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TAM 203 Lab Introduction
Last Updated: March 10, 2007

PURPOSE
The laboratories in dynamics are designed to complement the lectures, text, and homework. They
should help you gain a physical feel for some of the basic and derived concepts in dynamics: force,
velocity, acceleration, natural frequency, resonance, normal modes, and angular momentum. You will
also get exposure to equipment and computers which you may use in the future. Some mathematics
from courses you have taken recently or are now taking will be used. We hope this will help you make
the connection between mathematics and physical reality that is essential to much of engineering.
The labs may come either before or after you cover the relevant material in lecture. Thus, they can
be either a motivation for the lecture material or an application of what you have learned depending
on the timing.

Lab groups are small enough (usually 2 or 3 people) that you can get direct experience with the
instruments and equipment. Both you and your lab partners should learn how to do all aspects of
the lab. The laboratory teaching assistants will have scheduled office hours so that you can return to
use the facilities independently or ask questions. These hours will be posted on the course website.
You may also ask the lab TA about other course material if time allows.

CONTENT
There are four labs:

1. Forced Mass-Spring-Dashpot System

2. Multiple Degrees-of-Freedom Oscillator

3. Slider-Crank Mechanism

4. Gyroscope

These labs will be done with physical equipment and some will also involve computer simulations. It
is essential that you read through the lab (especially the procedure section) and answer the pre-lab
questions before coming to lab. It is not necessary that you understand all of the material perfectly
before the lab period.

COURSE INFORMATION
The dynamics laboratories are in Thurston 101.

Each of the four labs is taught for two or three weeks (depending on enrollment). You will be
scheduled to attend lab during one of the three weeks. The dates for your laboratory section will be
posted outside room 101 Thurston and on the course website. In general, you will have a lab once
every three weeks, but be aware that this may vary due to exam and break schedules.
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See the Secretary in Kimball 212 if you have any problems with your lab schedule. You’ll need to get
his or her approval for any changes so that the lab sections do not become overly full. Turning in
a course change form to the registrar is not enough.

LAB REPORTS
Lab reports are due one week from the day you performed the lab, at 10:00 in the morning unless
your TA specifies another time.

Turn in reports in the boxes in the Don Conway room, 102 Thurston Hall. Put your report in the
correct box corresponding to the TA in charge of your lab section. Reports placed in incorrect boxes
might not be found.

Missed Lab and Late Report Policy
All make-up labs must be arranged with your TA. If you know in advance that you’ll be gone, you
should make advance arrangements. Labs may also be made up at the end of the semester. Sign up
with your TA.

If you show up for lab after it is under way, your lab instructor may ask you to leave and to perform
the lab another time. The ENGRD 203 lab equipment should not be used without proper training.

Pre-Lab Questions
Each lab has pre-lab questions which should be answered before you come to lab. These questions
encourage you to read through the laboratory procedure before attending the lab. Answers to pre-lab
questions are due at the beginning of lab and will not be accepted for credit later.

Academic Integrity
Your pre-lab answers and lab reports should be in your own words, based on your own understanding
and your own calculations. You are encouraged to discuss the material with other students, friends,
TAs, or even faculty. Any help you receive from such discussion must be acknowledged on
the cover of your lab report, including the name of the person or persons and the exact
nature of the help. Violations of this policy will be reported to the academic integrity board.

You may, however, do a joint report with your lab partners (turn in one report for your lab group).
All partners get the same grade on the report but separate grades on pre-lab questions.

When you are done in the lab you must have your TA sign one of your data sheets. This sheet must
include the name of your lab partners and the time and date the lab was performed. The TA will not
sign this sheet until your work station is clean and all equipment is accounted for. No lab reports
will be accepted without this signed sheet.

Credit and Grading
Each lab is graded out of 15 points. The grade breakdown for each lab report will be determined by
your lab TA. This grade will be given to your recitation TA.

Problems and Complaints
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1. Your teaching assistant. The lab TA’s job is to help you. See your TA if you have problems
with the pre-lab questions, lab, or lab report. In-lab office hours will be available if you need
to redo some part of the lab or want to collect additional data (For this you can see any of the
lab TAs.)

2. Dan Mittler, 218 Kimball, (5-9172), dm68@cornell.edu. See Dan if you have problems with
equipment operation. You may also arrange with him to redo part of a lab or perform additional
lab work.

3. Alan Zehnder, 317 Kimball, (5-9181). See Professor Zehnder about problems with laboratory
content or policy.

4. Secretary, 212 Kimball (5-5062), pmm4@cornell.edu. See her if you have problems with your
lab schedule or need to make up a missed lab (read the policy above).

Laboratory Notes
A rule of laboratory work is to keep a neat, complete record of what has been done, why it was done,
how it was done, and what the result was.

The success or failure of an experiment in a research laboratory often depends critically upon the
record made of the experiment. The outcome of a poorly documented experiment becomes a matter
of personal recollection, which is not reliable enough to serve as a basis for further work, especially
by someone else. You should take copious notes. If in doubt, write it down. One can ignore what
is written, but one can not resurrect that which was never recorded. Similarly, never erase in your
lab notes. If an erroneous reading was made, strike it out with a single line and record the new data.
You may later decide that it was not in error.

All lab notes, in their original form, must be submitted with your report.

THE LAB REPORT
Your laboratory report should be typed. Do not crowd your writing. Make sure there is room for
comments by your TA. This report should communicate clearly and convincingly what was demon-
strated or suggested by the lab work. Your TA is looking for evidence of thought and understanding
on your part. Your logic and methods are as important as results or “correct” answers. It is essential
that you provide information and calculations which indicate how you arrived at your conclusions. It
is permissible (and a good idea if you want a very good grade) to discuss observations and material
relevant to the lab which is not specifically asked about in the questions.

The lab reports should contain the following material in the order specified.

1. Cover page: A plain sheet, firmly attached to the rest of the report with staples or another
binder. The cover should contain the following (with appropriate substitutions for the words in
quotes):

“NAME OF THE LAB”
TAM 203
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By: “Your name and your signature (both partners if a joint report)”
Performed: “Date”
Performed with: “Name of person(s) with whom you performed the lab”
Discussed lab with: “Names of people with whom you discussed the lab, and nature of the
discussions”
TA: “Lab TA’s name”
TA signed the data on page: “Page #”

2. Procedure: (1/2 page maximum) This section should be included only when you deviate from
the procedure specified in the lab manual. This section will be needed when there are problems
with malfunctioning equipment or if you develop your own procedure.

3. Answers to questions: Concisely answer the questions that are asked and number them as
they are numbered in the lab manual. Include any necessary plots, data, or calculations. Your
answers should be self-contained and presented in an orderly fashion (i.e. the reader of the
report should not have to refer back to the questions that are asked, nor should he or she have to
hunt through the report to find your answers). While many questions require that you perform
calculations, written explanations of what you are doing and sketches can be very helpful. Show
all calculations that you perform in arriving at your answers. If you are performing repetitive
calculations you need show only one sample calculation.

4. Observations and conclusions: If you did anything or observed anything in the lab which was
not covered in your answers to questions this is the place to discuss it. This is optional.

5. Supplemental procedures and questions: If you choose, or are required, to do additional lab
work, repeat sections II, III, and IV for each topic.

6. Mistakes and suggestions: This is an optional section. Point out errors in any of the documen-
tation or oral information you were given. Make suggestions for changes in the lab procedure,
instructions, content, etc. Please put this section on a separate page so that it may be kept by
the TA for future reference.

7. Appendix: Append ALL notes and records taken in the laboratory (including data sheets signed
by your TA). If you have used an x-y plot or data table in your previous answers to questions
you need not include it here again.

DATA ANALYSIS AND PRESENTATION

1. Significant figures: When reporting numerical data, an appropriate number of significant fig-
ures should always be used. Large numbers should be written in scientific notation, so that the
number of significant figures is not ambiguous.

The numbers 3.840, 0.003840, and 3.840 × 105 each have four significant figures.

When multiplying two numbers together, the general rule of thumb is to write the answer using
the same number of digits as the multipliers. When the multipliers have different numbers of
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significant digits the smallest is used. Thus 0.3526 × 1.2 = 0.42 (not 0.42312). This same
method should be used for division.

Addition is different. Consider the example: 0.2056 + 14.25 + 576.1 = 593.1. An answer of
593.1276 is not appropriate because the last three digits (.0276) add nothing to the accuracy of
the results, since one of the numbers being added (576.1) is accurate only to tenths. Subtraction
should be done in a similar manner.

2. Percentage difference calculation: Percentage difference calculations can be used to quantify
how well experimental results agree with theoretical or expected values. Rather than writing
“the experimental results agree very well with the theoretical calculations,” this phrase can be
changed to make a quantifiable statement; “the experimental results are within 5 percent of
the theoretical calculations.” Percentage difference is calculated as:

100%× (Value being compared - Reference value) / (Reference value)

While formal error analysis can be used if it is necessary to make a point, your answers should
include some discussion of the types and relative sizes of errors in your data.

3. Units: The dimensions of all physical quantities should be clearly presented in all calculations,
tables and figures.

4. Graphs: Figure 4 is an example of how your graphs should appear in lab reports. The following
is a checklist of the items your graph should include.

• Use a computer program such as Matlab or Microsoft Excel.

• Curves should not be drawn between discrete data points unless the type of fitting used
is explained and the equation of the curve given.

• All graphs should be titled and all axes labeled, with the appropriate units listed in paren-
theses.

• Numerical values on the axes should be set at reasonable intervals and scales chosen so
that all of the data points can be displayed on the graphs.

• On graphs with more than one curve a legend should be used to identify the curve. Data
points can be enclosed by some symbol (i.e. circle, rectangle, etc.) to distinguish different
data sets.

• The independent variable should be placed on the horizontal axis.

5. Linear, semi-log and log-log plot interpretation:

• Linear: a straight-line plot on linear graph paper indicates a relationship of the general
form y = mx + b, where m is the slope and b is the y-axis intercept. Choose two points
along the line - (x1, y1) and (x2, y2), preferably well separated. Then

m =
y2 − y1

x2 − x1
(1)
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Figure 1: An example graph.

Since y1 = mx1 + b we have
b = y1 − mx1 (2)

Sometimes it is useful to plot a function of x and/or y, instead of plotting x and y directly.
For example, if y2 is proportional to x, you could plot y2 vs. x, and obtain a straight
line. The slope of the line then gives you the constant of proportionality. If you don’t
have (or don’t want to use) semi-log or log-log graph paper, you can plot ln y vs. x or
ln y vs. lnx respectively. (Logs to other bases will also work.) This is often very useful
with computer-generated graphs. The procedure to obtain an equation from the graph is
similar to the one described above. For a graph of ln y vs. lnx which forms a straight
line

ln y = m lnx + b (3)

Find two well-separated points on the line, and write

m =
(ln y)2 − (ln y)1

(lnx)2 − (lnx)1

(4)

Since (ln y)1 = m(lnx)1 + b we get

b = (ln y)1 − m(lnx)1 (5)

Then
elny = em(lnx)+b = ebelnxm

(6)

and therefore we get a power-law relationship.

y = ebxm (7)
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• Semi-log: a straight-line plot on semi-log paper indicates an exponential relationship of
the general form y = aecx. Choose two points along the line, as above, reading the values
from the graph paper scales. Then

c =
ln y2 − lny1

x2 − x1
(8)

Since y1 = aecx1 we get

a =
y1

ecx1
(9)

If you want to plot your data on a computer, use a log scale for the y-axis, or plot ln y
vs. x with linear scales, as described earlier.

• Log-log: a straight-line plot on log-log paper indicates a power-law relationship of the
general form y = axn. Choose two points along the line, as above, reading the values
from the graph paper scales. Then

n =
ln y2 − ln y1

lnx2 − lnx1
(10)

Since y1 = axn
1 we have

a =
y1

xn
1

(11)

If you want to plot your data on a computer, use log scales for both axes, or plot ln y vs.
lnx with linear scales, as described earlier.



Lab #1 - One Degree-of-Freedom Oscillator
Last Updated: March 10, 2007

INTRODUCTION
The mass-spring-dashpot is the prototype of all vibrating or oscillating systems. With varying degrees
of approximation, car suspensions, violin strings, buildings responding to earthquakes, earthquake
faults themselves, and vibrating machines are modeled as mass-spring-dashpot systems. This lab-
oratory is aimed at demonstrating some of the basic concepts of the mass-spring-dashpot system.
Additionally, the computer solution of the governing differential equations will be demonstrated with a
computer simulation program. Phrases connected with some of the key ideas are: natural frequency,
resonance, forcing function, and frequency response.

PRELAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. Derive the equation of motion for a mass-spring-dashpot system with forcing term f(t).
Assume a constant linear spring constant k and linear damping constant c.

2. Solve the equation of motion you derived in #1 if the forcing term is given by xs(t) = A =
constant.

3. Repeat #2, this time numerically integrating the equation using Matlab. Choose m = 1,
k = 5, c = 0 (undamped), and A = 3 and integrate over the time period 0 ≤ t ≤ 10.
Assume the mass starts from rest with an initial displacement of x(0) = 1 m. What is the
period of the oscillation? Turn in a plot and an m-file of your code.

4. Define in your own words: natural frequency, damping coefficient, critical damping coeffi-
cient, underdamped, overdamped, resonance, phase-shift, and amplitude ratio.

THE MASS-SPRING-DASHPOT SYSTEM
The picture in Figure 2a shows (crudely) the laboratory mass-spring-dashpot, or one degree-of-
freedom oscillator. A mass is supported by a spring and is constrained to slide on a rod. In this
lab you will record the vertical motion of the mass both with a fixed support and with the support
oscillating vertically. Figure 2b shows an idealization of the laboratory apparatus. The spring is
modeled as linear (the force it applies is proportional to its increase in length) with proportionality
constant k. The damping is produced by a linear air dashpot. The force transmitted by a linear
dashpot is proportional to the rate at which it is being stretched with proportionality constant c. The
vertical displacement of the mass is x(t) and the vertical displacement of the support is xs(t).

Pictured in Figure 2c is a free body diagram of the mass. Neglecting gravity (Why can we neglect
it? ), the mass has two forces acting on it in the êx-direction:

Fsp(t) = k (xs − x) (12a)

Fd(t) = cẋ (12b)

where Fsp(t) is the linear spring force and Fd(t) is the linear damping force. The system is a one
degree-of-freedom system since a single coordinate is sufficient to describe the complete motion of the

9
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g

Figure 2: Three models of the mass-spring-dashpot system.

system. (The support displacement xs(t) does not count as a degree of freedom since it is specified
by the motor position, over which we assume we have complete control.)

From Newton’s second law the equation of motion for this system is

{∑
F

}
· êx ⇒ −Fd + Fsp = mẍ (13)

Assuming a linear spring (12a) and a linear dashpot (12b) this becomes

mẍ + cẋ + kx = Fs(t) (14)

where Fs(t) = kxs(t) is the (presumably specified) excitation “forcing function”. In this case the
forcing function is the position of the end of the spring as a function of time multiplied by the spring
stiffness.

The air dashpot provides resistance to motion by drawing air in and out of the cylinder through a small
opening at the top of the cylinder. Due to the small, but nonzero viscosity of air, a pressure drop is
created across the opening that is linearly proportional to the speed of the air flowing through. This
produces linear damping. Nonlinearities are introduced due to the friction between the piston and
the cylinder. Note also that the compressibility of the air in the dashpot introduces some springiness
to the system in addition to the coil spring. The compressibility of the air may be thought of as a
spring in series with the dashpot.

In the first part of this experiment you will attempt to determine the value of the viscous damping
constant c by measuring the rate at which oscillations decay towards zero. In addition, the system
response to both free vibration and “forced” motion will be observed experimentally and through
computer simulation.
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A REAL-WORLD EXAMPLE: THE LOUDSPEAKER
A speaker, similar to the ones used in many home and auto speaker systems, is one of many devices
which may be conveniently modeled as a one degree-of-freedom mass-spring-dashpot system. The
one you will observe in this lab is typical (see Figure 3). It has a plastic cone supported at the edges
by a roll of plastic foam (the surround), and guided at the center by a cloth bellows (the spider). It
has a large magnet structure and (not visible from outside) a coil of wire attached to the point of
the cone which can slide up and down inside the magnet. (The device described above is, strictly
speaking, the speaker driver. A complete speaker system includes an enclosure, one or more drivers,
and various electronic components.) When you turn on your stereo, it forces a current through the
coil in time with the music, causing the coil to alternately attract and repel the magnet. This results
in the vibration of the cone which you hear as sound.

In the speaker, the primary mass is comprised of the coil, cone, and (in this case) LVDT core. The
“spring” and “dashpot” effects in the system are due to the foam and cloth supporting the cone
and perhaps to various magnetic effects. Speaker system design is greatly complicated by the fact
that the air surrounding the speaker must also be taken into account. Changing the shape of the
speaker enclosure can change the effective values of all three mass-spring-dashpot parameters. (You
may be able to observe this by cupping your hands over the speaker (gently, without touching the
moving parts) and observing amplitude or phase changes.) Nevertheless, knowledge of the basic
characteristics of a speaker (e.g., resonant frequency) is essential in speaker system design.

cone

mounting
�ange

spider

voice coil

frame
electrical
connections

magnet
structure

foam surround
( suspension )

Figure 3: Cross-sectional view of a speaker.

The equation of motion for the speaker is similar to that of the laboratory mass-spring-dashpot above,
except the forcing function is electrical, rather than mechanical:

m
d2x

dt2
+ c

dx

dt
+ kx = F (t) (15)

where the forcing function F (t) = ai(t), i(t) is the electrical current flow through the coil in amps,
and a is the electromechanical coupling coefficient, in Newtons per amp. In the second part of this
experiment, the current flow through the speaker will be generated, controlled, and measured using
a waveform generation and a data acquisition program. Using this data, the effective mass, damping
coefficient, and spring constant for the speaker will be calculated.
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SOLVING THE EQUATIONS OF MOTION
Our goal is to know the motion of the mass, x(t), for a given forcing F (t). The two most important
cases are unforced or “free” motion, where F (t) = 0, and sinusoidal forcing, given by F (t) =
kxs(t) = kF cos ωt.

Recall that the differential equation governing the motion is given by

m
d2x

dt2
+ c

dx

dt
+ kx = F (t) (16)

Before solving for the motion, we define new variables that will help streamline our analysis. First,
we define the natural frequency, ωn, as

ωn =

√
k

m
(17)

Secondly, we define a quantity known as the critical damping constant, ccrit as

ccrit = 2
√

km = 2mωn (18)

Finally, we define the damping factor, ζ, as

ζ =
c

ccrit
=

c

2
√

km
(19)

We see that the damping factor incorporates all 3 of the physical properties that define the system -
the mass, the spring constant, and the damping constant. Thus we can think of the damping factor
as an indicator of the overall damping of the system’s response.

We can now rewrite the governing differential equation (15) in terms of these new variables, giving

d2x

dt2
+ 2ζωn

dx

dt
+ ω2

nx =
F (t)

m
(20)

We will now solve (20) for the unforced case F (t) = 0. We assume an exponential solution of the
form x(t) = Aeλt. Plugging this into (20), the amplitudes and exponential functions can be divided
through, yielding the characteristic equation

λ2 + 2ζωnλ + ω2
n = 0 (21)

We then use the quadratic formula to solve for the λ’s, giving

λ1,2 = −ζωn ± ωn

√
ζ2 − 1 = −ζωn ± ıωd (22)

where ωd is the damped natural frequency and is defined as

ωd = ωn

√
1 − ζ2 (23)

From the definition of the damped natural frequency we see that our analysis will depend on the
magnitude of ζ. We will concentrate in this lab on underdamped responses, where ζ < 1. The two
other cases are overdamped (ζ > 1) and critically damped (ζ = 1) responses.
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Having solved for λ1 and λ2, we can now write the solution to (20) as

x(t) = Ae−ζωnt cos (ωdt − φ) (24)

where the amplitude, A, and phase, φ, are the unknowns. If this form of the solution appears
unfamiliar to you, plug (24) into (20) and verify that it does indeed satisfy the governing differential
equation. The two unknowns can be found from the given initial conditions, x(0) = x0 and ẋ(0) = v0.

THE LOGARITHMIC DECREMENT METHOD
The viscous damping constant, c, may be determined experimentally by measuring the rate of decay
of unforced oscillations. The logarithmic decrement, which is the natural logarithm of the ratio of
any two successive amplitudes, is used. The larger the damping, the greater will be the rate of decay
of oscillations and the bigger the logarithmic decrement, D.

D = ln

(
xn

xn+1

)
(25)

where xn and xn+1 are the heights of two successive peaks in the decaying oscillation pictured in
Figure 4.

0 1 2 3 4 5 6 7 8

−1

−0.5

0

0.5

1

t

x(
t)

xn+1

xn

τd

x0e− ζωn t

Figure 4: The logarithmic decrement method.

To find a theoretical representation for the logarithmic decrement D, we look at the exponentially
decaying envelope for the damped oscillation, which is given by

xenvelope(t) = x0e
−ζωnt (26)

Using this equation we now write the logarithmic decrement as

D = ln

(
xenvelope(t)

xenvelope(t + τd)

)
= ln

(
x0e

−ζωnt

x0e−ζωn(t+τd)

)
= ln

(
eζωnτd

)
= ζωnτd (27)
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where τd is the period of the damped oscillation, i.e. τd = 2π
ωd

. We simplify this expression by

substituting in (19) for ζ and then solve for the damping constant c, yielding

c =
2mD

τd
(28)

We can also obtain an equation for k from (27) , yielding

k =
c2

(
1 + 4π2

D2

)

4m
=

4π2m

τ 2
d (1 − ζ2)

(29)

Thus, using equations (28) and (29), we can find the damping constant c and spring
constant k for the mass-spring-dashpot system from the experimentally obtained values
for D and τd.

FORCED VIBRATIONS AND FREQUENCY RESPONSE
Next, we will solve (20) for the forced case. We assume the support is driven harmonically with its
displacemnt given by xs(t) = F cosωt, where F is the displacement amplitude of the support and ω
the natural frequency of its motion. Since the mass is coupled to the support via the spring, the force
exerted by the support’s motion on the mass is given by F (t) = kxs(t) = kF cosωt. The equation
of motion (20) now becomes

d2x

dt2
+ 2ζωn

dx

dt
+ ω2

nx =
kF

m
cos ωt (30)

From ordinary differential equation theory we can write the general solution to (30) as the sum of a
complimentary (also referred to as the transient or homogeneous) solution xc(t) and a particular (or
steady-state) solution xp(t).

x(t) = xc(t) + xp(t) (31)

In this lab we will only be interested in the steady-state solution after the transient response dies out.
Thus we take the general solution to be of the form

xp(t) = A cos (ωt − φ) (32)

where the amplitude of oscillation of the mass position, A, and the phase of the displacement with
respect to the exciting force, φ, are two unknowns. To solve for the unknowns we substitute (32)
into (30) to get (after some trigonometric reductions)

[
2Aωωnζ sinφ + Aω2

n cos φ −Aω2 cos φ − Fk

m

]
cos ωt

+
[
−2Aωωnζ cosφ + Aω2

n sinφ − Aω2 sinφ
]
sinωt = 0 (33)

While (33) looks intimidating, note that the coefficients of cos ωt and sin ωt are independent of t,
i.e. they are constants. Therefore we can use the linear independence of cosωt and sinωt to claim
that their respective coefficients must be identically equal to zero for (33) to hold. This gives us two
equations and two unknowns, A and φ, to solve for. Solving for the unknowns yields

tan φ =
2ωωnζ

ω2
n − ω2

(34a)
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A =
Fk
m√

(ω2
n − ω2)

2
+ 4ω2ω2

nζ2

(34b)

with the restriction 0 ≤ φ ≤ π.

RESONANCE
Resonance as defined by Merriam-Webster is a vibration of large amplitude in a mechanical or
electrical system caused by a relatively small periodic stimulus of the same or nearly the same period
as the natural vibration period of the system. From basic ODE theory we know that resonance occurs
when we force the system with a frequency ω = ωn. If the system has zero damping (c = 0) the
response is unbounded, else we will see that the system’s response amplitude is simply maximized.

Following the above definition, if we force the damped system (30) at a frequency ω = ωn, the
system’s response’s phase-lag (34a) and amplitude ratio become

φ = tan−1 ∞ =
π

2
(35a)

A

F
=

k
m

2ω2
nζ

=
1

2ζ
(35b)

Thus when ω = ωn we should expect the response of the system to lag the forcing function by
approximately 90 degrees and to have a finite amplitude dependent on the value of the damping
factor. However, resonance in a damped mass-spring-dashpot system does not occur when the forcing
frequency is exactly the undamped natural frequency ωn. To find the resonance frequency, ωr, we
maximize the response’s amplitude (34b) by differentiating with respect to the forcing frequency ω
and setting it equal to zero.

dA

dω

∣∣∣∣
ω=ωr

= 0 ⇒ ωr = ωn

√
1 − 2ζ2 (36)

PHASE DIAGRAMS
While performing the lab we will need to graphically determine if we are forcing the mass-spring-
dashpot system near its resonance frequency. In Figures 7 and 9 we see that the Labview software
provides a graph of xs(t) vs. x(t), i.e. it plots the position of the mass as a function of the position of
the support. For different values of the forcing frequency ω this graph will have different qualitative
behavior.

For a support whose position is given by xs(t) = F cosωt, the amplitude and phase of the resulting
mass oscillation were found to be (34b) and (34a) respectively. Now lets assume that ω � ωn. The
amplitude and phase of the steady-state oscillation then become

tan φ =
2ωωnζ

ω2
n − ω2

≈ 0 (37a)

A =
Fk
m√

(ω2
n − ω2)

2
+ 4ω2ω2

nζ2

≈ F (37b)
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From (32) we find that the position of the mass will be

x(t) ≈ F cosωt (38)

We see that x(t) = xs(t). Therefore if we plotted xs(t) vs. x(t) (parameterized by t) we would
simply see a line through the origin with a slope equal to 1 (in other words the graph looks like
y = x).

Now lets assume that we are forcing the system at resonance, i.e. ω ≈ ωn. In the previous section
we found that the system’s response would have amplitude and phase given by (35b) and (35a)
respectively. Therefore the position of the mass is given by

x(t) ≈ F

2ζ
cos

(
ωt − π

2

)
=

F

2ζ
sinωt (39)

To see what the plot of xs(t) vs. x(t) looks like, we note that from basic trigonometry we have

x2(t)
(

F
2ζ

)2 +
x2

s(t)

F 2
= 1 (40)

This equation represents (in general) an ellipse in the xs(t)-x(t) plane. For the special case of
resonance the above equation reduces to

cos2 ωt + sin2 ωt = 1 (41)

Thus the plot of xs(t) vs. x(t) will appear to be nearly circular.
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LABORATORY SET-UP

• Mass-Spring-Dashpot System
The apparatus consists of a laboratory-model mass-spring-dashpot system with displacement
transducers (Linear Variable Differential Transformers or LVDTs) for measuring x(t) and xs(t).
The output from the LVDTs is communicated to the computer via the data acquisition board.
An electric motor and controller, acting through a scotch yoke, enable a sinusoidal forcing
function to be applied to the system. Note that the controller dial readings are arbitrary;
frequency and period data must be obtained from your computer plots.

• Loudspeaker
The apparatus consists of a speaker on a stand with one LVDT to measure cone displacement.
Waveforms are generated by the computer, amplified, and sent through a resistor to the speaker
(approximating a current source). The computer is also used to measure current flow through
the speaker and displacement of its cone (using the attached LVDT).

Please follow all safety precautions. Keep long hair and loose clothing well away from the electric
motor, pulleys, and other moving parts.

• Using the LabView Software
The four programs you will be using for part A of the lab are: FreeAcq (Figure 5) for making
measurements of the unforced system; FreeSim (Figure 6) for simulation of the same; ForcedAcq
(Figure 7) for measurements of the system with a sinusoidal forcing function; and ForcedSim
(Figure 8) which may be used for simulation of the forced system. Although somewhat different
in appearance and function, the programs share many key features.

Figure 5: The FreeAcq program.
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Figure 6: The FreeSim program.

Figure 7: The ForcedAcq program.
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Figure 8: The ForcedSim program.

Figure 9: The SpeakerAcq program.
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The data acquisition programs automatically convert the voltage output of the LVDTs to me-
ters. To do this, they need a set of conversion factors, which are on a label on the mass-spring-
dashpot base board. After starting a measurement program, make sure that the sensitivity and
offset values on the left hand side of the window match the values listed on a small sheet of
paper in front of the apparatus. Also please enter your name in the box provided.

To run the program, you must hit the white arrow in the top left of the screen. If this arrow
is black, that means that the program is already running. For the data acquisition programs,
a green box on top will define the amount of time the program will record the motion of the
mass-spring after hitting the arrow. To reset the data acquisition, press on STOP without

Saving and then press the white arrow to begin again.

After getting data pressing the Save and STOP button stores your current data on disk, for
comparison later to the simulation. Any previous data is erased. The data file is only used
by the simulation programs FreeSim and ForcedSim; it is not available to the data acquisition
programs.

You may find it convenient to obtain numerical data from your plots using the cursors, rather
than using a ruler. Two cursors are available, one indicated by a circle and one by a square.
To use a cursor, use the mouse to drag it to the point you want to measure. The x and y
values of the point you have chosen will appear above the graph, in the row corresponding to
that cursor. For best accuracy, you should utilize every full cycle on the screen. For example,
if three cycles are displayed, you should measure the time elapsed from the start of the first
cycle to the end of the third, and then divide ∆x by three to obtain the period. If your cursor
has vanished off the screen, you can enter an on-screen position for it into the x and y display
boxes, and it will reappear in the desired location. You can also move the cursors around using
the little arrow “buttons” on the screen in the cursor control box. If a cursor turns a darker
color, it is locked on to a data point, and will trace the curve point by point if the left or right
arrow is pressed. Zoom and other features are available for the cursors and graphs; see the
LabView manual for details.

PROCEDURE

• Free Vibration, Mass-Spring-Dashpot

1. Here you will be recording the motion of the mass after it has been pulled down from
equilibrium and then released. First start up the FreeAcq program. Start with a data
acquisition time of 6 seconds. Give the system an initial position with zero initial velocity
(i.e. pull down the mass and hold it still). Then press the white run arrow in the top left
of the toolbar and immediately release the mass. Repeat this procedure until you have a
nice oscillation over the three seconds. Please note that the zero position is somewhat
arbitrary and will depend on the position of the scotch yoke when the mass is released.
Also, the zero level for the scotch yoke and for the mass may not agree exactly. Finally,
you will need to take data long enough for the mass to stop oscillating in order to have a
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good zero reference. Save your best oscillation on disk by pressing the Save and STOP

button.

2. Next we will simulate the free vibration of the mass-spring-dashpot system. Start the
FreeSim program. To compare the simulation data to your saved experimental data, turn
the Measured Data switch on. To change a simulation parameter type in the value you
want and press Enter. The following parameters for the simulation can be changed:

– k is the spring constant in Newtons/meter.

– m is the mass in kilograms. You need to include both the mass of the spring
and the mass of the weight since springs in the real world are not massless.

– c is the damping coefficient in Newtons/meter/second.

– t(0) (in seconds) lets you adjust the relative starting point of the simulation plot. It
allows you to move the plot horizontally, as necessary, making comparison with the
measured data easier.

– h (in meters) lets you adjust the simulation plot vertically.

– D is the duration in seconds for the simulation to be run. Set it equal to the duration
of the measured data set if you are comparing them.

– x(0) is the initial position of the mass in meters. To start the oscillations you need
to initially pull down on the mass.

– v(0) is the initial velocity of the mass in meters/second. This should be zero.

Add the measured data to the graph by pressing the Measurement Data switch above
the graph. Using the cursors, measure the logarithmic decrement D of the measured
data and the period of the damped oscillation τd. Check if c is constant by measuring
the logarithmic decrement for several separate cycles. Determine k, the spring stiffness.
Make a print-out of one of your curves.

3. Simulate unforced motion by inputting the values of m, k, and c that you just determined
into the FreeSim program. Obtain x(0) from your measured data. Compare your simu-
lation with your measured data. If agreement is not good, adjust k and c until you have
good agreement. Make a print-out.

• Forced Vibration, Mass-Spring-Dashpot

1. We will now be recording the motion of the mass as it undergoes sinusoidal forcing.
Start up the ForcedAcq program. Set the acquisition time to 30 seconds, start the data
acquisition, and turn on the motor. Two graphs will be displayed. The left one contains
two plots. One is a plot of the mass position x(t) vs. time and the second one is a plot of
the spring support position (forcing) xs(t) vs. time. The right graph plots x(t) vs. xs(t)
and helps show phase relationships.

2. For at least five different forcing speeds get nice plots of several cycles of motion. The
forcing speeds should include:

– The slowest speed for which the motor runs smoothly.

– A very fast speed.

– Resonance.
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– A speed just slower than resonance.

– A speed just faster than resonance.

Make sure to save each data set to disk in order to analyze them in the ForcedSim program
(print-outs are not necessary). Set the data acquisition time to 10 seconds and run the
program in order to find the desired speed. Then hit STOP without SAVING. Reduce the
data acquisition time to 1 second and then run the program again. Then hit SAVE and

STOP.

3. Next we will simulate the forced vibration of the mass-spring-dashpot system. Open the
ForcedSim program. Turn on the measured data switch to view your saved data. To
change the current measured data set you must close and then re-open the ForcedSim
program. Once experimental data is loaded, make your necessary measurements using
the computer cursors. You will need to make sufficient measurements in order to
make plots of amplitude ratio, x(t)

xs(t)
, and phase shift, φ, vs. forcing frequency ω.

In particular, you should measure the period, forcing function amplitude, mass
motion amplitude, and phase-lag between the forcing function and the resulting
mass motion. You need to do this for each of your five speeds. You can then
enter your calculated experimental values into the ForcedSim program and see how well
the experimental data follows theory. The parameters in the ForcedSim program include
most of the ones described for the FreeSim program, plus the following:

– xs(t) is the amplitude (in meters) of the motion of the spring support, which is moved
up and down by the motor and scotch yoke. This motion supplies the forcing of the
system.

– ω is the angular velocity of the spring support motion in radians per second.

You may also want to save the data to a USB storage device or write it to a CD for later
analysis. To do this just copy the text files of the desired data onto your storage device.

• Vibration of a Speaker

1. You will now experimentally measure the “free”-response of the loudspeaker. Open the
folder named speaker on the desktop and then open the Speaker program. Set the
waveform generator controls as follows in order to obtain a maximum-amplitude square
wave at about 5 Hz. Set the Waveform control to Square, the Frequency control to
5, and the Amplitude control to 2. Leave the DC Offset control set to 0. Note that
when changing waveforms or frequencies, you must wait a few seconds for the computer
to equilibrate and display correct data. Set the data acquisition time control to about
0.4 seconds. The displacement of the cone (channel 0) is displayed as a blue line and
the current flow through the speaker coil (channel 1) is displayed as a red line. You
want to see a square wave with “ringing” wiggles after each shift in level that gradually
damp out. Use a low enough frequency for the square wave so that the “ringing” damps
out completely before the square wave changes levels again. Be careful not to shake
the table during the experiment as small vibrations can cause errors. This is
the step-response of the speaker, which is approximately equivalent (in this lab) to the
“free”-response you obtained earlier for the mass-spring-dashpot system. When you have
a good display of the “ringing” turn off the data acquisition.
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2. Measure the logarithmic decrement D. Try to measure the coordinates of at least three
successive peaks of the blue curve yielding at the minimum two values for the logarithmic
decrement. Remember to measure amplitudes relative to the equilibrium level
(the level your exponential decay curve ends up at), not to the zero level of the
plot. Measure the period of the damped oscillation.

3. Next you will force the loudspeaker at its resonance frequency in order to experimentally
determine the mass m and spring constant k of the loudspeaker. Set the Waveform

control to Sine and the Amplitude control to 2. Leave the DC Offset control set to
0. Set the data acquisition time to 0.1 seconds. The CH 0 Offset and CH 1 Offset

controls may be used to adjust the plots vertically if necessary. Turn on the waveform
generator and data acquisition switches and adjust the Frequency control value until you
observe resonance of the speaker cone. To change the frequency you must press
STOP without Saving, enter the desired frequency and then start the program
again in order to observe the new frequency. Neither the spring constant k nor
the mass m of the speaker is easily measured at resonance. However, you can derive
the approximate mass and spring constant by observing what happens when the mass is
changed a known amount. Measure the mass of the rubber weight and then carefully
press it onto the LVDT shaft. The best way is to spread the weight open, position it, and
release it. Find the new resonant frequency.
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LAB REPORT QUESTIONS
Please answer the following questions concerning the mass-spring-dashpot part of the lab within
your lab report:

1. What is the spring constant k and damping constant c for your mass-spring-dashpot setup?
Indicate the measured data and formulas you used to calculate these values. Is the damping
constant c really constant? What does this say about the air dashpot acting linearly?

2. Compare your experimental data to the simulated data for unforced motions. Comment on
any similarities or differences of interest. How did adjusting k and c to better fit your data
change the simulation graph? Please attach print-outs from before and after you adjust k
and c to better fit your data.

3. Make a plot of the amplitude ratio (peak mass displacement divided by peak forcing dis-
placement) versus forcing frequency ω.

4. Make a plot of the phase-angle φ between x(t) and xs(t) versus the forcing frequency ω.

5. For a typical value of damping constant c that you measured, what is the percent difference
between the natural frequency ωn and the damped natural frequency ωd? Does the addition
of a dashpot to a mass-spring system increase or decrease its oscillation frequency?

6. Discuss the plots from questions #3 and #4. Do they look like what you expect based on
textbook solutions to the damped one degree-of-freedom oscillator? Relate the phase-angle
plot to the x(t) vs. xs(t) plots. Why do the ellipses change shape and rotate as you go
through resonance? State your observations about the behavior of the mass as the forcing
frequency is varied in words without using numbers, angles, graphs, or equations.

Please answer the following questions concerning the loudspeaker part of the lab within your lab
report:

1. Calculate k and m for the speaker, using the resonant frequencies and mass you measured
in lab.

2. Calculate c, the damping coefficient, for the speaker. Is the speaker overdamped or under-
damped? How linear was the speaker damping?

3. Find another real-world vibrating system which could be reasonably modeled as a mass-
spring-dashpot. Give the system a “push” and observe its response. Try applying a forcing
function of various frequencies, and look for resonance.

(a) Describe how you modeled your vibrating system as a mass-spring-dashpot. That is,
what does the mass represent, what is the spring, and what is the dashpot? Be as
specific as possible.

(b) Is this system typically overdamped? Underdamped? If applicable, what was the
resonant frequency (approximately)?

(c) In what ways does the system you found most significantly differ from an ideal linear
mass-spring-dashpot system?
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CALCULATIONS & NOTES


