9.37

Given \(m = 90 \text{ lbm} \), \(h = 10 \text{ ft} \), \(g = 32 \text{ ft/s}^2 \),
\(d = \text{distance to stop} = 1 \text{ ft} \).

Treat the entire body as a particle concentrated at the center of mass.

a) Total distance = 10 feet

b) \(\Delta PE = mgh = 90 \text{lbm}(32 \text{ ft/s}^2)(10 \text{ ft}) \)

\[= 28,800 \text{ lb-ft} \]

c) All of this work must be absorbed.
\[W = 28,800 \text{ lb-ft} \]

d) \(W = Fd \), so \(F = \frac{W}{d} = \frac{28,800 \text{ lb-ft}}{1 \text{ ft}} \)

\[F = 28,800 \text{ lbs} \]
\[= \frac{mgh}{d} \]
\[= 10mg = 10 \text{ Wt} \]