Directions. To ease your TA's grading and to maximize your score, please:

- Draw Free body diagrams whenever force, moment, linear momentum, or angular momentum balance are used.
- Use correct vector notation.
- Be (I) neat, (II) clear and (III) well organized.

[TIDILY REDUCE and [box in] your answers (Don’t leave simplifiable algebraic expressions).]

[Make appropriate Matlab code clear and correct. You can use shortcut notation like “T7 = 18” instead of, say, “T(7) = 18”. Small syntax errors will have small penalties.]

- Clearly define any needed dimensions (ℓ, h, d . . .), coordinates (x, y, r, θ . . .), variables (v, m, t . . .), base vectors (i, j, ê, ê, ê, ê, ê, ê . . .) and signs (+) with sketches, equations or words.
- Justify your results so a grader can distinguish an informed answer from a guess.
- If a problem seems particularly difficult, clearly state any reasonable assumptions (that do not oversimplify the problem).

≈ Work for partial credit (from 60–100%, depending on the problem)
- Put your answer is in terms of well defined variables even if you have not substituted in the numerical values.
- Reduce the problem to a clearly defined set of equations to solve.
- Provide Matlab code which would generate the desired answer (and explain the nature of the output).

[Extra sheets. Put your name on each extra sheet, fold it in, and refer to it at the relevant problem. Note the last page is blank for your use. Ask for more extra paper if you need it.]

Problem 4: ___ / 25

Problem 5: ___ / 25

Problem 6: ___ / 25
1) The Matlab script file below is exactly that which was explained in 3 lectures and that which you used, if you did not write your own, for homework. The comments and fancy output formatting have been removed. The output is a list of numbers. For the given data file, provide that list of numbers (that is, you calculate them by hand and write down the numerical values). Where appropriate please use the small angle approximations for $\theta \ll 1$ that $\sin \theta \approx \tan \theta \approx \theta$ and $\cos \theta \approx 1$.

```matlab
% Truss Solver, Stripped down for prelim -Andy Ruina (modified Nov 3, 2010)

% Preliminary setup

njoints = length(J(:,1));  nbars = length(B(:,1));
nloads = length(F(:,1));  nreacts = length(R(:,1));

basex = J(B(:,2),2);  basey = J(B(:,2),3);
tipx = J(B(:,3),2);  tipty = J(B(:,3),3);
x = tipx - basex;  y = tipty - basey;
D = sqrt(x.^2 + y.^2);
cx = x./D;  cy = y./D;  % Direction cosines

A = zeros(2*njoints);  I = zeros(2*njoints,1);

for i = 1:nbars  % once through for each bar
    A(2*B(i,2)-1, i) = cx(i);
    A(2*B(i,2), i) = cy(i);
    A(2*B(i,3)-1, i) = -cx(i);
    A(2*B(i,3), i) = -cy(i);
end

for j = 1:nreacts  % once through for each reaction
    A(2*R(j,2)-1, nbars+j) = R(j,3);
    A(2*R(j,2), nbars+j) = R(j,4);
end

% Fill in the column vector of loads
for k = 1:nloads  % once through for each load
    L(2*F(k,1)-1) = -F(k,2);
    L(2*F(k,1)) = -F(k,3);
end

T = A \\ L

function [J B F R] = prelimdata()

% Joint locations
J = [ 1 -1 0
      2 1 0
      3 0 0.01];

% Bar connections
B = [ 1 1 3
      2 2 3
      3 1 2];

% Reaction components
R = [ 1 1 1 0
      2 2 1 0
      3 2 1 0];

% Loads (F=[3 0 -10])
load of -10 N" (say) at 3rd joint
end

% Structure FBD

R_1 = 0;  R_2 = 5N;  R_3 = 5N

Joint 2:  S_j = 0 \Rightarrow
T_2 = -R_3 \sin \theta = -\frac{-5N}{\theta}
= -500N

\begin{align*}
S_{F_2} &= -R_3 \cos \theta - T_1 - T_2 = 0 \\
T_3 &= -T_2 = 500N
\end{align*}

\Rightarrow T_1 = -500N \ (like T_2)
```
2) A person of weight W stands on a symmetric ladder that is made of 3 rigid parts with negligible weight. It sits on a ground with negligible friction. In terms of some or all of a, b, W, and any coordinates or base vectors you define, find the force of the left piece on the right piece at A.

\[\text{FBD 0} \]
\[8 M_{E} = 0 \Rightarrow N_{2} = \frac{W}{4} \]
\[8 M_{C} = 0 \Rightarrow N_{1} = \frac{3W}{4} \]
\[\text{FBD 0} \]
\[\sum F_{y} = 0 \Rightarrow N_{2} = -\frac{W}{4} \]
\[\sum F_{y} = 0 \Rightarrow \begin{align*}
A_{y} &= -N_{2} \\
A_{y} &= -\frac{W}{4}
\end{align*} \]
\[\sum F_{x} = 0 \Rightarrow \begin{align*}
A_{x} &= \frac{b}{2a} A_{y} \\
A_{x} &= \frac{b}{2a} \left(-\frac{W}{4} \right) \\
A_{x} &= \frac{aW}{2b} \\
A_{x} &\rightarrow \infty \text{ as } b \rightarrow 0 \text{ (like a toggle).}
\end{align*} \]

Note: A_{y} is ind. of a or b.

\[\vec{A} = \frac{aW}{2b} \hat{i} - \frac{W}{4} \hat{j} \]

Force of left piece acting on to right.

\[\text{force of left piece acting on to right.} \]
3) A bead slides in a massless rigid frictionless slot. It is held in place by the force F. Find F in terms of k and a.

\[\sum \vec{F} = 0 \Rightarrow \vec{T}_1 + \vec{T}_2 + N\hat{i} + F\hat{a} = 0 \quad 1 \]

\[\vec{T}_1 = k \left(l - l_0 \right) \frac{\vec{r}_{DB}}{l_{DB}} = k \vec{r}_{DB} = k(a\hat{i} - \alpha \hat{j}) \]

\[\vec{T}_2 = k(2a\hat{i} - a\hat{j}) \]

\[0 = \left\{ k(a\hat{i} - \alpha \hat{j}) + k(2a\hat{i} - a\hat{j}) + N\hat{i} + F \frac{\hat{i} + \hat{j}}{\sqrt{2}} \right\} = 0 \quad 2 \]

\[N\hat{i} + F \frac{\hat{i} + \hat{j}}{\sqrt{2}} = 0 \]

\[\Rightarrow 2ka + 0 + \frac{F}{\sqrt{2}} = 0 \quad 3 \]

\[F = 2Uz^2 \frac{ka}{V^2} \]