Here is a quick solution. Detailed soln on later pages.

\[M = \frac{K}{S_r} = \frac{K_0 \max}{E_c} \]

Given geometry, properties, find \(M_{\max} \)?

Do calc. twice, take smaller value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Minimal version of BJ 11.25, use units of N, m
EB = 105E9; EA = 70E9;
SigB = 160E6; SigA = 100E6;
cA = 0.015; cB = 0.021;
yB = 0.018;
w = 0.030; hB = 0.006; AB = w*hB;
hA = 0.030;
k = 2*EB*((w*hB^3/12) + yB*2*AB) ... \& k = "EI" net.
+ EA*((w*hA^3/12) + 0);
MmaxA = k*SigA/(EA*cA), MmaxB = k*SigB/(EB*cB)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Output
MmaxA = 1.6272e+03
MmaxB = 1.2398e+03

\[M_{\max} = 1.24 \text{ KN.m} \]
B&T 11.25 Detailed Solution

Neutral Axis in middle.

\[E_B = 105 \text{ GPa} \quad \sigma_{yB} = 160 \text{MPa} \]
\[E_A = 706 \text{ GPa} \quad \sigma_{yA} = 100 \text{MPa} \]

All geometry & properties given. Find \(M \)?

Note, this is 2 problems in 1. First have to find what \(M \) will cause Al to fail. Then find what \(M \) will cause Brass to fail. Then take smaller of the two.

Failure of Al at \(\sigma_{yA} = E_A \varepsilon_{yA} \), \(\varepsilon_{yA} = \frac{\sigma_{yA}}{E_A} \) \(\text{(1)} \)

But for all pts, in cross section: \(\varepsilon = -\frac{y}{h} \)

\[\text{biggest } \varepsilon_{max} \Rightarrow \sigma_{failA} = \frac{E_{maxAl}}{C_A} \text{(2)} \]

But for composite beam \(M = \frac{K}{5} \)

\[\Rightarrow M_{maxA} = \frac{K}{5} \sigma_{failA} \text{(3)} \]

\(0, 2, 3 \Rightarrow M_{maxA} = \frac{K \sigma_{yA}}{E_A C_A} \text{(4)} \)

Gives max moment if failure due to yield of Al.
Detailed sol'n continued. C

Failure of Brass

Exactly the same logic =)

\[M_{\text{maxB}} = \frac{K \sigma_y B}{E_B C_B} \] Max Possible moment before Brass yields.

\[\text{Sol'n:} \quad \min (M_{\text{maxA}}, M_{\text{maxB}}) = M_{\text{max}} \] Failure is when first of two critical loads is reached.

Need section stiffness \(K = "EI" \)

\[K = "EI" = \sum_{\text{All regions}} E_i (I_i + \bar{y}_i A_i) \] \(L'' b h^3/12 \)

All calculations done in Matlab.

First calc. \(K \) from 7

Then \(M_{\text{maxA}} \) & \(M_{\text{maxB}} \) from 4 & 5

Then \(M_{\text{max}} \) from 6

See following page for arithmetic.
% BJllpoint25
% Use all consistent units of m, N
% -A. Ruina Nov 16, 2010 (corrected .017->.018)
EB = 105E9; % modulus of Brass = 105 GPa
EA = 70E9; % modulus of Al = 70 GPa
SigB = 160E6; % yield stress of Brass = 160 MPa
SigA = 100E6; % yield stress of Al = 100 MPa
CA = 0.015; % max dist of Al from Neut Axis = 15 mm
cB = 0.021; % max dist of Br from Neut Axis = 21 mm
yB = 0.018; % dist of brass center from NA = 18 mm
w = 0.030; % width of rect beam = 30 mm
hB = 0.006; % height of brass region = 6 mm
hA = 0.030; % height of Al region = 30 mm
AB = w*hB; % area of each brass part

% Find stiffness of cross section = k = "EI" net.

k = 2*EB*(w*hB^3/12 + yB^2*AB) ...
 + EA*(w*hA^3/12 + 0);

MmaxA = k*SigA/(EA*CA); % Max moment is Al yields first
MmaxB = k*SigB/(EB*cB); % Max moment if Br yields first

Mmax = min(MmaxA, MmaxB);

% Check, take Mmax as given, find stresses.
rho = k/Mmax; %"Bending moment's given by EI over rho"

SigAmax = (cA/rho)*EA; % should be < or = SigA
SigBmax = (cB/rho)*EB; % should be < or = SigB

% Uncomment lines above to see what you want.
% Or, to waste time, make a fancy output like this.
disp(['*******************************
 'Output at: datestr(now)]
 'Net bending stiffness of cross section= num2str(k) N m^2]
 'Max moment load to keep Al happy = num2str(MmaxA) N m]
 'Max moment load to keep Br happy = num2str(MmaxB) N m]
 'THE ANSWER, min of above two = num2str(Mmax) N m]
 'CHECKS:]
 ' rho, (just for fun) = num2str(rho) m^-1]
 'Stresses are less or equal what is allowed?:
 'Stress in Al at given Mmax= num2str(SigAmax) m^-1]
 'Stress in Br at given Mmax= num2str(SigBmax) m^-1]

Output at: 16-Nov-2010 19:01:42
Net bending stiffness of cross section= 1/7085.6 Nm^2
Max moment load to keep Al happy = 1239.774 Nm
Max moment load to keep Br happy = 1239.774 Nm
THE ANSWER, min of above two = 1239.774 Nm
Stresses in Al at given Mmax= 13.7613 m^-1
Stresses in Br at given Mmax= 16.0000 m^-1

OUT PUT