
MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.1

Due: Monday Feb.6, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. Read Solved Problems 1.9, 1.10, 1.11 on pp.7-10. Then find an expression for the natural
frequency of this system:

2. A concentrated mass M is attached to the end of a uniform rigid bar of mass m which is
pinned at P as shown and restrained by two springs.
a) Obtain the equation of motion by using free body diagrams. Neglect gravity and friction.
Assume small rotation angle.
b) Same thing, but use Lagrange’s equation:

d

dt

∂L

∂θ̇
−

∂L

∂θ
where L = T − V



3. An upside-down compound pendulum is composed of a concentrated mass M is attached
to the end of a uniform rigid bar of mass m. Although normally unstable, its equilibrium
position is made stable by the addition of two springs as shown. Find an expression for the
minimum value of k for which the equilibrium is stable.

4. The differential equation
x
′′ = 0

has, amongst all possible solutions, the solution

x = 1 + t

The differential equation
x
′′ + w

2
x = 0

has the general solution
x = c1 sinwt + c2 cos wt

In the limit as w → 0, the second differential equation approaches the first differential equa-
tion. We would therefore expect the second solution to approach the first solution.

But since sin wt → 0 and cos wt → 1 in the limit as w → 0, the second solution does not
appear to approach the first solution.

How can this be? What is going on here? Explain.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.2

Due: Monday Feb.13, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. Mass m1 moves along a horizontal line, while mass m2 is constrained to move along a
vertical channel as shown. They are connected by a massless rigid rod of length a which is
pinned to each mass. Mass m1 is restrained by a linear spring with spring constant k. d is
the horizontal distance between the equilibrium position of m1 and the vertical channel in
which m2 moves.
a) Use Lagrange’s equation to find the equation of motion. Assume that x is measured from
equilibrium. Neglect friction and gravity.
b) What is the natural frequency of small vibrations about equilibrium?

CONTINUED ON NEXT PAGE



2. A point mass m moves without friction on a parabola given by y = x2 where y is vertically
upward. Use Lagrange’s equation to find the natural frequency of small vibrations about
x = 0. Include gravity, neglect friction.

3. In class we showed that the maximum steady state response amplitude R of a harmonically
forced lightly damped linear system

ẍ + 2nẋ + ω2x =
F

m
cos Ωt ⇒ xsteadystate = R cos(Ωt − φ)

occurred at driving frequency
Ω =

√
ω2 − 2n2

At what driving frequency does the maximum amplitude of the steady state velocity occur?

CONTINUED ON NEXT PAGE



4. A wheel of radius R and moment of inertia I0 is mounted at its center O with a frictionless
pin. A mass m is constrained to move on a vertical line and is attached to the wheel by an
inextensible cable as shown. The system is released from rest and the wheel begins to spin
up due to the downward motion of the mass due to gravity. The kinetic energy is given by:

T =
1

2
mẋ2 +

1

2
I0θ̇

2 (1)

and the potential energy is given by

V = −mgx (2)

Neglecting friction, the conservation of energy gives

T + V =
1

2
(mR2 + I0)θ̇

2 − mgRθ = C (3)

where C is a constant and where we have used the relation x = Rθ. Since the system is
released from rest, the constant C is evaluated using the initial conditions as follows:

θ(0) = 0, θ̇(0) = 0 ⇒ C = 0 (4)

Solving eq.(3) for θ̇, we obtain the first order differential equation:

dθ

dt
=

√

2mgR

mR2 + I0

√
θ (5)

where we have taken the positive square root for downward motion.
Now here is the question: Eq.(5) with initial conditions (4) has the exact solution:

θ(t) ≡ 0, for all t > 0

which says that the wheel doesn’t rotate. But this is physically unreasonable.
Where is the error?



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.3

Due: Monday Feb.20, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. A simple pendulum of mass m and length a has its point of suspension attached to a mass
M which is constrained to move on a horizontal line, and which is restrained by a linear
spring k:

a. Use Lagrange’s equations to derive the (full nonlinear) equations of motion for this system.
x is measured from the unstretched position of the spring. Neglect friction.
b. Linearize the resulting equations about x = θ = 0.
c. Write the linearized equations in the matrix form:

Mz̈ + Kz = 0

where

z =
(

x

θ

)

and where M and K are symmetric matrices.
d. Using the numerical values M = m = a = g = k = 1, compute the frequencies ω1, ω2 and
the modal vectors 1Z and 2Z.
e. Show by direct computation that the modal vectors are orthogonal with respect to both
M and K.
f. Defining the matrix R as R = [1Z 2Z], show that Rt M R is diagonal.
g. Write x and θ as linear combinations of the principal coordinates p1 and p2.
h. By substituting the expressions you chose in part g above in Mz̈ + Kz = 0, obtain
differential equations on the principal coordinates p1 and p2.



2. A particle of mass m = 1 moves in the x− y plane and is restrained by three springs with
spring constants k, 2k and 3k respectively, where k = 1. The springs are unstretched in the
configuration shown, and have unstretched length equal to 1. Find the natural frequencies
of free vibration.

3. The general motion of the first coordinate of a two degree of freedom system is given by:

x1(t) = R1 cos(ω1t − θ1) + R2 cos(ω2t − θ2)

Is this a periodic motion? Under what condition will it be periodic?



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.4

Due: Monday Feb.27, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. a) Use Lagrange’s equations to derive the EOM (equations of motion) for the following
system in physical coordinates x1, x2.
b) Transform to principal coordinates p1, p2, and so write the EOM in the form:

p̈1 + ω2

1
p1 = g1(t), p̈2 + ω2

2
p2 = g2(t) (1)

Identify ω1, ω2, g1(t), g2(t).
c) Assuming very small damping, the complementary solution to eqs.(1) will be transient.
Ignoring the complementary solution, obtain the steady state solution to eqs.(1).
d) Transform the steady state solution in p1, p2 obtained in c) back to physical variables x1,
x2.

2. a) Obtain the steady state response to the EOM derived in 1a) directly (without the use
of principal coordinates) by assuming a solution in the form:

x1 = A cosΩt, x2 = B cos Ωt (2)

Substituting eq.(2) into the EOM, obtain expressions for A, B.
b) Show that the solution so obtained agrees with that obtained in 1d).
c) Plot A, B as functions of Ω. For which value of Ω does B vanish?



3. This question concerns the two foregoing schemes for obtaining the “steady state” response
of a very lightly damped linear n degree of freedom vibrating system. We take the equations
of motion in the matrix form:

Mẍ + Kx = F cos Ωt (3)

where M and K are symmetric nxn matrices, and x and F are column vectors. Here we
have omitted the damping term from the differential equation, but we assume its presence
causes the complementary solution to decay to zero. Thus we look for the steady state in
the form:

x = X cosΩt (4)

We wish to find the amplitude vector X in terms of the forcing vector F .

Method 1: Direct substitution
Substituting (4) into (3) gives:

−Ω2MX + KX = F ⇒ X = (−Ω2M + K)−1F (5)

Method 2: Principal modes
Principal coordinates are defined by

x = Rp (6)

where R is the nxn modal matrix which satisfies the equations:

RtMR = D1, RtKR = D2 (7)

where D1 and D2 are nxn diagonal matrices. Motivated by eq.(4), we write

p = U cos Ωt (8)

where U , like X and F , is a column vector of constants. Thus eqs.(4),(6) and (8) give:

X = RU (9)

Substituting (9) into (5), we get

−Ω2MRU + KRU = F (10)

Next we multiply eq.(10) by Rt

−Ω2RtMRU + RtKRU = RtF ⇒ − Ω2D1U + D2U = RtF (11)

where we have used eq.(7). Solving the second eq. in (11) for U , we get:

U = (−Ω2D1 + D2)
−1RtF (12)

Having solved for U , we can now get X from eq.(9):

X = RU = R(−Ω2D1 + D2)
−1RtF (13)

Comparison of the two methods
We now have two distinct expressions for the amplitude vector X in terms of the forcing
vector F , namely eqs.(5) and (13).

SHOW THAT THESE TWO EXPRESSIONS FOR X ARE EQUIVALENT.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.5

Due: Monday March 12, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. As shown in class, the longitudinal vibrations of a rod with free ends are governed by the
equations:

∂2u

∂t2
= c

2
∂2u

∂x2

with B.C. ∂u

∂x
= 0 at x = 0, `

a) Find the frequencies ωn and modes of vibration Un(x).
b) Show that the modes {Un(x)} form an orthogonal set.
c) Find the general solution.
d) Find the solution which corresponds to the initial conditions:

I.C. t = 0, u =
x

`
,

∂u

∂t
= 0

e) Compute u(`/2, t).
f) Use matlab or some other software to plot the first three terms of u(0, t) for c = ` = 1.

2. The longitudinal motion of a rod with mass/length ρ, Young’s modulus E and cross-
sectional area A is restrained by a spring with stiffness k at x = `, as shown. What is the
resulting B.C. at x = ` ?

3. Find the B.C. for a rod with mass/length ρ, Young’s modulus E and cross-sectional area
A which is moving longitudinally and has a particle of mass M attached at it’s end, x = `.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.6: 2nd REVISION

Due: Monday March 26, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. This problem is a forced vibrations version of the free vibrations problem in Homework
No.5. The forced longitudinal vibrations of a rod with free ends are governed by the equa-
tions:

∂2u

∂t2
=

∂2u

∂x2
+ x

2 cos t

with B.C. ∂u

∂x
= 0 at x = 0, 1

and I.C. u = 0 and ∂u

∂t
= x at t = 0.

a) Find the frequencies ωn and modes of vibration Un(x).
(Same as Homework No.5 except that here c = 1 and ` = 1.)

b) Expand the forcing function in a series of Un(x).
c) Expand the I.C. in a series of Un(x).
d) Write the ODE and B.C. on pn(t).
e) Solve d) for pn(t).
f) Write out the first 2 terms of the solution, p0(t)U0(x) + p1(t)U1(x).

2. The free vibrations of a (Bernoulli-Euler) beam are governed by the PDE:

ρ
∂2u

∂t2
+ EI

∂4u

∂x4
= 0

This problem concerns a beam which is clamped at both ends:
B.C. are ∂u

∂x
= 0 and u = 0 at x = 0, `.

NOTE: You may use the “Table of Beam Frequencies” posted on the Blackboard website.

a) Find the frequency equation on ωn and an equation for the mode shape Un(x).
b) Find the first 4 frequencies ω1 ,..., ω4.
c) Plot the corresponding 4 mode shapes.

3. A student tries to solve the PDE
∂2w

∂t2
=

∂2w

∂x2
− cos t with B.C. w(0, t) = w(π, t) = 0

by setting w(x, t) = u(x) cos t. This gives the boundary value problem for u(x):

d2u

dx2
+ u = 1 with the B.C. u = 0 at x = 0, π.

Try to solve for u(x). Comment on what is going on here.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.7

Due: Monday April 2, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1a. Using the Table of Beam Frequencies, find the lowest natural frequency of a uniform
beam which is clamped at x = 0 and pinned at x = `.

1b. Find the static deflection of a beam as in 1a under a uniform distributed load.

1c. Using V (x) as in 1b, compute Rayleigh’s quotient and compare the resulting frequency
with your result in 1a.

1d. A clamped-pinned beam as in 1a carries a concentrated mass m at its midspan. Use
Rayleigh’s method to approximate the beam’s lowest natural frequency.

2. Although we have used Rayleigh’s Method for beams, it may also be used for approxi-
mating the lowest frequency ω1 in the longitudinal vibrations of rods.

Read section 7.6 on p.204 and then use it to find a bound on ω1 in a tapered rod of circular
cross section and length 2 whose radius is given by

r(x) = x + 1

with B.C.
u(0) = u(2) = 0

3. A student tries to solve the PDE
∂2w

∂t2
= −

∂4w

∂x4
+ f(x) cos t

with B.C. w(0, t) = w(π, t) = 0 and wxx(0, t) = wxx(π, t) = 0 by setting w(x, t) = u(x) cos t.
This gives the boundary value problem for u(x):

d4u

dx4
− u = f(x) with the B.C. u = u′′ = 0 at x = 0, π.

a) Show by constructing the general solution to this ODE that this system has no solution
for f(x) = 1.

b) Find a choice for f(x) for which a solution exists.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.8

Due: Monday April 16, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. A clamped-free beam has a cross-section with constant depth, but whose width varies
linearly from a maximum at the fixed end to zero at the free end. Taking the origin of the
x-axis at the fixed end, take

I = I0(1 −
x

`
)

ρ = ρ0(1 −

x

`
)

where I0 and ρ0 are the moment of inertia and mass per unit length at the fixed end.

Choosing V (x) = c1x
2 + c2x

3, use the Ritz method to obtain a bound on ω1 and ω2.

2. In class (see lecture notes 10 on the web) we used the Ritz method with two terms to
approximate the lowest two natural frequencies of a clamped-free beam. Extend this analysis
by using 3 terms:

V (x) = c1x
2 + c2x

3 + c3x
4

Compare the values you get for ω1, ω2, ω3 with the exact values given on the Table of Beam
Frequencies.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.9

Due: Monday April 23, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. The radial vibrations of a fluid contained in a rigid spherical container are governed by
the equation ∇2P = 1

c2
∂2P
∂t2

, where P is the pressure in the fluid. Setting P = U(r) cos ωt

gives
d2U

dr2
+

2

r

dU

dr
+

ω2

c2
U = 0

where r is the spherical polar coordinate r2 = x2 + y2 + z2. The associated boundary
conditions are:

dU

dr
= 0 at r = R

and
|U | < ∞ (that is, U is bounded) at r = 0

where R is the radius of the rigid container.

a) Change variables from r to ρ = ωr/c and find the new ODE on U(ρ). (The idea of this
is to remove the constant ω2

c2
from the equation.)

b) Seek a solution the ODE found in a) for U(ρ) in the form of a power series in ρ. Find the
first 5 nonzero terms.

U(ρ) = a0 + a1ρ + a2ρ
2 + a3ρ

3 + · · ·

c) Using the series expression you obtained in b), substitute the B.C. dU/dρ = 0 at r = R

(that is, at ρ = ωR/c) and thereby find an approximate value for the lowest natural fre-
quency ω1.

2. In studying the axisymmetric vibrations of a circular drumhead (membrane), we have
met the Bessel function J0(x), which satisfies the ODE:

x
2
J
′′

0
+ xJ

′

0
+ x

2
J0 = 0.

A related function is the Bessel function Jn (n = 1, 2, 3...) which comes up in the general
(non-axisymmetric) vibrations of a circular drumhead. It satisfies the ODE:

x
2
J
′′

n + xJ
′

n + (x2 − n
2)Jn = 0.

In studying the axisymmetric vibration of a circular plate, we encountered J1, where it was
claimed that

J1 = −J
′

0
.

Derive this relation by using the ODE’s on J0 and J1.
Hint: Show that J ′

0
satisfies the same ODE as −J1.



MAE 4770/5770 Engineering Vibrations Spring 2012 Prof.R.Rand

Homework No.10

Due: Monday April 30, 2012

RULES: Work alone (no collaboration). Do not copy other students’ work. If you use a
reference (online or from a book), cite it.

1. Use the method of harmonic balance to determine an approximate relation between the
frequency ω and amplitude A of free vibration in the following conservative nonlinear system:

d2x

dt2
+ x = αx

5

2a. Use the method of harmonic balance to determine an approximate expression for any
limit cycles which are exhibited by the following nonconservative system:

d2x

dt2
+ x = 0.1

(

1 − 2x2 + bx
4

) dx

dt

Leave answer in terms of the parameter b.

2b. Find a value for the parameter b such that this equation exhibits a limit cycle fold, that
is a limit cycle which is variously known as degenerate, semistable, or a double root, and
which represents the merging of two limit cycles into one.

2c. Use the matlab add-on “pplane” to numerically integrate the above ODE. Compare the
predictions obtained for limit cycle amplitudes in 2a and 2b above, with those obtained using
pplane.

3. This question concerns the following system of 2 first order equations:

dx

dt
= y + 0.1x3 + αx

dy

dt
= −x + 0.1

(

dx

dt

)

3

− β
dx

dt

3a. Rewrite this system as a single second order ODE on x(t), i.e. in which y is absent.

3b. Apply harmonic balance to the resulting second order ODE and thereby obtain an ex-
pression for the amplitude A of any limit cycles which occur.

3c. Find a relation between parameters α and β for a Hopf bifurcation to occur. Identify it
as supercritical or subcritical.
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