
Lab #1 - One Degree-of-Freedom Oscillator
Last Updated: March 4, 2009

INTRODUCTION
The mass-spring-dashpot is the prototype of all vibrating or oscillating systems. With vary-
ing degrees of approximation, car suspensions, violin strings, buildings responding to earth-
quakes, earthquake faults themselves, and vibrating machines are modeled as mass-spring-
dashpot systems. This laboratory is aimed at demonstrating some of the basic concepts
of the mass-spring-dashpot system. In this lab you will collect data on the motion of two
different mass-spring-dashpot systems, and then use computer generated solutions of the
equations of motion to determine system parameters. Phrases connected with some of the
key ideas are: natural frequency, resonance, forcing function, and frequency response.

PRELAB QUESTIONS
Read through the laboratory instructions and then answer the following questions:

1. Find the general solution to (1.4) if the forcing term is given by Fs(t) = 0 and there is
no damping (c =0), i.e. solve mẍ+kx = 0. Note: Use pencil and paper, not MATLAB.

2. Repeat #1, this time numerically integrating the equation using Matlab. Choose m =
1, k = 5, and integrate over the time period 0 ≤ t ≤ 10. Assume the mass starts from
rest with an initial displacement of x(0) = 1. What is the period of the oscillation?
Turn in a plot and an m-file of your code.

3. Define in your own words: natural frequency, damped frequency, damping coefficient,
underdamped, overdamped, resonance, and phase-shift.

4. Suppose that you are measuring two sinusoidal waveforms of equal amplitude, x1(t)
and x2(t), with phase difference of π

2
. What would be the shape of the curve if you

plotted x1(t) vs x2(t)? What if the phase difference is zero? π? If you have trouble
visualizing the situation, try calculating a few points and plotting them.

5. Find the period T , support amplitude of motion Asupport, mass amplitude of motion
Aresponse, and phase difference φ for the following two curves:
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Figure 1.1: Sample lab data
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THE MASS-SPRING-DASHPOT SYSTEM
The picture in Figure 1.2a shows a mathematical model of the laboratory mass-spring-
dashpot, or one degree-of-freedom oscillator. A mass is supported by a spring and is con-
strained to move in the ê

x
-direction. In this lab you will record the vertical motion of the

mass both with a fixed support (free vibration) and with the support oscillating vertically
(forced vibration). The spring is modeled as linear, i.e. the force it applies is proportional to
its increase in length. The damping is also modeled as linear, i.e. the force transmitted by
the dashpot is proportional to the rate at which it is being stretched. The vertical displace-
ment of the mass is x(t) and the vertical displacement of the support is xs(t) (See Figure
1.2).

Neglecting gravity (Why can we neglect it? ), the mass has two forces acting on it in the
ê
x
-direction:

Fsp(t) = The spring force = k (xs − x) (1.1a)

Fd(t) = The dashpot force = cẋ (1.1b)

The system is a one degree-of-freedom system because a single coordinate is sufficient to
describe the complete state of the system. (The support displacement xs(t) does not count
as a degree of freedom since it is specified by the motor position and is thus considered to
be a given.) From Newton’s second law the equation of motion for this system is

Figure 1.2: Model and free body diagram of the mass-spring-dashpot system.

{

∑

F
}

· ê
x
⇒ −Fd + Fsp = mẍ (1.2)

and plugging in for spring and dashpot terms we get

mẍ = −cẋ + kxs − kx (1.3)
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and rearranging terms we get the equation of motion

mẍ + cẋ + kx = Fs(t) with Fs(t) = kxs(t) (1.4)

where Fs(t) is the (presumably specified)“forcing function”due to the motion of the support.
In this case the forcing function is the amount the spring is additionally stretched due the
support motion multiplied by the spring stiffness.

In the first part of this experiment you will attempt to determine the value of the viscous
damping constant c by measuring the rate at which oscillations decay towards zero, an
experiment called a ”ring-down test”. In addition, the system response to both free vibration
and forced vibration will be observed experimentally and through computer simulation.

A REAL-WORLD EXAMPLE: THE LOUDSPEAKER
A speaker, similar to the ones used in many home and auto speaker systems, is one of many
devices which may be conveniently modeled as a one degree-of-freedom mass-spring-dashpot
system. The one you will observe in this lab is typical (see Figure 1.3). It has a plastic cone
supported at the edges by a roll of plastic foam (the surround), and guided at the center by
a cloth bellows (the spider). It has a large magnet structure and (not visible from outside) a
coil of wire attached to the point of the cone which can slide up and down inside the magnet.
When you turn on your stereo, it forces a current through the coil in time with the music,
causing the coil to alternately repel and attract the magnet pushing the cone up and down
in its housing. This results in the vibration of the cone which you hear as sound.

cone

mounting

�ange

spider

voice coil

frame
electrical

connections

magnet

structure

foam surround

( suspension )

Figure 1.3: Cross-sectional view of a speaker.

A simplistic view is that the cone and coil provide inertia (mẍ), the foam surround and
clothe bellows act as a spring (kx), viscous damping comes from the cone moving through
the air (cẋ), and the magnet provides external forcing Fs(t). Putting it all together we get
the familiar equation of motion of a driven mass-spring-dashpot system:

mẍ + cẋ + kx = Fs(t) (1.5)
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In the second part of the lab, you will non-destructively measure the weight of the speaker
coil and cone by examining the speakers dynamics.

SOLVING THE EQUATIONS OF MOTION

Recall that the equation of motion is given by:

mẍ + cẋ + kx = Fs(t) (1.6)

Our goal is to find the motion of the mass, x(t), for a given forcing function Fs(t). Two cases
are of particular interest:

Fs(t) = 0 (unforced or ’free’ vibration) (1.7)

Fs(t) = kxs(t) = kAsupport cos ωt (sinusoidal forcing) (1.8)

Equation (1.6) is a linear, second order ordinary differential equation with constant coeffi-
cients. The solution with Fs(t) given either by (1.7) (homogeneous) or (1.8) (inhomogeneous)
is discussed in every freshman or sophomore math text. Briefly, the solution can be found
as follows:

From ordinary differential equation theory we can write the general solution to (1.6) as the
sum of a complimentary (also referred to as the transient or homogeneous) solution xc(t)
and a particular solution, xp(t).

x(t) = xc(t) + xp(t) (1.9)

The homogeneous portion xc(t) is the solution to (1.8) with Fs(t) = 0 (and appropriate
initial conditions). In this case, xc(t) goes to zero as t → ∞ because any initial motion of
the mass will eventual be damped out if there is no external forcing. Thus the particular
solution xp(t) is what is left as t → ∞ for any initial condition and includes the information
about forcing.

In this section we are concerned with unforced vibrations, so we have x(t) = xc(t). We will
deal with xp(t) later. As you may have seen in other courses, we posit the solution to be
of the form xc(t) = Aeλt (if this process seems unfamiliar to you, please review differential
equations). When we insert this into (1.5), we obtain the characteristic equation,

mλ2 + cλ + k = 0 (1.10)

which has roots given by the quadratic equation as,

λ1,2 =
−c ±

√
c2 − 4mk

2m
(1.11)
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Now, depending on the values of the parameters c,m, and k (specifically the discriminant
c2 − 4mk), there are three situations encountered, and thus three different behaviors of the
displacement solution xc(t). These situations are:

• c2 − 4mk > 0: This produces two distinct real roots λ1 and λ2, and the solution is :

xc(t) = C1e
λ1t + C2e

λ2t (1.12)

This sytem is called overdamped– the system will slowly settle down to xc(t) = 0 with
no oscillations.

• c2 − 4mk = 0: This produces a repeated real root λ1 = −c/2m and the solution is:

xc(t) = C1e
λ1t + C2te

λ1t (1.13)

This system is called critically damped - the system will quickly settle down to xc(t) = 0
with no oscillations. Why is the decay more rapid than the overdamped case?

• c2 − 4mk < 0: This produces a complex conjugate pair α ± iβ with α < 0 and the
solution is:

xc(t) = eαt [C1 cos(βt) + C2 sin(βt)] (1.14)

This sytem is called underdamped–the mass will oscillate, but the oscillations will
decay with time according to the exponential factor (see Figure 1.4). This is the most
common situation - most real world systems are underdamped.

Naturally, the constants C1 and C2 will be determined from initial conditions for the speed
and displacement of the mass.

A useful quantity (you will see why), termed the natural frequency ωn is defined as,

ωn =

√

k

m
(1.15)

As you will show in prelab question (1), this is the system’s frequency of free vibration when
there is no damping (c = 0). Additionally, instead of employing the discriminant c2 − 4mk
to describe the state of the system (over/under/critically damped) , it is convenient to define
a damping factor, ζ, as

ζ =
c

2
√

mk
(1.16)

ζ is defined in such a way that

• ζ > 1 is an overdamped system
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Figure 1.4: Typical solutions for underdamped, overdamped, and critically damped
cases. Note that for overdamped and critically damped systems there are no oscillations.

• ζ = 1 is a critically damped system

• ζ < 1 is an underdamped system

Thus, ζ is a non-dimensional measure of the amount of damping in the system. In this lab,
we will assume that both the mass-spring-dashpot system and the speaker are
underdamped. In fact we will assume ζ ≪ 1!

Using these definitions, we can restate the quadratic equation we found above in terms of
the new variables, which yields (after some algebra)

λ1,2 = −ζωn ± ωn

√

ζ2 − 1 (1.17)

Since we are studying the underdamped system in the lab, we take ζ < 1 and find that the
roots are

λ1,2 = −ζωn ± iωd (1.18)

where we defined the damped natural frequency (i.e. the frequency of oscillation with damp-
ing) as ωd = ωn

√

1 − ζ2. Thus, the solution for the underdamped system (1.14) is,

xc(t) = e−ζωnt [C1 cos(ωdt) + C2 sin(ωdt)] (1.19)

which can be restated as,
xc(t) = Ae−ζωnt cos(ωdt − φ) (1.20)
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where A =
√

C2
1 + C2

2 , and φ = tan−1(−C2/C1) are two constants to be determined from
the initial conditions.

THE LOGARITHMIC DECREMENT METHOD
It is often important to measure how much damping there is in an engineering system.
The viscous damping coefficient, c, may be determined experimentally by measuring the
rate of decay of unforced oscillations - this process is called a ”ring down” test. We define
the logarithmic decrement, D, as the natural logarithm of the ratio of any two successive
amplitudes:

D = ln

(

xn

xn+1

)

(1.21)

where xn and xn+1 are the heights of two successive peaks in the decaying oscillation (see
Figure 1.5). Note that ”x” here refers to the mass displacement xc(t) with respect
to equilibrium and not the x-axis. The larger the damping, the greater will be the rate
of decay of oscillations and the bigger the logarithmic decrement, D.
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Figure 1.5: The logarithmic decrement method.

Because of the exponential envelope that this curve has (refer to (1.20)), xn = (Const.) ∗
e−ζωnt and xn+1 = (Const.) ∗ e−ζωn(t+τd), where τd is the period of the damped oscillation,
i.e. τd = 2π

ωd

. Thus

D = ln

(

e−ζωnt

e−ζωn(t+τd)

)

= ζωnτd (1.22)



TAM 203 Lab Manual 19

We simplify this expression by substituting in (1.16) for ζ and then solve for the damping
constant c, yielding (algebra omitted)

c =
2mD

τd

(1.23)

We can also obtain an equation for k from (1.22) , yielding

k =
c2

(

1 + 4π2

D2

)

4m
=

c2

4mζ2
(1.24)

Thus, by doing a ”ring-down” test we can experimentally measure values of D
and τd. Then using equations (1.23) and (1.24) and given the mass m, we can
calculate the damping coefficient c and spring constant k for a one degree-of-
freedom oscillator.

FORCED VIBRATIONS AND FREQUENCY RESPONSE
Often a system is periodically forced and we are interested in how it will respond, e.g. the
tires on your car going over evenly spaced ruts in the road jostles the car. When the forcing
function is sinusoidal with frequency ω, it can be shown that the steady state solution xp(t) is
sinusoidal in time with the same frequency ω. Note: here we use ’p’ to denote the particular
solution. Furthermore, the amplitude of the system’s response depends on the frequency
and amplitude with which we drive it. When the frequency with which we force the system
ω is close to the system’s natural frequency of vibration ωn, the response has a quite large
amplitude. This phenomenon, called resonance, will be discussed in the next section.

Starting with our equation of motion (1.6):

mẍ + cẋ + kx = Fs(t) (1.25)

If we let the forcing term be given by:

Fs(t) = kxs(t) = Fdrive cos ωt (1.26)

Then we are looking for a steady state solution of the form:

xp(t) = Aresponse cos (ωt − φ) (1.27)

where Aresponse is the amplitude of the system response and φ is the phase of the response
xp(t) with respect to the exciting force Fs(t). Note: the phase of a curve is a shift of one
graph to the left or right with respect to another graph and has units of radians. If the phase
is 0 then the response is at a maximum when the forcing is at a maximum, and if the phase
is π then the response is at a minimum when the forcing is at a maximum. Using a trick
from linear algebra we can solve for how the amplitude and phase of the response depend
on the driving frequency. The results are given in section (9.10) of your book, and plotted
above in Figure 1.6.

Note from the plot that:
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Figure 1.6: The system response x(t) = Aresponse cos (ωt − φ) as a function of forcing
frequency ω, for various amounts of damping ζ. The forcing amplitude, Fdrive, is fixed.

• for very low drive frequencies (ω ≪ ωn) the response is synchronized with the driving.
The phase lag (φ) is 0, and the amplitude of vibration of the mass is the same as the
amplitude of vibration of the support. What is the physical argument for this?

• for drive frequencies near ωn the response amplitude is at a maximum and the phase
lag is π

2
.

• for very high drive frequencies (ω ≫ ωn) the response is completely out of phase with
the driving (φ = π) and the amplitude of vibration goes to zero. What is the physical
argument for why the amplitude vanishes?

• the less damping there is, the sharper the change in phase is, and the greater the
response near ωn.

RESONANCE
Resonance as defined by Merriam-Webster is a vibration of large amplitude in a mechanical
or electrical system caused by a relatively small periodic stimulus of the same or nearly the
same period as the natural vibration period of the system. This definition confirms what we
already noted in Figure (1.6), i.e. that the amplitude of response was a maximum when we
drove the system at a frequency ω near the natural frequency ωn. To find the exact resonant
frequency, ωr, we find the point on our graph of Aresponse(ω) with a slope of zero (see section
(9.10) of your book for more details):

dAresponse

dω

∣

∣

∣

∣

ω=ωr

= 0 ⇒ ωr = ωn

√

1 − 2ζ2 (1.28)
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Note for small damping (ζ ≪ 1) we have
√

1 − 2ζ2 ∼ 1 and so the resonant frequency ωr and
the natural frequency ωn are approximately equal ωr ≃ ωn. This supports what we observed
in Figure 1.6 where the peak in the response seems to be very near to ωn.

PHASE DIAGRAMS In our experiment we will need a way to tell if the system is
near resonance. We could adjust the forcing frequency ω until the response is maximized.
However, this is not a very precise method. A better way is to examine the response phase(φ).
It can be shown that when we force the system at it’s natural frequency (ωn) that the phase
is φ = π

2
(Verify this by inspection (see Figure 1.6) or directly from the equation for φ in

(9.10) of your book). The corresponding phase diagram will then be a circle (If you are
interested, further details on what a phase diagram is can be found in the appendix). Thus
when the phase diagram is a circle we are at (or very close to) resonance. Though it is more
difficult to prove, we will see that when our forcing frequency ω is below resonance, the phase
diagram will look like an ellipse tilted to the right, and when it is above resonance, the phase
diagram will look like an ellipse tilted to the left.

LABORATORY SET-UP

• Mass-Spring-Dashpot System
The apparatus consists of a laboratory-model mass-spring-dashpot system with dis-
placement transducers (Linear Variable Differential Transformers or LVDTs) for mea-
suring x(t) and xs(t). The output from the LVDTs is communicated to the computer
via the data acquisition board. An electric motor and controller, acting through a
scotch yoke, enable a sinusoidal forcing function to be applied to the system. Note
that the controller dial readings are arbitrary; frequency and period data must be
obtained from your computer plots.

• Loudspeaker
The apparatus consists of a speaker on a stand with one LVDT to measure cone dis-
placement. Waveforms are generated by the computer, amplified, and sent through
a resistor to drive the speaker. The computer is also used to measure current flow
through the speaker and displacement of its cone (using the attached LVDT).

Please follow all safety precautions. Keep long hair and loose clothing well away from
the electric motor, pulleys, and other moving parts.

• Using the LabView Software
The four programs you will be using in the first part of the lab are: FreeAcq (Figure 1.7)
for acquiring data on the unforced system; FreeSim (Figure 1.8) for measuring the data
and simulation of the same; ForcedAcq (Figure 1.9) for acquiring data on the system
with a sinusoidal forcing function; and ForcedSim (Figure 1.10) which may be used for
measuring the data and simulation of the forced system. Although somewhat different
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in appearance and function, the programs share many key features. The SpeakerAcq
(Figure 1.11) program used in the second part of the lab is also similar.

Figure 1.7: The FreeAcq program.
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Figure 1.8: The FreeSim program.

Figure 1.9: The ForcedAcq program.
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Figure 1.10: The ForcedSim program.

Figure 1.11: The SpeakerAcq program.
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To run the program, you must hit the white arrow in the top left of the screen. If
this arrow is black, that means that the program is already running. For the data
acquisition programs, a green box on top will define the amount of time for which the
program will record after hitting the arrow. To reset the data acquisition, press STOP

without Saving and then press the white arrow to begin again.

After getting data, pressing the Save and STOP button stores your current data on
disk. The data file is only used by the simulation programs FreeSim and ForcedSim-
it is not available to the data acquisition programs.

You may find it convenient to obtain numerical data from your plots using the cursors,
rather than using a ruler. Two cursors are available, one indicated by a circle and
one by a square. To use a cursor, use the mouse to drag it to the point you want to
measure. If your cursor has vanished off the screen, you can enter an on-screen position
for it into the x and y display boxes, and it will reappear in the desired location. You
can also lock the cursor to a curve by clicking the lock icon. Zoom and other features
are available for the cursors and graphs; see the LabView manual for details.

PROCEDURE

• Free Vibration, Mass-Spring-Dashpot

1. First you will measure the free vibration of the mass.

– Start up the FreeAcq program. The data acquisition programs automatically
convert the voltage output of the LVDTs to meters. To do this, they need
a set of conversion factors, which are on a label on the mass-spring-dashpot
base board. Make sure that the sensitivity and offset values on the left hand
side of the window match the values listed on a small sheet of paper in front
of the apparatus, and enter your name in the box provided. Set the data
acquisition time to 6 seconds.

– Pull down the mass and hold it still, then press the white run arrow in the
top left of the toolbar, wait 1 second and then release the mass.

– Repeat this procedure until you have a nice oscillation over the 6 seconds.
Please note that the zero position is somewhat arbitrary. You will need to
take data long enough for the mass to stop oscillating in order to measure the
equilibrium value.

– Save your best oscillation on disk by pressing the Save and STOP button.
Save your data on the desktop with an appropriate title specific to your
group.

2. Next you will measure the logarithmic decrement D and estimate the spring stiff-
ness k and damping coefficient c.

– Close down the FreeAcq program and start the FreeSim program. Add the
measured data to the graph by pressing the Measurement Data switch above
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the graph. Set k = 0 to get the simulated data out of the way, and consult
the legend to make sure you know what curve you are measuring.

– Using the cursors, calculate the logarithmic decrement D and the period of the
damped oscillation τd for each set of successive peaks - at least 3. Please note
that xn and xn+1 in (1.21) refer to the mass displacement from equilibrium
and not the ”x-axis”. You will need to measure the equilibrium value

and take it into account in your calculations.

– Using these measured values, and the mass m, calculate the damping coeffi-
cient c and spring stiffness k (The mass of the weight and spring are written
at the base of the setup. For your ’m’ use the total of the weight mass and
the spring mass).

– Make a print-out of your curve.

3. Finally, you will simulate the free vibration of the mass-spring-dashpot system
and verify your estimate of the system parameters k, c, and m which you just
calculated.

– Input the k, c and m which you just calculated and adjust the initial condition
and viewing parameters (t(0), h, x(0), D) to fit your data. Don’t change k or
c.

– Make a print-out.

– Now see if you can adjust k and c to get a better agreement. Take note of
what aspects of the graph change when you change each of the parameters k
and c independently.

– Make another print-out.

• Forced Vibration, Mass-Spring-Dashpot

1. Here you will be recording the motion of the mass as it undergoes sinusoidal
forcing.

– Close down any other open programs and start the ForcedAcq program.

– Set the acquisition time to 10 seconds, start the data acquisition and turn on
the motor. Two graphs will be displayed. The left one contains two plots.
One is a plot of the mass position x(t) vs. time and the second one is a plot
of the spring support position xs(t) vs. time. The right graph plots the phase
diagram.

– For at least five different forcing frequencies get nice plots of several cycles of
motion (see instructions below). Make sure to save each data set to disk in
order to analyze them in the ForcedSim program. Print-outs are not necessary
but may be helpful.

– To acquire data, set the data acquisition time to 10 seconds and click the
arrow to run the program. Now adjust the forcing frequency until you get the
desired frequency. If the data acquisition stops before you are done adjusting
the forcing frequecy, you will need to click STOP without SAVING and then
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click the arrow to run it again. Once you’ve got the drive frequency where
you want it, reduce the data acquisition time to ∼ 1 second (or atleast long
enough to get one whole cycle) and then run the program again. This time
hit SAVE and STOP. Reducing the acquisition time will reduce demand on the
server and save you time doing analysis. Forcing frequencies should include:

∗ A low frequency for which the motor runs smoothly (∼ 1
2
Hz).

∗ A frequency just lower than resonance.

∗ Resonance. (Hint: we can tell from the phase diagram that it is at reso-
nance)

∗ A frequency just higher than resonance.

∗ A high frequency (∼ 3 ∗ Resonance).

2. Next we will measure our data in order to later calculate the response phase φ
and amplitude Aresponse .

– Close down the ForcedAcq program and open the ForcedSim program.

– Turn on the measured data switch to view your saved data. To change the
current measured data set you must close and then re-open the ForcedSim
program. Once experimental data is loaded, make your necessary measure-
ments (see pre-lab question) using the computer cursors.

You may also want to save the data to a USB storage device or write it to a CD for
later analysis. To do this just copy the text files of the desired data onto your storage
device.

• Vibration of a Speaker

• In the last part of the lab, you will non-destructively measure the mass of a speaker
cone by measuring the shift in in its resonant frequency due to the addition of a known
mass.

1. First you will find the resonant frequency of the loud speaker.

– Set the Waveform control to Sine and the Amplitude control to 2. Leave
the DC Offset control set to 0. Set the data acquisition time to 0.1 seconds.
The CH 0 Offset and CH 1 Offset controls may be used to adjust the plots
vertically if necessary.

– Turn on the waveform generator and data acquisition switches and adjust
the Frequency control value until you observe resonance of the speaker cone.
To change the frequency you must press STOP without Saving, enter
the new desired frequency and then hit the start arrow.

– Make a print-out and record the resonant frequency (note that the frequency
here is given in Hz and not rad/sec).

Recall that the resonant frequency depends on both the mass m and spring stiff-
ness k. By measuring the resonant frequency you cannot solve for both m and k
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uniquely. However, if you also measure the resonant frequency when the mass is
changed by a known amount then you will have 2 equations ( i.e. (1.15), assume
ωr ∼ ωn) for 2 unknowns (m, k) in terms of measured data (ω1r, ω2r,△m). Now
measure the mass of the rubber weight and then carefully press it onto the LVDT
shaft. The best way is to spread the weight open, position it, and release it.

– Find the new resonant frequency, and record the mass of the rubber weight.

– Make a print-out and record the new resonant frequency.
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LAB REPORT QUESTIONS
Please answer the following questions concerning the mass-spring-dashpot part of the lab
within your lab report:

1. What is the spring constant k and damping coefficient c for your mass-spring-dashpot
setup as calculated from your ”ring-down” test? Indicate the measured data and for-
mulas you used to calculate these values. Is the damping coefficient c really constant?
How can you tell? What does this say about the air dashpot acting linearly?

2. Compare your experimental data to the simulated data for unforced motions. Comment
on any similarities or differences of interest. How did changing c and k each change
the simulation graph? Please attach print-outs.

3. Make a plot of the response amplitude A(ω) using your 5 data points. Make a plot of
the phase-angle φ between x(t) and xs(t) versus the forcing frequency ω. Indicate any
formulas used. Do these plots match what you expect from Figure 1.6.

4. For your system, what is the theoretical percent difference between the natural fre-
quency ωn and the damped natural frequency ωd (refer to 1.28)? Does the addition
of a dashpot to a mass-spring system increase or decrease its oscillation frequency?
Indicate any formulas used.

Please answer the following questions concerning the loudspeaker part of the lab within your
lab report:

1. Calculate k and m for the speaker, using the resonant frequencies and mass you mea-
sured in lab.

2. Find another real-world vibrating system which could be reasonably modeled as a
mass-spring-dashpot. Give the system a“push” and observe its response. Try applying
a forcing function of various frequencies, and look for resonance.

(a) Describe how you modeled your vibrating system as a mass-spring-dashpot. That
is, what does the mass represent, what is the spring, and what is the dashpot?
Be as specific as possible.

(b) Is this system typically overdamped? Underdamped? If applicable, what was the
resonant frequency (approximately)?

(c) In what ways does the system you found most significantly differ from an ideal
linear mass-spring-dashpot system?
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Appendix: Phase Diagrams A phase diagram is a plot which contains the forcing
function Fs(t) on the y-axis and the response function x(t) on the x-axis. The phase diagram
is a graphical representation of the relative phase of the forcing and motion. Each point on
the plot tells us both where we are in the drive cycle y(t) and on the response cycle x(t).
Time is a parameter that moves us around on the diagram. Since we are only interested in
the phase, we scale each term by its amplitude. Thus on our phase diagram we would plot
the parametric function

y(t) = cos(ωt) (1.29)

x(t) = cos(ωt − φ) (1.30)

When we force the system at ωn ≃ and the phase is φ = π
2

as shown before, we have:

y(t) = cos(ωt) (1.31)

x(t) = cos(ωt − π

2
) (1.32)

Using the following trigonometric identities:

cos2 ωt + sin2 ωt = 1 (1.33)

cos(ωt − π

2
) = sin ωt (1.34)

We can establish the following relationship for our phase plot:

x2(t) + y2(t) = 1 (1.35)

Hopefully you will recognize this equation as the parametric form of the equation
for a circle! Thus, when we force the system at its natural frequency which is very close to
its resonant frequency the phase diagram is a circle. It is more difficult to show that when
we forced the system below resonance the phase diagram will be an ellipse tilted to the right
and above resonance an ellipse tilted to the left.
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