function sled
\%(Andy Ruina's)solution to Tongue and Shepard 3.1.37
\% Wednesday Feb 22, 2006
\% Initial conditions and time span
tspan= linspace($0,20,100$); \%Integrate for 20 seconds
$z 0=[00]^{\prime} ; \quad \%$ initial position and speed both zero
\% This one command solves the ODEs
[t z] = ode45(@rhs, tspan, z0);
\% Unpack the variables
$x=z(:, 1) ; \quad \% x$ is first column of z
$v=z(:, 2) ; \quad \%$ is second column of z
\% Plot the results
$\operatorname{plot}(x, v)$;
title('Andy Ruina"s plot of speed vs position')
xlabel('Position from start in meters')
ylabel('Velocity in meters/s')
end
\%--
function $\mathrm{zdot}=\mathrm{rhs}(\mathrm{t}, \mathrm{z})$
$\%$ all variables in meters, kg , seconds
$x=z(1) ; v=z(2) ; \quad \%$ unpack z into readable variables
$m=400 ; F=2 e 5 ; c=1600 ; \%$ given constants
\%The next two lines are the heart of this function
\%They describe the right hand sides (rhs) of the ODEs.
xdot $=\mathrm{v}$;
vdot $=\left(F-c^{*} v\right) / m ;$
z1dot $=x$ dot; z2dot $=$ vdot; $\%$ pack up the derivatives
zdot $=[z 1$ dot $z 2 d o t]$]; \%This is what the function returns end
\qquad

Note to students:

Please type your name as part of your computer commands. Please have part of your computer output be your name. Then circle your name with a colored pen, or highlight it, in both places.

Thanks.

