two divided by two (The curves
for x1(¢) and x,(¢) need to be added separately).

For more complicated systems it is not so easy to guess the normal
modes. Most any initial condition will result in a complicated mo-
tion. Nonetheless the concept of normal modes applies to any system
governed by the system of equations (egn. (9.4)):

[M]% + [K]x = 0.

Any collection of springs and masses connected any which way has
normal mode vibrations. And because elastic solids are the continuum
equivalent of a collection of springs and masses, the concept applies to
all elastic structures. Here are the basic facts
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e An elastic system with n degrees of freedom has n independent
normal modes.

e In each normal mode i all the points move with the same angular
frequency A; and exactly in phase.

e Any motion of the system is a superposition of normal modes (a
sum of motions each of which is a normal mode).

Example: Musical instruments

The pitch of a bell is determined by that normal mode of the bell that has the
lowest natural frequency. Similarly for violin and piano strings, marimba keys,
kettle drums and the air-column in a tuba.

A recipe for finding the normal modes of more complex systems is
given in box 9.7 on page 494.

Normal modes and single-degree-of-freedom
systems

Any complex elastic system has simple normal mode motions. And all
motions of the system can be represented as a superposition of normal
modes. Hence sometimes we can think of every system as if it is a
single degree of freedom system. For example, if a complex elastic
system is forced, it will resononate if the frequency of forcing matches
any of its normal mode (or natural) frequencies.
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9.7 THEORY
The math of, and how to find, normal modes

Consider a system of # masses and springs whose motions
are governed by egn. (9.4)

[M]x + [K]x =0,

where x = x(t) = [x1(¢),x2(t), --., X, (¢)]’. For definiteness
we are just thinking of masses in a line, but the concepts
are actually more general.

The basic approach is, and this the real approach used
by the professionals, to guess that there are normal mode
solutions and see if they exist. A normal mode solution, all
masses moving sinusoidally and synchronously, would look

like this
Vi cos At

X = Vacosdt | _ V cos At.

Upper case bold V (to distinguish it from lower case veloc-
ity) is a list of constants [V1, V2,...]". We could have used
sin just as well as cos for our guess. Now we plug our guess
into the governing equations to see if it is a good guess:

Ml +[Klx = 0

2
[M]%{Vcos)tt}-{-[K]{Vcoslt} = 0
—A2[M]V cosAt + [K]V cosAt = 0
{-22[M1V + [KIV }cosht = 0.

This equation has to hold true for all ¢ therefor the constant
column vector inside the brackets {} must be zero:

—A’[M]V +[K]V =0
[—AZ[M] + [K]} V=0

At this point the reasoning depends on knowing some lin-
ear algebra. We’ll just pretend that you do. If you don’t,
trust us and hold on to these facts until you learn better
what they are about in a math class. The matrix [M] is in-
vertible, in fact the inverse of [M] is [M] with the diagonal
elements replaced by their reciprocals. So we can multiply
through by [M]~! to get:

[M]7' K]V = A%V,

where we used that [M] ! [M] = [I] = the identity matrix,
and that [I]V = V. Defining the product [B] = [M]~'[K]
and substituting we get the classic eigenvalue problem:

[BIV = A%V. (9.57)

There is a lot to know about egn. (9.57). Its a famous
equation. egn. (9.57) says that V is a vector that, when
multiplied by [B] gives itself back again, multiplied by a
constant. For the special vector ¥V, being multiplied by the
mzatrix [B] is equivalent to being multiplied by the scalar
A=

Because [B] is positive semi-definite (if you don’t know
what that means, let it go) and symmetric a bunch of things
follow. In particular, Given [B] there are n linear indepen-
dent and mutually orthogonal eigen vectors V1,V2,.. . V"
with associated eigen values A%, A%, ey A%. Each eigen vec-
tor ¥; has an associated eigen value A,-z.

In the case of our vibration problem the eigen vectors
are called modes or eigen modes or mode shapes or nor-
mal modes. The word ‘normal’ is because of modes being
‘normal’ (orthogonal) to each other.

Recipe for finding normal
modes

Given the matrices [M] and [K] proceed as follows.
e Calculate [B] = [M]71K

e Use a math computer program to find the eigenval-
ues and eigenvectors of [B], call these ¥! and /11-2.
Usually this is a single command, like:

eig(B)

e For each i between 1 and n write each normal mode
as x(t) = V cosA;t or as x(t) = VsinA;t

For example, if

[M]=[’(’)’ r‘,’l} i [K]=[_,fk _’;k].

then, for any values of k and m, the computer will return
for the eigen values and eigenvectors of [B] = [M]~1[K]:

Vlz[ } :|with,l%=k/m and sz[ _} }withA%=3k/m




3) (25 points) 2D problem. A small satellite is moving around the
earth. It is not close to the earth’s surface so you should use the
inverse square law of attraction. There is a small atmospheric drag
on the satellite which opposes its motion: Fg = cv?. Assume you are
given the gravity constant g, the earth’s radius R, the satellite mass m,
the position (x, y) and velocity (X, y) and the drag constant c. Assume
the origin of the xy coordinate system is at the center of the earth and
that the coordinate system may be treated as a Newtonian frame.

Find X.
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4) (25 points) A uniform disk with mass m and radius R is released
from rest and rolls down a slope y as accelerated by gravity g.

a) In terms of some or all of the variables given, what is the total angle

of rotation of the disk after time t?7

b) In terms of some or all of m, R, g,y and ¢ how big must be the

friction coefficient to prevent sliding?
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Figure 0.3: Disk rolls down a hill.
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5) (25 points) A car has mass m and moment of inertia J G about its * [ «—/J ———3/
- center of mass. Dimensions are as shown. The suspension is stiff so the -~ :

car tipping can be neglected. The wheels are light (negligible mass). T" @
The rear brake has coefficient of friction . Gravity g points down. ,__O__j__'_
1] die

a) (20 pts) In terms of some or all of the variables given find the
deceleration of the car when the rear wheel skids. .

Filename:c: ar

b) (10 pts) A super new rubber is discovered that has arbitrarily large
friction coefficient. In the limit of 4 — oo what is the stopping distance
of this car when it ski?ls, to a stop? Or does jt tip ovc.?x}?.
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Figure 0.4: Car with rear wheel brakes.
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