1.3.2  Forced  HarmonicVibrations
Next, we now solve Eq. 4 for the case of a forced harmonic vibration 
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 in the above denote the displacement amplitude of the support and angular frequency of  forcing motion, respectively.  The equation of motion now becomes
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where the dot just above x and 
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denote the derivative with respect to time and force amplitude of the support position, respectively.  From the theory of ordinary differential equation, we can write the solution to Eq. 23 as the sum of a complimentary (also referred to as the homogeneous) solution
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, which transiently dies out to zero, and a particular (or steady-state) solution 
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In this lab we will be only interested in the steady state solution after the transient dies out.  We take the general solution, which can then be assumed to be
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where X is the amplitude of oscillation of the mass position and 
[image: image11.wmf]f

 is the phase of the displacement with respect to the exciting force.  Recalling that in a harmonic motion the phases of the velocity and acceleration are ahead of the displacement by 90( and 180(, respectively and referring to Figure 4(b), we can easily obtain
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where uses are made of 
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  in Eq. 27 to make it single-valued.  Inspection of Eq. 27 indicates that 
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     Figure 4. (a) Viscously damped system with harmonic excitation    (b) Vector relationship 
     for forced vibration with damping 

     When an excitation frequency is equal to the natural frequency, i.e., 
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The resonance frequency 
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 that maximizes the amplitude A can be found by setting the derivative of the amplitude A with respect to 
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 to be zero in Eq. 26.





[image: image35.wmf](

)

2

1

2

2

1

0

V

w

w

w

w

w

-

=

Þ

=

=

n

r

r

d

dX

.



     (29)
The above equation shows that when the damping factor 
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.  This is usually the case in the lab. However, the resonance frequency is substantially lower than the natural frequency if 
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1.3.3 Phase Diagrams --- Loci of 
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     One of the clear ways of observing phase angles is to plot the normalized displacements 
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with time t as a parameter, because the shape of these plots is strongly dependent on the phase angle
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.  As you may recall, this is analogous to the Lissajous figures shown in the oscilloscope screen in electrical engineering. 

     Substituting 
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 in Eq. 23, and using Eq. 26 together with the following identities (refer to Figure 4(b))
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Eq. 23 is expressed in terms of u, v and the phase 
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which represents in general the equations of conic sections. In the special case of 
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, Eq. 30 becomes a unit circle. Recalling analytic geometry on conic sections, it is shown that the discriminant D =
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 represents an ellipse, whose major and minor axes are rotated from the u and v axes, which are conventionally set to be horizontal and vertical, respectively.  The rotation angle 
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Figure 5. Phase Diagrams --- Loci of  
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     We choose the 
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which represents a standard form of an ellipse, the eccentricity and shape of which depend strongly on the phase angle 
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     We consider five cases of different phase values in Eq. 31.
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      The same conclusions can be drawn when the u and v axes are rotated by 
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. All these cases are illustrated in Figure 5.  Thus, the phase diagram indicates a strong measure of phase difference between the harmonic excitation and mass motion.
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