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Introduction
Revised May 24, 2011

Purpose
These labs should help you gain a physical feel for some of the key concepts in dynamics,
namely force, velocity, acceleration, natural frequency, resonance, normal modes, and angular
momentum. The labs may come before or after you see the material in lecture and include
some material that is not in the lectures.

Time budget Plan to spend 2 hours preparing for the lab before the lab, 2 hours at the
lab, and one hour writing a report afterwards.

Attendence
If you miss a lab you might be able to make it up. Arrange this with your lab TA. Possibilities
include attending another of your lab TA’s lab sections, if there is space; attend another lab
TA’s lab section (requires permission from both lab TAs); or attend a“Lab Make-Up Section”
at the end of the semester. If you cannot make it up, you can make up a do-it-yourself lab
on a topic that relates to the course. Hand in such a report to the course Professor.

Prelab Questions
There is not time to read and do the lab at the same time. So please read through the
manual for the lab, and do your best to understand it, before coming to lab. Each lab has
prelab questions you must complete before coming to lab.

Laboratory Notes
Keep adequate notes of what you see in the lab. The TA will not sign this sheet until your
work station is clean and all equipment is accounted for. Your lab report needs this
signed sheet.

Lab Report
The top of each lab should have (with appropriate substitutions for the words in quotes):

“NAME OF THE LAB”
TAM 2030
By: “Your name and your signature”
Performed: “Date”
Performed with: “Name of person(s) with whom you performed the lab”
Discussed lab with: “Names of people with whom you discussed the lab, and nature of
the discussions”
TA: “Lab TA’s name”
TA signed the data on page: “Page #”
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Each person hands in a report. We do not expect extensive reports. The report should
concisely answer the questions. You should not write an abstract, introduction and such like.
You may also mention observations of things not specifically asked about in the questions.
Finally, at the end of your lab report you may want to include any observations, mistakes
you made, or suggestions. You can get full credit for a report by writing at the top: ‘I worked
n minutes on this report after the lab.’ If n ≥ 60 and there is some indication that you were
working on the material for that time.

Graphs

Here are some guidelines

• All graphs should be titled and all axes labeled, with the appropriate units listed in
parentheses.

• The independent variable should be placed on the horizontal axis.

• Numerical values on the axes should be set at reasonable intervals and scales chosen
so that all of the data points can be displayed on the graphs.

• On graphs with more than one curve, the curves need labeling.

Figure 0.1 shows a decent graph and the Matlab code that made it.. You need not use
computer generated graphs. Hand made graphs, or computer-made but with hand labeling
is fine. The graphs just need to be clear.

For help with producing log-log and semi-log plots with MATLAB, type help loglog, help
semilogx, or help semilogy in the main MATLAB window.

Credit and Grading
Lab reports are due at 10:00 AM one week from the day you performed the lab unless your TA
specifies another time. Turn in reports in the boxes in the Don Conway room, Thurston 102.
Put your report in the correct box corresponding to the TA in charge of your laboratory
section.

Academic Integrity
Your pre-lab answers and lab reports should be in your own words, based on your own
understanding and your own calculations. You are encouraged to discuss the material with
other students, friends, TAs, or faculty. Any help you receive from such discussions
must be acknowledged on the cover of your lab report, including the name of
the person or persons and the exact nature of the help. Violations of this policy will
be reported to the academic integrity board.
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Matlab code to draw two sine waves

t = linspace(0,10,1000);
x = 5*cos(2*t);
v = -10*sin(2*t);

figure(1); hold on;
plot(t,x,’b’,’LineWidth’,2);
plot(t,v,’r--’,’LineWidth’,2);
grid on;

plot_title = title(’Plot of Position and Velocity vs. Time for Harmonic Oscillator’);
x_axis_label = xlabel(’Time (sec)’);
plot_legend = legend(’Position (m)’,’Velocity (m/s)’);

hold off;

set(plot_title,’FontWeight’,’bold’,’FontSize’,12);
set(x_axis_label,’FontWeight’,’bold’,’FontSize’,12);
set(plot_legend,’FontWeight’,’bold’,’FontSize’,12);
set(gca,’FontWeight’,’bold’,’FontSize’,12);

The resulting plot
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Figure 0.1: An example graph from Matlab. The code to make this graph is on the
top. For quick work most of the plotting commands shown could be eliminated.



Lab #1 - One Degree-of-Freedom Oscillator
Revised January 4, 2011

INTRODUCTION
Engineers often have the challenge of making something oscillate the right amount or of trying
to prevent something from oscillating too much. The mass-spring-dashpot is the prototype
of all vibrating or oscillating systems. And all intuitions about more complex machines are
based on the mass-spring-dashpot. This lab will introduce some of the basic concepts of
the mass-spring-dashpot system such as natural frequency, resonance, forcing function, and
frequency response. In this lab you will study two mass-spring-dashpot systems, an artificial
one built for this lab and a loudspeaker.

Prelab Questions (read manual before answering)

1. Find the general solution to (1.5) if the forcing term is given by Fs(t) = 0 and there is
no damping (c =0). Note: Use pencil and paper, not MATLAB.

2. Assume the mass starts from rest with an initial displacement of x(0) = 1. Choose
m = 1, k = 5, and plot for the time period 0 ≤ t ≤ 10. What is the period of the
oscillation?

3. Define in your own words: natural frequency, damped frequency, damping coefficient,
underdamped, overdamped, resonance, and phase-shift.

4. Suppose that you are measuring two sinusoidal waveforms of equal amplitude, x1(t)
and x2(t), with phase difference of π

2
. What would be the shape of the curve if you

plotted x1(t) vs x2(t)? What if the phase difference was zero? π?

5. Find the period T , support amplitude of motion Asupport, mass amplitude of motion
Aresponse, and phase difference φ for the curves in Figure 1.1.
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Figure 1.1: Sample lab data.
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Figure 1.2: Experimental system. A mass is held by a spring. The top end is moved up
and down sinusoidally by a Scotch-yoke mechanism powered by a motor. Additionally
the motion of the mass is retarded by friction which is modeled as a dashpot. The
two tall stainless steel cylinders with wires coming out are displacement and velocity
transducers.

Mass-Spring-Dashpot System
Figure 1.2 the laboratory mass-spring-dashpot, or one degree-of-freedom oscillator. A mass is
supported by a spring and is constrained to move up and down. We will call +x the upwards
displacement of the mass. In this lab you will record x(t) both with a fixed support (free
vibration) and with the support xs(t) oscillating vertically (forced vibration). The spring
is modeled as linear, i.e. the force it applies is proportional to its increase in length. The
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damping is also modeled as linear, i.e. the force transmitted by the dashpot is proportional
to the rate at which it is being stretched.

One DOF. The system has one degree-of-freedom system because the single coordinate x
is sufficient to describe its state. The support displacement xs(t) does not count as a degree
of freedom because it is specified by the motor position and is considered as given.

Ignoring gravity. We measure x relative to the equilibrium position where mg balances
the spring tension. Due to the assumed linearity of the governing equations, the motion of
the mass relative to this equilibrium is the same as the motion of the mass would be if there
was no gravity. In simple language, we ignore gravity.

Governing equations. The two forces we consider are:

Fsp(t) = k (xs − x) = The spring force (1.1)

Fd(t) = cẋ = The dashpot force (1.2)

From Newton’s second law the equation of motion for this system is{∑
F
}
· êx ⇒ −Fd + Fsp = mẍ (1.3)

and plugging in for spring and dashpot terms we get

mẍ = −cẋ+ kxs − kx. (1.4)

Rearranging we get the standard form

mẍ+ cẋ+ kx = Fs(t) with Fs(t) = kxs(t) (1.5)

where Fs(t) is the (presumably specified)“forcing function”due to the motion of the support.
In this case the forcing is from the end of the spring being displaced.

A Real-World Example: A Loudspeaker
A speaker, like the ones in your ipod, earbud or home stereo, is well modeled as a one degree-
of-freedom mass-spring-dashpot system (see Figure 1.3). A speaker usually has a paper or
plastic cone supported at the edges by a roll of plastic foam (the surround), and guided at
the center by a cloth bellows (the spider). It has a large magnet structure and (not visible
from outside) a coil of wire attached to the point of the cone which can slide up and down
inside the magnet. The electronics forces a current through the coil causing the coil to push
on the magnet thus pushing the cone up and down. The cone pushes on the air, waves go
through the air and push on your eardrums thus exciting neurons so as to send electric pulses
to your brain.
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Figure 1.3: A speaker and a cross sectional diagram of it. The voice coil moves up and
down inside the magnet structure, pushing on the cone which pushes on the air which
pushes on your eardrum. The spider keeps the voice coil centered so it doesn’t rub on
the magnet.

The cone and coil have mass m and motion x(t).The foam surround and clothe bellows act
as a spring with stiffness k. Damping c comes from the cone moving through the air (c). The
magnet provides external forcing Fs(t). Putting it all together we get the familiar equation
of motion of a driven mass-spring-dashpot system:

mẍ+ cẋ+ kx = Fs(t) (1.6)

Solving the Equations of Motion
In some sense the whole lab is about this equation:

mẍ+ cẋ+ kx = Fs(t) (1.7)

Our goal is to find the motion of the mass, x(t), for a given forcing function Fs(t). Two cases
are of particular interest:

Fs(t) = 0 (unforced or ‘free’ vibration) (1.8)
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Fs(t) = kxs(t) = kAsupport cosωt (sinusoidal forcing) (1.9)

Equation (1.7) is a linear, second order ordinary differential equation with constant coeffi-
cients. The solution with Fs(t) given either by (1.8) (homogeneous) or (1.9) (inhomogeneous)
is discussed near the end of most freshman calculus texts and near the beginning of all dif-
ferential equation texts.

The general solution to (1.7) as the sum of a homogeneous (also referred to as the transient
or complementary) solution xc(t) and a particular solution, xp(t).

x(t) = xc(t) + xp(t) (1.10)

The homogeneous portion xc(t) is the solution to (1.9) with Fs(t) = 0 (and appropriate
initial conditions). In this case, xc(t) goes to zero as t → ∞ because any initial motion of
the mass will eventual be damped out if there is no external forcing. Thus the particular
solution xp(t) is what is left as t→∞ no matter what the initial condition.

Homogeneous solution. First let’s find x(t) = xc(t). We will deal with xp(t) later. We
guess the form xc(t) = Aeλt and see if it works in (1.5). We find that all’s well if the
characteristic equation,

mλ2 + cλ+ k = 0 (1.11)

is satisfied, which it is if λ has either of these values:

λ1,2 =
−c±

√
c2 − 4mk

2m
. (1.12)

Now, depending on the values of the parameters c,m, and k (specifically the discriminant
c2 − 4mk), there are three situations encountered, and thus three different behaviors of the
displacement solution xc(t). These situations are:

• c2 − 4mk > 0: This produces two distinct real roots λ1 and λ2, and the solution is :

xc(t) = C1e
λ1t + C2e

λ2t (1.13)

This sytem is called overdamped– the system will slowly settle down to xc(t) = 0 with
no oscillations.

• c2 − 4mk = 0: This produces a repeated real root λ1 = −c/2m and the solution is:

xc(t) = C1e
λ1t + C2te

λ1t (1.14)

This system is called critically damped - the system will quickly settle down to xc(t) = 0
with no oscillations.
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Figure 1.4: Typical solutions for underdamped, overdamped, and critically damped
cases. Note that for overdamped and critically damped systems there are no oscillations.

• c2 − 4mk < 0: This produces a complex conjugate pair α ± iβ with α < 0 and the
solution is:

xc(t) = eαt [C1 cos(βt) + C2 sin(βt)] (1.15)

This system is called underdamped–the mass will oscillate, but the oscillations will
exponentially decay with time (see Figure 1.4). Mass-spring-dashpot systems that you
think of as oscillatory are generally underdamped.

The constants C1 and C2 are determined by initial conditions.

A key quantity is the natural frequency ωn is defined as, ωn =

√
k

m
(1.16)

The damping factor ζ is a non-dimensional measure of the amount of damping in the system:

ζ =
c

2
√
mk

(1.17)

ζ is defined in such a way that

• if ζ > 1 the system is overdamped
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• if ζ = 1 the system is critically damped

• ζ < 1 the system is underdamped

In this lab, we will assume that both the mass-spring-dashpot system and the speaker are
underdamped.

Some gory details. We can restate the quadratic equation we found above in terms of the
new variables, which yields (after some algebra).

λ1,2 = −ζωn ± ωn
√
ζ2 − 1 (1.18)

Since we are studying the underdamped system in the lab, we take ζ < 1 and find that the
roots are

λ1,2 = −ζωn ± iωd (1.19)

where we defined the damped natural frequency (i.e. the frequency of oscillation with damp-
ing) as ωd = ωn

√
1− ζ2. Thus, the solution for the underdamped system (1.15) is,

xc(t) = e−ζωnt [C1 cos(ωdt) + C2 sin(ωdt)] (1.20)

which can be restated as,
xc(t) = Ae−ζωnt cos(ωdt− φ) (1.21)

where A =
√
C2

1 + C2
2 , and φ = tan−1(−C2/C1) are two constants to be determined from

the initial conditions.

The Logarithmic Decrement Method
Given a real system we don’t necessarily know all the parameters like m, k and c. The
first thing to measure then, is how damped the system is. How fast do oscillations decay?
We measure the rate of decay of unforced oscillations in a ”ring down” test. The objective
measure of this is the ratio of the amplitude at one oscillation to its amplitude at the next
oscillation. Its convenient to take the log of this ratio. The logarithmic decrement, D, is the
natural log of the ratio of the amplitudes of two successive oscillations:

D = ln

(
xn
xn+1

)
(1.22)

That is, xn and xn+1 are the heights of two successive peaks in the decaying oscillation (see
Figure 1.5). If there is almost no damping D is close to zero. The larger the damping, the
greater will be the rate of decay of oscillations and the bigger the logarithmic decrement, D.

Given m, use the ring-down test to find c and k. Going back to mathland we note
that (refer to (1.21)), xn = (Const.) ∗ e−ζωnt and xn+1 = (Const.) ∗ e−ζωn(t+τd), where τd is
the period of the damped oscillation, i.e. τd = 2π

ωd
. Thus
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Figure 1.5: The logarithmic decrement method.

D = ln

(
e−ζωnt

e−ζωn(t+τd)

)
= ζωnτd. (1.23)

We simplify this expression by substituting in (1.17) for ζ and then solve for the damping
constant c, yielding (algebra omitted)

c =
2mD

τd
. (1.24)

We can also obtain an equation for k from (1.23) , yielding

k =
c2
(

1 + 4π2

D2

)
4m

=
c2

4mζ2
(1.25)

Thus, by doing a ‘ring-down’ test we can experimentally measure values of D and τd. Then
using equations (1.24) and (1.25) and given the mass m, we can calculate the damping
coefficient c and spring constant k for a one degree-of-freedom oscillator.

Forced Vibrations and Frequency response.
Often a system is periodically forced and we are interested in how it will respond. When
the forcing function is sinusoidal with frequency ω, the steady state solution xp(t) is also
sinusoidal in time with the same frequency ω. Of central interest is how the amplitude of
the oscillations depends on the frequency.
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Figure 1.6: Amplitude and phase response. x(t) = Aresponse cos (ωt− φ) as a function
of forcing frequency ω, for various amounts of damping ζ. The forcing amplitude, Fdrive,
is fixed.

Starting with our equation of motion (1.7):

mẍ+ cẋ+ kx = Fs(t) (1.26)

If we let the forcing term be given by:

Fs(t) = kxs(t) = Fdrive cosωt (1.27)

Then we are looking for a steady state solution of the form:

xp(t) = Aresponse cos (ωt− φ) (1.28)

where Aresponse is the amplitude of the system response and φ is the phase of the response
xp(t) with respect to the exciting force Fs(t).

Note: the phase of a curve is a shift of one graph to the left or right with respect to another
graph and has units of radians. If the phase is 0 then the response is at a maximum when
the forcing is at a maximum, and if the phase is π then the response is at a minimum when
the forcing is at a maximum.

Amplitude and phase of response. Skipping the derivation here, we get the plot in
Figure 1.6. The most important part of this lab is for you to get a sense of these two plots.

Note from the plots that:
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• for very low drive frequencies (ω � ωn) the response is synchronized with the driving.
The phase lag (φ) is 0, and the amplitude of vibration of the mass is the same as the
amplitude of vibration of the support. What is the physical argument for this?

• for drive frequencies near ωn the response amplitude is at a maximum and the phase
lag is π

2
.

• for very high drive frequencies (ω � ωn) the response is completely out of phase with
the driving (φ = π) and the amplitude of vibration goes to zero. What is the physical
argument for why the amplitude vanishes?

• the less damping there is, the sharper the change in phase is, and the greater the
response near ωn.

Resonance
Merriam-Webster defines resonance as a vibration of large amplitude in a mechanical or
electrical system caused by a relatively small periodic stimulus of the same or nearly the
same period as the natural vibration period of the system. This definition confirms what we
already noted in Figure (1.6), i.e. that the amplitude of response was a maximum when we
drove the system at a frequency ω near the natural frequency ωn. To find the exact resonant
frequency, ωr, we find the point on our graph of Aresponse(ω) with a slope of zero:

dAresponse
dω

∣∣∣∣
ω=ωr

= 0⇒ ωr = ωn
√

1− 2ζ2 (1.29)

Note for small damping (ζ � 1) we have
√

1− 2ζ2 ∼ 1 and so the resonant frequency ωr and
the natural frequency ωn are approximately equal ωr ' ωn. This supports what we observed
in Figure 1.6 where the peak in the response seems to be very near to ωn. For most purposes
you can just remember

ωr ≈ ωn.

Phase Diagram (cross plot)

With lots of measurments we could adjust the forcing frequency ω until the response is
maximized. From just one measurement can you tell if the system is near resonance? Let’s
look at the response phase(φ).When we force the system at it’s natural frequency (ωn) that
the phase is φ = π

2
( Verify this by inspection (see Figure 1.6). The corresponding phase

diagram will then be a circle (If you are interested, further details on what a phase diagram
is can be found in the appendix). Thus when the phase diagram is a circle (or elipse that is
not skewed) we are at (or very close to) resonance. Though it is more difficult to prove, we
will see that when our forcing frequency ω is below resonance, the phase diagram will look
like an ellipse tilted up to the right, and when it is above resonance, the phase diagram will
look like an ellipse tilted up to the left.
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Laboratory Setup

• Mass-Spring-Dashpot System
The apparatus consists of a laboratory-model mass-spring-dashpot system with dis-
placement transducers (Linear Variable Differential Transformers or LVDTs) for mea-
suring x(t) and xs(t). The output from the LVDTs is communicated to the computer
via the data acquisition board. An electric motor and controller, acting through a
scotch yoke, enable a sinusoidal forcing function to be applied to the system. Note
that the physical dial readings are arbitrary; frequency and period data must be ob-
tained from your computer plots.

• Loudspeaker
The apparatus consists of a speaker on a stand with one LVDT to measure cone dis-
placement. Waveforms are generated by the computer, amplified, and sent through
a resistor to drive the speaker. The computer is also used to measure current flow
through the speaker and displacement of its cone (using the attached LVDT).

Safety. Keep long hair and loose clothing well away from the electric motor, pulleys, and
other moving parts.

• Using the LabView Software
The four programs you will be using in the first part of the lab are:

1. FreeAcq (Figure 1.7) for acquiring data on the unforced system;

2. FreeSim (Figure 1.8) for measuring the data and simulation of the same;

3. ForcedAcq (Figure 1.9) for acquiring data on the system with a sinusoidal forcing
function; and

4. ForcedSim (Figure 1.10) which may be used for measuring the data and simulation
of the forced system.

Although somewhat different in appearance and function, the programs share many
key features. The SpeakerAcq (Figure 1.11) program used in the second part of the lab
is also similar.

To run a program, you must hit the white arrow in the top left of the screen. If
this arrow is black, that means that the program is already running. For the data
acquisition programs, a green box on top will define the amount of time for which the
program will record after hitting the arrow. To reset the data acquisition, press STOP

without Saving and then press the white arrow to begin again.

After getting data, pressing the Save and STOP button stores your current data on
disk. The data file is only used by the simulation programs FreeSim and ForcedSim-
it is not available to the data acquisition programs.
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Figure 1.7: The FreeAcq program.

You may find it convenient to obtain numerical data from your plots using the cursors,
rather than using a ruler. Two cursors are available, one indicated by a circle and
one by a square. To use a cursor, use the mouse to drag it to the point you want to
measure. If your cursor has vanished off the screen, you can enter an on-screen position
for it into the x and y display boxes, and it will reappear in the desired location. You
can also lock the cursor to a curve by clicking the lock icon. Zoom and other features
are available for the cursors and graphs.

PROCEDURE

• Free Vibration, Mass-Spring-Dashpot

1. First you will measure the free vibration of the mass.

– Start up the FreeAcq program. The data acquisition programs automatically
convert the voltage output of the LVDTs to meters. To do this, they need
a set of conversion factors, which are on a label on the mass-spring-dashpot
base board. Make sure that the sensitivity and offset values on the left hand
side of the window match the values listed on a small sheet of paper in front
of the apparatus, and enter your name in the box provided. Set the data
acquisition time to 6 seconds.

– Lift up the mass and hold it still, then press the white run arrow in the top
left of the toolbar, wait 1 second and then release the mass.

– Repeat this procedure until you have a nice oscillation over the 6 seconds.
Please note that the zero position is somewhat arbitrary. You will need to
take data long enough for the mass to stop oscillating in order to measure the
equilibrium value.
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Figure 1.8: The FreeSim program.

– Save your best oscillation on disk by pressing the Save and STOP button.
Save your data on the desktop with an appropriate title specific to your
group.

2. Next you will measure the logarithmic decrement D and estimate the spring stiff-
ness k and damping coefficient c.

– Close down the FreeAcq program and start the FreeSim program. Add the
measured data to the graph by pressing the Measurement Data switch above
the graph. Set k = 0 to get the simulated data out of the way, and consult
the legend to make sure you know what curve you are measuring.

– Using the cursors, calculate the logarithmic decrementD and the period of the
damped oscillation τd for each set of successive peaks - at least 3. Please note
that xn and xn+1 in (1.22) refer to the mass displacement from equilibrium
and not the ”x-axis”. You will need to measure the equilibrium value
and take it into account in your calculations.

– Using these measured values, and the mass m, calculate the damping coeffi-
cient c and spring stiffness k (The mass of the weight and spring are written
at the base of the setup. For your ’m’ use the total of the weight mass and
the spring mass).

– Make a print-out of your curve.

3. Finally, you will simulate the free vibration of the mass-spring-dashpot system
and verify your estimate of the system parameters k, c, and m which you just
calculated.

– Input the k, c and m which you just calculated and adjust the initial condition
and viewing parameters (t(0), h, x(0), D) to fit your data. Don’t change k or
c.
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Figure 1.9: The ForcedAcq program.

– Make a print-out.

– Now see if you can adjust k and c to get a better agreement. Take note of
what aspects of the graph change when you change each of the parameters k
and c independently.

– Make another print-out.

• Forced Vibration, Mass-Spring-Dashpot

1. Here you will be recording the motion of the mass as it undergoes sinusoidal
forcing.

– Close down any other open programs and start the ForcedAcq program.

– Set the acquisition time to 10 seconds, start the data acquisition and turn on
the motor. Two graphs will be displayed. The left one contains two plots.
One is a plot of the mass position x(t) vs. time and the second one is a plot
of the spring support position xs(t) vs. time. The right graph plots the phase
diagram.

– For at least five different forcing frequencies get nice plots of several cycles of
motion (see instructions below). Make sure to save each data set to disk in
order to analyze them in the ForcedSim program. Print-outs are not necessary
but may be helpful.

– To acquire data, set the data acquisition time to 10 seconds and click the
arrow to run the program. Now adjust the forcing frequency until you get the
desired frequency. If the data acquisition stops before you are done adjusting
the forcing frequecy, you will need to click STOP without SAVING and then
click the arrow to run it again. Once you’ve got the drive frequency where
you want it, reduce the data acquisition time to ∼ 1 second (or atleast long
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Figure 1.10: The ForcedSim program.

enough to get one whole cycle) and then run the program again. This time
hit SAVE and STOP. Reducing the acquisition time will reduce demand on the
server and save you time doing analysis. Forcing frequencies should include:

∗ A low frequency for which the motor runs smoothly (∼ 1
2
Hz).

∗ A frequency just lower than resonance.

∗ Resonance. (Hint: we can tell from the phase diagram that it is at reso-
nance)

∗ A frequency just higher than resonance.

∗ A high frequency (∼ 3 ∗Resonance).
2. Next we will measure our data in order to later calculate the response phase φ

and amplitude Aresponse .

– Close down the ForcedAcq program and open the ForcedSim program.

– Turn on the measured data switch. From what you learned in the pre-lab
obtain the measurements to calculate the amplitude of the mass motion and
the phase-shift between the mass and the support. To change data sets, you
need to close and then re-open ForcedSim.

You may also want to save the data to a USB storage device or write it to a CD for
later analysis. To do this just copy the text files of the desired data onto your storage
device.

• Vibration of a Speaker

• In the last part of the lab, you will non-destructively measure the mass of a speaker
cone by measuring the shift in in its resonant frequency due to the addition of a known
mass.
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Figure 1.11: The SpeakerAcq program.

1. First you will find the resonant frequency of the loud speaker.

– Set the Waveform control to Sine and the Amplitude control to 2. Leave
the DC Offset control set to 0. Set the data acquisition time to 0.1 seconds.
The CH 0 Offset and CH 1 Offset controls may be used to adjust the plots
vertically if necessary.

– Turn on the waveform generator and data acquisition switches and adjust
the Frequency control value until you observe resonance of the speaker cone.
To change the frequency you must press STOP without Saving, enter
the new desired frequency and then hit the start arrow.

– Make a print-out and record the resonant frequency (note that the frequency
here is given in Hz and not rad/sec).

Recall that the resonant frequency depends on both the mass m and spring stiff-
ness k. By measuring the resonant frequency you cannot solve for both m and k
uniquely. However, if you also measure the resonant frequency when the mass is
changed by a known amount then you will have 2 equations ( i.e. (1.16), assume
ωr ∼ ωn) for 2 unknowns (m, k) in terms of measured data (ω1r, ω2r,4m). Now
measure the mass of the rubber weight and then carefully press it onto the LVDT
shaft. The best way is to spread the weight open, position it, and release it.

– Find the new resonant frequency, and record the mass of the rubber weight.

– Make a print-out and record the new resonant frequency.
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LAB REPORT QUESTIONS
Please answer the following questions concerning the mass-spring-dashpot part of the lab
within your lab report:

1. What is the spring constant k and damping coefficient c for your mass-spring-dashpot
setup as calculated from your ”ring-down” test?

2. Compare your experimental data to the simulated data for unforced motions. Comment
on any similarities or differences of interest. How did changing c and k each change
the simulation graph?

3. Make a plot of the response amplitude A(ω) using your 5 data points. Make a plot
of the phase-angle φ between x(t) and xs(t) versus the forcing frequency ω. Do these
plots match what you expect from Figure 1.6.

Please answer the following questions concerning the loudspeaker part of the lab within your
lab report:

1. Calculate k and m for the speaker, using the resonant frequencies and mass you mea-
sured in lab.

Appendix: Phase Diagram cross plot A phase diagram cross plot shows the forcing
function Fs(t) on the y-axis and the response function x(t) on the x-axis. The phase diagram
is a graphical representation of the relative phase of the forcing and motion. Each point on
the plot tells us both where we are in the drive cycle y(t) and on the response cycle x(t).
Time is a parameter that moves us around on the diagram. Since we are only interested in
the phase, we scale each term by its amplitude. Thus on our phase diagram we would plot
the parametric function

y(t) = cos(ωt) (1.30)

x(t) = cos(ωt− φ) (1.31)

When we force the system at ωn ' and the phase is φ = π
2

as shown before, we have:

y(t) = cos(ωt) (1.32)

x(t) = cos(ωt− π

2
) (1.33)

Using the following trigonometric identities:

cos2 ωt+ sin2 ωt = 1 (1.34)

cos(ωt− π

2
) = sinωt (1.35)



TAM 2030 Lab Manual 23

We can establish the following relationship for our phase plot:

x2(t) + y2(t) = 1 (1.36)

Hopefully you will recognize this equation as the parametric form of the equation
for a circle! Thus, when we force the system at its natural frequency which is very close to
its resonant frequency the phase diagram is a circle. It is more difficult to show that when
we forced the system below resonance the phase diagram will be an ellipse tilted to the right
and above resonance an ellipse tilted to the left.



Lab #2 - Two Degrees-of-Freedom Oscillator
Revised February 18, 2011

INTRODUCTION
This lab shows some properties of linear vibrating systems with two or more degrees-of-
freedom. The example is the system illustrated in Figure (2.1) which has two degrees-of-
freedom. That is, two is the minimum number of coordinates necessary to uniquely specify
the state of the system, in this case x1 and x2. You have already seen a one degree-of-freedom
vibrating system (the mass-spring-dashpot system) and should have some familiarity with
the ideas of natural frequency and resonance. These ideas still apply to an undamped linear
system with two or more degrees-of-freedom.

The new idea for many degrees-of-freedom systems is the concept of a mode (also called
a normal mode). Each normal mode consists of a mode shape and corresponding natural
frequency. The system will exhibit resonance if forced at one of its natural frequencies. The
number of modes a system has is equal to the number of degrees-of-freedom. Thus the system
below has two modes and two natural frequencies.

Normal modes are closely linked to the idea of an eigenvector, which you will learn about in
your Linear Algebra class. The frequency of oscillation is associated with the corresponding
eigenvalue.

k1 k2 k3
M1 M2

x1 x2

Figure 2.1: A simple two-degree-of-freedom system. The distances x1 and x2 are
measured relative to the static equilibrium position. In the experimental set up the
masses slide on a pressurized air bearing. In the drawing the wheels represent that
low-friction support.

The primary goals of this laboratory are for you to learn the concept of normal modes in a

24
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two degrees-of-freedom system – the simplest system which exhibits such modes. You will
learn this by experimentation and calculation.

PRE-LAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. Are the number of degrees of freedom of a system and the number of its normal modes
related? Explain.

2. How can a normal mode be recognized physically?

3. What do you expect to happen when you drive a system at one of its natural frequen-
cies?

4. Draw a free body diagram and derive the equations of motion for a three degrees-of-
freedom system, with three different masses, four different springs, and no forcing. Put
them in matrix form. Your result should resemble equation (2.4) except your matrix
will be 3x3 and you will have no f(t) term.

5. Substitute the normal mode solution (see (2.7)) into your matrix equation from (4)
to get an eigenvalue problem (see (2.5)). How would the eigenvalues and eigenvectors
of your matrix relate to the mode shapes and natural frequencies? (do the best you
can with this, using what you have learned in Linear Algebra, or look ahead if you are
interested).

6. Using MATLAB, find the eigenvalues and eigenvectors of the following matrix and
print the results (HINT: Type help eig for assistance).

[A] =

[
1 2
2 1

]
(2.1)

NORMAL MODES
A normal mode is a special type of vibration what occurs when all of the points in the system
are moving in simple harmonic motion. In addition, in a normal mode vibration all points
move with the same angular frequency ω and are exactly in-phase or exactly out of phase.
An example on the following page (See 2.2) illustrates a normal mode vibration for a two
degrees-of-freedom-system. Note:

• Both masses are moving in simple harmonic motion. This is indicative of a normal
mode vibration.

• The system has a period of T = 4π (sec), and thus an angular frequency of ω = 2π
T

= 1
2
.
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• In this normal mode vibration, when one mass is at its maximum displacement, the
other is at its minimum displacement - thus the masses are totally out of phase. There
is another normal mode vibration for this system where the masses are moving in
phase.

If we wanted to write out the equation of motion for this system, we would need a state
vector x(t) with two elements x1(t) and x2(t) - one to represent the position of each mass
as a function of time. That equation might look something like this for our example normal
mode vibration:

x(t) =

[
x1(t)
x2(t)

]
=

[
−2
2

]
sin (

1

2
t) (2.2)

Here, ω is the natural frequency of the normal mode (the same for all masses), and the vector

c =

[
−2
2

]
is its mode shape. In this example, when x1 is at it’s maximum displacement to

the left c1 = −2, x2 is at its maximum displacement to the right c2 = 2. Here both masses
have the same relative amplitude (|c1| = |c2|) though in general that is not the case, but are
completely out of phase since c1 has the opposite sign of c2. Thus the mode shape c tells
you the relative amplitude of motion and phase of each mass by the relative magnitude and
sign of its elements ci.
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M1 M2

x2 =

t = 0

t = π

t = 2π

t = 3π

t = 4π
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Figure 2.2: A normal mode vibration of a two-degree-of-freedom system. The upper
curve 5 cartoons are pictures of the system at various times. The plot shows the positions
of the two masses as a function of time. In this normal mode vibration the two masses
move exactly out of phase. That is, they move exactly in phase but in the opposite
directions.
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DERIVING THE EQUATIONS OF MOTION
We will now derive the equations of motion for a driven two degrees-of-freedom system. The
diagram and physical setup are shown in Figures 2.3 and 2.5.

k1 k2 k3
M1 M2

x1 x2
x3

Figure 2.3: Illustration of a coupled mass-spring system.

Here, rather than having the rightmost spring attached to a fixed support, we have it attached
to a sinusoidally driven support whose position is x3(t). Do not be fooled into thinking that
x3 counts as a degree of freedom - here we know how we are driving the system and so x3 is
a given. Look back over Lab 1 if you are confused about this point - we use the same trick
there to drive a one degree-of-freedom system. Now, we will draw the free-body diagram for
each mass and work out its equation of motion. To help get the signs right, assume that

M1

M2

k1 x1 k2 ( x2 - x1 )

k2 ( x2 - x1 ) k3 ( x3 - x2 )

Figure 2.4: The free-body diagrams for masses m1 and m2.

the displacements are all positive (i.e. to the right) with x1 < x2 < x3. This puts all of the
springs into tension relative to their equilibrium condition. The equations of motion for each
mass respectively are

k2 (x2 − x1)− k1x1 = m1ẍ1 (2.3a)

k3 (x3 − x2)− k2 (x2 − x1) = m2ẍ2 (2.3b)

We can rewrite this in matrix form as[
ẍ1

ẍ2

]
=

[
−k1+k2

m1

k2
m1

k2
m2

−k2+k3
m2

] [
x1

x2

]
+

[
0

k3x3(t)
m2

]
(2.4)

or as
ẍ = [A] x + f(t) (2.5)
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Where the matrix [A] contains information about the system response to forcing and the
vector f(t) contains information about the external forcing.

SOLVING THE EQUATIONS OF MOTION USING NORMAL MODES
This presentation uses linear algebra. You should be able to use this, at least as a recipe,
even if you have not yet learned eigenvectors in your math class.

To make matters easier, let’s consider the case where there is no external forcing, thus
f(t) = 0 and our equation of motion (2.5) reduces to:

ẍ = [A] x (2.6)

Now we’ll look for the normal mode solutions of the system. Remember - a normal mode
vibration is when both masses are moving in simple harmonic motion with the same angular
frequency ω, but potentially different relative amplitudes of motion ci. Before we gave an
example of a normal mode solution. Here is the general form of a normal mode solution for
a two degrees-of-freedom system:

x(t) =

[
x1(t)
x2(t)

]
=

[
c1
c2

]
(A cos (ωt) +B sin (ωt)) (2.7)

Once again, ω is the natural frequency of the mode which tells you the angular frequency
with which every mass vibrates, and c is the mode shape which tells you the phase and
relative amplitude of motion of each mass. If we plug in our ansatz (assumed form) for the
solution (2.7) into the equation of motion (2.6), we can solve for the natural frequency and
mode shape that will make the equation hold. Substituting (2.7) into (2.6) and canceling
out cosine and sin terms yields

− ω2c = [A] c (2.8)

It turns out that we have non-trivial solutions to (2.8) only for certain values of −ω2 and then
only when c is a multiple of a specific vector. Equation (2.8) is in the form of an ”eigenvalue
problem” from linear algebra, and these sets of solutions are called the ”eigenvalues” (λi) and
corresponding ”eigenvectors”(λ̂i) of the matrix [A]. These can easily be solved for by hand, or
by using a computer algebra program such as MATLAB or SciLab. For an n degrees-of-freedom
system there will be n such sets of ”eigenvalues” and ”eigenvectors”.

Thus, a n degrees-of-freedom system has n natural frequencies and n mode
shapes given by

ωi =
√
−λi; c = λ̂i (2.9)

where (λi) and (λ̂i) are the eigenvalues and eigenvectors (respectively) of the
matrix [A].

The general motion of the system can then be some combination of the normal modes. For
a 2-degrees-of-freedom system, it would look like this:

x(t) = c1(A1 cos (ω1t) +B1 sin (ω1t)) + c2(A2 cos (ω2t+ φ2) +B2 sin (ω2t+ φ2)) (2.10)
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Here the coefficients Ai and Bi would depend on the initial conditions and tell the amplitude
of vibration - note that the mode shape c only tells the relative amplitude of vibration of
each mass, not the overall magnitude of the system vibration. In the language of linear
algebra, we say that the normal modes span the space of possible solutions.

LABORATORY SET-UP

• Air Track
The lab set-up consist of an air-track hooked up to the lab’s air system, four or more
air track gliders, four plug-in springs, a mechanical oscillator (for external forcing), a
photogate timer, and a digital stopwatch. Please note that there are two somewhat
incompatible styles of glider which should only be used on the appropriate air tracks.
Each glider has a label listing its approximate mass (including spring) and the air
tracks on which it will work. You should remeasure the masses of the gliders
and springs at the start of your lab.

Figure 2.5: The laboratory set-up.

• Using the SciLab Software

To open SciLab click on its icon located on the desktop of your computer. This program
is a freeware program similar to MatLab and should look quite similar.

To find the eigenvalues and eigenvectors of a matrix you must use the function spec

(spec is the SCILAB command equivalent to MATLAB’s eig) as shown below. Input
the matrix [A], call ([V,D] = spec(A), one matrix has as columns the eigenvectors of
A the other has eigenvalues along the diagonal).

PROCEDURE

1. Play with the air track, gliders, and timer. Adjust the mechanical driver left or right
so that each spring, at equilibrium, has a total length of about 20 cm (the driver is
attached with a Velcro strap). Have the TA turn on the main air supply, if it is not
already on, and turn on the valve at the end of the air track.
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Figure 2.6: Screenshot of Scilab in use.

2. Measure the mass of each of your carts, and one of your springs (you may assume that
all springs have the same mass).

3. Next you will find the spring constant for your springs.

• Attach a small weight (40 to 50 grams) to one end of a spring and hold the other
end solidly against the tabletop.

• Pull the weight down a few centimeters and release it, and then measure the period

of oscillation (average over 10 periods). Use ω =
√

k
m

to find k. Remember to

include part of the spring as well as the plug mass in ”m” – half of the spring mass
is a decent approximation in this case. Also remember to convert your period T
to angular frequency ω.

• Repeat this calculation for each spring. Note: there will be variability in k from
spring to spring.

4. Choose two gliders of different sizes to work with, and set them up on the track.

• Using the measured masses and spring constants, calculate the mode shapes and
natural frequencies of the system - see (2.9). You may do the calculations by
hand or use SciLab on the computer. Remember to add the the mass of a plug-in
spring when calculating the cart mass.

.

5. The system is set into a normal mode oscillation by applying the appropriate initial
conditions. Choose one of your normal modes to use.
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• First, place the system in equilibrium. One simple method is to turn the air track
on and off repeatedly until the gliders stop moving.

• With the air off, displace m1 by an amount B∗c1cm, and displace m2 by B∗c2cm,

where

[
c1
c2

]
is the appropriate ”eigenvector” or mode shape, and B is an arbitrary

constant that sets the scale of the vibrations. Pick B large enough that neither
mass is displaced by less than 1 cm, but small enough that neither mass slides on
the track with the air off.

• Turn on the air track valve abruptly. The system should oscillate in the normal
mode which your chose.

• Measure the angular frequency (ω) of oscillation, and verify that it is approx-
imately equal to the natural frequency calculated in SciLab. The angular fre-
quency of the masses is found by timing a number of oscillations (i.e. 10) and
then converting the resulting period to ω (which has units of rad/sec). Digital
stopwatches are available at the air track.

• Note the phase difference between the two masses - are they in phase or out of
phase?

• Repeat the above procedure for the other normal mode.

6. Use some arbitrary initial conditions and set the system into a non-normal mode oscil-
lation. Observe the motion. (It should be difficult to see that it is the sum of normal
mode vibrations.)

7. Next we will attempt to obtain normal mode vibrations by driving the system at each
natural frequency - the driving frequency of oscillation is obtained by timing the motion
of the driving rod connected to the motor, using either a stopwatch or a photogate
timer.

• Choose one of the normal modes you have calculated. With the air off, set the
driving frequency to the corresponding natural frequency which you have calcu-
lated. Now turn on the air.

• Does the system resonate when you turn the air on? Be patient, it may take a
try or two to get resonance. Start the system from rest every time you change
the motor speed.

• When you get resonance, measure the frequency of oscillation and compare it to
the natural frequency which you calculated in SciLab. Note, as best you can,
the relative phase between the scotch yoke (driving) and the masses (response) at
resonance.

• Repeat this procedure for the other normal mode.

8. Drive the system at a frequency close to (but not equal to) one of the natural frequen-
cies. Is the amplitude of motion of either mass constant? Now drive the system at a
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frequency much higher than either natural frequency. Note the amplitude of motion of
each mass.

9. Set up the air track with three (approximately) equal masses and four (approximately)
equal springs. Adjust the mechanical oscillator to give an equilibrium spring length of
about 20 cm. Verify by observation that [1 −1.414 1]T is approximately a normal
mode for this system.

10. If you have time, find another normal mode for this system by observation/experimentation.
Find another still. If you are having difficulty finding modes experimentally, ask your
TA for help. Are there any more? Now use SciLab to find the normal modes and
natural frequencies.
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LAB REPORT QUESTIONS

1. List your mode shapes and natural frequencies calculated in (4). Did you obtain normal
mode oscillations using initial conditions based on your eigenvectors? How could you
tell? How close were the natural frequencies what you measured in (5) to the ones you
calculated in (4)? Was the phase correct?

2. Describe what you observed when you forced the system at the following 3 frequencies:

(a) forcing frequency = a natural frequency

(b) forcing frequency close to a natural frequency (Was the amplitude of the oscilla-
tions constant in this case? If not, how did it vary?)

(c) forcing frequency far from a natural frequency.

3. How many normal modes are there in the three equal mass system (theoretically) and
what are they? How many were you able to find experimentally and how did you
recognize them as normal modes? How do the modes you found compare with those
you calculated?

APPENDIX: SOLVING THE EQUATIONS OF MOTION VIA A CHANGE OF
BASIS
This section is only for people who have completed a linear algebra class.

So far we have discussed how normal modes are the simplest oscillatory functions from
which all motions of the two degrees-of-freedom system can be thought to be comprised
of. Mathematically, the normal modes y1 and y2 satisfy the equations of motion for simple
harmonic oscillators with natural frequencies ω1 and ω2 respectively.

ÿ1 + ω2
1y1 = 0 (2.11a)

ÿ2 + ω2
2y2 = 0 (2.11b)

Since the equations of motion for the normal modes are simple in terms of the y1, y2 coordi-
nates, it would be nice if we could find some transformation between the physical coordinates
x1, x2 and these new variables, i.e. x = f(y), so that we can solve the problem in terms of the
easier coordinates and then transform back into the original ones. We can accomplish this
mathematically by performing a change-of-basis from the original basis into the eigenbasis
of [A]. We define our new normal mode coordinates by

x = [S] y (2.12)

where the change-of-basis matrix [S] is defined as

[S] =
[
v1 v2

]
=

[
1 1
1 −1

]
(2.13)
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Plugging this change of variables into (2.5) we get the new equation

[S] ÿ = [A] [S] y + f (t) (2.14)

Left-multiplying both sides by [S−1] gives us

ÿ =
[
S−1

]
[A] [S] y +

[
S−1

]
f (t) = [Λ] y + f̃(t) (2.15)

where

[Λ] =

[
λ1 0
0 λ2

]
=

[
−k 0
0 −3k

]
(2.16)

Looking at the unforced case, f̃(t) = 0, we see from (2.15) that in the new normal mode
coordinates we now have two uncoupled second-order ODEs,

ÿ1 + ky1 = 0 (2.17a)

ÿ2 + 3ky2 = 0 (2.17b)

the solutions of which are
y1 = A1 cos

√
kt+B1 sin

√
kt (2.18a)

y2 = A2 cos
√

3kt+B2 sin
√

3kt (2.18b)

Using (2.12) we can now transform back into the original x1, x2 coordinates giving

x = [S] y =

[
y1 + y2

y1 − y2

]
=

v1 (A1 cos (ω1t) +B1 sin (ω1t)) + v2 (A2 cos (ω2t) +B2 sin (ω2t)) (2.19)

where we have substituted ω1 =
√
k and ω2 =

√
3k. This is the same result we found

before in (2.10), so you might not think much was gained by performing this change-of-basis.
However, the real advantage of this method appears when we consider the forced case.

APPENDIX: FORCED TWO-DEGREE-OF-FREEDOM SYSTEM
We now reconsider equation (2.15) when f̃(t) 6= 0.

ÿ = [Λ] y + f̃(t) (2.20)

The two resulting equations are

ÿ1 + ω2
1y1 =

kx3

2m1

(2.21a)

ÿ2 + ω2
2y2 = − kx3

2m1

(2.21b)

where x3(t) = F cosωt and ω is the forcing frequency. Solving both of these non-homogeneous
second-order ODEs yields

y1(t) = A1 cosω1t+B1 sinω1t−
Fk

2m1

(
1

ω2 − ω2
1

)
cosωt (2.22a)
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y2(t) = A2 cosω2t+B2 sinω2t+
Fk

2m1

(
1

ω2 − ω2
2

)
cosωt (2.22b)

Once again we use (2.12) to transform back into the original coordinates to get

x(t) = xc(t) +
Fk

2m1

[
1

ω2−ω2
2
− 1

ω2−ω2
1

− 1
ω2−ω2

2
− 1

ω2−ω2
1

]
cosωt (2.23)

where we have suppressed the homogeneous (or complementary) part of the solution. We
note that the particular solution becomes unbounded as the forcing frequency approaches
either ω = ω1 or ω = ω2. In other words, resonance occurs when we force the two degrees-of-
freedom system at one of the normal modes’ natural frequencies. (Obviously the oscillations
you will observe in the lab will not be unbounded as the lab set-up is not entirely frictionless.)

We now rewrite the particular solution as

xp (t) =
F

2

 1“
ω
ω1

”2
−3
− 1“

ω
ω1

”2
−1

− 1“
ω
ω1

”2
−3
− 1“

ω
ω1

”2
−1

 cosωt (2.24)

where we have written it in terms of the ratio of the forcing frequency to the smaller normal
mode frequency ω1. Figure 2.7 graphically shows how the amplitudes of the particular (or
steady-state) solutions change as the forcing frequency ω is varied.
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Figure 2.7: Plot of the response amplitude to forcing amplitude ratio for the forced
two degrees-of-freedom system.

The plot graphically illustrates what we found earlier – that when the forcing frequency is
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near the natural frequency of a normal mode, that mode resonates. As ω → ω1 the two
masses move in-phase and when ω → ω2 the masses move out-of-phase.



Lab #3 - Slider-Crank Lab
Revised March 19, 2012

INTRODUCTION
In this lab we look at the kinematics of some mechanisms which convert rotary motion into
oscillating linear motion and vice-versa. In kinematics we use geometry and calculus to
study motion without thinking about the forces which cause it. Mostly we will look at the
slider-crank. A slider-crank mechanism is often used in engines to convert the linear thrust of
pistons into the useful rotary motion of the drive-shaft. You will look at a lawn-mower engine
and at an adjustable slider-crank demonstration. You can also recall the rotary-to-straight
line mechanisms used in the spring-mass and normal-modes experiments.

Who cares? One application is for finding forces. Once an object’s acceleration, a, has been
determined through kinematics, linear momentum balance allows us to find the net force
acting on the object (F = ma).

PRELAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. What data will you collect from the lawn-mower engine and what will you simulate on
the computer?

2. Which parameter(s) can be adjusted on the adjustable slider-crank? Which are fixed?

3. Derive an equation relating the piston displacement x to the crankshaft speed, ω, time,
t, connecting rod length, L, and crank radius R. Do not assume L >> R.

SLIDER-CRANK KINEMATICS & INTERNAL COMBUSTION ENGINES
Figure 3.2 shows a sketch of the slider-crank mechanism. The point A is on the piston, line
AB (with length L) is the connecting rod, line BC (with length R) is the crank, and point
C is on the crankshaft. In an engine, a mixture of gasoline and air in the cylinder is ignited
in an exothermic (heat producing) reaction. As a result, the pressure in the cylinder rises,
forcing the piston out. The force transmitted through the connecting rod has a moment
about the center of the crankshaft, causing the shaft to rotate. An exhaust valve releases the
gas pressure once the piston is extended. Inertia of machinery (often a flywheel) connected
to the crankshaft (as well as forcing from other pistons in multi-cylinder engines) forces the
piston back up the cylinder. In a standard “four-cycle” engine the crankshaft makes another
full revolution before the next ignition (to bring in fresh air and then compress it before
ignition).

The kinematic constraint comes about from the geometry of the engine. If we know the
angle through which the crank arm has rotated, θ = ωt, then we can determine the piston
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Figure 3.1: A partially dissected and instrumented lawnmower engine. Instead of the
engine driving something else, in this lab the engine is turned by an electric motor. The
engine can also be turned by turning the knob at the lower-left of the right photo. The
motion of the top of the piston is measured with the LVDT and velocity transducer that
are clamped above the piston.

displacement, x. The crank arm R, connecting rod L, and piston displacement x, form a
triangle containing the angle θ = ωt. Using this triangle we can find our kinematic constraint
x = f(θ(t);R,L) with basic geometry. We can then take derivatives to find a relationship
between the piston’s velocity or acceleration and the crankshaft’s spin rate ω and engine
geometry R,L.

Notice that if the connecting rod L is much longer then the crank arm R then it will remain
close to parallel to the x-direction throughout the stroke. The x displacement of the piston
will then be the x-displacement of the end of the crank arm plus a fixed length L. The
former we know from circular motion, giving us a simple kinematic constraint:

x(t) ' Rcos(ωt) + L; (L >> R) (3.1a)

v(t) ' −Rωsin(ωt); (L >> R) (3.1b)

a(t) ' −Rω2cos(ωt); (L >> R) (3.1c)

If we do not assume L >> R then the kinematic constraint is a little bit more complicated.
You will work this out in the Pre-Lab.

In this experiment the crankshaft is driven by an electric motor at a more or less constant
rate, ω. This in turn, drives the piston. The same motion results as when the combustion
process takes place in the piston which pushes the crankshaft at a more or less constant rate.
As the crankshaft rotates the piston moves in the positive and negative x direction. The
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Figure 3.2: A diagram of the slider-crank system. In this cartoon the piston moves
sideways. In the experimental setup the piston moves vertically.

Figure 3.3: A hand turned and adjustable slider-crank system. Turning the crank at
the bottom is analogous to the turning of the crank-shaft in an engine. The knob at the
lower left of the right photo turns a screw which adjusts the length of the crank. Looking
down, the intersection of the long sliding rod (the engine cylinder) and the adjustable
screw is the location of the center of the crank shaft.

basic measurements in this lab are the position and velocity of the piston in the x direction
(which happens to be vertical in the laboratory). These measurements can be compared to
those calculated by hand (if you are energetic) or to the results of a computer simulation.
The simulation and the adjustable crank will allow you to see some of the effects of varying
the ratio of connecting rod length L to crank length R.
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LABORATORY SET-UP
A stripped-down lawn mower engine is driven by a variable-speed electric motor. Sensors
are installed on the engine’s piston to measure displacement and velocity. A data acquisi-
tion program is used to measure, analyze, and record the piston data. Look at the engine
and see how its various parts fit together. It may help to look at Figure 3.2 and at the
various demonstration slider-cranks present in the dynamics laboratory. Identify the piston,
connecting rod, and crankshaft (the connecting rod won’t be visible at your lab set-up, but
you can see it in the demonstration slider-cranks). The cylinder head has been removed,
exposing the top of the piston and allowing sensors to be attached.

The speed and direction of the electric motor are controlled by a knob and switch on the
motor controller. The numbers on the speed controller are arbitrary; do not write them
down as r.p.m. or radians per second (instead obtain angular velocity information from
the data acquisition program). Does the direction of motor rotation affect the slider-crank
kinematics?

The displacement and velocity data are measured using a LVDT and velocity transducer.
Acceleration is calculated by the computer through numerical differentiation of the velocity
data. This process magnifies any noise in the data. The computer also measures and displays
the angular frequency by timing successive crossings of the zero line and converting to radians
per second. The displacement, velocity, and acceleration are all plotted in LabView along
with their minimum and maximum values (see Figure 3.4). A simple simulation program lets
you compare your data to theoretical values and look at the effects of different slider-crank
geometries.

Please follow safety precautions. The electric motor driving the lawn mower engine
is powerful enough to cause serious injury if you get in its way. Keep long hair and loose
clothing well away from the belt and pulleys at the back of the engine. If you need to touch
the pulley, piston, or LVDT for some reason, check first that the electric motor power is off
and that the speed control is set to zero. Make sure your lab partner knows what you are
doing.

Using the LabView software

1. To run the software, open up the Engrd203Lab account and then open the folder Crank
on the desktop. Open the program Crank. As soon as the program is running, it will
ask you to move the piston to the top of its travel. Press Ready after you have done
this and wait until the next pop-up comes before moving the piston again. Then
once prompted move the piston to the bottom of its travel and press Ready again and
allow the computer a few seconds to calibrate. This calibration procedure allows the
computer to convert the output of the LVDT (in volts) into displacement (in meters).
Do this carefully. It may help to rock the pulley back and forth slightly as you try to
home in on the highest (or lowest) piston position. If you make a mistake, you can
redo the procedure by clicking on the SET-UP button. The Crank program has a box
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for the initials of your lab group. Click on the box with the mouse, type your initials,
and then press the Enter key, not the Return key. Your initials will then appear on
your plots, making it easier to identify them as they emerge from the laser printer.

2. When the data acquisition “switch” on the screen is turned on, the computer acquires
and displays a new set of data every ten seconds or so. Allow ten or twenty seconds for
the data plot to stabilize after changing the motor speed. If you have a plot that you
want to keep, turn the data acquisition off. Also turn the motor off promptly when
you are not acquiring data to save wear and tear on the lab set-ups and on the nerves
of other students.

The legend and scale factors for the plots are displayed in the top left corner. Multiply
the y-axis reading (between -1 and 1) by the appropriate scale factor to obtain the
actual measured value, in the units given in the legend. For example, if the velocity
plot has a y-value of 0.5 at a particular time, and a scale factor of 4 m/s, the measured
velocity at that time would then be 0.5*4 m/s = 2 m/s.

3. The SAVE button stores your data on the hard disk. The file created in this way can
only be used by the simulation program (CrankSim2 ).

4. To exit from the program, click the “close” box in the top right corner of the window.
To leave LabView completely, at any time, pull down the File menu and select Quit.
If the program tells you that “Quitting now will stop all active VIs” select OK.

Figure 3.4: Using the LabView Crank program.
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PROCEDURE
You will record and analyze x(t), v(t), and a(t) while spinning the lawn mower engine at
various speeds.

1. Check that the electric motor power switch is off, the speed control knob is at zero,
and the data acquisition is on. Twist the pulley back and forth by hand and look at
the resulting plot of piston position, velocity, and acceleration. If the piston moves
upwards, in what direction does the plotted curve move? (i.e. how is the coordinate
system defined for our system?) You will need to wait several seconds for the data to
be displayed.

2. Put a penny on top of the piston, turn on the motor, and adjust the motor speed so
that the penny just barely starts to bounce on top of the piston. You should be able
to hear a faint clinking sound. Wait until you have a good graph of the data and then
turn off first the data acquisition and then the motor.

Record the angular velocity and the minimum and maximum values for the displace-
ment, the velocity, and the acceleration in a table. Save one set of curves. There is
no need to print up your data, you will be able to examine it in CrankSim2. Check
that the displacement plot makes sense, given that the crank length is known to be
0.0222 m. Check that the acceleration data makes sense - what should the acceleration
be when the penny begins to leave the top of the piston? Given the coordinate system
for our engine should that be the maximum or minimum value of the acceleration for
this data?

3. Remove the penny and repeat the procedure above for at least four additional speeds.
Try to get as wide a variety of speeds as possible. At very slow speeds the motor does
not turn smoothly and the data is drowned out by noise. When using very high speeds,
try to acquire data quickly, turn off the data acquisition “switch”, and shut the motor
off immediately. Record your data in a table (including the penny data).

You will now simulate the slider-crank mechanism on the computer. The CrankSim2 program
(Figure 3.5) will be used to compare the theoretical values for displacement, velocity, and
acceleration with the values measured above. The effects of changing the crank length R,
connecting rod length L, and angular velocity ω of the crankshaft may also be observed.

1. To start up the simulation program double-click on CrankSim2 in the Crank Lab folder.
If you want to compare your simulation to your most recently saved data, turn the
measured-data “switch” on; otherwise, turn it off to eliminate the clutter of all the
extra graphs. Described below are the parameters you can change in the simulation:

• R is the crank length in meters.

• L is the connecting rod length in meters.
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Figure 3.5: Using the LabView CrankSim2 program.

• ω is the angular velocity of the drive shaft in radians per second.

As with the data acquisition program, the maximum and minimum values are displayed.
These are the simulation maxima and minima. Note that the displacement shown is
the value x in Figure 3.2 minus the connecting rod length L. This makes it more
easily comparable to the measured data. The x = 0 point is thus defined to be halfway
between the piston’s top and bottom positions instead of at the center of the crankshaft.

2. Set up the simulation with the crank length and connecting rod length of the lawn
mower engine. Enter the angular velocity from the saved penny data and turn the
Measured Data switch on. Make a printout of your data.

3. Switch off the measured-data curve. Now simulate slider-cranks with different geome-
tries by varying the crank length R and the connecting rod length L. Observe and
record velocities and accelerations for the following cases. Please make print-outs
to support your observations and conclusions.

• L is much greater than R - i.e. L of 10 m, and R of 0.0223 m

• R is increased, but still much smaller than L - i.e. L of 10 m and R of 0.223 m

• L is decreased, but still much larger than R - i.e. L of 1 m and R of 0.0223 m

• R and L equal the values for the lawn mower engine - i.e. L of 0.089 m and R of
0.0223
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• L is only slightly greater than R - i.e. L of 0.0224 m, and R of 0.0223 m What
happens physically when R is greater than L?

Next you will work with the adjustable slider-crank. This device allows you to adjust the
crank length to connecting rod ratio R

L
from zero to slightly more than one, using an ad-

justment knob which changes the effective crank length. A handle is located underneath to
rotate the apparatus by hand. Please be gentle with it! Large forces can be generated
with even a small input torque when the ratio is close to 1. If you see things bending, back
off. When turning the hand crank, do it slowly. You can also push and pull on the masses
at the end of the “piston” to look at the way it converts linear to rotary motion. Be sure you
can identify the crank, connecting rod, and piston on the adjustable crank apparatus as first
appearances may be misleading. Here is a hint: the long thin rod with a weight on each end
is the piston. Compare the shapes of the curves you saw in the simulation above to what
you observe and feel with the adjustable crank.

The slider-crank is just one of many devices that have been invented to convert linear to
rotational motion or vice-versa. The scotch yoke, the cam, and the four-bar linkage are some
others.

1. Look over the scotch yoke mechanism, which is driven by an electric motor and gearbox.
Try it at different speeds and (with the motor off) push and pull on its various parts.
Rotate the pulley by hand while watching the motion of the rod. Take measurements
or make a drawing if you wish. Be prepared to find a kinematical equation relating
disk rotation to yoke displacement and think about the advantages and disadvantages
of the scotch yoke relative to the slider-crank.

2. Cam-and-follower mechanisms are a particularly versatile way to convert rotary to
linear motion because you can select the type of motion you want by changing the
shape of the cam. For example, cams are used in an internal combustion engine to
open and close the intake and exhaust valves. Cam shapes are chosen to optimize fuel
economy, power, and emission control. The cam in this lab is a simple eccentric disk -
i.e. a circle rotating about a point other than its center. Try out the cam mechanism
by turning it with your hand. Feel the output from the follower as the cam is rotated
and then try rotating the cam by pushing and pulling on the follower.



TAM 2030 Lab Manual 46

LAB REPORT QUESTIONS

1. It is claimed that the peak vertical velocity scales with the angular velocity. Does your
data support this claim? (A graph would be nice here).

2. It is claimed that the peak acceleration is proportional to the square of the angular
velocity. Does your data support this claim? (A graph would be nice here).

3. How well does the acceleration you measured with the penny correspond to what you
would expect? What do you think are plausible sources of your error here?

4. From your experimental data, what is the crankshaft angular velocity for which an ant
standing on the top of the piston would start to need sticky feet in order to not lose
contact with the piston? Explain.

5. Using your simulation data, how does the length of the connecting rod, relative to the
crank length, affect the shape of the displacement, velocity, and acceleration curves?

6. The lawn mower engine piston weighs 0.175 kg. Suppose that the net force on the
piston should not to exceed 10 kN. Using the equation you found in Part 1 of the
lab report, what is the maximum crankshaft angular velocity for which the engine can
safely run.

7. Argue for or against the following point: for all slider-cranks the peak velocity occurs
exactly at the midpoint of the stroke. Back up your arguments with either your print-
outs for Part 3 of the procedure, or any other appropriate analysis and logic. Make
sure you consider the case when (L ' R).

8. What are the pluses and minuses of the various mechanisms that convert rotary motion
to straight line motion that you have seen in these labs?



Lab #4 - Gyroscope
Revised April 8, 2011

Introduction
A gyroscope is an axisymmetric rigid object that spins about its symmetry axis. Often it
has a large angular velocity, ω, about this axis. Some examples are a flywheel, the front
wheel of a bicycle or motor-cycle, a symmetric top, a football, a navigational gyroscope, and
the spinning Earth. The governing equations are 3-dimensional, non-linear and often hard
(or impossible) to solve. In this laboratory you will experiment with some simple motions
of a simple gyroscope. You should get some feel for the relation between applied moment,
angular momentum, and rate of change of angular momentum.

PRELAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. What is a gyroscope?

2. Where is the fixed point of the lab gyroscope?

3. How will moments (torques) be applied to the lab gyroscope?

4. For a fixed applied moment, will increasing a gyroscope’s spin rate, ω, increase or
decrease its precession rate, φ̇.

The gyroscope
Our experiment uses a rotating sphere mounted on an air bearing (see Figure 4.5) so that
the center of the sphere remains fixed in space (or at least fixed relative to the laboratory
room). That is, this gyroscope gyroscope with one fixed point.

Figure 4.1: A demonstration gyroscope mounted on gymbols. The disk with the spiral
marked on it is free to rotate in three dimensions because it is free to rotate about the
three gymbol bearings: one with a vertical axis, one with a horizontal axis and one with
an axis normal to the disk.

47



TAM 2030 Lab Manual 48

Figure 4.2: The ball with the stick (left) is our gyro. It sits in a spherical bowl (center)
into which air is pumped (through the tiny hole at bottom of the bowl). Thus it is free
to rotate about its center with very low friction. You can push the stick or add weights
to it. A diagram of the ball is in Figure 4.5.

As the gyroscope rotates about its spin axis it is basically stable. That is, the spin axis tends
to keep pointing in the same direction in space. As you should see in the experiment, the
larger the spin rate, the larger the applied moment needed to change the direction of the spin
axis. When a moment is applied to a gyroscope, the spin axis will itself rotate about a new
axis which is perpendicular to both the spin axis and to the axis of the applied moment. This
motion of the spin axis is called precession, and comes from Angular Momentum Balance:

∑−−→
M/o =

−̇→
H/o

Dynamics of a symmetric top
A common gyroscope with one fixed point which is analogous to our lab setup is a symmetric
top acting under the influence of gravity. Imagine that the bottom tip of the top can’t move.
We’ll label that point O, its the fixed point because it’s location is fixed in space (see Figure
(4.3)). Every other point on top will move as the top spins and wobbles (i.e. precesses), so
there is only one fixed point. In this section, we will motivate an equation governing the
precession rate. A detailed derivation is beyond what we intend to cover here.

Recall that the direction of the angular velocity vector gives the axis about which we are
spinning, and the magnitude of the angular velocity vector gives the spin rate. Note from
Figure (4.3) that ω points in the same direction as rcm/o, because the top is spinning around
its symmetry axis. Now we’re ready to ’solve’ the equations of motion. Since we don’t want
to solve for the reaction force, R at the point of contact O, we’ll use angular momentum
balance about that point.

∑
M/o = Ḣ/o (4.1)
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Figure 4.3: A symmetric top with one fixed point at O. Our gyro is an example of a
symmetric top. Usually a top has the center of mass notably distant from the center of
rotation. Whereas for our ball gyro, the fixed point and center of mass are close.

Calculating the left hand side of (4.1) is easy since there is just one moment, the one due to
gravity:

M/o = rcm/o ×−mgk̂ (4.2)

As for the right hand side of (4.1), we’ll start with just finding the angular momentum, H/o,

and then take one derivative to get Ḣ/o. As you know from class (see section 14.2 of your
book), for a planar rigid object the angular momentum has two components: the first one
due to the translation of the center of mass, and the second due to rotations about the center
of mass.

H/o = rcm/o ×mtotvcm + Izzω (4.3)

Recall that a gyroscope has a very large spin rate about a symmetry axis and so most of
the angular momentum comes from rotation. This means that second term in (4.3) will be
much larger than the first term. We’ll assume that the spin rate ω is so large that we can
simply ignore the first term completely, giving the following simplification:

H/o ' Izzω (4.4)
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Thus H/o is pointing in the same direction as ω. Now we simply take one derivative to find
the rate of change of angular momentum. Note that Izz is simply a geometric constant that
tells us how hard it is to rotate our gyroscope, and is unaffected by taking a derivative:

Ḣ/o ' Izzω̇ (4.5)

Plugging Ḣ/o from (4.5) into the equation for angular momentum balance (4.1) we get an
equation for ω̇. Then we can can plug in for our applied moment (4.2):

ω̇ =
M/o

Izz
⇒ ω̇ =

−mg
Izz

(rcm/o × k̂) (4.6)

Remember that ω points along the the symmetry axis, so this equation tells us how the
direction in which the gyroscope points (ω̂) changes in time, and will hopefully lead us to
the precession rate. We know that the cross product of two vectors is perpendicular to both
vectors. Since ω̇ is perpendicular to k̂, it must lie in the xy-plane. Since ω̇ is perpendicular
to rcm/o it must also be perpendicular to ω (both rcm/o and ω point along the symmetry
axis).

Figure 4.4: A top view of our gyroscope and an analogy to circular motion.

Let’s think about that: the derivative of a vector d
dt
−→ω is always perpendicular to the original

vector −→ω . This should remind us of circular motion, where the velocity d
dt
−→r is always

perpendicular to the position −→r ! By using what we know from circular motion, we’ll posit
a solution for how the spin axis ω changes in time. Be careful about notation! In circular
motion θ and ω are typically used to denote the angle that the position vector makes w.r.t.
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the positive x-axis, and the rate of change of that angle, respectively. However, here ω is
the spin rate of the top about it’s symmetry axis, so we’ll use φ to denote the angle that
ω makes with the positive x-axis (see Figure 4.4), i.e. the angle through which the top has
precessed:

′v = θ̇r′ ⇒ |ṙ| = φ̇|r| ⇒ |ω̇| = φ̇|ω| (4.7)

Let’s assume that the gyroscope is tilted down so far that it’s axis lies in the xy-plane. Then
we can easily find the magnitude of the applied moment. Plugging in (4.6)for ω̇ and rcmmg
for |M/o| we get:

rcmmg

Izz
= φ̇ω (4.8)

Again, note that φ̇ is the precession rate - the rate at which the spin axis is rotating, and ω
is the spin rate - the rate at which the top is spinning about it’s symmetry axis.

Thus for a gyroscope (or rotor) whose spin axis is orthogonal to the applied
torque we find that the product of the moment of inertia, spin rate, and pre-
cession rate is equal to the applied torque. In your lab report you will verify this
fact.

LABORATORY SET-UP
Our lab gyroscope is a 4” diameter steel ball on an air bearing (see Figure 4.5). On one side
of the ball a rod is mounted in order to spin the top and apply moments to it. This side of
the ball has also been bored out so that the rod side is lighter and the center of mass can
be adjusted to either side of the center of the sphere by sliding a balance weight in or out.
The balance weight is black, with reflective tape, to make rotation rate measurements easier.
The sphere is supported in a spherical cup into which high pressure air is supplied so that
the sphere is actually supported by a thin layer of air (similar to the air track).

To experimentally measure the spin rate ω of the gyroscope you will use a tachometer
(measures in rotations per minute, or rpm). To measure the precession rate φ̇ you will use
a stop-watch. We will apply a net moment about the fixed point by adding a weight of a
known mass to the rod. We can use a diagram of our gyroscope (see Figure 4.5) to estimate
the torque-arm and thus calculate the net applied moment.

As a final example of the gyroscopic effect you will play around with a bicycle wheel and
rotating platform for hands-on experience and a demonstration of the conservation of angular
momentum.
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PROCEDURE

1. Turn on the air source.

2. Place the black balance weight on the rod so that if the sphere is released with no spin
the rod does not tend to fall down or pop upright from a horizontal position. Note
that this is easier said than done, so try to get it as close to motionless as possible.
Where is the center of mass of the system (sphere, rod, and disk) after the gyroscope
is balanced? What effect does gravity have on the motion of the balanced gyroscope? If
you don’t perfectly balance the gyroscope it will result in an error in the calculation of
what quantity?

3. Without spinning the ball, point the rod in some particular direction (up, or towards
the door, for example). Carefully release the rod and watch it for several seconds.
Does it keep pointing in the same direction? Touch the rod lightly with a small strip
of paper. How much force is required to change the orientation of the rod? In which
direction does the rod move? Rotate the table underneath the air bearing. Does the
rod move?

4. Get the ball spinning and repeat step #3. One good way to do this is to roll the rod
between your hands. Stop any wobbling motion by holding the tip lightly and briefly.
Avoid touching the ball itself. Do not allow the rod to touch the base and do
not jar the ball while it is spinning. What is the effect of spin on the gyroscope
motion? Why are navigation gyroscopes set spinning?

5. While the ball is spinning, apply forces to the end of the rod using one of the pieces
of Teflon on a string. The ball should continue to rotate freely as you apply the force
because of the low friction of the Teflon. Gently move the end of the rod (keep the rod
from touching the bearing cup, or the rod may spin wildly).

6. For a more quantitative look at the motion of a gyroscope:

(a) Add another weight to the rod so that the gyroscope is no longer balanced. Record
its mass and position on the rod for use in calculations later (see Figure 4.5).

(b) Get the ball spinning, but not wobbling, with the rod in the plane of the table.
Now measure the procession rate of the top with a stopwatch and spin rate with
a tachometer. You can use the 3 support screws on the air bearing to measure
the angle through which the top processes, each being seperated by one-third
of a revolution. For the spin rate, measure it at the middle of your period of
observation, or measure it at the beginning and end and then average.

(c) Repeat the procedure for at least two additional spin rates. Try to use a wide
range of spin rates; e.g., 200, 400, and 600 r.p.m.
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7. Remove the weight and repeat step #6 with at least two more weights for a total of at
least three different weights and three different spin rates per weight. The spin rates
need not be the same as the ones you used before, but they should cover a similarly
wide range of r.p.m.

8. Turn off the air source and clean up your lab station.

9. Hold the bicycle while someone else gets it spinning. Twist it different ways. Hold
your hands level and turn your body in a circle. How do the forces you apply depend
on the direction you twist the axle and on the rotation speed and sense?

10. Now stand on the rotatable platform. Hold the bike wheel so that it’s axis is vertical,
and get the wheel spinning by yourself - this is a bit tricky, particularly with the larger
wheel. Note the speed and direction of your rotation.
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LAB REPORT QUESTIONS

1. Suppose that the rod on one spinning air gyroscope is pointed north along the earth’s
axis of rotation. In Ithaca, that would mean at an angle of 42.5 degrees from the
horizontal. A second air gyroscope is pointed due east, with its rod horizontal. Assume
that the gyroscope is perfectly balanced and that air friction is negligible. How does
the orientation of each spinning gyroscope change over a period of several hours?

2. Use your recorded data from parts 6 and 7 of the lab procedure for the following
questions.

(a) Plot the precessional period τ vs. the spin rate ω for your different applied torques.
Make sure to use a different color and/or symbol for each data point.

(b) From your plot what is the relationship between the precessional period τ and
the spin rate ω?

(c) Using your data, show that for a fixed torque, the product of the precessional
rate φ̇ and the spin rate ω is a constant.

(d) The torque should be proportional to the product of the spin rate and the preces-
sion rate. Find the constant of proportionality and plot the relationship between
torque and the product of spin rate and precession rate (i.e. Mo vs. φ̇ω).

(e) In (d) you found a simple formula relating torque, spin rate and precession rate.
What is the meaning of and common name for the numerical constant in the
formula? You might want to consider what units it has.

3. Explain why when you stand on the platform with a spinning bicycle wheel and rotate
the wheel, the platform begins to rotate.
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Figure 4.5: A diagram of the lab gyroscope shown in the photographs of Figure 4.2
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