Lab #2 - Two Degrees-of-Freedom Oscillator

Last Updated: March 10, 2007

INTRODUCTION

The system illustrated in Figure 1 has two degrees-of-freedom. This means that two is the minimum
number of coordinates necessary to uniquely specify the position of the system. The purpose of
this laboratory is to introduce you to some of the properties of linear vibrating systems with two
or more degrees-of-freedom. You have already seen a one degree-of-freedom vibrating system (the
mass-spring-dashpot system) and should have some familiarity with the ideas of natural frequency and
resonance. These ideas still apply to an undamped linear system with two or more degrees-of-freedom.

The new idea for many degrees-of-freedom systems is the concept of modes (also called normal
modes). Each mode shape has its own natural frequency and will resonate if forced at that frequency.
The number of modes a system has is equal to the number of degrees-of-freedom. Thus the system
above has two modes and two natural frequencies.

The primary goals of this laboratory are for you to learn the concept of normal modes in a two
degrees-of-freedom system — the simplest system which exhibits such modes. You will learn this by
experimentation and calculation

PRE-LAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. Are the number of degrees of freedom of a system and the number of its normal modes
related? Explain.

2. How can a normal mode be recognized physically?
3. What do you expect to happen when you drive a system at one of its natural frequencies?

4. Draw a free body diagram and derive the equations of motion for a three degrees-of-freedom
system, with three different masses and four equal springs. Put them in matrix form. (See
the derivation for a two degrees-of-freedom system in the lab manual. Your result should
resemble equation (5).) Substitute in the normal mode solution (7) to get an eigenvalue
problem similar to (9).

5. Using Matlab, find the eigenvalues and eigenvectors of the following matrix and print the
results (HINT: Type help eig for assistance).

A=, 3 ()

NORMAL MODES

The concept of normal modes can be expressed mathematically in the following way. Say the position
of an n-degree of freedom system can be described by the n numbers x;, z3, x5 ...z, (this is, in
fact, the definition of an n degrees-of-freedom system). Since the system is dynamic, each of these
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variables is a function of time x1(t), 22(t) etc. A motion of the system corresponds to a specified list
of these functions. In general these functions of time can be quite complicated. However, for linear
undamped systems there turns out to be many solutions that are, in some sense, simple. In fact, there
are n such simple solutions called normal mode vibrations. A fortunate and often used fact is that
every possible solution of the system can be written as a sum of these solutions. (In the language of
linear algebra one can say that the normal mode solutions span the space of all solutions.) A normal
mode solution for a five degrees-of-freedom system looks like

{L’l(t) U1
{L’g(t) (%)
x(t) = |z3(t)| =v(Acoswt + Bsinwt) = [vs| (Acoswt + Bsinwt) (2)
l’4(t) V4
$5(t) (%

A normal mode vibration is characterized by a mode shape v and an angular frequency w (the
“natural frequency” for the given mode shape). The mode shape v is a list of constants (v1, va,
... ) that determine the relative amplitude of motion for each degree-of-freedom of the system. The
constants A and B determine the amplitude and phase of the vibration. Note that in a normal mode
vibration each point moves exactly as in simple harmonic motion. All points are moving with the
same angular frequency w and are exactly in-phase or exactly out-of-phase, depending on the signs
of the appropriate elements of v.
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Figure 1: lllustration of a coupled mass-spring system.

The general motion of an n degrees-of-freedom undamped linear vibrating system can be written as
the sum of normal mode solutions.

n

x(t) = Z (A; cosw;t + B; sinw;t) v; (3)

i=1

The system is characterized by its natural frequencies w; and mode shapes v;. The constants A; and
B, are determined by the initial conditions and specify the amplitude and phase of the i-th normal
mode. The mathematics involved in the discussion above is very similar to the mathematics for a set
of first-order differential equations. (The governing equations for an n degrees-of-freedom vibrating
system can, in fact, be written as a set of 2n first order equations.)

DERIVING AND SOLVING THE EQUATIONS OF MOTION
We will now derive the equations of motion for the two degrees-of-freedom air track experiment. The



variables and physical setup are shown in Figures 1 and 3. We will draw the free-body diagram for
each mass and work out its equation of motion.
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Figure 2: The free-body diagrams for masses m; and ms.

To help get the signs right, assume that the displacements, velocities, and accelerations of the masses
are all positive (i.e. to the right) with 1 < x5 < x3. This puts all of the springs into tension relative
to their equilibrium condition. The equations of motion (assuming equal spring constants) are

k‘ (1’2 — 1’1) — k‘l’l = mlx"l (4&)
k (1’3 — 1’2) —k (1’2 — 1’1) = mgl.’-g (4b)
We can rewrite this in matrix form as
.. 2%k k
Ty _ | T mL 1 0
- B
or as
s = [A]x +£(t) (6)

We now take a lead from ODE theory and propose a solution to (6) (assuming f(¢) = 0, i.e. no
external forcing) of the form
x(t) = ve™ (7)

Substituting (7) into (6) and canceling out the exponentials yields

’v = [A]lv (8)

Equation (8) is in the form of an eigenvalue problem from linear algebra. The values of o we need
to find to complete our solution (7) are really the square roots of the eigenvalues of the matrix [A].
Furthermore the vector v; is the eigenvector associated with eigenvalue )\;. Rearranging this equation
we get

(4] -e* 1) v =0 9)

We would like to find a solution to this equation that doesn't involving setting v. = 0 since this
is the trivial solution where neither mass is moving and the entire system is at rest. From basic
linear algebra theory this requires the matrix ([A] — a?[I]) be singular, i.e. non-invertible. Stated
mathematically, we require the determinant of this matrix to be equal to 0.

A= a = (2 2 B0

mo ma

=0 (10)
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where we have substituted A\ = a?. To simplify our calculations we now make the assumption that
my1 = mg = 1. This reduces the equation to

N 44\ + 3K =0 (11)

with solutions Ay = —k and Ay = —3k. The two eigenvectors associated with \; and ), are found
by substituting each eigenvalue back into equation (8) and solving for v, giving us

wel] [

Therefore we can write the solution to (6) as

x(t) = clzle‘/__kt + covqeY —3kt (13)

Using Euler’s identity we can rewrite this in terms of trigonometric functions as
x(t) = vq (Ajcos (wit) + By sin (wit)) + vy (Ag cos (wat) + By sin (wat)) (14)

where w; = vk and wy = V/3k. The coefficients A;, B; (for i = 1,2) are the four unknowns to be
determined by initial conditions (recall that our system is comprised of 2 second-order ODEs, thus
the 4 required initial conditions).

Physically, equation (14) tells us that the motion of each mass can be written as a linear combination
of a high-frequency and a low-frequency harmonic oscillation. These are the normal mode oscillations.
To get a better idea of the physical significance of the normal modes, let us perform a simple initial
value problem (IVP).

First we will assume that we initially displace both m; and my by a positive distance x, (placing
them in-phase with one another) and release them from rest. Plugging ¢t = 0 into (14) the first initial
condition yields

x(0) = Arvy + Asvy = X (15)

Differentiating (14) with respect to ¢, the second initial condition (initially at rest) yields
X(O) = Blwlzl + BQUJQXZ = Q (16)

Equations (15) and (16) give us four equations (since vy and vy are both 2 by 1 vectors) involving
four unknowns. Solving for the unknowns gives us A; = o and Ay = By = By = 0. The solution
to the IVP is then

x(t) = xovy coswyt (17)

We see that by setting the system to be initially in-phase, the resulting motion consists only of the
first normal mode. Since xy was chosen arbitrarily, we could easily just assume that o = 1. Thus at
t = 0 we have

x(0) = v, (18)

We see from (18) that it is the eigenvector associated with the normal mode that tells us
the necessary initial displacements in order to excite that normal mode when starting from
rest. Furthermore, since any scalar multiple of an eigenvector still satisfies the eigenvalue equation



(9), we do not need to worry about what units we take the eigenvector to be in (i.e. if the eigenvector
tells us to move each mass by 1, we can move them 1 cm or 1 inch).

If we were to perform another IVP with initial displacements 21(0) = x¢ and z2(0) = —x¢ we would
see that the solution would consist of only the second normal mode. Thus we can conclude that
for the two degrees-of-freedom system the first normal mode represents in-phase motion while the
second normal mode represents out-of-phase motion. One interesting result of our analysis is that the
normal mode corresponding to in-phase motion has a lower natural frequency than the out-of-phase
normal mode. Why do you think that is?

Fortunately for us we won't need to perform all this linear algebra during the lab. We can easily
compute the eigenvalues and eigenvectors of the matrix [A] using computer software. Each lab
station computer has a numerical analysis program called Scilab installed on it and by following the
directions given in the lab set-up you will be able to calculate the necessary values easily.

LABORATORY SET-UP

e Air Track
The lab set-up consist of an air-track hooked up to the lab’s air system, four or more air track
gliders, four plug-in springs, a mechanical oscillator (for external forcing), a photogate timer,
and a digital stopwatch. Please note that there are two somewhat incompatible styles of glider
which should only be used on the appropriate air tracks. Each glider has a label listing its
mass (including spring) and the air tracks on which it will work. You should make sure to
remeasure the masses of the gliders and springs at the start of your lab.

Figure 3: The laboratory set-up you will be working with.

e Using the SciLab Software

1. Open ScilLab by clicking on its icon located on the desktop of your computer. This
program is a freeware program similar to MatLab and should look quite similar.

2. To find the eigenvalues and eigenvectors of a matrix you must use the function spec()
as shown below. Send the matrix [A] as the function parameter and the program will
return the eigenvalues along the diagonal of a square matrix and the eigenvectors as the
columns of the second returned matrix.
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Figure 4: Screenshot of Scilab in use.

3. For the lab, however, you must find [A] for a three degrees-of-freedom system. This
example is for the two degrees-of-freedom simulation. If you wish to try this function on
MatLab, everything is the same except for the function name. In MatLab you must enter
eig(A) to find the eigenvalues and eigenvectors.

PROCEDURE

1. Play with the air track, gliders, and timer. Adjust the mechanical oscillator left or right so that
each spring, at equilibrium, has a total length of about 20 cm (the oscillator is attached with
a Velcro strap). Have the TA turn on the main air supply, if it is not already on, and turn on
the valve at the end of the air track.

2. Find the spring constant for your springs. Attach a small weight (40 to 50 grams) to one end
of the spring and hold the other end solidly against the tabletop. Pull the weight down a few

centimeters and release it, and then measure the period of oscillation. Use w = \/% to find

k. Remember to include part of the spring as well as the plug mass in m — half is a good
approximation in this case. Check several springs to determine the variability in k.

3. Choose two gliders of different sizes and calculate the eigenvalues and eigenvectors for the two
normal modes. The eigenvalues are the squares of the natural frequencies of the normal modes
(in radians/sec.), and the eigenvectors describe the relative amplitudes of the mass motions.
You may do the calculations by hand or use SciLab on the computer. Weigh the gliders if
necessary; remember to include the mass of the plug-in springs.

4. The system is set into a normal mode oscillation by applying the appropriate initial conditions.
First, place the system in equilibrium. One simple method is to turn the air track on and off
repeatedly until the gliders stop moving. With the air off, displace m; an arbitrary distance d



(normally 1 or 2 centimeters) and displace m, a distance d(%2). For example, if 2 = —2 and
you move my 2 c¢m to the right, you should move ms 4 cm to the left. (NOTE: The variables
v1 and vy represent the first and second elements of an eigenvector v, not the eigenvectors
themselves.) Turn on the air track valve abruptly. The system should oscillate in a normal
mode.

Find the angular frequency of oscillation (radians per second) corresponding to each normal
mode and verify that they are approximately equal to the natural frequencies calculated. Note
the phase difference between the two masses at each normal mode. The angular frequency
of the masses is found by timing a number of oscillations (i.e. 10) and then converting the
resulting period to w. Digital stopwatches are available at the air track.

. Use some arbitrary initial conditions and set the system into a non-normal mode oscillation.
Observe the motion. (It should be difficult to see that it is the sum of normal mode vibrations.)

. Attempt to obtain normal mode vibrations by driving the system at each natural frequency. The
frequency of oscillation is obtained by timing the motion of the driving rod connected to the
motor, using either a stopwatch or a photogate timer. With the air off, set the driving frequency
to one of the natural frequencies you have calculated. Does the system resonate when you turn
the air on? Be patient. Start the system from rest every time you change the motor speed.
Time the frequency at resonance and compare it to the natural frequencies. Observe, as best
you can, the relative phase between the scotch yoke and the masses at resonance.

. Set up the air track with three (approximately) equal masses and four (approximately) equal
springs. Adjust the mechanical oscillator to give an equilibrium spring length of about 20 cm.
Verify by observation that [I —1.414 1]T is approximately a normal mode for this system.

. Find another normal mode for this system by observation. Find another still. Are there any
more? Use Scilab to find the normal modes and natural frequencies.

. Using Scilab, find the normal modes and natural frequencies for a system with three unequal
masses and four equal springs, and test them on the air track (free vibration only).



LAB REPORT QUESTIONS

1.

10.

List your values of k for the springs and a sample calculation. What is the average value of
k, and what was the largest variation from the average (in percent)?

Did you obtain normal mode oscillations using initial conditions based on your eigenvectors?
How could you tell?

How close were your experimental frequencies to those calculated? How does this experi-
ment deviate from theory?

In what way did the block motions look like normal mode vibrations when you forced the
system? In what ways did they not look like normal mode vibrations? Consider three cases:

(a) forcing frequency = a natural frequency

(b) forcing frequency close to a natural frequency (Was the amplitude of the oscillations
constant in this case? If not, how did it vary?)

(c) forcing frequency far from a natural frequency.

Write down the equations of motion for the system with two equal masses and three equal,
massless, linear springs, as derived previously in the pre-lab. Assume x5 (see Figure 1) is a
given function of time: i.e. x3 = sint.

Derive the equations again, this time with x3 fixed at zero but with a known force F' acting
on my in addition to the two spring forces.

Suppose that F' = ksint. Show that the systems in #5 and in #6 are mathematically
equivalent.

If the spring forces were given by the equation Fl, = kx? and the force F' in #6 was given
by F = ksin®t, would the two systems still be equivalent?

How many normal modes are there in the three equal mass system? What are they and how
did you recognize them as normal modes? How many were you able to find experimentally?
How do they compare with those you calculated?

What were your calculated normal modes and natural frequencies for the system with three
unequal masses? Did normal mode oscillations occur with these ratios and frequencies on
the air track?




CALCULATIONS & NOTES
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SOLVING THE EQUATIONS OF MOTION VIA A CHANGE OF BASIS

So far we have discussed how normal modes are the simplest oscillatory functions from which all
motions of the two degrees-of-freedom system can be thought to be comprised of. Mathematically,
the normal modes y; and y, satisfy the equations of motion for simple harmonic oscillators with
natural frequencies w; and wy respectively.

i +wiys =0 (19a)

o+ wiys =0 (19b)
Since the equations of motion for the normal modes are simple in terms of the y;, y» coordinates, it
would be nice if we could find some transformation between the physical coordinates x1, x5 and these
new variables, i.e. x = f(y), so that we can solve the problem in terms of the easier coordinates and
then transform back into the original ones. We can accomplish this mathematically by performing a
change-of-basis from the original basis into the eigenbasis of [A]. We define our new normal mode
coordinates by
x = [S]y (20)

where the change-of-basis matrix [S] is defined as

S wl= |} ) (21)
Plugging this change of variables into (6) we get the new equation
15Ty = [Al[Sly +£(2) (22)
Left-multiplying both sides by [S™!] gives us

y=[57] 1A

M 0 [=k 0
A= {o Az] = {0 —31{} (24)
Looking at the unforced case, f(t) = 0, we see from (23) that in the new normal mode coordinates
we now have two uncoupled second-order ODEs,

A
<
+
%
L)
=
I
=
<
+
—n
=
o
=

where

v +ky1 =0 (25a)
Yo + 3ky2 =0 (25b)
the solutions of which are
y1 = Ay cos Vkt + By sin Vit (26a)
Y2 = Ay cos V 3kt + By sin vV 3kt (26b)
Using (20) we can now transform back into the original x1, x2 coordinates giving
Y1+ Y2
pu— S pu— pu—
* [ ]X L/l —yz]

v, (Aj cos (wit) + Bysin (wit)) + vo (Ag cos (wat) + By sin (wat)) (27)
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where we have substituted w; = vk and ws = v/3k. This is the same result we found before in
(14), so you might not think much was gained by performing this change-of-basis. However, the real
advantage of this method appears when we consider the forced case.

FORCED TWO-DEGREE-OF-FREEDOM SYSTEM
We now reconsider equation (23) when f(¢) # 0.

y = [y +£(t) (28)
The two resulting equations are
kx
. 2 3
= — 29
Y1+ Wil 9y (29a)
i+ wlyp = — T3 (29b)
Y2 2Y2 = oy

where x3(t) = Fcoswt and w is the forcing frequency. Solving both of these non-homogeneous
second-order ODEs yields

: Fk 1
y1(t) = Ay coswit + By sinwt — ST <w2 — w%) cos wt (30a)
: Fk 1
ya(t) = Agcoswat + By sinwat + 5 | coswt (30b)
2my \w? — w;
Once again we use (20) to transform back into the original coordinates to get
Fk -1 1
x(t) = x.(t) + — wWimwg el | coswt (31)
2my |\ oz T a2

where we have suppressed the homogeneous (or complementary) part of the solution. We note that
the particular solution becomes unbounded as the forcing frequency approaches either w = w; or
w = wy. In other words, resonance occurs when we force the two degrees-of-freedom system at one
of the normal modes’ natural frequencies. (Obviously the oscillations you will observe in the lab will
not be unbounded as the lab set-up is not entirely frictionless.)

We now rewrite the particular solution as

2 2
w )\ _3 w V71
(“’1>1 (“’1>1 cos wt (32)
- 2 - 2
(&) - ()
where we have written it in terms of the ratio of the forcing frequency to the smaller normal mode

frequency w;. Figure 5 graphically shows how the amplitudes of the particular (or steady-state)
solutions change as the forcing frequency w is varied.

The plot graphically illustrates what we found earlier — that when the forcing frequency is near the
natural frequency of a normal mode, that mode resonates. As w — w; the two masses move in-phase
and when w — wy the masses move out-of-phase.
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Figure 5: Plot of the response amplitude to forcing amplitude
of-freedom system.
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