(6.3.15)

A) Person on the bike

\[\sum F_x = 0 \]
\[\Rightarrow -F + f = 0 \]
\[F = f \quad \text{(1)} \]

\[\sum M_0 = 0 \]
\[\Rightarrow T R_c = F_p R_p \]
\[T = \frac{R_p}{R_c} F_p \quad \text{(2)} \]

\[\sum M_n = 0 \]
\[\Rightarrow T R_s = f R_r \quad \text{(3)} \]

Substitute (2) in:

\[\frac{R_p R_s}{R_c} F_p = f R_r \]

\[\Rightarrow f = \frac{R_p R_s}{R_c R_r} \cdot F_p \]

Substitute in (1):

\[F = \frac{R_p R_s}{R_c R_r} \cdot F_p \]

F has the same sign as \(F_p \)
\[\Rightarrow F < 0 \]
6) Person standing next to the bike

Relation 2 & 3 remain unchanged as FBD 2 & 3 stay the same.

FBD 1 needs to be updated:

\[\sum F_x = 0 \]

\[\Rightarrow F + F_p = f \quad (4) \]

As derived in part a)

\[f = \frac{R_{pR}S}{R_cR_R} \cdot F_p \quad \text{(Same as part a)} \]

\[\Rightarrow F + F_p = \frac{R_{pR}S}{R_cR_R} \cdot F_p = \frac{F}{F_p} \]

\[F = \left(\frac{R_{pR}S}{R_cR_R} - 1 \right) F_p \]

If \(f < F_p \), which it is for all commercial bicycles in all gears, then \(F < 0 \). (Bike tries to go backwards.)

Always \(R_cR_R > R_{pR}S \) and \(R_c > R_R \) often

Then the gearing says

\[R_{cR_R} > R_{pR}S \]

\[\Rightarrow \frac{R_{pR}S}{R_{cR_R}} - 1 < 0 \quad \Rightarrow F \text{ has an opposite sign to } F_p \]

\[\Rightarrow F < 0 \]