\[\begin{align*}
\{ \mathbf{F} \} \cdot \mathbf{u} &= -P + V = 0 \\
V &= P
\end{align*} \]

\[p = R = 0.8 \text{ in} \] — the radius of the "head" of the rod.

If \(p \) is less than \(R \), shear force \(V \) will be less than \(P \).

If \(p \) is greater than \(R \), cross-sectional area is not minimized.

\[T = \frac{V}{A} \] \(T_{\text{max}} \) occurs when \(V \) is maximized and when \(A \) is minimized.

\[T_{\text{max}} = \frac{P}{2\pi R d} \Rightarrow 10 \text{ ksf} = \frac{P}{2\pi (0.8 \text{ in})(0.25 \text{ in})} \Rightarrow P = 12.57 \text{ kips} \]
Steel Rod "head"

\[\sum F_j \delta = V - P = 0 \]
\[V = P \]

\[P = r \}

- the radius of the hole in the plate and
- (assuming that there is no gap)
- the diameter of the rod shaft.

\[T_{\text{max}} = \frac{V}{A} = \frac{P}{2 \pi r t} = \frac{P}{2 \pi (0.3 \text{ in}) (0.04 \text{ in})} = 18 \text{ ksi} \]

\[\Rightarrow P = 13.57 \text{ kips} \]

\[\text{max } P = \begin{cases} 12.57 \text{ kips for aluminum plate} \\ 13.57 \text{ kips for steel rod head} \end{cases} \]

\[\text{max } P \text{ allowable is } P = 12.57 \text{ kips} \]

Before aluminum plate fails.

Note: If you examine the steel rod shaft,

\[\sum F_j \delta = 0 = R_s - P \Rightarrow R_s = P \]

Tensile loading \(\Rightarrow T_{\text{max}} \theta = 45^\circ \)

\[T_{\text{max}} = \frac{P}{2A_0} = \frac{P}{2 \pi r^2} = \frac{P}{2 \pi (0.3 \text{ in})^2} \]

\[= 18 \text{ ksi} \]

\[\Rightarrow P = 10.18 \text{ kips} \]