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PREFACE

This book is intended for those who have a working knowledge
of elementary Vector Analysis and Matrix Theory. It is in-
tended to be preparatory or collateral reading in connection
with a more detailed study of one of the fields where tensors
are used; for example: Continuum Mechanics, Hydrodynamics,
Elasticity, Relativity, Vectorial Mechanics, Analytical Mechan-
ics, Crystal Physics, Differential Geometry, or even Tensor
Analysxs itself from the physical point of view.

In books that have a physical orientation, the current defini-
tion of a tensor is that it is a set of quantities which transform
according to a certain, rather complicated, law. I have found
that this definition leaves the student rather dazed, unmotivated,
and permanently insecure in his relations with tensors. On the
other extreme, the purely mathematical presentation in terms
of linear functionals, dual spaces, or multilinear algebras is
usually too abstract and too remote from the student’s back-
ground in physics or engineering to enable him to comprehend
the subject in such a way that it becomes useful to him as a
working tool

The development given here is based on the polyadic, an en-
tity which has all but disappeared from Mathematics. Since the

vii



viii PREFACE

concept was introduced by Willard Gibbs (who thereby initiated
the subject of tensor analysis), the author makes no claims to
originality. It does appear that this method of introduction
gives the student a feeling of “‘knowing what he is doing.’”’ After
reading and understanding this book, my students tell me that
they can read books or papers in the engineering and scientific
fields without encountering any difficulties with the tensor as-
pects of the subject.

The mathematical theory of the exterior calculus is, for the
sake of brevity, not included here, although it seems clear that
the day is not far off when this will be incorporated into the
first course in Calculus. Some references to this material are
given at the end of the book. A lucid exposition of the exterior
calculus was given by the late Professor A. N. Milgrim in his
lectures at the Institute of Technology of the University of
Minnesota. The writer hopes to assemble this material soon
and to make it available in printed form.

Before starting to read this book the student should have
been exposed to the elements of Vector Analysis and Matrix
Theory at least to the extent that these topics are covered in
the currently standard course in <« Advanced Mathematics for
Engineers and Scientists.”” For example the material in:

Mathematics of Physics and Modern Engineering
Sokolnikoff, I. S. and Redheffer, R. M.
New York: McGraw-Hill, 1958

is sufficient background. Other texts of a similar nature are

Advanced Engineering Mathematics
Wylie, C. R., Jr.
‘New York: McGraw-Hill, 1960

Applied Mathemaltics for Engineers and Physicists
Pipes, L. A.

New York and London, McGraw-Hill, 1958
Mathematical Methods for Scienlists and Engineers.

Smith, L. P.
New York, Prentice-Hall, 1953

The Mathematics of Physics and Chemistry -
Margenau, H. and Murphy, G. M. ’
New York, Van Nostrand, 1943
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Methods of Mathematical Physics
Jeffreys, H. and Jeffreys, B. S.
Third Edition, New York, Cambridge University Press, 1956

Elements of Pure and Applied Mathematics
Lass H.
- New York, McGraw-Hill, 1957

Alternatively, the reader will have acquired the necessary
background if he is familiar with the contents of the elementary
courses on Vector Analysis and Linear ‘Algebra and Matrix
Theory. Some standard texts on Vector Analysis are:

Vector Analysis
Brand, L.
New York, Wiley, 1957

Veclor Analysis
Coffin, J. G.
New York, J. Wiley, 1911

An Introduction to Vector Analysis
Hague, B.
London, Methuen, 5th Edition, 1951

Vector Analysis
Phillips, H. B.
New York, J. Wiley, 1933

Vector Analysis with Applications to Geometry and Physics
Schwartz, M; Green, Simon; Rutledge, W. A,
New York, Harper, 1960

In addition, the books cited by the following authors under

‘“‘Further Reading’’, page 62, offer not only further reading, but
also an excellent introduction to Vector Analysis,

Brand, L

Craig, H. V.

Gans, R,

Gibbs, J. W.
Hay, G. E.

Lass, H.
Rutherford, D, E,.
Spiegel, M. R.
Weatherburn, C. E.
Wills, A. P,
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Examples of texts covering Linear Algebra and Matrix
Theory are:

Introduction to Modern Algebra and Matrix Theory
Beaumont, R. A. and Ball, R. W.
New York, Rinehart and Company, 1954

Linear Algebra

Hadley, G. '
Reading, Mass., Addison-Wesley, 1961

Linear Algebra
Hoffman, K. and Kunze, R.
Englewood Cliffs, N. J., Prentice-Hall, 1961

Elementary Matrix Algebra

Hohn, F. E.
New York, MacMillan, 1960

Linear Algebra for Undergraduates
Murdoch, D. C.
New York, Wiley, 1957

Theory of Malrices

Perlis, S.
Cambridge, Mass., Addison Wesley Press, 1852

Linear Algebra and Matrix Theory

Stoll, R. R.
New York, McGraw-Hill, 1952

Vector Spaces and Matrices
Thrall, R. M. and Tornheim, L
New York, Wiley, 1957
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CHAPTER ONE

WHAT IS A VECTOR? |

You will find in most books on tensor analysis in physics or en-
gineering that a vector is defined as a set of numbers (its com-
ponents in a particular coordinate system)and a recipeby which
these components change when a different coordinate system is
used as a reference. This seems to be a most unintuitive ap-
proach. Admittedly it is easy to understand the emphasis on
components, since real numbers are all that can be read on a
slide rule, which in a certain sense, contains all the answers to
engineering problems. The same may also be said about more
modern computers. Thus the components are, in the final anal-
ysis, the objects of interest. On the other hand, compare the
divergence theorem in terms of vectors

fV'Vd,':I‘V'ﬁdG (1.1
;

J

g

with the corresponding theorem in terms of the scalar compon-
ents

(28 + 29, &) 4xaydz = | Pdydz + Qdzdx + Rdxdy (1.1
; dax dy oz g

or Stokes’ theorem in terms of vectors

i



-2 INTRODUCTION TO TENSOR ANALYSIS

[yxv-fido=JV-aR (1.2)

g C

with the corresponding theorem in terms of scalar components.

(R .29 2P 2R 0q _ 2P
J (ay az>flydz + (az ax)d_zd:c«1— (ax - ay)dxdy

= j Pdx + Qdy + Rdz (1.2
C .

We believe it is clear that the vector formulations Egs. (1.1)
and (1.2) have much greater intuitive content than the scalar
formulations Egs.(1.1") and(1.2"). Thus the vector formulations
are not only easier to remember and work with, but also offer
the advantage that the engineer or scientist can, on the basis of
their physical meaning, modify them to fit his needs in particu-
lar applications. :

Thus there is much to be gained in the way of physical insight
by using a vector approach. Consequently we shall regard the
vector as the primary object of interest. We will find the usual
necessary laws by which the components change when the refer-
ence frame is changed; but to make this the definition of a vec-

- tor seems to us to be unnecessarily confusing.

Of course we shall also study scalar components, as this is
the form in which numerical answers to problems appear; but
for formulation of physical facts (which have no real dependence
on the coordinate system) it seems to us to be generally prefer-
able to use an equation which does not involve the coordinates
with respect to a particular system. Such a formulation is
called ‘‘invariant.”’

The above remarks also apply to tensors, but if the student
has not met them yet, the cogency of these remarks is not ap-

parent at this time.
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CHAPTER TWO

ALGEBRA

The student will recall that in the study of vector analysis he
first learned about the algebra of vectors and then studied vec-
tor fields. Similarly here, although we are mainly interested in
fields, we will first consider the algebra of the objects of inter-
est.

We take the position that a veclor is a vector. In other
words, we do not attempt to define a vector in more primitive
terms, but only in terms of certain properties which will be
postulated about them. Of course we can (and will) give exam-
ples, which constitute the applications and the real point of the
theory, but fundamentally a vector is a vector. We can yield a
little and say a vector is an element of a vector space. Now we
must define a vector space.

An (abstract) vector space is a collection of objects (vectors)
whose nature is unspecified except that they must have the fol-
lowing properties. Any two vectors can be added to yield a third
vector; and the sum is independent of the order of the sum-
mands. In symbols: if u and v are vectors then u + v is another
vector and u+Vv = v + U. The associative law: {(u+vy) +w=
u+(v +w) is also assumed; thus either of these expressions
can be written unambiguously as u +v + w. Any vector can be
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multiplied by a scalar (a real number*) to produce another
vector. Thus, if v is a vector and ¢ is a scalar, then cv is
a vector. We also assume that ¢v = vc, that 1v = v and that
c(dv) = (cd)v. We also require the distributive laws (¢ +d)v =
cv +dv and clu +v) = cu + cv. We also postulate the existence
of avector 0 such that for every vector v,v + 0 = v, and Ov = 0#*
It follows that v + (-1)v = 0, so that we write u - v for u+ (-1v.

Examples.

a. The set of real numbers, using ordinary addition, satisfies
the above conditions and is thus a particular vector space.

b. The set of complex numbers, using ordinary addition of com-
plex numbers, is also a vector space.

c. The set of vectors in everyday (three dimensional) space, as
studied in engineering, constitutes a vector space.

d. The set of n-tuples: x = (x;, Xz, ..., Xn), where the x; are real
numbers, with the law of addition

X +y = (x1, %2, cory Xn) + (Y1, Y2, 005 Yn)
= (% +Y1, X2 * Y2,y eevs Xn + Yn)
and the law for multiplication by scalars
cx = ¢ X1, X2, «oey Xn) = (CX1, X3y oory CXp)

is also a vector space. :

e. The set of functions v = v(¢) defined and differentiable on the
interval 0 = ¢ = 1, with the rule of addition u +v = (u + v)(#)
= u(t) + v(¢#), and the rule for multiplication by scalars given
by cv = {cv)(¢) = c[v(t)] is also a vector space. The student
should verify this. ‘

f. The set of functions v = v(x, ¥, 2) of three variables defined
and analytic over a bounded region R of 3-space and vanish-
ing on.the boundary, with the definition of addition and multi-
plication by scalars analogous to that given in (e), isalso a
vector space. ‘

*The vector space we define here is a ‘‘vector space over the real
numbers!’ The scalars might instead betaken to be the complex numbers,
in which case we would have a ‘‘vector space over the complex numbers.”’
Similarly one might have a ‘‘vector space over the quaternions,’’ and so

on. .
**That is, when any vector is multiplied by the number zero, the result
is the zero vector.
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CHAPTER THREE

DYADS, DYADICS, TENSORS

Suppose we have an abstract vector space and suppose we start
writing down vectors in this space as if they were ordinary al-
gebraic quantities. For example we might write down uv. This
would be called (following Gibbs) a dyad. If we formed a linear
combination of such terms ¢; U Vi +Cz Uz V2 + ... +Cp Up Vi
we would have (in the language of Gibbs) a dyadic expression or,
more briefly, a dyadic. Today we call it a tensor of order two.
A product of three vectors uvw is a friad, and a linear combi-
nation Lci Ux Vi Wi a triadic. Today we call it a tensor of or-
der three. Similarly uvwz is a tensor of order four, and so on.
Such products are called ‘‘open’’ products or ““tensor’’ products
of the vectors. They are also called polyuds, and linear combi-
nations of them are called polyadics.

In this way we generate an algebraic system consisting of
open products of vectors and their linear combinations. All the
usual multiplicative rules of algebra except for the commuta-
tive law, are to hold. For example, for any vectors u, v, w and
scalars c, d, the associative laws

cluv) = {cu)v = cuv
(uv)w = u(vw) = uvw
(cuXdv) = (cd)uv)

5



6 INTRODUCTION TO TENSOR ANALYSIS

and-the mixed distributive laws

u(v + w) = uv + uw
(U +V)W=uw + VW,
cluv + Wz) = cuv + cwz

and the ‘unitary law 1{uv) = uv are valid but we do not assume
that uv = vu. The scalars, however, do commute and u{cv)=
{cu)v = cuv.

Except for the fact that the commutative law is not assumed
to hold and the fact that we do not divide by vectors, we can
manipulate these objects just as inordinary algebra. We could,
as we did for vectors, supply a logically rigorous definition of
(abstract) tensors in terms of their algebraic properties cited
above. These properties would define these objects, just as the
rules of chess define a knight or a rook. We find that the ‘‘con-
crete’’ definition in terms of open products of vectors is easier
for the student to grasp.

Now that we have this collection of objects, the reader may
ask, what do they represent? For the present they are funda-
mental objects, like the vectors, and we do not try to define
them in more primitive terms. Later we shall investigate the
physical significance of such objects.
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CHAPTER FOUR
LINEAR INDEPENDENCE; DIMENSION

A set of vectors vy, V2, ..., ¥V, are said to be linearly dependent
if a linear combination ¢; vy + c2V2 + ... + ¢, Vo =0, with not

" all of the ¢,’s = 0. {This is equivalent to saying that one of the

vi’s can be expressed as a linear combination of the others, for

. -1
if ¢; #0, then vy = = [cava +CaVs + eee +Cp Vp ). Conversely
1

if vi =dave +... +d,,v,,, then -

n
7=1

with d; = -1 # 0.} A set is linearly independent U it is not lin-
early dependent.

If there éxists in a vector space a set of u linearly independ-
ent vectors but no set of (n + 1) linearly independent vectors,
then the vector space is said to be n-dimensional.

For example, the reader may verify that the vector spaces
of the Examples on page 4 are, respectively, of dimension 1, 2
(over the reals), 3, 1, o, .



CHAPTER FIVE

COMPONENTS: CHANGE OF BASIS

In an n-dimensional vector space a set of n linearly independent
vectors €;, ez, ..., €= is called a basis. Any vector v in the
space can be expressed as a unique linear combination of the
basis vectors: v =v'e; + ... +v"e,, or using the summation-
convention, (in which an index occurring as both a subscript and
a superscript is automatically summed from 1 to n, unless
otherwise specified) v = vie;.

Exercise. Prove the above. [Hint. To prove that the represen-
tation is always possible, show first that there are scalars ¢;
not all zero such that cov + ci1€1 +C282 +... + Cn€n = 0. Next
show that co # 0; hence, solve for v. To prove uniqueness, sup-
pose v =vie; = V'e;. Hence (vi-Vie; =0. Now use the linear
independence of the basis vectors.]

The scalars vi are called the components of the vector v with

respect to the basis {e1, ..., €» } ‘
Suppose we have another basis {81, €2, .., €n ). The same
vector v can also be expressed as a linear combination of the

elements in the new basis:

v = uie;

8
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COMPONENTS: CHANGE OF BASIS 9

Since {e,, ez, ..., €.} is a basis, we can express each of the
new basis elements &; in terms of the {e;, ez, ..., €, }and con-
versely. Thus ' '

e =aije; . (5.1)

We regard ai; as the element in the ith row and j* column of
a matrix A. If we apply the usual rule of matrix multiplication
of a matrix by the column of vectors

e;
ez
€n
we might regard Eq. (5.1) as stating

e, e,
g,=A"e,, wheree, ={e: |, &, =| & (5.2)
.en éfl

Let us see what effect the transformation of basis (5.1) has
on the coordinates. Since the same vector v is involved

v = viei = 57&] = z-)iaijei
Since the vectors e; are linearly independent, we have

v" = dijﬁj . (5.3)

» Th
v* = Av¥*, where v* ={ { , 0% =3
v" i

Since Eq. (5.1) expresses the new (barred) basis vectors in
terms of the old (unbarred) we would like to do the same for the
components, Thus

or

p*= AT u* (5.4)

Compare Eq. (5.4) with Eq. (5.2). I A4 is an orthogonal ma-
trix (4~' = AT), then the components follow the same transfor-
mation law as the base vectors. In the general case, the law of
transformation of the components is given by the inverse trans-
posed matrix of the law describing the basis change. These
components are therefore called contravariant. [Most writers
call them the components of a contravariant vector. Under
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certain circumstances this terminology is justified. (Cf. the
““Remark’’ in chapter 9) But from the way we shall develop the
subject the vector is the vector. It is the components which are

contravariant. ] :
If we let B = A~'and let bi; be the element in the ith row and

4th column of B,then Eq. (5.4) can be written
fi=p'wl or 7%=Bv* (5.5)
This follows from Eg.(5.4) immediately. To give the student
a little practice at the kind of manipulation to come, we derive
Eq. (5.5) from Eq. (5.3) as follows. Multiply each side of Eq.

(5.3) by b*, and sum on i. Then, letting ;' have the value +1 if
; = j and the value 0 if i # j (the “Kronecker delta’”) we get

bk, vi = piai;bk; = §16*; = 9*, as in Eq. (5.5).
By the same method we can solve Eq. (5.1) for the e; in terms
of the &;
6% e; = €
b8, (5.6)

In terms of a given basis {e, €, ..., €,} any dyadic T =
ciiuiv;, where u; =ul;ej, Vi = viie; and cii are scalars, can be
expressed in the form

b]}zéj = b’ka’,-e,-

Hence e;

T = ciiu*;e,v’ 85 = cliukiv® e e
i.e. T can be expressed in the canonical form
T = tVe;e;j

The scalars ¢i/ are called the components with respect to the
~ given basis. In terms of a new basis {1, €z, ..., €, } we have
the same tensor T expressed as

T = t’le,-éj

where i are the components in terms of the new basis.
_ How are the new components ¥/ related to the old components
tiio I the transformation of the basis is given by Egq. (5.1)

e, =4Te,l,
T =1gE, =t ees = 175D EiDSE;
from which
| 1 = bl 05t (5.7)
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I the elements 'l are regarded as the elements of a matrix
T, and ¢!/ of a matrix T, then Eq. (5.7) can be written

T =BTBT = A 'T(A-Y)T (5.7)

. Equation (5.7), or (5.7"), gives the law of transformation of
the components {7 of the tensor T when the basis vectors are
changed according to Eq. (5.1). They are called the contravar-
iant components of the tensor (not, as is usual, the components
of a contravariant tensor). (Cf. ““Remarks’’ in Chapter 9.)

Similarly for a third order tensor ti/* e;e;e, the law of trans-
formation of the components is

1k = bt bl bk e (5.8)
For third and higher order tensors the matrix notation, as in
Eq. (5.7') is no longer convenient, and the notation of Egs. (5.7)
and (5.8) is employed instead.

To correlate this with the field development later, suppose
we consider a vector x written in the form x = xfe; = ;. Then,
by Egs. (5.3) and (5.5)

xi=a'jzl (5.9)
i =blix! (5.10)
Then Egs. (5.5), (5.7), and (5.8) can be written in the form

- 0%’

v! é;‘ vl ‘ (5.11)
- axt axl .
tii = a;" a;‘s trs (5.12)

: -k _ 00X 3x! axk
ik _ rsu
and ¢ xr 3x5 ek t (5.13)

since
pi = 3%
I axi
Notice in the equations of this section how the free indices on
each side of the equations balance (like dimensions do) and how
the dummy indices occur always in a subscript and superscript
pair. This will make it easier to remember and to check equa-
tions. :
The notation in this. section was chosen so as to render it
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easy to remember in later sections. Thus A (the first letter of
the alphabet) was used in Eq. (5.1) to describe the first change
of basis. For the corresponding law of transformation of the
components, which is “backwards’” to this [Eq. (5.5)], the letter
B is used. The notation introduced in chapter 5 will be used
throughout. '
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CHAPTER SIX

LINEAR TRANSFORMATIONS

In general, a system of equations

¥ Ci1 ... Cip X1

ye =

yn Cnl. - L] cn’z xn
or, in matrix notation y=Cx

may arise from a change of coordinates(as in the previous sec-
tion), in which case no vectors move, only the names are
changed. On the other hand such a system might also represent
a linear mapping or deformation of the space, in which the vec-
tor whose components are x is sent into a new vector whose
components, with respect to the same basis, are now y. Con-
siderable confusion has arisen in this connection since the
former interpretation is often called a transformation of coord-
inates and the latter a transformation of the vectors. By lin-
quistic attrition the word fransformation has come to be used
for both. By the word ‘‘transformation’ physicists generally
mean a change in coordinates, leaving the vectors unchanged;
mathematicians generally mean a change in the vectors, leaving
the coordinate system unchanged; engineers mean either one.

13



14 INTRODUCTION TO TENSOR ANALYSIS

The words ‘“‘alias’’ (only the name is changed) and ‘‘alibi’’ (the
vector goes somewhere else) have been proposed to distinguish
these two interpretations, but seem to be too literary to be
adopted widely. We will discuss in this section linear transfor-
mations in the alibi sense and to make matters clear we will
eall them linear mappings. After that we will come back to
linear transformations in the alias sense and for clarity will
call them a linear change of bases, or linear change in coordi-
nales. :

Suppose we have a mapping defined on a vector space. That
is, with each vector v we associate a transformed vector w =
F{v). The function J is said to be additive if FHu+v)=3U) +
9 (v); homogeneous if F(cu) = cF(u) where c is any scalar. I -
9 is additive and homogeneous, then 7 is called a linear map-
ping.

Let {e,, ez, ..., &, } be a given basis, and let 7 be a linear
mapping. Then

F(v) = Fv'e;) =v' Hei) (6.1)

Hence if we know what F does to the basis vectors we know
what it does to every vector. :
~ Since the {ei, ez, ..., &, } are a basis,we can express the
vector 7(e;) as a linear combination of the basis elements:

Fe:) =fle; (6.2)
If we letw = wie; = F(v), then wie; = vif/;ej, or
wi = fiv (6.3)

That is, in terms of the given basis, the transformation 3
can be represented by the components changing according to
Eq. (6.3). In other words if F represents the matrix £, then
the mapping J can be specified by the statement that the vector
with the components v? goes over into a vector with components
wi given by Eq. (6.3); i.e.

w=Fv A (6.4)
This is the alibi interpretation of the matrix F. Sofar all
components have referred to the given basis {e,, ez, ..., €x }.

Suppose now we consider the same transformation 7 but rela-
tive to a new basis {&,, €2, ..., €x} given in terms of the old
basis by Eq. (5.1). Now :
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w=wig; =wie; =vife =vifiib* g, = ajr{)rfijbkiék
Hence
wi = ajrfkjbikljr
In matrix notation
W= BFAD = A"'FAD = BFB™%

That is, the matrix representing the transformation in the new
coordinate system (7 = Bv) is BFB™', where F is the matrix
representing the same transformation in the original coordinate
system. Two such matrices are said to be similar. In other
words, two similar matrices represent the same transformation,
but described in terms of different coordinate systems.

The action of J on certain vectors will be to map them into
a scalar multiple of themselves. This is always true for the
vector 0. Any non-zero vector Vv such that F(v) = Av is called
an eitgenvector of F and the scalar A an eigenvalue., In terms of
the matrix representation Eq. (6.4) we have

Fo = \v (6.5)
The eigenvalues A satisfy the equation
lF-a1l=0 (6.6)

If another basis were to be used, the eigenvalues and eigen-
vectors would not be changed, because these depend on the map-
ping, not on the coordinate system. Therefore the eigenvalues
satisfy also the characteristic equation

IBFB- - All = 0 (6.7)

[These facts may also be seen directly, since Eq. (6.5) may be
written FAD = AAD, where v = AD,i.e. BFB™'0 = AJ, or F§ = AD.
Also Eq. (6.7) can be written

|IBFB™ - AIl = IB(F - \I)B™Y | = |F - A1) ]

Now
F - Azl = (-1)" [A" - A" v 0772 L s (-1 ] =
|IBFB™ - Al (6.8)
The quantities 3, ..., J, are the same no matter which coordi-

nate system is used. These are called invariants of the mapping
F. Jjis the sum of the principal minors of order j. In particu-
lar 3, is the trace, 2, is the determinant. These quantities do
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not change under similarity transformations of the matrix.
They are a characteristic of the mapping, rather than only of
the matrix. The sum of the principal minors of order j, J;, is
also equal to the sum of the products of all the eigenvalues taken
j at a time. In particular the trace, Ji, is the sum of the eigen-
values; the determinant, §,, is the product of the eigenvalues.

E=S
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CHAPTER SEVEN

INNER PRODUCT. METRIC TENSOR

An inner, or dot, product is a real* valued function of two vec-
tors which is a linear function of each vector. That is, for any
pair of vectors u, v there is associated a scalar which we denote
by u - v. For this function to be an inner product, it must have
the following properties. '

1. Symmetric: u-v=v.u.

2. Additive: u-(v+w)=u-v+u-.w.

3. Homogeneous (cu) * v = ¢(u - v), where ¢ is any scalar.

4. Positive: v -v >0, forv #0.
It follows that (u+v)-w = u.-w+v-w and thatu - (¢cv) =
clu-v).

Examples. We can define an inner product for each of the ex-
amples given on page 4 as follows:

a. The inner product is simply the product of the two numbers.
b. (a+ib)(c+1id) = ac + bd.

*Under other circumstances the inner product is sometimes taken to
be complex valued. In this case the symmetric condition (1) above] is re-
placed by the Hermitian Symmetry: x -y =y - x,

17
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C. V1’V2 = }Vl HV: | CcOS (Vx, Vz)-
Or (xi +yj+zk){gi + nj+ Ck) =x¢ +yn + 28 .
d. (xls X2y eony xn) : (}’1,.}'2, sery y”) = inyi "
[3

1

e. u-v =/ ulHv{t)dt
0

. urv= [[[ ulx, y, 2)v(x, y, z)dxdydz.

R .
The student should verify that the defining properties [(1)-(4)
above] hold in each case.

By property (4), v-v > 0, so that Vv v is real; we call it the

length (or norm) of v~

Hvll = vw-v

[The other features characterizing the norm are given in Egs.
(7.13) and (7.14) below.]

Let {e;, €3, ..., 8-} be a basis. Letei-e; =gij . (1.5)
The length of an arbitrary vectorv = vie; is then given by
lvIP = viej-viej = vivigy; (7.6)

The numbers g;; are called the (covariant) metric coefficients
(with respect to the given basis). Note that in view of Egs. (7.5)
and property (1), gij = &ii- We denote the matrix by g.

Note that |le; || = vg;;. Sometimes it is desired to express
the vector v in terms of the normalized basis (€., €2, ..., €, }

R e A
where &; = n;'——lT , so that |igill = 1.

1
Thus v = vie; = V'8;, where
vi = |le;llvi = Vgi; v* (no sum on 7)

Such components V' are called the ‘‘physical components’’ of v
' with respect to the given basis.

Suppose that {€;, €2, ..., €x} is another basis as in Eq. (5.1).
Let g;; = &, - ;. How does g,; compare with the g,;? We have
g =8 -§& =a,e -a‘jes, or

gij =a’,a°1&rs (7.7

Notice how Eg. (7.7) differs from Eq. (5.7); or, for compari-
son with Eq. (5.10), we can rewrite Eq. (7.7) [using Eq. (5.9)] as
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g_'__ax’ oxs P
Toax exi OF

This is the way the covariant metric coefficients transform
when a new basis is introduced. The mnemonic ‘“Co go below;
and the bars also’’ is helpful.

(The reader who is interested in getting on with the main de-
velopment should proceed directly to Chapter 8.) To illustrate
the beauty of the abstract method let us derive Schwartz’s in-
equality. Since we know nothing about the vectors, aside from
what has been explicitly postulated about them, the derivation
must be based on only these few properties.

Let u and v be vectors and A a scalar. Then from property
(4) we have (u + Av)-(u +Av)> 0, if U # -Av,

Using properties (3) and (2) we get

Hull? + 2au-v + A2 {|vi[2> 0 (7.8)

for any choice of A. Let us choose X so as to make the left side
as small as possible. Set '

dA (Hull® + 2xu- v+§ Hvllz)-2u v+ 22 llvli®2=0

That is, let us select A = ; . > . Then Eq. (7.8) gives
| .

(u-v)?® (u-v)?

Ve v

Huli? -2 >0, for v #0

Hence
lu-vi<llull - llvll fufavandv#0

In every case we have Schwartz’s inequality
fu-vl = [lull - vl (7.9)

Since the examples given earlier,(pg. 4, 17) satisfy the specified

- conditions (1)—(4), it follows that Schwartz’s inequality must be

valid also in these partlcular cases. Thus in particular we have
proved [from (d), (e), and (f)]

ivx,y I<V“x {y (7.10)

for any real numbers (xi, ..., Xa), (¥ 1, .0y ¥0 );




20 4 INTRODUCTION TO TENSOR ANALYSIS

lof u(t)(t)dt] g\[fuz(t.)dz Vofvz(t)dt (7.11)

[ [fSul x,y,2 Yol x,9,2 )dxdydz]* s Jffut(x,y,2)dxdydz
R R

) fff v*(x,y,2 )dxdydz (7.12)
R

The reader who is not impressed with the neatness of this
proof should try writing out a proof of Egs. (7.10), (7.11), (7.12)

directly.
The norm has the following properties '
Hevll = lel vl (7.13)
Hu +vlls Hull+ Hvll (7.14)

The first follows from the fact that |lcv|PP = cv-cv = c2 [Iv]f
and the second from the fact that [lu+viP =(u+v)-(u+v)=
u-(u+v) + v.(u+v) = [ul] Hu+VH + llvll Hu+vll =
(Huall + Hv!D) Hu+vll. Now divide by llu + vl to obtam(7 14).

Replacing v in Eq. (7.14) by -v we get

Hu - vl = Hull + livll (7.15)

By letting w =u - v in Eq. (7.15) we see that Hwll = Hw + vl
+ vl It follows that

Hw +vilz | Hwll - lvll ] (7.16)

The distance between two vectors u and v is defined as
llu - v]|. We then have the triangle inequality (Cf. Fig. 1)

Hu - vl s Tlu - wil + Hw - vl (7.17)

as follows from takingu - w foru and w - v for v in Eq. (7.14).
Since '

lu-v -u-wl=lu-(v-w)lsilullllv - wil

we see that the inner product is a continuous function of its ar-
guments; that is, if v — w (this means Hv - wl|| — 0) then
Uu'v—"u-w.

Similarly, from Eq. (7.16) it follows that the norm is also a
continuous function of its argument; that is, if v —w (i.e.,
llv - wll — 0), then llv!l = llwll. Thus we have a definition of
‘‘distance’’ which satisfies all the usual properties. We can
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then proceed with many of the usual techniques of analysis in
these abstract vector spaces.

Fig.1. Triangle Inequality.



CHAPTER EIGHT

RECIPROCAL BASES; COVARIANT
COMPONENTS; MIXED COMPONENTS

Suppose we have a vector space with an inner produect and
{e1, €2, ..., en} is a basis. The reciprocal basis is a set of
vectors {e', e?, ..., e"} such that

et. e,~ = 5’,‘
Example: In three-space let e, e, €1, be three non-coplanar
vectors, then the reciprocal basis is given by

ei _€2X@es

2 _€sX€ _3_ €i1Xe
x & ° & X

) N A

e

~ where
A =g X ez e;

Let e’-e! =g’ and e;-e; = g;;. Then, since {e;, €, ...,€,}
is a basis, e! = c¢'’e;, where ¢!/ are scalars. Dotting et intoeach
side we get gi* = ¢ik so that

e =g"e,~ (8.1)

Dotting e, into each side we get 6i g = £'18jx, SO that the ma-
trices (g,) and (gii) are inverses. Since we have denoted the
matrix (gij) by g, it follows that (g1d) = g-1,

22
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We have assumed that there existed a reciprocal set. To
prove that this is indeed the case define (g%) as the matrix in-
verse®* to (g,,) and define the e/ by Eq. (8.1). Then it follows
that ei -e; = gike, - e; = gitg,; = 6%; so that we have our recipro-

cal set. A reciprocal basis is also called a dual basis.

To solve for the e; in terms of the ef we multiply each side
of Eq. (8.1) by g;; and sum on i. We get

griel = £i8lej =0l e = g,
That is
e: = gijel | (8.2)
[Compare the structure of Eq. (8.1) and (8.2).]
Hence the ei also form a basis. Any vector v can also be ex-
panded in terms of them
| v =viel
The v: are called the covariani compoxients of the vector with
respect to the given basis.
How are the components vi related to the components v'?
Since the same vector is involved,
v = v;ei = vig; = vigijel
Hence
vi = gijv’ (8.3)

This is the formula for ‘‘lowering indices of vectors.”’ We
shall see more of this shortly. Note that v; =v.e; and vi=v-ei.

I instead of the basis {e), €3 ..., €.}, we had started with
the basis {&:, &2, ..., €}, then the dual basis would be
{8', ... 8"} where '

e = gilg; , (8.4)
From Eq. (7.7) g= ATgA '
Hence

é" = A"'g"MAT) = Bg™'BT

*We leave it as an exercise to prove that g is non-singular so that g~*
exists.
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Therefore

. o ox  ax!
Si = pi bl phr = 22 ST gk .
g bk r8 | ax" aX’g (8 5)
The gi are therefore called contravariant metric tensor com-
ponents. Now from Egq. (8.5) we get

el =g,?]é] = blkb;rgkrél = blkblrgkrasles
= bi,bl, gt a5 g el = b 6%, gY g et = bl gt g e
= b, 0k et = b'jel

The 'change in the dual basis is thus described by
g =bijel or @*=Be?* (8.6)
If we multiply each side by a*; we find also that
A e’ =a’el (8.7)
Note that this is somewhat the reverse of the telation relat-
ing the basis vectors @; and & Egs. [(5.1), (5.3)] except that the
~_matrices are not transposed. The upper and lower indices, how-
~ ever, provide a foolproof notation. ‘
If v=20,8 =uv;ei, how are the 7, related to the v; ?
v = D8 = v;ei = v;aij@!
i.e.
5 =aijv; or b,=ATv, (8.8)
Since Eq. (8.8) is analogous to the ongmal change of basis

[Eq. (5.1)], the u: are called the covariant components of the
vector v,

Similarly if we consider a tensor T,we can wrxte it as linear
combinations of polyads formed by usmg either the e, or the e’
or combmatmns

For example, say

T =tikeee, = tii,eejet = tieeiet = [, elelet (8.9)

It’s all the same tensor. How are the components related
when T is referred partially to the base vectors e, and partially
to the reciprocal base vectors e'?

Note that here we are nof changing basis vectors; we have
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one basis {e;} and its dual basis {ei}and open products made
up of assortments from each set. The notation of upper and
lower indices ¢--- is not entirely foolproof, since, for example,

the tensor t;e;ef is different from the tensor #;e’e; in general.
A notation such as

_ .. -— .i b.
T=t.eel=t.ele

can be used; but for simplicity we shall use simply #'; with the
understanding that we mean

T = t;e;ef
More generally we use

¢ ...i ' y y
T =tuf1...i; efl"'eireh“‘ek

with the understanding that in the polyads we write all the base
vectors first and then all the dual vectors as shown. If we wish
to alter the order of some basis and reciprocal basis vectors

we shall have to extend the notation on the components {2227 .
Now

T = tiite;e e, = tii eiej0” = 17 e;e;870e,

Hence
tik = ¢if, gk (8.10)
Similarly
T = tiisee;ek = ti,e,e7et =t ,e;gi7e ek
Hence
tiy = 8,87 (8.11)
Similarly
T = tieelet =, ereiet = ¢, ;grieeiet
so that
iy =t 8" (8.12)
Similarly
Lije =&irl"jk (8.13)
thi; = &irthr; (8.14)
tiy =g " (8.15)
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Equations (8.10)~(8.15) are generalizations of the formula
Eq. (8.3) above. From these we hope it is clear how indices
may be raised or lowered. In words, the g%/ and the gi; can be
used to raise or lower indices; one index is a dummy to be
summed out against a mate in the opposite position cn the (222
the other index provides the new free index, thus restoring the
total number of iree indices to its initial value, but replacing an
upper by a lower, or vice versa. With the understanding that
these {227 are the scalar multipliers of base vectors e; or re-
ciprocal base vectors e! with the matching index in reverse
(lower or upper) position, and that all the e;’s come first, fol-
lowed by the ei’s, we see that the tensor itself is unchanged by
these operations on-the components. For example, the tensor
te;e; is the same as the tensor t/;e;e/, since

tie;el =gk7-tikeie7' = tikeig el = tikee,

] 1 . & » i
The components ¢*°2"" " 'r
Ji72 4« s]s
tensor of order (+ + s); v-times contravariant and s-timesco-

variant; or briefly: ({) tensor components. The tensor itself is

are called mixed components of a

] ] coci > e N
plrizerlr e e e, ellei2,..els
fiize..dg P1Ti2 tr

Now how do the mixed components change when the basis is
changed? Take for example the (3) tensor

T =tk 8.8:8,6H8Y =1t  e;eie ete’
Hy “i¥] uy 7

=tk b7,8,b°8,b'48, 0¥, &% 0¥y 8P
Hence
11y p = b7 0% b ek gt T (8.18)

or in the alternate notation

- ox™ ax° ox! ox* ox¥ ..
rst = ifk
¢ as axt 0xI oxk 3xe pxf T (8.17)

In words: the covariant (lower) indices each transform ac-
cording to the covariant law:
v, =d.v; = ox1 Vi
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and the contravariant (upper) indices each transform according

to the contravariant law
) i
b = bivl = __a". i
ox!

Study the structure of Egs. (8.16) and (8.17). The pattern is
straightforward and easy to remember. The importance of these
transformation laws stems from the fact that in practice the
base vectors and the duals are often dropped and the components
themselves regarded as the tensor. The reason for transform-
ing them, as in Egs. (8.16) and (8.17), is then not so clear, but
we simply use these formulas.

If the two basis systems {e;} and {e;} and their reciprocal

systems {e’}, {&'} are all known, then the numbers a;, b; enter-

ing into the transformation formulas

can be evéluated from the following formulas

al=8; e/, bl=e; &

1

which are easily verified from the preceding ones.
In particular, if both basis systems are orthonormal, then

a,’.. =g -el =@l ‘e; = b;; so that A = B = AT and the matrix is
orthogonal. Also a] is simply the cosine of the angle between ¢,
and e; in this case. Similarly b is the cosine of the angle be-

tween these same two vectors when the bases are orthonormal.



CHAPTER NINE

TENSORS AS LINEAR FUNCTIONS

With the inner product we can interpret tensors as linear func-
tions of vectors. A linear funclion of a vectorv is a function
satisfying F(cu +dv) = ¢ F(u) +d 3F(v) for all vectors u, v and
all scalars ¢, d. I 7 has real values then it is called a linear
functional. For example a fixed vector vo can be regarded as a
linear functional by the formula

F,(v) =Vo-¥ (9.1)
Thus with each vector Vo we can associate a linear functional

defined by Eq. (9.1), since vo(cu+dVv) = cvoru+dvo v =
cF,, (u) +d 3, (v).

It is not hard to show that there is a one to one correspond-
ence between the original vectors v, and the linear functionals
on them, #,. L v is given, define F, by

F)=v-()
Conversely, if 7 is given, define v by
v= Fe;le

This correspondence preserves the algebraic operations in

the sensethat F, . = Fy + Fy; Fev = cF,

28



3 3

.3

TENSORS AS LINEAR FUNCTIONS 29

Remarks. In certain circumstances we do not wish to assume
the existence of an inner product. It is hevertheless possible to
carry through an analysis similar to that developed here. We
introduce the space of linear functionals (this is a vector space
of dimension n called the dual of the given space). A duul basis
is then introduced in the space of linear functionals. These are
functionals f*(v) such that fi(e;) = 6}. These then play the role

of our reciprocal basis ef, except that the two kinds of vectors
are kept separate. Under these circumstances it is necessary
to distinguish between contravariant (the original) vecfors and
covariant vectors (linear functionals).* This situation will not
concern us here.

If a linear function is vector-valued then it is a linear map-
ping asdiscussed in Chapter 6. For example a dyadic T = tie; e;
can be regarded as a linear mapping #(v) by the formula

Hv)=T-v=tlee;-v=tielej-v) (9.2)

which is a vector. {We can also form v: T in a similar way. In
general v-T # T-v unless (i) is a symmetric matrix. I we
take v = vie; then from Eq. (9.2)

= 3(v) = tiee;-v'e, = thig,,vTe; = wie, (9.3)

thus
t’: Y

The matrix representing the mapping 7 is (z‘ 'y,

In Eq. (9.2) we computed the vector T-v in terms of the or-
iginal basis {ei, €2, ..., €, }.
If we compute it with respect to a different basis {&,, &, ..., &,
we get

wh =i g,

2ijéiéj'(5kék)=2iiéi§,’yé"(5kék)=? e; 610 =1
=(b£a;tf)(a?ea)(b,’gvﬁ)‘6 6Bt e, vh

- O _k r _ .k YT
=0, t,e,v’ =i e 0" = t’fgi,e,vv'

*Similarly a tensort "o e e, f“f” f" is then itself -

vels h I
times contravariant and s-times covanant
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which is the same as Eq. (9.3). Thus the mappingw =TV is
invariant. This might also be seen directly from the fact that

the new matrix (?;) will be given by Z; = b! a); tg. That is, let-
ting T = (t;), T = ('f;:), T = BTB™!. But by Eq. (6.5) this repre-

sents the same transformation with respect to the new basis.

By dotting another vector into T'v we would obtain a scalar
u-T'v=T-v-u. Thus a second order tensor can be regarded
as a linear functional of two vectors: f(u, v), where

flu, ev +dw) = cflu, v) +df(u, w),
Fflcu +dv, w) =cflu, w) +dflv, w)
Thus if T = tifeie,-, u = uie;, v = v'e; then
u-T-v=u'le, -the; e -vte,) = u’g,-,-t‘fgjkv" (9.4)
= u;tv;
In particular ei - T-ef =¢7,e;-T-e; =¢t;;ande’. T-e; = t]‘
The metric tensor | = g;;efe’ has the property that
vel-v=ve, gieie vte, = v’ﬁjg,-,-é{v" = vigyv! = viy; = [Iv]f}
as in Eq. (7.6). Note the | has the alternate forms
|=g;eiel =ejel =ejergt

The reason for using the letter | for the metric tensor is
that, when regarded as a linear mapping, it is the identity:

vv = ool ke, =e:blvk =0 =
I-v =ejel-vie, =eb v" =ev =V

Given an arbitrary tensor of order m we can, by dotting vec-
tors v(1)s V(2)s +-+s ¥(m) with it, get a scalar. Thus a tensor can
be regarded as a linear functional of m vectors.

Given a fourth order tensor T = ¢,/ e;e;e*e” we can form a

linear mapping of second order tensors into second order ten-
sors by the formula

W=T:U =t/ ejeete’ ((u%f eqep) = 1]l uvBe;e etle’ e,) eg

=4I 0Ba e.(e” - k.p )= til 080 0. 876k =t yka.a.
t] u*fe;e;(e’” -eqlle eg) = t,] ucbee;jd505 = 1) ute;e;

1t is not hard to show that this linear mapping of second-
order tensors (U) into second-order tensors (W) is independent
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of the basis chosen. Conversely we can show that any linear
mapping of second-order tensors into second-order tensors is
(can be represented by) a fourth-order tensor. This is done by
considering the effect of the mapping on a basis for the vector
space of second-order tensors, i.e. all those tensors of the form
e;e;.

ISimilarly an 7P order tensor can be regarded as a linear
mapping of sth order tensors into {» - s)t} order tensors and
conversely. More generally by putting in fewer dots other lin-
ear mappings can be formed. In particular, i only one dot is
used, then a (r +s - 2)" order tensor is formed. (Compare
Chapter 13 below.)



CHAPTER TEN

CONTRACTION

' With an inner product in our space we can form dot products in
a variety of ways. For example, given the dyad uv we might
form the scalar u-v. This is a linear function of each of the
arguments u, v. It is called the contraction of the tensor.
Similarly, given the dyadic, e.g., T ={7e;e;, we can form the
scalar

tiie,-- e; = tijgi,'
In terms of a different basis, T =7%g;8; and the contraction
would be given by #7Z;;. But from Eq. (7.7), &;; = a;d;g8,, and,
from Eq. (5.7) ¥ = b!b] #75, so that the scalar obtained by con-
tracting in the new coordinate system is
- : : k
P, = bt afalg,, = 8,0:t™ g4 = 1 gy

which is the same as in the original coordinate system.

Thus the contraction of a second-order tensor is not depend-
ent on the coordinate system. The result is the same scalar,
regardless of the coordinate system used.

32
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Exercise: Show that the tr1ad1c t'i* e;e;e, can be contracted to
a vector by the formula ¢t e; - e;e, and that the result is inde-
pendent of the basis used; (1 e., show that ti/t g, i€k = t'l’“g,]e,t)

Generalize this result for any order tensor. Notice that the re-
sult depends on where the dot is placed.

Let us look again at the contraction of the tensor T = t'ee,.
Before contracting let us replace e; by its expression in terms
of the dual basis {e’, e° ..., e"}, e g,,e’ Thus T can be writ-

ten in the mixed form T = t"glke e = l’e" . Now contracting
gives

Tak.o = t1ak = 47
tet-e =150, L

Thus, as far as the components are concerned, contraction
consists in equating an upper index to a lower index and sum-
ming. This is due to the fact that an upper and lower index pair

correspond to terms t-_- .e;e/, and when we form the contrac-

Consider again the mapping of vectors into vectors by a sec-
ond-order tensor, given by the formula

w=T-v

The vector T - v can be regarded as the tensor product Tv
(third order) followed by contraction T ‘v to produce a first-
order tensor, or vector.

Similarly the linear mapping of second-order tensors into
second order tensors by a fourth-order tensor, as discussed
above

W=T:U

can be regarded as the tensor product TU (sixth order) followed
by two contractions.



CHAPTER ELEVEN

EXAMPLE: MOMENT OF
MOMENTUM OF A RIGID BODY

Consider a collection of mass points m;, rigidly connected
together and rotating about an axis through a point @ in the body
with angular velocity w as in Figure 2. Let R; denote the vector

®

Fig. 2. Mass Rotating About an Axis.

34
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from @ to m;. The velocity of m; with respect to @ is then given
by R; = w X R;. The moment of momentum about @ of the body
is given by

Hg= ZR;x (m,-é,»)=%7m,-R,'><(w>< R)=Zm[(R; R)w-(R, wR,]
= Zm(7iw- RR;*w) = Zm(7i1 - RR)) * w

where we have used the formula AX(BXxC)=(A'C)B -(A-B)C
and | denotes the identity tensor | w = w. Thus we see that

HQ =3 w

where J is the inertia tensor, given in rectangular coordinates
by

Zm(y; + 20)il - Zmyx;y;ij - Tmyxz;ik
2= o ~Zmgyx i+ Zmy( 2% + 22)jj - Zm;y,z,jk
~Zm;z;x Kl -Zm;z;y,Kj + Zm (22 + y%)kk
Note that y? + 22 is the square of the distance of m; from the x

axis. Letting I, = Zm{(y? +2%),1,, = Zm;x;y; and so forth we
can write

Ihi = 1 ij - I ik
J = 'Iyxji+lyyjj°1yzjk
"szki ';Izykj:""lzzkk

In the case of a continuous distribution of mass we can write

Lyx = J (3% +z%)am, Iy = [xy am

and so forth. Here I;: is called the moment of inertia about the

X axis and'l,, is called a product of inertia. To bring the nota-

tion into line with what we have done previously let i, j, k be re-
placed by ey, e, es and let I*'=7,, ,I'* = -J,, and so forth. Then

g= Iije"e]‘
The formulas for the change of the moments and products of

inertia (when a different coordinate system is used) then follow
directly from the general rules

I =bipire
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where e, = b, €, so that
S .
bf - e,» 'es

I {§;}is a normal orthogonal system as the {e;} is in this
case, then b? is simply the cosine of the angle between e, and
és. Clearly I/ =17% and the tensor is called symmetric.

The advantage of taking base vectors fixed in the body is that
the components I/ are constant in time, although the base vec-
- tors move.

The theorem that a symmetric matrix can be reduced to dia-
gonal form by an orthogonal transformation, 030!, means here
that there exists a set of orthogonal principal axes; i.e., axes
such that the products of inertia are all zero.

Similarly it can be shown that the kinetic energy of rotation
is given by KE = (1/2)w* 3" w.

The situation depicted is not as special as it might seem,
since the general instantaneous motion of a rigid body can be
described by the motion of one point fixed in the body, plus a
rotation about an axis through that point.
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CHAPTER TWELVE

STATE OF STRESS AT A POINT

Consider a stressed continuum as in Figure 3(a). Let P be a
specific point in that medium. Take a small circular disk with
center at P (as in Figure 3(b)) with normal n, radius » and
thickness ¢ — 0. The force exerted by the rest of the medium

{3)

(c)

Fig.3. Stress at a Point

37
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on the positive face iis denoted by F(n). Since the mass 7% pe
tends to zero as € — 0, the force F(n) is balanced by a force on
the negative face -F(n). The average stress on the positive face

is ——iﬂ) and the limit of this as » — 0 is 7(n), the stress at P on
a plane whose normal is n. Of course if a direction different
from n were chosen at the outset, such as v in Figure 3(c), the
lim F(v)
r—0 7r?
sents the stress at the point on a plane whose normal is ¥. The
component of 7(n) in the direction of n is called a tension (com-
pression for 7(n) < 0) or normal stress. The component in the
plane is a shear stress.

Thus the state of stress at the point P is described in terms
of two vectors: for each given unit vector n there corresponds
the stress vector 7{(n) acting on the plane normal to n. In other
words T(n) is a function of n. Let us fmd a standard form for
this relationship.

Consider the forces actmg on a small cube of side € with or-
igin at P. Figure 4 illustrates the notation we shall be using
and shows the resolution of forces acting on the face x = ¢,
where € — 0. Similar notation applies to the other faces. Note
that Tx represents the y component of the stress acting on the
x = € face; the corresponding stress on the x = 0 face is approx-
imately -Tx for € very small. The total stress on the x =¢

stress at the point would be 7(v) = . Here 7(v) repre-

ty

Tor T / T

Fig.4. Stress on Plane x =0~
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face is then T(i) = 7 xxi + T oyj + T xzK, where the 1 ij are eval-
uated on the x = € plane. The stress on the x = 0 face is 7(-i) =
[T 2xi + 7 5] + T xzk], where the 7, are evaluated on the x = 0
face. As € — 0 the corresponding values of T ij tend to equality.
Similarly we may obtain the stresses on the remaining four
faces of the cube. By computing the torque about the y axis we
find that, in the absence of body torques, the condition for equi-
librium is 7,, = 7,,. Similarly for the other shearing stresses.

Now let n be a unit normal direction and consider the free
body of the tetrahedron in Fig. 5.

From Newton’s law, F = ma, we get:

AT(n) - {Ax(Txxi + Txyj'*'szk) +Ay(T yxi +Tyy.j + T)/Zk)

+Az(T zxi + szj + Tz'zk)} +fpV = qu

where Ax, Ay, Az are the areas of the tetrahedron on the x = 0,
y =0, z =0 planes; A is the area of the slant face whose normal
is n; f is the force per unit mass due to any body forces that
may be acting; p is the mass density, and V is the volume of the
tetrahedron. Since Ax = An-i, A, = An-j, Az = An-k, we get

T(n)=n- [i(rni+'rryj+'r,,zk) + J(T yxi +Tyyj+fyzk)

+k(7‘zxi+'rzy_j+'rzzk)]-t%71 +%ha

Fig.5. Tetrahedral Free Body.
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where we have used the fact that V = %,where h is the distance

from the origin P to the slant face. Letting h — 0 we see that
we can write

r(n)=n-o
where ¢ is the stress tensor
‘r,xii+7,xyij+1',zik
@ =| Tyxji + Ty i+ Ty JK
T Kl + T Kj + 7. kK

Thus the stress tensor has the property that a unit vector n
dotted into it results in the vector T(n), which is the stress
vector on the plane whose normal is n. We shall assume that
there are no body torques and the medium is in equilibrium so
that ¢ is symmetric and T7(n) =n-¢ =9 -n,

To express these facts in terms of our general notation, let
e,, e, 85 be the orthonormal basis i, j, k. Then, using our
standard notation, we have

P = Tiie,‘ei‘ = T,'I'eiei

where 7/ = 7,;, and, since our basis is orthonormal, el =e;.
The theorem that a symmetric matrix can be diagonalized by
an orthogonal transformation means here that there exists an
orthogonal set of principal directions. The planes perpendicu-
lar to these have no shear on them; only normal stresses. In
terms of this coordinate system, the stress components T;; =
0;6;; (no sumon {). From the invariants given in Eq. (6.8) we

see that
Txx +Tyy + T2z = O +02 + 03
2

2 2
Tex Tyy = Tay + TaxTzz = Txz +TyyT2z = Tyz = 0205 + 0103 + 010,

Txx Txy Txz
Tyx Tyy Tyz = (00203
Tax Tz Taz

The stresses 0y, 0z, 03 are called principal stresses. _
For a fluid at rest there are no shearing stresses, so that

(i) = p1i, T(j) = -p2j, T(K) = -psk.
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Also
7(n) = [r()i +7(J)j + T(KK] *n = -(puii + pajj + pskk) -n = -pn

Dotting i on each side we get p1i-n = pi-n. Similarly it follows
that p, = p, = ps = p. Therefore, for a fluid at rest,the stress
tensor is of the form -pe;e’ and the pressure is the same in all
directions. Such a stress situation in general is called hydro-
static pressure.

If we transform to a new basis e; = a’e the components of
the stress tensor are given by

. =aq

T AT s (12.1)

{
(u o
o
-

~N

“

T =

Thus, although 7;; = 71 (because our or1gma1 basis was or-
thonormal) we see, in general that 7, # 7i, unless the matrix
a] is orthogonal, so that B=4"" = AT, and the new basis is also

orthonormal. The relation 7(n) =n-¢ is not dependent on the
basis, however, and so remains true in any coordinate system i
From this we can see how to interpret the 7i. Take AL - e

E

(no sum on 4). Then

» -fk= - T A T e
’r(n) ___-e___ je-eh=—_v——6.e —— k.
icul ! il

Now dot e—aj into each side to obtain

P = 3 @S = 1 ES
Since He H /_"—Z we see that 1J is equal to

/" /g4J times the physical component, in the n
direction, of the stress on the plane whose normal is
in the nt direction.

Similarly

*=g,-T(8), and 7, = T(&) - §,

In general if ¥ and n are unit vectors then v - @ - n is the
component in the vV direction of the stress on the plane normal
to n,
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Exercise. Show that if the covariant tensor components are
symmetric {7 ,s = 75, ) in one coordinate system, then they are

g s

symmetric in every coordinate system. [Hint: 7,5 = a','as i3

or in matrix notation 7= AT7A. Hence 77 = AT774=%] On
the other hand if the mixed components are symmetric (T; =77%)

in one coordinate system, it does not follow that these are sym-

metric in another coordinate system. [Hint: 1"5' = aéb:'r; or,in

matrix notation, T = B7A. Thus T = AT TBT, which does equal
7if AT = A™', (i.e., for orthogonal transformations) but not in
general. ]



- CHAPTER THIRTEEN

SOME OTHER POINT-TENSORS

Before going on to the study of fields we will consider some ex-
™ amples of poini-tensors which arise in the study of crystals.
i The reader interested in more such examples will find them in

J. P. Nye, Physical Properties of Crystals (Oxford University
™ Press, 1957) or W. P. Mason, Physical Acoustics and the Prop-

erties of Solids (D. Van Nostrand Co., Inc., 1958). The follow-

ing examples are from Appendix C of Nye’s book, and we follow

- his notation, with some modifications.
rm 1. Heat Capacity C. This is a scalar relating two scalars:
[ AS=(C/T)AT.

. A small increase in temperature A T produces a change
™ in entropy AS. Here AS is a linear function of A T. The re-
b lation between the two is given in terms of the scalar C/T.

j Here C is a zero-order tensor and the orders in the stated
™ relationship are [0=0-0].

% 2. Pyroelectricity (p;). This is a vector relating a vector to a
™ scalar. '

AP;=p; AT

43
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A small change in lemperature AT produces a change in
the polarization vector AP,, which is a linear function of &T.
The relation isgiven in terms of the pyroelecitric vector {p,}.
The orders involved in the stated relationship are [1=1-0].

The same pyroelectric vector is alsoinvolved in the elec-
trocaloric effect given by AS = p, L/, where {E'}is the elec-
Iric field vector. Here the order of the tensors involved in
the equation is [0=1-1}.

3. Permeability (;J,, ). Here we have (as in the stress tensor

and the inertia tensor treated in Chapters 11 and 12) a sec-
ond-rank tensor relating two vectors {1=2-1]. The equations
B, = p,;H' give the magnetic induction or flux density vector
B . as ailinear function of the magnetic field intensity or field
strength vector H. The permeability tensor (pi;) defines the
linear function; in our general notation the relation would be
written B = - H and the function described as y-( ). As an-
other example: In the present notation the inertia tensor as
discussed in Chapter 11 relates the angular momentum vec-
tor H to the angular velocity vector w through the equation
H; = Ij;w’. Similarly the stress tensor of Chapter 12 relates
the stress vector on a plane, to the normal vector of the
plane 7; = 7;; »/. Similarly the strain tensor (¢;;) relates the
strain vector of a direction, to a unit vector in that direction.
In each of these cases we have a second-order tensor relat-
ing two vectors, with the scheme [1=2-1].

. The thermal expansion tensor (e;;) is a second-order tensor.

In the equation €;; = ¢;; AT it relates the second-order strain
tensor to the scalar change in temperature AT. The orders
of the tensors involved in the equation take the form [2=2-0].
The same tensor ¢;; is involved in the piezocaloric effect
A8 = o,-,--r*'i relating the change in entropy A S tothe stress
tensor (71/). Here the orders are of the form [0=2-2]. The
thermal pressure tensor f'l is similarly involved in two re-
latioriships one giving thermal pressure i = -fiiaAT [2=2-0],
and th]e other giving the heat of deformation AS = file;;
(0=2-2].

. In the direct piezoelectric effect P; = d,-,-;gri’c we have the

form [1=3-2] in which the polarization vector (P;) is ex-
pressed as alinear function of the stress tensor (7 i) through
the third-order tensor of piezoelectric moduli (d;p ). The
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same third-order tensor (dij ) is involved in the converse
piezoelectric effect €; = d;j E' relating the strain tensor
(€2 ) to the electric field strength vector (E*). Here the or-
ders of the tensors take the form [2=3-1].

. As an example of a fourth-order tensor we cite the elastic

rs

stiffness tensor Cij

strain tensor:

which relates the stress tensor to the

Tij = Cij Ers

Here the form is [2=4-2]. There are 3* = 81 quantities c;; ,

* but many of these can be shown to be equal. One of the ob-

jectives of the study of crystal structures is to use the sym-
metries of the crystal structure to determine the minimum
number of essential constants involved in these tensor rela-
tionships, and then find ways of measuring them experiment-
ally. '



CHAPTER FOURTEEN

CROSS PRODUCTS

We first introduce the alternating symbol

Elllzuooln = €. .

which has the value +1 if (¢y, ¢z, ...in ) iS an evern permutuation
of the integers (1, 2, ..., n); it has the value -1 if (7}, 7z, ..., 2a)
is an odd permutuation of the integers (1, 2, ..., n). In all other
cases it has the value 0.

Let F = (f/;) be an n X n matrix. Then by the definition* of a
‘determinant we have )

det(F) = €12 fn gl 2 g7 (14.1)
11 22 1

n

where det( F) denotes the determinant of F.

*The classical definition of a determinant is'that it is a sum of prod-
ucts, each product consisting of n elements of the matrix such that each
row and each column is represented; the sign associated with each such
term is (+) or (-) as, after the elements are arranged in order of increas-
ing rows, the resulting column indices form an even or odd permutation of
(1, 2, ..., n). '

46
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This can be generalized easily to
ghizminglt iz o= eliinge(F)  (14.2)
. 1 2 in

The student may, on occasion, have tried to prove the funda-
mental relation that the determinant of a product is the product
of the determinants; i.e., if F and G are n X » matrices then

det(FG) = det(F) * det(G) (14.3)

Those who have tried it know what a complicated business it
can be. As an illustration of the beauty of the notation just in-
troduced, we shall prove it here as follows.

det(F) - det G = lefrizein le sz---ff ]- det(G)

=fi fi e ST €T det(G)
n
1 2 n 1 iz In flfz...fn
= L ees ] . . R >
ffxf‘2 ,f’n gll glz, g

In

=gltizeIn gt 2 p" = det H
11 12 In

where k; = fi g;; i.e. H=FG. QE.D.

So far we have not defined a cross product for abstract vec-
tors. We have assumed that the student knew about the cross
product of two physical(3-dimensional) vectors in order to pro-
vide illustrative material in Chapter 8. Let us examine this
case first. |

The usual definition of the direction of A X B is that if A and

"B have the same origin and if the fingers of the right hand are

curled from the tip of A to the tip of B then the thumb will point
in the directionof A X B. This definition is tooc anthropomorphic
for use in an age when communication with creatures from out-
er space seems imminent. Let us try to define this without us-
ing hands. Since the cross product is additive and homogeneous
it suffices to define it for the basis elements. For convenience
let the usual orthonormal basis (i, j, k) be denoted by (i, iz, i3)
= (i%, i%, i®). If we define the cross product by the formula

i,uxixz =€uye i’ (14.4)
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- then we get the usual cross product if the coordinate system is
right-handed. A colleague using the same formula but a left-
handed coordinate system would get the oppositely directed

vector. (Figure 6.)
Our next objective is to define the cross product in an ab-

stract 3-dimensional vector space. Of course we cannot use
our hands, and the above illustration shows us that we can an-
ticipate difficulties, if we have left handed colleagues.

Let (ey, ez, e3) be a basis, not necessarily orthogonal, and let
(e', %, e®) be the reciprocal basis. We want to find the form-
ula for e;xe; in terms of objects already defined. Let
(iy, @2, is) = (i*, i, i®) be an orthonormal basis such as (i, j, k)
mentioned above.* Since (e, €% e®) is a basis we have

e; Xe; =c,et (14.5)

and dotting e, into each side we have ¢, = e; X e; ' e,. We

iy=i,xi,

Left-Handed System . Right-Handed System

Fig. 8.

*The actual construction of an orthonormal basis can be accomplished
by the ‘‘Gram-Schmidt Orthogonalization Procedure’’: take

Vy =€ i1=Vx/“V1H
V2 = €2 - (e2- )i, i2=V2/HV3H

V3 = @83 '(es'ix)ix' (ea’iz)iz i; =V9/HV3H
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are not finished yet because this formula for ¢, involves the
cross product. Let e; = EY i,. Using Eq. (14.4) for the cross
product of the orthonormal basis we get

Y.

Ck=ez'><e,-'ek=E?iafoi5'Ek| =E‘,’Eﬂf;’:e M

Y ] alfu b4

_ a7 u _ a7
—E,.E].Eke o} —I;X.E]Eke(x

wiu Oy =€, det(E)

8y
where E is the matrix (E). Therefore, from Eq. (14.5), we

have e; X e; = € ;, det (E) e*.

;.,z_.a'.B':GB:aa
Now g; =€; " €; ET I, Ej g EiEléaﬁlEiEl.
Thus we have the matrix relation g = ETE. Therefore det(g)
= [det( E)]*. Hence

e, X el,' = % € ijk -e‘E Vdet(g)

Now in an abstract vector space we do not have the preferred
system (i, j, k) to start with. We start instead with some cho-
sen basis (e;, €, €3). Then, in terms of this basis we define

If our neighbor has his own basis (e, e, es) and uses the
same recipe (14.6), he will define the cross product by

Is this what we would get if we used our formula (14.6) and
applied it to our neighbor’s vectors in Eq. (14.7)? In terms of
our system we then wish to verify Eq. (14.7). For Eq. (14.7) to
be true we must have: ;

(a:er) X (a;es) =€ ijk bf e’ ’\/det (a: a; &, )
alal e, e Vdet(g) =€ bre’ 1fdet (g) V/[det(A)]?
alale,, =ty b, Vldet(4)?

Multiplying each side by a,, (and summing on t}, we get
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k
€ ijr det(A) =€ ijk 6 ’ l det(A) I

i.e. |
det(A) = | det(A)]

In other words our neighbor gets the same result as we 4o,
provided the determinant of the transformation is positive; i.e.,
det (A) > 0. Otherwise the sense of the coordinate systemis
reversed and his formula for cross product does not lead to the
same result as ours.

In an n-dimensional space with basis( ez, ez ..., €, ) we might
define the cross product to be the (n-2)7d -order tensor

e xe =e¢ _ edet..en \[detg) (14.8)

1 i 1112 eea Iy

~Our friend, using the same recipe, would write

e X& =c¢ @0 ein 4fdet(g) (14.9)

13 Iy 1112 e0sip
Now we want to check his formula (14.9) using our formula
(14.8). Formula (14.9) will check, provided we have the follow-
ing sequence of equalities:

e X atze =€ - bf’ei’b;:éi‘ ...b;" e/ |det(A)l Vdet(g)

‘1 J1 12 i112e00dp I3
jiv d2 _1s T4 i
e . a‘d*elet..e"
f1l2lz ey 12 ‘

e b bime/telhe’m ldet(A)]
f1f2 eeein 13 la - in

€ dia?=¢ b I bl det(A)]
s 14 In

J1l24.4p i1 2 1172 eeeip

multiplying by a’; s a‘i‘ .a@'" (and summing) we get
3 T4

n

€ det(A)=¢. &' o’;‘... 5" det(4)]
n

F1i273 T4 eee Ty 11126001y T8 4

det (A) = |det(A)]
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That is, our neighbor gets the same result provided his
transformation from the preferred coordinate system (ours) has
a positive determinant, i.e., det(4)> 0. '

The cross product can be defined more elegantly in terms of
the ‘“‘wedge product’’ |See G. Berman ‘‘The Wedge Product.”
American. Mathematical Monthly, 68 (1961) pp. 112-118]. We
shall not go into this here, nor into the *‘exterior algebra’’ [see
H. K. Nickerson, D. C. Spencer and N. E. Steenrod, Advanced
Calculus (D. Van Nostrand Co., Inc., Princeton, N. J., 1959)],
which furnishes the natural generalization of these concepts.



CHAPTER FIFTEEN

CURVILINEAR COORDINATES

Consider the case of curvilinear coordmates xt = xi(Er E2 3;3)
as in Fig. 7.
Here R is avector from a fixed origin 0 to an arbitrary point

2
, x3=constant
13 Axl=¢!

x'=constant

=constant

x2

gl

63

Fig. 7. Curvilinear Coordinate System.

592
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P. Now -gB- is tangent to the x' coordinate curve. Also Vx'is
X _
normal to the surface: x' = constant. Thus Vx . 35,% =0 if ¢ # j.

-Furthermore ¥xi - a—R; = 1, since dx’ = Vx' - dR. [Another way

x
to see all this is to let R(?) represent a path through P. Then -

Vxi-R = .g_gi_ £* = ¥'. Hence Vx' - dR = dx.]* Thus
. 3R axi i
l oy — = —— .
v ox!  3x] ®;

Therefore if we take as a basis, at the point P, {e,, e., €s, )
where '
oR

e = —

ox!

then the reciprocal basis is given by e = Vxi. We shall use e;

= -2-3 as our base vectors at the point P.
xt

. I R(t) is a path through P, then the square of the speed at
the point P is given by

2 » . » . . . LR e .02
(.c.i_s.) = UZ =R-'R = aaxR xl aaR] x! = x‘xfe!- .e}. :giixfxl.
! X

This also may be written o
(ds)? = gi; dx'dx! (15.1)

Consider a new coordinate system %' = %' (¢£', £2, £%). We
shall consider all transformations to be one-to-one, so that we
might also write ¥’ = Z/(x', #*, £°) and x' = x/(#', ¥, °).

The point P is located by R(x', x%, x%) = R(%*, ¥*, x®). Again
take &; = —?—B—i, e = Vx'. Then, as in Chapter 2, &, = ai.e,-. ‘Let

ex'
us find the ¢/ in terms of the quantities present here.

2R _ 2R 3x' _2x

e, = — - - = - g, (15.2)
" axd cx! oxt ox: 7
. 1 k i
*Another derivation is as follows: aL= ox! _a_&_ = Px'. ﬁ But a_x_
dx!  3t* 3Jxi dxi ax!

_ gt
6,.
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: i
Thus a{ = —:—% as in Eq. (5.9), although the x’s of Chapter 5 are a

- very special case of the x’s being used here. Similarly to Eq.
(5.10) we have

i axl
. ) oxi b} ad
since the matrices T and P are inverses of each other
X

0%l oxl _3x _ i
_ oxI oxk oxk . k
Thus solving Eq. (15.2) for ; we get

aF '

@ = 8; 15.3

Tatew (15.3)

Notice how Eq. (15.3) may be obtained from Eq. (15.2) by

“‘high school algebra.’”’ Similarly

PV e/ (15.4)

5 =
since

- % :
Vxt = _§§___ Vx!
ax?
An alternate proof may be obtained from Eq.(15.2) as in Chapter
5. The laws of transformation of components of tensors now
follow as in Egs. (5.11) to (5.13) and so on, except that the co-
efficients
I
_ Toaxi? T pxi
aré now variable as we move about in the field. X R (#) de-
scribes a curve, we can compute the velocity vector
R = ER— xi = x'e; = vie;
ox!
Thus the velocity vector has contravariant components x7, in
terms of the given basis.
The acceleration is slightly more complicated, since as e
move along the paih,the base veclors also change. Thus
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a=Ro=iie; +vie; = we; +0l B 3l = Yie, 4 yivi 8L
ox’ ox!
.. 98 3R . , :
The quantities —= ——— will be discussed in the next chapter.
9x)  oxidx!
Suppose next we have a scalar field ¢(R). We can define the
vector field V¢ by the equation

Vo =22 pyxi= 28 (15.5)
, ox? ox!

The only trouble with this definition is that it is given in
terms of a particular coordinate system. Suppose we used the
same rule Eq. (15.5), but computed in a new coordinate system.
We would get

yo =20 gio 00 2 5 20

ox’ ax! ox? ox?

which is the same as before. Thus, even though Eq. (15.5) de-
fines V¢ in terms of a particular coordinate system, the re-
sulting vector field comes out the same, no matter which coor-
dinate system is used. It would have been more elegant to de-
fine V¢ in a manner which does not depend on any coordinate
system. This may be done as follows: Take any curve R(%)
through P. Then, as we move along the curve, the scalar ¢ is a
function of time; its derivative with respect to time is a linear

el

. function of the velocity R. Thus ¢ = A - R for a suitable vector

A. This vector A is defined to be V¢. This definition does not
depend on a coordinate system. In any coordinate system we
obtain at once

. 3¢ . ap . . o0 . = 09 .

= —— x' =—— e'-xle; = —— e'*R. Hence = — g!

¢ axt ox! P 3x ve ox? €
While this procedure may seem artificial, it has the advantage
of being invariant. We may use the same method to now define
the gradient of a vector field u. Again U is a linear (vector val-
ued) function of the velocity R so Yu is a second-order tensor
A such that 0= A - R. In any coordinate system we have

. . u . . .
a= aU xz - a : ex . x]ej :_@_‘_Ji_el . R
ax! ox! ox!
Hence
Vu-= a—u Vxi

dx!
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a formula which is often used as the definition of Vu. However,
as a definition it involves a particular coordinate system. Thus
we must verify that if we perform the same operation in a new
coordinate system, we arrive at the same second-order tensor.

Written out in more detail we have

Yu = V(uie;) = (-?u—l. e; +u 95"7)17;»:7'
ox! ox!

: oe;
The quantities —a—x—;— have appeared again. They will be dealt

with in the next chapter.
The divergence of a vector field u may be defined in terms of

a particular coordinate system by the formula
. | 5 '
vou=2 . gy (15.6)
oxt ,
The same form computed in a new coordinate system would
give : -

ou - ou  ox’ ou :
Us— V¥ =—"*—- 8 =—5"¢€
v Py YT P
so that the same result is obtained.
I we write out Eq. (15.6) we get
v.u=a(u?1 .ef:_—aul. 6?+uj_a_g;-ei:.a—zf-:-+uj.a£]_ e!
axt oxi ! axt oxi oxi

oe;j
Again the quantities —5;%- have appeared.



CHAPTER SIXTEEN
| COVARIANT DERIVATIVES

As we move the point P, not only do the coordinates of the point,
{x?}, change, but so do the basis vectors {e; }and also the recip-

. 2
rocal basis vectors {ei} Thus ae,. = a R. is a vector which
ox!  ox!ox?
we now expand in terms of the basis {ei, ez, ..., €, }
oe; {k} ‘
— =<..r€ 16.1
axi GGk - ( _ )

The components {Z} are called the Christoffel symbols of
the second gind. Note that all three of the quantities in Eg.
e fk .
(16.1), viz. Py { }, e, depend on the particular coordinate
x

ij
system being used. Solving Eq. (16.1) for {Z} we get
de; 2
{?}=——f-e*= TR gt (16.2)
ij)  oxi ax7 3x?

~ Suppose we have a vector field v = v(x', x2%, x°) = vig;. We
now take at each point the partial derivative of the vector field
with respect to /. The result is a new vector field:

57
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ov 5 . dvi de;, [out (&
—-—+=-——f(v’e,-)=a—fe,'+v'—-—-= — + V! i e;

ox!  ox! x! ox’ ox!
Hence
ov :
'a—x-;- = Uk, ’-ek (16.3)

where the contravariant components of this new field are given

by
vk BY .
v",,-= L +{..}v’ (16.4)
ox! 1]
and are called the covariant derivatives.

i .
Let us find the formula for a_e_ Since e’ - e, = 6, we have

ox!
—.?.._e;: l.aﬁz_ée_z' t 1
0= gu7 " "8 5 T St )Uefe'
or
oe' .. }e"~e - {’} (16.5)
axl Ok {ky i kj T
Hence -
.a£i=-fi} k
o \kif ©

Therefore we can éompute aa—v’- in the form
X

v _ 3 v o ael [ g h o ok
Foriaievr (viet) =—— &' +v; — —[——-{kj}v,]e =V, @

dx/ ox’ ax! ax7
Thus

—al. = v, jet , where (16.6)

ox! ’

avk 7

Vi, = 5o ey (16.7
gives the formula for the covariant derivative of the covariant
components.

Similarly the covariant derivative of mixed components is
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arrived at as follows. Let T =t e;e/. Then

oT oT

VT = — Vxt = — ek
| ax* dxk
where
AT _ ot T PRV,
—_— = p;el +t;— el +1 e, —
ax*  oxk gk © THi®i A
ott. _ D
=.__7_-i'.r} i_pa §I
ot °1° rt; {fere - tien { fer
= ——— - ol
15 o e e
. i ; T i -
Hence f T = ¢, e;e/, then— =1{ ,e;e’ , where
' 1 ) axk y,k
H
ot . .
i ___7 1 s S i
i {a} {oi} te (16.8)

Equation (16.8) gives the formula for the covariant derivative
of components of the (i) type. The extension to components of
arbitrary type is completely similar.

Exercise 1. From the definition g;; = 28— . g—%;verify the form--
X

ij ;
ula ox

{ i} iy (ag,,- , 8% 8gﬂz>
i "28 \Gex T axi T axr
The notation I ;k is often used for {J;} Since these quantities

do not follow the (3) transformation law, the use of a special
symbol such as { }emphasizes the fact that they are not com-
.ponents of a tensor.

Similarly, verify that the Christoffel symbols of thefirstkind

.. ¥

are equal to

(agk] + O& ki . Bg,,)

1
2 \ 3xi oxi  axk
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Exercise 2. Show that the Christoffel symbols {;} follow the
transformation law J

{_z-}= oxi oxS oxt j r} .\ oxi  *x’
jRS  axr axk 9x! st 3xr axk axf

.1} are not the
jk

form of the components of a tensor with respect to an arbitrary
coordinate system.

which, in view of the second term, shows that{

Similarly find the transformation law of the functions @-:va.nd

observe that they are not tensor components. ox

By combining the above results show that the transformation

]
law of the quantities vi,; = _v’ + k}v satisfy the law of (1)
components. 0x
. 3%’ ax’
Hint: on differentiating the identity Fyrirery -6,, with respect to
Pz ax oxi  xl 3z’

xS we get the identity 3%° o7 3%k = - 3x! 3XT 3%k 3xS

Exercise 3. Verify the formula

Q';; (= (log Vdet(g))

Using Eqns. (16.1)-(16.4), we can write some of the
results of Ch. 15 more compactly:

For the acceleration vector R we have R = x'e; + {].e.}v"vfek,
or alternatively v

B odv _ v . z—-‘l in o 007 {jlk :
S o v”ve’"[ax*‘ RV |V

Slmllarly for the time derivative of a vector fieldu = u'e; (the
““intrinsic derivative’’) as we move along a path we have

. au c . k L ..
- Db ek = ke,

or alternatively, u= Vu- R smce for the gradient of avector

field we get
duk k : .
yu = (—a—;l— e, +u { .}ek)e’ = uk,;ie,el
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(this is an easier solution to Exercise 2 above.)
Thus the formula for the gradient of a vector field may be
written simply as

Vu = .29_ sz
‘ ax!
For the divergence we get
k . du!t
. =.._._-+u7f le cel = 2 71
V-u ax’ Vi f b Py + U UZ‘ so that

¥-u=u!,; , which is the contraction of Wu.

For the Laplacian of a scalar {ield we get

29 00 .. 3¢ i\
Vz = V- Vo= <___. ex): V.(__.___ x;e_>= (___ ] '
? ? dx! ox? £7e oxi & ) !

This last expression can be reduced to the form
1) |
V i (_) s ]
=g Pyl BN

since the metric components gl ‘“‘behave like constants under
covariant differentiation.”’ To see this, we have for any vector
field v

ov

-5;-0 1€ =V, €]

Dotting e’ into each side of the last equation, we get

v =817 v; 4
i.e.
(g7 v;) =870,
Similarly
(grj vj)’k = 8ri vfb,
The natural generalization of these concepts occurs in the
theory of exterior differential forms. We shall not go into this

here, but the interested reader is referred to the book of Nick-
erson, Spencer and Steenrod cited earlier.
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