
Lab #4 - Gyroscopic Motion of a Rigid Body
Last Updated: April 6, 2007

INTRODUCTION
Gyroscope is a word used to describe a rigid body, usually with symmetry about an axis, that
has a comparatively large angular velocity of spin, ψ̇, about its spin axis. Some examples are a
flywheel, symmetric top, football, navigational gyroscopes, and the Earth. The gyroscope differs
in some significant ways from the linear one and two degrees-of-freedom systems with which you
have experimented so far. The governing equations are 3-dimensional equations of motion and
thus mathematical analysis of the gyroscope involves use of 3-dimensional geometry. The governing
equations for the general motion of a gyroscope are non-linear. Non-linear equations are in general
hard (or impossible) to solve. In this laboratory you will experiment with some simple motions of a
simple gyroscope. The purpose of the lab is for you to learn the relation between torque, angular
momentum, and rate of change of angular momentum. You will learn this relation qualitatively by
moving and feeling the gyroscope with your hands and quantitatively by experiments on the precession
of the spin axis.

PRELAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. What is a gyroscope?

2. Where is the fixed point of the lab gyroscope?

3. How will moments (torques) be applied to the lab gyroscope?

THE GYROSCOPE
Our experiment uses a rotating sphere mounted on an air bearing (see Figure 2) so that the center of
the sphere remains fixed in space (at least relative to the laboratory room). This is called a gyroscope
with one fixed point.

As the gyroscope rotates about its spin axis it is basically stable. That is, the spin axis remains fixed
in space and resists any externally applied force that would tend to alter its direction. As you should
see in the experiment, the larger the spin rate the larger the moment needed to change the direction
of the spin axis. When a moment is applied to a gyroscope, the spin axis will itself rotate about a
new axis which is perpendicular to both the spin axis and to the axis of the applied moment. This
motion of the spin axis is called precession.

DYNAMICS OF THE SYMMETRIC TOP
We will now use 3-dimensional rigid-body dynamics to determine the equations of motion for a
symmetric top under the influence of gravity. This is a famous mechanics problem equivalent to
our experimental set-up. Our analysis requires us to first define 2 different coordinate frames (see

Figure 1). The
{
X̂, Ŷ, Ẑ

}
coordinate system remains fixed in space (in an inertial frame) while

the {ê1, ê2, ê3} coordinate system is semi-fixed to the rotating rigid-body (in a rotating non-inertial
frame). That is it’s allowed to only rotate about the ê1 and ê2 axes (in other words the rotating
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frame does not spin with the body about its spin axis). Furthermore, the semi-fixed coordinate
axis is chosen to be a principal coordinate axis of the rigid body. This will simplify our analysis by
diagonalizing the inertia tensor.

Figure 1: A free-body diagram of the symmetric top including both coordinate frames.

Using the aforementioned coordinate definitions, the frame rotation vector Ω is

Ω = φ̇Ẑ + θ̇ê1 = θ̇ê1 + φ̇ sin θê2 + φ̇ cos θê3 (1)

while the body rotation vector ω is

ω = Ω + ψ̇ê3 = θ̇ê1 + φ̇ sin θê2 +
(
φ̇ cos θ + ψ̇

)
ê3 (2)

The angular momentum of the top about the fixed origin, Ho, in the rotating coordinate frame, is

Ho = [Io]ω =



I 0 0
0 I 0
0 0 Izz






ω1

ω2

ω3


 = Iω1ê1 + Iω2ê2 + Izzω3ê3 (3)

where Ixx = Iyy = I due to the symmetry of the rigid body. Differentiating with respect to time, we
find the time rate of change of the angular momentum to be

Ḣo = Iω̇1ê1 + Iω̇2ê2 + Izzω̇3ê3 + Ω × Ho (4)

where the final term arises due to the use of a rotating coordinate frame. Performing the required
vector cross-product we get

Ω × Ho =

∣∣∣∣∣∣

ê1 ê2 ê3

ω1 ω2 Ω3

Iω1 Iω2 Izzω3

∣∣∣∣∣∣
= (Izzω2ω3 − Iω2Ω3) ê1 + (Iω1Ω3 − Izzω1ω3) ê2 + 0ê3 (5)
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Using Figure 1 we find the total applied torque to be
∑

Mo = rcm × W = hê3 ×−mgẐ = hmg sin θê1 (6)

We now use angular momentum balance about the fixed origin -
∑

Mo = Ḣo. Substituting (4), (5),
and (6) into the angular momentum balance and “dotting” with all 3 rotating unit vectors, we end
up with 3 separate equations:

Iω̇1 + Izzω2ω3 − Iω2Ω3 = hmg sin θ (7a)

Iω̇2 + Iω1Ω3 − Izzω1ω3 = 0 (7b)

Iω̇3 = 0 (7c)

Equation (7c) says that ω3 = φ̇ cos θ + ψ̇ is constant. Physically, we interpret this as saying the
“total spin” of the rigid body about the ê3-axis is constant.

We simplify the analysis of the two remaining equations by restricting ourselves to “steady-precession”.
Steady-precession occurs when we restrict the kinematics to constant spin rate ψ̇o, constant precession
φ̇o, and constant pitch θo. With these restrictions, (7b) is trivially satisfied and we are left with one
equation

φ̇o sin θo

[
Izz

(
φ̇o cos θo + ψ̇o

)
− Iφ̇o cos θo

]
= hmg sin θo (8)

There are 3 constants in (8), two of which can be independently fixed in order to solve for the third.
In this lab you will set the spin rate ψ̇o and the pitch angle θo and find the resulting
precession speed φ̇o for several different applied torques.

Taking a look at the special case of θo = π
2
, equation (8) reduces to

Izzφ̇oψ̇o = hmg (9)

Thus for a gyroscope (or rotor) whose spin axis is orthogonal to the applied torque we
find that the product of the moment of inertia, spin rate, and precession rate is equal to
the applied torque.

LABORATORY SET-UP
Our lab gyroscope is a steel ball on an air bearing (see Figure 2). On one side of the ball a rod is
mounted for reference and for touching. This side of the ball has also been bored out so that the rod
side is lighter and the center of mass can be adjusted to either side of the center of the sphere by
sliding a balance weight in or out. The balance weight is black, with reflective tape, to make rotation
rate measurements easier. The sphere is supported in a spherical cup into which high pressure air is
supplied so that the sphere is actually supported by a thin layer of air (similar to the air track).

To experimentally measure the spin rate ψ̇ of the gyroscope you will use a tachometer (measures in
rotations per minute, or rpm). To measure the precession rate φ̇ you will use a stop-watch. Finally,
the metric scale will be used to measure the torques you will be applying to the gyroscope.

As a final example of the gyroscopic effect you will play around with a bicycle wheel and rotating
platform for hands-on experience and a demonstration of the conservation of angular momentum.
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PROCEDURE

1. Turn on the air source.

2. Place the black balance weight on the rod so that if the sphere is released with no spin the rod
does not tend to fall down or pop upright from a horizontal position. Note that this is easier
said than done, so try to get it as close to motionless as possible. Where is the center of mass
of the system (sphere, rod, and disk) after the gyroscope is balanced? What effect does gravity
have on the motion of the balanced gyroscope? If you don’t perfectly balance the gyroscope it
will result in an error in the calculation of what quantity?

3. Without spinning the ball, point the rod in some particular direction (up, or towards the door,
for example). Carefully release the rod and watch it for several seconds. Does it keep pointing
in the same direction? Touch the rod lightly with a small strip of paper. How much force is
required to change the orientation of the rod? In which direction does the rod move? Rotate
the table underneath the air bearing. Does the rod move?

4. Get the ball spinning and repeat step #4. One good way to do this is to roll the rod between
your hands. Stop any wobbling motion by holding the tip lightly and briefly. Avoid touching
the ball itself. Do not allow the rod to touch the base and do not jar the ball while it is
spinning. What is the effect of spin on the gyroscope motion? Why are navigation gyroscopes
set spinning?

5. While the ball is spinning, apply forces to the end of the rod using one of the pieces of Teflon
on a string. The ball should continue to rotate freely as you apply the force because of the low
friction of the Teflon. Gently move the end of the rod (keep the rod from touching the bearing
cup, or the rod may spin wildly). What is the relationship between the force you are applying
and the velocity of the tip of the rod (estimated magnitude and direction)? Remember that
tension is always in the direction of the string.

6. For a more quantitative look at the motion of a gyroscope:

(a) Add another weight to the rod so that the gyroscope is no longer balanced. Record its
mass and position on the rod for use in calculations later (see Figure 2).

(b) Get the ball spinning, but not wobbling, and point the rod towards one of the three support
screws on the air bearing platform. With the rod horizontal, simultaneously release the
rod and start the handheld digital stopwatch. The spinning ball and rod will begin to
precess in a horizontal plane. Depending upon the precession rate you may want to stop
the timer after one full revolution, or after only one-third or two-thirds of a revolution.

(c) Halfway through the timing interval use the optical tachometer to measure the spin rate
of the ball (this gives an average). The light beam from the tachometer should be aimed
at the reflective tape on the black balance weight. The tachometer measures the rate
of the pulses of light returning from the tape, and displays the result in r.p.m. Hold the
tachometer at a distance of 10 cm or so. For higher accuracy, try to follow the precession
of the rod with the tachometer. This may require practice and patience. If you find it
more convenient, measure the spin rate at the start of the precession period and again at
the end, and then find the average.
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(d) Repeat the procedure for at least two additional spin rates. Try to use a wide range of
spin rates; e.g., 200, 400, and 600 r.p.m.

7. Remove the weight and repeat step #6 with at least two more weights for a total of at least
three different weights and three different spin rates per weight. The spin rates need not be
the same as the ones you used before, but they should cover a similarly wide range of r.p.m.

8. Turn off the air source and clean up your lab station.

9. Hold the bicycle wheel while someone else gets it spinning. Twist it different ways. Hold your
hands level and turn your body in a circle. How do the forces you apply depend on the direction
you twist the axle and on the rotation speed and sense?

10. Repeat #9 while standing on the rotatable platform.
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LAB REPORT QUESTIONS

1. Answer all of the questions given in the procedure above using full self-contained sentences.

2. Suppose that the rod on one spinning air gyroscope is pointed north, at an angle of 42.5
degrees from the horizontal (i.e. along the earth’s axis of rotation). A second air gyroscope
is pointed east, with its rod horizontal. Assume that the ball is perfectly balanced and that
air friction is negligible. How does the orientation of each spinning gyroscope change over
a period of several hours?

3. Use your recorded data from parts 6 and 7 of the lab procedure for the following questions.

(a) Plot the precessional period τ vs. the spin rate φ̇ for your different applied torques.
Make sure to use a different color and/or symbol for each data point.

(b) From your plot derive the relationship between the precessional period τ and the spin
rate φ̇?

(c) For a fixed torque show that the product of the precessional rate and the spin rate φ̇
is a constant.

(d) The torque should be proportional to the product of the spin rate and the precession
rate. Find the constant of proportionality and plot the relationship between torque
and the product of spin rate and precession rate (i.e. Mo vs. φ̇ψ̇).

(e) You have now found a simple formula relating torque, spin rate and precession rate.
What is the meaning of the numerical constant in the formula?

4. Explain in words why when you stand on the platform with a spinning bicycle wheel and
proceed to rotate the wheel, the platform begins to rotate.
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Figure 2: A diagram of the lab gyroscope.
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CALCULATIONS & NOTES


