Syllabus v1.1, T&AM 203, Spring 1997

Also see the Course information sheet and the course WEB page: http://www.msc.cornell.edu/ sdh4/203/203.html.

Lecture		Text Sections	Homework problems [*]
Dates	Topics	(or pages)	(due Wed. in section)
Tu 1/21	Intro. to COMPUTER.	Preface, CH1, CH2.1.	[do MATLAB tuts!], [1.32-1.155]
Th $1/23$	Course Summary.	Matlab: 15-37, 147-152,	1) ODE handout,
	FBDs.	39-54, 55-58, 73-87	2) Matrix handout, 3) 1.65 (vectors)
Tu 1/28	FBD's and statics	2.1 - 2.4	[2.1 - 2.80], 1) 2.69 w/ gravity
Th $1/30$			(masss & strings), 2) 2.78 (spool),
			3) Use WM to redo (1) or (2)
Tu 2/4	Position, velocity, &	3.1-2	[3.1-16], 1) 3.2 (circles, <u>v</u> vs v etc),
Th $2/6$	acceleration; 1D mechanics		2) 3.8abc (1 hp bicycler), 3) 3.14 $(F = \sin t')$
Tu 2/11	Harmonic oscillator, springs,	3.3-4	[3.17-23, 3.25-30], 1) 3.19 (vert motion in (c)),
Th $2/13$	dashpots and many masses		2) 3.28 (for some param values, plot $x_B(t)$.)
Tu 2/18	Particles in 2D and 3D,	3.5, 7.1, 7.4 (but not	[3.31-33, 7.25-28, 7.51acfij, 7.52bc]
Th $2/20$	numerical solutions	polar or path coords)	1) 3.32 (canon ball in air), 2) 7.53 (missile)
Tues $2/25$	— Prelim 1: Covers all topics above — $(7-8:30+)$		
Tu $2/25$	Center of mass,	3.6	[all CM probs in book and in Calc text]
Th $2/27$	constrained 1D motion,	4.1 - 4.2	1) derive shaded formula on pg. 194
	ropes and pulleys		2) 4.1 (train), 3) 4.2 (simple pulleys)
Tu 3/4	Pulleys (cont't),	4.2, 4.3	[4.2-4.19], [all 2D probs in section 4.3]
Th $3/6$	2D forces in 1D motion		1) 4.19 (messy pulley), 2) 4.31 (block on cart),
			3) 4.53 (car braking, front vs rear.
			Optional: compare with WM simulation.)
Tu 3/11	3D forces in 1D motion,	4.3,	[4.20-61], [5.1-17], 1) 4.37 (3D guyed shelf),
Th $3/13$	circular motion kinematics	5.1, 6.1	2) 4.54 (3D car braking),
			3) 6.5 (kinematics of circular motion)

Tu $3/25$	mechanics of circular motion,	5.1, 6.1, 5.2,	[5.1-31 & all particle probs in Ch 6]
Th $3/27$	simple pendulum	6.2 (pendulum parts)	1) 5.14 (springy mass in tube), 2) 6.47 (simple
			pendulum, optional: compare with WM),
			3) 5.23 (\approx fly ball governor)
Tue $4/1$	— Prelim 2: C	overs all topics above (con	nprehensive) — (note change of date, 7-8:30+)
Tu 4/1	Constant $\underline{\boldsymbol{\omega}}$ kinematics	5.3	$[5.32-87], 1) 5.46(3D \underline{\omega} \text{ kinematics}),$
Th $4/3$	and mechanics (rigid bodies)		2) 5.70 (gears), 3) 5.87 (rod on shaft)
Tu 4/8	Moment of Inertia, $[I]$	5.4, 5.5	[5.88-5.111], [all 2D probs in Ch 6], 1) 5.103
Th $4/10$		6.3	(find $[I]$ matrix), 2) 6.18 (pulley w/ mass)
Tu $4/15$	Mechanics using $[I]$	5.5, 5.6, 6.4,	[5.112-129], [6.1-66], 1) 5.87 (again, using $[I]$),
Th 4/17	Dynamic balance	6.5	2) 5.118 (disk & shaft), 3) 6.55 (3D skewer pend.)
Tues $4/22$	— Prelim 3: Covers all topics above (comprehensive) — $(7-8:30+)$		
Tu 4/22	Polar coordinates	7.2	[all of Ch 7 but path coord],
Th $4/24$		7.4	1) 7.11 (pick apart accel. formula),
			2) 7.38 (rusty wrist gun, also plot trajectory)
Tu 4/29	General 2D rigid body	8.1-3,	[all 2D probs in Ch 8], 1) 8.11 (force on stick in
Th $5/1$	motion, rolling	8.5	space) 2) 8.75 (race of rollers), 3) 8.79 (standing.
			Optional+: plot motion, show it isn't sinusoidal)
Mon $5/12$	- Fin	al exam: comprehensive -	(scheduled as 'exception', 3:00-5:30)

* [] These are problems you should know how to do but should not hand in.

Please follow these homework directions to ease the work of sorting and grading.

a) Write the following on the upper right hand corner of your homework (making appropriate substitutions):

Yourfirstname Lastname, TAM 203, Homework n, due: due date, Section m, section time, TA name

b) At the top of your homework acknowledge help from TAs, faculty, friends, relatives, enemies, texts or notes.

- c) Define all signs and directions with sketches and/or words. Use correct units and vector notation. *Reasonable justification* should be given for all work. Draw a free body diagram or write the phrase 'FBD not relevant' for each mechanics problem.
- d) If a problem seems ambiguous, clearly state the reasonable assumptions you use. Define all variables.

e) Box in your answers.

• If you can do the problems only immediately after looking something up or getting help you are not learning what you should.