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Chapter One

Introduction

The principles of kinematics and dynamics presented in this book are consistent with the numerous

available books on these subjects. However, the presentation differs from other books in crucial

ways. In particular, we define concepts and properties of idealized objects with extreme care in

order to provide a precise foundation for the key results, which are derived and proved in a rigorous,

mathematical style. This approach is intended to add clarity to the basic ideas of kinematics and

dynamics, which are often obscure in traditional textbooks. We also find that a precise treatment of

the concepts, notation, and terminology underlying kinematics and dynamics is valuable for solving

problems.

1.1 Points, Particles, and Bodies

A point has zero size and zero mass. A particle has zero size and nonnegative mass. Therefore,

a point can be viewed as a particle with zero mass. Points and particles have position relative to

other points and particles. Two points, two particles, or a point and a particle are colocated if they

are located at the same place. If two particles are in contact, then they are colocated.

A reference point (such as the origin of a frame) is a point relative to which the positions of

other points are determined. Any point can be used as a reference point.

Points and particles can have translational motion relative to other points and particles. Transla-

tional motion includes velocity and acceleration. For example, the point or particle x has a position

relative to the point or particle y. Likewise, the point or particle x has a velocity and acceleration

relative to the point or particle y and with respect to frame FA. Points and particles cannot rotate.

A body (not necessarily rigid) is a finite collection of particles and rigid massless links and

joints. A rigid body is a body whose shape does not change. A continuum body has an infinite

number of particles. Each particle in a body may be subject to internal forces, which are reaction

forces due to the interaction between each particle and all other particles in the body. An external

force is a force on a particle in a body that is not due to interactions with other particles in the body.

A collection of forces applied to a body is balanced if its sum is zero. A moment that arises from a

collection of balanced forces is a torque.

The role of points, particles, frames, and bodies in kinematics and dynamics is summarized in

Table 1.1.

All bodies are assumed to be Newtonian, which means that the internal forces between every

pair of particles are equal in magnitude, opposite in direction, and parallel to the line that passes

through the particles. Newton’s law of gravity, which involves only attractive forces directed along

the line passing through the particles, satisfies this assumption, as does Coulomb’s law for electric

charges, where the forces may be either attractive or repulsive depending on whether the electric
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Translation Rotation

Geometry and Kinematics Point Frame

Dynamics Particle Body

Table 1.1: Conceptual roadmap for kinematics and dynamics. For translational

geometry and kinematics, mass is irrelevant, and thus a particle is effectively a

point. Furthermore, for rotational geometry and kinematics, mass distribution is

irrelevant, and thus a body is viewed as a frame. Points and particles cannot rotate,

and thus rotational geometry, kinematics, and dynamics apply only to frames and

bodies.

charges are the same or opposite. A rigid body that is Newtonian can be viewed as a plane or

space truss with particles connected by rigid, massless members that support only compression and

tensile forces [8]. A rigid body consisting of interconnected permanent magnets does not fit into

this framework since the internal forces that attract or repel the magnets follow curved field lines.

Although a proof is outside the scope of this book, the total internal force and the total moment on

a rigid body containing permanent magnets are both zero.

A body consisting of at least two noncolocated particles is rigid if the distance between every

pair of particles is constant. Thus, a particle is not a rigid body. The particles in a trivial rigid body

lie along a single line, whereas the particles in a nontrivial rigid body do not lie along a single line.

A nontrivial rigid body thus contains three particles that form a triangle. Henceforth, unless stated

otherwise, the phrase “rigid body” refers to a nontrivial rigid body. A rigid body thus has positive

size and positive mass, consists of at least three particles that do not lie along a line, and does not

change shape. Only a rigid body can possess a body-fixed frame. A trivial rigid body, that is, a

body whose particles lie along a line, can rotate around its transverse axes but has no meaningful

dynamics around its longitudinal axis. However, for the sake of kinematics or when dynamics

around only the transverse axes are of interest, rigid massless links can be attached orthogonally

to the body to define a body-fixed frame. The rotational motion of a rigid body is described by its

angular velocity and angular acceleration.

A massive particle is a particle with infinite mass. Massive particles are unaffected by all forces,

and thus every massive particle is effectively an unforced particle. A massive body is a rigid body

that has at least three massive particles that are not along a single line. A massive body is unaffected

by all forces and moments. Consequently, every particle in a massive body is unaffected by forces,

and thus every particle in a massive body is unforced. If not preceded by the word “massive,” the

word “body” assumes finite mass.
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Space Motion Force

Geometry Yes No No

Kinematics Yes Yes No

Statics Yes No Yes

Dynamics Yes Yes Yes

Table 1.2: Definitions of the various branches of mechanics.

A massive body is inertially nonrotating if its angular velocity relative to an inertial frame is

zero; otherwise it is inertially rotating. Consequently, every body-fixed frame associated with an

inertially nonrotating massive body B is an inertial frame, and every particle in B is unforced. The

Earth is not a massive body since it is affected by central gravity from the Sun and other planets. In

addition, the Earth is rotating relative to inertial frames. However, the assumption that the Earth is

an inertially nonrotating massive body is useful in many applications.

In order to describe the dynamics of a body it is necessary to specify an unforced particle. If

reaction forces are applied to the particle, then it is convenient to assume that the point is fixed in

an inertially nonrotating massive body. Wall, ceiling, ground, and floor are conceptual examples of

inertially nonrotating massive bodies to which mechanical systems can be attached for the study of

dynamics.

If a body interacts with a massive body, then the resulting reaction forces and torques are classi-

fied as internal forces and torques. Consequently, the phrases “internal force” and “reaction force”

are identical even though, strictly speaking, the reaction forces between a body and a massive body

are not internal to the body.

The study of mechanics may include either time or force. The various branches of mechanics

are outlined in Table 1.2.
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1DOF 2DOF 3DOF

Revolute
Pin

Hinge

Dual Pin

Universal Joint
Ball Joint

Prismatic Sleeve
Dual Sleeve

x-y Stage
x-y-z Stage

Combined
Slot

Collar

Dual Sleeve-Pin

Collar-Pin

Table 1.3: Terminology for revolute and prismatic joints. A slot is a groove within

which a pin translates. A collar is a ring that slides along a shaft while rotating.

1.2 Mechanical Interconnection and Newton’s Third Law

Rigid bodies that interact through joints are articulated. A prismatic joint allows translational

motion along a line, curve, or surface. Friction may or may not be present in these mechanisms.

The reaction force in a frictionless prismatic joint is zero in the direction of translation. A revolute

joint allows rotation around one or more directions. The reaction torque in a frictionless revolute

joint is zero along the axes of rotation. Joint terminology is summarized in Table 1.3. Bodies may

also interact indirectly through gravity or through interconnections consisting of springs, dashpots,

and inerters.

A mechanical system consists of particles and rigid bodies (either discrete or continuum, mas-

sive or not massive) interconnected by springs, dashpots, inerters, and joints and with direct contact

that is either rolling, slipping, or impulsive. Rolling, slipping, and joints may involve friction or

may be frictionless. We consider five types of joints. A pin allows rotation around a single axis

and no translation. A sleeve allows translation along a single direction but no rotation. A collar is

a combination of a pin and a sleeve that allows rotation around a single axis and translation along

a single direction, where the axis of rotation and the direction of translation are parallel. A slot is

a combination of a pin and a sleeve that allows rotation around a single axis and translation along

a single direction, where the axis of rotation is perpendicular to the direction of translation. A ball

allows rotation around three axes.

The dynamics of a particle depend on the total force acting on the particle. Likewise, the dy-

namics of a rigid body depend on the total force and torque acting on the body. These observations

provide the ability to analyze the dynamics of the particles and rigid bodies within a body in terms

of a free-body diagram for each rigid body.
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A body may consist of a collection of particles and rigid bodies that interact with each other in

various ways. Direct contact between rigid bodies may involve one or more fixed contact points

in each rigid body. Direct contact may occur as a collision or through a revolute joint, or it may

involve time-varying contact points, as in the case of a prismatic joint, sliding (relative translation

without relative rotation), or rolling (relative translation and relative rotation with or without slip-

ping). Interaction involving time-varying contact points can occur with or without friction. Indirect

contact between particles and rigid bodies can occur through springs, dashpots, and inerters.

Newton’s third law concerns the reaction forces between a pair of rigid bodies either through

direct contact, indirect contact, or noncontacting forces. Newton’s third law applies to all cases

of direct contact between rigid bodies as well as all cases of indirect contact between particles

and rigid bodies. Noncontacting forces can occur through gravitational, electrostatic, and magnetic

forces. Newton’s third law applies in these cases as well, except that the reaction forces arising

from magnetic forces are not aligned with the line passing through the magnetic dipoles. However,

Newton’s third law may not hold in the case of electrodynamics; for details, see [4, pp. 349–351].

1.3 Physical Vectors and Frames

The notion of location is relative; in other words, the location of a point or particle is meaningful

only when given in terms of other points and particles. An analogous statement applies to motion.

We do not ascribe meaning to the word “stationary”; in fact, the location of a point or particle

can be “fixed” only relative to other points and particles. Consequently, the position, velocity, and

acceleration of a point or particle are meaningful only when used in a relative sense. Analogous

statements apply to bodies under translation and rotation.

We develop kinematics and dynamics in terms of 14 types of physical vectors. A physical

vector has a magnitude (which may be dimensional or dimensionless) and direction, but it has no

physical location. For example, although the points x and y have locations relative to each other, the

physical position vector
⇀
r x/y has no physical location. Likewise, although the force vector

⇀

f can

represent a force applied to a particle or body, the physical force vector
⇀

f has no physical location.

Consequently, the total force on a particle or the center of mass of a rigid body can be determined

by summing individual forces by plotting them tip-to-tail.

Two nonzero physical vectors are parallel if one is a scalar multiple of the other. Two nonzero

physical vectors are aligned if they are parallel and one is a positive multiple of the other.

The purpose of a frame, which is a set of three linearly independent (and usually mutually

perpendicular) physical vectors, is to define directions in three-dimensional space. For example, the

frame FA is represented by the row vectrix FA = [ı̂A ̂A k̂A] and the column vectrix FA =

[
ı̂A
̂A

k̂A

]

.

Since physical vectors have no physical location, a frame has no location. Since a frame has no

physical location, it is meaningless to refer to its velocity and acceleration. This conception of a

frame, which is a unique feature of this book, stresses its role in defining direction as distinct from

location. A body-fixed frame is a frame that is rigidly attached to a rigid body and thus rotates as

the rigid body rotates.

It is traditional but not necessary to associate a frame with a reference point that is designated as

the origin of the frame. Like any other point, the origin of a frame has position, velocity, and accel-

eration relative to other points, and it can be used to define the position, velocity, and acceleration

of other points in a relative sense. In fact, the traditional notion of the “acceleration of a frame” as
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used in physics refers to the motion of its origin rather than the axes of the frame. A frame need not

be assigned an origin; however, we often do this for convenience.

It is not meaningful to say that a point is “fixed in a frame,” although it is meaningful to say that

a point is fixed in a rigid body. A point may p be fixed relative to a rigid body but not part of the

rigid body. For convenience, we view p as rigidly attached to the rigid body by means of a massless

rigid link, and we simply say that p is fixed in the body. Unlike a point, it is meaningful to say that

a direction is fixed in a rigid body or a frame in the sense that the direction of the vector depends

on the orientation of the frame. We almost exclusively consider only standard frames, which are

orthogonal, right-handed frames with dimensionless, unit-length axes. Frames that are nonstandard

are considered only in Section 2.19.

Velocity and acceleration depend on the frame with respect to which changes are observed.

Hence, derivatives of physical vectors are defined only with respect to frames. We refer to these

derivatives as frame derivatives.

An unforced particle is a particle that has no force (that is, zero total force) applied to it. The

motion of an unforced particle is thus determined by its initial position and velocity. An inertial

frame is a frame that has the property that the relative acceleration with respect to the frame of

every pair of unforced particles is zero. This is Newton’s first law. Like all frames, an inertial frame

has no location, and thus the velocity and acceleration of an inertial frame are meaningless. There

are an infinite number of inertial frames, and the relative angular velocity of each pair of inertial

frames is zero. We do not recognize the notion of an “absolute” frame.

1.4 Remarks on Notation

The notation in this book differs from other books on dynamics. With modest effort, the reader

will find that this notation is extremely helpful for understanding the principles of kinematics and

dynamics and for solving problems. Some of the features of this notation are described below.

First, a half arrow over a symbol such as
⇀
r x/y, where x and y are points or particles, emphasizes

the fact that
⇀
r x/y denotes a physical vector, which is not resolved in a frame. Derivations and

calculations can be carried out to the greatest possible extent without resolving physical vectors in a

specific frame. At a later stage, every vector in the equation can be resolved in any frame of interest

to obtain mathematical vectors, which are column vectors with numerical or symbolic components.

This approach facilitates the physical interpretation of the components of mathematical vectors.

The notation used in this book strives to be 1) independent of context, 2) explicit, and 3) un-

ambiguous. The meaning of each symbol (with the exception of force and moment vectors) can

be determined by its appearance alone, without the need for additional verbiage, commentary, or

explanation. This interpretation is facilitated by subscripts. For example,
⇀
r x/y denotes the position

of the point or particle x relative to the point or particle y.

If x, y, and z are points, then we have the “slash and split” identity

⇀
r z/x =

⇀
r z/y +

⇀
r y/x. (1.4.1)

Likewise,

⇀
v z/x/A =

⇀
v z/y/A +

⇀
v y/x/A, (1.4.2)

⇀
a z/x/A =

⇀
a z/y/A +

⇀
ay/x/A. (1.4.3)
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Note that

⇀
r x/y = −

⇀
r y/x, (1.4.4)

⇀
v x/y/A = −

⇀
v y/x/A, (1.4.5)

⇀
a x/y/A = −

⇀
ay/x/A. (1.4.6)

A physical vector can be multiplied by a real scalar, as in 3
⇀

f or −6
⇀

f . The zero physical vector

is denoted by
⇀

0 , and therefore
⇀
r x/x =

⇀

0 . A physical vector such as
⇀
r x/y(t) can be a function of time.

For a nonzero physical vector
⇀
x , the notation x̂ represents a dimensionless, unit-length physical

vector whose direction is the same as the direction of
⇀
x .

When rate is involved, an additional subscript is included to denote the frame used for the frame

derivative as in, for example,
⇀
v x/y/A =

A•
⇀
r x/y, which denotes the velocity of the point or particle x

relative to the point or particle y with respect to the frame FA. Frame derivatives are denoted by
A•
⇀
r x/y,

B•
⇀
r x/y,

C•
⇀
r x/y, and so forth.

A physical matrix, which is denoted by
→
M, can be viewed as a 3 × 3 matrix that is not resolved

in a frame. A physical matrix is traditionally called a dyad or second-order tensor. Physical rotation

matrices and physical inertia matrices are physical matrices that play key roles in kinematics and

dynamics.

We use only a single font for all symbols, without need for bold. This style allows easy pre-

sentation on a whiteboard or blackboard without the need for underscores and undertildes. We also

avoid superscripts, both pre and post, which are pervasive in many texts.

1.5 Resolving Physical Vectors

A physical vector has no components, and thus it is distinct from a mathematical column vector

of the form [1 − 6 3]T. However, any physical vector can be resolved in any frame. For example,

the position vector
⇀
r y/x can be resolved in FA by writing

⇀
r y/x

∣
∣
∣
∣
A
. (1.5.1)

The resolved vector can also be represented by

ry/x|A =
⇀
r y/x

∣
∣
∣
∣
A
. (1.5.2)

1.6 Types of Physical Vectors

A physical vector (as distinct from a mathematical vector, which is a column of numbers) is an

abstract quantity having a tip and a tail and thus magnitude and direction. A physical vector is not

a physical object, and thus it is not located anywhere, although we can envision its tail located at

an arbitrary location for convenience. A physical vector is denoted with a half arrow or hat over

the symbol denoting the physical quantity. For example,
⇀

f is a physical vector representing a force

applied to a particle in a body, while
⇀
r x/y is the physical vector representing the position of the point

x relative to the point y. We may envision the tip of
⇀
r x/y at x and its tail at y. However, the physical
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vector
⇀
r x/y has no physical location. The magnitude of

⇀
x is denoted by |⇀x |.

A physical vector may have dimensions or it may be dimensionless. A frame consists of three

unit, dimensionless physical vectors that are mutually orthogonal. The motion of a point, particle,

or body relative to another point, particle, or body is determined with respect to a frame. Frame

differentiation is discussed in Chapter 4.

Statics, kinematics, and dynamics are based on 13 types of physical vectors, namely:

i) Dimensionless. A dimensionless physical vector has no physical units associated with it. A

unit dimensionless physical vector is written as ı̂. Three mutually orthogonal unit dimension-

less physical vectors comprise a frame. The unit dimensionless physical vector that points in

the direction of the nonzero physical vector
⇀
x is denoted by x̂. Hence,

⇀
x = |⇀x |x̂. If

⇀
x = 0,

then x̂ is not defined.

ii) Unit angle vector. The unit angle vector of the physical vector
⇀
y relative to the physical vector

⇀
x , where

⇀
y and

⇀
x are nonzero and not parallel, is written as θ̂⇀

y/
⇀
x
. The direction of θ̂⇀

y/
⇀
x

is

given by the right hand rule with the fingers curled from
⇀
x to

⇀
y through the short-way angle

θ⇀
y/

⇀
x
= θ⇀

x/
⇀
y

between
⇀
x and

⇀
y . Hence, θ⇀

x/
⇀
y
= −θ⇀

y/
⇀
x

iii) Angle. The angle vector of the physical vector
⇀
y relative to the physical vector

⇀
x , where

⇀
y and

⇀
x are nonzero and not parallel, is given by

⇀

θ⇀
y/

⇀
x
= θ⇀

y/
⇀
x
θ̂⇀

y/
⇀
x
, where θ⇀

y/
⇀
x
∈ (0, π) is

the short-way angle between
⇀
x and

⇀
y .

⇀

θ⇀
y/

⇀
x

is aligned with the physical cross-product vector

⇀
x × ⇀

y , and |
⇀

θ⇀
y/

⇀
x
| = θ⇀

y/
⇀
x
.

iv) Position. The position of the point y relative to the point x is written as
⇀
r y/x.

v) Velocity. The velocity of the point y relative to the point x with respect to the frame FA is

written as
⇀
v y/x/A.

vi) Acceleration. The acceleration of the point y relative to the point x with respect to the frame

FA is written as
⇀
ay/x/A.

vii) Momentum. The momentum of the particle y relative to the point x with respect to the frame

FA is written as
⇀
py/x/A. The momentum of the body B relative to the point x with respect to

the frame FA is written as
⇀
pB/x/A.

viii) Force. A force
⇀

f can be applied to a point or a particle, where a point is viewed as a particle

with zero mass. We allow a force to be applied to a point as long as neither infinite accelera-

tion nor infinite angular acceleration can occur. For example, a force can be applied to a point

along a rigid massless link in a body. A force on a particle in a body can be either an internal

force or an external force. Reaction forces are forces due to the interaction between particles;

these forces may or may not involve contact. Reaction forces due to the interaction with a

massive body are viewed as external forces. The force on a particle or body due to gravity

can be either uniform, that is, a function of mass, or central, that is, a function of mass and

position.

ix) Angular velocity. The angular velocity of the frame FB relative to the frame FA is written as
⇀
ωB/A.
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x) Angular acceleration. The angular acceleration of the frame FB relative to the frame FA with

respect to the frame FC is written as
⇀
αB/A/C.

xi) Angular momentum. The angular momentum of the particle x relative to the point w with

respect to the frame FA is written as
⇀

Hx/w/A. The angular momentum of the body B relative

to the point w with respect to the frame FA is written as
⇀

HB/w/A.

xii) Moment. A moment can be applied to either a particle or a body. A moment on the particle

x relative to the point y is written as
⇀

Mx/y. A moment on the body B relative to the point y is

written as
⇀

MB/y. A moment can be applied to a trivial rigid body as long as infinite angular

acceleration cannot occur.

xiii) Torque. A torque can be applied to a body. A torque on the body B is written as
⇀

MB. A

torque can be applied to a trivial rigid body as long as infinite angular acceleration cannot

occur.

Position, velocity, acceleration, momentum, and force can be projected onto a direction n̂; the

resulting vector is the position, velocity, acceleration, momentum, and force along n̂.Angular veloc-

ity, angular acceleration, angular momentum, moment, and torque can be projected onto a direction

n̂; the resulting vector is the angular velocity, angular acceleration, angular momentum, moment,

and torque around n̂.

Energy is a scalar quantity that is associated with a particle or a body. Potential energy can

be defined in terms of a spring or a uniform or central gravitational vector field. Kinetic energy is

defined in terms of velocity with respect to an inertial frame.

1.7 Mechanical Systems

We apply the techniques of kinematics and dynamics to various types of mechanical systems.

These systems may be one-dimensional (linear), two-dimensional (planar), or three-dimensional

(spatial), depending on whether the motion occurs along a line, in a plane, or in three-dimensional

space. The systems may involve various joints, they may involve one or more rigid bodies, they

may include the effect of gravity, they may include springs and dashpots (either linear or torsional),

they may involve friction, and they may involve rolling, slipping, or collisions. For convenience,

we refer to these examples by the following terminology:

Pendulum. A pendulum is a planar or spatial mechanical system connected to a massive body

by means of a revolute joint. Gravity is usually present. Springs and dashpots can be included, as

well as multiple rigid bodies.

MCK system. Rigid bodies, springs, and dashpots can be connected to form a planar or spatial

mechanical system.

Gimbal. A gimbal is a spatial mechanical system with multiple revolute joints. Springs and

dashpots can be included, as well as a spinning payload.

Shaft. A shaft is a three-dimensional mechanical system consisting of a rotating rigid body

connected to a massive body by means of a revolute joint. Additional rigid bodies may be connected

to the shaft by means of revolute or prismatic joints.
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Linkage. A linkage is a planar or spatial device involving multiple rigid bodies connected by

revolute or prismatic joints. Springs and dashpots can be included, as well as rolling disks.

Rolling body. A disk, sphere, and cone can roll over a surface that is either flat or curved.

Spinning top. A top is a spinning body connected to a massive body by means of a ball joint.

The above classification is not precise and is for convenience only. For example, a pendulum

can be viewed as a linkage, a gimbal can be viewed as a type of a shaft, and rolling bodies can be

combined with other types of mechanical systems.

1.8 Classification of Forces and Moments

Forces that do not entail a loss of energy are called conservative forces, while forces that give

rise to a loss of energy are called dissipative forces.

Table 1.4 classifies reaction and non-reaction forces and moments in terms of energy conserva-

tion and dissipation. Reaction forces due to elastic collisions, rolling, frictionless sliding, slipping,

and pivoting, as well as springs and inerters are conservative. Forces due to friction (except rolling

without slipping), inelastic collisions, and dashpots are dissipative. When two bodies are in contact,

the reaction force may be either tangential or normal. The reaction force between two bodies that

are in contact is frictionless if the tangential contact force is zero. Reaction forces may be associ-

ated with the Coriolis, angular-acceleration, and centripetal components of acceleration. Angular-

acceleration and centripetal reaction forces involve zero relative motion, whereas a Coriolis contact

force involves nonzero relative motion (such as a particle sliding with friction within a groove on a

rotating platform).
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Conservative Dissipative

Reaction

forces

Elastic impact

Joint constraint

Frictionless sliding

Rolling without slipping

Frictionless slipping

Frictionless pivoting

Spring

Inerter

Central gravity

Electrostatic force

magnetic force

Inelastic impact

Sliding with friction

Slipping with friction

Dashpot

Reaction

torques

Joint constraint

Rotational spring

Rotational inerter

Pivoting with friction

Rotational dashpot

Non-reaction

forces and

moments

Uniform gravity
Control

Disturbance

Table 1.4: Classification of reaction and non-reaction forces, torques, and mo-

ments. Dissipative forces and moments entail a loss of energy, whereas energy

is conserved by conservative forces and torques. Control and disturbances forces

and moments can increase or decrease energy. Direct contact forces include nor-

mal and tangential reaction forces due to collision, rolling, sliding, and pivoting.

Indirect contact forces may be due to springs, dashpots, and inerters. Noncontact-

ing forces include gravitational and electromagnetic forces.





Chapter Two

Geometry

2.1 Angle and Dot Product

An angle θ ∈ [0, π] between two physical vectors represents the “short way” between the vectors.

An angle confined to (−π, π] is a wrapped angle; otherwise, θ ∈ R is an unwrapped angle.

Since θ and θ + 2nπ, where n is an integer, represent the same angle, wrapped angles represent

all possible angles between a pair of physical vectors. However, sums and differences of angles can

violate this constraint, and thus it is sometimes convenient to use unwrapped angles but extend the

notion of “equal” angles. Hence, for a, b ∈ R, the notation a ≡ b means that a − b is an integer

multiple of 2π.

Fact 2.1.1. Let a, b, c, d ∈ R. Then, the following statements hold:

i) a ≡ b if and only if a − b ≡ 0.

ii) a ≡ b if and only if −a ≡ −b.

iii) If a ≡ b and n is an integer, then na ≡ nb.

iv) Let n and m be integers such that n + m is even. Then, a ≡ nπ if and only if a ≡ mπ.

v) a ≡ −a if and only if there exists an integer n such that a = nπ.

vi) The following statements are equivalent:

a) a ≡ −a ≡ 0.

b) There exists an even integer n such that a = nπ.

c) a ≡ 0.

vii) The following statements are equivalent:

a) a ≡ −a ≡ π.
b) There exists an odd integer n such that a = nπ.

c) a ≡ π.

viii) If a ≡ b and c ≡ d, then a + c ≡ b + d.

Let θ⇀
y/

⇀
x
= θ⇀

x/
⇀
y
∈ [0, π] denote the angle between two physical vectors

⇀
x and

⇀
y . If either

⇀
x or

⇀
y is the zero physical vector

⇀

0 (also written as just 0), then θ⇀
y/

⇀
x
= θ⇀

x/
⇀
y
= 0. The dot product

⇀
x · ⇀y
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of
⇀
x and

⇀
y is defined by

⇀
x · ⇀y △

= |⇀x ||⇀y | cos θ⇀
y/

⇀
x
. (2.1.1)

Hence,

|⇀x · ⇀y | △= |⇀x ||⇀y || cos θ⇀
y/

⇀
x
|. (2.1.2)

If
⇀
x and

⇀
y are nonzero, then

x̂ · ŷ = cos θ⇀
y/

⇀
x
, (2.1.3)

and thus

θ⇀
y/

⇀
x
= cos−1

⇀
x · ⇀y
|⇀x ||⇀y |

= cos−1 x̂ · ŷ ∈ [0, π]. (2.1.4)

Note that the range of the function cos−1 is [0, π].

Let
⇀
x and

⇀
y be nonzero physical vectors. Then

⇀
x and

⇀
y are mutually orthogonal if

⇀
x · ⇀y = 0,

that is, if θ⇀
y/

⇀
x
= π/2. Equivalently, we say that

⇀
x is orthogonal to

⇀
y , and

⇀
y is orthogonal to

⇀
x .

Furthermore,
⇀
x and

⇀
y are parallel if either θ⇀

y/
⇀
x
= 0 or θ⇀

y/
⇀
x
= π. Note that

⇀
x and

⇀
y are parallel if

and only if

|⇀x · ⇀y | = |⇀x ||⇀y |. (2.1.5)

We define

⇀
x
′⇀
y
△
=

⇀
x · ⇀y , (2.1.6)

where the physical covector
⇀
x
′

can be viewed as an operator on the physical vector
⇀
y that produces

the real scalar
⇀
x · ⇀y . The physical covector

⇀
x
′

is the coform of the physical vector
⇀
x . The set of

physical covectors corresponding to a set V of physical vectors is denoted by V′. Each physical

covector can be associated with a hyperplane in the space of physical vectors, that is, a plane that is

translated away from the origin. Specifically, for the physical covector
⇀
x
′
, define

H(
⇀
x
′
)
△
= {⇀y ∈ V :

⇀
x
′⇀
y = 1}. (2.1.7)

To show that H(
⇀
x
′
) is a hyperplane, let

⇀
y 0 satisfy

⇀
x
′⇀
y 0 = 1. Then,

H(
⇀
x
′
) =

⇀
y 0 + {

⇀
y ∈ V :

⇀
x
′⇀
y = 0}. (2.1.8)

We define (
⇀
x
′
)′
△
=

⇀
x .

Fact 2.1.2. Let
⇀
x and

⇀
y be physical vectors. Then,

⇀
x =

⇀
y if and only if

⇀
x
′
=

⇀
y
′
.

2.2 Angle Vector and Cross Product

Let
⇀
x and

⇀
y be nonzero physical vectors that are not parallel so that θ⇀

y/
⇀
x
∈ (0, π). The unit angle

vector θ̂⇀
y/

⇀
x

of
⇀
y relative to

⇀
x is the unit dimensionless physical vector orthogonal to both

⇀
x and

⇀
y

whose direction is determined by the right hand rule with the fingers curled from
⇀
x to

⇀
y through the
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angle θ⇀
y/

⇀
x
∈ (0, π) between

⇀
x and

⇀
y . See Figure 2.2.1. The angle vector

⇀

θ⇀
y/

⇀
x

of
⇀
y relative to

⇀
x is

defined by

⇀

θ⇀
y/

⇀
x

△
= θ⇀

y/
⇀
x
θ̂⇀

y/
⇀
x
. (2.2.1)

See Figure 2.2.2. Note that the magnitude of
⇀

θ⇀
y/

⇀
x

is θ⇀
y/

⇀
x
. Furthermore,

θ̂⇀
x/

⇀
y
= −θ̂⇀

y/
⇀
x
, (2.2.2)

⇀

θ⇀
x/

⇀
y
= −

⇀

θ⇀
y/

⇀
x
. (2.2.3)

θ̂⇀
y/

⇀
x

is not defined in the case where
⇀
x and

⇀
y are parallel, that is, θ⇀

y/
⇀
x
∈ {0, π}.

⇀
x

⇀
y

θ̂⇀
y/

⇀
x

θ⇀
y/

⇀
x

Figure 2.2.1: The unit angle vector θ̂⇀
y /

⇀
x

of
⇀
y relative to

⇀
x is the dimensionless physical vector whose direction is

determined by the direction of the right-hand thumb with the fingers curled from
⇀
x to

⇀
y through the short-way positive angle

θ⇀
y /

⇀
x
∈ (0, π). For the example shown, θ̂⇀

y /
⇀
x

points out of the page. Note that θ⇀
y /

⇀
x
= θ⇀

x /
⇀
y

and θ̂⇀
x /

⇀
y
= −θ̂⇀

y /
⇀
x
.

Let
⇀
x and

⇀
y be physical vectors. If θ⇀

y/
⇀
x

is either 0 or π, then the cross product
⇀
x ×⇀

y is the zero

physical vector. On the other hand, if
⇀
x and

⇀
y are nonzero and not parallel, then the cross product

of
⇀
x and

⇀
y is defined as

⇀
x × ⇀

y
△
= |⇀x ||⇀y |(sin θ⇀

y/
⇀
x
)θ̂⇀

y/
⇀
x
. (2.2.4)

Note that, since θ⇀
y/

⇀
x
∈ (0, π), it follows that sin θ⇀

y/
⇀
x
> 0. Therefore,

x̂ × ŷ = (sin θ⇀
y/

⇀
x
)θ̂⇀

y/
⇀
x
, (2.2.5)

|⇀x × ⇀
y | = |⇀x ||⇀y | sin θ⇀

y/
⇀
x
, (2.2.6)

θ̂⇀
y/

⇀
x
=

1

|⇀x × ⇀
y |

⇀
x × ⇀

y =
1

|⇀x ||⇀y | sin θ⇀
y/

⇀
x

⇀
x × ⇀

y =
1

sin θ⇀
y/

⇀
x

x̂ × ŷ, (2.2.7)

⇀
y × ⇀

x = −(
⇀
x × ⇀

y ) = (−⇀x) × ⇀
y =

⇀
x × (−⇀y ), (2.2.8)

⇀
x × ⇀

x = 0. (2.2.9)

Figure 2.2.2 shows that
⇀

θ⇀
y/

⇀
x

is the vector that is orthogonal to both
⇀
x and

⇀
y , whose length is θ⇀

y/
⇀
x
,

and whose direction is determined by the right-hand rule with the thumb pointing in the direction

of k̂.

Fact 2.2.1. Let
⇀
x and

⇀
y be nonzero physical vectors that are not parallel. Then,

⇀

θ⇀
y/

⇀
x
=

θ⇀
y/

⇀
x

|⇀x × ⇀
y |

⇀
x × ⇀

y =
θ⇀

y/
⇀
x

|⇀x ||⇀y | sin θ⇀
y/

⇀
x

⇀
x × ⇀

y =
θ⇀

y/
⇀
x

sin θ⇀
y/

⇀
x

x̂ × ŷ. (2.2.10)



16 CHAPTER 2

k̂

̂ı̂

⇀
x

⇀
y

θ̂⇀
y/

⇀
x

θ⇀
y/

⇀
x

Figure 2.2.2: In this example, the angle vector
⇀

θ⇀
y /

⇀
x

of
⇀
y relative to

⇀
x , both of which lie in the ı̂- ̂ plane, points in the

direction of k̂. The magnitude of
⇀

θ⇀
y /

⇀
x

is the number θ⇀
y /

⇀
x
∈ (0, π) of radians in the “short-way” angle between

⇀
y and

⇀
x .

The direction of
⇀

θ⇀
y /

⇀
x

, which is the same as the direction of θ̂⇀
y /

⇀
x
, is determined by the direction of the right-hand thumb

with the fingers curled from
⇀
x to

⇀
y through the angle θ⇀

y /
⇀
x
.

2.3 Directed Angles

Let
⇀
x and

⇀
y be nonzero physical vectors, and let n̂ be a unit dimensionless physical vector that

is orthogonal to both
⇀
x and

⇀
y ; that is, either n̂ = θ̂⇀

y/
⇀
x

or n̂ = −θ̂⇀
y/

⇀
x
. The directed angle θ⇀

y/
⇀
x/n̂

from
⇀
x to

⇀
y around n̂ is defined by

θ⇀
y/

⇀
x/n̂

△
=






0, if θ⇀
y/

⇀
x
= 0,

θ⇀
y/

⇀
x
, if θ⇀

y/
⇀
x
∈ (0, π) and n̂ = θ̂⇀

y/
⇀
x
,

−θ⇀
y/

⇀
x
, if θ⇀

y/
⇀
x
∈ (0, π) and n̂ = −θ̂⇀

y/
⇀
x
,

π, if θ⇀
y/

⇀
x
= π.

(2.3.1)

In the first and last cases,
⇀
x and

⇀
y are parallel. In the second case, the directed angle θ⇀

y/
⇀
x/n̂

is

positive; in the third case, θ⇀
y/

⇀
x/n̂

is negative. Note that θ⇀
y/

⇀
x/n̂
∈ (−π, π], and thus θ⇀

y/
⇀
x/n̂

is a wrapped

angle. Figure 2.3.1 shows that θ⇀
y/

⇀
x/n̂

is the angle from
⇀
x to

⇀
y , as determined by the right-hand rule

with the thumb pointing in the direction of n̂. Hence, θ⇀
y/

⇀
x/n̂

increases as
⇀
y rotates relative to

⇀
x in
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the direction of the curled fingers. Note that

θ⇀
x/

⇀
y/n̂
=






−θ⇀
y/

⇀
x/n̂
, if θ⇀

y/
⇀
x
∈ [0, π),

π, if θ⇀
y/

⇀
x
= π,

(2.3.2)

θ⇀
y/

⇀
x/−n̂
=






−θ⇀
y/

⇀
x/n̂
, if θ⇀

y/
⇀
x
∈ [0, π),

π, if θ⇀
y/

⇀
x
= π.

(2.3.3)

Hence,

θ⇀
x/

⇀
y/−n̂
= θ⇀

y/
⇀
x/n̂
. (2.3.4)

Finally, if
⇀
x and

⇀
y are not parallel, then

θ⇀
y/

⇀
x/θ̂⇀

y /
⇀
x

= θ⇀
y/

⇀
x
, (2.3.5)

θ⇀
y/

⇀
x/−θ̂⇀

y /
⇀
x

= −θ⇀
y/

⇀
x
. (2.3.6)

k̂

̂ı̂

⇀
x

⇀
y

n̂

θ⇀
y/

⇀
x/n̂

θ⇀
x/

⇀
y/−n̂

Figure 2.3.1: This example illustrates the directed angle θ⇀
y /

⇀
x /n̂

from
⇀
x to

⇀
y around n̂. The value of θ⇀

y /
⇀
x /n̂

is determined

by the curled fingers of the right hand when the right-hand thumb is pointing in the direction of n̂. The arrowhead on the

curved arc indicates that the directed angle θ⇀
y /

⇀
x /n̂

becomes more positive as
⇀
y rotates in the indicated direction. The directed

angle θ⇀
x /

⇀
y /−n̂

from
⇀
y to

⇀
x around −n̂ is also shown, and it can be seen that θ⇀

x /
⇀
y /−n̂

= θ⇀
y /

⇀
x /n̂
, which is positive as shown.

Similarly, θ⇀
y /

⇀
x /−n̂
= θ⇀

x /
⇀
y /n̂

are negative; these angles are not shown.

The directed angle θ⇀
y/

⇀
x/n̂
∈ (−π, π] can be understood in the following way. Define a frame

F = [ı̂ ̂ k̂] such that ı̂ = x̂,
⇀
y lies in the ı̂- ̂ plane, and k̂ = n̂. Furthermore, write

⇀
y = y1 ı̂ + y2 ̂. Next,

we view ı̂ and ̂ as defining a complex plane, where ı̂ points the direction of the positive real axis,

and ̂ points in the direction of the positive imaginary axis. Then, the vector
⇀
y can be viewed as
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the position of the complex number y1 + y2  relative to the origin. With this construction, θ⇀
y/

⇀
x/n̂

is

the angle of the complex number y1 + y2  in the complex plane, where the usual convention is that

clockwise rotations correspond to more positive angles with zero radians assigned to points on the

positive real axis. Hence,

tan θ⇀
y/

⇀
x/n̂
=

y2

y1

. (2.3.7)

Furthermore,

θ⇀
y/

⇀
x/n̂
= atan2(y2, y1), (2.3.8)

where atan2 is the four-quadrant inverse of the tangent function, that is,

atan2(y, x) =






0, y = x = 0,

tan−1 y

x
, x > 0,

−π/2, y < 0, x = 0,

π/2, y > 0, x = 0,

−π + tan−1 y

x
, y < 0, x < 0,

π + tan−1 y

x
, y ≥ 0, x < 0.

(2.3.9)

Note that the range of the function tan−1 is (−π/2, π/2), whereas the range of the function atan2 is

(−π, π]. Equivalently,

atan2(y, x) =






0, y = x = 0,

2 tan−1 y√
x2+y2+x

,
√

x2 + y2 + x > 0,

π, y = 0, x < 0.

(2.3.10)

2.4 Frames

A frame is a collection of three unit dimensionless physical vectors, called axes, that are mu-

tually orthogonal. Since each frame vector is a physical vector, the notion of the “location” of the

frame is meaningless. In addition, since a frame has no location, it cannot translate, and thus a frame

has no velocity or acceleration.

Nevertheless, it is often useful to associate a reference point with a frame. When we do this,

we call the reference point the origin of the frame, and we draw the frame as if all of the axes were

located at the reference point, which may have nonzero velocity and acceleration. Hence, the notion

of a “translating frame” refers to the motion of the origin of the frame but not the axes that comprise

the frame. A frame has no position, velocity, or acceleration since a physical vector has no location

and thus cannot translate.

Let FA be a frame with axes ı̂A, ̂A, k̂A. Therefore,

ı̂A · ı̂A = ̂A · ̂A = k̂A · k̂A = 1, (2.4.1)

ı̂A · ̂A = ̂A · k̂A = k̂A · ı̂A = 0. (2.4.2)

The frame FA is right handed if the labeling of the axes conforms to

ı̂A × ̂A = k̂A.



GEOMETRY 19

k̂A

̂Aı̂A

Figure 2.4.1: Right-handed frame FA with mutually orthogonal axes ı̂A, ̂A, k̂A.

Consequently,
̂A × k̂A = ı̂A,

k̂A × ı̂A = ̂A.

See Figure 2.4.1. All orthogonal frames in this book are right handed.

For convenience, we write

FA =
[

ı̂A ̂A k̂A

]

, (2.4.3)

which is a row vectrix, as well as

FA
△
= FT

A =





ı̂A

̂A

k̂A





, (2.4.4)

which is a column vectrix. Furthermore, we define the coframe

F′A
△
=

[

ı̂′
A

̂′
A

k̂′
A

]

. (2.4.5)

Therefore,

F′A = FA
T′ =





ı̂′
A

̂′
A

k̂′
A





. (2.4.6)

The coframe F′
A

is a row covectrix, whereas its transpose F′
A

is a column covectrix. The axes

ı̂′
A
, ̂′

A
, k̂′

A
of the coframe can be viewed as a basis for the space V′ of covectors. Note that the

components of a vectrix are physical vectors, whereas the components of a covectrix are physical
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covectors. More generally, let
⇀
x ,

⇀
y , and

⇀
z be physical vectors. Then,

[
⇀
x

⇀
y

⇀
z

]T
=





⇀
x
⇀
y
⇀
z





,





⇀
x
⇀
y
⇀
z





T

=
[
⇀
x

⇀
y

⇀
z

]

, (2.4.7)

[
⇀
x

⇀
y

⇀
z

]′
=

[
⇀
x
′ ⇀

y
′ ⇀

z
′ ]

,





⇀
x
⇀
y
⇀
z





′

=





⇀
x
′

⇀
y
′

⇀
z
′





, (2.4.8)

[
⇀
x
′ ⇀

y
′ ⇀

z
′ ]T
=





⇀
x
′

⇀
y
′

⇀
z
′





,





⇀
x
′

⇀
y
′

⇀
z
′





T

=
[
⇀
x
′ ⇀

y
′ ⇀

z
′ ]

. (2.4.9)

Vectrices and covectrices are multiplied according to the rules

[
⇀
x
′
1

⇀
y
′
1

⇀
z
′
1

]





⇀
x2
⇀
y 2
⇀
z 2





=
⇀
x
′
1

⇀
x2 +

⇀
y
′
1

⇀
y 2 +

⇀
z
′
1

⇀
z 2, (2.4.10)





⇀
x
′
1

⇀
y
′
1

⇀
z
′
1





[
⇀
x2

⇀
y 2

⇀
z 2

]

=





⇀
x
′
1

⇀
x2

⇀
x
′
1

⇀
y 2

⇀
x
′
1

⇀
z 2

⇀
y
′
1

⇀
x2

⇀
y
′
1

⇀
y 2

⇀
y
′
1

⇀
z 2

⇀
z
′
1

⇀
x2

⇀
z
′
1

⇀
y 2

⇀
z
′
1

⇀
z 2





, (2.4.11)

[
⇀
x1

⇀
y 1

⇀
z 1

]





⇀
x
′
2

⇀
y
′
2

⇀
z
′
2





=
⇀
x1

⇀
x
′
2 +

⇀
y 1

⇀
y
′
2 +

⇀
z 1

⇀
z
′
2. (2.4.12)

In particular,

F′AFA = 3, F′AFA = I3, FAF
′
A =

→
I , (2.4.13)

where I3 is the 3 × 3 identity matrix and
→
I is defined in Section 2.8

Let FA be a frame, and let
⇀
x be a physical vector. Then,

⇀
x
∣
∣
∣
∣
A

is the physical vector
⇀
x resolved in

FA. In fact,
⇀
x
∣
∣
∣
∣
A

is the mathematical vector defined by

⇀
x
∣
∣
∣
∣
A

△
=





ı̂A ·
⇀
x

̂A ·
⇀
x

k̂A ·
⇀
x





=





x1

x2

x3




, (2.4.14)

where x1, x2, and x3 are the components of the physical vector
⇀
x resolved in FA. Every physical

vector is uniquely specified by resolving it in a frame. In particular,
⇀
x can be reconstructed from
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⇀
x
∣
∣
∣
∣
A

by means of

⇀
x =

[

ı̂A ̂A k̂A

]





x1

x2

x3




=

[

x1 x2 x3

]





ı̂A
̂A
k̂A




= x1 ı̂A + x2 ̂A + x3k̂A. (2.4.15)

In other words,

⇀
x = FA

(
⇀
x
∣
∣
∣
∣
A

)

=
⇀
x
∣
∣
∣
∣

T

A
FA. (2.4.16)

A shorthand notation for
⇀
x
∣
∣
∣
∣
A

is given by

x|A
△
=

⇀
x
∣
∣
∣
∣
A
. (2.4.17)

Fact 2.4.1. Let FA be a frame, and let
⇀
x and

⇀
y be physical vectors. Then,

⇀
x =

⇀
y (2.4.18)

if and only if

⇀
x
∣
∣
∣
∣
A
=

⇀
y
∣
∣
∣
∣
A
. (2.4.19)

The physical covector
⇀
x
′

is resolved according to

⇀
x
′∣∣
∣
∣
A

△
=

⇀
x
∣
∣
∣
∣

T

A
, (2.4.20)

and vectrices and covectrices are resolved as
[
⇀
x

⇀
y

⇀
z

]∣∣
∣
∣
A
=

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

, (2.4.21)





⇀
x
′

⇀
y
′

⇀
z
′





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
A

=





⇀
x
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣

T

A

⇀
z
∣
∣
∣
∣

T

A





. (2.4.22)

In particular,

FA|A = F′A
∣
∣
∣
A
= FA

T′
∣
∣
∣
A
= I3. (2.4.23)

However, FA
T
∣
∣
∣
A

and F′
A

∣
∣
∣
A

are not defined.

Let FA be a frame, and let
⇀
x and

⇀
y be physical vectors, where

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




,

⇀
y
∣
∣
∣
∣
A
=





y1

y2

y3




. (2.4.24)

Then,

⇀
x · ⇀y = (x1 ı̂A + x2 ̂A + x3k̂A) · (y1 ı̂A + y2 ̂A + y3k̂A)

= x1y1 + x2y2 + x3y3
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=
⇀
x
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣
A
. (2.4.25)

Note that

⇀
x
′⇀
y =

⇀
x · ⇀y = ⇀

x
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣
A
=

⇀
x
′∣∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A
. (2.4.26)

The following result expresses the length of the physical vector
⇀
x in terms of its components in

an arbitrary frame. For x = [x1 x2 x3]T ∈ R3, define

‖x‖ △=
√

x2
1
+ x2

2
+ x2

3
. (2.4.27)

Fact 2.4.2. Let FA be a frame, and let
⇀
x be a physical vector. Then,

|⇀x | =
√

⇀
x
′⇀
x =

√

⇀
x · ⇀x =

√

⇀
x
∣
∣
∣
∣

T

A

⇀
x
∣
∣
∣
∣
A
=

∥
∥
∥
∥

⇀
x
∣
∣
∣
∣
A

∥
∥
∥
∥ . (2.4.28)

Note that
⇀
x
′⇀
x = |⇀x |2.

Let x, y ∈ R3, let FA be a frame, and define
⇀
x
△
= FAx and

⇀
y
△
= FAy. Then, the cross product of x

and y is defined by

x × y =
⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A

△
= (

⇀
x × ⇀

y )
∣
∣
∣
∣
A
. (2.4.29)

Therefore,

⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A
= (

⇀
x × ⇀

y )
∣
∣
∣
∣
A

= [(x1 ı̂A + x2 ̂A + x3k̂A) × (y1 ı̂A + y2 ̂A + y3k̂A)]
∣
∣
∣
A

= [(x2y3 − x3y2)ı̂A − (x1y3 − x3y1) ̂A + (x1y2 − x2y1)k̂A]
∣
∣
∣
A

=





x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1





=





0 −x3 x2

x3 0 −x1

−x2 x1 0









y1

y2

y3




. (2.4.30)

Defining the cross-product matrix





x1

x2

x3





×

△
=





0 −x3 x2

x3 0 −x1

−x2 x1 0




, (2.4.31)

which is a 3 × 3 skew-symmetric matrix, it follows that

⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A
=

⇀
x
∣
∣
∣
∣

×

A

⇀
y
∣
∣
∣
∣
A
. (2.4.32)

Finally, we have the formal identity

⇀
x × ⇀

y = det





ı̂A ̂A k̂A

x1 x2 x3

y1 y2 y3




. (2.4.33)
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Fact 2.4.3. Let
⇀
x ,

⇀
y ,

⇀
z be physical vectors. Then,

⇀
x × (

⇀
y × ⇀

z ) = (
⇀
x · ⇀z )

⇀
y − (

⇀
x · ⇀y )

⇀
z , (2.4.34)

(
⇀
x × ⇀

y ) × ⇀
z = (

⇀
x · ⇀z )

⇀
y − (

⇀
y · ⇀z )

⇀
x , (2.4.35)

(
⇀
x × ⇀

y ) · ⇀z = ⇀
x · (⇀y × ⇀

z ). (2.4.36)

Furthermore, let FA be a frame. Then,

(
⇀
x × ⇀

y ) · ⇀z =
(
⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A

)T ⇀
z
∣
∣
∣
∣
A
= det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

. (2.4.37)

If a frame rotates according to the rotation of a rigid body, then the frame is a body-fixed frame.

A body-fixed frame can be painted on a rigid body. The origin of a body-fixed frame is usually

taken to be a point in the body. Vice versa, the orientation of a rigid body is usually defined by the

orientation of a body-fixed frame.

The physical vectors
⇀
x ,

⇀
y ,

⇀
z are linearly independent if the only the real numbers α, β, γ that

satisfy

α
⇀
x + β

⇀
y + γ

⇀
z =

⇀

0 (2.4.38)

are α = β = γ = 0. Now, let FA be a frame. Then, it can be seen that the physical vectors
⇀
x ,

⇀
y ,

⇀
z are

linearly independent if and only if the only the real numbers α, β, γ that satisfy

α
⇀
x
∣
∣
∣
∣
A
+ β

⇀
y
∣
∣
∣
∣
A
+ γ

⇀
z
∣
∣
∣
∣
A
=

⇀

0 (2.4.39)

are α = β = γ = 0.

Fact 2.4.4. The physical vectors
⇀
x ,

⇀
y ,

⇀
z are linearly independent if and only if

⇀
x · (⇀y × ⇀

z ) , 0. (2.4.40)

Proof. Let FA be a frame. Then, it follows from (2.4.37) that (2.4.40) is equivalent to

det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

, 0,

which is equivalent to the fact that the mathematical vectors
⇀
x
∣
∣
∣
∣
A
,
⇀
y
∣
∣
∣
∣
A
,
⇀
z
∣
∣
∣
∣
A

are linearly independent,

and thus the physical vectors
⇀
x ,

⇀
y ,

⇀
z , are linearly independent. �

Fact 2.4.5. The physical vectors
⇀
x ,

⇀
y ,

⇀
z are linearly independent if and only if, for every phys-

ical vector
⇀
w, there exist unique real numbers α, β, γ such that

⇀
w = α

⇀
x + β

⇀
y + γ

⇀
z . (2.4.41)
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2.5 Position Vector

Let x and y be points. Then, the position of y relative to x is denoted by
⇀
r y/x. Note that

⇀
r x/y =

−⇀r y/x. If, in addition, z is a point, then vector addition yields the “slash and split” identity

⇀
r y/x =

⇀
r y/z +

⇀
r z/x. (2.5.1)

This identity can be resolved in FA by writing

⇀
r y/x

∣
∣
∣
∣
A
=

⇀
r y/z

∣
∣
∣
∣
A
+

⇀
r z/x

∣
∣
∣
∣
A
. (2.5.2)

Equivalently, we can write

ry/x|A = ry/z|A + rz/x|A. (2.5.3)

2.6 Physical Matrices

Let
⇀
x1, . . . ,

⇀
xn and

⇀
y 1, . . . ,

⇀
y n be physical vectors. Then,

→
M

△
=

n∑

i=1

⇀
x i

⇀
y
′
i (2.6.1)

is a physical matrix. A physical matrix is a second-order component-free tensor. The zero physical

matrix is denoted by
→
0 or just 0. Physical matrices operate on physical vectors according to the

rules given below.

Let
⇀
x ,

⇀
y , and

⇀
z be physical vectors, and define

→
M

△
=

⇀
x
⇀
y
′
. (2.6.2)

Then,
→
M satisfies the multiplication rules

→
M

⇀
z = (

⇀
x
⇀
y
′
)
⇀
z
△
=

⇀
x
⇀
y · ⇀z = (

⇀
y · ⇀z )

⇀
x , (2.6.3)

⇀
z
′ →
M =

⇀
z
′
(
⇀
x
⇀
y
′
) = (

⇀
z · ⇀x)

⇀
y
′
. (2.6.4)

Let
⇀
w and

⇀
v be physical vectors, and define

→
N
△
=

⇀
w
⇀
v
′
. (2.6.5)

Then,

→
M
→
N =

→
M

⇀
w
⇀
v
′
=

⇀
x(

⇀
y · ⇀w)

⇀
v
′
= (

⇀
y · ⇀w)

⇀
x
⇀
v
′
, (2.6.6)

→
M
→
N
⇀
z = (

⇀
x
⇀
y
′
)(
⇀
w
⇀
v
′
)
⇀
z =

⇀
x(

⇀
y · ⇀w)(

⇀
v · ⇀z ) = (

⇀
y · ⇀w)(

⇀
v · ⇀z )

⇀
x . (2.6.7)

Let
⇀
x and

⇀
y be physical vectors, and define

→
M

△
=

⇀
x
⇀
y
′
. (2.6.8)

Then, the coform
→
M
′

of
→
M is defined by

→
M
′
△
=

⇀
y
⇀
x
′
, (2.6.9)
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which is also a physical matrix. Furthermore, let
→
N and

→
L be physical matrices. Then,

(
→
N +

→
L)′ =

→
N
′
+
→
L
′
, (2.6.10)

(
→
N
→
L)′ =

→
L
′→
N
′
. (2.6.11)

Finally, if
⇀
z is a physical vector, then

(
→
M

⇀
z )′ =

⇀
z
′ →
M
′
. (2.6.12)

Let
→
M be a physical matrix, and let

⇀
x and

⇀
y be physical vectors. Then,

→
M

⇀
x
⇀
y
′
=
→
M(

⇀
x
⇀
y
′
) = (

→
M

⇀
x)

⇀
y
′
. (2.6.13)

The physical matrix
→
M is symmetric if

→
M
′
=
→
M and skew symmetric if

→
M
′
= −

→
M.

Fact 2.6.1. Let
⇀
x and

⇀
y be physical vectors, and define

→
M

△
=

⇀
x
⇀
y
′
− ⇀

y
⇀
x
′
. (2.6.14)

Then,
→
M is skew symmetric.

Let
⇀
x and

⇀
y be physical vectors, and let FA be a frame. Then, we define

(
⇀
x
⇀
y
′
)
∣
∣
∣
∣
A

△
=

⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣

T

A
. (2.6.15)

Note that (
⇀
x
⇀
y
′
)
∣
∣
∣
∣
A

is a 3 × 3 matrix whose rank is 1 if and only if
⇀
x and

⇀
y are nonzero, and whose

rank is 0 if and only if either
⇀
x or

⇀
y is zero. Furthermore, if

⇀
w and

⇀
z are physical vectors, then

(
⇀
x
⇀
y
′
+
⇀
w
⇀
z
′
)
∣
∣
∣
∣
A

△
=

⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣

T

A
+

⇀
w
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣

T

A
. (2.6.16)

Fact 2.6.2. Let
→
M be a physical matrix, let

⇀
z be a physical vector, and let FA be a frame. Then,

(
→
M

⇀
z )

∣
∣
∣
∣
∣
A

=
→
M

∣
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A
. (2.6.17)

Proof. Assuming that
→
M has the form (2.6.1),

(
→
M

⇀
z )

∣
∣
∣
∣
∣
A

=

n∑

i=1

(
⇀
y i ·

⇀
z )

⇀
x i

∣
∣
∣
∣
∣
∣
∣
A

=

n∑

i=1

⇀
y i

∣
∣
∣
∣

T

A

⇀
z
∣
∣
∣
∣
A

⇀
x i

∣
∣
∣
∣
A
=

n∑

i=1

⇀
x i

∣
∣
∣
∣
A

⇀
y i

∣
∣
∣
∣

T

A

⇀
z
∣
∣
∣
∣
A
=
→
M

∣
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A
. �

The following result is analogous to Fact 2.4.1.

Fact 2.6.3. Let
→
M and

→
N be physical matrices. Then,

→
M =

→
N (2.6.18)
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if and only if

→
M

∣
∣
∣
∣
∣
A

=
→
N

∣
∣
∣
∣
∣
A

. (2.6.19)

Fact 2.6.4. Let
→
M and

→
N be physical matrices. Then,

→
M =

→
N (2.6.20)

if and only if, for all physical vectors
⇀
x ,

→
M

⇀
x =

→
N
⇀
x . (2.6.21)

Fact 2.6.5. Let FA be a frame, let
→
M and

→
N be physical matrices, and let

⇀
x and

⇀
y be physical

vectors. Then,

→
M
′∣∣
∣
∣
∣
A

=
→
M

∣
∣
∣
∣
∣

T

A

, (2.6.22)

(
→
M +

→
N)

∣
∣
∣
∣
∣
A

=
→
M

∣
∣
∣
∣
∣
A

+
→
N

∣
∣
∣
∣
∣
A

, (2.6.23)

(
→
M
→
N)

∣
∣
∣
∣
∣
A

=
→
M

∣
∣
∣
∣
∣
A

→
N

∣
∣
∣
∣
∣
A

, (2.6.24)

(
→
M

⇀
x)

∣
∣
∣
∣
∣
A

=
→
M

∣
∣
∣
∣
∣
A

⇀
x
∣
∣
∣
∣
A
, (2.6.25)

(
⇀
x
′ →
M)

∣
∣
∣
∣
∣
A

=
⇀
x
∣
∣
∣
∣

T

A

→
M

∣
∣
∣
∣
∣
A

, (2.6.26)

⇀
x
′ →
M

⇀
y =

⇀
x
∣
∣
∣
∣

T

A

→
M

∣
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A
, (2.6.27)

→
M

∣
∣
∣
∣
∣
A

=





ı̂′
A

→
Mı̂A ı̂′

A

→
M ̂A ı̂′

A

→
Mk̂A

̂′
A

→
Mı̂A ̂′

A

→
M ̂A ̂′

A

→
Mk̂A

k̂′
A

→
Mı̂A k̂′

A

→
M ̂A k̂′

A

→
Mk̂A





. (2.6.28)

It can be seen that the coform of a physical vector or a physical matrix is analogous to the

transpose of a mathematical vector or a mathematical matrix.

The following definition concerns eigenvalues and eigenvectors of physical matrices.

Definition 2.6.6. Let
→
M be a physical matrix, let

⇀
x be a nonzero dimensionless physical vector,

let λ be a complex number, and assume that

→
M

⇀
x = λ

⇀
x . (2.6.29)

Then, λ is an eigenvalue of
→
M, and

⇀
x is an eigenvector of

→
M associated with λ.
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The following result shows that the eigenvalues and eigenvectors of a physical matrix correspond

to the eigenvalues and eigenvectors of 3 × 3 matrices.

Fact 2.6.7. Let
→
M be a physical matrix, let λ be an eigenvalue of

→
M, let

⇀
x be a eigenvector

of
→
M associated with λ, and let FA be a frame. Then, λ is an eigenvalue of

→
M

∣
∣
∣
∣
∣
A

, and
⇀
x
∣
∣
∣
∣
A

is an

eigenvector of
→
M

∣
∣
∣
∣
∣
A

associated with λ.

2.7 Physical Projector Matrices

Let
⇀
y be a nonzero physical vector. Then, the physical projector matrix

→
P⇀

y
onto the line spanned

by
⇀
y is defined by

→
P⇀

y

△
=

1

|⇀y |2
⇀
y
⇀
y
′
, (2.7.1)

and the physical projector matrix
→
P⇀

y
onto the plane perpendicular to

⇀
y is defined by

→
P⇀

y⊥
△
=
→
I −

→
P⇀

y
. (2.7.2)

Note that

→
P

2

⇀
y =

→
P⇀

y
, (2.7.3)

→
P

2

⇀
y⊥ =

→
P⇀

y⊥. (2.7.4)

If
⇀
y has unit length, then

→
Pŷ = ŷŷ′, (2.7.5)

→
Pŷ⊥ =

→
I − ŷŷ′. (2.7.6)

Let
⇀
y be a nonzero physical vector, and let

⇀
x be a physical vector. Then, the projection of

⇀
x

onto the line spanned by
⇀
y is given by

→
P⇀

y

⇀
x =

⇀
x · ⇀y
|⇀y |2

⇀
y , (2.7.7)

and the projection of
⇀
x onto the plane that is perpendicular to

⇀
y is given by

→
P⇀

y⊥
⇀
x = (

→
I −

→
P⇀

y
)
⇀
x =

⇀
x −

⇀
x · ⇀y
|⇀y |2

⇀
y . (2.7.8)

Note that
→
P⇀

y

⇀
y =

⇀
y and

→
P⇀

y⊥
⇀
y =

⇀

0 .
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Fact 2.7.1. Let
⇀
y be a nonzero physical vector, and let

⇀
x be a physical vector. Then,

|
→
P⇀

y

⇀
x | = |

⇀
x · ⇀y |
|⇀y |

= |⇀x | | cos θ⇀
y/

⇀
x
|. (2.7.9)

Figure 2.7.1 illustrates the physical projector matrix.

⇀
x

⇀
y

→
P⇀

y

⇀
x

Figure 2.7.1: The projection
→
P⇀

y

⇀
x of

⇀
x onto

⇀
y .

Now, let
⇀
y and

⇀
z be nonzero physical vectors that are orthogonal. Then, the physical projector

matrix
→
P⇀

y ,
⇀
z

onto the plane spanned by
⇀
y and

⇀
z is defined by

→
P⇀

y ,
⇀
z

△
=
→
P⇀

y
+
→
P⇀

z
. (2.7.10)

For each physical vector
⇀
x , the projection of

⇀
x onto the plane spanned by

⇀
y and

⇀
z is the physical

vector
→
P⇀

y ,
⇀
z

⇀
x given by

→
P⇀

y ,
⇀
z

⇀
x =

→
P⇀

y

⇀
x +

→
P⇀

z

⇀
x =

⇀
x · ⇀y
|⇀y |2

⇀
y +

⇀
x · ⇀z
|⇀z |2

⇀
z . (2.7.11)

If
⇀
y and

⇀
z have unit length, then

→
Pŷ,ẑ = ŷŷ′ + ẑẑ′. (2.7.12)

Finally, if
⇀
y and

⇀
z are not orthogonal, then

⇀
y − P⇀

z

⇀
y and

⇀
y are orthogonal, and we define

→
P⇀

y ,
⇀
z

△
=
→
P⇀

y−
→
P⇀

z

⇀
y
+
→
P⇀

z
. (2.7.13)

Problem 2.26.7 shows that this definition does not depend on the order of
⇀
y and

⇀
z .

2.8 Physical Rotation Matrices

Let FA be a frame. Then, the physical identity matrix
→
I is defined by

→
I
△
= ı̂A ı̂

′
A + ̂A ̂

′
A + k̂Ak̂′A = FAF

′
A. (2.8.1)

The following result shows that
→
I is independent of the choice of frame in (2.8.1). Let I3 denote the

3 × 3 identity matrix, and let ei denote the ith column of I3.
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Fact 2.8.1. Let FA be a frame, and define
→
I by (2.8.1). Then, for all physical vectors

⇀
x ,

→
I
⇀
x =

⇀
x , (2.8.2)

and, for all physical covectors
⇀
x
′
,

⇀
x
′→
I =

⇀
x
′
. (2.8.3)

Now, let FB be a frame. Then,

→
I

∣
∣
∣
∣
∣
B

= I3. (2.8.4)

Proof. Writing
⇀
x = x1 ı̂A + x2 ̂A + x3k̂A, it follows that

→
I
⇀
x = (ı̂A ı̂

′
A + ̂A ̂

′
A + k̂Ak̂′A)(x1 ı̂A + x2 ̂A + x3k̂A) =

⇀
x .

Consequently,

→
I

∣
∣
∣
∣
∣
B

⇀
x
∣
∣
∣
∣
B
=

⇀
x
∣
∣
∣
∣
B
.

Therefore,

→
I

∣
∣
∣
∣
∣
B

=
→
I

∣
∣
∣
∣
∣
B

I3 =

[ →
I

∣
∣
∣
∣
∣
B

e1

→
I

∣
∣
∣
∣
∣
B

e2

→
I

∣
∣
∣
∣
∣
B

e3

]

=

[

(
→
I ı̂B)

∣
∣
∣
∣
∣
B

(
→
I ̂B)

∣
∣
∣
∣
∣
B

(
→
I k̂B)

∣
∣
∣
∣
∣
B

]

=
[

ı̂B|B ̂B|B k̂B|B
]

=
[

e1 e2 e3

]

= I3. �

Let
→
M and

→
N be physical matrices. If

→
M
→
N =

→
I , then we define

→
M
−1

△
=
→
N. (2.8.5)

Let FA and FB be frames. Then, the physical rotation matrix
→
RB/A is defined by

→
RB/A

△
= ı̂B ı̂

′
A + ̂B ̂

′
A + k̂Bk̂′A. (2.8.6)

Note that

→
RB/A =

[

ı̂B ̂B k̂B

]





ı̂′
A

̂′
A

k̂′
A




= FBF

′
A, (2.8.7)

→
RA/A = FAF

′
A =

→
I . (2.8.8)

A physical matrix
→
R is a physical rotation matrix if there exist frames FA and FB such that

→
R =

→
RB/A.

The following result shows that
→
RB/A rotates FA to FB.

Fact 2.8.2. Let FA and FB be frames. Then,

ı̂B =
→
RB/A ı̂A, (2.8.9)

̂B =
→
RB/A ̂A, (2.8.10)
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k̂B =
→
RB/Ak̂A. (2.8.11)

Furthermore,

→
RB/A =

→
R
′

A/B (2.8.12)

→
RB/A

→
RA/B =

→
I , (2.8.13)

→
RB/A =

→
R
−1

A/B =
→
R
′

A/B. (2.8.14)

We thus have

FB =
[

ı̂B ̂B k̂B

]

=

[
→
RB/A ı̂A

→
RB/A ̂A

→
RB/Ak̂A

]

=
→
RB/A

[

ı̂A ̂A k̂A

]

=
→
RB/AFA. (2.8.15)

Since
→
R
−1

A/B =
→
R
′

A/B, it follows that
→
RA/B is an orthogonal physical matrix.

Fact 2.8.3. Let FA and FB be frames. Then, there exists a unique physical rotation matrix
→
R

such that FB =
→
RFA. In particular,

→
R =

→
RB/A.

2.9 Physical Cross Product Matrix

Let
⇀
x be a physical vector. Then, for all physical vectors

⇀
y , the physical cross product matrix

→
M

△
=

⇀
x
×

is defined by

→
M

⇀
y =

⇀
x
×⇀

y
△
=

⇀
x × ⇀

y . (2.9.1)

Fact 2.9.1. Let
⇀
x be a physical vector, and let FA be a frame. Then,

⇀
x
×∣∣
∣
∣
A
=

⇀
x
∣
∣
∣
∣

×

A
=





0 −k̂A ·
⇀
x ̂A ·

⇀
x

k̂A ·
⇀
x 0 −ı̂A ·

⇀
x

− ̂A ·
⇀
x ı̂A ·

⇀
x 0





, (2.9.2)

⇀
x
×
= (ı̂A ·

⇀
x)(k̂A ̂

′
A − ̂Ak̂′A) + ( ̂A ·

⇀
x)(ı̂Ak̂′A − k̂A ı̂

′
A) + (k̂A ·

⇀
x)( ̂A ı̂

′
A − ı̂A ̂

′
A). (2.9.3)

Proof. Let
⇀
y be a physical vector. We thus have

⇀
x
×∣∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A
= (

⇀
x
×⇀

y )
∣
∣
∣
∣
A
= (

⇀
x × ⇀

y )
∣
∣
∣
∣
A
=

⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A
=

⇀
x
∣
∣
∣
∣

×

A

⇀
y
∣
∣
∣
∣
A
.

It thus follows from Fact 2.6.4 that
⇀
x
×∣∣
∣
∣
A
=

⇀
x
∣
∣
∣
∣

×

A
. The second equality in (2.9.2) follows from

(2.4.31). Finally, resolving the right-hand side of (2.9.3) yields the matrix in (2.9.2), and thus the

second statement follows from Fact 2.6.3. �



GEOMETRY 31

Fact 2.9.2. Let
⇀
x be a physical vector. Then,

⇀
x
×′
= −⇀x

×
, (2.9.4)

⇀
x
×⇀

x = 0, (2.9.5)

⇀
x
′⇀
x
×
= 0, (2.9.6)

⇀
x
×2

=
⇀
x
⇀
x
′
− |⇀x |2

→
I , (2.9.7)

(
→
I +

⇀
x
×
)−1 =

1

1 + |⇀x |2
(
→
I +

⇀
x
⇀
x
′
− ⇀

x
×
) (2.9.8)

=
→
I +

1

1 + |⇀x |2
(
⇀
x
×2

− ⇀
x
×
). (2.9.9)

Now, let FA be a frame, and define x
△
=

⇀
x
∣
∣
∣
∣
A
. Then,

x×T = −x×, (2.9.10)

x×x = 0, (2.9.11)

xTx× = 0, (2.9.12)

x×2 = xxT − xTxI3, (2.9.13)

(I3 + x×)−1 =
1

1 + ‖x‖2
(I3 + xxT − x×) (2.9.14)

= I3 +
1

1 + ‖x‖2
(x×2 − x×). (2.9.15)

Equation (2.9.4) shows that the physical cross product matrix
⇀
x
×

is skew symmetric. The fol-

lowing result provides the converse result, namely, that if the physical matrix
→
M is skew symmetric,

then it must be a physical cross product matrix.

Fact 2.9.3. Let
→
M be a physical matrix, and assume that

→
M is skew symmetric. Then, there

exists a physical vector
⇀
x such that

→
M =

⇀
x
×
.

Proof. Let FA be a frame, and define M
△
=
→
M

∣
∣
∣
∣
∣
A

. Furthermore, define
⇀
x = −M(2,3) ı̂A+M(1,3) ̂A−

M(1,2)k̂A. Then,
→
M

∣
∣
∣
∣
∣
A

=
⇀
x
×∣∣
∣
∣
A
, and thus

→
M =

⇀
x
×
. �

Fact 2.9.4. Let
⇀
x be a physical vector, let α and β be real numbers, and assume that either

α , 0 or β|⇀x |2 , 1. Then,

(
→
I + α

⇀
x
×
+ β

⇀
x
×2

)−1 =
→
I − α

α2|⇀x |2 + (β|⇀x |2 − 1)2

⇀
x
×
+

α2 + β2|⇀x |2 − β
α2|⇀x |2 + (β|⇀x |2 − 1)2

⇀
x
×2

. (2.9.16)
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Now, let FA be a frame, and define x
△
=

⇀
x
∣
∣
∣
∣
A
. Then,

(I3 + αx× + βx×2)−1 = I3 −
α

α2‖x‖2 + (β‖x‖2 − 1)2
x× +

α2 + β2‖x‖2 − β
α2‖x‖2 + (β‖x‖2 − 1)2

x×2. (2.9.17)

Fact 2.9.5. Let
⇀
x and

⇀
y be physical vectors. Then,

(
⇀
x × ⇀

y )′ = −⇀y
′⇀
x
×
, (2.9.18)

(
⇀
x × ⇀

y )× =
⇀
y
⇀
x
′
− ⇀

x
⇀
y
′
, (2.9.19)

⇀
x
×⇀

y
×
=

⇀
y
⇀
x
′
− (

⇀
y
′⇀
x)
→
I . (2.9.20)

Now, let FA be a frame, and define x
△
=

⇀
x
∣
∣
∣
∣
A

and y
△
=

⇀
y
∣
∣
∣
∣
A

Then,

(x × y)T = −yTx×, (2.9.21)

(x × y)× = yxT − xyT, (2.9.22)

x×y× = yxT − yTxI3. (2.9.23)

Proof. To prove (2.9.18), note that it follows from (2.9.4) that

(
⇀
x × ⇀

y )′ = (
⇀
x
×⇀

y )′ =
⇀
y
′⇀
x
×′
= −⇀y

′⇀
x
×
.

Next, to prove (2.9.19) let
⇀
z be a physical vector. Then, Fact 2.4.3 implies that

(
⇀
x × ⇀

y )×
⇀
z = (

⇀
x × ⇀

y )×⇀z = (
⇀
x
′⇀
z )

⇀
y − (

⇀
y
′⇀
z )

⇀
x = (

⇀
y
⇀
x
′
− ⇀

x
⇀
y
′
)
⇀
z .

Finally, to prove (2.9.20), let
⇀
z be a physical vector. Then, Fact 2.4.3 implies that

⇀
x
×⇀

y
×⇀

z =
⇀
x × (

⇀
y × ⇀

z ) = (
⇀
x
′⇀
z )

⇀
y − (

⇀
x
′⇀
y )

⇀
z = [

⇀
y
⇀
x
′
− (

⇀
y
′⇀
x)
→
I ]
⇀
z . �

Fact 2.9.6. Let S be a parallelogram with vertices a, b, c, d so that
⇀
r b/a =

⇀
r d/c and

⇀
r c/a =

⇀
r d/b,

and let θ ∈ (0, π) be the angle between
⇀
r b/a and

⇀
r c/a. Then,

area(S) = |⇀r b/a||
⇀
r c/a| sin θ = |⇀r b/a ×

⇀
r c/a| = |(

⇀
r b/a

⇀
r
′
c/a −

⇀
r c/a

⇀
r
′
b/a)−×|. (2.9.24)

Now, define x
△
=

⇀
r b/a

∣
∣
∣
∣
A

and y
△
=

⇀
r c/a

∣
∣
∣
∣
A
. Then,

area(S) = ‖x‖‖y‖ sin θ = ‖x × y‖ = ‖(x × y)×‖F = ‖(xyT − yxT)−×‖ = ‖xyT − yxT‖F. (2.9.25)

Fact 2.9.6 shows that the cross product
⇀
r b/a×

⇀
r c/a can be viewed as a directed area, and likewise

for the physical matrix
⇀
r b/a

⇀
r
′
c/a −

⇀
r c/a

⇀
r
′
b/a. It will be shown in Chapter 3 that

⇀
r b/a ∧

⇀
r
′
c/a =

⇀
r b/a ⊗

⇀
r
′
c/a −

⇀
r c/a ⊗

⇀
r
′
b/a =

⇀
r b/a

⇀
r
′
c/a −

⇀
r c/a

⇀
r
′
b/a, where

⇀
r b/a ∧

⇀
r
′
c/a is a bivector

Fact 2.9.7. Let
⇀
x ,

⇀
y , and

⇀
z be physical vectors, and let FA be a frame. Then,

(
⇀
x × ⇀

y )′
⇀
z =

⇀
x
′
(
⇀
y × ⇀

z ) = det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

. (2.9.26)
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Proof. Note that

(
⇀
x × ⇀

y )′
⇀
z = −(

⇀
y × ⇀

x)′
⇀
z = −(

⇀
y
×⇀

x)′
⇀
z = −⇀x

′⇀
y
×′⇀

z =
⇀
x
′⇀
y
×⇀

z =
⇀
x
′
(
⇀
y × ⇀

z ).

Finally, note that

(
⇀
x × ⇀

y )′
⇀
z =

(
⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A

)T ⇀
z
∣
∣
∣
∣
A
= det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

. �

Fact 2.9.8. Let
⇀
x be a physical vector, and let

→
R be a physical rotation matrix. Then,

(
→
R
⇀
x)× =

→
R
⇀
x
×→

R
′
. (2.9.27)

Proof. Let FA and FB be frames such that
→
R =

→
RB/A, and write

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




. Using (2.9.3) we

have

→
RB/A

⇀
x
×→

RA/B =
→
RB/A[x1(k̂A ̂

′
A − ̂Ak̂′A) + x2(ı̂Ak̂′A − k̂A ı̂

′
A) + x3( ̂A ı̂

′
A − ı̂A ̂

′
A)]
→
RA/B

= x1(k̂B ̂
′
B − ̂Bk̂′B) + x2(ı̂Bk̂′B − k̂B ı̂

′
B) + x3( ̂B ı̂

′
B − ı̂B ̂

′
B)

= x1 ı̂
×
B + x2 ̂

×
B + x3k̂×B = (x1 ı̂B + x2 ̂B + x3k̂B)× = (

→
RB/A

⇀
x)×. �

Fact 2.9.9. Let
⇀
x and

⇀
y be physical vectors, and let

→
R be a physical rotation matrix. Then,

→
R(

⇀
x × ⇀

y ) = (
→
R
⇀
x) × (

→
R
⇀
y ). (2.9.28)

Now, let FA be a frame and define x
△
=

⇀
x
∣
∣
∣
∣
A

, y
△
=

⇀
y
∣
∣
∣
∣
A
, and R

△
=
→
R

∣
∣
∣
∣
∣
A

. Then,

R(x × y) = (Rx) × (Ry). (2.9.29)

Proof. Using (2.9.27) it follows that

→
R(

⇀
x × ⇀

y ) =
→
R
⇀
x
×⇀

y =
→
R
⇀
x
×→

R
′→
R
⇀
y = (

→
R
⇀
x)×

→
R
⇀
y = (

→
R
⇀
x) × (

→
R
⇀
y ). �

2.10 Rotation and Orientation Matrices

The following result is needed for the subsequent development.

Fact 2.10.1. Let FA and FB be frames. Then,

→
RB/A

∣
∣
∣
∣
∣
B

=
→
RB/A

∣
∣
∣
∣
∣
A

=





ı̂A · ı̂B ı̂A · ̂B ı̂A · k̂B

̂A · ı̂B ̂A · ̂B ̂A · k̂B

k̂A · ı̂B k̂A · ̂B k̂A · k̂B





=
[

ı̂B|A ̂B|A k̂B|A
]

= FB|A . (2.10.1)
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Proof. Note that

→
RB/A

∣
∣
∣
∣
∣
B

= e1 ı̂A|TB + e2 ̂A|TB + e3k̂A|TB =
[

e1 e2 e3

]





ı̂A|TB
̂A|TB
k̂A|TB





=





ı̂A|TB
̂A|TB
k̂A|TB





=





ı̂A|TB
̂A|TB
k̂A|TB





[

e1 e2 e3

]

=





ı̂A|TB e1 ı̂A|TB e2 ı̂A|TB e3

̂A|TB e1 ̂A|TB e2 ̂A|TB e3

k̂A|TBe1 k̂A|TBe2 k̂A|TBe3





=





ı̂A · ı̂B ı̂A · ̂B ı̂A · k̂B

̂A · ı̂B ̂A · ̂B ̂A · k̂B

k̂A · ı̂B k̂A · ̂B k̂A · k̂B





=
[

ı̂B|A ̂B|A k̂B|A
]

= FB|A =
[

ı̂B|A ̂B|A k̂B|A
]





eT
1

eT
2

eT
3





= ı̂B|A eT
1 + ̂B|A eT

2 + k̂B|AeT
3 =

→
RB/A

∣
∣
∣
∣
∣
A

. �

Let FA and FB be frames, and define the rotation matrix from FA to FB to be the 3 × 3 matrix

RB/A
△
= RB/A|B = RB/A|A =

→
RB/A

∣
∣
∣
∣
∣
B

=
→
RB/A

∣
∣
∣
∣
∣
A

= FB|A . (2.10.2)

Furthermore, define the orientation matrix of FA relative to FB to be the 3 × 3 matrix

OA/B
△
= RB/A. (2.10.3)

Hence,

OB/A = RA/B = RA/B|A = RA/B|B =
→
RA/B

∣
∣
∣
∣
∣
A

=
→
RA/B

∣
∣
∣
∣
∣
B

= FA|B . (2.10.4)

Fact 2.10.2. Let FA and FB be frames. Then,

OB/A = RA/B = RT
B/A = OT

A/B, (2.10.5)

RA/B = R−1
B/A, (2.10.6)

OA/B = O−1
B/A. (2.10.7)

Therefore,

RT
B/A = R−1

B/A, (2.10.8)

OT
B/A = O−1

B/A. (2.10.9)

Proof. Note that

OB/A = RA/B =
→
RA/B

∣
∣
∣
∣
∣
A

=
→
R
′

B/A

∣
∣
∣
∣
∣
A

=
→
RB/A

∣
∣
∣
∣
∣

T

A

= RT
B/A = OT

A/B.

Next, since
→
I =

→
RA/B

→
RB/A, it follows from (2.10.1) that

I3 =
→
RA/B

∣
∣
∣
∣
∣
A

→
RB/A

∣
∣
∣
∣
∣
A

=
→
RA/B

∣
∣
∣
∣
∣
A

→
RB/A

∣
∣
∣
∣
∣
B

= RA/BRB/A.
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Hence, RA/B = R−1
B/A

. �

It follows from (2.10.8) and (2.10.9) that RA/B and OA/B are orthogonal matrices.

Fact 2.10.3. Let FA and FB be frames. Then,

OA/B =





ı̂A · ı̂B ı̂A · ̂B ı̂A · k̂B

̂A · ı̂B ̂A · ̂B ̂A · k̂B

k̂A · ı̂B k̂A · ̂B k̂A · k̂B





=
[

ı̂B|A ̂B|A k̂B|A
]

= FB|A . (2.10.10)

We can write OA/B in terms of row and column vectrices as

OA/B =





ı̂A
̂A
k̂A




·
[

ı̂B ̂B k̂B

]

=





ı̂′
A

̂′
A

k̂′
A





[

ı̂B ̂B k̂B

]

= F′AFB. (2.10.11)

The following result shows that the entries of OA/B are the cosines of the angles between pairs

of vectors in frames FA and FB. Consequently, OA/B is a direction cosine matrix.

Fact 2.10.4. Let FA and FB be frames. Then,

OA/B =





cos θı̂A/ı̂B cos θı̂A/ ̂B cos θı̂A/k̂B

cos θ ̂A/ı̂B cos θ ̂A/ ̂B cos θ ̂A/k̂B

cos θk̂A/ı̂B
cos θk̂A/ ̂B

cos θk̂A/k̂B





. (2.10.12)

The following result relates column vectrices that represent different frames.

Fact 2.10.5. Let FA and FB be frames. Then,




ı̂B
̂B
k̂B




= OB/A





ı̂A
̂A
k̂A




, (2.10.13)

where

OB/A =





ı̂B · ı̂A ı̂B · ̂A ı̂B · k̂A

̂B · ı̂A ̂B · ̂A ̂B · k̂A

k̂B · ı̂A k̂B · ̂A k̂B · k̂A





. (2.10.14)

Proof. Note that





ı̂B
̂B
k̂B




=





→
I ı̂B
→
I ̂B
→
I k̂B





=





(ı̂A ı̂
′
A
+ ̂A ̂

′
A
+ k̂Ak̂′

A
)ı̂B

(ı̂A ı̂
′
A
+ ̂A ̂

′
A
+ k̂Ak̂′

A
) ̂B

(ı̂A ı̂
′
A
+ ̂A ̂

′
A
+ k̂Ak̂′

A
)k̂B





=





ı̂′
A
ı̂B ̂′

A
ı̂B k̂′

A
ı̂B

ı̂′
A
̂B ̂′

A
̂B k̂′

A
̂B

ı̂′
A

k̂B ̂′
A

k̂B k̂′
A

k̂B









ı̂A
̂A
k̂A
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=





ı̂B · ı̂A ı̂B · ̂A ı̂B · k̂A

̂B · ı̂A ̂B · ̂A ̂B · k̂A

k̂B · ı̂A k̂B · ̂A k̂B · k̂A









ı̂A
̂A
k̂A





= OB/A





ı̂A
̂A
k̂A




. �

Note that (2.10.13) can be written as

FB = OB/AFA = RA/BFA. (2.10.15)

Therefore,

FB = FAOA/B = FARB/A =
→
RB/AFA. (2.10.16)

Note the “commuting” property in the last equality in (2.10.16), which implies that

FA =
→
RB/AFARA/B =

→
RA/BFARB/A. (2.10.17)

Resolving (2.10.16) in FA yields

OA/B = FB|A = OA/B = RB/A, (2.10.18)

whereas resolving (2.10.16) in FB yields

I3 = OB/AOA/B = OB/ARB/A = RB/AOB/A. (2.10.19)

To directly show the equality between the second and fourth terms in (2.10.16), note that

→
RB/AFA = FBF

′
AFA = FBI3 = FB =

→
I FB = FAF

′
AFB = FAOA/B. (2.10.20)

Note that the last three equalities in (2.10.20) show that

FB = OB/AFA, (2.10.21)

which is (2.10.13). Finally, it follows from (2.10.20) and (2.4.13) that

→
RB/A = FAOA/BF

′
A = FARB/AF

′
A. (2.10.22)

To relate (2.10.13) to (2.10.10), note that it follows from (2.10.13) that





ı̂′
B

̂′
B

k̂′
B





= OB/A





ı̂′
A

̂′
A

k̂′
A





, (2.10.23)

that is,

F′B = OB/AF
′
A. (2.10.24)

Now, taking the transpose of (2.10.24) and multiplying on the right by OB/A yields

F′A = F′BOB/A, (2.10.25)

that is,
[

ı̂′
A

̂′
A

k̂′
A

]

=
[

ı̂′
B

̂′
B

k̂′
B

]

OB/A. (2.10.26)
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Furthermore, resolving (2.10.23) in FA yields





ı̂B|TA
̂B|TA
k̂B|TA





=





ı̂′
B

∣
∣
∣
A

̂′
B

∣
∣
∣
A

k̂′
B

∣
∣
∣
A





= OB/A, (2.10.27)

which implies that

OA/B =
[

ı̂B|A ̂B|A k̂B|A
]

= FB|A . (2.10.28)

The following identities are useful.

Fact 2.10.6. Let FA and FB be frames. Then,

→
I =

[

ı̂B ̂B k̂B

]

OB/A





ı̂′
A

̂′
A

k̂′
A





, (2.10.29)

→
RB/A =

[

ı̂B ̂B k̂B

]

OA/B





ı̂′
B

̂′
B

k̂′
B





. (2.10.30)

Proof. It follows from (2.10.23) that

[

ı̂B ̂B k̂B

]

OB/A





ı̂′
A

̂′
A

k̂′
A





=
[

ı̂B ̂B k̂B

]





ı̂′
B

̂′
B

k̂′
B





= ı̂B ı̂
′
B + ̂B ̂

′
B + k̂Bk̂′B =

→
I . �

The following result is especially useful.

Fact 2.10.7. Let FA and FB be frames, and let
⇀
x be a physical vector. Then,

⇀
x
∣
∣
∣
∣
B
= OB/A

⇀
x
∣
∣
∣
∣
A
, (2.10.31)

⇀
x
∣
∣
∣
∣
B
= RA/B

⇀
x
∣
∣
∣
∣
A
. (2.10.32)

Proof. Note that

⇀
x
∣
∣
∣
∣
B
= I3

⇀
x
∣
∣
∣
∣
B
= F′BFB

⇀
x
∣
∣
∣
∣
B
= F′BFA

⇀
x
∣
∣
∣
∣
A
= OB/A

⇀
x
∣
∣
∣
∣
A
. �

Fact 2.10.8. Let FA and FB be frames, let
⇀
x be a physical vector, and let

⇀
y =

→
RB/A

⇀
x . Then,

⇀
y
∣
∣
∣
∣
A
= RB/A

⇀
x
∣
∣
∣
∣
A
= R2

B/A

⇀
x
∣
∣
∣
∣
B
, (2.10.33)

⇀
y
∣
∣
∣
∣
B
= RB/A

⇀
x
∣
∣
∣
∣
B
=

⇀
x
∣
∣
∣
∣
A
. (2.10.34)

The following result shows that the orthogonal matrix OA/B is proper, that is, OA/B is a rotation

matrix.
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Fact 2.10.9. Let FA and FB be frames. Then,

detOB/A = 1. (2.10.35)

Proof. Using Fact 2.9.7, it follows that

det OB/A = det
[

ı̂A|B ̂A|B k̂A|B
]

= ( ı̂A|B × ̂A|B)T k̂A

∣
∣
∣
B
= k̂A

∣
∣
∣
T

B
k̂A

∣
∣
∣
B
= 1. �

Example 2.10.10. Let FA and FB be frames such that

ı̂B = −k̂A, ̂B = ̂A, k̂B = ı̂A. (2.10.36)

Therefore,
→
RB/A rotates FA by π/2 rad according to the right hand rule around ̂A. Furthermore,

OB/A =





0 0 −1

0 1 0

1 0 0




, (2.10.37)

which satisfies (2.10.35). Finally,

[

ı̂B ̂B k̂B

]

OB/A





ı̂′
A

̂′
A

k̂′
A





= −ı̂Bk̂′A + k̂B ı̂
′
A + ̂B ̂

′
A = ı̂A ı̂

′
A + ̂A ̂

′
A + k̂Ak̂′A =

→
I ,

which confirms (2.10.29).

Fact 2.10.11. Let
→
M be a physical matrix. Then,

→
M

∣
∣
∣
∣
∣
B

= OB/A

→
M

∣
∣
∣
∣
∣
A

OA/B. (2.10.38)

Proof. Write

→
M =

n∑

i=1

⇀
x i

⇀
y
′
i .

We thus have

→
M

∣
∣
∣
∣
∣
B

=

n∑

i=1

⇀
x i

∣
∣
∣
∣
B

⇀
y i

∣
∣
∣
∣

T

B
=

n∑

i=1

OB/A
⇀
x i

∣
∣
∣
∣
A

(

OB/A
⇀
y i

∣
∣
∣
∣
A

)T

= OB/A

n∑

i=1

⇀
x i

∣
∣
∣
∣
A

⇀
y i

∣
∣
∣
∣

T

A
OT

B/A = OB/A

→
M

∣
∣
∣
∣
∣
A

OA/B. �

Fact 2.10.12. Let
⇀
x be a physical vector, and let FA and FB be frames. Then,

(RB/Ax)× = RB/Ax×RA/B, (2.10.39)

(OB/Ax)× = OB/Ax×OA/B. (2.10.40)

Proof. The result follows from Fact 2.9.8. �
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Fact 2.10.13. Let
⇀
x and

⇀
y be physical vectors, and let FA and FB be frames. Then,

OB/A

(
⇀
x
∣
∣
∣
∣
A
× ⇀

y
∣
∣
∣
∣
A

)

=
⇀
x
∣
∣
∣
∣
B
× ⇀

y
∣
∣
∣
∣
B
. (2.10.41)

Proof. The result follows from Fact 2.9.9. �

Fact 2.10.14. Let FA and FB be frames, and let
⇀
x be a physical vector. Then,

OA/B
⇀
x
×∣∣
∣
∣
B
=

⇀
x
×∣∣
∣
∣
A
OA/B. (2.10.42)

That is,

OA/B





0 −k̂B ·
⇀
x ̂B ·

⇀
x

k̂B ·
⇀
x 0 −ı̂B ·

⇀
x

− ̂B ·
⇀
x ı̂B ·

⇀
x 0





=





0 −k̂A ·
⇀
x ̂A ·

⇀
x

k̂A ·
⇀
x 0 −ı̂A ·

⇀
x

− ̂A ·
⇀
x ı̂A ·

⇀
x 0





OA/B. (2.10.43)

Fact 2.10.15. Let FA, FB, and FC be frames. Then,

→
RC/A =

→
RC/B

→
RB/A. (2.10.44)

Furthermore,

OC/A = OC/BOB/A, (2.10.45)

RC/A = RB/ARC/B. (2.10.46)

Proof. The first equality follows directly from the definition of the physical rotation matrix.

Next, using (2.10.44), (2.6.24), and (2.10.38), we have

OC/A =
→
RA/C

∣
∣
∣
∣
∣
C

=

(→
RA/B

→
RB/C

)∣∣
∣
∣
∣
C

=
→
RA/B

∣
∣
∣
∣
∣
C

→
RB/C

∣
∣
∣
∣
∣
C

= OC/B

→
RA/B

∣
∣
∣
∣
∣
B

OB/COC/B = OC/BOB/A. �

For four frames we have the following immediate extension.

Fact 2.10.16. Let FA, FB, FC, and FD be frames. Then,

→
RD/A =

→
RD/C

→
RC/B

→
RB/A. (2.10.47)

Furthermore,

OD/A = OD/COC/BOB/A, (2.10.48)

RD/A = RB/ARC/BRD/C. (2.10.49)

For the 3 × 3 matrix M, the trace of M, which is denoted by tr M, is the sum of the diagonal

entries of M. For the physical matrix
→
M, we define

tr
→
M

△
= tr

→
M

∣
∣
∣
∣
∣
A

, (2.10.50)

where FA is an arbitrary frame. This definition is independent of the choice of frame since, if FB is

also a frame, then

tr
→
M

∣
∣
∣
∣
∣
A

= tr

(

OA/B

→
M

∣
∣
∣
∣
∣
B

OB/A

)

= tr

(

OB/AOA/B

→
M

∣
∣
∣
∣
∣
B

)

= tr
→
M

∣
∣
∣
∣
∣
B

. (2.10.51)
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Note that

tr
→
M = ı̂′A

→
Mı̂A + ̂

′
A

→
M ̂A + k̂′A

→
Mk̂A. (2.10.52)

Likewise, we define

det
→
M

△
= det

→
M

∣
∣
∣
∣
∣
A

, (2.10.53)

which is also independent of the choice of frame.

Fact 2.10.17. Let
⇀
x and

⇀
y be physical vectors. Then,

tr
⇀
x
⇀
y
′
=

⇀
y
′⇀
x . (2.10.54)

The following result shows that the trace of a physical rotation matrix lies in the range [−1, 3].

Fact 2.10.18. Let
→
R be a physical rotation matrix. Then,

−1 ≤ tr
→
R ≤ 3. (2.10.55)

Furthermore, tr
→
R = 3 if and only if

→
R =

→
I .

Proof. Let FA be a frame, and define R
△
=
→
R

∣
∣
∣
∣
∣
A

. Then, it follows from Problem 2.26.15 that

the eigenvalues of R are 1, λ, and λ̄, where |λ| = |λ̄| = 1. Therefore, −2 ≤ λ + λ̄ ≤ 2, and thus

−1 ≤ λ + λ̄ + 1 = tr
→
R ≤ 3. Therefore, trR = tr

→
R

∣
∣
∣
∣
∣
A

= tr
→
R = 3 if and only if R = I3, which is the

case if and only if
→
R =

→
I . �

The following result is the Cayley-Hamilton theorem for physical matrices. This result shows

that every physical matrix satisfies a polynomial of degree 3.

Fact 2.10.19. Let
→
M be a physical matrix. Then,

→
M satisfies

→
M

3

− (tr
→
M)
→
M

2

+ 1
2
[(tr

→
M)2 − tr

→
M

2

]
→
M − (det

→
M)
→
I = 0. (2.10.56)

In addition,

det
→
M = 1

3
tr
→
M

3

− 1
2
(tr
→
M) tr

→
M

2

+ 1
6
(tr
→
M)3. (2.10.57)

Finally, if
→
M is nonsingular, then

tr
→
M
−1

=
(tr
→
M)2 − tr

→
M

2

2 det
→
M

. (2.10.58)

Proof. See [1, p. 283] or [5, p. 87]. �
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2.11 Eigenaxis Rotations and Rodrigues’s Formula

Let n̂ be a unit dimensionless physical vector, let θ ∈ (−π, π], and define the physical matrix

→
Rn̂(θ)

△
= (cos θ)

→
I + (1 − cos θ)n̂n̂′ + (sin θ)n̂×, (2.11.1)

which is Rodrigues’s formula. Equivalently,

→
Rn̂(θ) = n̂n̂′ + (cos θ)(

→
I − n̂n̂′) + (sin θ)n̂×. (2.11.2)

Using (2.9.7), an equivalent form of (2.11.1) is given by

→
Rn̂(θ) =

→
I + (1 − cos θ)n̂×2 + (sin θ)n̂×. (2.11.3)

Resolving (2.11.1), (2.11.2), and (2.11.3) in FA yields

Rn(θ) = (cos θ)I3 + (1 − cos θ)nnT + (sin θ)n× (2.11.4)

= nnT + (cos θ)(I3 − nnT) + (sin θ)n× (2.11.5)

= I3 + (1 − cos θ)n×2 + (sin θ)n×, (2.11.6)

where

Rn(θ)
△
=
→
Rn̂(θ)

∣
∣
∣
∣
∣
A

, (2.11.7)

n
△
= n̂|A . (2.11.8)

Now, let FA and FB be frames and assume that
→
RB/A =

→
Rn̂(θ). Then, we write

FA

θ−→̂
n

FB, (2.11.9)

which is equivalent to

FB

−θ−→̂
n

FA, (2.11.10)

FB

θ−→
−n̂

FA, (2.11.11)

FA

−θ−→
−n̂

FB. (2.11.12)

This angle is the eigenangle of
→
Rn̂(θ), while the unit dimensionless physical n̂ is the eigenaxis of

→
Rn̂(θ). The following result shows that

→
Rn̂(θ) is the physical rotation matrix that rotates vectors

around the eigenaxis n̂ through the eigenangle θ.

Fact 2.11.1. Let n̂ be a unit dimensionless physical vector, and let θ ∈ (−π, π]. Then,
→
Rn̂(θ) is

a physical rotation matrix. Furthermore, let
⇀
x be a nonzero physical vector, and let

⇀
x⊥

△
=
→
Pn̂⊥

⇀
x be

the component of
⇀
x that is perpendicular to n̂. Then, the physical vector

⇀
y =

→
Rn̂(θ)

⇀
x is obtained by

rotating
⇀
x according to the right hand rule around n̂ by the angle θ, which is the directed angle

θ = θ→
Rn̂(θ)

⇀
x⊥/

⇀
x⊥/n̂

, (2.11.13)
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In particular,

→
Rn̂(θ)n̂ = n̂. (2.11.14)

Furthermore,

→
Rn̂(−θ) =

→
R−n̂(θ) =

→
R
′

n̂(θ), (2.11.15)

→
Rn̂(θ) =

→
R−n̂(−θ) =

→
R
′

n̂(−θ). (2.11.16)

In addition,

cos θ = 1
2
(tr
→
Rn̂(θ) − 1), (2.11.17)

(sin θ)n̂× = 1
2

(
→
Rn̂(θ) −

→
R
′

n̂(θ)

)

. (2.11.18)

Furthermore, if θ , 0 and θ , π, then

n̂× =
1

2 sin θ

(
→
Rn̂(θ) −

→
R
′

n̂(θ)

)

. (2.11.19)

Finally, if θ , 0, θ , π, and
⇀
x and n̂ are orthogonal, then

n̂ =






θ̂→
Rn̂(θ)

⇀
x/

⇀
x
, θ > 0,

−θ̂→
Rn̂(θ)

⇀
x/

⇀
x
, θ < 0.

(2.11.20)

Proof. Using (2.9.7) we have

→
Rn̂(θ)

→
R
′

n̂(θ) = (cos θ)2
→
I + 2(cos θ)(1 − cos θ)n̂n̂′ − (cos θ)(sin θ)n̂×

+ (cos θ)(sin θ)n̂× + (1 − cos θ)2n̂n̂′ − (sin θ)2(n̂×)2

= (cos θ)2
→
I + (1 − cos2 θ)n̂n̂′ − (sin θ)2(n̂n̂′ −

→
I )

= (cos2 θ + sin2 θ)
→
I + (1 − cos2 θ − sin2 θ)n̂n̂′

=
→
I .

To prove that
→
Rn̂(θ) is proper, let FA be such that n̂ = ı̂A. Then,

det
→
Rn̂(θ)

∣
∣
∣
∣
∣
A

= det





1 0 0

0 cos θ − sin θ

0 sin θ cos θ




= 1.

Next, to demonstrate the effect of applying
→
Rn̂(θ) to

⇀
x , we write

⇀
x = xparn̂ +

⇀
x⊥. We then have

→
Rn̂(θ)

⇀
x = (cos θ)

⇀
x + xpar(1 − cos θ)n̂ + (sin θ)n̂ × ⇀

x⊥

= xpar(cos θ)n̂ + (cos θ)
⇀
x⊥ + xpar(1 − cos θ)n̂ + (sin θ)n̂ × ⇀

x⊥

= xparn̂ + [(cos θ) p̂ + (sin θ)n̂ × ⇀
x⊥],

which shows that
→
Rn̂(θ) rotates

⇀
x according to the right hand rule around n̂ by the angle θ.
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Finally, (2.11.17) and (2.11.18) follow from (2.11.1). �

Fact 2.11.2. Let
⇀
x and

⇀
y be nonzero physical vectors, assume that

⇀
x and

⇀
y are not parallel, let

n̂ be a unit dimensionless physical vector that is orthogonal to both
⇀
x and

⇀
y , and define θ

△
= θ⇀

y/
⇀
x/n̂
.

Then,

⇀
y =
|⇀y |
|⇀x |

→
Rn̂(θ)

⇀
x (2.11.21)

=
|⇀y |
|⇀x |

[

(cos θ)
⇀
x + (sin θ)n̂ × ⇀

x

]

. (2.11.22)

Proof. First note that n̂ = (sign θ)(
⇀
x × ⇀

y )/|⇀x × ⇀
y |. It thus follows from (2.11.1), (2.4.35), and

(2.1.1) that

→
Rn̂(θ)

⇀
x = [(cos θ)

→
I + (1 − cos θ)n̂n̂′ + (sin θ)n̂×]

⇀
x

= (cos θ)
⇀
x + (1 − cos θ)n̂n̂′

⇀
x + (sin θ)n̂ × ⇀

x

= (cos θ)
⇀
x + (sin θ)n̂ × ⇀

x

= (cos θ)
⇀
x +

(sign θ) sin θ

|⇀x × ⇀
y |

(
⇀
x × ⇀

y ) × ⇀
x

= (cos θ)
⇀
x +

(sign θ) sin θ

|⇀x × ⇀
y |

[(
⇀
x · ⇀x)

⇀
y − (

⇀
x · ⇀y )

⇀
x]

= (cos θ)
⇀
x +

(sign θ) sin θ

|⇀x ||⇀y || sin θ|
[|⇀x |2⇀y − |⇀x ||⇀y |(cos θ)

⇀
x]

= (cos θ)
⇀
x +

1

|⇀x ||⇀y |
[|⇀x |2⇀y − |⇀x ||⇀y |(cos θ)

⇀
x]

=
|⇀x |
|⇀y |

⇀
y . �

Note that (2.11.22) can be written as

⇀
y =
|⇀y |
|⇀x |

→
M

⇀
x , (2.11.23)

where

→
M

△
= (cos θ)

→
I + (sin θ)θ̂×⇀

y/
⇀
x
. (2.11.24)

However,
→
M does not necessarily satisfy

→
M
→
M
′
=
→
I , and thus is not necessarily a physical rotation

matrix.

The following result shows that the eigenaxis vector n̂ has the same components when resolved

in both frames. Consequently, when the two frames coincide with the same body-fixed frame for a

rigid body before and after rotation, the vector n̂ can be viewed as body-fixed.
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Fact 2.11.3. Let FA and FB be frames, let n̂ be a unit dimensionless physical vector, let θ ∈
(−π, π], and assume that

→
RB/A =

→
Rn̂(θ). Then,

n̂|B = n̂|A . (2.11.25)

Proof. Note that

n̂|B = (
→
RB/An̂)

∣
∣
∣
∣
∣
B

=
→
RB/A

∣
∣
∣
∣
∣
B

n̂|B = OA/B n̂|B = n̂|A . �

Each pair of frames FA and FB is related by a unique physical rotation matrix, namely, FB =
→
RB/AFA. The following result is Euler’s theorem, which states that every physical rotation matrix

can be expressed in the eigenaxis/eigenangle form (2.11.1). In particular, this result provides explicit

expressions for the eigenaxis and eigenangle for a given physical rotation matrix.

We consider three cases separately. In the first case, the rotation is through an eigenangle of

0 rad, and thus the eigenaxis is arbitrary. In the second case, the frames are related by a rotation

through an eigenangle of π rad, and the eigenaxis can be chosen in two distinct ways. In the last

case, there are two distinct eigenangles in the range (−π, π) with corresponding the eigenaxes. These

cases are distinguished by the trace inequalities given by Fact 2.10.18.

We first consider a rotation through 0 rad. This case corresponds to the condition tr
→
RB/A = 3,

which occurs when the upper bound is attained in (2.10.55).

Fact 2.11.4. Let FA and FB be frames, and assume that

tr
→
RB/A = 3. (2.11.26)

Then, for every unit dimensionless physical vector n̂,
→
RB/A =

→
Rn̂(0) =

→
I .

We next consider a rotation through an eigenangle of π rad. This case corresponds to the condi-

tion tr
→
RB/A = −1, which occurs when the lower bound is attained in (2.10.55). In this case there is

one eigenangle and two distinct eigenaxes.

Fact 2.11.5. Let FA and FB be frames, and assume that

tr
→
RB/A = −1. (2.11.27)

Then, there exist exactly two representations of
→
RB/A of the form (2.11.1). In particular, let n̂B/A be

a unit dimensionless physical vector satisfying

n̂B/An̂′B/A =
1

2

(→
RB/A +

→
I

)

(2.11.28)

or, equivalently,

n̂×2
B/A =

1

2

(→
RB/A −

→
I

)

. (2.11.29)

Therefore,

nB/AnT
B/A =

1
2
(RB/A + I3), (2.11.30)

n×2
B/A =

1
2
(RB/A − I3). (2.11.31)
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Then,
→
RB/A has the two representations

→
RB/A =

→
Rn̂B/A

(π) =
→
R−n̂B/A

(π). (2.11.32)

Furthermore,

RB/A = −I3 + 2nB/AnT
B/A (2.11.33)

= I3 + 2n×2
B/A, (2.11.34)

where

nB/A
△
= n̂B/A

∣
∣
∣
B
= n̂B/A

∣
∣
∣
A
. (2.11.35)

Finally, the eigenvalues of RB/A are 1, −1, and −1,

RB/AnB/A = nB/A, (2.11.36)

and, if m ∈ R3 satisfies mTnB/A = 0, then

RB/Am = −m. (2.11.37)

It follows from (2.11.28) that

|n̂B/A|2 = n̂′B/An̂B/A = tr n̂B/An̂′B/A =
1
2

tr

(→
RB/A +

→
I

)

= 1
2
(−1 + 3) = 1.

Therefore, n̂B/A satisfying (2.11.28) is a unit vector.

In Fact 2.11.5 the unit vector nB/A satisfies (2.11.30). Consequently, the matrix 1
2
(RB/A + I3)

is positive semidefinite and has rank 1. Thus, there exist exactly two vectors x ∈ R3 that satisfy

xx′ = 1
2
(RB/A + I3), namely, x = nB/A and x = −nB/A.

In the last case, the eigenangle is assumed to be neither 0 rad nor π rad. This condition is

equivalent to strict inequality in the lower and upper bounds in (2.11.38). In this case, there are two

distinct eigenangles and two distinct eigenaxes.

Fact 2.11.6. Let FA and FB be frames, and assume that

−1 < tr
→
RB/A < 3. (2.11.38)

Then, there exist exactly two representations of
→
RB/A of the form (2.11.1). In particular, let θB/A ∈

(0, π) satisfy

cos θB/A =
1
2
(tr
→
RB/A − 1), (2.11.39)

and let n̂B/A be the unit dimensionless physical vector satisfying

n̂×B/A =
1

2 sin θB/A

(
→
RB/A −

→
R
′

B/A

)

. (2.11.40)

Then, the eigenvalues of
→
RB/A are 1, λ, λ, where λ

△
= cos θB/A + (sin θB/A) . Furthermore,

→
RB/A =

→
Rn̂B/A

(θB/A) =
→
R−n̂B/A

(−θB/A), (2.11.41)

and thus

→
RB/An̂B/A = n̂B/A, (2.11.42)
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n×B/A =
1

2 sin θB/A

(RB/A − RA/B), (2.11.43)

RB/A = (cos θB/A)I3 + (1 − cos θB/A)nB/AnT
B/A + (sin θB/A)n×B/A (2.11.44)

= I3 + (1 − cos θB/A)n×2
B/A + (sin θB/A)n×B/A, (2.11.45)

where

nB/A
△
= n̂B/A

∣
∣
∣
B
= n̂B/A

∣
∣
∣
A
. (2.11.46)

Furthermore,

RB/AnB/A = nB/A. (2.11.47)

Finally, let m = m1 + m2  ∈ C3, where m1,m2 ∈ R3 satisfy nT
B/A

m1 = nT
B/A

m2 = mT
1
m2 = 0. Then,

RB/Am = [cos θB/A + (sin θB/A) ]m. (2.11.48)

Proof. Since
→
RB/A is a physical rotation matrix, it follows that one of its eigenvalues is 1. It

follows from (2.11.38) that the remaining eigenvalues of
→
RB/A are not real. Furthermore, it follows

from (2.11.39) that tr
→
RB/A = 1 + 2 cos θB/A, and thus the eigenvalues of

→
RB/A are 1, λ, λ, where λ

satisfies |λ| = 1 and λ is neither 1 nor −1.

To show that n̂B/A given by (2.11.40) is a unit vector, note that

n̂B/An̂′B/A − |n̂B/A|2
→
I = n̂×2

B/A =
1

4 sin2 θB/A

(
→
RB/A −

→
R
′

B/A

)2

=
1

4 sin2 θB/A

(
→
R

2

B/A − 2
→
I +

→
R
′2

B/A

)

.

Taking the trace yields

−2|n̂B/A|2 =
tr
→
R

2

B/A − 3

2 sin2 θB/A

.

Hence

|n̂B/A|2 =
3 − tr

→
R

2

B/A

4 sin2 θB/A

=
3 − (1 + λ2 + λ

2
)

4 sin2 θB/A

=
1 + sin2 θB/A − cos2 θB/A

2 sin2 θB/A

= 1.

Next, note that

n̂B/An̂′B/A = n̂×2
B/A +

→
I

=
1

4 sin2 θB/A

(
→
RB/A −

→
R
′

B/A

)2

+
→
I

=
1

4 sin2 θB/A

(
→
R

2

B/A − 2
→
I +

→
R
′2

B/A

)

+
→
I

=
1

4 sin2 θB/A

(
→
R

2

B/A +
→
R
′2

B/A

)

+
→
I − 1

2 sin2 θB/A

→
I .



GEOMETRY 47

Therefore, using (2.11.39), (2.11.40), and Problem 2.26.17 it follows that

→
Rn̂B/A

(θB/A)

= (cos θB/A)
→
I + (1 − cos θB/A)n̂B/An̂′B/A + (sin θB/A)n̂×B/A

= (cos θB/A)
→
I +

1 − cos θB/A

4 sin2 θB/A

(
→
R

2

B/A +
→
R
′2

B/A

)

+ (1 − cos θB/A)
→
I −

1 − cos θB/A

2 sin2 θB/A

→
I + (sin θB/A)n̂×B/A

=
→
I +

1

4(1 + cos θB/A)

(
→
R

2

B/A +
→
R
′2

B/A

)

− 1

2(1 + cos θB/A)

→
I +

1

2

(
→
RB/A −

→
R
′

B/A

)

=
1 + 2 cos θB/A

2(1 + cos θB/A)

→
I +

1

4(1 + cos θB/A)

(
→
R

2

B/A +
→
R
′2

B/A

)

+
1

2

(
→
RB/A −

→
R
′

B/A

)

=
→
RB/A. �

Note that, in Fact 2.11.6, θB/A is defined such that θB/A ∈ (0, π). In fact,

θB/A = cos−1[ 1
2
(tr
→
RB/A − 1)]. (2.11.49)

Furthermore, since Rodrigues’s formula (2.11.1) is defined for θ ∈ (−π, π], within the context of

Fact 2.11.4, we define θB/A = 0, while, within the context of Fact 2.11.5, we define θB/A = π.

Consequently, in all cases, (2.11.49) is valid, and the notation θB/A denotes an element of [0, π],

despite the fact that θ in Rodrigues’s formula (2.11.1) may be an element of (−π, π]. Since, by

definition, θB/A ∈ [0, π] in all cases, it follows that

θB/A = θA/B. (2.11.50)

If θB/A ∈ (0, π), then the corresponding eigenaxis n̂B/A is unique. Therefore, if θB/A ∈ (0, π),

then

n̂B/A = −n̂A/B. (2.11.51)

However, in the case θB/A = 0, the eigenaxis n̂B/A is arbitrary, and thus (2.11.51) is not meaningful.

Furthermore, in the case θA/B = π, there exist exactly two choices of n̂B/A, which are related by the

factor −1. Therefore, the notation n̂B/A is ambiguous, and thus (2.11.51) is not meaningful.

The following result states Euler’s theorem for the three cases considered in Fact 2.11.4, Fact

2.11.5, and Fact 2.11.6.

Fact 2.11.7. Let FA and FB be frames. Then, there exist a unit dimensionless physical vector n̂

and θ ∈ (−π, π] such that
→
RB/A =

→
Rn̂(θ). In addition,

n̂|B = n̂|A . (2.11.52)

Proof. Since
→
RB/A is a physical rotation matrix, there exists a unit dimensionless physical vector

n̂ such that n̂ =
→
RB/An̂. If

→
RB/A =

→
I , then the result holds with θ = 0. Now assume that

→
RB/A ,

→
I .

Since
→
RB/A has exactly one eigenvalue equal to 1 and since n̂ is a unit dimensionless eigenvector of

→
RB/A, it follows that n̂ must be equal to either n̂B/A or −n̂B/A. In both cases, there exists θ ∈ (−π, π]

such that
→
RB/A =

→
Rn̂(θ). In particular, if n̂ = n̂B/A, then θ = θB/A, whereas, if n̂ = −n̂B/A, then

θ = θB/A − 2π. �
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The following result considers the reverse rotation in all three cases. This is a restatement of

(2.11.1), (2.11.2), and (2.11.3) with θ = θB/A and n̂ = n̂B/A using (2.11.15), (2.11.50), and (2.11.51).

Fact 2.11.8. Let FA and FB be frames, and assume that θB/A ∈ (0, π). Then,

→
RB/A = (cos θB/A)

→
I + (1 − cos θB/A)n̂B/An̂′B/A + (sin θB/A)n̂×B/A, (2.11.53)

→
RA/B = (cos θB/A)

→
I + (1 − cos θB/A)n̂B/An̂′B/A − (sin θB/A)n̂×B/A, (2.11.54)

→
RB/A = n̂B/An̂′B/A + (cos θB/A)(

→
I − n̂B/An̂′B/A) + (sin θB/A)n̂×B/A, (2.11.55)

→
RA/B = n̂B/An̂′B/A + (cos θB/A)(

→
I − n̂B/An̂′B/A) − (sin θB/A)n̂×B/A, (2.11.56)

→
RB/A =

→
I + (1 − cos θB/A)n̂×2

B/A + (sin θB/A)n̂×B/A, (2.11.57)

→
RA/B =

→
I + (1 − cos θB/A)n̂×2

B/A − (sin θB/A)n̂×B/A. (2.11.58)

The following result assigns a physical rotation matrix to a pair of physical vectors of the same

length. This physical rotation matrix is defined in terms of an eigenaxis rotation, which is unique if

and only if the eigenangle is neither 0 rad nor π rad.

Fact 2.11.9. Let
⇀
x and

⇀
y be physical vectors, and assume that |⇀x | = |⇀y | , 0. Then, there exists

a physical rotation matrix
→
R such that

⇀
y =

→
R
⇀
x . Furthermore, suppose that

→
R is a physical rotation

matrix such that
⇀
y =

→
R
⇀
x . Then, the following statements hold:

i) If either θŷ/x̂ = 0 or θŷ/x̂ = π, then, for every unit dimensionless physical vector n̂ such that

n̂′
⇀
x = 0, it follows that

→
R =

→
Rn̂(θŷ/x̂).

ii) If θŷ/x̂ ∈ (0, π), then there exists a unique unit dimensionless physical vector n̂ such that

n̂′
⇀
x = n̂′

⇀
y = 0 and

→
R =

→
Rn̂(θŷ/x̂). In particular, n̂ = θ̂ŷ/x̂. In addition,

→
R =

→
R−n̂(−θŷ/x̂).

The following result replaces n̂×
B/A

in (2.11.1) by a difference of physical matrices

Fact 2.11.10. Let FA and FB be frames, and let v̂B/A and ŵB/A satisfy n̂B/A = v̂B/A × ŵB/A.

Then,

→
RB/A = (cos θB/A)

→
I + (1 − cos θB/A)n̂B/An̂′B/A + (sin θB/A)(ŵB/Av̂′B/A − v̂B/Aŵ′B/A). (2.11.59)

Proof. The result follows from (2.9.19). �

The following result determines the eigenaxis rotation arising from a pair of eigenaxis rotations.

Fact 2.11.11. Let FA, FB, and FC be frames. Then,

cos 1
2
θC/A = (cos 1

2
θC/B)(cos 1

2
θB/A) − (sin 1

2
θC/B)(sin 1

2
θB/A)n̂′C/Bn̂B/A, (2.11.60)

n̂C/A = (csc 1
2
θC/B)[(sin 1

2
θC/B)(cos 1

2
θB/A)n̂C/B + (cos 1

2
θC/B)(sin 1

2
θB/A)n̂B/A

+ (sin 1
2
θC/B)(sin 1

2
θB/A)(n̂C/B × n̂B/A)]
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=
cot 1

2
θC/A

1 − n̂′
C/B

n̂B/A(tan 1
2
θC/B) tan 1

2
θB/A

[(tan 1
2
θC/B)n̂C/B + (tan 1

2
θB/A)n̂B/A

+ (tan 1
2
θC/B)(tan 1

2
θB/A)(n̂′C/Bn̂B/A)]. (2.11.61)

2.12 Euler Rotations and Euler Angles

A rotation of one frame to yield another frame can be achieved through a sequence of three

eigenaxis rotations, where each eigenaxis is chosen to be an axis of either the initial frame or the

frame resulting from the preceding rotation. Consequently, every physical rotation matrix can be

expressed as the product of three physical rotation matrices, where each physical rotation matrix

is an eigenaxis rotation represented by Rodrigues’s formula. The three rotations involve a total of

four frames, namely, the initial and final frames as well as two intermediate frames. Each eigenaxis

rotation is an Euler rotation, and the directed angles that define the transformations are the Euler

angles. Consequently, the orientation of the final frame relative to the initial frame can be expressed

as the product of three orientation matrices.

There are twelve different Euler-angle rotation sequences, for example, 1-2-3, where the first

rotation is around the ı̂ axis of the initial frame, the second rotation is about the ̂ axis of the second

frame, and the third rotation is about the k̂ axis of the third frame. The 3-2-1 and 3-1-3 rotation

sequences are the most frequently used, where 1, 2, and 3 refer to rotations around the ı̂, ̂, and

k̂ axes, respectively, of the original and intermediate frames. By renaming the frame axes, it can

be seen that there are only two distinct Euler-angle sequences, which can be represented by the

rotation sequences 3-2-1 and 3-1-3. Each of the remaining ten rotation sequences is equivalent to

one of these two rotation sequences under a renaming of the frame axes.

As an example of an Euler rotation, suppose that the frame FB is obtained by rotating the frame

FA around the eigenaxis k̂A. Then,

→
RB/A =

→
Rk̂A

(θı̂B/ı̂A/k̂A
) =

→
Rk̂A

(θ ̂B/ ̂A/k̂A
).

Hence, using the notation of (2.11.9),

FA

θ−→̂
kA

FB, (2.12.1)

and, since k̂B = k̂A,

FA

θ−→̂
kB

FB, (2.12.2)

where θ is the name of the eigenangle, that is, θ = θı̂B/ı̂A/k̂A
= θ ̂B/ ̂A/k̂A

. For convenience, we write

FA

θ−→
3

FB. (2.12.3)

Note that (2.12.1) is equivalent to

FA

−θ−→
−k̂A

FB, (2.12.4)

which we write as

FA

−θ−→
−3

FB. (2.12.5)
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Equivalently,

FB

−θ−→
3

FA, (2.12.6)

FB

θ−→
−3

FA. (2.12.7)

If θ = π, then −θ must be replaced by π in the above expressions. See (2.3.2).

The following result considers (2.11.1) in the case where the eigenaxis is a frame axis.

Fact 2.12.1. Let FA be a frame, and let θ ∈ (−π, π]. If FB =
→
RB/AFA =

→
R ı̂A (θ)FA, then

OB/A =
→
RB/A

∣
∣
∣
∣
∣

T

A

=
→
R ı̂A (θ)

∣
∣
∣
∣
∣

T

A

=





1 0 0

0 cos θ sin θ

0 − sin θ cos θ




, (2.12.8)

θ = θ ̂B/ ̂A/ı̂A = θk̂B/k̂A/ı̂A
. (2.12.9)

If FB =
→
RB/AFA =

→
R ̂A (θ)FA, then

OB/A =
→
RB/A

∣
∣
∣
∣
∣

T

A

=
→
R ̂A (θ)

∣
∣
∣
∣
∣

T

A

=





cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




, (2.12.10)

θ = θı̂B/ı̂A/ ̂A = θk̂B/k̂A/ ̂A
. (2.12.11)

If FB =
→
RB/AFA =

→
Rk̂A

(θ)FA, then

OB/A =
→
RB/A

∣
∣
∣
∣
∣

T

A

=
→
Rk̂A

(θ)

∣
∣
∣
∣
∣

T

A

=





cos θ sin θ 0

− sin θ cos θ 0

0 0 1




, (2.12.12)

θ = θı̂B/ı̂A/k̂A
= θ ̂B/ ̂A/k̂A

. (2.12.13)

For convenience we define the Euler orientation matrices

O1(θ)
△
=





1 0 0

0 cos θ sin θ

0 − sin θ cos θ




, (2.12.14)

O2(θ)
△
=





cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




, (2.12.15)

O3(θ)
△
=





cos θ sin θ 0

− sin θ cos θ 0

0 0 1




(2.12.16)

and the Euler rotation matrices

R1(θ)
△
= OT

1 (θ) =





1 0 0

0 cos θ − sin θ

0 sin θ cos θ




, (2.12.17)
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R2(θ)
△
= OT

2 (θ) =





cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




, (2.12.18)

R3(θ)
△
= OT

3 (θ) =





cos θ − sin θ 0

sin θ cos θ 0

0 0 1




. (2.12.19)

Note that, for all angles θ, φ,

O1(θ)O1(φ) = O1(θ + φ), (2.12.20)

and likewise for O2 and O3. Note that, if θ and φ are wrapped angles, then θ + φ is necessarily a

wrapped angle.

For a 3-2-1 rotation sequence, the Euler rotations and Euler angles are denoted by

FA

Ψ−→
3

FB

Θ−→
2

FC

Φ−→
1

FD. (2.12.21)

In aircraft kinematics and dynamics, the 3-2-1 Euler angles Ψ, Θ, and Φ refer to yaw, pitch, and

roll, respectively. Thus,

FB =
→
RB/AFA =

→
Rk̂A

(Ψ)FA, (2.12.22)

FC =
→
RC/BFB =

→
R ̂B (Θ)FB, (2.12.23)

FD =
→
RD/CFC =

→
R ı̂C (Φ)FC, (2.12.24)

where

Ψ = θı̂B/ı̂A/k̂A
= θ ̂B/ ̂A/k̂A

, (2.12.25)

Θ = θı̂C/ı̂B/ ̂B = θk̂C/k̂B/ ̂B
, (2.12.26)

Φ = θ ̂D/ ̂C/ı̂C = θk̂D/k̂C/ı̂C
. (2.12.27)

Hence,

→
RD/A =

→
RD/C

→
RC/B

→
RB/A =

→
R ı̂C (Φ)

→
R ̂B (Θ)

→
Rk̂A

(Ψ). (2.12.28)

Each step can be interpreted equivalently as either a rotation or an orientation. The matrix

OB/A = RA/B = RT
B/A =

→
RB/A

∣
∣
∣
∣
∣

T

A

=
→
Rk̂A

(Ψ)

∣
∣
∣
∣
∣

T

A

= O3(Ψ) (2.12.29)

gives the orientation of FB with respect to FA as a function of the eigenangle Ψ, which is measured

from ı̂A to ı̂B or from ̂A to ̂B as shown in Figure 2.12.1. Likewise, as illustrated in Figure 2.12.2

and Figure 2.12.3,

OC/B = RB/C = RT
C/B =

→
RC/B

∣
∣
∣
∣
∣

T

B

=
→
R ̂B (Θ)

∣
∣
∣
∣
∣

T

B

= O2(Θ), (2.12.30)

OD/C = RC/D = RT
D/C =

→
RD/C

∣
∣
∣
∣
∣

T

C

=
→
R ı̂C (Φ)

∣
∣
∣
∣
∣

T

C

= O1(Φ). (2.12.31)

Using Fact 2.10.16 to combine the 3-2-1 rotation sequence yields the product of Euler orientation

matrices given by

OD/A = OD/COC/BOB/A = O1(Φ)O2(Θ)O3(Ψ). (2.12.32)
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Similarly, in terms of Euler rotation matrices we have

RD/A = RB/ARC/BRD/C = R3(Ψ)R2(Θ)R1(Φ). (2.12.33)

Consequently,

OD/A = OD/COC/BOB/A = O1(Φ)O2(Θ)O3(Ψ). (2.12.34)

̂A

̂B

ı̂A
ı̂B

Ψ

Ψ
k̂A = k̂B

Figure 2.12.1: Rotation from FA to FB.

ı̂B

ı̂C

k̂B
k̂C

Θ

Θ
̂B = ̂C

Figure 2.12.2: Rotation from FB to FC.

For a 3-1-3 rotation sequence, the Euler rotations and Euler angles are denoted by

FA

Φ−→
3

FB

Θ−→
1

FC

Ψ−→
3

FD. (2.12.35)

The orientation matrices for the 3-1-3 sequence are thus given by

OB/A = RA/B = RT
B/A =

→
RB/A

∣
∣
∣
∣
∣

T

A

=
→
Rk̂A

(Φ)

∣
∣
∣
∣
∣

T

A

= O3(Φ), (2.12.36)
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k̂C

k̂D

̂C
̂D

Φ

Φ
ı̂C = ı̂D

Figure 2.12.3: Rotation from FC to FD.

OC/B = RB/C = RT
C/B =

→
RC/B

∣
∣
∣
∣
∣

T

B

=
→
R ı̂B (Θ)

∣
∣
∣
∣
∣

T

B

= O1(Θ), (2.12.37)

OD/C = RC/D = RT
D/C =

→
RD/C

∣
∣
∣
∣
∣

T

C

=
→
Rk̂C

(Ψ)

∣
∣
∣
∣
∣

T

C

= O3(Ψ). (2.12.38)

Using Fact 2.10.15 to combine the 3-1-3 rotation sequence yields the product of Euler orientation

matrices given by

OD/A = OD/COC/BOB/A = O3(Ψ)O1(Θ)O3(Φ). (2.12.39)

Similarly, in terms of Euler rotation matrices we have

RD/A = RB/ARC/BRD/C = R3(Φ)R1(Θ)R3(Ψ). (2.12.40)

For spacecraft attitude dynamics, the 3-1-3 Euler angles Φ, Θ, and Ψ refer to precession, nuta-

tion, and spin, respectively. Consequently,

OD/A = OD/COC/BOB/A = O3(Ψ)O1(Θ)O3(Φ). (2.12.41)

For satellite orbital dynamics, the 3-1-3 Euler angles Ω, i, and ω refer to right ascension of the

ascending node, inclination, and argument of periapsis, respectively. Consequently,

OD/A = OD/COC/BOB/A = O3(ω)O1(i)O3(Ω). (2.12.42)

2.13 Products of Euler Orientation Matrices

Fact 2.13.1. The following statements hold:

i) O1(0) = O2(0) = O3(0) = I3.

ii) O1(π) = diag(1,−1,−1), O2(π) = diag(−1, 1,−1), and O3(π) = diag(−1,−1, 1).

iii) Let i, j, k ∈ {1, 2, 3} be distinct. Then, Oi(π) = O j(π)Ok(π).
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iv) Let a ∈ R and i ∈ {1, 2, 3}. Then, the following statements are equivalent:

a) Oi(a) is symmetric.

b) Oi(a) is diagonal.

c) Either a ≡ 0 or a ≡ π.

v) Let a ∈ R and i ∈ {1, 2, 3}. Then, Oi(a) = I if and only if a ≡ 0.

vi) Let a ∈ R and i ∈ {1, 2, 3}. Then, Oi(−a) = Oi(a)−1 = Oi(a)T.

vii) Let a, b ∈ R and i ∈ {1, 2, 3}. Then, Oi(a)Oi(b) = Oi(a + b).

viii) Let a, b ∈ R, and let i, j ∈ {1, 2, 3} be distinct. Then, the following statements are equivalent:

a) Oi(a) = O j(b).

b) Oi(a)O j(b) = I.

c) a ≡ b ≡ 0.

The entries of R ∈ R3×3 are written as

R =





r11 r12 r13

r21 r22 r23

r31 r32 r33




. (2.13.1)

Note that, if R is an orientationi matrix, then, for all i, j ∈ {1, 2, 3}, |ri j| ≤ 1.

3-2-1 factorizations of an orientation matrix are considered in two cases. In the case where

|r13| < 1, b can assume two distinct values and a and c are uniquely determined by b. In the case

where |r13| = 1, b is unique and a and c can assume infinitely many values. For both proofs it is

useful to note that

O1(a)O2(b)O3(c) =





cbcc cbsc −sb

ccsasb − casc cacc + sasbsc cbsa

sasc + caccsb casbsc − ccsa cacb




. (2.13.2)

The follow result shows that, in the case where |r13| < 1, the entries r21, r22, r31, and r32 of an

orientation matrix R are uniquely determined by the entries r11, r12, r13, r23, and r33.

Fact 2.13.2. Let R ∈ R3×3, and assume that r2
11
+ r2

12
> 0 and r2

11
+ r2

12
+ r2

13
= r2

13
+ r2

23
+ r2

33
= 1.

Then, R is an orientation matrix if and only if

r21 = −
r11r13r23 + r12r33

r2
11
+ r2

12

, r22 =
r11r33 − r12r13r23

r2
11
+ r2

12

, (2.13.3)

r31 =
r12r23 − r11r13r33

r2
11
+ r2

12

, r32 = −
r12r13r33 + r11r23

r2
11
+ r2

12

. (2.13.4)

Proof. To prove sufficiency, it can be shown that, with (2.13.3) and (2.13.4), R satisfies RRT = I

and det R = 1. To prove necessity, note that RRT = I yields five equalities involving r21, r22, r31, and

r32, namely,

r11r21 + r12r22 + r13r23 = 0, (2.13.5)

r11r31 + r12r32 + r13r33 = 0, (2.13.6)

r2
21 + r2

22 + r2
23 = 1, (2.13.7)
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r21r31 + r22r32 + r23r33 = 0, (2.13.8)

r2
31 + r2

32 + r2
33 = 1. (2.13.9)

Since r2
11
+ r2

12
> 0, it follows that either r11 , 0 or r12 , 0. The case where r12 , 0 is considered

first. In this case, (2.13.5) implies that

r22 = −(r11r21 + r13r23)/r12 = 0, (2.13.10)

which, using (2.13.7) yields

(r2
11 + r2

12)r2
21 + 2r11r23r13r21 + r2

23(r2
13 + r2

12) − r2
12 = 0. (2.13.11)

Solving (2.13.11) for r21 yields

r21 =

−r11r23r13 ±
√

r2
11

r2
23

r2
13
− (r2

11
+ r2

12
)(r2

23
(r2

13
+ r2

12
) − r2

12
)

r2
11
+ r2

12

=
−r11r23r13 ± r12r33

r2
11
+ r2

12

. (2.13.12)

Substituting r21 given by (2.13.12) into (2.13.10) yields

r22 =
∓r11r33 − r23r13r12

r2
11
+ r2

12

. (2.13.13)

The same expressions (2.13.12) and (2.13.13) are obtained in the case where r11 , 0. Note that

(2.13.12) and (2.13.13) imply that r21 and r22 are given by either (2.13.3) or

r21 = −
r11r13r23 − r12r33

r2
11
+ r2

12

, r22 =
−r11r33 − r12r13r23

r2
11
+ r2

12

. (2.13.14)

Following a similar procedure using (2.13.6) and (2.13.9), it follows that r31 and r32 are given

by either (2.13.4) or

r31 =
−r12r23 − r11r13r33

r2
11
+ r2

12

, r32 = −
r12r13r33 − r11r23

r2
11
+ r2

12

. (2.13.15)

It thus follows from (2.13.3), (2.13.14), (2.13.4), and (2.13.15) that r21, r22, r31, and r32 are given by

either i) (2.13.3) and (2.13.4), ii) (2.13.3) and (2.13.15), iii) (2.13.14) and (2.13.4), or iv) (2.13.14)

and (2.13.15). In case i), RRT = I and det R = 1. In case ii), RRT
, I and det R = −1. In particular,

the (2, 3) and (3, 2) entries of RRT are not zero. In case iii), RRT
, I and det R = 1. In particular, the

(2, 3) and (3, 2) entries of RRT are not zero. In case iv), RRT = I and det R = −1. Therefore, cases

ii), iii), and iv) are spurious, and thus r21, r22, r31, and r32 satisfy (2.13.3) and (2.13.4). �

The following result considers the case where a 3-2-1 product of Euler rotation matrices is equal

to an arbitrary rotation matrix.

Fact 2.13.3. Let R be an orientation matrix, and assume that |r13| < 1. Then, a, b, c ∈ R satisfy

R = O1(a)O2(b)O3(c) (2.13.16)

if and only if either

b ≡ −r13 (2.13.17)

or

b ≡ r13 + π (2.13.18)
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and

a ≡
(

r23

cos b
,

r33

cos b

)

, c ≡
(

r12

cos b
,

r11

cos b

)

. (2.13.19)

Proof. To prove necessity, note that it follows from the (1, 3) entry of (2.13.2) that b satisfies

either (2.13.17) or (2.13.18). Furthermore, it follows from the (1, 1), (1, 2), (2, 3), and (3, 3) entries

of (2.13.2) that a and c are given by (2.13.19).

To prove sufficiency note that it follows from (2.13.17) that the (1, 3) entry of (2.13.2) is

− sin b = sin r13 = r13. Likewise, it follows from (2.13.18) that the (1, 3) entry of (2.13.2) is

− sin b = − sin(r13 + π) = r13. Furthermore, it follows from (2.13.19) that the (1, 1) entry of (2.13.2)

is given by (cos b) cos c = (cos b)r11/(cos b) = r11 and likewise for the (1, 2), (2, 3), and (3, 3) entries

of (2.13.2). Next, since O1(a)O2(b)O3(c) is a rotation matrix, Lemma 1 implies that its (2, 1), (2, 2),

(3, 1), (3, 2), entries are determined by its (1, 1), (1, 2), (1, 3), (2, 3), (3, 3), entries. In particular, the

(2, 1) entry of O1(a)O2(b)O3(c) is given by

ccsasb − casc =
r11

cos b

r23

cos b
sin b − r33

cos b

r12

cos b

=
r11r23 sin b − r33r12

cos2 b

=
−r11r23r13 − r33r12

1 − r2
13

= r21,

where the last equality follows from (2.13.3) of Lemma 3. Similar calculations show that the (2, 2),

(3, 1), and (3, 2) of O1(a)O2(b)O3(c) are given by r22, r31, and r32, respectively. Consequently,

(2.13.16) is satisfied. �

In the special case where r13 = 0, it follows from Theorem 1 that a, b, c ∈ R satisfy (2.13.16) if

and only if either b ≡ 0 or b ≡ π and

a ≡ (r23, r33), c ≡ (r12, r11). (2.13.20)

Setting R = O2(d) in Fact 2.13.3 yields the following result.

Fact 2.13.4. Let d ∈ R, and assume that d . π/2 and d . −π/2. Then, a, b, c ∈ R satisfy

O2(d) = O1(a)O2(b)O3(c). (2.13.21)

if and only if either i) a ≡ c ≡ 0 and b ≡ d or ii) a ≡ c ≡ π and b ≡ π − d.

The following result extends Fact 2.13.5 to the case where |r13| = 1, that is, r11 = r12 = 0. The

proof is omitted.

Fact 2.13.5. Let R be a rotation matrix, and assume that |r13| = 1. Then, a, b, c ∈ R satisfy

(2.13.16) if and only if either

b ≡ π/2, a ≡ c + (r21, r22) (2.13.22)

or

b ≡ −π/2, a ≡ −c + (−r21, r22). (2.13.23)

In the case where |r13| = 1, it follows that r31 = −r13r22 and r32 = r13r21. Therefore, in Fact
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2.13.5, (2.13.22) and (2.13.23) can be replaced, respectively, by

b ≡ π/2, a ≡ c + (−r32, r31), (2.13.24)

b ≡ −π/2, a ≡ −c + (−r32,−r31). (2.13.25)

Setting R = O2(d) in Fact 2.13.5 yields the following result.

Fact 2.13.6. Let d ∈ R, and assume that either d ≡ π/2 or d ≡ −π/2. Then, a, b, c ∈ R satisfy

O2(d) = O1(a)O2(b)O3(c). (2.13.26)

if and only if either i) a ≡ c and b ≡ d ≡ π/2, ii) a ≡ −c and b ≡ d ≡ −π/2.

1-2-1 factorizations of a rotation matrix R are considered in two cases. In the case where |r11| <
1, b can assume two distinct values and a and c are uniquely determined by b. In the case where

|r11| = 1, b is unique and a and c can assume infinitely many values. For both proofs it is useful to

note that

O1(a)O2(b)O1(c) =





cb sbsc −sbcc

sasb cacc − cbsasc casc + cbccsa

casb −ccsa − cacbsc cacbcc − sasc




. (2.13.27)

The following result considers the case where a 1-2-1 product of Euler rotation matrices is equal

to an arbitrary rotation matrix.

Fact 2.13.7. Let R be a rotation matrix, and assume that |r11| < 1. Then, a, b, c ∈ R satisfy

R = O1(a)O2(b)O1(c). (2.13.28)

if and only if either

b ≡ acos r11 (2.13.29)

or

b ≡ −acos r11 (2.13.30)

and

a ≡
(

r21

sin b
,

r31

sin b

)

, c ≡
(

r12

sin b
,
−r13

sin b

)

. (2.13.31)

The following result extends Fact 2.13.7 to the case where |r11| = 1.

Fact 2.13.8. Let R be a rotation matrix, and assume that |r11| = 1. Then, a, b, c ∈ R satisfy

R = O1(a)O2(b)O1(c). (2.13.32)

if and only if either

b ≡ 0, a ≡ −c + (r23, r22) (2.13.33)

or

b ≡ π, a ≡ c + (r23, r22). (2.13.34)
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In the case where |r11| = 1, it follows that r32 = −r11r23 and r33 = r11r22. Therefore, in Fact

2.13.8, (2.13.33) and (2.13.34) can be replaced, respectively, by

b ≡ 0, a ≡ −c + (−r32, r33), (2.13.35)

b ≡ π, a ≡ c + (r32,−r33). (2.13.36)

The following result considers the case where a 1-2-1 product of Euler rotation matrices is equal

to the identity matrix.

Fact 2.13.9. Let a, b, c ∈ R. Then,

O1(a)O2(b)O1(c) = I (2.13.37)

if and only if b ≡ 0 and a ≡ −c.

Proof. Rewriting (2.13.37) as

O1(a + c) = O2(−b), (2.13.38)

viii) of Lemma 2 implies that (2.13.38) holds if and only if a + c ≡ b ≡ 0. �

The following result considers the case where a 3-2-1 product of Euler rotation matrices is equal

to the identity matrix.

Fact 2.13.10. Let a, b, c ∈ R. Then,

O1(a)O2(b)O3(c) = I (2.13.39)

if and only if either a ≡ b ≡ c ≡ 0 or a ≡ b ≡ c ≡ π.

Proof. Sufficiency is immediate. To prove necessity, note that, by rewriting (2.13.39) as




cbcc cbsc −sb

ccsasb − casc cacc + sasbsc cbsa

sasc + caccsb casbsc − ccsa cacb




= I,

it follows from the (1,1) entry that cb , 0, and thus from the (1,2), (1,3), and (2,3) entries that

sa = sb = sc = 0. Hence, it follows from the (2,2) and (3,3) entries that cacc = cacb = 1, and thus

either ca = cb = cc = 1 or ca = cb = cc = −1. Hence, either a ≡ b ≡ c ≡ 0 or a ≡ b ≡ c ≡ π. �

The following result considers the case where a 2-3-2-1 product of Euler orientation matrices is

equal to the identity matrix.

Fact 2.13.11. Let a, b, c, d ∈ R. Then,

O1(a)O2(b)O3(c)O2(d) = I (2.13.40)

if and only if either i) b ≡ −d ≡ π/2 and a ≡ c, ii) b ≡ −d ≡ −π/2 and a ≡ −c, iii) a ≡ c ≡ 0 and

b ≡ −d, or iv) a ≡ c ≡ π and b ≡ d + π.

Proof. Sufficiency is immediate. To prove necessity, note that (2.13.40) implies




cbcccd − sbsd cbsc −cdsb − cbccsd

cbsasd − cd(casc − ccsasb) cacc + sasbsc sd(casc − ccsasb) + cbcdsa

cd(sasc + caccsb) + cacbsd casbsc − ccsa cacbcd − sd(sasc + caccsb)




= I,
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Since cbsc = 0, it follows that either cb = 0 or sc = 0. Therefore, either i) b ≡ π/2, ii) b ≡ −π/2,
iii) c ≡ 0, or iv) c ≡ π.

Case i): b ≡ π/2. In this case,




−sd 0 −cd

−cd(casc − ccsa) cacc + sasc sd(casc − ccsa) + cbcdsa

cd(sasc + cacc) casc − ccsa −sd(sasc + cacc)




= I,

Since sd = −1 and cd = 0, it follows that d ≡ −π/2. Hence,




1 0 0

0 cacc + sasc −(casc − ccsa)

0 casc − ccsa sasc + cacc




= I,

which can be written as




1 0 0

0 cos(a − c) sin(a − c)

0 − sin(a − c) cos(a − c)




= I.

Hence, a − c ≡ 0.

Case ii): b ≡ −π/2. In this case,




sd 0 cd

−cd(casc + ccsa) cacc − sasc sd(casc + ccsa)

cd(sasc − cacc) −casc − ccsa −sd(sasc − cacc)




= I,

Since sd = 1 and cd = 0, it follows that d ≡ π/2. Hence,




1 0 0

0 cacc − sasc casc + ccsa

0 −casc − ccsa −(sasc − cacc)




= I,

which can be written as




1 0 0

0 cos(a + c) sin(a + c)

0 − sin(a + c) cos(a + c)




= I.

Hence, a + c ≡ 0.

Case iii): c ≡ 0. In this case,




cbcd − sbsd 0 −cdsb − cbsd

cbsasd + cdsasb) ca −sdsasb + cbcdsa

cdcasb + cacbsd −sa cacbcd − sdcasb




= I,

Since ca = 1 and sa = 0, it follows that a ≡ 0. Hence,




cbcd − sbsd 0 −cdsb − cbsd

0 1 0

cdsb + cbsd 0 cbcd − sdsb




= I,

which can be written as




cos(b + d) 0 − sin(b + d)

0 1 0

sin(b + d) 0 cos(b + d)




= I,
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Hence, b + d ≡ 0.

Case iv): c ≡ π. In this case,




−cbcd − sbsd 0 −cdsb + cbsd

cbsasd − cdsasb −ca sdsasb + cbcdsa

−cdcasb + cacbsd sa cacbcd + sdcasb




= I,

Since ca = −1 and sa = 0, it follows that a ≡ π. Hence,




−cbcd − sbsd 0 −cdsb + cbsd

0 1 0

cdsb − cbsd 0 −cbcd − sdsb




= I,

which can be written as




− cos(b − d) 0 − sin(b − d)

0 1 0

sin(b − d) 0 − cos(b − d)




= I,

Hence, b − d ≡ π. �

The following result considers the case where a 3-2-1 product of Euler orientation matrices is

equal to a 2-axis Euler orientation matrix.

Fact 2.13.12. a, b, c, d ∈ R satisfy

O2(d) = O1(a)O2(b)O3(c). (2.13.41)

if and only if either i) a ≡ c and b ≡ d ≡ π/2, ii) a ≡ −c and b ≡ d ≡ −π/2, iii) a ≡ c ≡ 0 and b ≡ d,

or iv) a ≡ c ≡ π and b ≡ π − d.

The following result considers the case where a 2-1-2-1 product of Euler orientation matrices is

equal to the identity matrix.

Fact 2.13.13. Let a, b, c, d ∈ R. Then,

O1(a)O2(b)O1(c)O2(d) = I (2.13.42)

if and only if either i) b ≡ d ≡ 0 and a ≡ −c, ii) a ≡ c ≡ 0 and b ≡ −d, iii) b ≡ d ≡ π and a ≡ c, or

iv) a ≡ c ≡ π and b ≡ d.

Proof. Sufficiency is immediate. To prove necessity, note that (2.13.42) implies




cbcd − ccsbsd sbsc −cbsd − cccdsb

sd(casc + cbccsa) + cdsasb cacc − cbsasc cd(casc + cbccsa) − sasbsd

cacdsb − sd(sasc − cacbcc) −ccsa − cacbsc −cd(sasc − cacbcc) − casbsd




= I.

Since sbsc = 0, it follows that either i) b ≡ 0, ii) c ≡ 0, iii) b ≡ π, or iv) c ≡ π.

Case i): b ≡ 0. In this case,




cd 0 −sd

sd(casc + ccsa) cacc − sasc cd(casc + ccsa)

−sd(sasc − cacc) −ccsa − casc −cd(sasc − cacc)




= I.
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Since cd = 1 and sd = 0, it follows that d ≡ 0. Hence,




1 0 0

0 cacc − sasc casc + ccsa

0 −ccsa − casc −sasc + cacc




= I,

which can be rewritten as




1 0 0

0 cos(a + c) sin(a + c)

0 − sin(a + c) cos(a + c)




= I.

Hence, a + c ≡ 0.

Case ii): c ≡ 0. In this case,




cbcd − sbsd 0 −cbsd − cdsb

sdcbsa + cdsasb ca cdcbsa − sasbsd

cacdsb + sdcacb −sa cdcacb − casbsd




= I.

Since ca = 1 and sa = 0, it follows that a = 0. Hence,




cbcd − sbsd 0 −cbsd − cdsb

0 1 0

cdsb + sdcb 0 cdcb − sbsd




= I,

which can be rewritten as




cos(b + d) 0 − sin(b + d)

0 1 0

sin(b + d) 0 cos(b + d)




= I.

Hence, b + d ≡ 0.

Case iii): b ≡ π. In this case,




−cd 0 sd

sd(casc − ccsa) cacc + sasc cd(casc − ccsa)

−sd(sasc + cacc) −ccsa + casc −cd(sasc + cacc)




= I.

Since cd = −1 and sd = 0, it follows that d ≡ π. Hence,




1 0 0

0 cacc + sasc −(casc − ccsa)

0 −ccsa + casc sasc + cacc




= I,

which can be rewritten as




1 0 0

0 cos(a − c) sin(a − c)

0 − sin(a − c) cos(a − c)




= I.

Hence, a ≡ c.

Case iv): c ≡ π. In this case,




cbcd + sbsd 0 −cbsd + cdsb

−sdcbsa + cdsasb −ca −cdcbsa − sasbsd

cacdsb − sdcacb sa −cdcacb − casbsd




= I.
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Since ca = −1 and sa = 0, it follows that a = π. Hence,




cbcd + sbsd 0 −cbsd + cdsb

0 1 0

−cdsb + sdcb 0 cdcb + sbsd




= I,

which can be rewritten as




cos(d − b) 0 − sin(d − b)

0 1 0

sin(d − b) 0 cos(d − b)




= I.

Hence, d − b ≡ 0. �

The following result considers the case where a 1-2-1 product of Euler orientation matrices is

equal to a 2-axis Euler orientation matrix.

Corollary 2. a, b, c, d ∈ R satisfy

O2(d) = O1(a)O2(b)O1(c). (2.13.43)

if and only if either i) b ≡ −d ≡ 0 and a ≡ −c, ii) a ≡ c ≡ 0 and b ≡ d, iii) b ≡ −d ≡ π and a ≡ c, or

iv) a ≡ c ≡ π and b ≡ −d.

Fact 2.13.13 yields the following result on commuting Euler orientation matrices.

Fact 2.13.14. Let a, b ∈ R. Then,

O1(a)O2(b) = O2(b)O1(a) (2.13.44)

if and only if either a ≡ 0, b ≡ 0, or a ≡ b ≡ π.

The following result considers the case where a 3-1-2-1 product of Euler orientation matrices is

equal to the identity matrix.

Fact 2.13.15. Let a, b, c, d ∈ R. Then,

O1(a)O2(b)O1(c)O3(d) = I (2.13.45)

if and only if either i) b ≡ d ≡ 0 and a ≡ −c, ii) b ≡ d ≡ π and a ≡ c + π, iii) a ≡ −c ≡ −π/2 and

b ≡ −d, or iv) a ≡ −c ≡ π/2 and b ≡ d.

Proof. Sufficiency is immediate. To prove necessity, note that (2.13.45) implies




cbcd − sbscsd cbsd + cdsbsc −ccsb

cdsasb − sd(cacc − cbsasc) cd(cacc − cbsasc) + sasbsd casc + cbccsa

sd(ccsa + cacbsc) + cacdsb casbsd − cd(ccsa + cacbsc) cacbcc − sasc




= I.

Since ccsb = 0, it follows that either i) b ≡ 0, ii) b ≡ π, iii) c ≡ π/2, or iv) c ≡ −π/2.

Case i): b ≡ 0. In this case,




cd sd 0

sd(sasc − cacc) cd(cacc − sasc) casc + ccsa

sd(ccsa + casc) −cd(ccsa + casc) cacc − sasc




= I.
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Since cd = 1 and sd = 0, it follows that d ≡ 0. Hence,




1 0 0

0 cacc − sasc casc + ccsa

0 −ccsa − casc −sasc + cacc




= I,

which can be rewritten as




1 0 0

0 cos(a + c) sin(a + c)

0 − sin(a + c) cos(a + c)




= I.

Hence, a + c ≡ 0.

Case ii): b ≡ π. In this case,




−cd −sd 0

−sd(cacc + sasc) cd(cacc + sasc) casc − ccsa

sd(ccsa − casc) cd(casc − ccsa) −cacc − sasc




= I.

Since cd = −1 and sd = 0, it follows that d ≡ π. Hence,




1 0 0

0 −cacc − sasc) casc − ccsa

0 ccsa − casc −cacc − sasc




= I,

which can be rewritten as




1 0 0

0 − cos(a − c) − sin(a − c)

0 sin(a − c) − cos(a − c)




= I.

Hence, a − c ≡ π.

Case iii): c ≡ π/2. In this case,




cbcd − sbsd cbsd + cdsb 0

sa(cdsb + sdcb) sa(sbsd − cdcb) ca

ca(sdcb + cdsb) ca(sbsd − cdcb) −sa




= I.

Since ca = 0 and sa = −1, it follows that a ≡ −π/2. Hence,




cbcd − sbsd cbsd + cdsb 0

−cdsb − sdcb cdcb − sbsd 0

0 0 1




= I,

which can be rewritten as




cos(b + d) sin(b + d) 0

− sin(b + d) cos(b + d) 0

0 0 1




= I.

Hence, b + d ≡ 0.

Case iv): c ≡ −π/2. In this case,




cbcd + sbsd cbsd − cdsb 0

sa(cdsb + sdcb) sa(sbsd − cdcb) −ca

ca(cdsb − sdcb) ca(sbsd + cdcb) sa




= I.
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Since sa = 1 and ca = 0, it follows that a ≡ π/2. Hence,




cbcd + sbsd cbsd − cdsb 0

cdsb + sdcb sbsd + cdcb 0

0 0 1




= I,

which can be written as




cos(b − d) − sin(b − d) 0

sin(b − d) cos(b − d) 0

0 0 1




= I.

Hence, b − d ≡ 0. �

These results show that there is one permutationally distinct product of two Euler orientation

matrices whose product is the identity; two permutationally distinct products of three Euler orien-

tation matrices whose product is the identity; and three permutationally distinct products of four

Euler orientation matrices whose product is the identity. Products of more than four Euler orien-

tation matrices can be considered. For example, the number of permutationally distinct products

of five, six, seven, and eight Euler orientation matrices whose product is the identity is five, 11,

21, and 33, respectively. Hence, (10.8.5) is one of 21 permutationally distinct products of seven

Euler orientation matrices. More generally, letting an denote the number of permutationally distinct

products of n Euler orientation matrices whose product is the identity, it follows that

an+2 = an+1 + 2an. (2.13.46)

2.14 Exponential Representation of Rotation Matrices and the Eigenaxis

Angle Vector

An alternative way to express a physical rotation matrix is in terms of the exponential of a

skew-symmetric physical matrix. For the physical matrix
→
M define the exponential of

→
M by

exp(
→
M)

△
=
→
I +

→
M + 1

2

→
M

2

+ 1
3!

→
M

3

+ · · · . (2.14.1)

Therefore, for each frame FA,

exp(
→
M)

∣
∣
∣
∣
∣
A

= eM = I3 + M + 1
2

M2 + 1
3!

M3 + · · · , (2.14.2)

where M
△
=
→
M

∣
∣
∣
∣
∣
A

.

The following result provides an exponential analogue of Fact 2.11.9.

Fact 2.14.1. Let
⇀
x and

⇀
y be nonzero physical vectors that have the same magnitude and are

not parallel. Then,

→
Rθ̂⇀

y /
⇀
x

(θ⇀
y/

⇀
x
) = exp

(
⇀

θ
×
⇀
y/

⇀
x

)

= exp

(

θ⇀
y/

⇀
x
θ̂×⇀

y/
⇀
x

)

= exp





θ⇀
y/

⇀
x

sin θ⇀
y/

⇀
x

(x̂ × ŷ)×


 . (2.14.3)

Furthermore,

⇀
y = exp

(
⇀

θ
×
⇀
y/

⇀
x

)

⇀
x . (2.14.4)
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Proof. The result follows from Fact 11.11.6 in [1]. �

Recall that, if tr
→
RB/A = 3, then θB/A = 0 and n̂B/A is an arbitrary unit dimensionless phys-

ical vector. Furthermore, if tr
→
RB/A ∈ (−1, 3), then θB/A = cos−1[ 1

2
(tr
→
RB/A − 1)] and n̂×

B/A
=

1
2 sin θB/A

(
→
RB/A −

→
R
′

B/A), which is uniquely defined. Finally, if tr
→
RB/A = −1, then θB/A = π and

n̂B/A satisfies n̂B/An̂′
B/A
= 1

2
(
→
RB/A+

→
I ). In this case, there are two eigenaxes in the sense that, if n̂B/A

is an eigenaxis then so is −n̂B/A.

Let FA and FB be frames. If θB/A ∈ [0, π), then we define the eigenaxis angle vector by

⇀

ΘB/A
△
=






⇀

0 , θB/A = 0,

θB/An̂B/A, θB/A ∈ (0, π).
(2.14.5)

Therefore, for all θB/A ∈ [0, π), it follows that

⇀

ΘA/B = −
⇀

ΘB/A, (2.14.6)

Θ̂B/A = n̂B/A. (2.14.7)

Finally, define

ΘB/A
△
=

⇀

ΘB/A

∣
∣
∣
∣
∣
B

=
⇀

ΘB/A

∣
∣
∣
∣
∣
A

= θB/AnB/A. (2.14.8)

If θB/A = π, then
→
RB/A has two eigenaxes related by −1, and, therefore, n̂B/A is not uniquely defined.

Consequently,
⇀

ΘB/A is also not uniquely defined. In this case, we follow the convention that n̂B/A

represents one of two possible eigenaxes, and that
⇀

ΘB/A represents one of two possible eigenaxis

angle vectors.

In terms of θB/A and n̂B/A, (2.11.1), (2.11.2), and (2.11.3) can be written as

→
Rn̂B/A

(θB/A) = (cos θB/A)
→
I + (1 − cos θB/A)n̂B/An̂′B/A + (sin θB/A)n̂×B/A (2.14.9)

= n̂B/An̂′B/A + (cos θB/A)(
→
I − n̂B/An̂′B/A) + (sin θB/A)n̂×B/A (2.14.10)

=
→
I + (1 − cos θB/A)n̂×2

B/A + (sin θB/A)n̂×B/A. (2.14.11)

The next result expresses
→
RB/A in terms of

⇀

ΘB/A.

Fact 2.14.2. Let FA and FB be frames, and assume that θB/A ∈ (0, π). Then,

→
RB/A = exp

(
⇀

Θ
×

B/A

)

(2.14.12)

= (cos θB/A)
→
I +

1 − cos θB/A

θ2
B/A

⇀

ΘB/A

⇀

Θ
′

B/A +
sin θB/A

θB/A

⇀

Θ
×

B/A (2.14.13)

=
1

θ2
B/A

⇀

ΘB/A

⇀

Θ
′

B/A + (cos θB/A)





→
I − 1

θ2
B/A

⇀

ΘB/A

⇀

Θ
′

B/A



 +
sin θB/A

θB/A

⇀

Θ
×

B/A (2.14.14)

=
→
I +

1 − cos θB/A

θ2
B/A

⇀

Θ
×2

B/A +
sin θB/A

θB/A

⇀

Θ
×

B/A
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=
→
I +

sin θB/A

θB/A

⇀

Θ
×

B/A +
1

2





sin 1
2
θB/A

1
2
θB/A





2
⇀

Θ
×2

B/A. (2.14.15)

Proof. The result follows from Fact 2.14.1 by setting
⇀

θ
×
⇀
y/

⇀
x =

⇀

ΘB/A, that is, by setting θ⇀
y/

⇀
x
=

θB/A and θ̂⇀
y/

⇀
x
= n̂B/A. �

Combining (2.11.1), (2.11.43), and (2.14.12) we have the identities

→
RB/A =

→
Rn̂B/A

(θB/A)

= (cos θB/A)
→
I + (1 − cos θB/A)n̂B/An̂′B/A + (sin θB/A)n̂×B/A

= exp

(
⇀

Θ
×

B/A

)

= exp

[

θB/A

2 sin θB/A

(
→
RB/A −

→
R
′

B/A

)]

, (2.14.16)

where the last expression is valid for the case θB/A ∈ (0, π). It follows from (2.14.16) that

RB/A = RnB/A
(θB/A)

= (cos θB/A)I3 + (1 − cos θB/A)nB/AnT
B/A + (sin θB/A)n×B/A

= exp
(

Θ×B/A

)

= exp

[

θB/A

2 sin θB/A

(RB/A − RT
B/A)

]

. (2.14.17)

The following result expresses
→
RC/A =

→
RC/B

→
RB/A in terms of eigenaxis angle vectors.

Fact 2.14.3. Let FA, FB, and FC be frames. Then,

exp

(
⇀

Θ
×

C/A

)

= exp

(
⇀

Θ
×

C/B

)

exp

(
⇀

Θ
×

B/A

)

. (2.14.18)

The following result gives an alternative exponential representation of a physical rotation matrix.

Fact 2.14.4. Let FA and FB be frames, and define
⇀

ΘB/A as in Fact 2.14.2. Furthermore, let
⇀
v B/A

and
⇀
wB/A satisfy

⇀

ΘB/A =
⇀
v B/A ×

⇀
wB/A. Then,

→
RB/A = exp(

⇀
wB/A

⇀
v
′
B/A −

⇀
v B/A

⇀
w
′
B/A). (2.14.19)

Proof. It follows from (2.14.12) and (2.9.19) that

→
RB/A = exp

(
⇀

Θ
×

B/A

)

= exp[(
⇀
v B/A ×

⇀
wB/A)×] = exp(

⇀
wB/A

⇀
v
′
B/A −

⇀
v B/A

⇀
w
′
B/A). �

In Fact 2.14.4, the vectors
⇀
v B/A and

⇀
wB/A define a plane that is perpendicular to

⇀

ΘB/A. This plane

and the length of the cross product of
⇀
v B/A and

⇀
wB/A characterize the physical rotation matrix. An

analogous idea is given by the concept of a rotor in Chapter 3.
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2.15 Euler Parameters

Let FA and FB be frames with eigenangle θB/A ∈ [0, π] and eigenaxis nB/A. Then, rewriting

(2.11.39) as

cos θB/A = 2 cos2 1
2
θB/A − 1 = 1

2
(trRB/A − 1), (2.15.1)

we define

a
△
= cos 1

2
θB/A =

1
2

√

1 + trRB/A, (2.15.2)




b

c

d





△
= (sin 1

2
θB/A)nB/A. (2.15.3)

Note that a ≥ 0, and that a = 1 if and only if θB/A = 0 rad, whereas a = 0 if and only if θB/A = π

rad. Furthermore, θB/A = 0 rad if and only if




b

c

d




= 0, (2.15.4)

whereas θB/A = π rad if and only if




b

c

d




= nB/A. (2.15.5)

Now, assume that θB/A ∈ [0, π), so that a > 0. Then, it follows from (2.11.43) and the identity

sin θB/A = 2(sin 1
2
θB/A) cos 1

2
θB/A that





b

c

d





×

= (sin 1
2
θB/A)n×B/A =

sin 1
2
θB/A

2 sin θB/A

(RB/A − RA/B) =
1

4a
(RB/A − RA/B). (2.15.6)

Therefore,




b

c

d




=

1

4a
(RB/A − RA/B)−×, (2.15.7)

that is,

b =
1

4a
(RB/A(3,2) − RB/A(2,3)), (2.15.8)

c =
1

4a
(RB/A(1,3) − RB/A(3,1)), (2.15.9)

d =
1

4a
(RB/A(2,1) − RB/A(1,2)). (2.15.10)

Fact 2.15.1. Define a, b, c, d by (2.15.2) and (2.15.3). Then,

a2 + b2 + c2 + d2 = 1. (2.15.11)
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Proof. Note that

a2 + b2 + c2 + d2 = a2 +





b

c

d





T 



b

c

d





= cos2 1
2
θB/A + (sin2 1

2
θB/A)nT

B/AnB/A

= cos2 1
2
θB/A + sin2 1

2
θB/A = 1. �

The case θB/A = π must be handled separately.

Fact 2.15.2. Let FA and FB be frames, and assume that θB/A = π. Then,

RB/A =





2b2 − 1 2bc 2bd

2bc 2c2 − 1 2cd

2bd 2cd 2d2 − 1





. (2.15.12)

Proof. It follows from (2.11.34) that

RB/A = −I3 + 2nB/AnT
B/A = −I3 + 2





b

c

d





[

b c d
]

. �

Fact 2.15.3. Let FA and FB be frames, and assume that θB/A ∈ (0, π). Then,

RB/A =





2a2 + 2b2 − 1 2(bc − ad) 2(ac + bd)

2(ad + bc) 2a2 + 2c2 − 1 2(cd − ab)

2(bd − ac) 2(ab + cd) 2a2 + 2d2 − 1





(2.15.13)

=





a2 + b2 − c2 − d2 2(bc − ad) 2(ac + bd)

2(ad + bc) a2 − b2 + c2 − d2 2(cd − ab)

2(bd − ac) 2(ab + cd) a2 − b2 − c2 + d2





. (2.15.14)

Proof. It follows from (2.11.45) that

RB/A = (cos θB/A)I3 + (1 − cos θB/A)nB/AnT
B/A + (sin θB/A)n×B/A

= (2 cos2 1
2
θB/A − 1)I3 + 2(sin2 1

2
θB/A)nB/AnT

B/A + 2(cos 1
2
θB/A)(sin 1

2
θB/A)n×B/A

= (2a2 − 1)I3 + 2





b

c

d





[

b c d
]

+ 2a





b

c

d





×

. �

Next, in analogy with the eigenaxis angle vector defined in (2.14.5), we define the Euler vector

⇀
εB/A

△
= (sin 1

2
θB/A)n̂B/A. (2.15.15)

This vector is uniquely defined for all θB/A ∈ [0, π). It follows from (2.11.50) and (2.11.51) that

⇀
εB/A = −

⇀
εA/B. (2.15.16)
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In the case θB/A = π, there are two possible choices of the eigenaxis n̂A/B, and thus two possible

choices of
⇀
εB/A; these choices are related by the factor −1. Despite this ambiguity, we write

⇀
εA/B =

−⇀εB/A in all cases. Note that, if θB/A ∈ (0, π], then

ε̂B/A = n̂B/A. (2.15.17)

Next, define

ηB/A
△
= a, (2.15.18)

εB/A
△
=

⇀
εB/A

∣
∣
∣
∣
B
=

⇀
εB/A

∣
∣
∣
∣
A
= (sin 1

2
θB/A)nB/A =





b

c

d




. (2.15.19)

Then, the Euler parameter vector qB/A of FB relative to FA is defined by

qB/A
△
=

[

ηB/A

εB/A

]

=





cos 1
2
θB/A

(sin 1
2
θB/A)nB/A



 =





a

b

c

d





. (2.15.20)

Note that ηB/A ≥ 0, and that ηB/A = 0 if and only if θB/A = π rad. Furthermore, if θB/A = 0, then

qB/A =





1

0

0

0





, (2.15.21)

whereas, if θB/A = π, then

qB/A =

[

0

nB/A

]

. (2.15.22)

The Euler parameter vector qB/A provides a representation of the rotation matrix RB/A. The

components a, b, c, d of qB/A are the Euler parameters. It follows from (2.11.50) and (2.11.51) that

ηB/A = ηA/B, (2.15.23)

εB/A = −εA/B. (2.15.24)

The following result shows that qB/A is an element of the unit sphere in R4.

Fact 2.15.4. Let FA and FB be frames. Then,

η2
B/A +

⇀
ε
′
B/A

⇀
εB/A = 1, (2.15.25)

and thus

η2
B/A + ε

T
B/AεB/A = 1. (2.15.26)

If θB/A ∈ (−2π, 2π] so that 1
2
θB/A ∈ (−π, π], then this representation of the rotation matrices is

two-to-one since qB/A and −qB/A both represent RB/A. With this increased range of θB/A, the values

of qB/A are in one-to-one correspondence with each point on the unit sphere in R4. However, unless

stated otherwise, the eigenangle θB/A is assumed to be an element of [0, π].
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Fact 2.15.5. Let FA and FB be frames. Then,

→
RB/A = (2η2

B/A − 1)
→
I + 2ηB/A

⇀
ε
×
B/A + 2

⇀
εB/A

⇀
ε
′
B/A (2.15.27)

=
→
I + 2ηB/A

⇀
ε
×
B/A + 2

⇀
ε
×2

B/A. (2.15.28)

Proof. The result follows from Fact 2.11.8 using the identities

2(cos2 1
2
θ) − 1 = cos θ, 2 cos 1

2
θ = 1 − cos θ, 2(cos 1

2
θ) sin 1

2
θ = sin θ. �

Resolving (2.15.27) and (2.15.28) yields the following result.

Fact 2.15.6. Let FA and FB be frames. Then,

RB/A = (2η2
B/A − 1)I3 + 2ηB/Aε

×
B/A + 2εB/Aε

T
B/A (2.15.29)

= I3 + 2ηB/Aε
×
B/A + 2ε×2

B/A. (2.15.30)

Furthermore,

OB/A = (2η2
B/A − 1)I3 − 2ηB/Aε

×
B/A + 2εB/Aε

T
B/A (2.15.31)

= I3 − 2ηB/Aε
×
B/A + 2ε×2

B/A. (2.15.32)

The following result determines the Euler-parameter vector for a rotation rising from a pair of

rotation matrices expressed in terms of Euler parameters. In effect, this result provides an expression

for the product of Euler-parameter vectors, corresponding to the identity OC/A = OC/BOB/A.

For the next result, define

Q(q)
△
=





a −b −c −d

b a −d c

c d a −b

d −c b a





, (2.15.33)

where q
△
= [a b c d]T.

Fact 2.15.7. Let FA, FB, and FC be frames. Then,

qC/A =

[

ηC/A

εC/A

]

=





ηC/BηB/A − εT
C/B

εB/A

ηB/AεC/B + ηC/BεB/A + εC/B × εB/A



 = Q(qC/B)qB/A. (2.15.34)

Proof. Define

R3
△
= RC/A, R2

△
= RC/B, R1

△
= RB/A,

q3
△
=





a3

b3

c3

d3





△
= qC/A, q2

△
=





a2

b2

c2

d2





△
= qC/B, q1

△
=





a1

b1

c1

d1





△
= qB/A.

Then, for i = 1, 2, 3, it follows from (2.15.30) that

Ri = (2a2
i − 1)I3 + 2





bi

ci

di





[

bi ci di

]

+ 2ai





bi

ci

di





×

.
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Hence,

a3 =
1
2

√

1 + trR3 =
1
2

√

1 + trR1R2 = a2a1 −





b2

c2

d2





T 



b1

c1

d1




,

which confirms the expression for ηC/A in (2.15.34). Furthermore,




b3

c3

d3




=

1

4a3

(R3 − RT
3 ) =

1

4a3

(R1R2 − RT
2R

T
1 ) = a1





b2

c2

d2




+ a2





b1

c1

d1




+





b2

c2

d2




×





b1

c1

d1




,

which confirms the expression for εC/A in (2.15.34). The last expression for qC/A can be confirmed

directly. �

2.16 Quaternions

The unit quaternions 1, i, j,k provide a representation of the Euler parameters. Let i, j,k satisfy

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik, (2.16.1)

and define

H
△
= {a + bi + cj + dk : a, b, c, d ∈ R}. (2.16.2)

Furthermore, for all a, b, c, d ∈ R, define

q
△
= a + bi + cj + dk, q

△
= a − bi − cj − dk, (2.16.3)

|q| △=
√

qq =
√

a2 + b2 + c2 + d2 = |q|. (2.16.4)

Then,

qI4 = UQ(q)U, (2.16.5)

where

Q(q)
△
=





a −b −c −d

b a −d c

c d a −b

d −c b a





, U
△
=

1

2





1 i j k

−i 1 k −j

−j −k 1 i

−k j −i 1





. (2.16.6)

Note that U2 = I4. In addition,

detQ(q) = (a2 + b2 + c2 + d2)2. (2.16.7)

Furthermore, if |q| = 1, then Q(q) is orthogonal.

For i = 1, 2, let ai, bi, ci, di ∈ R and define qi
△
= ai + bii + cij + dik and vi

△
= [bi ci di]

T. In

addition, define q3
△
= q2q1 = a3 + b3i + c3j + d3k. Then,

Q(q3) = Q(q2)Q(q1), q3 = q2 q1, (2.16.8)

|q3| = |q2q1| = |q1q2| = |q1q2| = |q1q2| = |q1 q2| = |q1| |q2|. (2.16.9)
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Furthermore, it follows from (2.15.34) that





a3

b3

c3

d3





= Q(q2)





a1

b1

c1

d1





=





a2a1 − vT
2
v1

a1v2 + a2v1+ v2 × v1




. (2.16.10)

This result shows that the unit quaternions satisfy the multiplicative property (2.15.34) for the Euler

parameters.

We now give multiplication tables to relate the complex numbers and the quaternions. These

representations involve 2 × 2 matrices, such as the skew-symmetric matrix

J2
△
=

[

0 1

−1 0

]

(2.16.11)

and the Pauli matrices σ1, σ2, σ3 and their products, which are given by

I2 =

[

1 0

0 1

]

, σ1 =

[

0 1

1 0

]

, σ2 =

[

0 − 
 0

]

, σ3 =

[

1 0

0 −1

]

. (2.16.12)

Note that

σ1σ2 = σ3 = −σ2σ1 =

[

 0

0 − 

]

, (2.16.13)

σ2σ3 = σ1 = −σ3σ2 =

[

0 

 0

]

, (2.16.14)

σ3σ1 = σ2 = −σ1σ3 =

[

−1 0

0 1

]

, (2.16.15)

σ1σ2σ3 =

[

 0

0 

]

. (2.16.16)

Equivalent multiplication tables involving 2 × 2 real matrices and complex scalars are given in

Table 2.16.1.

I2 J2

I2 I2 J2

J2 J2 −I2

I2 σ1σ2

I2 I2 σ1σ2

σ1σ2 σ1σ2 −I2

1 

1 1 

  −1

Figure 2.16.1: Equivalent multiplication tables for 2× 2 matrices (a), (b), and the complex numbers

(c).
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I2 σ2σ3 σ1σ3 σ1σ2

I2 I2 σ2σ3 σ1σ3 σ1σ2

σ1σ3 σ1σ3 −I2 σ1σ2 −σ1σ3

σ1σ3 σ1σ3 −σ1σ2 −I2 σ2σ3

σ1σ2 σ1σ2 σ2σ3 −σ2σ3 −I2

(a)

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

(b)

Figure 2.16.2: Equivalent multiplication tables for products of Pauli matrices (a) and the quaternions

(b).
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2.17 Gibbs Parameters

An alternative representation of rotation matrices is given in terms of the Gibbs vector. This

representation is valid for all rotations except for the case where the eigenangle is π rad.

Let FA and FB be frames, and assume that θB/A ∈ [0, π). In analogy with the Euler vector defined

in (2.15.15) and the eigenaxis angle vector defined in (2.14.5), we define the Gibbs vector

⇀
gB/A

△
= (tan 1

2
θB/A)n̂B/A. (2.17.1)

If θB/A = 0, then
⇀
gA/B = 0. If θB/A ∈ (0, π), then θB/A = θA/B and n̂B/A = −n̂A/B, and thus

⇀
gA/B = −

⇀
gB/A. In the case θB/A = π,

⇀
gB/A is not defined. Note that, if θB/A ∈ (0, π), then

ĝB/A = n̂B/A. (2.17.2)

Finally, define the Gibbs parameter vector by

gB/A
△
=

⇀
gB/A

∣
∣
∣
∣
B
=

⇀
gB/A

∣
∣
∣
∣
A
= (tan 1

2
θB/A)nB/A. (2.17.3)

Hence,

gB/A = −gA/B. (2.17.4)

Next, define the physical matrix

→
R⇀

gB/A

△
=

1

1 +
⇀
g
′
B/A

⇀
gB/A

[(1 − ⇀
g
′
B/A

⇀
gB/A)

→
I + 2

⇀
gB/A

⇀
g
′
B/A + 2

⇀
g
×
B/A]. (2.17.5)

The following result shows that
→
R⇀

gB/A

is the physical rotation matrix whose eigenaxis is n̂B/A and

eigenangle is θB/A.

Fact 2.17.1. Let FA and FB be frames, and assume that θB/A ∈ [0, π). Then,

→
Rn̂B/A

(θB/A) =
→
R⇀

gB/A

. (2.17.6)

Furthermore,

→
R⇀

gB/A

= (
→
I − ⇀

g
×
B/A)−1(

→
I +

⇀
g
×
B/A) (2.17.7)

= (
→
I +

⇀
g
×
B/A)(

→
I − ⇀

g
×
B/A)−1. (2.17.8)

Proof. To prove (2.17.6) note that it follows from (2.11.1) and the identities

cos θ =
1 − tan2 1

2
θ

1 + tan2 1
2
θ
, 1 − cos θ =

2 tan2 1
2
θ

1 + tan2 1
2
θ
, sin θ =

2 tan 1
2
θ

1 + tan2 1
2
θ

that

→
Rn̂B/A

(θB/A) = (cos θ)
→
I + (1 − cos θB/A)n̂B/An̂′B/A + (sin θB/A)n̂×B/A

=
1 − tan2 1

2
θB/A

1 + tan2 1
2
θB/A

→
I +

2 tan2 1
2
θB/A

1 + tan2 1
2
θB/A

n̂B/An̂′B/A +
2 tan 1

2
θB/A

1 + tan2 1
2
θB/A

n̂×B/A

=
1

1 +
⇀
g
′
B/A

⇀
gB/A

[(1 − ⇀
g
′
B/A

⇀
gB/A)

→
I + 2

⇀
gB/A

⇀
g
′
B/A + 2

⇀
g
×
B/A] =

→
R⇀

gB/A

.
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Next, to prove (2.17.7) note that

(
→
I − ⇀

g
×
B/A)−1(

→
I +

⇀
g
×
B/A) =

1

1 +
⇀
g
′
B/A

⇀
gB/A

(
→
I +

⇀
gB/A

⇀
g
′
B/A +

⇀
g
×
B/A)(

→
I +

⇀
g
×
B/A)

=
1

1 +
⇀
g
′
B/A

⇀
gB/A

[
→
I +

⇀
gB/A

⇀
g
′
B/A + 2

⇀
g
×
B/A +

⇀
g
×2

B/A]

=
1

1 +
⇀
g
′
B/A

⇀
gB/A

[
→
I +

⇀
gB/A

⇀
g
′
B/A + 2

⇀
g
×
B/A +

⇀
gB/A

⇀
g
′
B/A −

⇀
g
′
B/A

⇀
gB/A

→
I ]

=
1

1 +
⇀
g
′
B/A

⇀
gB/A

[(1 − ⇀
g
′
B/A

⇀
gB/A)

→
I + 2

⇀
gB/A

⇀
g
′
B/A + 2

⇀
g
×
B/A] =

→
R⇀

gB/A

. �

The following result relates the Gibbs parameter vector to the Euler parameter vector qB/A de-

fined by (2.15.20).

Fact 2.17.2. Let FA and FB be frames, and assume that θB/A , π. Then, ηB/A , 0. Furthermore,

gB/A =
1

ηB/A

εB/A. (2.17.9)

Finally,

gB/A =
1

1 + trRB/A

(RB/A − RA/B)−×. (2.17.10)

The following result determines the Gibbs parameter vector for a rotation arising from a pair

of rotation matrices expressed in terms of Gibbs parameter vectors. In effect, this result provides

an expression for the product of Gibbs-parameter vectors, corresponding to the identity OC/A =

OC/BOB/A.

Fact 2.17.3. Let FA, FB, and FC be frames, and assume that neither of the eigenangles θC/A,

θC/B, nor θB/A is equal to π rad. Then,

⇀
gC/A =

1

1 − ⇀
g
′
C/B

⇀
gB/A

(
⇀
gC/B +

⇀
gB/A −

⇀
gC/B ×

⇀
gB/A). (2.17.11)

2.18 Summary of Rotation-Matrix Representations

Table 2.18.1 summarizes the existence and uniqueness of the eigenaxis, eigenaxis angle vector,

Euler vector, and Gibbs vector in terms of the eigenangle.

2.19 Additivity of Angle Vectors

The following result concerns the additivity of angles for linearly independent physical vectors.

Fact 2.19.1. Suppose that the physical vectors
⇀
x ,

⇀
y , and

⇀
z are linearly dependent, and let n̂

denote a unit vector that is orthogonal to
⇀
x ,

⇀
y , and

⇀
z . Then, there exists i ∈ {−1, 0, 1} such that

θ⇀
z /

⇀
x/n̂
= θ⇀

z /
⇀
y/n̂
+ θ⇀

y/
⇀
x/n̂
± 2iπ. (2.19.1)
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tr
→
RB/A θB/A n̂B/A

⇀

ΘB/A = θB/An̂B/A
⇀
εB/A = (sin 1

2
θB/A)n̂B/A

⇀
gB/A = (tan 1

2
θB/A)n̂B/A

tr
→
RB/A = −1 θB/A = π

Two choices

±n̂B/A

Two choices

⇀

ΘB/A = ±πn̂B/A

Unique

⇀
εB/A = n̂B/A

Not Defined

−1 < tr
→
RB/A < 3 θB/A ∈ (0, π) Unique Unique Unique Unique

tr
→
RB/A = 3 θB/A = 0 Arbitrary

Unique

⇀

ΘB/A = 0

Unique

⇀
εB/A = 0

Unique

⇀
gB/A = 0

Figure 2.18.1: Existence and uniqueness of the eigenaxis, eigenaxis angle vector, Euler vector, and

Gibbs vector in terms of the eigenangle.

In addition,

→
Rn̂(θ⇀

z /
⇀
x/n̂

) =
→
Rn̂(θ⇀

z /
⇀
y/n̂

)
→
Rn̂(θ⇀

y/
⇀
x/n̂

). (2.19.2)

Now, assume that θ⇀
z /

⇀
x/n̂
, θ⇀

z /
⇀
y/n̂
, θ⇀

y/
⇀
x/n̂
∈ (0, π), θ⇀

z /
⇀
y/n̂
≤ θ⇀

z /
⇀
x/n̂
, and θ⇀

y/
⇀
x/n̂
≤ θ⇀

z /
⇀
x/n̂
. Then,

θ⇀
z /

⇀
x
= θ⇀

z /
⇀
y
+ θ⇀

y/
⇀
x
, (2.19.3)

→
Rn̂(θ⇀

z /
⇀
x
) =

→
Rn̂(θ⇀

z /
⇀
y
)
→
Rn̂(θ⇀

y/
⇀
x
). (2.19.4)

The case corresponding to (2.19.3) is illustrated in Figure ??.

⇀
x

⇀
y

⇀
z

n̂

Figure 2.19.2: Angle additivity.

Fact 2.19.2. Let x̂, ŷ, and ẑ be unit dimensionless physical vectors. Then,

|x̂ × ŷ|2 cos2 θx̂×ŷ/ẑ = 1 + 2(cos θx̂/ŷ)(cos θŷ/ẑ)(cos θẑ/x̂) − cos2 θx̂/ŷ − cos2 θŷ/ẑ − cos2 θẑ/x̂. (2.19.5)

Proof. Using Fact 2.9.7 we have

|x̂ × ŷ|2 cos2 θx̂×ŷ/ẑ = [(x̂ × ŷ)′ẑ]2 = det





⇀
x
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣

T

A

⇀
z
∣
∣
∣
∣

T

A





[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

= det





1 x̂′ŷ x̂′ẑ

x̂′ŷ 1 ŷ′ẑ

x̂′ẑ ŷ′ẑ 1





= det





1 cos θx̂/ŷ cos θx̂/ẑ

cos θx̂/ŷ 1 cos θŷ/ẑ

cos θx̂/ẑ cos θŷ/ẑ 1





. �

The following result shows that angle vectors are additive if and only if both angles lie in the
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same plane.

Fact 2.19.3. Let x̂, ŷ, and ẑ be nonzero physical vectors, no two of which are parallel. Then,

the following statements are equivalent:

i) x̂, ŷ, and ẑ are linearly dependent.

ii) θ̂ẑ/x̂, θ̂x̂/ŷ, and θ̂ŷ/ẑ are parallel.

iii) At least two of the vectors θ̂ẑ/x̂, θ̂x̂/ŷ, and θ̂ŷ/ẑ are parallel.

iv) Either θx̂/ŷ + θŷ/ẑ + θẑ/x̂ = 2π, θẑ/x̂ = θẑ/ŷ + θŷ/x̂, θŷ/ẑ = θŷ/x̂ + θx̂/ẑ, or θẑ/ŷ = θẑ/x̂ + θx̂/ŷ.

v) cos θx̂×ŷ/ẑ = 0.

vi) cos2 θx̂/ŷ + cos2 θŷ/ẑ + cos2 θẑ/x̂ = 1 + 2(cos θx̂/ŷ)(cos θŷ/ẑ)(cos θẑ/x̂).

vii)
→
Rθ̂ẑ/ŷ

(θẑ/ŷ)
→
Rθ̂ŷ/x̂

(θŷ/x̂) =
→
Rθ̂ŷ/x̂

(θŷ/x̂)
→
Rθ̂ẑ/ŷ

(θẑ/ŷ).

The following result considers the case where the vectors do not necessarily lie in a single plane.

Fact 2.19.4. Let x̂, ŷ, and ẑ be unit dimensionless physical vectors, and assume that x̂ and ŷ are

not parallel and ŷ and ẑ are not parallel. Then,

→
Rθ̂ẑ/ŷ

(θẑ/ŷ)
→
Rθ̂ŷ/x̂

(θŷ/x̂) −
→
Rθ̂ŷ/x̂

(θŷ/x̂)
→
Rθ̂ẑ/ŷ

(θẑ/ŷ)

= (sin θẑ/ŷ)(sin θŷ/x̂)(θ̂ẑ/ŷ × θ̂ŷ/x̂)×

+ (sin θẑ/ŷ)(1 − cos θŷ/x̂)(θ̂×ẑ/ŷθ̂ŷ/x̂θ̂
′
ŷ/x̂ − θ̂ŷ/x̂θ̂

′
ŷ/x̂θ̂

×
ẑ/ŷ)

+ (sin θŷ/x̂)(1 − cos θẑ/ŷ)(θ̂ẑ/ŷθ̂
′
ẑ/ŷθ̂

×
ŷ/x̂ − θ̂

×
ŷ/x̂θ̂ẑ/ŷθ̂

′
ẑ/ŷ)

+ (1 − cos θẑ/ŷ)(1 − cos θŷ/x̂)θ̂′ẑ/ŷθ̂ŷ/x̂(θ̂ẑ/ŷθ̂
′
ŷ/x̂ − θ̂ŷ/x̂θ̂

′
ẑ/ŷ). (2.19.6)

Finally,

→
Rθ̂ẑ/ŷ

(θẑ/ŷ)
→
Rθ̂ŷ/x̂

(θŷ/x̂) =
→
Rθ̂ŷ/x̂

(θŷ/x̂)
→
Rθ̂ẑ/ŷ

(θẑ/ŷ) (2.19.7)

if and only if at least one of the following conditions holds:

i) θ̂ẑ/ŷ and θ̂ŷ/x̂ are parallel.

ii) Either
→
Rθ̂ẑ/ŷ

(θẑ/ŷ) =
→
I or

→
Rθ̂ŷ/x̂

(θŷ/x̂) =
→
I .

iii)
→
R

2

θ̂ẑ/ŷ
(θẑ/ŷ) =

→
I ,
→
R

2

θ̂ŷ/x̂
(θŷ/x̂) =

→
I , and θ̂′

ŷ/x̂
θ̂ẑ/ŷ = 0.

Proof. See [1, p. 211]. �

2.20 Rotation of a Rigid Body about a Point

Since a frame has no location, rotation of a frame affects only the orientation of the frame.

Rotation of a body, however, concerns a physical object, which has an orientation as well as a

location in space. Consequently, rotation of a body is not fully defined by specifying only the

physical rotation matrix; additional information is needed to characterize the effect of a rotation on

the location of the body. Although time plays no explicit role in this chapter, we assume that the

body is rigid in order to emphasize that the shape of the body is unchanged by the rotation.
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In order to discuss the rotation of a rigid body, we define a point that is fixed in the body and

that remains spatially fixed despite the rotation. For example, suppose that the rigid body B is a

cube, let the point x be one of the vertices of B, let
→
R be a physical rotation matrix, let B′ denote the

body B rotated by
→
R, and let x′ denote the point on B′ corresponding to x on B. We then assume

that the rotation of B occurs so that x is spatially fixed in the sense that
⇀
r x′/x =

⇀

0 . In this case,

we say that B is rotated by
→
R about x. To be more precise, let B = {y1, . . . , yl}, where y1, . . . , yl are

particles comprising B, and let B′ = {y′
1
, . . . , y′

l
}, where y′

1
, . . . , y′

l
are the corresponding particles in

B′ after rotation. Note that, since mass plays no role here, the particles y1, . . . , yl can be viewed as

points in space that define B, while the particles y′
1
, . . . , y′

l
in B′ can be viewed as the points in B′

that correspond to y1, . . . , yl in B. Since B is rotated by
→
R about x, it follows that, for all i = 1, . . . , l,

⇀
r y′

i
/x =

→
R
⇀
r yi/x.

Rotation of a body about a point is also possible in the case where the point x is not fixed in B but

rather is arbitrary. In this case, we view x as connected to B by means of a rigid link. Consequently,

x can be viewed as fixed in B. With this extension, B can be rotated about an arbitrary point x,

which remains spatially fixed under the rotation.

Definition 2.20.1. Let B = {y1, . . . , yl} be a rigid body with particles y1, . . . , yl whose masses

are m1, . . . ,ml, respectively, and let B′ = {y′
1
, . . . , y′

l
} be a rigid body with particles y′

1
, . . . , y′

l
whose

masses are m1, . . . ,ml, respectively. Then, B and B′ are identical if, for all i, j = 1, . . . , l, |⇀r yi/y j
| =

|⇀r y′
i
/y′

j
|; B and B′ have the same orientation if, for all i, j = 1, . . . , l,

⇀
r yi/y j

=
⇀
r y′

i
/y′

j
; and B and B′

are colocated if, for all i = 1, . . . , l,
⇀
r y′

i
/yi
=

⇀

0 .

Note that, if B and B′ have the same orientation, then they are identical. Furthermore, if B and

B′ are colocated, then, for all i, j = 1, . . . , l,

⇀
r yi/y j

=
⇀
r yi/y

′
i
+
⇀
r y′

i
/y′

j
+
⇀
r y′

j
/y j
=

⇀
r y′

i
/y′

j
,

and thus they have the same orientation.

The following result shows that two bodies related by a rotation about a point are identical.

Fact 2.20.2. Let B be a rigid body, let x be a point, let
→
R be a physical rotation matrix, and let

B′ denote B rotated by
→
R about x. Then, B and B′ are identical.

Proof. Note that, for all i, j ∈ {1, . . . , l},

|⇀r y′
i
/y′

j
| = |⇀r y′

i
/x −

⇀
r y′

j
/x| = |

→
R(

⇀
r yi/x −

⇀
r y j/x)| = |⇀r yi/x −

⇀
r y j/x| = |

⇀
r yi/y j

|. �

As a special case, let B be a rigid body, let x be a point, and consider rotation of B by
→
Rn̂(θ)

about x. Then
→
Rn̂(θ) rotates B about the line that is parallel to n̂ and passes through x.

Fact 2.20.3. Let B = {y1, . . . , yl} be a rigid body, let
→
Rn̂(θ) be a physical rotation matrix, let x

be a point, and let B′ = {y′
1
, . . . , y′

l
} denote B rotated by

→
Rn̂(θ) about x. Then, for all i = 1, . . . , l,

n̂′
⇀
r y′

i
/yi
= 0.
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Proof. Let i ∈ {1, . . . , l}. Note that

n̂′
⇀
r y′

i
/yi
= n̂′(

⇀
r y′

i
/x +

⇀
r x/yi

) = n̂′(
→
Rn̂(θ)

⇀
r yi/x −

⇀
r yi/x) = n̂′(

→
Rn̂(θ) −

→
I )
⇀
r yi/x = 0. �

2.21 Chasles’s Theorem

In this section we consider a transformation of a rigid body that is more general than rotation

about a point. This transformation involves rotation of a body about a point followed by a trans-

lation. The following result, which is an extension of Fact 2.20.2, shows that two bodies that are

related by a rotation about a point followed by a translation are identical.

Fact 2.21.1. Let B = {y1, . . . , yl} and B′ = {y′
1
, . . . , y′

l
} be rigid bodies, assume that, for all

i = 1, . . . , l, yi and y′
i

have the same mass, let x be a point, let
→
R be a physical rotation matrix, let

⇀
r

be a physical position vector, and assume that, for all i = 1, . . . , l,
⇀
r y′

i
/x =

→
R
⇀
r yi/x +

⇀
r . Then, B and

B′ are identical.

Proof. Note that, for all i, j ∈ {1, . . . , l},

|⇀r y′
i
/y′

j
| = |⇀r y′

i
/x −

⇀
r y′

j
/x| = |

→
R
⇀
r yi/x +

⇀
r − (

→
R
⇀
r y j/x +

⇀
r )| = |⇀r yi/x −

⇀
r y j/x| = |

⇀
r yi/y j

|. �

The following result, which is the converse of Fact 2.21.1, shows that, for every point x, a pair

of identical rigid bodies are related by a rotation about x followed by a translation.

Fact 2.21.2. Let B = {y1, . . . , yl} and B′ = {y′
1
, . . . , y′

l
} be identical rigid bodies, let FA and FB

be frames that are fixed identically in B and B′, respectively, let x be a point, and define the position

vector

⇀
r
△
=

⇀
r y′

1
/x −

→
RB/A

⇀
r y1/x. (2.21.1)

Then, for all i = 1, . . . , l,

⇀
r y′

i
/x =

→
RB/A

⇀
r yi/x +

⇀
r . (2.21.2)

Proof. Since B and B′ are identical and the frames FA and FB are fixed identically in B and B′,

respectively, it follows that, for all i = 2, . . . , l,
⇀
r y′

i
/y′

1
=
→
RB/A

⇀
r yi/y1

. Therefore, for all i = 2, . . . , l,

⇀
r y′

i
/x −

→
RB/A

⇀
r yi/x =

⇀
r y′

i
/y′

1
+
⇀
r y′

1
/x −

→
RB/A(

⇀
r yi/y1

+
⇀
r y1/x)

=
⇀
r y′

1
/x −

→
RB/A

⇀
r y1/x +

⇀
r y′

i
/y′

1
−
→
RB/A

⇀
r yi/y1

=
⇀
r y′

1
/x −

→
RB/A

⇀
r y1/x

=
⇀
r . �

The following result extends Fact 2.20.3 to include a translation.

Fact 2.21.3. Let B = {y1, . . . , yl} and B′ = {y′
1
, . . . , y′

l
} be rigid bodies, assume that, for all

i = 1, . . . , l, yi and y′
i

have the same mass, let x be a point, let
→
R be a physical rotation matrix, let

⇀
r
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be a physical position vector, and assume that, for all i = 1, . . . , l,
⇀
r y′

i
/x =

→
R
⇀
r yi/x +

⇀
r . Then, for all

i = 1, . . . , l, n̂′(
⇀
r y′

i
/yi
− ⇀

r ) = 0.

Proof. Let i ∈ {1, . . . , l}. Note that

n̂′(
⇀
r y′

i
/yi
− ⇀

r ) = n̂′(
⇀
r y′

i
/x +

⇀
r x/yi

− ⇀
r ) = n̂′(

→
Rn̂(θ) −

→
I )
⇀
r yi/x = 0. (2.21.3)

The next result, which is Chasles’s theorem, is a stronger version of Fact 2.21.2. This result

states that an arbitrary rotation and displacement of a rigid body can be expressed in terms of a

rotation about an eigenaxis and a displacement along the eigenaxis.

Fact 2.21.4. Let B = {y1, . . . , yl} and B′ = {y′
1
, . . . , y′

l
} be identical rigid bodies. Then, there

exist a point z, an eigenaxis n̂, an eigenangle θ, and a real number α such that, for all i = 1, . . . , l,

⇀
r y′

i
/z =

→
Rn̂(θ)

⇀
r yi/z + αn̂. (2.21.4)

Proof. Let FA and FB be frames that are fixed identically in B and B′, respectively. Let n̂ and θ

be an eigenaxis and eigenangle such that
→
RB/A =

→
Rn̂(θ). We first consider the case where θ ∈ (0, π).

Let P be the plane that is orthogonal to n̂ and that contains y1. Furthermore, consider the isosce-

les triangle T contained in P with vertices y1, w1, and z, where w1 is the projection of y′
1

onto P, the

angle between the sides (y1, z) and (w1, z) is θ, and the angles opposite the sides (y1, z) and (w1, z)

are π − θ/2. Analogously, let P′ be the plane that is orthogonal to n̂ and that contains y′
1
. Further-

more, consider the isosceles triangle T′ contained in P′ with vertices y′
1
, w′

1
, and z′, where w′

1
is the

projection of y1 onto P′, the angle between the sides (y′
1
, z′) and (w′

1
, z′) is θ, and the angles opposite

the sides (y′
1
, z′) and (w′

1
, z′) are π − θ/2. It can thus be seen that there exists a real number α such

that
⇀
r z′/z = αn̂. Since

⇀
r y′

1
/z′ =

→
Rn̂(θ)

⇀
r y1/z, it follows that

⇀
r y′

1
/z =

⇀
r y′

1
/z′ +

⇀
r z′/z

=
→
Rn̂(θ)

⇀
r y1/z + αn̂. (2.21.5)

By using (2.21.5), Fact 2.21.2 implies that (2.21.4) holds for all i = 1, . . . , l. The case where θ ∈
(−π, 0) is proved by replacing θ with |θ|. �

2.22 Geometry of a Chain of Rigid Bodies

Consider rigid bodies BB, BC, and BD connected to the base rigid body BA in the form of a

chain with three links as shown in Figure 2.22.1. In particular, BB is connected to BA at the point

zA, BC is connected to BB at the point zB, and BD is connected to BC at the point zC. The point

zD is the end effector. The point zA is fixed in BB and BA; the point zB is fixed in BC and BB; the

point zC is fixed in BD and BC; and the point zD is fixed in BD. Each attachment point is assumed

to represent a rotational joint, such as a pin, universal joint, or ball joint. Note that

⇀
r zD/zA

=
⇀
r zD/zC

+
⇀
r zC/zB

+
⇀
r zB/zA

. (2.22.1)

We assume that
⇀
r zD/zC

is known in FD,
⇀
r zC/zB

is known in FC, and
⇀
r zB/zA

is known in FB. Hence,

rzD/zC |D, rzC/zB |C, and rzB/zA |B are known. Furthermore, we assume that OD/C, OC/B, and OB/A are
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BA

BD

BC

BB

zA

zD

zC

zB

Figure 2.22.1: Chain of rigid bodies.

known. In order to express rzD/zA |A in terms of the known quantities, note that

rzD/zA |A = rzD/zC |A + rzC/zB |A + rzB/zA |A

= OA/DrzD/zC |D + OA/CrzC/zB |C + OA/BrzB/zA |B

= OA/COC/DrzD/zC |D + OA/BOB/CrzC/zB |C + OA/BrzB/zA |B. (2.22.2)

Note that (2.22.2) has the form of a recursive algorithm that proceeds from the top link of the chain

to the bottom link of the chain, where rzB/zA |B and OA/B are used first, rzC/zB |C and OB/C are used

second, where OB/C is multiplied by OA/B to obtain OA/C, and rzD/zC |D and OC/D are used last, where

OC/D is multiplied by OA/C computed in the second step to obtain OA/D. Alternatively, we can write

rzD/zA |A = rzD/zC |A + rzC/zB |A + rzB/zA |A

= OA/DrzD/zC |D + OA/CrzC/zB |C + OA/BrzB/zA |B

= OA/BOB/COC/DrzD/zC |D + OA/BOB/CrzC/zB |C + OA/BrzB/zA |B

= OA/B[OB/COC/DrzD/zC |D + OB/CrzC/zB |C + rzB/zA |B]

= OA/B[OB/C(OC/DrzD/zD |D + rzC/zB |C) + rzB/zA |B]. (2.22.3)

Note that (2.22.3) has the form of a recursive algorithm that proceeds from the bottom link of the

chain to the top link of the chain, where rzD/zC |D and OC/D are used first, rzC/zB |C and OB/C are used

second, and rzB/zA |B and OA/B are used last. For a chain consisting of n ≥ 4 rigid bodies, recursive

equations of the form (2.22.2) and (2.22.3) can be derived.

2.23 Nonstandard Frames and Reciprocal Frames

Thus far, and throughout this book, all frames are assumed to be standard frames, which are

orthogonal, right-handed frames with dimensionless, unit-length axes. In this section we develop

properties of frames that consist of three linearly independent axes. These frames arise naturally in

many applications.

A nonstandard frame is a collection of three linearly independent dimensionless physical vec-
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tors. Note that “nonstandard” means “not necessarily standard.” Letting FA be a nonstandard frame,

we denote its dimensionless axes by
⇀
a1,

⇀
a2,

⇀
a3. These vectors are not necessarily orthogonal and

need not have unit length. Furthermore, it follows from Fact 2.4.5 that, for each physical vector
⇀
x ,

there exist unique real numbers x1, x2, x3 such that

⇀
x = x1

⇀
a1 + x2

⇀
a2 + x3

⇀
a3. (2.23.1)

We thus write

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




. (2.23.2)

Fact 2.23.1. Let FA and FB be nonstandard frames with axes
⇀
a1,

⇀
a2,

⇀
a3 and

⇀

b1,
⇀

b2,
⇀

b3, respec-

tively. Then





⇀

b1
⇀

b2
⇀

b3





= OB/A





⇀
a1
⇀
a2
⇀
a3





, (2.23.3)

where OB/A ∈ R3×3 is defined by

OB/A
△
=

1

α





⇀

b1 · (
⇀
a2 ×

⇀
a3)

⇀

b1 · (
⇀
a3 ×

⇀
a1)

⇀

b1 · (
⇀
a1 ×

⇀
a2)

⇀

b2 · (
⇀
a2 ×

⇀
a3)

⇀

b2 · (
⇀
a3 ×

⇀
a1)

⇀

b2 · (
⇀
a1 ×

⇀
a2)

⇀

b3 · (
⇀
a2 ×

⇀
a3)

⇀

b3 · (
⇀
a3 ×

⇀
a1)

⇀

b3 · (
⇀
a1 ×

⇀
a2)





, (2.23.4)

where

α
△
=

⇀
a1 · (

⇀
a2 ×

⇀
a3). (2.23.5)

Furthermore, OB/A is nonsingular, and

OA/B = O−1
B/A. (2.23.6)

Now, let
⇀
x be a physical vector. Then,

⇀
x
∣
∣
∣
∣
B
= OT

A/B

⇀
x
∣
∣
∣
∣
A
= O−T

B/A

⇀
x
∣
∣
∣
∣
A
. (2.23.7)

Finally, if FA and FB are standard frames, then OB/A is a rotation matrix and

⇀
x
∣
∣
∣
∣
B
= OB/A

⇀
x
∣
∣
∣
∣
A
. (2.23.8)

Proof. To verify (2.23.3), note that the first equation is given by

α
⇀

b1 =
⇀

b1 · (
⇀
a2 ×

⇀
a3)

⇀
a1 +

⇀

b1 · (
⇀
a3 ×

⇀
a1)

⇀
a2 +

⇀

b1 · (
⇀
a1 ×

⇀
a2)

⇀
a3.

Resolving each vector in this equation yields xlvii) in [1, p. 386]. �

Let FA be a nonstandard frame with axes
⇀
a1,

⇀
a2,

⇀
a3. Now, define the dimensionless physical

vectors

⇀
a [1]

△
=

1

α

⇀
a2 ×

⇀
a3, (2.23.9)
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⇀
a [2]

△
=

1

α

⇀
a3 ×

⇀
a1, (2.23.10)

⇀
a [3]

△
=

1

α

⇀
a1 ×

⇀
a2, (2.23.11)

where α is defined by (2.23.5).

Fact 2.23.2. Let FA be a nonstandard frame with axes
⇀
a1,

⇀
a2,

⇀
a3. Then, the physical vectors

⇀
a [1],

⇀
a [2],

⇀
a [3] are linearly independent.

The physical vectors
⇀
a [1],

⇀
a [2],

⇀
a [3] define the reciprocal frame F[A]. Using these definitions,

(2.23.4) can be written as

O[A]/A =





⇀

b1 ·
⇀
a [1]

⇀

b1 ·
⇀
a [2]

⇀

b1 ·
⇀
a [3]

⇀

b2 ·
⇀
a [1]

⇀

b2 ·
⇀
a [2]

⇀

b2 ·
⇀
a [3]

⇀

b3 ·
⇀
a [1]

⇀

b3 ·
⇀
a [2]

⇀

b3 ·
⇀
a [3]





. (2.23.12)

Fact 2.23.3. Let FA be a nonstandard frame with axes
⇀
a1,

⇀
a2,

⇀
a3, and let F[A] denote the recip-

rocal frame with axes
⇀
a [1],

⇀
a [2],

⇀
a [3]. Then, for all i, j = 1, 2, 3,

⇀
a [i] ·

⇀
a j = δi, j. (2.23.13)

Hence,




⇀
a [1]
⇀
a [2]
⇀
a [3]





= O[A]/A





⇀
a1
⇀
a2
⇀
a3





, (2.23.14)





⇀
a1
⇀
a2
⇀
a3





= OA/[A]





⇀
a [1]
⇀
a [2]
⇀
a [3]





, (2.23.15)

where

O[A]/A =





⇀
a [1] ·

⇀
a [1]

⇀
a [1] ·

⇀
a [2]

⇀
a [1] ·

⇀
a [3]

⇀
a [2] ·

⇀
a [1]

⇀
a [2] ·

⇀
a [2]

⇀
a [2] ·

⇀
a [3]

⇀
a [3] ·

⇀
a [1]

⇀
a [3] ·

⇀
a [2]

⇀
a [3] ·

⇀
a [3]





, (2.23.16)

OA/[A] = O−1
[A]/A =





⇀
a1 ·

⇀
a1

⇀
a1 ·

⇀
a2

⇀
a1 ·

⇀
a3

⇀
a2 ·

⇀
a1

⇀
a2 ·

⇀
a2

⇀
a2 ·

⇀
a3

⇀
a3 ·

⇀
a1

⇀
a3 ·

⇀
a2

⇀
a3 ·

⇀
a3





. (2.23.17)

Now, let
⇀
x be a physical vector. Then,

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




=





⇀
a [1] ·

⇀
x

⇀
a [2] ·

⇀
x

⇀
a [3] ·

⇀
x





, (2.23.18)
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⇀
x
∣
∣
∣
∣
[A]
=





x[1]

x[2]

x[3]




=





⇀
a1 ·

⇀
x

⇀
a2 ·

⇀
x

⇀
a3 ·

⇀
x





. (2.23.19)

Furthermore,

⇀
x
∣
∣
∣
∣
[A]
= OA/[A]

⇀
x
∣
∣
∣
∣
A
, (2.23.20)

⇀
x
∣
∣
∣
∣
A
= O[A]/A

⇀
x
∣
∣
∣
∣
[A]
. (2.23.21)

Finally, if FA is a standard frame, then FA = F[A].

By rewriting (2.23.13) as

⇀
a
′
[i]

⇀
a j = δi, j, (2.23.22)

the covectors
⇀
a
′
[1],

⇀
a
′
[2],

⇀
a
′
[3] corresponding to the axes

⇀
a [1],

⇀
a [2],

⇀
a [3] of the reciprocal frame can be

viewed as the axes of the co-reciprocal frame F[A]′ , which is a basis for the space V′ of covectors.

If FA is a standard frame, then F[A] = FA, and thus F[A]′ = FA′ .

Using a frame and its reciprocal, it is possible to resolve a physical vector
⇀
x in two ways, namely,

⇀
x =

3∑

i=1

xi

⇀
a i =

3∑

i=1

x[i]
⇀
a [i], (2.23.23)

where

xi =
⇀
a
′
[i]

⇀
x , x[i] =

⇀
a
′
i

⇀
x . (2.23.24)

As a side remark, (2.23.23) and (2.23.24) are written traditionally as

⇀
x =

3∑

i=1

xi⇀a i =

3∑

i=1

xi

⇀
a

i

, (2.23.25)

where

xi =
⇀
a

i

· ⇀x , xi =
⇀
a i ·

⇀
x . (2.23.26)

Note that OA/[A] and O[A]/A are symmetric, and therefore the transpose in (2.23.7) does not

appear in (2.23.20) and (2.23.21).

The following result shows that the reciprocal frame is the unique nonstandard frame satisfying

(2.23.13).

Fact 2.23.4. Let FA and FB be nonstandard frames such that, for all i, j = 1, 2, 3,
⇀

b i ·
⇀
a j = δi, j.

Then, FB = F[A].

Fact 2.23.5. Let FA and FB be nonstandard frames, and let
⇀
x be a physical vector. Then,

⇀
x
∣
∣
∣
∣
[B]
= OB/A

⇀
x
∣
∣
∣
∣
[A]
= OT

[A]/[B]

⇀
x
∣
∣
∣
∣
[A]
. (2.23.27)

Furthermore,

OB/A = OB/[B]O
T
A/BO[A]/A. (2.23.28)
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Proof. Note that

⇀
x
∣
∣
∣
∣
[B]
=





⇀
x ·

⇀

b1

⇀
x ·

⇀

b2

⇀
x ·

⇀

b3





=





⇀
x · row1(OB/A)





⇀
a1
⇀
a2
⇀
a3





⇀
x · row2(OB/A)





⇀
a1
⇀
a2
⇀
a3





⇀
x · row3(OB/A)





⇀
a1
⇀
a2
⇀
a3









=





row1(OB/A)

row2(OB/A)

row3(OB/A)









⇀
x · ⇀a1

⇀
x · ⇀a2

⇀
x · ⇀a3





= OB/A
⇀
x
∣
∣
∣
∣
[A]
.

Next, using (2.23.7) and (2.23.20) it follows that

OT
A/B

⇀
x
∣
∣
∣
∣
A
=

⇀
x
∣
∣
∣
∣
B
= O[B]/B

⇀
x
∣
∣
∣
∣
[B]
= O[B]/BOB/A

⇀
x
∣
∣
∣
∣
[A]
= O[B]/BOB/AOA/[A]

⇀
x
∣
∣
∣
∣
A
. �

The components of
⇀
x
∣
∣
∣
∣
[A]

are the reciprocal components of
⇀
x .

The components of
⇀
x
∣
∣
∣
∣
A

are the contravariant components of
⇀
x , whereas the components of

⇀
x
∣
∣
∣
∣
[A]

are the covariant components of
⇀
x . The word contravariant reflects the reversal in the formulas





⇀

b1
⇀

b2
⇀

b3





= OB/A





⇀
a1
⇀
a2
⇀
a3





(2.23.29)

and

⇀
x
∣
∣
∣
∣
A
= OT

B/A

⇀
x
∣
∣
∣
∣
B
. (2.23.30)

Fact 2.23.6. Let FA be a nonstandard frame, and let
⇀
x and

⇀
y be physical vectors. Then,

⇀
x · ⇀y = ⇀

x
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣
[A]
=

⇀
x
∣
∣
∣
∣

T

A
OA/[A]

⇀
y
∣
∣
∣
∣
A
. (2.23.31)

In particular,

|⇀x |2 = ⇀
x · ⇀x = ⇀

x
∣
∣
∣
∣

T

A

⇀
x
∣
∣
∣
∣
[A]
=

⇀
x
∣
∣
∣
∣

T

A
OA/[A]

⇀
x
∣
∣
∣
∣
A
. (2.23.32)

Proof. Let

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




,
⇀
y
∣
∣
∣
∣
A
=





y1

y2

y3




.

Then,

⇀
x · ⇀y = (x1

⇀
a1 + x2

⇀
a2 + x3

⇀
a3) · (y1

⇀
a [1] + y2

⇀
a [2] + y3

⇀
a [3])



86 CHAPTER 2

= x1y1 + x2y2 + x3y3 =
⇀
x
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣
[A]
=

⇀
x
∣
∣
∣
∣

T

A
OA/[A]

⇀
y
∣
∣
∣
∣
A
. �

It follows from (2.23.32) that, if FA is nonstandard, then |⇀x | and
∥
∥
∥
∥

⇀
x
∣
∣
∣
∣
A

∥
∥
∥
∥ may be different. For

example, suppose that
⇀
a1 = ı̂A − ̂A,

⇀
a2 = ̂A, and

⇀
a3 = k̂A, and let

⇀
x = ı̂A. Then, |⇀x | = 1, but

∥
∥
∥
∥

⇀
x
∣
∣
∣
∣
A

∥
∥
∥
∥ =
√

3.

The following result follows from (2.23.32).

Fact 2.23.7. Let FA be a nonstandard frame. Then, OA/[A] is positive semidefinite.

Let FA be a nonstandard frame. As in the case of orthogonal frames, define the row vector

⇀
x
′∣∣
∣
∣
A

△
=

⇀
x
∣
∣
∣
∣

T

A
. (2.23.33)

Furthermore, for the physical matrix

→
M =

r∑

i=1

⇀
x i

⇀
y
′
i , (2.23.34)

we define

→
M

∣
∣
∣
∣
∣
A

△
=

r∑

i=1

⇀
x i

∣
∣
∣
∣
A

⇀
y i

∣
∣
∣
∣

T

A
. (2.23.35)

Fact 2.23.8. Let FA be a nonstandard frame, and let
→
M be a physical matrix. Then,

→
M

∣
∣
∣
∣
∣
A

=





⇀
a
′
[1]

→
M

⇀
a [1]

⇀
a
′
[1]

→
M

⇀
a [2]

⇀
a
′
[1]

→
M

⇀
a [3]

⇀
a
′
[2]

→
M

⇀
a [1]

⇀
a
′
[2]

→
M

⇀
a [2]

⇀
a
′
[2]

→
M

⇀
a [3]

⇀
a
′
[3]

→
M

⇀
a [1]

⇀
a
′
[3]

→
M

⇀
a [2]

⇀
a
′
[3]

→
M

⇀
a [3]





. (2.23.36)

Furthermore,

→
M =

3∑

i, j=1

(
⇀
a
′
[i]

→
M

⇀
a [ j]

)
⇀
a i

⇀
a
′
j. (2.23.37)

Proof. For simplicity, let
→
M =

⇀
x
⇀
y
′
, and write

⇀
x = x1

⇀
a1 + x2

⇀
a2 + x3

⇀
a3,

⇀
y = y1

⇀
a1 + y2

⇀
a2 + y3

⇀
a3,

so that

→
M =

3∑

i, j=1

xiy j

⇀
a i

⇀
a
′
j. (2.23.38)

Hence,

→
M

∣
∣
∣
∣
∣
A

=





x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3.




.
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It follows from (2.23.38) that, for all i, j = 1, 2, 3,
⇀
a
′
[i]

→
M

⇀
a [ j] = xiy j, which yields (2.23.36) and

(2.23.37). �

Defining

Mi j
△
=

⇀
a
′
[i]

→
M

⇀
a [ j], (2.23.39)

which, by (2.23.18), is the i, j entry of
→
M

∣
∣
∣
∣
∣
A

, (2.23.37) can be written as

→
M =

3∑

i, j=1

Mi j

⇀
a i

⇀
a
′
j. (2.23.40)

Similarly, defining

M[i][ j]
△
=

⇀
a
′
i

→
M

⇀
a j, (2.23.41)

which, by (2.23.19), is the i, j entry of
→
M

∣
∣
∣
∣
∣
[A]

, we have

→
M =

3∑

i, j=1

M[i][ j]
⇀
a [i]

⇀
a
′
[ j]. (2.23.42)

Likewise, defining

Mi[ j]
△
=

⇀
a
′
[i]

→
M

⇀
a j, M[i] j

△
=

⇀
a
′
i

→
M

⇀
a [ j], (2.23.43)

it follows that

→
M =

3∑

i, j=1

Mi[ j]
⇀
a i

⇀
a
′
[ j] =

3∑

i, j=1

M[i] j

⇀
a [i]

⇀
a
′
j. (2.23.44)

Consequently, by using a frame and the associated coframe, reciprocal, and co-reciprocal frames, a

physical matrix
→
M can be resolved in four ways, namely,

→
M =

3∑

i, j=1

Mi j

⇀
a i

⇀
a
′
j =

3∑

i, j=1

M[i][ j]
⇀
a [i]

⇀
a
′
[ j] =

3∑

i, j=1

Mi[ j]
⇀
a i

⇀
a
′
[ j] =

3∑

i, j=1

M[i] j

⇀
a [i]

⇀
a
′
j. (2.23.45)

Fact 2.23.9. Let
→
M be a physical matrix, let

⇀
x be a physical vector, and let FA be a nonstandard

frame. Then,

(
→
M

⇀
x)

∣
∣
∣
∣
∣
A

=
→
M

∣
∣
∣
∣
∣
A

OA/[A]
⇀
x
∣
∣
∣
∣
A
. (2.23.46)

Fact 2.23.9 implies that

→
I

∣
∣
∣
∣
∣
A

= O[A]/A,
→
I

∣
∣
∣
∣
∣
[A]

= OA/[A]. (2.23.47)

The following result extends (2.10.11) to nonstandard frames.
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Fact 2.23.10. Let
→
M be a physical matrix, and let FA and FB be nonstandard frames. Then,

→
M

∣
∣
∣
∣
∣
B

= O−T
B/A

→
M

∣
∣
∣
∣
∣
A

OA/B. (2.23.48)

Fact 2.23.11. Let
→
M be a physical matrix, and let FA be a nonstandard frame. Then,

→
M

∣
∣
∣
∣
∣
[A]

= OA/[A]

→
M

∣
∣
∣
∣
∣
A

OA/[A]. (2.23.49)

Fact 2.23.12. Let
→
M be a physical matrix, let FA be a nonstandard frame, and let

⇀
x and

⇀
y be

physical vectors satisfying
⇀
y =

→
M

⇀
x . Then,

⇀
y
∣
∣
∣
∣
[A]
= OA/[A]

→
M

∣
∣
∣
∣
∣
A

OA/[A]
⇀
x
∣
∣
∣
∣
[A]
. (2.23.50)

Consider the physical matrix

→
M =

r∑

i=1

⇀
x i

⇀
y
′
i , (2.23.51)

and let FA and FB be nonstandard frames. Then, we define

→
M

∣
∣
∣
∣
∣
A,B

△
=

r∑

i=1

⇀
x i

∣
∣
∣
∣
A

⇀
y i

∣
∣
∣
∣

T

B
. (2.23.52)

Fact 2.23.13. Let
→
M be a physical matrix, let

⇀
x be a physical vector, and let FA and FB be

nonstandard frames. Then,

(
→
M

⇀
x)

∣
∣
∣
∣
∣
B

=
→
M

∣
∣
∣
∣
∣
B,A

⇀
x
∣
∣
∣
∣
[A]
. (2.23.53)

It follows from Fact 2.23.13 that

→
I

∣
∣
∣
∣
∣
[A]/A

=
→
I

∣
∣
∣
∣
∣
A/[A]

= I3. (2.23.54)

Fact 2.23.14. Let
→
M be a physical matrix, and let FA be a nonstandard frame. Then,

→
M

∣
∣
∣
∣
∣
[A],A

= OA/[A]

→
M

∣
∣
∣
∣
∣
A

, (2.23.55)

→
M

∣
∣
∣
∣
∣
A,[A]

=
→
M

∣
∣
∣
∣
∣
A

OA/[A]. (2.23.56)

2.24 Partial Derivatives and Gradients

Let f : Rn 7→ R. Then, with x = (x1, . . . , xn), the partial derivative of f with respect to xi

is denoted by ∂xi
f (x). Note that ∂xi

f (x) is the derivative of the function g : R 7→ R defined by

g(xi)
△
= f (x1, . . . , xi−1, xi, xi+1, . . . , xn). The gradient ∂x f (x) ∈ R1×n of f is defined by

∂x f (x)
△
= [∂x1

f (x) · · · ∂xn
f (x)]. (2.24.1)
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Next, let f : Rn × Rm 7→ R so that f is a real-valued function of x ∈ Rn and y ∈ Rm. Then,

∂x f (x, y) ∈ R1×n denotes the gradient of f with respect to x. In addition, ∂x f (x, y)|x=x̄ denotes the

gradient of f with respect to x evaluated at (x̄, y). If it is clear that x is the first argument of f ,

then we write ∂x f (x̄, y). Defining the function g : Rn 7→ R1×n by g(x)
△
= ∂x f (x, y), it follows that

∂x f (x̄, y) = g(x̄).

As a special case, let f : R3 7→ R, where an arbitrary argument of f is denoted by r = [x y z]T ∈
R. Then, the gradient of f at r ∈ R3 is the row vector

∂r f (r) = [∂x f (r) ∂y f (r) ∂z f (r)] ∈ R1×3, (2.24.2)

where ∂x f (r) is the partial derivative of f with respect to x evaluated at r.

Now, let f denote a mapping from physical vectors to real numbers, that is, for each physical

vector
⇀
r , let f (

⇀
r ) ∈ R. Furthermore, for the frame FA, define fA : R3 7→ R by

fA(r)
△
= f (FAr). (2.24.3)

Defining rA
△
=

⇀
r
∣
∣
∣
∣
A
=





x

y

z




, (2.24.3) can be written as

f (
⇀
r ) = fA(rA). (2.24.4)

Furthermore, if FB is also a frame, then

fA(rA) = f (FArA) = f (FBOB/ArA) = fB(OB/ArA) = fB(rB). (2.24.5)

It thus follows from the chain rule that

∂rA
fA(rA) = ∂rA

fB(OB/ArA) = ∂OB/ArA
fB(OB/ArA)OB/A = ∂rB

fB(rB)OB/A. (2.24.6)

Next, define the physical gradient
⇀

∂ f (
⇀
r ) of f at

⇀
r by

⇀

∂ f (
⇀
r )

△
= ∂rA

fA(rA)F′TA . (2.24.7)

Hence,

⇀

∂ f (
⇀
r ) = ∂x̄ fA(rA)ı̂′A + ∂ȳ fA(rA) ̂′A + ∂z̄ fA(rA)k̂′A, (2.24.8)

and thus

⇀

∂ f (
⇀
r )

∣
∣
∣
∣
∣
A

= ∂rA
fA(rA) =

[

∂x̄ fA(rA) ∂ȳ fA(rA) ∂z̄ fA(rA)
]

. (2.24.9)

Note that the physical gradient is a covector.

Fact 2.24.1.
⇀

∂ f (
⇀
r ) is independent of the choice of the frame FA used in (2.24.7).

Proof. Let FA and FB be frames, and define rA
△
=

⇀
r
∣
∣
∣
∣
A

and rB
△
=

⇀
r
∣
∣
∣
∣
B
. Then, it follows from

(2.10.25) and (2.24.6) that

∂rA
fA(rA)F′TA = ∂rB

fB(rB)OB/AF′TA

= ∂rB
fB(rB)F′TB . �



90 CHAPTER 2

For a scalar-valued function f whose domain is physical vectors
⇀
r ,

⇀

∂⇀
r

f (
⇀
r )

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

denotes the

physical gradient with respect to
⇀
r evaluated at

⇀
r y/z. If

⇀
r y/z is nonzero, then

⇀

∂⇀
r
|⇀r |

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

=
1

|⇀r y/z|
⇀
r
′
y/z = r̂′y/z, (2.24.10)

and, for all n ≥ 1,

⇀

∂⇀
r

1

|⇀r |n

∣
∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

= − n

|⇀r z/y|n+1

⇀

∂⇀
r
|⇀r |

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

= − n

|⇀r z/y|n+2

⇀
r
′
z/y. (2.24.11)

Furthermore, for all covectors
⇀
v
′
,

⇀

∂⇀
r
(
⇀
v
′⇀
r )

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

=
⇀
v
′
. (2.24.12)

The operator
⇀

∇ is the vector version of the covector physical gradient
⇀

∂; that is,
⇀

∂ =
⇀

∇
′
. The

divergence and curl of the vector field
⇀

M are thus given by

⇀

∇⇀
r
·
⇀

M(
⇀
r ) = tr

⇀

∂⇀
r

⇀

M(
⇀
r ), (2.24.13)

⇀

∇⇀
r
×

⇀

M(
⇀
r ) =

⇀

∇
×
⇀
r

⇀

M(
⇀
r ). (2.24.14)

Finally, we note the Jacobian

d

d
⇀
r

⇀
r =

→
I . (2.24.15)

2.25 Examples

Example 2.25.1. Consider the 3-bar linkage shown from above in Figure 2.25.1 with links of

lengths ℓ1 = 3, ℓ2 = 4, and ℓ3 = 2, and pin joints a, b, and c labeled as shown. The links are initially

aligned as shown, lying in a horizontal plane, that is, the plane spanned by ı̂A and ̂A. The pins at

joints a and c are vertical, that is, parallel with k̂A, and the pin at joint b is horizontal, that is, lying in

the plane spanned by ı̂A and ̂A. The rotation angles at joints a, b, and c are ψ, θ, and φ, respectively,

where a positive value of θ indicates that joint c moves in the negative k̂A direction. The joints are

rotated such that ψ = 30 deg, θ = −20 deg, and φ = 45 deg. In terms of the frame FA, determine the

position of the tip d of the linkage relative to a after these rotations.

Solution: Define the sequence of rotations

FA

ψ
−→

3
FB

θ−→
2

FC

φ
−→

3
FD.

The position of d relative to a is given by

⇀
r d/a =

⇀
r d/c +

⇀
r c/b +

⇀
r b/a

= ℓ3 ı̂D + ℓ2 ı̂C + ℓ1 ı̂B.
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ı̂A

̂A

k̂A

ψ φ
θ

a b c d

l1 l2 l3

Figure 2.25.1: Example 2.25.1. Three-bar linkage. The shown orientation of the linkage corresponds to

ψ = θ = φ = 0.

Resolving this equation in FA yields

⇀
r d/a

∣
∣
∣
∣
A
= ℓ3 ı̂D|A + ℓ2 ı̂C|A + ℓ1 ı̂B|A
= ℓ3OA/BOB/COC/D ı̂D|D + ℓ2OA/BOB/C ı̂C|C + ℓ1OA/B ı̂B|B

= [ℓ3O
T
3 (ψ)OT

2 (θ)OT
3 (φ) + ℓ2O

T
3 (ψ)OT

2 (θ) + ℓ1O
T
3 (ψ)]





1

0

0





= OT
3 (ψ)[ℓ3O

T
2 (θ)OT

3 (φ) + ℓ2O
T
2 (θ) + ℓ1I3]





1

0

0





= OT
3 (ψ)




ℓ3O

T
2 (θ)





cos(φ)

sin(φ)

0




+ ℓ2





cos(θ)

0

− sin(θ)




+ ℓ1





1

0

0









=





cosψ − sinψ 0

sinψ cosψ 0

0 0 1









ℓ3(cos θ) cos φ + ℓ2 cos θ + ℓ1

ℓ3 sin φ

−ℓ3(sin θ) cos φ − ℓ2 sin θ





=





ℓ3(cosψ)(cos θ) cos φ + ℓ2(cosψ) cos θ + ℓ1 cosψ − ℓ3(sinψ) sin φ

ℓ3(sinψ)(cos θ) cos φ + ℓ2(sinψ) cos θ + ℓ1 sinψ + ℓ3(cosψ) sin φ

−ℓ3(sin θ) cos φ − ℓ2 sin θ




.

Evaluating this expression at ψ = 30 deg, θ = −20 deg, and φ = 45 deg yields

⇀
r d/a

∣
∣
∣
∣
A
=





6.29

5.27

1.85




. ⋄

2.26 Theoretical Problems

Problem 2.26.1. Let
⇀
x and

⇀
y be physical vectors. Show that the following statements are

equivalent:

i) θ⇀
y/

⇀
x
= π/2.
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ii)
⇀
x · ⇀y = 0.

iii) |⇀x × ⇀
y | = |⇀x ||⇀y |.

Now, assume that
⇀
x and

⇀
y are nonzero. Then, show that the following statements are equivalent:

iv) θ⇀
y/

⇀
x
= π.

v) |x̂ · ŷ| = 1.

vi)
⇀
x × ⇀

y = 0.

vii) Either x̂ = ŷ or x̂ = −ŷ.

Finally, assume that
⇀
x and

⇀
y are nonzero and not parallel, and let

⇀
z be a physical vector. Show that,

if
⇀
z × ⇀

x = 0 and
⇀
z × ⇀

y = 0, then
⇀
z = 0.

Problem 2.26.2. Let
⇀
x and

⇀
y be nonzero physical vectors. Determine the length of the pro-

jection of
⇀
x onto the line through

⇀
y in terms of |⇀x · ⇀y |. Likewise, determine the length of the

projection of
⇀
y onto the line through

⇀
x . Separately consider the cases in which θ⇀

x/
⇀
y
∈ [0, π/2] and

θ⇀
x/

⇀
y
∈ [π/2, π].

Problem 2.26.3. Define
⇀
x
△
= 3ı̂A − 4 ̂A,

⇀
y
△
= −ı̂A + 5 ̂A − 2k̂A,

→
M

△
=

⇀
x
⇀
y
′
, and

→
N
△
=

⇀
y
⇀
x
′
. Then,

do the following:

i) Resolve
→
M,

→
N,

→
M
→
N, and

→
M

⇀
x in FA.

ii) Confirm that (
→
M
→
N)|A =

→
M|A

→
N|A and (

→
M

⇀
x)|A =

→
M|A

⇀
x |A.

Problem 2.26.4. Let
→
M and

→
N be physical matrices, and let FA be a frame. Show that if

→
Mı̂A =

→
N ı̂A,

→
M ̂A =

→
N ̂A, and

→
Mk̂A =

→
Nk̂A, then

→
M =

→
N.

Problem 2.26.5. Let FA be a frame, and let
⇀
x and

⇀
y be physical vectors lying in the plane

spanned by ı̂A and ̂A. Show that

x1y2 − x2y1 = |
⇀
x ||⇀y | sin θ⇀

y/
⇀
x/k̂A

,

where

⇀
x
∣
∣
∣
∣
A
=





x1

x2

0




,

⇀
y
∣
∣
∣
∣
A
=





y1

y2

0




.

Problem 2.26.6. Let
⇀
x ,

⇀
y , and

⇀
z be physical vectors. Show that

⇀
x × (

⇀
y × ⇀

z ) +
⇀
y × (

⇀
z × ⇀

x) +
⇀
z × (

⇀
x × ⇀

y ) = 0.

This is Jacobi’s identity.
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Problem 2.26.7. Let
⇀
y and

⇀
z be nonzero physical vectors that are not parallel. Show that

→
P⇀

y−P⇀
z

⇀
y
+
→
P⇀

z
=

1

|⇀z |2|⇀y |2 − (
⇀
y
′⇀
z )2

[

|⇀z |2⇀y⇀y
′
− ⇀

y
′⇀
z (

⇀
y
⇀
z
′
+
⇀
z
⇀
y
′
) + |⇀y |2⇀z⇀z

′]
,

and thus

→
P⇀

y−P⇀
z

⇀
y
+
→
P⇀

z
=
→
P⇀

z−
→
P⇀

y

⇀
z
+
→
P⇀

y
.

Problem 2.26.8. Let
⇀
x ,

⇀
y , and

⇀
z be linearly independent physical vectors, and define

⇀
u
△
=

⇀
x ,

⇀
v
△
= (
→
I −

→
P⇀

x
)
⇀
y ,

⇀
w
△
= (
→
I −

→
P⇀

x
−
→
P⇀

y
)
⇀
z .

Show that
⇀
u ,

⇀
v , and

⇀
w are mutually orthogonal. (Remark: This is Gram-Schmidt orthogonalization.)

Problem 2.26.9. Let FA be a frame, and let the frame FB be obtained by rotating FA accord-

ing to the right hand rule around the axis k̂A by the angle θB/A = π/2. Determine
→
RB/A, RB/A

(by computing both
→
RB/A

∣
∣
∣
∣
∣
A

and
→
RB/A

∣
∣
∣
∣
∣
B

), nB/A, and qB/A. Finally, verify (2.11.39), (2.11.45), and

(2.15.30).

Problem 2.26.10. Let FA, FB, and FC be frames. Express OC/A in terms of a product of Euler

orientation matrices for the following cases:

i) FB =
→
Rk̂A

(ψ)FA and FC =
→
R ̂B (θ)FB.

ii) FB =
→
Rk̂A

(ψ)FA and FC =
→
R ̂A (θ)FB.

Problem 2.26.11. Let FA be a frame, and let S ∈ R3×3 be a rotation matrix. Show that there

exists a frame FB such that
→
RA/B

∣
∣
∣
∣
∣
B

= S .

Problem 2.26.12. Let
⇀
x be a physical vector, and let

→
R be a physical rotation matrix. Use Fact

2.9.8 to show that
→
R
⇀
x =

⇀
x if and only if

→
R
⇀
x
×
=

⇀
x
×→

R.

Problem 2.26.13. Let n̂ be a unit dimensionless physical vector, let θ ∈ (−π, π], and let
→
S be a

physical rotation matrix. Show that

→
R→

S n̂
(θ) =

→
S
→
Rn̂(θ)

→
S
′
.

Problem 2.26.14. Let FA and FB be frames, and define θB/A and nB/A as in Fact 2.11.6. Then,

show that
OA/BnB/A = RB/AnB/A = nB/A,

OB/An×B/A = n×B/AOB/A,

RB/An×B/A = n×B/ARB/A.
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Problem 2.26.15. Let M be an n × n orthogonal matrix, that is, a nonsingular matrix that

satisfies MT = M−1. Show that | det M| = 1 and that the absolute value of every eigenvalue of M is

1. Now, assume that M is a rotation matrix, that is, a real 3×3 orthogonal matrix whose determinant

is 1. Show that the eigenvalues of M are given by {1, λ, λ̄}, where λ is a complex (possibly real)

number whose absolute value is 1. Next, let FA and FB be frames, and let n̂ and θ ∈ (−π, π] be

such that
→
RB/A =

→
Rn̂(θ). Show that n̂|A is an eigenvector of RB/A corresponding to the eigenvalue 1,

and show that λ = (cos θ) + (sin θ) . (Hint: Let v ∈ Cn be an eigenvector of M associated with the

eigenvalue λ, and note that v∗MTMv = λv∗MTv.)

Problem 2.26.16. Let R be a rotation matrix. Show that

(tr R)2 = tr R2 + 2 tr R,

(tr R)3 + 2 tr R3 = 3(tr R)(tr R2) + 6.

Problem 2.26.17. Let R be a rotation matrix. Show that

R3 − (tr R)R2 + (tr R)R − I3 = 0.

Now, define c
△
= 1

2
(tr R − 1). Show that

R4 − (2 + 2c)R3 + (2 + 4c)R2 − (2 + 2c)R + I3 = 0.

Furthermore, if c , −1, then show that

1 + 2c

2(1 + c)
I3 +

1

4(1 + c)
(R2 + R2T) + 1

2
(R − RT) = R.

(Hint: For the first equality, use the Cayley-Hamilton theorem. For the second equality, use Problem

2.26.11 to express c in terms of the eigenvalues of R, and use an orthogonal transformation to

diagonalize R.)

Problem 2.26.18. Let
→
R =

→
Rn̂(θ) be a physical rotation matrix, where n̂ is a unit dimensionless

physical vector and θ ∈ [0, π]. Show that the following statements are equivalent:

i)
→
R is symmetric.

ii) Either tr
→
R = −1 or tr

→
R = 3.

iii) Either θ = 0 or θ = π.

Problem 2.26.19. Let
→
R be a physical rotation matrix, let

⇀
w be a physical vector, let α be a real

number, and, for each physical vector
⇀
x , define the physical vector

⇀
y by the combined rotation and

translation transformation

⇀
y =

→
R
⇀
x + α

⇀
w.

Let FA be a frame. Show that
[

ỹ

α

]

=

[

R̃ w̃

01×3 1

] [

x̃

α

]

.

where ỹ
△
=

⇀
y
∣
∣
∣
∣
A

and likewise for the remaining quantities.
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Problem 2.26.20. Let FA and FB be frames with origins OA and OB, respectively, and let x be

a point. Show that




⇀
r x/OB

∣
∣
∣
∣
B

1




=





OB/A
⇀
r OA/OB

∣
∣
∣
∣
B

0 1









⇀
r x/OA

∣
∣
∣
∣
A

1




.

Furthermore, show that





OB/A
⇀
r OA/OB

∣
∣
∣
∣
B

0 1





−1

=





OA/B −OA/B
⇀
r OA/OB

∣
∣
∣
∣
B

0 1




=





OA/B
⇀
r OB/OA

∣
∣
∣
∣
A

0 1




.

Problem 2.26.21. Let FA and FB be frames. Show that

→
RB/A

∣
∣
∣
∣
∣
B

=
→
RB/A

∣
∣
∣
∣
∣
A

in two different ways, namely:

i) By resolving
→
RB/A in both FA and FB and using (2.10.31).

ii) By using Euler’s theorem to express
→
RB/A in terms of Rodrigues’s formula.

Problem 2.26.22. Let b, c, d be real numbers, and define the pure quaternion q = bi + cj + dk

be nonzero. Show that

e
1
2

q
= cos 1

2
|q| +

sin 1
2
|q|
|q|

q

and thus

|e
1
2

q| = 1.

(Remark: See [7, p. 71].)

Problem 2.26.23. Let a, b, c, d be real numbers such that
√

a2 + b2 + c2 + d2 = 1, and define

the unit quaternion q
△
= a + bi + cj + dk. Furthermore, let FA be a frame, let

⇀
x be a physical vector,

and let

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




.

Finally, define the pure quaternion
x
△
= x1i + x2j + x3k.

Then, show that
y
△
= y1i + y2j + y3k

△
= qxq−1

is a pure quaternion and that the physical vector

⇀
y
△
= y1 ı̂A + y2 ̂A + y3k̂A

satisfies
⇀
y =

→
R
⇀
x ,
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where
→
R is the physical rotation matrix

→
R

∣
∣
∣
∣
∣
A

△
=





a2 + b2 − c2 − d2 2(bc − ad) 2(ac + bd)

2(ad + bc) a2 − b2 + c2 − d2 2(cd − ab)

2(bd − ac) 2(ab + cd) a2 − b2 − c2 + d2





.

(Hint: Note that q−1 = q
△
= a − bi − cj − dk.) (Remark: This result shows that the two-sided

transformation y = qxq−1, where q is a unit quaternion, represents a physical rotation matrix.

Conversely, since y = (−q)x(−q)−1, this result also shows that every physical rotation matrix that is

not the identity can be represented by two distinct unit quaternions, namely, q and −q.)

2.27 Applied Problems

Problem 2.27.1. Consider a 3-gimbal mechanism that emulates 3-2-1 Euler angles, that is, the

outermost gimbal rotates around the k̂-axis of the support frame, the intermediate axis rotates around

the ̂-axis of a frame attached to the outermost gimbal, and the innermost gimbal rotates around the

ı̂-axis of the intermediate gimbal. Physically, it can be seen that the rotation of each gimbal relative

to its support can be performed in an arbitrary order without changing the final configuration. Prove

this mathematically, that is, show that if the outermost gimbal is rotated first, followed by the in-

termediate gimbal, and, then, finally, by the innermost gimbal, then the configuration that results is

the same as the configuration that results from rotating the gimbals in the reverse order. To do this,

resolve two products of physical rotation matrices in the support frame.

Problem 2.27.2. Consider the box shown in Figure 2.27.1 with side lengths and vertices as

shown. The box is rotated 30 degrees clockwise around its edge ab as viewed from a to b, that is,

30 degrees by the right-hand rule around r̂b/a. Next, the box is rotated 45 degrees counterclockwise

around its edge ae as viewed from a to e. In terms of the frame FA, determine the position of g

relative to a after both rotations.

Problem 2.27.3. Consider the box shown in Figure 2.27.1 with side lengths and vertices as

shown. The box is rotated 60 degrees counterclockwise around the diagonal a f as viewed from a

to f , that is, -60 degrees by the right-hand rule around r̂ f /a. In terms of the frame FA, determine the

position of g relative to a after the rotation.

Problem 2.27.4. Consider the bent wire abc shown in Figure 2.27.2. This wire consists of two

straight segments of length ℓ1 and ℓ2, and lies in the ı̂A-k̂A plane. The angle θ describes how much

the wire is bent at the point b. The bent wire is rotated counterclockwise around the line passing

through the points a and c (as seen looking from a to c) by the angle φ > 0. Determine the distance

from the original position of the point b to its final position after the rotation. Check your solution

by specializing it to the case θ = 0.
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ı̂A

k̂A

̂A

a b

cd

f

e

g

2

3

1

Figure 2.27.1: Box for Problem 2.27.2 and Problem 2.27.3.

k̂A

̂A

ı̂A

a

b

c
θ

l1

l2

Figure 2.27.2: Bent wire for Problem 2.27.4.
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Symbol Definition

x Point or particle x

B Body B

⇀
x Physical vector

|⇀x | Magnitude of physical vector
⇀
x

ı̂, ̂, k̂ Unit dimensionless physical vectors

θ⇀
y/

⇀
x

Angle in [0, π] between
⇀
y and

⇀
x

⇀

θ⇀
y/

⇀
x

Angle vector of
⇀
y relative to

⇀
x

⇀
r y/x Position of y relative to x

θ⇀
y/

⇀
x/n̂

Directed angle in (−π, π] from
⇀
x to

⇀
y around n̂

⇀

θ⇀
y/

⇀
x/n̂

Directed angle vector of
⇀
y relative to

⇀
x around n̂

⇀
r y/x Position of y relative to x

FA Frame A written as a row vectrix

FA Frame A written as a column vectrix

→
RB/A Physical rotation matrix that rotates FA to FB

RB/A Rotation matrix from FA to FB

OB/A Orientation matrix of FB relative to FA

qB/A Euler parameter vector of FB relative to FA

3-2-1 rotation: Ψ,Θ,Φ Yaw, pitch, roll Euler angles

3-1-3 rotation: Φ,Θ,Ψ Precession, nutation, spin Euler angles

3-1-3 rotation: Ω, i, ω Right ascension of the ascending node,

inclination, argument of periapsis Euler angles

Table 2.1: Symbols for Chapter 2.



Chapter Three

Tensors

The duality between covariance and contravariance arises whenever a vector or tensor quantity

is represented by its components, although modern differential geometry uses more sophisticated

index-free methods to represent tensors.

3.1 Tensors

A tensor is a real-valued function of physical covectors and physical vectors that is multilinear,

that is, linear in each argument separately. For example, if
⇀
w is a physical vector and

⇀
z
′

is a physical

covector, then the function
→
T : V′ × V 7→ R defined by

→
T (

⇀
x
′
,
⇀
y ) = (

⇀
x
′⇀
w)(

⇀
z
′⇀
y ) (3.1.1)

is a tensor, where V denotes the set of physical vectors and V′ denotes the set of physical covectors.

Note that the value of
→
T (

⇀
x
′
,
⇀
y ) is a product of inner products. In this case we write

→
T (

⇀
x
′
,
⇀
y ) = (

⇀
w ⊗ ⇀

z
′
)(
⇀
x
′
,
⇀
y ), (3.1.2)

where the tensor
→
T is represented by the tensor product notation

→
T =

⇀
w ⊗ ⇀

z
′
. (3.1.3)

The physical vector
⇀
w and the physical covector

⇀
z
′

are the factors of
→
T , whereas the physical cov-

ector
⇀
x
′

and the physical vector
⇀
y are the arguments of

→
T .

The tensor
→
T defined by (3.1.1) can be viewed as a physical matrix. To see this, define

→
M =

⇀
x
⇀
y
′
.

Then, for every physical vector
⇀
z and physical covector

⇀
w
′
,

⇀
w
′ →
M

⇀
z =

⇀
w
′⇀
x
⇀
y
′⇀
z = (

⇀
x
′⇀
w)(

⇀
z
′⇀
y ) = (w ⊗ ⇀

z
′
)(
⇀
x
′
,
⇀
y ) =

→
T (

⇀
w
′
,
⇀
z ). (3.1.4)

We thus identify
⇀
x
⇀
y
′

with
⇀
x ⊗ ⇀

y
′
.

Like physical matrices, tensors of the form (3.1.2) can be added. For example, for physical

vectors
⇀
w1,

⇀
w2 and physical covectors

⇀
z
′
1,
⇀
z
′
2, we can define the tensor

→
T =

⇀
w1 ⊗

⇀
z
′
1 +

⇀
w2 ⊗

⇀
z
′
2, (3.1.5)

which satisfies

→
T (

⇀
x
′
,
⇀
y ) = (

⇀
w1 ⊗

⇀
z
′
1)(

⇀
x
′
,
⇀
y ) + (

⇀
w2 ⊗

⇀
z
′
2)(

⇀
x
′
,
⇀
y )
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= (
⇀
x
′⇀
w1)(

⇀
z
′
1

⇀
y ) + (

⇀
x
′⇀
w2)(

⇀
z
′
2

⇀
y ). (3.1.6)

As another example, the function
→
T : V × V 7→ R defined by

→
T (

⇀
x ,

⇀
y ) =

⇀
x
′⇀
y (3.1.7)

is a tensor. To see this, note that

(ı̂′A ⊗ ı̂
′
A + ̂

′
A ⊗ ̂

′
A + k̂′A ⊗ k̂′A)(

⇀
x ,

⇀
y ) = (ı̂′A

⇀
x)(ı̂′A

⇀
y ) + ( ̂′A

⇀
x)( ̂′A

⇀
y ) + (k̂′A

⇀
x)(k̂′A

⇀
y )

=
⇀
x
′⇀
y . (3.1.8)

Hence,

→
T = ı̂′A ⊗ ı̂

′
A + ̂

′
A ⊗ ̂

′
A + k̂′A ⊗ k̂′A. (3.1.9)

Alternatively, the function
→
T : V′ × V 7→ R defined by

→
T (

⇀
x
′
,
⇀
y ) =

⇀
x
′⇀
y (3.1.10)

is a tensor since

(ı̂A ⊗ ı̂′A + ̂A ⊗ ̂
′
A + k̂A ⊗ k̂′A)(

⇀
x
′
,
⇀
y ) = (

⇀
x
′
ı̂A)(ı̂′A

⇀
y ) + (

⇀
x
′
̂A)( ̂′A

⇀
y ) + (

⇀
x
′
k̂A)(k̂′A

⇀
y )

= (ı̂′A
⇀
x)(ı̂′A

⇀
y ) + ( ̂′A

⇀
x)( ̂′A

⇀
y ) + (k̂′A

⇀
x)(k̂′A

⇀
y )

=
⇀
x
′⇀
y . (3.1.11)

Hence,

→
T = ı̂A ⊗ ı̂′A + ̂A ⊗ ̂

′
A + k̂A ⊗ k̂′A. (3.1.12)

The type of a tensor
→
T is denoted by (p, q), where p is the number of physical vectors multiplied

together (contravariant factors) to form
→
T , while q is the number of physical covectors that are mul-

tiplied together (covariant factors) to form
→
T . Equivalently, p is the number of physical covectors

(contravariant arguments) that
→
T operates on, and q is the number of physical vectors (covariant

arguments) that
→
T operates on.

The order of a tensor of type (p, q) is p+ q. Therefore, a tensor of type (2, 0), (1, 1), and (0, 2) is

a second-order tensor. A scalar is a zeroth-order tensor.

If the factors of
→
T include both physical vectors and physical covectors, then the physical vectors

appear first, followed by the physical covectors. In this case, the arguments of
→
T include both

physical covectors and physical vectors, and thus the physical covectors are listed first followed by

the physical vectors. Hence, if
→
T =

⇀
w ⊗ ⇀

z
′
, then we write

→
T (

⇀
x
′
,
⇀
y ). The set of tensors of type (p, q)

is denoted by T(p,q), and thus, for
→
T ∈ T(p,q), we write

→
T : V

′p × Vq 7→ R.

Given p physical vectors and q physical covectors, it is possible to construct a tensor of type

(p, q). Specifically, given physical vectors
⇀
w1, . . . ,

⇀
wp and physical covectors

⇀
z
′
1, . . . ,

⇀
z
′
q, we can
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construct the tensor
→
T of type (p, q) given by

→
T =

⇀
w1 ⊗ · · · ⊗

⇀
wp ⊗

⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
q. (3.1.13)

Then,
→
T operates on the physical covectors

⇀
x
′
1, . . . ,

⇀
x
′
p and the physical vectors

⇀
y 1, . . . ,

⇀
y q according

to

→
T (

⇀
x
′
1, . . . ,

⇀
x
′
p,
⇀
y 1, . . . ,

⇀
y q) = (

⇀
w1 ⊗ · · · ⊗

⇀
wp ⊗

⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
q)(

⇀
x
′
1, . . . ,

⇀
x
′
p,
⇀
y 1, . . . ,

⇀
y q)

= (
⇀
x
′
1

⇀
w1) · · · (⇀x

′
p

⇀
wp)(

⇀
z
′
1

⇀
y 1) · · · (⇀z

′
q

⇀
y q). (3.1.14)

Note that the value of
→
T is the product of p + q inner products. A sum of tensors of type (p, q) is

also a tensor of type (p, q). That is, if
→
T 1 ∈ T(p,q) and

→
T 2 ∈ T(p,q), then

→
T 1 +

→
T 2 ∈ T(p,q).

Let
→
T ∈ T(p,q). Then,

→
T is wide if p < q, square if p = q, and tall if p > q. Note that

→
T is square

if and only if
→
T has an equal number of vector and covector factors.

The coform of the tensor
→
T given by (3.1.13) is the (q, p) tensor

→
T
′
=

⇀
z 1 ⊗ · · · ⊗

⇀
z q ⊗

⇀
w
′
1 ⊗ · · · ⊗

⇀
w
′
p. (3.1.15)

For example,

(
⇀
w1 ⊗

⇀
z
′
1)′ =

⇀
z 1 ⊗

⇀
w
′
1, (3.1.16)

(
⇀
w1 ⊗

⇀
w2)′ =

⇀
w
′
1 ⊗

⇀
w
′
2. (3.1.17)

If
→
T 1 and

→
T 2 are tensors of the same type, then

(
→
T 1 +

→
T 2)′ =

→
T
′

1 +
→
T
′

2. (3.1.18)

Let
⇀
z
′

be a physical covector. Then,

→
T =

⇀
z
′

(3.1.19)

is a first-order tensor of type (0, 1). Furthermore, for each physical vector
⇀
x ,
→
T (

⇀
x) is given by

→
T (

⇀
x) =

⇀
z
′⇀
x . (3.1.20)

Similarly, let
⇀
w be a physical vector. Then,

→
T =

⇀
w (3.1.21)

is a first-order tensor of type (1, 0). Furthermore, for each physical covector
⇀
x
′
,
→
T (

⇀
x
′
) is given by

→
T (

⇀
x
′
) =

⇀
x
′⇀
w. (3.1.22)

The second-order tensor of type (1,1) given by
→
T =

⇀
w ⊗ ⇀

z
′

operates on the pair (
⇀
x
′
,
⇀
y ) to yield
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the real number

→
T (

⇀
x
′
,
⇀
y ) = (

⇀
w ⊗ ⇀

z
′
)(
⇀
x
′
,
⇀
y ) = (

⇀
x
′⇀
w)(

⇀
z
′⇀
y ) =

⇀
x
′ →
M

⇀
y , (3.1.23)

where
→
M is the physical matrix

→
M =

⇀
w
⇀
z
′
. For example, letting FA be a frame, it follows that

→
T = ı̂A ⊗ ı̂′A + ̂A ⊗ ̂

′
A + k̂A ⊗ k̂′A = ı̂A ı̂

′
A + ̂A ̂

′
A + k̂Ak̂′A =

→
I . (3.1.24)

Therefore,

→
T (

⇀
x
′
,
⇀
y ) =

⇀
x
′→
I
⇀
y =

⇀
x
′⇀
y . (3.1.25)

In the case of a tensor of type (1,1) it is convenient to omit “⊗” and recognize that every tensor of

type (1, 1) is a physical matrix, and vice versa. We thus write
→
T =

⇀
w ⊗ ⇀

z
′
=

⇀
w
⇀
z
′
.

As a final example, let
⇀
z
′
1 and

⇀
z
′
2 be physical covectors. Then the second-order tensor

→
T =

⇀
z
′
1 ⊗

⇀
z
′
2 (3.1.26)

is of type (0, 2). In particular,

→
T (

⇀
y 1,

⇀
y 2) = (

⇀
z
′
1 ⊗

⇀
z
′
2)(

⇀
y 1,

⇀
y 2) = (

⇀
z
′
1

⇀
y 1)(

⇀
z
′
2

⇀
y 2). (3.1.27)

3.2 Tensor Contraction and Tensor Multiplication

Let

→
T =

⇀
w1 ⊗ · · · ⊗

⇀
wp ⊗

⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
q (3.2.1)

be a tensor of type (p, q), let 1 ≤ i ≤ p and 1 ≤ j ≤ q. Then a single contraction of
→
T yields the

tensor of type (p − 1, q − 1) given by

→
T (i, j) = (

⇀
z
′
j

⇀
wi)

⇀
w1 ⊗ · · · ⊗ wi−1 ⊗ wi+1 · · · ⊗

⇀
wp ⊗

⇀
z
′
1 ⊗ · · · ⊗ z j−1 ⊗ z j+1 ⊗ · · · ⊗

⇀
z
′
q. (3.2.2)

Note that
⇀
wi and

⇀
z j are removed from the tensor product and now appear as a scalar factor in an

inner product. Likewise, if 1 ≤ i ≤ p and 1 ≤ k ≤ p are distinct and 1 ≤ j ≤ q and 1 ≤ l ≤ q are

distinct, then a double contraction of
→
T yields the tensor of type (p − 2, q − 2) given by

→
T (i, j),(k,l) = (

⇀
z
′
j

⇀
wi)(

⇀
z
′
l

⇀
wk)

→
T 1, (3.2.3)

where
→
T 1 is identical to

→
T except that

⇀
wi,

⇀
wk,

⇀
z j,

⇀
z l are removed. More generally, application of an

r-contraction to a (p, q) tensor, where r ≤ min {p, q}, yields a tensor of type (p − r, q − r). Each

contraction thus reduces the order of a tensor by 2.

As an extreme case of contraction, suppose that
→
T ∈ T(p,p), and thus

→
T is square. Then, applying

p contractions to
→
T yields a scalar, which is a product of p inner products. The p contractions

constitute a total contraction of
→
T . Note that there are p! different total contractions of

→
T . A partial

contraction of
→
T ∈ T(p,q) is a contraction that is not a total contraction. Note that, if

→
T is not square,

then
→
T does not have a total contraction.
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Next, to define tensor multiplication, let

→
T 1 =

⇀
w1 ⊗ · · · ⊗

⇀
wp1
⊗ ⇀

z
′
1 ⊗ · · · ⊗

⇀
z
′
q1

(3.2.4)

be a tensor of type (p1, q1), and let

→
T 2 =

⇀
wp1+1 ⊗ · · · ⊗

⇀
wp1+p2

⊗ ⇀
z
′
q1+1 ⊗ · · · ⊗

⇀
z
′
q1+q2

(3.2.5)

be a tensor of type (p2, q2). Then the tensor product
→
T 1 ⊗

→
T 2 of

→
T 1 and

→
T 2 is the tensor of type

(p1 + p2, q1 + q2) given by

→
T 1 ⊗

→
T 2 =

⇀
w1 ⊗ · · · ⊗

⇀
wp1+p2

⊗ ⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
q1+q2

. (3.2.6)

Next, consider the tensor of type (p, q) given by

→
T 1 =

⇀
w1 ⊗ · · · ⊗

⇀
wp ⊗

⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
q (3.2.7)

and evaluate
→
T 1 at the arguments z′

q+1
, . . . , z′q+p,wp+1, . . . ,wp+q. This yields the real number

T1(z′q+1, . . . , z
′
q+p,wp+1, . . . ,wp+q) = (

⇀
w1 ⊗ · · · ⊗

⇀
wp ⊗

⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
q)(z′q+1, . . . , z

′
q+p,wp+1, . . . ,wp+q)

= (
⇀
z
′
q+1

⇀
w1) · · · (⇀z

′
p+q

⇀
wp)(

⇀
z
′
1

⇀
wp+1) · · · (⇀z

′
q

⇀
wp+q). (3.2.8)

Now, using the arguments z′
q+1
, . . . , z′q+p,wp+1, . . . ,wp+q, construct the tensor

→
T 2

△
=

⇀
wp+1 ⊗ · · · ⊗

⇀
wp+q ⊗

⇀
z
′
q+1 ⊗ · · · ⊗

⇀
z
′
q+p. (3.2.9)

Then, the tensor product
→
T 3

△
=
→
T 1 ⊗

→
T 2 is given by

T3
△
=
→
T 1 ⊗

→
T 2 =

⇀
w1 ⊗ · · · ⊗

⇀
wp+q ⊗

⇀
z
′
1 ⊗ · · · ⊗

⇀
z
′
p+q. (3.2.10)

Note that
→
T 3 is a square tensor of type (p + q, p + q). Furthermore, a total contraction of

→
T 3 is given

by

(
→
T 3)(1,q+1),...,(p,q+p),(p+1,1),...,(p+q,q) = (

⇀
z
′
q+1

⇀
w1) · · · (⇀z

′
p+q

⇀
wp)(

⇀
z
′
1

⇀
wp+1) · · · (⇀z

′
q

⇀
wp+q)

= T1(z′q+1, . . . , z
′
q+p,wp+1, . . . ,wp+q). (3.2.11)

Note that the value of this total contraction is precisely the value of
→
T 1 evaluated at the arguments

(
⇀
z
′
q+1, . . . ,

⇀
z
′
q+p,

⇀
wp+1, . . . ,

⇀
wp+q). It thus follows that the evaluation of

→
T 1 at given arguments can be

expressed as the total contraction of the tensor product of
→
T 1 and a tensor

→
T 2 whose factors are the

arguments of
→
T 1. Conversely, every total contraction of the product of two tensors

→
T 1 and

→
T 2 can

be expressed as the evaluation of
→
T 1 at arguments that are the factors of

→
T 2.

To illustrate this connection, consider the physical matrices
→
M

△
=

⇀
x
⇀
y
′
=

⇀
x ⊗ ⇀

y
′

and
→
N
△
=

⇀
w
⇀
z
′
=

⇀
w ⊗ ⇀

z
′
. Then, a total contraction of the tensor product

→
T
△
=
→
M ⊗

→
N = (

⇀
x
⇀
y
′
) ⊗ (

⇀
w
⇀
z
′
) = (

⇀
x ⊗ ⇀

y
′
) ⊗ (

⇀
w ⊗ ⇀

z
′
) =

⇀
x ⊗ ⇀

w ⊗ ⇀
y
′
⊗ ⇀

z
′

(3.2.12)
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is given by

(
→
T )(2,1),(1,4) = (

→
M ⊗

→
N)(2,1),(1,4) = (

⇀
y
′⇀
w)(

⇀
z
′⇀
x), (3.2.13)

which is one of two possible total contractions of
→
T . On the other hand,

→
M(

⇀
z
′
,
⇀
w) = (

⇀
z
′⇀
x)(

⇀
y
′⇀
w) = (

→
M ⊗

→
N)(2,1),(1,4). (3.2.14)

Consequently, evaluating the second-order tensor
→
M at the arguments

⇀
z
′
,
⇀
w is equivalent to taking

the tensor product
→
M and

→
N and then forming a total contraction of the product. Note, however,

that the physical matrix
→
P =

→
M
→
N = (

⇀
x
⇀
y
′
)(
⇀
w
⇀
z
′
) = (

⇀
y
′⇀
w)

⇀
x
⇀
z
′

is not a scalar and thus is not a total

contraction. In fact,
→
P can be viewed as a partial contraction of

→
M ⊗

→
N, as discussed in the next

section.

3.3 Partial Tensor Evaluation and the Contracted Tensor Product

In the previous section, we showed that evaluating a tensor at given arguments is equivalent to

multiplying the tensor by another tensor whose factors are the arguments and then forming a total

contraction of the product. In this case, if the first tensor is of type (p, q), then the second tensor is of

type (q, p). In this section we generalize this idea by introducing partial evaluation of a tensor. In this

case, the number of covectors and vectors comprising the arguments may be less than the order of

the tensor. We then show that partial evaluation is equivalent to constructing a tensor from the given

arguments, forming the tensor product, and then partially contracting the product. Both operations–

partial evaluation versus tensor multiplication followed by partial tensor contraction—yield a tensor.

In the case where the evaluation is performed with the maximum number of arguments, the result

is equivalent to a total contraction, as discussed in the previous section. Partial contraction of the

tensor product allows us to extend the notion of the tensor product to obtain a tensor of lower order

than the tensor product defined above. For example, with this extension, the product of a fourth-

order tensor and a second-order tensor may be a tensor of order 6, 4, or 2.

To illustrate the main idea, let
→
T 1 be the fifth-order tensor of type (3, 2) given by

→
T 1 =

⇀
w1 ⊗

⇀
w2 ⊗

⇀
w3 ⊗ z′1 ⊗ z′2. (3.3.1)

Although
→
T 1 has five arguments, we partially evaluate

→
T 1 at the arguments

⇀
x
′
,
⇀
y 1,

⇀
y 2 to obtain the

third-order tensor
→
T 3 of type (1, 2) given by

→
T 3

△
=
→
T 1(

⇀
x
′
,
⇀
y 1,

⇀
y 2; 3, 2, 1) = (

⇀
x
′⇀
w3)(

⇀
z
′
2

⇀
y 1)(

⇀
z
′
1

⇀
y 2)

⇀
w1 ⊗

⇀
w2.. (3.3.2)

Note that (3, 2, 1) associates the first argument, which is a covector, with the third vector factor in
→
T 1; the first vector argument with the second covector factor in

→
T 1; and the second vector argument

with the first covector factor in
→
T 1.

We can arrive at partial evaluation from a different direction. To do this, define the (2, 1) tensor

→
T 2

△
=

⇀
y 1 ⊗

⇀
y 2 ⊗

⇀
x
′

(3.3.3)
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and multiply it by
→
T 1 given by (3.3.1) to obtain the (5, 3) tensor

→
T 1 ⊗

→
T 2 =

⇀
w1 ⊗

⇀
w2 ⊗

⇀
w3 ⊗

⇀
y 1 ⊗

⇀
y 2 ⊗ z′1 ⊗ z′2 ⊗

⇀
x
′
. (3.3.4)

It thus follows that

(
→
T 1 ⊗

→
T 2)(3,3),(4,2),(5,1) = (

⇀
w1 ⊗

⇀
w2 ⊗

⇀
w3 ⊗

⇀
y 1 ⊗

⇀
y 2 ⊗ z′1 ⊗ z′2 ⊗

⇀
x
′
)(3,3),(4,2),(5,1)

= (
⇀
x
′⇀
w3)(

⇀
z
′
2

⇀
y 1)(

⇀
z
′
1

⇀
y 2)

⇀
w1 ⊗

⇀
w2

=
→
T 1(

⇀
x
′
,
⇀
y 1,

⇀
y 2; 3, 2, 1)

=
→
T 3, (3.3.5)

where
→
T 3 is defined by (3.3.2). Note that

→
T 3 arises in two different but equivalent ways, namely,

from the partial evaluation
→
T 1(

⇀
x
′
,
⇀
y 1,

⇀
y 2; 3, 2, 1) of

→
T 1 as well as from the contracted tensor product

(
→
T 1 ⊗

→
T 2)(3,3),(4,2),(5,1), both of which produce a tensor of lower rank than the tensor product

→
T 1 ⊗

→
T 2.

As another example, we compare “standard” multiplication and tensor multiplication of the

physical matrix
→
M =

⇀
x ⊗ ⇀

y
′
=

⇀
x
⇀
y
′
, which is a tensor of type (1, 1), with the physical vector

⇀
z ,

which is a tensor of type (1, 0). In this case, the tensor product of
→
M and z is the (2, 1) tensor

→
T
△
=
→
M ⊗ ⇀

z =
⇀
x ⊗ ⇀

z ⊗ ⇀
y
′
. (3.3.6)

On the other hand, standard multiplication yields

→
M

⇀
z =

⇀
x
⇀
y
′⇀
z = (

⇀
y
′⇀
z )

⇀
x =

→
M(

⇀
z ; 1) = (

⇀
x ⊗ ⇀

y
′
)(
⇀
z ; 1) = (

⇀
x ⊗ ⇀

z ⊗ ⇀
y
′
)(2,1) = (M ⊗ ⇀

z )(2,1). (3.3.7)

Next, consider the physical matrices
→
M =

⇀
w
⇀
z
′

and
→
N =

⇀
x
⇀
y
′
. Their product can be written as

the contracted tensor product

→
M
→
N = (

⇀
w ⊗ ⇀

x ⊗ ⇀
z
′
⊗ ⇀

y
′
)(2,1) = (

⇀
z
′⇀
x)

⇀
w
⇀
y
′
. (3.3.8)

As another example, consider the metric tensor, which is the (0, 2) tensor

→
G = ı̂′A ⊗ ı̂

′
A + ̂

′
A ⊗ ̂

′
A + k̂′A ⊗ k̂′A. (3.3.9)

Letting
⇀
x = x1 ı̂A + x2 ̂A + x3k̂A, it follows that

(
→
G ⊗ ⇀

x)(1,1) = ((ı̂′A ⊗ ı̂
′
A + ̂

′
A ⊗ ̂

′
A + k̂′A ⊗ k̂′A) ⊗ (x1 ı̂A + x2 ̂A + x3k̂A))(1,1)

= x1 ı̂
′
A + x2 ̂

′
A + x3k̂′A

=
→
G(

⇀
x ; 1)

=
⇀
x
′
. (3.3.10)

The metric tensor thus maps the vector
⇀
x to the corresponding covector

⇀
x
′
. Likewise, the cometric

tensor
→
G
′
= ı̂A ⊗ ı̂A + ̂A ⊗ ̂A + k̂A ⊗ k̂A, which is of type (2, 0), converts the covector

⇀
x
′

to the

corresponding vector
⇀
x ; that is, (

→
G
′
⊗ ⇀

x
′
)(1,1) =

⇀
x . Consequently,

(
→
G
′
⊗ (
→
G ⊗ ⇀

x)(1,1))(1,1) = (
→
G
′
⊗ ⇀

x
′
)(1,1) =

⇀
x , (3.3.11)
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(
→
G ⊗ (

→
G
′
⊗ ⇀

x
′
)(1,1))(1,1) = (

→
G ⊗ ⇀

x)(1,1) =
⇀
x
′
. (3.3.12)

Furthermore,

(
→
G
′
⊗
→
G)(1,1) = (

→
G ⊗

→
G
′
)(1,1) =

→
U. (3.3.13)

As another example, consider the identity (2.9.3) for the physical cross product matrix, that is,

(k̂A ̂
′
A − ̂Ak̂′A)ı̂′A

⇀
x + (ı̂Ak̂′A − k̂A ı̂

′
A) ̂′A

⇀
x + ( ̂A ı̂

′
A − ı̂A ̂

′
A)k̂′A

⇀
x =

⇀
x
×
. (3.3.14)

Defining the (1, 2) tensor

→
T = (k̂A ⊗ ̂′A − ̂A ⊗ k̂′A) ⊗ ı̂′A + (ı̂A ⊗ k̂′A − k̂A ⊗ ı̂′A) ⊗ ̂′A + ( ̂A ⊗ ı̂′A − ı̂A ⊗ ̂

′
A) ⊗ k̂′A, (3.3.15)

it follows that

(
→
T ⊗ ⇀

x)(2,2) =
→
T (

⇀
x ; 2) =

⇀
x
×
. (3.3.16)

A compact expression for the tensor (3.3.15) is given by

→
T = −

n∑

i, j,k=1

ǫi jkêi ⊗ ê′j ⊗ e′k, (3.3.17)

where

ǫi jk
△
=






1, i jk ∈ {123, 231, 312},
−1, i jk ∈ {321, 132, 213},
0, (i − j)( j − k)(k − i) = 0.

(3.3.18)

As another example, define the fourth-order tensor
→
U4

△
=
→
U ⊗

→
U of type (2, 2), and let

→
M =

∑3
i, j=1 mi jêi ⊗ ê′

j
be a physical matrix. Then,

→
U4 =





3∑

i=1

êi ⊗ ê′i




⊗





3∑

j=1

ê j ⊗ ê′j




=

3∑

i, j=1

(

êi ⊗ ê j ⊗ ê′i ⊗ ê′j

)

. (3.3.19)

Therefore,

→
U4 ⊗

→
M =

3∑

i, j=1

(

êi ⊗ ê j ⊗ ê′i ⊗ ê′j

)

⊗
3∑

k,l=1

mklêk ⊗ êl

=

3∑

i, j=1

3∑

k,l=1

mkl

(

êi ⊗ ê j ⊗ êk ⊗ ê′i ⊗ ê′j ⊗ e′l

)

(3.3.20)

and thus

(
→
U4 ⊗

→
M)(2,3),(3,1) =

3∑

i, j=1

mi jêi ⊗ ê′j =
→
M. (3.3.21)

Hence, with the contraction (2, 3), (3, 1),
→
U4 can be viewed as the identity tensor on the T(1,1). Alter-
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natively, note that

(
→
U4 ⊗

→
M)(2,3),(3,2) =

3∑

i, j=1

m j jêi ⊗ ê′i = (tr
→
M)
→
U. (3.3.22)

3.4 Stress, Strain, and Elasticity Tensors

Let ê1, ê2, ê3 denote the axes of an orthogonal frame, and consider stress and strain tensors,

which are (1, 1) tensors, that is, physical matrices, of the form

→
σ =

3∑

i, j=1

σi jêiê
′
j, (3.4.1)

→
ε =

3∑

i, j=1

εi jêiê
′
j. (3.4.2)

Next, define the stiffness tensor
→
K, which is a fourth-order tensor of type (2, 2) of the form

→
K =

3∑

k,l,m,n=1

cklmnêk ⊗ êl ⊗ ê′m ⊗ ê′n.

The tensor product of
→
K and

→
ε is given by

→
K ⊗ →ε =

3∑

k,l,m,n=1

3∑

i, j=1

cklmnεi j(êk ⊗ êl ⊗ êi ⊗ ê′m ⊗ ê′n ⊗ ê′j). (3.4.3)

Then, Hooke’s law is the constitutive law given by the contracted tensor product

→
σ = (

→
K ⊗ →ε)(2,3),(3,1). (3.4.4)

Therefore,

→
σ =

3∑

k,l,m,n=1

3∑

i, j=1

cklmnεi j(êk ⊗ êl ⊗ êi ⊗ ê′m ⊗ ê′n ⊗ ê′j)(2,3),(3,1)

=

3∑

k,l,m,n=1

cklmn

3∑

i, j=1

εi j(ê
′
jêl)(ê

′
mêi)(êk ⊗ ê′n)

=

3∑

k,l,m,n=1

cklmnεml(êk ⊗ ê′n)

=

3∑

i, j=1

σi jêi ⊗ ê′j,

where, for all i, j = 1, 2, 3,

σi j
△
=

3∑

k,l=1

cikl jεlk. (3.4.5)
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For physical reasons, the strain and stress tensors are symmetric, that is,
→
σ
′
=
→
σ and

→
ε
′
=
→
ε.

Therefore, for all i, j = 1, 2, 3, σi j = σ ji and εi j = ε ji. Since
→
σ is symmetric, it follows that, for all

i, j = 1, 2, 3, cikl j = c jkli. Consequently, K can be characterized by at most 34 − 3 · 9 = 81 − 27 = 54

parameters. Furthermore, since
→
ε is symmetric, it follows that, for all i, j = 1, 2, 3, cikl j = cilk j.

Consequently, K can be characterized by at most 54−3 ·6 = 54−18 = 36 parameters. Alternatively,

note that the symmetry of
→
σ and

→
ε implies that each of these tensors can be represented by a vector

with six components. Consequently, (3.4.5) can be represented by





σ11

σ22

σ33

σ12

σ13

σ23





=





c1111 c1122 c1133 c1112 c1113 c1123

c2211 c2222 c2233 c2212 c2213 c2223

c3311 c3322 c3333 c3312 c3313 c3323

c1211 c1222 c1233 c1212 c1213 c1223

c1311 c1322 c1333 c1312 c1313 c1323

c2311 c2322 c2333 c2312 c2313 c2323









ε11

ε22

ε33

ε12

ε13

ε23





, (3.4.6)

where the matrix in (3.4.6) has 36 entries.

Since the strain energy E is given by

E =
1

2

3∑

i, j,k,l=1

cik jlεi jεkl, (3.4.7)

it follows that, for all i, j, k, l = 1, 2, 3, ci jkl = ckli j. The 6 × 6 matrix in (3.4.6) is thus characterized

by 6 + 5 + 4 + 3 + 2 + 1 = 21 (rather than 36) constants, and (3.4.6) can be written as





σ11

σ22

σ33

σ12

σ13

σ23





=





c1111 c1122 c1133 c1112 c1113 c1123

c1122 c2222 c2233 c2212 c2213 c2223

c1133 c2233 c3333 c3312 c3313 c3323

c1112 c2212 c3312 c1212 c1213 c1223

c1113 c1322 c3313 c1213 c1313 c1323

c1123 c2322 c3323 c1223 c1323 c2323









ε11

ε22

ε33

ε12

ε13

ε23





. (3.4.8)

For an isotropic material it can be shown that (3.4.8) can be characterized by 9 (rather than 21)

constants, and (3.4.8) can be written as




σ11

σ22

σ33

σ12

σ13

σ23





=





c1111 c1122 c1133 0 0 0

c1122 c2222 c2233 0 0 0

c1133 c2233 c3333 0 0 0

0 0 0 c1212 0 0

0 0 0 0 c1313 0

0 0 0 0 0 c2323









ε11

ε22

ε33

ε12

ε13

ε23





. (3.4.9)

The 12 nonzero entries in (3.4.9) can be parameterized by two constants. Specifically,





σ11

σ22

σ33

σ12

σ13

σ23





=





λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ









ε11

ε22

ε33

ε12

ε13

ε23





, (3.4.10)

where the positive numbers µ and λ are the Lame constants. In tensor form, it follows from (3.4.10)
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that Hooke’s law for isotropic materials has the form

→
σ = 2µ

→
ε + λ(tr

→
ε)
→
I , (3.4.11)

which defines the fourth-order stiffness tensor
→
K. In particular, it follows from (3.3.21) and (3.3.22)

that

→
σ = (

→
K ⊗ →ε)(2,3),(3,1)

= 2µ
→
ε + λ(tr

→
ε)
→
I

= 2µ(
→
U4 ⊗

→
ε)(2,3),(3,1) + λ(

→
U4 ⊗

→
ε)(2,3),(3,2). (3.4.12)

The inverse of the stiffness tensor is the compliance tensor
→
C, which satisfies

→
ε = (

→
C ⊗ →σ)(2,3),(3,1). (3.4.13)

The compliance tensor is represented by the relation

→
ε =

1 + ν

E

→
σ − ν

E
(tr
→
σ)
→
I , (3.4.14)

where ν is Poisson’s ratio and E is Young’s modulus. In terms of µ and λ, the parameters ν and E

are given by

ν =
λ

2(λ + µ)
, E =

µ(3λ + 2µ)

λ + µ
. (3.4.15)

Conversely, µ and λ are given in terms of ν and E by

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
. (3.4.16)

3.5 Kronecker Algebra

For matrices A ∈ Rn×m and B ∈ Rp×q, we consider the Kronecker product A ⊗ B. For details,

see [1]. Note that “⊗” is the same notation used for the tensor product. However, no confusion

can occur since the tensor product is used for physical vectors and physical covectors, whereas the

Kronecker product is used only for math vectors and math matrices. In this section we show that

the Kronecker product can be used to resolve tensors.

For A ∈ Fn×m define the vec operator as

vec A
△
=





col1(A)
...

colm(A)





∈ Fnm, (3.5.1)

which is the column vector of size nm × 1 obtained by stacking the columns of A. We recover A

from vec A by writing

A = vec−1(vec A). (3.5.2)

Note that, if x ∈ Fn, then vec x = vec xT = x.
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Fact 3.5.1. Let A ∈ Fn×m and B ∈ Fm×n. Then,

tr AB = (vec AT)Tvec B = (vec BT)Tvec A. (3.5.3)

Next, we introduce the Kronecker product.

Definition 3.5.2. Let A ∈ Fn×m and B ∈ Fl×k. Then, the Kronecker product A⊗ B ∈ Fnl×mk of A

and B is the partitioned matrix

A⊗B
△
=





A(1,1)B A(1,2)B · · · A(1,m)B
...

... · · ·..
...

A(n,1)B A(n,2)B · · · A(n,m)B





. (3.5.4)

Unlike matrix multiplication, the Kronecker product A⊗B does not entail a restriction on either

the size of A or the size of B.

The following results are immediate consequences of the definition of the Kronecker product.

Fact 3.5.3. Let α ∈ F, A ∈ Fn×m, and B ∈ Fl×k. Then,

α ⊗ A = A ⊗ α = αA, A⊗ (αB) = (αA)⊗ B = α(A⊗ B), (3.5.5)

A⊗ B = A⊗ B, (A⊗ B)T = AT⊗ BT, (A⊗ B)∗ = A∗ ⊗ B∗. (3.5.6)

Fact 3.5.4. Let A, B ∈ Fn×m and C ∈ Fl×k. Then,

(A + B)⊗C = A⊗C + B⊗C, (3.5.7)

C ⊗ (A + B) = C ⊗ A +C ⊗ B. (3.5.8)

The next result shows that the Kronecker product is associative.

Fact 3.5.5. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fp×q. Then,

A⊗ (B⊗C) = (A⊗ B)⊗C. (3.5.9)

We thus write A⊗ B⊗C for A⊗ (B⊗C) and (A⊗ B)⊗C.

The next result shows how matrix multiplication interacts with the Kronecker product.

Fact 3.5.6. Let A ∈ Fn×m, B ∈ Fl×k, C ∈ Fm×q, and D ∈ Fk×p. Then,

(A⊗ B)(C ⊗D) = AC ⊗ BD. (3.5.10)

Next, we consider the inverse of a Kronecker product.

Fact 3.5.7. Assume that A ∈ Fn×n and B ∈ Fm×m are nonsingular. Then, A⊗ B is nonsingular,

and
(A⊗ B)−1 = A−1 ⊗ B−1. (3.5.11)

Fact 3.5.8. Let x ∈ Fn and y ∈ Fm. Then,

xyT = x⊗ yT = yT⊗ x, (3.5.12)
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vec xyT = y⊗ x. (3.5.13)

Fact 3.5.9. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. Then,

vec(ABC) = (CT⊗ A)vec B. (3.5.14)

3.6 Composing Tensors

Let
→
T ∈ T(p,q) be given by

→
T =

r∑

i=1

⇀
w1i ⊗ · · · ⊗

⇀
wpi ⊗

⇀
z
′
1i ⊗ · · · ⊗

⇀
z
′
qi, (3.6.1)

and let FA be a frame. Then we define

→
T

∣
∣
∣
∣
∣
A

△
=

r∑

i=1

⇀
w1i

∣
∣
∣
∣
A
⊗ · · · ⊗ ⇀

wpi

∣
∣
∣
∣
A
⊗ ⇀

z 1i

∣
∣
∣
∣

T

A
⊗ · · · ⊗ ⇀

z qi

∣
∣
∣
∣

T

A
. (3.6.2)

Therefore,
→
T

∣
∣
∣
∣
∣
A

∈ R3p×3q

.

The following result shows that the Kronecker product representation of tensors is compatible

with tensor multiplication.

Fact 3.6.1. Let
→
T 1 ∈ T(p1,q1) and

→
T 2 ∈ T(p2,q2), and define

→
T 3

△
=
→
T 1 ⊗

→
T 2 ∈ T(p1+p2,q1+q2). Then,

→
T 3

∣
∣
∣
∣
∣
A

=
→
T 1

∣
∣
∣
∣
∣
A

⊗
→
T 2

∣
∣
∣
∣
∣
A

. (3.6.3)

Finally, the Kronecker product representation of tensors is also compatible with restricted tensor

multiplication. To show this, we need to introduce the restricted Kronecker product. Let
→
T 1 ∈ T(p1,q1)

and
→
T 2 ∈ T(p2,q2), and define

T1
△
=
→
T 1

∣
∣
∣
∣
∣
A

=
∑

α j1,..., jp,k1,...,kq
e j1 ⊗ · · · ⊗ e jp

⊗ eT
k1
⊗ · · · ⊗ eT

kq
(3.6.4)

and

T2
△
=
→
T 2

∣
∣
∣
∣
∣
A

=
∑

β j1,..., jp,k1,...,kq
e j1 ⊗ · · · ⊗ e jp

⊗ eT
k1
⊗ · · · ⊗ eT

kq
. (3.6.5)

where ei
△
= êi|A for i = 1, 2, 3, and the summation is over all indices in the range 1, 2, 3. Then, for

example,

T1 ⊗( jp,kq) T2
△
=

∑

α j1,..., jp,k1,...,kq−1, jp
β j1,..., jp,k1,...,kq−1, jp

e j1 ⊗ · · · ⊗ e jp−1
⊗ eT

k1
⊗ · · · ⊗ eT

kq−1
. (3.6.6)

3.7 Alternating Tensors and the Wedge Product

An alternating tensor (also called a skew-symmetric tensor) is a contravariant or covariant tensor

whose sign changes when two of its arguments are interchanged. The set of alternating covariant

tensors in T(0,q) is denoted by T̂(0,q), while the set of alternating contravariant tensors in T(p,0) is

denoted by T̂(p,0). By definition, T̂(0,1) = T(0,1) and T̂(1,0) = T(1,0). The wedge product is used to

construct alternating tensors.
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3.7.1 Bivectors

Let
⇀
x and

⇀
y be physical vectors. Then the wedge product (also called the exterior product)

⇀
x ∧ ⇀

y , of
⇀
x and

⇀
y is the (2, 0) tensor defined by

⇀
x ∧ ⇀

y
△
=

⇀
x ⊗ ⇀

y − ⇀
y ⊗ ⇀

x . (3.7.1)

The wedge product satisfies the properties

⇀
x ∧ ⇀

x = 0, (3.7.2)

⇀
x ∧ ⇀

y = −⇀y ∧ ⇀
x , (3.7.3)

(α
⇀
x) ∧ ⇀

y = α(
⇀
x ∧ ⇀

y ), (3.7.4)

⇀
x ∧ (α

⇀
y ) = α(

⇀
x ∧ ⇀

y ), (3.7.5)

for all real numbers α. The identity (3.7.3) shows that
⇀
x ∧⇀

y is an alternating tensor. The contravari-

ant alternating tensor
⇀
x ∧ ⇀

y is called a bivector.

The identity (3.7.1) is analogous to the physical cross-product matrix identity given by (2.9.19).

In particular, note that

(
⇀
x × ⇀

y )× =
⇀
y
⇀
x
′
− ⇀

x
⇀
y
′
=

⇀
y ⊗ ⇀

x
′
− ⇀

x ⊗ ⇀
y
′
, (3.7.6)

which is a (1, 1) tensor.

Fact 3.7.1. Let
⇀
x and

⇀
y be physical vectors. Then,

(
⇀
x ∧ ⇀

y )
∣
∣
∣
∣
A
= vec

[

(
⇀
x × ⇀

y )×
∣
∣
∣
∣
A

]

= vec

[

(
⇀
x × ⇀

y )
∣
∣
∣
∣

×

A

]

=

∥
∥
∥
∥ (

⇀
x × ⇀

y )×
∣
∣
∣
∣
A

∥
∥
∥
∥

F
=

∥
∥
∥
∥ (

⇀
x × ⇀

y )
∣
∣
∣
∣

×

A

∥
∥
∥
∥

F

= vec

[

(
⇀
x
⇀
y
′
− ⇀

y
⇀
x
′
)
∣
∣
∣
∣
A

]

=

∥
∥
∥
∥ (

⇀
x
⇀
y
′
− ⇀

y
⇀
x
′
)
∣
∣
∣
∣
A

∥
∥
∥
∥

F
. (3.7.7)

Now, define x
△
=

⇀
x
∣
∣
∣
∣
A

and y
△
=

⇀
y
∣
∣
∣
∣
A
. Then,

x ⊗ y − y ⊗ x = vec(y ⊗ xT − x ⊗ yT) = vec(yxT − xyT)

= vec[(x × y)×] = ‖(x × y)×‖F. (3.7.8)

Proof. It follows from [1, p. 682] that y⊗ x = vec(x⊗ yT) = vec xyT, which proves the first and

second equalities in (3.7.8). Next, it follows from (2.9.23) that yxT − xyT = (x × y)×, which proves

the third equality in (3.7.8). Finally, (3.7.7) is a restatement of the equality between the first and last

terms in (3.7.8). �

As noted after Fact 2.9.6, the cross product
⇀
x × ⇀

y can be viewed as the directed area of a

parallelogram. It thus follows from (3.7.7) that the bivector
⇀
x ∧ ⇀

y can be viewed in the same way.

Fact 3.7.2. Let FA be a frame, and let
⇀
x and

⇀
y be physical vectors lying in the plane spanned

by ı̂A and ̂A. Then
⇀
x ∧ ⇀

y = |⇀x ||⇀y | sin θ⇀
y/

⇀
x/k̂A

ı̂A ∧ ̂A.
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Proof. Let

⇀
x
∣
∣
∣
∣
A
=





x1

x2

0




,

⇀
y
∣
∣
∣
∣
A
=





y1

y2

0




.

Then it follows from Problem 2.26.5 that

⇀
x ∧ ⇀

y = (x1 ı̂A + x2 ̂A) ∧ (y1 ı̂A + y2 ̂A)

= (x1y2 − x2y1)ı̂A ∧ ̂A

= |⇀x ||⇀y | sin θ⇀
y/

⇀
x/k̂A

ı̂A ∧ ̂A. �

The bivector
⇀
x ∧ ⇀

y can be visualized as a planar region. This region can have the form of a

parallelogram constructed by sweeping
⇀
y along

⇀
x . The sides of the parallelogram are thus

⇀
x ,

⇀
y ,

−⇀x , and −⇀y , and the magnitude of the bivector
⇀
x ∧⇀

y is defined to be the area of the parallelogram,

that is,

|⇀x ∧ ⇀
y | = |⇀x ||⇀y | sin θ⇀

x/
⇀
y
|ı̂A ∧ ̂A| = |

⇀
x ||⇀y | sin θ⇀

x/
⇀
y
, (3.7.9)

where the area of the bivector ı̂A ∧ ̂A is the area of the unit square, namely, 1. Note that

|⇀x ∧ ⇀
y | = |⇀x × ⇀

y |. (3.7.10)

Therefore, the magnitude of
⇀
x ∧⇀

y is the area of the bivector, its attitude is given by the plane within

which the region lies, and its orientation is given by the direction determined by the right hand

rule when
⇀
x is rotated to

⇀
y , that is, the direction of

⇀
x × ⇀

y . The shape of a bivector need not be a

parallelogram, however; for example, it may be ellipsoidal. If the bivector is visualized as a square,

then the length of each side is

√

|⇀x ||⇀y | sin θ⇀
x/

⇀
y
.

3.7.2 Trivectors

The tensor
→
T =

⇀
x∧⇀y has the property that its sign changes when its arguments are interchanged.

In particular, note that, if
⇀
u
′

and
⇀
v
′

are physical covectors, then

→
T (

⇀
u
′
,
⇀
v
′
) = (

⇀
x ⊗ ⇀

y − ⇀
y ⊗ ⇀

x)(
⇀
u
′
,
⇀
v
′
)

=
⇀
u
′⇀
x
⇀
v
′⇀
y − ⇀

u
′⇀
y
⇀
v
′⇀
x

= −
→
T (

⇀
v
′
,
⇀
u
′
).

The wedge product can be applied to more than two physical vectors. For example, let
⇀
x ,

⇀
y ,

and
⇀
z be physical vectors. Then,

→
T =

⇀
x ∧ ⇀

y ∧ ⇀
z is the (3, 0) tensor defined by

⇀
x ∧ ⇀

y ∧ ⇀
z
△
=

⇀
x ⊗ ⇀

y ⊗ ⇀
z +

⇀
y ⊗ ⇀

z ⊗ ⇀
x +

⇀
z ⊗ ⇀

x ⊗ ⇀
y − ⇀

x ⊗ ⇀
z ⊗ ⇀

y − ⇀
y ⊗ ⇀

x ⊗ ⇀
z − ⇀

z ⊗ ⇀
y ⊗ ⇀

x .

(3.7.11)

Note that

⇀
x ∧ ⇀

y ∧ ⇀
z = −⇀y ∧ ⇀

x ∧ ⇀
z =

⇀
y ∧ ⇀

z ∧ ⇀
x = −⇀z ∧ ⇀

y ∧ ⇀
x =

⇀
z ∧ ⇀

x ∧ ⇀
y = −⇀x ∧ ⇀

z ∧ ⇀
y . (3.7.12)
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Consequently, if
⇀
u
′
,
⇀
v
′
, and

⇀
w
′

are physical covectors, then

→
T (

⇀
u
′
,
⇀
v
′
,
⇀
w
′
) = −

→
T (

⇀
v
′
,
⇀
u
′
,
⇀
w
′
) =

→
T (

⇀
v
′
,
⇀
w
′
,
⇀
u
′
) = −

→
T (

⇀
w
′
,
⇀
v
′
,
⇀
u
′
) =

→
T (

⇀
w
′
,
⇀
u
′
,
⇀
v
′
) = −

→
T (

⇀
u
′
,
⇀
w
′
,
⇀
v
′
).

(3.7.13)

Let
→
T denote a (p, 0) tensor, let

⇀
w
′
1, . . . ,

⇀
w
′
p be physical covectors, and let σ denote a permutation

of the integers 1, . . . , p. Then, we define the σ-permutation
→
Tσ of

→
T by

→
Tσ(

⇀
w
′
1, . . . ,

⇀
w
′
p)
△
=
→
T (

⇀
w
′
σ(1), . . . ,

⇀
w
′
σ(p)). (3.7.14)

The parity sign(σ) of σ is either 1 or -1 depending on whether the number of transpositions of

σ(1), . . . , σ(p) needed to reach 1, . . . , p is even or odd, respectively. It is useful to note that, if
→
T =

⇀
x1 ⊗ · · · ⊗

⇀
x p, then

→
Tσ =

⇀
xσ(1) ⊗ · · · ⊗

⇀
xσ(p).

The (p, 0) tensor
→
T is an alternating tensor if, for every permutation σ of the integers 1, . . . , p,

→
Tσ = sign(σ)

→
T . (3.7.15)

Consequently, if
→
T is an alternating tensor, then, for all physical covectors

⇀
w
′
1, . . . ,

⇀
w
′
p, it follows that

→
T (

⇀
w
′
σ(1), . . . ,

⇀
w
′
σ(p)) = sign(σ)

→
T (

⇀
w
′
1, . . . ,

⇀
w
′
p). (3.7.16)

Hence the sign of
→
T (

⇀
w
′
1, . . . ,

⇀
w
′
p) changes whenever any two of its arguments are interchanged. As

a special case of this definition, every physical vector is an alternating tensor.

The wedge product can be used to construct alternating tensors from each pair of alternating

tensors. Let
→
T 1 and

→
T 2 be alternating tensors of orders (p1, 0) and (p2, 0), respectively. Then,

→
T 1 ∧

→
T 2

△
=

1

p1!p2!

∑

sign(σ)(
→
T 1 ⊗

→
T 2)σ, (3.7.17)

where the summation is taken over all permutations σ of 1, . . . , p1 + p2.

To illustrate (3.7.17), let
⇀
x ,

⇀
y , and

⇀
z be physical vectors, and define

→
T 1 =

⇀
x and

→
T 2 =

⇀
y ∧ ⇀

z .

Then,

⇀
x ∧ (

⇀
y ∧ ⇀

z ) =
→
T 1 ∧

→
T 2

=
1

2

∑

sign(σ)[
⇀
x ⊗ (

⇀
y ⊗ ⇀

z − ⇀
z ⊗ ⇀

y )]σ

=
1

2

∑

sign(σ)[
⇀
x ⊗ ⇀

y ⊗ ⇀
z − ⇀

x ⊗ ⇀
z ⊗ ⇀

y ]σ

=
1

2
[
⇀
x ⊗ ⇀

y ⊗ ⇀
z − ⇀

x ⊗ ⇀
z ⊗ ⇀

y − (
⇀
y ⊗ ⇀

x ⊗ ⇀
z − ⇀

z ⊗ ⇀
x ⊗ ⇀

y )

− (
⇀
z ⊗ ⇀

y ⊗ ⇀
x − ⇀

y ⊗ ⇀
z ⊗ ⇀

x) − (
⇀
x ⊗ ⇀

z ⊗ ⇀
y − ⇀

x ⊗ ⇀
y ⊗ ⇀

z )

+
⇀
y ⊗ ⇀

z ⊗ ⇀
x − ⇀

z ⊗ ⇀
y ⊗ ⇀

x +
⇀
z ⊗ ⇀

x ⊗ ⇀
y − ⇀

y ⊗ ⇀
x ⊗ ⇀

z ]

=
⇀
x ∧ ⇀

y ∧ ⇀
z .

Hence the wedge product is associative for physical vectors, and we can write
⇀
x ∧ ⇀

y ∧ ⇀
z without
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ambiguity. However, the cross product is not associative. Likewise, for alternating tensors
→
T 1,

→
T 2,

and
→
T 3 of orders (p1, 0), (p2, 0), and (p3, 0), respectively, it follows that

→
T 1 ∧ (

→
T 2 ∧

→
T 3) = (

→
T 1 ∧

→
T 2) ∧

→
T 3. (3.7.18)

The wedge product is thus associative for tensors, and we can write
→
T 1 ∧

→
T 2 ∧

→
T 3. In fact,

→
T 1 ∧

→
T 2 ∧

→
T 3 =

1

p1!p2!p3!

∑

sign(σ)(
→
T 1 ⊗

→
T 2 ⊗

→
T 3)σ. (3.7.19)

For details, see [2, p. 260], [3, p. 278].

The following observation is useful.

Fact 3.7.3. Let
⇀
x and

⇀
y be nonzero physical vectors. Then

⇀
x and

⇀
y are colinear if and only if

⇀
x ∧ ⇀

y = 0.

The following result shows that wedge products of three physical vectors are closely related to

determinants.

Fact 3.7.4. Let
⇀
x ,

⇀
y , and

⇀
z be nonzero physical vectors, and let FA be a frame. Then

⇀
x ∧ ⇀

y ∧ ⇀
z = det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

ı̂A ∧ ̂A ∧ k̂A (3.7.20)

Consequently,
⇀
x ,

⇀
y , and

⇀
z are linearly dependent if and only if

⇀
x ∧ ⇀

y ∧ ⇀
z = 0.

Note that (3.7.20) can be written as

⇀
x ∧ ⇀

y ∧ ⇀
z = (

⇀
x × ⇀

y )′
⇀
z (ı̂A ∧ ̂A ∧ k̂A). (3.7.21)

Fact 3.7.5. Let FA and FB be frames. Then

ı̂A ∧ ̂A ∧ k̂A = ı̂B ∧ ̂B ∧ k̂B. (3.7.22)

Proof. Let
⇀
x ,

⇀
y , and

⇀
z be such that (

⇀
x ×⇀

y )′
⇀
z , 0. Then it follows from (3.7.21) that ı̂A ∧ ̂A ∧

k̂A =
1

(
⇀
x×⇀y )′

⇀
z

⇀
x ∧ ⇀

y ∧ ⇀
z . Likewise, ı̂B ∧ ̂B ∧ k̂B =

1

(
⇀
x×⇀y )′

⇀
z

⇀
x ∧ ⇀

y ∧ ⇀
z . Hence (3.7.22) is satisfied. �

The quantity
⇀
x ∧ ⇀

y ∧ ⇀
z is called a trivector. The trivector

⇀
x ∧ ⇀

y ∧ ⇀
z can be visualized as a

parallelepiped three of whose edges are
⇀
x ,

⇀
y ,

⇀
z . This parallelepiped is constructed by sweeping the

bivector
⇀
x ∧ ⇀

y along
⇀
z . The magnitude of

⇀
x ∧ ⇀

y ∧ ⇀
z is given by its volume

|⇀x ∧ ⇀
y ∧ ⇀

z | △=
∣
∣
∣
∣
∣
det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]∣∣
∣
∣
∣
, (3.7.23)

while its orientation is given by the sign of the determinant in (3.7.23).

Let x, y, z ∈ R3. Then, we define

x ∧ y ∧ z
△
= x ⊗ y ⊗ z + y ⊗ z ⊗ x + z ⊗ x ⊗ y − x ⊗ z ⊗ y − y ⊗ x ⊗ z − z ⊗ y ⊗ x. (3.7.24)

Fact 3.7.6. Let x, y, z ∈ R3, and let e1, e2, e3 denote the columns of I3. Then,

x ∧ y ∧ z = det [x y z](e1 ∧ e2 ∧ e3). (3.7.25)
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Therefore,

| det [x y z]| = 1
√

6
‖x ∧ y ∧ z‖. (3.7.26)

3.7.3 Bicovectors, Tricovectors, and Forms

We define the physical bicovector

⇀
x
′
∧ ⇀

y
′ △
=

⇀
x
′
⊗ ⇀

y
′
− ⇀

y
′
⊗ ⇀

x
′
. (3.7.27)

Note that

⇀
x
′
∧ ⇀

y
′
= (

⇀
y ⊗ ⇀

x − ⇀
x ⊗ ⇀

y )′ = (
⇀
y ∧ ⇀

x)′ = −(
⇀
x ∧ ⇀

y )′. (3.7.28)

Likewise, we define the physical tricovector

⇀
x
′
∧⇀y
′
∧ ⇀

z
′

△
=

⇀
x
′
⊗ ⇀

y
′
⊗ ⇀

z
′
+
⇀
y
′
⊗ ⇀

z
′
⊗ ⇀

x
′
+
⇀
z
′
⊗ ⇀

x
′
⊗ ⇀

y
′
− ⇀

z
′
⊗ ⇀

y
′
⊗ ⇀

x
′
− ⇀

x
′
⊗ ⇀

z
′
⊗ ⇀

y
′
− ⇀

y
′
⊗ ⇀

x
′
⊗ ⇀

z
′

(3.7.29)

Note that

⇀
x
′
∧ ⇀

y
′
∧ ⇀

z
′
= (

⇀
z ⊗ ⇀

y ⊗ ⇀
x +

⇀
x ⊗ ⇀

z ⊗ ⇀
y +

⇀
y ⊗ ⇀

x ⊗ ⇀
z − ⇀

x ⊗ ⇀
y ⊗ ⇀

z − ⇀
y ⊗ ⇀

z ⊗ ⇀
x − ⇀

z ⊗ ⇀
x ⊗ ⇀

y )′

= −(
⇀
x ⊗ ⇀

y ⊗ ⇀
z +

⇀
y ⊗ ⇀

z ⊗ ⇀
x +

⇀
z ⊗ ⇀

x ⊗ ⇀
y − ⇀

z ⊗ ⇀
y ⊗ ⇀

x − ⇀
x ⊗ ⇀

z ⊗ ⇀
y − ⇀

y ⊗ ⇀
x ⊗ ⇀

z )′

= −(
⇀
x ∧ ⇀

y ∧ ⇀
z )′. (3.7.30)

A 0-form
→
ϕ is a real-valued function

→
ϕ : V→ R. A 0-form is also called a scalar field.

A 1-form
→
ϕ is a mapping from the physical vectors to the set T̂(0,1) of alternating covariant

tensors, that is,
→
ϕ : V → T̂(0,1). In particular, if

→
ϕ is a 1-form, then, given the frame FA, there exist

real-valued functions ϕ1, ϕ2, ϕ3 on V such that

→
ϕ(

⇀
x) = ϕ1(

⇀
x)ı̂′A + ϕ2(

⇀
x) ̂′A + ϕ3(

⇀
x)k̂′A. (3.7.31)

Note that every physical covector is a 1-form. A 1-form is also called a covector field.

A 2-form
→
ϕ is a mapping from the physical vectors to the set T̂(0,2) of alternating covariant

tensors, that is,
→
ϕ : V → T̂(0,2). In particular, if

→
ϕ is a 2-form, then, given the frame FA, there exist

real-valued functions ϕ1, ϕ2, ϕ3 on V such that

→
ϕ(

⇀
x) = ϕ1(

⇀
x)ı̂′A ∧ ̂′A + ϕ2(

⇀
x) ̂′A ∧ k̂′A + ϕ3(

⇀
x)k̂′A ∧ ı̂

′
A. (3.7.32)

Note that every physical bicovector is a 2-form. A 2-form is also called a bicovector field.

Finally, a 3-form
→
ϕ is a mapping from the physical vectors to the set T̂(0,3) of alternating covariant

tensors, that is,
→
ϕ : V → T̂(0,3). In particular, if

→
ϕ is a 3-form, then, given the frame FA, there exists

a real-valued function ϕ1 on V such that

→
ϕ(

⇀
x) = ϕ1(

⇀
x)ı̂′A ∧ ̂′A ∧ k̂′A. (3.7.33)

Note that every physical tricovector is a 3-form. A 3-form is also called a tricovector field.
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3.8 Multivectors

The real scalars α, vectors
⇀
x , bivectors

⇀
x∧⇀y , and trivectors

⇀
x∧⇀y∧⇀z can be used to represent 0-

1-, 2-, and 3-dimensional objects in 3-dimensional space. Since 3-dimensional space is spanned by

the basis vectors ı̂A, ̂A, k̂A of the frame FA, we can view 3-dimensional space as an 8-dimensional

linear vector space spanned by 1, ı̂A, ̂A, k̂A, ı̂A∧ ̂A, ̂A∧ k̂A, k̂A∧ ı̂A, and ı̂A∧ ̂A∧ k̂A. The elements

of this space are multivectors
։

S , which have the form

։

S = α + βı̂A + γ ̂A + δk̂A + εı̂A ∧ ̂A + φ ̂A ∧ k̂A + ψk̂A ∧ ı̂A
+ ρı̂A ∧ ̂A ∧ k̂A, (3.8.1)

where α, β, γ, δ, ε, φ, ψ, ρ are real numbers. The trivector

→
I
△
= ı̂A ∧ ̂A ∧ k̂A

is called the pseudoscalar. Fact 3.7.5 shows that
→
I is independent of the choice of frame. In terms

of
→
I , (3.7.20) can be rewritten as

⇀
x ∧ ⇀

y ∧ ⇀
z = det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]→
I . (3.8.2)

Multivectors can be multiplied by introducing a suitable multiplication operation. In particular,

the geometric product of
⇀
x and

⇀
y is defined by

⇀
x
⇀
y
△
=

⇀
x · ⇀y + ⇀

x ∧ ⇀
y . (3.8.3)

We can thus write (3.8.3) as

⇀
x
⇀
y =

⇀
x · ⇀y + ⇀

x ⊗ ⇀
y − ⇀

y ⊗ ⇀
x . (3.8.4)

Note that
⇀
x
⇀
y is a multivector since it is a linear combination of a scalar and a bivector.

Since
⇀
y ∧ ⇀

x = −⇀x ∧ ⇀
y , we have the identity

⇀
y
⇀
x =

⇀
x · ⇀y − ⇀

x ∧ ⇀
y . (3.8.5)

Hence,

⇀
x
⇀
y +

⇀
y
⇀
x = 2

⇀
x · ⇀y , (3.8.6)

⇀
x
⇀
y − ⇀

y
⇀
x = 2

⇀
x ∧ ⇀

y . (3.8.7)

Therefore,

⇀
x · ⇀y = 1

2
(
⇀
x
⇀
y +

⇀
y
⇀
x), (3.8.8)

⇀
x ∧ ⇀

y = 1
2
(
⇀
x
⇀
y − ⇀

y
⇀
x). (3.8.9)

Furthermore,

(
⇀
x ∧ ⇀

y )2 = (
⇀
x · ⇀y )2 − ⇀

y
2⇀

x
2

. (3.8.10)

Note that, if
⇀
x and

⇀
y are orthogonal, then

⇀
x
⇀
y =

⇀
x ∧ ⇀

y . (3.8.11)
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The geometric product can be applied to an arbitrary collection of multivectors, for example,
։

S 1

։

S 2 · · ·
։

S r. This product is associative, that is,
։

S 1(
։

S 2

։

S 3) = (
։

S 1

։

S 2)
։

S 3, which thus can be written

as
։

S 1

։

S 2

։

S 3. In particular, the geometric product of three physical vectors is given by

⇀
x
⇀
y
⇀
z = (

⇀
y · ⇀z )

⇀
x − (

⇀
x · ⇀z )

⇀
y + (

⇀
x · ⇀y )

⇀
z +

⇀
x ∧ ⇀

y ∧ ⇀
z . (3.8.12)

We thus have the identities

⇀
x
⇀
y
⇀
x = 2(

⇀
x · ⇀y )

⇀
x − |⇀x |2⇀y , (3.8.13)

⇀
x
⇀
y
⇀
z +

⇀
y
⇀
x
⇀
z = 2(

⇀
x · ⇀y )

⇀
z , (3.8.14)

⇀
x
⇀
y
⇀
z +

⇀
z
⇀
y
⇀
x = 2[(

⇀
y · ⇀z )

⇀
x − (

⇀
x · ⇀z )

⇀
y + (

⇀
x · ⇀y )

⇀
z ], (3.8.15)

⇀
x
⇀
y
⇀
z − ⇀

y
⇀
z
⇀
x = 2[(

⇀
x · ⇀y )

⇀
z − (

⇀
x · ⇀z )

⇀
y ], (3.8.16)

⇀
x(

⇀
y ∧ ⇀

z ) = 1
2
(
⇀
x
⇀
y
⇀
z − ⇀

x
⇀
z
⇀
y ) (3.8.17)

= (
⇀
x · ⇀y )

⇀
z − (

⇀
x · ⇀z )

⇀
y + 1

2
(
⇀
z
⇀
x
⇀
y − ⇀

y
⇀
x
⇀
z ), (3.8.18)

(
⇀
x ∧ ⇀

y )
⇀
z = 1

2
(
⇀
x
⇀
y
⇀
z − ⇀

y
⇀
x
⇀
z ) (3.8.19)

= (
⇀
y · ⇀z )

⇀
x − (

⇀
x · ⇀z )

⇀
y + 1

2
(
⇀
y
⇀
z
⇀
x − ⇀

x
⇀
z
⇀
y ), (3.8.20)

⇀
x(

⇀
y ∧ ⇀

z ) − (
⇀
y ∧ ⇀

z )
⇀
x = 2(

⇀
x · ⇀y )

⇀
z − 2(

⇀
x · ⇀z )

⇀
y , (3.8.21)

⇀
x ∧ ⇀

y ∧ ⇀
z = 1

2
[
⇀
x(

⇀
y ∧ ⇀

z ) + (
⇀
y ∧ ⇀

z )
⇀
x] (3.8.22)

= 1
2
(
⇀
x
⇀
y
⇀
z − ⇀

z
⇀
y
⇀
x) (3.8.23)

= 1
4
(
⇀
x
⇀
y
⇀
z +

⇀
y
⇀
z
⇀
x − ⇀

x
⇀
z
⇀
y − ⇀

z
⇀
y
⇀
x) (3.8.24)

= 1
6
(
⇀
x
⇀
y
⇀
z +

⇀
y
⇀
z
⇀
x +

⇀
z
⇀
x
⇀
y − ⇀

x
⇀
z
⇀
y − ⇀

y
⇀
x
⇀
z − ⇀

z
⇀
y
⇀
z ). (3.8.25)

For comparison, note that (3.7.11) states that

⇀
x ∧ ⇀

y ∧ ⇀
z =

⇀
x ⊗ ⇀

y ⊗ ⇀
z +

⇀
y ⊗ ⇀

z ⊗ ⇀
x +

⇀
z ⊗ ⇀

x ⊗ ⇀
y − ⇀

x ⊗ ⇀
z ⊗ ⇀

y − ⇀
y ⊗ ⇀

x ⊗ ⇀
z − ⇀

z ⊗ ⇀
y ⊗ ⇀

x .

(3.8.26)

Furthermore,

→
I

2

= −1. (3.8.27)

For the case of four physical vectors we have

⇀
x ∧ ⇀

y ∧ ⇀
z ∧ ⇀

w = 0, (3.8.28)

⇀
x
⇀
y
⇀
z
⇀
w = (

⇀
x · ⇀y )(

⇀
z · ⇀w) − (

⇀
x · ⇀z )(

⇀
y · ⇀w) + (

⇀
x · ⇀w)(

⇀
y · ⇀z )

+ (
⇀
z · ⇀w)

⇀
x ∧ ⇀

y − (
⇀
y · ⇀w)

⇀
x ∧ ⇀

z + (
⇀
y · ⇀z )

⇀
x ∧ ⇀

w

+ (
⇀
x · ⇀w)

⇀
y ∧ ⇀

z − (
⇀
x · ⇀z )

⇀
y ∧ ⇀

w + (
⇀
x · ⇀y )

⇀
z ∧ ⇀

w. (3.8.29)
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Consequently, for each frame FA,

→
I
⇀
x = (ı̂A ·

⇀
x) ̂A ∧ k̂A + ( ̂A ·

⇀
x)k̂A ∧ ı̂A + (k̂A ·

⇀
x)ı̂A ∧ ̂A. (3.8.30)

The following equalities connect the geometric product with the cross product.

Fact 3.8.1. Let FA be a frame, and let
⇀
x and

⇀
y be physical vectors. Then,

⇀
x × ⇀

y = −
→
I (

⇀
x ∧ ⇀

y ), (3.8.31)

⇀
x ∧ ⇀

y =
→
I (

⇀
x × ⇀

y ). (3.8.32)

Furthermore,

⇀
x ∧ ⇀

y =
[

ı̂A ∧ ̂A ̂A ∧ k̂A k̂A ∧ ı̂A
]

(
⇀
x × ⇀

y )
∣
∣
∣
∣
A
. (3.8.33)

Moreover,

⇀
x × ⇀

y = 1
2
(
⇀
y
→
I
⇀
x −

→
I
⇀
x
⇀
y ). (3.8.34)

Finally, let
⇀
z be a physical vector. Then

⇀
x · (⇀y × ⇀

z ) = det

[
⇀
x
∣
∣
∣
∣
A

⇀
y
∣
∣
∣
∣
A

⇀
z
∣
∣
∣
∣
A

]

= −(
⇀
x ∧ ⇀

y ∧ ⇀
z )
→
I , (3.8.35)

⇀
x × (

⇀
y × ⇀

z ) = 1
2
[(
⇀
y ∧ ⇀

z )
⇀
x − ⇀

x(
⇀
y ∧ ⇀

z )]. (3.8.36)

Proof. Note that

−
→
I (

⇀
x ∧ ⇀

y ) = −
→
I [(x1 ı̂A + x2 ̂A + x3k̂A) ∧ (y1 ı̂A + y2 ̂A + y3k̂A)]

= −
→
I [(x1y2 − y1x2)ı̂A ̂A + (x1y3 − y1x3)ı̂Ak̂A + (x2y3 − y2x3) ̂Ak̂A]

= (y1x2 − x1y2)ı̂A ̂Ak̂A ı̂A ̂A + (y1x3 − x1y3)ı̂A ̂Ak̂A ı̂Ak̂A + (y2x3 − x2y3)ı̂A ̂Ak̂A ̂Ak̂A

= −(y1x2 − x1y2)k̂A + (y1x3 − x1y3) ̂A − (y2x3 − x2y3)ı̂A

= (x2y3 − y2x3)ı̂A + (y1x3 − x1y3) ̂A + (x1y2 − y1x2)k̂A

=
⇀
x × ⇀

y . �

The matrix in (3.8.33) is called a bivectrix.

Let FA be a frame, and consider the multivector
։

S

։

S = α + βı̂A ∧ ̂A, (3.8.37)

where
։

S is a linear combination of a scalar and a bivector. Since ı̂A · ̂A = 0, it follows that

ı̂A ̂A = ı̂A ∧ ̂A = − ̂A ∧ ı̂A = − ̂A ı̂A. Therefore, since ı̂A ı̂A = ̂A ̂A = 1, it follows that

(ı̂A ∧ ̂A)2 = (ı̂A ̂A)2 = ı̂A ̂A ı̂A ̂A = −ı̂A ı̂A ̂A ̂A = −1. (3.8.38)
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Therefore, ı̂A ̂A behaves like  =
√
−1. It is therefore useful to define the conjugate

։

S of
։

S as

։

S = α − βı̂A ∧ ̂A. (3.8.39)

We thus have

։

S
։

S =
։

S
։

S = α2 + β2. (3.8.40)

More generally, for
։

S given by (3.8.1), the conjugate of
։

S is given by

։

S
△
= α − βı̂A − γ ̂A − δk̂A − εı̂A ∧ ̂A − φ ̂A ∧ k̂A − ψk̂A ∧ ı̂A − ρı̂A ∧ ̂A ∧ k̂A. (3.8.41)

We now give multiplication tables to illustrate the geometric product. Subsets of the basis

multivectors have multiplication tables that are equivalent to those of alternative objects, such as

the complex numbers and the quaternions. These objects involve 2 × 2 matrices, such as the skew-

symmetric matrix

J2
△
=

[

0 1

−1 0

]

and the Pauli matrices σ1, σ2, σ3 and their products, which are given by

1←→ I2 =

[

1 0

0 1

]

, (3.8.42)

ı̂A ←→ σ1 =

[

0 1

1 0

]

, (3.8.43)

̂A ←→ σ2 =

[

0 − 
 0

]

, (3.8.44)

k̂A ←→ σ3 =

[

1 0

0 −1

]

, (3.8.45)

ı̂A ∧ ̂A ←→ σ1σ2 = σ3 = −σ2σ1 =

[

 0

0 − 

]

, (3.8.46)

̂A ∧ k̂A ←→ σ2σ3 = σ1 = −σ3σ2 =

[

0 

 0

]

, (3.8.47)

k̂A ∧ ı̂A ←→ σ3σ1 = σ2 = −σ1σ3 =

[

−1 0

0 1

]

, (3.8.48)

ı̂A ∧ ̂A ∧ k̂A ←→ σ1σ2σ3 =

[

 0

0 

]

. (3.8.49)

The equivalence of these tables shows that multivectors provide a unified description of diverse

mathematical structures.

Multiplication tables involving two multivectors are given in Table 3.8.1. Equivalent tables are

given in terms of 2 × 2 real matrices as well as the complex scalars.

A multiplication table involving four multivectors is given in Table 3.8.2 together with an equiv-

alent multiplication table involving 2 × 2 matrices. This table extends the multiplication table of

Table 2.16.1(a).

A multiplication table involving four multivectors is given in Table 3.8.2 together with equiva-

lent multiplication tables involving 2 × 2 matrices and the basic quaternions. Note the correspon-



TENSORS 121

dence

̂A ∧ k̂A ←→ σ2σ3 ←→ i, (3.8.50)

ı̂A ∧ k̂A ←→ σ1σ3 ←→ j, (3.8.51)

ı̂A ∧ ĵA ←→ σ1σ2 ←→ k. (3.8.52)

A multiplication table involving eight multivectors is given in Table 3.8.4. Table 3.8.5 is an

equivalent multiplication table given in terms of the 2 × 2 Pauli matrices and their products.
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1 ı̂A ∧ ̂A

1 1 ı̂A ∧ ̂A

ı̂A ∧ ̂A ı̂A ∧ ̂A −1

(a)

1 ı̂A ∧ ̂A ∧ k̂A

1 1 ı̂A ∧ ̂A ∧ k̂A

ı̂A ∧ ̂A ∧ k̂A ı̂A ∧ ̂A ∧ k̂A −1

(b)

I2 J2

I2 I2 J2

J2 J2 −I2

(c)

I2 σ1σ2

I2 I2 σ1σ2

σ1σ2 σ1σ2 −I2

(d)

1 

1 1 

  −1

(e)

Figure 3.8.1: Equivalent multiplication tables for two multivectors (a), (b), 2 × 2 matrices (c), (d),

and the complex numbers (e).
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1 ı̂A ̂A ı̂A ∧ ̂A

1 1 ı̂A ̂A ı̂A ∧ ̂A

ı̂A ı̂A 1 ı̂A ∧ ̂A ̂A

̂A ̂A −ı̂A ∧ ̂A 1 −ı̂A

ı̂A ∧ ̂A ı̂A ∧ ̂A − ̂A ı̂A −1

(a)

I2 σ1 σ2 σ1σ2

I2 I2 σ1 σ2 σ1σ2

σ1 σ1 I2 σ1σ2 σ2

σ2 σ2 −σ1σ2 I2 −σ1

σ1σ2 σ1σ2 −σ2 σ1 −I2

(b)

Figure 3.8.2: Equivalent multiplication tables involving four multivectors (a) and Pauli matrices (b).
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1 ̂A ∧ k̂A ı̂A ∧ k̂A ı̂A ∧ ̂A

1 1 ̂A ∧ k̂A ı̂A ∧ k̂A ı̂A ∧ ̂A

̂A ∧ k̂A ̂A ∧ k̂A −1 ı̂A ∧ ̂A −ı̂A ∧ k̂A

ı̂A ∧ k̂A ı̂A ∧ k̂A −ı̂A ∧ ̂A −1 ̂A ∧ k̂A

ı̂A ∧ ̂A ı̂A ∧ ̂A ̂A ∧ k̂A − ̂A ∧ k̂A −1

(a)

I2 σ2σ3 σ1σ3 σ1σ2

I2 I2 σ2σ3 σ1σ3 σ1σ2

σ1σ3 σ1σ3 −I2 σ1σ2 −σ1σ3

σ1σ3 σ1σ3 −σ1σ2 −I2 σ2σ3

σ1σ2 σ1σ2 σ2σ3 −σ2σ3 −I2

(b)

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

(c)

Figure 3.8.3: Equivalent multiplication tables for multivectors (a), products of Pauli matrices (b),

and the quaternions (c).



T
E

N
S

O
R

S
1

2
5

1 ı̂A ̂A k̂A ı̂A ∧ ̂A ̂A ∧ k̂A k̂A ∧ ı̂A
→
I

1 1 ı̂A ̂A k̂A ı̂A ∧ ̂A ̂A ∧ k̂A k̂A ∧ ı̂A
→
I

ı̂A ı̂A 1 ı̂A ∧ ̂A −k̂A ∧ ı̂A ̂A
→
I −k̂A ̂A ∧ k̂A

̂A ̂A −ı̂A ∧ ̂A 1 ̂A ∧ k̂A −ı̂A k̂A

→
I k̂A ∧ ı̂A

k̂A k̂A k̂A ∧ ı̂A − ̂A ∧ k̂A 1
→
I − ̂A ı̂A ı̂A ∧ ̂A

ı̂A ∧ ̂A ı̂A ∧ ̂A − ̂A ı̂A
→
I −1 −k̂A ∧ ı̂A ̂A ∧ k̂A −k̂A

̂A ∧ k̂A ̂A ∧ k̂A

→
I −k̂A ̂A k̂A ∧ ı̂A −1 −ı̂A ∧ ̂A −ı̂A

k̂A ∧ ı̂A k̂A ∧ ı̂A k̂A

→
I −ı̂A − ̂A ∧ k̂A ı̂A ∧ ̂A −1 − ̂A

→
I

→
I ̂A ∧ k̂A k̂A ∧ ı̂A ı̂A ∧ ̂A −k̂A −ı̂A − ̂A −1

Figure 3.8.4: Multiplication table involving eight multivectors.



1
2

6
C

H
A

P
T

E
R

3

I2 σ1 σ2 σ3 σ1σ2 σ2σ3 σ3σ1 σ1σ2σ3

I2 I2 σ1 σ2 σ3 σ1σ2 σ2σ3 σ3σ1 σ1σ2σ3

σ1 σ1 I2 σ1σ2 −σ3σ1 ̂A σ1σ2σ3 −σ3 σ2σ3

σ2 σ2 −σ1σ2 I2 σ2σ3 −σ1 σ3 σ1σ2σ3 σ3σ1

σ3 σ3 σ3σ1 −σ2σ3 I2 σ1σ2σ3 −σ2 σ1 σ1σ2

σ1σ2 σ1σ2 −σ2 σ1 σ1σ2σ3 −I2 −σ3σ1 σ2σ3 −k̂A

σ2σ3 σ2σ3 σ1σ2σ3 −σ3 σ2 σ3σ1 −I2 −σ1σ2 −σ1

σ3σ1 σ3σ1 σ3 σ1σ2σ3 −σ1 −σ2σ3 σ1σ2 −I2 −σ2

σ1σ2σ3 σ1σ2σ3 σ2σ3 σ3σ1 σ1σ2 −σ3 −σ1 −σ2 −I2

Figure 3.8.5: Multiplication table for the Pauli matrices and their products, which is equivalent to the multiplication table in Table 3.8.4.
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3.9 Rotations and Reflections

Let v̂ and ŵ be orthogonal vectors, and let θ denote an angle. Then the rotor
։

Rv̂∧ŵ(θ) is the

multivector

։

Rv̂∧ŵ(θ)
△
= cos θ/2 − (sin θ/2)(v̂ ∧ ŵ), (3.9.1)

which is a linear combination of a scalar and a bivector. Therefore,

։

Rv̂∧ŵ(θ) = cos θ/2 + (sin θ/2)(v̂ ∧ ŵ). (3.9.2)

The following result shows that the rotor
։

Rv̂∧ŵ(θ) rotates each vector by the angle θ around the direc-

tion orthogonal to the plane spanned by v̂ and ŵ and in the direction determined by the orientation

of the bivector v̂ ∧ ŵ.

Since (v̂ ∧ ŵ)2 = −1, (3.9.1) can be written as

։

Rv̂∧ŵ(θ) = exp[−(v̂ ∧ ŵ)θ/2]. (3.9.3)

In other words, (3.9.1) is analogous to Euler’s formula e θ = cos θ +  sin θ. Furthermore, note that

։

Rv̂∧ŵ(θ)
։

Rv̂∧ŵ(θ) =
։

Rv̂∧ŵ(θ)
։

Rv̂∧ŵ(θ) = 1. (3.9.4)

Fact 3.9.1. Let θ be an angle, let v̂ and ŵ denote orthogonal vectors, and let n̂ = v̂ × ŵ. Then,

for every physical vector
⇀
x ,

→
Rn̂(θ)

⇀
x =

։

Rv̂∧ŵ(θ)
⇀
x
։

Rv̂∧ŵ(θ). (3.9.5)

Proof. Note that

։

Rv̂∧ŵ(θ)
⇀
x
։

Rv̂∧ŵ(θ)

= [cos θ/2 − (sin θ/2)(v̂ ∧ ŵ)]
⇀
x[cos θ/2 + (sin θ/2)(v̂ ∧ ŵ)] (3.9.6)

= [cos θ/2 − (sin θ/2)v̂ŵ]
⇀
x[cos θ/2 + (sin θ/2)v̂ŵ]

= (cos2 θ/2)
⇀
x + 1

2
(sin θ)(x̂v̂ŵ − v̂ŵx̂) + (sin2 θ/2)v̂ŵx̂ŵv̂

= (cos2 θ/2)
⇀
x + (sin θ)[(v̂ · x̂)ŵ − (ŵ · x̂)v̂](sin2 θ/2)[

⇀
x − 2(v̂ · x̂)v̂ − 2(ŵ · x̂)ŵ]

=
⇀
x + [(cos θ) − 1][(v̂ · x̂)v̂ + (ŵ · x̂)ŵ] + (sin θ)[(v̂ · x̂)ŵ − (ŵ · x̂)v̂]

=
⇀
x + (1 − cos θ)(ŵ ⊗ v̂′ − v̂ ⊗ ŵ′) ⊗(2,1) [(v̂ · ⇀x)ŵ − (ŵ · ⇀x)v̂] + (sin θ)[(v̂ · x̂)ŵ − (ŵ · x̂)v̂]

=
⇀
x + (1 − cos θ)(ŵ ⊗ v̂′ − v̂ ⊗ ŵ′)2 ⊗(2,1)

⇀
x + (sin θ)[(v̂ · x̂)ŵ − (ŵ · x̂)v̂]

=
⇀
x + (1 − cos θ)(v̂ × ŵ)×2 ⊗(2,1)

⇀
x + (sin θ)[(v̂ · x̂)ŵ − (ŵ · x̂)v̂]

=
⇀
x + (1 − cos θ)n̂×2 ⊗(2,1)

⇀
x + (sin θ)(ŵ ⊗ v̂′ − v̂ ⊗ ŵ′) ⊗(2,1)

⇀
x

=
⇀
x + (1 − cos θ)n̂×2 ⊗(2,1)

⇀
x + (sin θ)n̂× ⊗(2,1)

⇀
x

=
→
Rn̂(θ) ⊗(2,1)

⇀
x
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=
→
Rn̂(θ)

⇀
x . �

Let FA and FB be frames. Then we let
։

RB/A denote the rotor that corresponds to
→
RB/A in the

sense that, for every physical vector
⇀
x ,

→
RB/A

⇀
x =

։

RB/A
⇀
x
։

RB/A. (3.9.7)

Fact 3.9.2. Let FA and FB be frames, and let
⇀
x and

⇀
y be physical vectors. Then

⇀
x · (

։

RB/A
⇀
y
։

RB/A) = (
։

RB/A
⇀
x
։

RB/A) · ⇀y (3.9.8)

and

։

RB/A(
⇀
x ∧ ⇀

y )
։

RB/A = (
։

RB/A
⇀
x
։

RB/A) ∧ (
։

RB/A
⇀
y
։

RB/A). (3.9.9)

Proof. To prove (3.9.8) note that

⇀
x · (

։

RB/A
⇀
y
։

RB/A) =
⇀
x · (

→
RB/A

⇀
y ) = (

→
R
′

B/A

⇀
x) · ⇀y = (

։

RB/A
⇀
x
։

RB/A) · ⇀y .

Next, to prove (3.9.9) note that

։

RB/A(
⇀
x ∧ ⇀

y )
։

RB/A =
։

RB/A(
⇀
x
⇀
y − ⇀

x · ⇀y )
։

RB/A

=
։

RB/A
⇀
x
⇀
y
։

RB/A −
⇀
x · ⇀y

=
։

RB/A
⇀
x
։

RB/A

։

RB/A
⇀
y
։

RB/A −
⇀
x · ⇀y

=
։

RB/A
⇀
x
։

RB/A

։

RB/A
⇀
y
։

RB/A − (
։

RB/A
⇀
x
։

RB/A) · (
։

RB/A
⇀
y
։

RB/A)

= (
։

RB/A
⇀
x
։

RB/A) ∧ (
։

RB/A
⇀
y
։

RB/A). �

Let n̂ and
⇀
x be physical vectors. Then

⇀
x can be written as the sum

⇀
x =

⇀
xperp,n̂ +

⇀
xpar,n̂, (3.9.10)

where
⇀
xperp,n̂ is the component of

⇀
x in the plane orthogonal to n̂ and

⇀
xpar,n̂ is the component of

⇀
x in

the direction of n̂. Furthermore, the reflection of
⇀
x in the plane orthogonal to n̂ is defined by

⇀
x refl

△
=

⇀
xperp,n̂ −

⇀
xpar,n̂. (3.9.11)

Fact 3.9.3. Let n̂ be a physical vector and let
⇀
x be a physical vector. Then,

⇀
xperp,n̂ = n̂(n̂ ∧ ⇀

x) (3.9.12)

= (n̂ · ⇀x)n̂ − n̂
⇀
xn̂ (3.9.13)

= 1
2
(
⇀
x − n̂

⇀
xn̂) (3.9.14)

=
⇀
x − (n̂ · ⇀x)n̂, (3.9.15)
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⇀
xpar,n̂ = (n̂ · ⇀x)n̂, (3.9.16)

⇀
x refl,n̂ = −n̂

⇀
xn̂ (3.9.17)

=
⇀
x − 2(n̂ · ⇀x)n̂. (3.9.18)

Proof. Since n̂2 = 1, it follows that

⇀
x = n̂2⇀x = n̂(n̂ ∧ ⇀

x + n̂ · ⇀x) =
⇀
xperp,n̂ +

⇀
xpar,n̂. (3.9.19)

Furthermore, using (3.8.17) and (3.8.19) we have

⇀
x refl,n̂ = n̂(n̂ ∧ ⇀

x) − (n̂ · ⇀x)n̂ = −(n̂ ∧ ⇀
x)n̂ − (n̂ · ⇀x)n̂ = −n̂

⇀
xn̂

= n̂(n̂
⇀
x − n̂ · ⇀x) − (n̂ · ⇀x)n̂ = n̂2⇀x − 2(n̂ · ⇀x)n̂ =

⇀
x − 2(n̂ · ⇀x)n̂. �

The following result shows that the rotation of the vector
⇀
x around the normal to the plane

spanned by two physical vectors v̂ and ŵ through twice the angle between v̂ and ŵ is equivalent to

reflecting
⇀
x successively in the planes orthogonal to v̂ and ŵ. Note that v̂ and ŵ are not necessarily

orthogonal. This result is illustrated in [11, pp. 133–137].

Fact 3.9.4. Let v̂ and ŵ be physical vectors that are not colinear, and define n̂
△
= 1
|v̂×ŵ| v̂ × ŵ and

ẑ
△
= n̂ × v̂. Then

։

Rv̂∧ẑ(2θv̂/ŵ) = ŵv̂. (3.9.20)

Consequently, for every physical vector
⇀
x ,

→
Rn̂(2θv̂/ŵ)

⇀
x = ŵv̂

⇀
xv̂ŵ. (3.9.21)

Proof. Note that

(sin θv̂/ŵ)ẑ = ŵ − (cos θv̂/ŵ)v̂.

Therefore,

։

Rv̂∧ẑ(2θv̂/ŵ) = cos θv̂/ŵ − (sin θv̂/ŵ)(v̂ ∧ ẑ)

= cos θv̂/ŵ − v̂ ∧ ŵ

= cos θv̂/ŵ + ŵ ∧ v̂

= cos θv̂/ŵ + ŵv̂ − ŵ · v̂

= ŵv̂. �

Note that (3.9.20) implies

։

Rv̂∧ẑ(2θv̂/ŵ) = ŵv̂

= exp[−(v̂ ∧ ŵ)θv̂/ŵ/|v̂ × ŵ|]
= exp[−(v̂ ∧ ŵ)θv̂/ŵ/ sin θv̂/ŵ]. (3.9.22)
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3.10 Problems

Problem 3.10.1. Let
→
T 1,

→
T 2,

→
T 3 ∈ T(p,p), and let S = {(i1, j1), . . . , (ip, jp)}, where i1, . . . , ip are

distinct integers in {1, . . . , 2p} and j1, . . . , jp are distinct integers in {1, . . . , 2p}. Show that

((
→
T 1 ⊗

→
T 2)S ⊗

→
T 3)S = (

→
T 1 ⊗ (

→
T 2 ⊗

→
T 3)S)S.

Problem 3.10.2. Let
⇀
x ,

⇀
y ,

⇀
z , and

⇀
w be physical vectors. Show that

(
⇀
x ∧ ⇀

y )′(
⇀
z ,

⇀
w) = (

⇀
x × ⇀

y ) · (⇀z × ⇀
w) = (

⇀
x · ⇀z )(

⇀
y · ⇀w) − (

⇀
y · ⇀z )(

⇀
x · ⇀y ).

Problem 3.10.3. Let
→
T 1 and

→
T 2 be tensors of order (p1, 0) and (p2, 0), respectively. Show that

→
T 1 ∧

→
T 2 = (−1)p1 p2

→
T 2 ∧

→
T 1.

Problem 3.10.4. Let
⇀
w
′
1,

⇀
w
′
2,

⇀
w
′
3 be physical covectors, and let

⇀
x1,

⇀
x2,

⇀
x3 be physical vectors.

Show that

(
⇀
w
′
1 ∧

⇀
w
′
1 ∧

⇀
w
′
1)(

⇀
x1,

⇀
x2,

⇀
x3) = det





⇀
w
′
1

⇀
x1

⇀
w
′
1

⇀
x2

⇀
w
′
1

⇀
x3

⇀
w
′
2

⇀
x1

⇀
w
′
2

⇀
x2

⇀
w
′
2

⇀
x3

⇀
w
′
3

⇀
x1

⇀
w
′
3

⇀
x2

⇀
w
′
3

⇀
x3





.

Problem 3.10.5. Let x, y be real numbers, let θ be an angle, and define u, v by

u + v  = eθ (x + y ) = [cos θ + (sin θ) ](x + y ).

Show that

ui + vj = e
1
2
θk

(xi + yj)e
− 1

2
θk
= [(cos 1

2
θ) + (sin 1

2
θ)k](xi + yj)[(cos 1

2
θ) − (sin 1

2
θ)k].



Chapter Four

Kinematics

4.1 Frame Derivatives

Let FA be a frame, and let
⇀
x be a physical vector expressed as

⇀
x = x1 ı̂A + x2 ̂A + x3k̂A. (4.1.1)

We can thus write

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




. (4.1.2)

The derivative of
⇀
x with respect to FA is defined by

A•
⇀
x
△
= ẋ1 ı̂A + x1

A•
ı̂A + ẋ2 ̂A + x2

A•
̂A + ẋ3k̂A + x3

A•
k̂A

= ẋ1 ı̂A + ẋ2 ̂A + ẋ3k̂A. (4.1.3)

Note that
A•
ı̂A =

A•
̂A =

A•
k̂A = 0 since the axes of FA are constant with respect to FA. Resolving

A•
⇀
r in FA

yields

A•
⇀
x

∣
∣
∣
∣
∣
∣
∣
A

=





ẋ1

ẋ2

ẋ3




, (4.1.4)

that is,

A•
⇀
x

∣
∣
∣
∣
∣
∣
∣
A

=

.
︷︸︸︷

⇀
x
∣
∣
∣
∣
A
. (4.1.5)

If, for all time,

A•
⇀
x

∣
∣
∣
∣
∣
∣
∣
A

= 0, then the components of

A•
⇀
x

∣
∣
∣
∣
∣
∣
∣
A

are constant; these constants are called

constants of the motion with respect to FA.

Let x and y be points, and let FA be a frame. Then, the velocity of y relative to x with respect to

FA is defined by

⇀
v y/x/A

△
=

A•
⇀
r y/x, (4.1.6)
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and the acceleration of y relative to x with respect to FA is defined by

⇀
ay/x/A

△
=

A•
⇀
v y/x/A =

A••
⇀
r y/x . (4.1.7)

Note that, if

⇀
r y/x

∣
∣
∣
∣
A
=





r1

r2

r3




, (4.1.8)

then

⇀
v y/x/A

∣
∣
∣
∣
A
=





ṙ1

ṙ2

ṙ3




,

⇀
ay/x/A

∣
∣
∣
∣
A
=





r̈1

r̈2

r̈3




. (4.1.9)

More generally, if FB is a frame, then each component of
⇀
v y/x/A

∣
∣
∣
∣
B

is a signed speed.

Let x and y be frames, and let FA and FB be frames. Then we define the notation

ry/x|B
△
=

⇀
r y/x

∣
∣
∣
∣
B
. (4.1.10)

Note that

ry/x|B = OB/A
⇀
r y/x

∣
∣
∣
∣
A
= OB/Ary/x|A. (4.1.11)

Next, define

vy/x/A|B
△
=

⇀
v y/x/A

∣
∣
∣
∣
B
=

A•
⇀
r y/x

∣
∣
∣
∣
∣
∣
∣
B

. (4.1.12)

Note that

vy/x/A|B = OB/A
⇀
v y/x/A

∣
∣
∣
∣
A
= OB/Avy/x/A|A = OB/Aṙy/x|A. (4.1.13)

Furthermore, define

ay/x/A|B
△
=

⇀
ay/x/A

∣
∣
∣
∣
B
=

A•
⇀
v y/x|A

∣
∣
∣
∣
∣
∣
∣
B

=

A••
⇀
r y/x

∣
∣
∣
∣
∣
∣
∣
B

. (4.1.14)

Note that

ay/x/A|B = OB/A
⇀
ay/x/A

∣
∣
∣
∣
A
= OB/Aay/x/A|A = OB/Av̇y/x/A|A = OB/Ar̈y/x|A. (4.1.15)

The mixed acceleration is defined by

⇀
ay/x/A/B

△
=

B•
⇀
v y/x/A =

B•
A•
⇀
r y/x (4.1.16)

As a special case,
⇀
ay/x/A/A =

⇀
ay/x/A. Now let FC be a frame. Then, the mixed acceleration can be

resolved as

ay/x/A/B|C
△
=

⇀
ay/x/A/B

∣
∣
∣
∣
C
. (4.1.17)
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As a special case, ay/x/A/A|C = ay/x/A|C. Note that

⇀
ay/x/A/B|C = OC/B

⇀
ay/x/A/B

∣
∣
∣
∣
B
= OC/B

B•
⇀
v y/x/A

∣
∣
∣
∣
∣
∣
∣
B

= OC/Bv̇y/x/A|B = OC/B

d

dt
(OB/Aṙy/x|A)

= OC/B(ȮB/Aṙy/x|A + OB/Ar̈y/x|A)

= OC/BȮB/Aṙy/x|A + OC/Ar̈y/x|A. (4.1.18)

Note that, if FB = FA, then (4.1.18) yields (4.1.15).

Fact 4.1.1. Let FA be a frame, and let x, y, and z be points. Then,

⇀
v z/x/A =

⇀
v z/y/A +

⇀
v y/x/A, (4.1.19)

⇀
a z/x/A =

⇀
a z/y/A +

⇀
ay/x/A. (4.1.20)

Fact 4.1.1 is based on the assumptions of Newtonian mechanics and thus is not valid within the

context of relativity. For a particle of light in a medium such as vacuum or water, the speed of light

c is independent of the velocity of all other bodies. Therefore, if x denotes a particle of light, w

denotes a particle, and FA is a frame, then

|⇀v x/w/A| = c. (4.1.21)

Therefore, (4.1.19) does not hold for light particles.

The following result shows that the velocity of y relative to x with respect to FA is zero if and

only if the position of y relative to x is constant with respect to FA. Likewise, the acceleration of

y relative to x with respect to FA is zero if and only if y moves in a straight line at constant speed

relative to x and with respect to FA.

Fact 4.1.2. Let FA be a frame, let y and x be points, and let t1 < t2. Then, the following

statements hold:

i)
⇀
v y/x/A(t) = 0 for all t ∈ [t1, t2] if and only if there exist real numbers α1, α2, α3 such that,

for all t ∈ [t1, t2],

⇀
r y/x(t)

∣
∣
∣
∣
A
=





α1

α2

α3




. (4.1.22)

ii)
⇀
ay/x/A(t) = 0 for all t ∈ [t1, t2] if and only if there exist real numbers α1, α2, α3, β1, β2, β3,

such that, for all t ∈ [t1, t2],

⇀
r y/x(t)

∣
∣
∣
∣
A
=





α1t + β1

α2t + β2

α3t + β3




. (4.1.23)

Fact 4.1.3. Let FA be a frame, and let
⇀
x and

⇀
y be physical vectors. Then,

d

dt
(
⇀
x · ⇀y ) =

A•
⇀
x · ⇀y + ⇀

x ·
A•
⇀
y . (4.1.24)
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In particular,

d

dt
(
⇀
x · ⇀x) = 2

A•
⇀
x · ⇀x . (4.1.25)

Proof. Write

⇀
x
∣
∣
∣
∣
A
=





x1

x2

x3




,

⇀
y
∣
∣
∣
∣
A
=





y1

y2

y3




.

Then,

d

dt
(
⇀
x · ⇀y ) =

d

dt
(x1y1 + x2y2 + x3y3)

= ẋ1y1 + ẋ2y2 + ẋ3y3 + x1ẏ1 + x2ẏ2 + x3ẏ3

=

.
︷︸︸︷

⇀
x
∣
∣
∣
∣
A

T

⇀
y
∣
∣
∣
∣
A
+

⇀
x
∣
∣
∣
∣

T

A

.
︷︸︸︷

⇀
y
∣
∣
∣
∣
A

=

A•
⇀
x

∣
∣
∣
∣
∣
∣
∣

T

A

⇀
y
∣
∣
∣
∣
A
+

⇀
x
∣
∣
∣
∣

T

A

A•
⇀
y

∣
∣
∣
∣
∣
∣
∣
A

=

A•
⇀
x · ⇀y + ⇀

x ·
A•
⇀
y . �

Let FA be a frame, let
⇀
x and

⇀
y be physical vectors, and let

→
M =

⇀
x
⇀
y
′
. Then, we define

A•
⇀
y
′ △
=

A•
⇀
y

′

, (4.1.26)

A•
→
M

△
=

A•
⇀
x

⇀
y
′
+
⇀
x

A•
⇀
y

′

. (4.1.27)

Fact 4.1.4. Let FA be a frame, let
→
M and

→
N be physical matrices, and let

⇀
x be a physical vector.

Then,

A•
︷︸︸︷

→
M

⇀
x =

A•
→
M

⇀
x +

→
M

A•
⇀
x , (4.1.28)

A•
︷︸︸︷

→
M
→
N =

A•
→
M
→
N +

→
M

A•
→
N . (4.1.29)

Furthermore,

A•
→
M

∣
∣
∣
∣
∣
∣
∣
∣
A

=

.
︷︸︸︷

→
M

∣
∣
∣
∣
∣
A

. (4.1.30)

Proof. For convenience, assume that
→
M =

⇀
y
⇀
z
′
. Using Fact 4.1.3 it follows that

A•
︷︸︸︷

→
M

⇀
x =

A•
︷  ︸︸  ︷

(
⇀
y
⇀
z
′
)
⇀
x
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=

A•
︷   ︸︸   ︷

(
⇀
z · ⇀x)

⇀
y

=

.
︷ ︸︸ ︷

(
⇀
z · ⇀x)

⇀
y + (

⇀
z · ⇀x)

A•
⇀
y

= (

A•
⇀
z ·⇀x)

⇀
y + (

⇀
z ·

A•
⇀
x )

⇀
y + (

⇀
z · ⇀x)

A•
⇀
y

= (
⇀
y

A•
⇀
z

′

)
⇀
x + (

A•
⇀
y

⇀
z
′
)
⇀
x + (

⇀
y
⇀
z
′
)

A•
⇀
x

=

A•
→
M

⇀
x +

→
M

A•
⇀
x .

Next, let
→
N =

⇀
w
⇀
u
′

and note that

A•
︷︸︸︷

→
M
→
N =

A•
︷        ︸︸        ︷

(
⇀
y
⇀
z
′
)(
⇀
w
⇀
u
′
)

=

A•
︷       ︸︸       ︷

⇀
z · ⇀w(

⇀
y
⇀
u
′
)

=
⇀
z · ⇀w

A•
︷︸︸︷

(
⇀
y
⇀
u
′
) +

.
︷︸︸︷

⇀
z · ⇀w (

⇀
y
⇀
u
′
)

=
⇀
z · ⇀w(

A•
⇀
y

⇀
u
′
+
⇀
y

A•
⇀
u

′

) + (

A•
⇀
z ·⇀w + ⇀

z ·
A•
⇀
w)

⇀
y
⇀
u
′

= (

A•
⇀
y

⇀
z
′
+
⇀
y

A•
⇀
z

′

)
⇀
w
⇀
u
′
+
⇀
y
⇀
z
′
(

A•
⇀
w

⇀
u
′
+
⇀
w

A•
⇀
u

′

)

=

A•
→
M
→
N +

→
M

A•
→
N . �

Fact 4.1.5. Let FA be a frame, and let
⇀
x be a physical vector. Then,

A•
︷︸︸︷

⇀
x
×
=

A•
⇀
x

×

, (4.1.31)

A•
⇀
x × ⇀

x = −⇀x ×
A•
⇀
x , (4.1.32)

(
⇀
x ×

A•
⇀
x )× =

A•
⇀
x

⇀
x
′
− ⇀

x

A•
⇀
x

′

. (4.1.33)

If, in addition,
⇀
y is a physical vector, then

A•
︷ ︸︸ ︷

⇀
x × ⇀

y =

A•
⇀
x × ⇀

y +
⇀
x ×

A•
⇀
y . (4.1.34)
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Fact 4.1.6. Let FA and FB be frames. Then,

A•
→
I = 0, (4.1.35)

A•
ı̂B ı̂′B +

A•
̂B ̂′B +

A•
k̂B k̂′B = −(ı̂B

A•
ı̂B

′
+ ̂B

A•
̂B

′
+ k̂B

A•
k̂B

′

). (4.1.36)

Fact 4.1.7. Let FA and FB be frames. Then,

B•
→
RA/B = −

→
RA/B

B•
→
RB/A

→
RA/B, (4.1.37)

A•
→
R A/B = −

→
RA/B

A•
→
R B/A

→
RA/B. (4.1.38)

Proof. Differentiating
→
RA/B

→
RB/A =

→
I and using (4.1.29) yields

B•
→
RA/B

→
RB/A +

→
RA/B

B•
→
RB/A = 0,

which implies (4.1.37). �

Fact 4.1.8. Let FA and FB be frames. Then,

→
RA/B

B•
→
RB/A =

A•
→
R B/A

→
RA/B = −

B•
→
RA/B

→
RB/A = −

→
RB/A

A•
→
R A/B . (4.1.39)

Proof. Note that




→
RA/B

B•
→
RB/A





∣
∣
∣
∣
∣
∣
∣
∣
B

=
→
RA/B

∣
∣
∣
∣
∣
B

B•
→
RB/A

∣
∣
∣
∣
∣
∣
∣
∣
B

= RA/BṘB/A = RA/BṘB/AOA/BRA/B

= OB/A

A•
→
R B/A

∣
∣
∣
∣
∣
∣
∣
∣
A

OA/B

→
RA/B

∣
∣
∣
∣
∣
B

=

A•
→
R B/A

∣
∣
∣
∣
∣
∣
∣
∣
B

→
RA/B

∣
∣
∣
∣
∣
B

=





A•
→
R B/A

→
RA/B





∣
∣
∣
∣
∣
∣
∣
∣
B

. �

Fact 4.1.9. Let FA and FB be frames. Then,

B•
→
R

′

B/A =

B•
→
RA/B . (4.1.40)

Proof. Note that

B•
→
R

′

B/A =





B•
︷                    ︸︸                    ︷

(ı̂B ı̂
′
A + ̂B ̂

′
A + k̂Bk̂′A)





′

=



ı̂B
B•
ı̂A

′
+ ̂B

B•
̂A

′
+ k̂B

B•
k̂A

′


′

=
B•
ı̂A ı̂
′
B +

B•
̂A ̂
′
B +

B•
k̂Ak̂′B =

B•
→
RA/B . �
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4.2 The Mixed-Dot Identity and the Physical Angular Velocity Matrix

Let FA and FB be frames, and let
⇀
x be a physical vector. Then, the frame derivatives

A•
⇀
x and

B•
⇀
x

may be different if FA and FB are rotating relative to each other. The following result, called the

mixed-dot identity, shows how these derivatives are related.

Fact 4.2.1. Let FA and FB be frames, let
⇀
x be a physical vector. Then,

B•
︷ ︸︸ ︷

→
RB/A

⇀
x =

→
RB/A

A•
⇀
x . (4.2.1)

Proof. Defining
⇀
y
△
=
→
RB/A

⇀
x , note that





→
RA/B

B•
⇀
y





∣
∣
∣
∣
∣
∣
∣
A

=
→
RA/B

∣
∣
∣
∣
∣
A

B•
⇀
y

∣
∣
∣
∣
∣
∣
∣
A

= RA/BOA/B

B•
⇀
y

∣
∣
∣
∣
∣
∣
∣
B

=

B•
︷ ︸︸ ︷

→
RB/A

⇀
x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
B

=

˙︷    ︸︸    ︷

→
RB/A

⇀
x

∣
∣
∣
∣
∣
B

=

˙︷           ︸︸           ︷

OB/A

→
RB/A

⇀
x

∣
∣
∣
∣
∣
A

=

˙︷           ︸︸           ︷

OB/ARB/A
⇀
x
∣
∣
∣
∣
A
=

˙︷︸︸︷

⇀
x
∣
∣
∣
∣
A
=

A•
⇀
x

∣
∣
∣
∣
∣
∣
∣
A

. �

Fact 4.2.2. Let FA and FB be frames. Then,

A•
⇀
x =

B•
⇀
x +

→
RA/B

B•
→
RB/A

⇀
x . (4.2.2)

Proof. Using (4.2.1) we have

A•
⇀
x =

→
RA/B

B•
︷ ︸︸ ︷

→
RB/A

⇀
x

=
→
RA/B





→
RB/A

B•
⇀
x +

B•
→
RB/A

⇀
x





=

B•
⇀
x +

→
RA/B

B•
→
RB/A

⇀
x . �

Since

A•
⇀
x and

B•
⇀
x differ due to the relative rotation of FA and FB, we have the following definition.

Definition 4.2.3. Let FA and FB be frames. Then, the physical angular velocity matrix of FB

relative to FA is defined by

→
ΩB/A

△
=
→
RA/B

B•
→
RB/A . (4.2.3)

It follows from (4.1.37) that

→
ΩB/A = −

B•
→
RA/B

→
RB/A. (4.2.4)
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Furthermore, (4.2.2) can be written as

A•
⇀
x =

B•
⇀
x +

→
ΩB/A

⇀
x . (4.2.5)

Fact 4.2.4. Let FA and FB be frames. Then,
→
ΩB/A is skew symmetric, that is,

→
Ω
′

B/A = −
→
ΩB/A. (4.2.6)

Proof. Using (4.1.40) and (4.2.4), it follows that

→
Ω
′

B/A =





→
RA/B

B•
→
RB/A





′

=

B•
→
R

′

B/A

→
RB/A =

B•
→
RA/B

→
RB/A = −

→
ΩB/A. �

Fact 4.2.5. Let FA and FB be frames. Then,

B•
→
RB/A =

→
RB/A

→
ΩB/A, (4.2.7)

B•
→
RA/B = −

→
ΩB/A

→
RA/B. (4.2.8)

Proof. (4.2.7) follows from (4.2.3), and (4.2.8) follows from (4.2.4). �

Fact 4.2.6. Let FA and FB be frames. Then,

→
ΩA/B = ı̂B

A•
ı̂B

′
+ ̂B

A•
̂B

′
+ k̂B

A•
k̂B

′

, (4.2.9)

→
ΩA/B = −(

A•
ı̂B ı̂′B +

A•
̂B ̂′B +

A•
k̂B k̂′B), (4.2.10)

→
ΩB/A = ı̂A

B•
ı̂A

′
+ ̂A

B•
̂A

′
+ k̂A

B•
k̂A

′

, (4.2.11)

→
ΩB/A = −(

B•
ı̂A ı̂′A +

B•
̂A ̂′A +

B•
k̂A k̂′A). (4.2.12)

Proof. Note that

→
ΩA/B =

→
RB/A

A•
→
R A/B

= (ı̂B ı̂
′
A + ̂B ̂

′
A + k̂Bk̂′A)(ı̂A

A•
ı̂B

′
+ ̂A

A•
̂B

′
+ k̂A

A•
k̂B

′

)

= ı̂B
A•
ı̂B

′
+ ̂B

A•
̂B

′
+ k̂B

A•
k̂B

′

,

which proves (4.2.9). Using (4.1.36) yields (4.2.10). �

Fact 4.2.7. Let FA and FB be frames. Then,

A•
ı̂B =

→
ΩB/A ı̂B, (4.2.13)

A•
̂B =

→
ΩB/A ̂B, (4.2.14)
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A•
k̂B =

→
ΩB/Ak̂B. (4.2.15)

Proof. Using (4.2.11) and Fact 4.2.8, we have

→
ΩB/A ı̂B = (ı̂A

B•
ı̂A

′
+ ̂A

B•
̂A

′
+ k̂A

B•
k̂A

′

)ı̂B

= (
B•
ı̂A · ı̂B)ı̂A + (

B•
̂A · ı̂B) ̂A + (

B•
k̂A · ı̂B)k̂A

= (ı̂A·
A•
ı̂B)ı̂A + ( ̂A·

A•
ı̂B) ̂A + (k̂A·

A•
ı̂B)k̂A

= (ı̂A ı̂
′
A)

A•
ı̂B + ( ̂A ̂

′
A)

A•
ı̂B + (k̂Ak̂′A)

A•
ı̂B

=
→
I

A•
ı̂B =

A•
ı̂B . �

Fact 4.2.8. Let FA and FB be frames. Then,

ı̂A·
A•
ı̂B =

B•
ı̂A · ı̂B, ı̂A·

A•
̂B =

B•
ı̂A · ̂B, ı̂A·

A•
k̂B =

B•
ı̂A · k̂B, (4.2.16)

̂A·
A•
ı̂B =

B•
̂A · ı̂B, ̂A·

A•
̂B =

B•
̂A · ̂B, ̂A·

A•
k̂B =

B•
̂A · k̂B, (4.2.17)

k̂A·
A•
ı̂B =

B•
k̂A · ı̂B, k̂A·

A•
̂B =

B•
k̂A · ̂B, k̂A·

A•
k̂B =

B•
k̂A · k̂B. (4.2.18)

Proof. Note that ı̂A·
A•
ı̂B =

d
dt

(ı̂A · ı̂B) =
B•
ı̂A · ı̂B. �

Fact 4.2.9. Let FA and FB be frames. Then,

→
ΩA/B = −

→
ΩB/A, (4.2.19)

→
ΩA/B =

→
Ω
′

B/A. (4.2.20)

Proof. (4.2.19) follows from the equality of the first, second, and fourth terms in (4.1.39).

Alternatively, Fact 4.2.6 and (4.1.36) imply that

→
ΩA/B = −(

A•
ı̂B ı̂′B +

A•
̂B ̂′B +

A•
k̂B k̂′B)

= −
[(→
ΩB/A ı̂B

)

ı̂′B +
(→
ΩB/A ̂B

)

̂′B +
(→
ΩB/Ak̂B

)

k̂′B

]

= −
→
ΩB/A

→
I = −

→
ΩB/A. �

It follows from (4.2.19) that

→
ΩB/A = −

→
RB/A

A•
→
R A/B, (4.2.21)

→
ΩB/A =

A•
→
R B/A

→
RA/B. (4.2.22)
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Fact 4.2.10. Let FA and FB be frames, and define

ΩB/A|B
△
=
→
ΩB/A

∣
∣
∣
∣
∣
B

. (4.2.23)

Then,

ΩB/A|B = OB/AȮA/B = −ȮB/AOA/B, (4.2.24)

ΩB/A|B = −ΩT
B/A|B. (4.2.25)

Furthermore,

ΩA/B|A
△
=
→
ΩA/B

∣
∣
∣
∣
∣
A

= −
→
ΩB/A

∣
∣
∣
∣
∣
A

= −OA/BΩB/A|BOB/A = −ȮA/BOB/A. (4.2.26)

Proof. It follows from (4.2.3) that

ΩB/A|B =
→
ΩB/A

∣
∣
∣
∣
∣
B

=
→
RA/B

∣
∣
∣
∣
∣
B

B•
→
RB/A

∣
∣
∣
∣
∣
∣
∣
∣
B

= RA/BṘB/A = OB/AȮA/B,

which proves (4.2.24). Next, it follows from (4.2.6) that

ΩB/A|B =
→
ΩB/A

∣
∣
∣
∣
∣
B

= −
→
Ω
′

B/A

∣
∣
∣
∣
∣
B

= −
→
ΩB/A

∣
∣
∣
∣
∣

T

B

= −ΩT
B/A|B,

which proves (4.2.25). Finally, (4.2.26) follows from (4.2.19). �

Note that (4.2.26) shows that, except in special cases, ΩB/A|B , −ΩA/B.

4.3 Physical Angular Velocity Vector and Poisson’s Equation

To understand the meaning of
→
ΩB/A, let FA

θ−→
3

FB so that
→
RB/A =

→
Rk̂A

(θ) on a time interval,

where θ = θı̂B/ı̂A/k̂A
. Therefore,

→
ΩB/A =

→
RA/B

B•
→
RB/A=

→
Rk̂A

(−θ)
B•
→
R k̂A

(θ). (4.3.1)

Then, it follows that

→
ΩB/A = θ̇k̂

×
A. (4.3.2)

To see this in terms of components, we resolve (4.3.1) to obtain

ΩB/A|B =
→
ΩB/A

∣
∣
∣
∣
∣
B

=
→
RA/B

∣
∣
∣
∣
∣
B

B•
→
RB/A

∣
∣
∣
∣
∣
∣
∣
∣
B

= RA/BṘB/A = OB/AȮA/B. (4.3.3)

Since
→
RB/A =

→
Rk̂A

(θ) represents a rotation around k̂A through the angle θ, it follows that OB/A =

O3(θ). Hence,

ΩB/A|B = O3(θ)ȮT
3 (θ) =





0

0

θ̇





×

. (4.3.4)

Consequently, ΩB/A|B is associated with a physical vector that is aligned with the axis of rotation

and whose length represents the rate of rotation around that axis.
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The next result shows that the physical angular velocity matrix can be written as a physical cross

product matrix.

Fact 4.3.1. Let FA and FB be frames. Then, there exists a physical vector
⇀
ωB/A such that

→
ΩB/A =

⇀
ω
×
B/A. (4.3.5)

Furthermore,

ΩB/A|B = ω
×
B/A|B =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




, (4.3.6)

where




ω1

ω2

ω3





△
= ωB/A|B =

⇀
ωB/A

∣
∣
∣
∣
B
. (4.3.7)

In addition,

⇀
ωA/B = −

⇀
ωB/A. (4.3.8)

Finally,

ωB/A|B = −OB/AωA/B|A = −RA/BωA/B|A, (4.3.9)

⇀
ωB/A

∣
∣
∣
∣
A
= −ωA/B|A = OA/BωB/A|B. (4.3.10)

Proof. It follows from Fact 4.2.4 that
→
ΩB/A is skew symmetric. Fact 2.9.3 thus implies that

there exists a physical vector
⇀
ωB/A satisfying (4.3.5). Next, (4.3.8) follows from (4.2.19). Finally,

(4.3.9) follows from (4.2.26). �

It follows from (4.2.21), (4.2.22), (4.2.3), and (4.2.4) that

⇀
ω
×
B/A = −

→
RB/A

A•
→
R A/B =

A•
→
R B/A

→
RA/B =

→
RA/B

B•
→
RB/A = −

B•
→
RA/B

→
RB/A. (4.3.11)

Suppose, for example,
→
RB/A =

→
Rk̂A

(θ) on a time interval, so that FA

θ−→
3

FB, where θ = θı̂B/ı̂A/k̂A
.

Then, it follows from (4.3.2) that

⇀
ωB/A = θ̇k̂A = θ̇ı̂B/ı̂A/k̂A

k̂A. (4.3.12)

Note that (4.3.9) shows that ωB/A|B = −ωA/B|A may not be true. The following result gives

conditions under which ωB/A|B = −ωA/B.

Fact 4.3.2. Let FA and FB be frames. Then, at each instant of time, the following statements

are equivalent:

i)
→
ΩB/A

∣
∣
∣
∣
∣
A

=
→
ΩB/A

∣
∣
∣
∣
∣
B

.

ii) ΩA/B = −ΩB/A.

iii) ȮA/BOB/A = OB/AȮA/B.
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iv) ȮA/BOB/A = −ȮB/AOA/B.

v)
⇀
ωB/A

∣
∣
∣
∣
A
=

⇀
ωB/A

∣
∣
∣
∣
B
.

vi) ωA/B|A = −ωB/A|B.

vii) OB/AωA/B|A = ωA/B|A.

viii) OA/BωA/B|A = ωA/B|A.

Fact 4.3.3. Let FA and FB be frames. Then, at each instant of time, the following statements

are equivalent:

i) nB/A × ωB/A|B = 0.

ii) nB/A × ωA/B|A = 0.

Fact 4.3.4. Let FA and FB be frames. Then, at each instant of time, the following statements

are equivalent:

i)

B•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
B

= 0.

ii)

A•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
B

= 0.

iii) ω̇B/A|B = 0

iv) ω̇A/B|A = 0.

Proof. To prove that iii) implies iv), note that

B•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
B

=

.
︷  ︸︸  ︷

⇀
ωB/A

∣
∣
∣
∣
B
= ω̇B/A|B = 0.

Hence,

B•
⇀
ωB/A = 0, and thus

A•
⇀
ωB/A = 0. Therefore,

ω̇A/B =

.
︷  ︸︸  ︷

⇀
ωB/A

∣
∣
∣
∣
A
=

A•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
A

= 0. �

Using (4.3.5) we can rewrite Fact 4.2.7 as follows.

Fact 4.3.5. Let FA and FB be frames. Then,

A•
ı̂B =

⇀
ωB/A × ı̂B, (4.3.13)

A•
̂B =

⇀
ωB/A × ̂B, (4.3.14)

A•
k̂B =

⇀
ωB/A × k̂B. (4.3.15)

The following result gives Poisson’s equation (4.3.17).



KINEMATICS 143

Fact 4.3.6. Let FA and FB be frames. Then,

B•
→
RB/A =

→
RB/A

⇀
ω
×
B/A, (4.3.16)

ṘB/A = RB/Aω
×
B/A|B. (4.3.17)

Furthermore,

ȮA/B = OA/Bω
×
B/A|B, (4.3.18)

and thus

ȮB/A = −ω×B/A|BOB/A. (4.3.19)

Hence,

ω×B/A|B = OB/AȮA/B = −ȮB/AOA/B = RA/BṘB/A = −ṘA/BRB/A. (4.3.20)

Proof. Resolving (4.2.7) in FB yields (4.3.17). �

The following result provides a vectrix version of Poisson’s equation.

Fact 4.3.7. Let FA and FB be frames. Then,




A•
ı̂ B

A•
̂ B

A•
k̂ B





= −ω×B/A|B





ı̂B
̂B
k̂B




. (4.3.21)

Proof. It follows from (2.10.13) and (4.3.20) that




A•
ı̂ B

A•
̂ B

A•
k̂ B





= ȮB/A





ı̂A
̂A
k̂A




= ȮB/AOA/B





ı̂B
̂B
k̂B




= −ω×B/A|B





ı̂B
̂B
k̂B




. �

Resolving (4.3.21) in FA yields (4.3.17). Furthermore, (4.3.21) can be written as

A•
FB = −ω×B/A|BFB. (4.3.22)

4.4 Transport Theorem

The following result is the transport theorem. Note the “ABBA” pattern.

Fact 4.4.1. Let
⇀
x be a physical vector, and let FA and FB be frames. Then,

A•
⇀
x =

B•
⇀
x +

⇀
ωB/A ×

⇀
x . (4.4.1)

Proof. The result follows from (4.3.5) and (4.2.5). �

The following result is an immediate consequence of the transport theorem.
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Fact 4.4.2. Let FA and FB be frames. Then,

A•
⇀
ωB/A =

B•
⇀
ωB/A . (4.4.2)

Proof.

A•
⇀
ωB/A =

B•
⇀
ωB/A +

⇀
ωB/A ×

⇀
ωB/A =

B•
⇀
ωB/A . �

The angular acceleration of FB relative to FA is defined by

⇀
αB/A

△
=

A•
⇀
ωB/A =

B•
⇀
ωB/A . (4.4.3)

Now, let C be a frame, Then, the mixed angular acceleration is defined by

⇀
αB/A/C

△
=

C•
⇀
ωB/A . (4.4.4)

Note that
⇀
αB/A/A =

⇀
αB/A/B =

⇀
αB/A. Furthermore, let FD be a frame. Then, the angular acceleration

is resolved as

αB/A|D
△
=

⇀
αB/A

∣
∣
∣
∣
D
. (4.4.5)

Note that

αB/A|D =

A•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
D

= OD/Aω̇B/A|A =

B•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
D

= OD/Bω̇B/A|B. (4.4.6)

Finally, the mixed angular acceleration is resolved as

αB/A/C|D
△
=

⇀
αB/A/C

∣
∣
∣
∣
D

△
=

C•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
D

. (4.4.7)

Note that

αB/A/C|D = OD/C
⇀
αB/A/C

∣
∣
∣
∣
C
= OD/C

C•
⇀
ωB/A

∣
∣
∣
∣
∣
∣
∣
C

= OD/Cω̇B/A|C. (4.4.8)

The following result is an immediate consequence of the transport theorem.

Fact 4.4.3. Let FA be a frame, let B be a rigid body with body-fixed frame FB, let x, y, z be

points, and assume that y and z are fixed in B. Then,

⇀
v z/x/A =

⇀
ωB/A ×

⇀
r z/y +

⇀
v y/x/A. (4.4.9)

The following result is based on Figure 4.4.1.

Fact 4.4.4. Let FA and FB be frames with origins OA and OB, respectively, and let x be a point.

Then,

⇀
v x/OA/A =

⇀
v x/OA/B +

⇀
ωB/A ×

⇀
r x/OA

, (4.4.10)

⇀
v x/OA/A =

⇀
v x/OB/B +

⇀
ωB/A ×

⇀
r x/OB

+
⇀
v OB/OA/A. (4.4.11)
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r   /O

O

Figure 4.4.1: Geometry for relative motion.

Fact 4.4.5. Let
→
M be a physical matrix, and let FA and FB be frames. Then,

A•
→
M =

B•
→
M +

→
ΩB/A

→
M −

→
M
→
ΩB/A. (4.4.12)

Proof. For convenience, assume that
→
M =

⇀
x
⇀
y
′
. Note that

A•
→
M =

A•
⇀
x

⇀
y
′
+
⇀
x

A•
⇀
y

′

= (

B•
⇀
x +

⇀
ωB/A ×

⇀
x)

⇀
y
′
+
⇀
x(

B•
⇀
y +

⇀
ωB/A ×

⇀
y )′

=

B•
⇀
x

⇀
y
′
+
⇀
x

B•
⇀
y

′

+ (
⇀
ωB/A ×

⇀
x)

⇀
y
′
+
⇀
x(

⇀
ωB/A ×

⇀
y )′

=

B•
⇀
x

⇀
y
′
+
⇀
x

B•
⇀
y

′

+ (
⇀
ω
×
B/A

⇀
x)

⇀
y
′
+
⇀
x(

⇀
ω
×
B/A

⇀
y )′

=

B•
⇀
x

⇀
y
′
+
⇀
x

B•
⇀
y

′

+
⇀
ω
×
B/A

⇀
x
⇀
y
′
+
⇀
x
⇀
y
′⇀
ω
×′
B/A

=

B•
⇀
x

⇀
y
′
+
⇀
x

B•
⇀
y

′

+
⇀
ω
×
B/A

⇀
x
⇀
y
′
− ⇀

x
⇀
y
′⇀
ω
×
B/A

=

B•
→
M +

→
ΩB/A

→
M −

→
M
→
ΩB/A. �

Fact 4.4.6. Let FA and FB be frames. Then

A•
→
R B/A =

B•
→
RB/A +

→
ΩB/A

→
RB/A −

→
RB/A

→
ΩB/A, (4.4.13)

A•
→
R A/B =

B•
→
RA/B +

→
ΩB/A

→
RA/B −

→
RA/B

→
ΩB/A. (4.4.14)

4.5 Double Transport Theorem

Applying the transport theorem twice yields the double transport theorem.
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Fact 4.5.1. Let FA and FB be frames, and let
⇀
x be a physical vector. Then,

A••
⇀
x =

B••
⇀
x + 2

⇀
ωB/A ×

B•
⇀
x +

B•
⇀
ωB/A ×

⇀
x +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
x). (4.5.1)

Proof.

A••
⇀
x =

A•
B•
⇀
x +

A•
︷     ︸︸     ︷

⇀
ωB/A ×

⇀
x

=

B••
⇀
x +

⇀
ωB/A ×

B•
⇀
x +

B•
⇀
ωB/A ×

⇀
x +

⇀
ωB/A ×

A•
⇀
x

=

B••
⇀
x +

⇀
ωB/A ×

B•
⇀
x +

B•
⇀
ωB/A ×

⇀
x +

⇀
ωB/A × (

B•
⇀
x +

⇀
ωB/A ×

⇀
x)

=

B••
⇀
x + 2

⇀
ωB/A ×

B•
⇀
x +

B•
⇀
ωB/A ×

⇀
x +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
x). �

If
⇀
x is the position vector

⇀
r x/OB

, (4.5.1) can be written as

A••
⇀
r x/OB

=

B••
⇀
r x/OB

+ 2
⇀
ωB/A ×

B•
⇀
r x/OB

︸             ︷︷             ︸

Coriolis acceleration

+

B•
⇀
ωB/A ×

⇀
r x/OB

︸           ︷︷           ︸

angular-acceleration

(A2) acceleration

+
⇀
ωB/A × (

⇀
ωB/A ×

⇀
r x/OB

)
︸                       ︷︷                       ︸

centripetal acceleration

. (4.5.2)

This identity can be written in terms of position, velocity, and acceleration vectors, as shown by

the following result and illustrated in Figure 4.4.1. Note that, if
⇀
ωB/A is perpendicular to a plane

containing x and OB, then the centripetal acceleration is given by −|⇀ωB/A|2
⇀
r x/OB

, whose direction is

opposite to the direction of
⇀
r x/OB

.

Fact 4.5.2. Let FA and FB be frames with origins OA and OB, respectively, and let x be a point.

Then,

⇀
a x/OA/A =

⇀
a x/OB/B + 2

⇀
ωB/A ×

⇀
v x/OB/B +

⇀
αB/A ×

⇀
r x/OB

+
⇀
ωB/A × (

⇀
ωB/A ×

⇀
r x/OB

) +
⇀
aOB/OA/A.

(4.5.3)

Using (4.4.10), it follows that (4.5.3) can be written as

⇀
a x/OA/A =

⇀
a x/OB/B + 2

⇀
ωB/A ×

⇀
v x/OB/B +

⇀
αB/A ×

⇀
r x/OB

+
⇀
ωB/A × (

⇀
v x/OB/A −

⇀
v x/OB/B) +

⇀
aOB/OA/A.

(4.5.4)

4.6 Summation of Angular Velocities and Angular Accelerations

Fact 4.6.1. Let FA, FB, and FC be frames. Then,

→
ΩC/A =

→
ΩC/B +

→
ΩB/A, (4.6.1)

⇀
ωC/A =

⇀
ωC/B +

⇀
ωB/A. (4.6.2)

Furthermore,

ΩC/A|C = ΩC/B|C + OC/BΩB/A|BOB/C, (4.6.3)

ωC/A|C = ωC/B|C + OC/BωB/A|B. (4.6.4)
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Proof. Using the transport theorem and (4.2.19), we have

→
ΩC/A = ı̂A

C•
ı̂

′

A + ̂A
C•
̂

′

A + k̂A

C•
k̂

′

A

= ı̂A

(
B•
ı̂ A +

→
ΩB/C ı̂A

)′

+ ̂A

(
B•
̂ A +

→
ΩB/C ̂A

)′

+ k̂A

(B•
k̂ A +

→
ΩB/Ck̂A

)′

= ı̂A
(→
ΩB/C ı̂A

)′
+ ̂A

(→
ΩB/C ̂A

)′
+ k̂A

(→
ΩB/Ck̂A

)′
+ ı̂A

B•
ı̂

′

A + ̂A
B•
̂

′

A + k̂A

B•
k̂

′

A

= ı̂A ı̂
′
A

→
ΩC/B + ̂A ̂

′
A

→
ΩC/B + k̂Ak̂′A

→
ΩC/B +

→
ΩB/A

=
→
ΩC/B +

→
ΩB/A.

Finally, to prove (4.6.3), note that

ΩC/A|C =
→
ΩC/A

∣
∣
∣
∣
∣
C

= ΩC/B|C +
→
ΩB/A

∣
∣
∣
∣
∣
C

= ΩC/B|C + OC/B

→
ΩB/A

∣
∣
∣
∣
∣
B

OB/C

= ΩC/B|C + OC/BΩB/A|BOB/C. �

Fact 4.6.2. Let FA, FB, and FC be frames. Then,

⇀
αC/A =

⇀
αC/B +

⇀
αB/A −

⇀
ωC/B ×

⇀
ωB/A. (4.6.5)

Fact 4.6.3. Let FA, FB, FC, and FD be frames. Then,

⇀
αD/A =

⇀
αD/C +

⇀
αC/B +

⇀
αB/A −

⇀
ωD/C ×

⇀
ωC/B −

⇀
ωD/B ×

⇀
ωB/A (4.6.6)

=
⇀
αD/C +

⇀
αC/B +

⇀
αB/A −

⇀
ωD/C ×

⇀
ωC/A −

⇀
ωC/B ×

⇀
ωB/A. (4.6.7)

4.7 Angular Velocity Vector and the Eigenaxis Derivative

In this section we relate the angular velocity vector to the derivative of the eigenaxis and eige-

nangle, which appear in Rodrigues’s formula.

Fact 4.7.1. Let FA be a frame, and let n̂ be a unit dimensionless physical vector. Then, for all

time,

A•
n̂

′
n̂ = n̂′

A•
n̂= 0, (4.7.1)

n̂′
A•
n̂

×
= −

A•
n̂

′
n̂×, (4.7.2)

n̂′(n̂ ×
A•
n̂ ) = 0, (4.7.3)

A•
n̂

′
(n̂ ×

A•
n̂ ) = 0, (4.7.4)

n̂ × (n̂ ×
A•
n̂ ) = −

A•
n̂ , (4.7.5)
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n̂
A•
n̂

′
n̂× + n̂×

A•
n̂ n̂′ = −

A•
n̂

×
, (4.7.6)

A•
n̂

×
n̂× = n̂

A•
n̂

′
, (4.7.7)

n̂×
A•
n̂

×
=

A•
n̂ n̂′, (4.7.8)

(n̂ ×
A•
n̂ )× =

A•
n̂ n̂′ − n̂

A•
n̂

′
, (4.7.9)

|n̂ ×
A•
n̂ | = |

A•
n̂ |, (4.7.10)

A••
n̂

′
n̂ +

A•
n̂

′A•
n̂ = 0. (4.7.11)

Furthermore, at each instant of time, the following conditions are equivalent:

i)
A•
n̂= 0.

ii)
A•
n̂ n̂′ + n̂

A•
n̂

′
= 0.

iii) n̂ × (n̂×
A•
n̂ ) = 0.

iv) n̂
A•
n̂

′
n̂× + n̂×

A•
n̂ n̂′ = 0.

v) n̂×
A•
n̂= 0.

Finally, if, for all t ∈ [t1, t2],
A••
n̂ (t) = 0, then, for all t ∈ [t1, t2],

A•
n̂ (t) = 0.

Proof. The proof is left to the reader. �

For the following result note that

cot 1
2
θB/A =

sin θB/A

1 − cos θB/A

=
1 + cos θB/A

sin θB/A

. (4.7.12)

Fact 4.7.2. Let FA and FB be frames. Then,

A•
n̂ B/A =

→
RA/B

B•
n̂ B/A (4.7.13)

= (cos θB/A)
B•
n̂ B/A − (sin θB/A)n̂B/A ×

B•
n̂ B/A (4.7.14)

=
B•
n̂ B/A +

⇀
ωB/A × n̂, (4.7.15)

A•
→
R B/A = [(sin θB/A)(n̂B/An̂′B/A −

→
I ) + (cos θB/A)n̂×B/A]θ̇B/A

+ (1 − cos θB/A)(
A•
n̂ B/A n̂′B/A + n̂B/A

A•
n̂

′

B/A) + (sin θB/A)
A•
n̂

×

B/A, (4.7.16)

B•
→
RB/A = [(sin θB/A)(n̂B/An̂′B/A −

→
I ) + (cos θB/A)n̂×B/A]θ̇B/A

+ (1 − cos θB/A)(
B•
n̂ B/A n̂′B/A + n̂B/A

B•
n̂

′

B/A) + (sin θB/A)
B•
n̂

×

B/A, (4.7.17)
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⇀
ωB/A = θ̇B/An̂B/A + (1 − cos θB/A)n̂B/A ×

A•
n̂ B/A + (sin θB/A)

A•
n̂ B/A (4.7.18)

= θ̇B/An̂B/A − (1 − cos θB/A)n̂B/A ×
B•
n̂ B/A + (sin θB/A)

B•
n̂ B/A, (4.7.19)

|⇀ωB/A| =

√

θ̇2
B/A
+ 2(1 − cos θB/A) |

A•
n̂ B/A |2 (4.7.20)

=

√

θ̇2
B/A
+ 2(1 − cos θB/A) |

B•
n̂ B/A |2, (4.7.21)

θ̇B/A = n̂′B/A
⇀
ωB/A, (4.7.22)

A•
n̂

′

B/A

⇀
ωB/A = (sin θB/A)

A•
n̂

′

B/A

A•
n̂ B/A (4.7.23)

= −(sin θB/A)
A••
n̂

′

B/A n̂B/A, (4.7.24)

B•
n̂

′

B/A

⇀
ωB/A = (sin θB/A)

B•
n̂

′

B/A

B•
n̂ B/A (4.7.25)

= −(sin θB/A)
B••
n̂

′

B/A n̂B/A. (4.7.26)

Finally, if θB/A , 0, then

|⇀ωB/A| =

√

θ̇2
B/A
+ 2(tan 1

2
θB/A)

A•
n̂

′

B/A

⇀
ωB/A (4.7.27)

=

√

θ̇2
B/A
+ 2(tan 1

2
θB/A)

B•
n̂

′

B/A

⇀
ωB/A, (4.7.28)

A•
n̂ B/A =

1
2
[(cot 1

2
θB/A)(

→
I − n̂B/An̂′B/A) − n̂×B/A]

⇀
ωB/A (4.7.29)

= 1
2
[θ̇B/A(cot 1

2
θB/A)n̂B/A + (cot 1

2
θB/A)

⇀
ωB/A +

⇀
ωB/A × n̂B/A] (4.7.30)

and

B•
n̂ B/A =

1
2
[(cot 1

2
θB/A)(

→
I − n̂B/An̂′B/A) + n̂×B/A]

⇀
ωB/A (4.7.31)

= 1
2
[θ̇B/A(cot 1

2
θB/A)n̂B/A + (cot 1

2
θB/A)

⇀
ωB/A −

⇀
ωB/A × n̂B/A]. (4.7.32)

Proof. Using Fact 2.11.8 and Fact 4.7.1, recalling that

→
RA/B = (cos θB/A)

→
I + (1 − cos θB/A)n̂B/An̂′B/A − (sin θB/A)n̂×B/A,

it follows that

⇀
ω
×
B/A =

A•
→
R B/A

→
RA/B

= θ̇B/An̂×B/A + (1 − cos θB/A)(n̂B/A ×
A•
n̂ B/A)× + (sin θB/A)

A•
n̂

×

B/A .
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Next, sufficiency in i) is immediate. To prove necessity, suppose that
⇀
ωB/A = 0. Then, θ̇B/A =

n̂′
B/A

⇀
ωB/A = 0. Furthermore, note that (sin θB/A)|

A•
n̂ B/A |2 =

A•
n̂

′

B/A

⇀
ωB/A = 0. Therefore, either

A•
n̂ B/A

= 0 or θB/A = 0 or θB/A = π. In the case that θB/A = π, it follows that n̂B/A ×
A•
n̂ B/A= 0. Finally,

substituting (4.7.18) into the right hand side of (4.7.29) yields
A•
n̂ B/A.

To derive (4.7.29), multiply (4.7.18) by n̂×
B/A

, which yields

n̂B/A ×
⇀
ωB/A = (cos θB/A − 1)[

→
I − (cot 1

2
θB/A)n̂×B/A]

A•
n̂ B/A .

Hence,

A•
n̂ B/A =

1

cos θB/A − 1
[
→
I − (cot 1

2
θB/A)n̂×B/A]−1(n̂B/A ×

⇀
ωB/A).

Now, using (2.9.8) yields (4.7.29). �

Equation (4.7.18) gives an expression for
⇀
ωB/A in terms of the eigenaxis n̂B/A and its derivative.

If the eigenaxis is constant, then
⇀
ωB/A = θ̇B/An̂B/A, which includes an Euler rotation as a special

case.

Fact 4.7.3. Let FA and FB be frames. Then, at each instant of time the following statements are

equivalent:

i)
A•
n̂ B/A =

B•
n̂ B/A .

ii)
⇀
ωB/A × n̂B/A = 0.

iii) ωB/A × nB/A = 0.

iv) ωA/B × nB/A = 0.

v) OA/BṅB/A = ṅB/A.

vi) OB/AṅB/A = ṅB/A.

Furthermore, at each instant of time the following statements hold:

vii) If i)–vi) are satisfied and
A•
n̂ B/A , 0, then θB/A(t) = 0.

viii) If θB/A = 0, then i)–vi) are satisfied.

ix) If i)–vi) are satisfied and θB/A , 0, then
A•
n̂ B/A = 0.

x) The following conditions are equivalent:

a)
A•
n̂ B/A= 0.

b)
B•
n̂ B/A= 0.

xi) The following conditions are equivalent:

a) Either θB/A = 0 or
A•
n̂ B/A= 0.
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b)
⇀
ωB/A = θ̇B/An̂B/A.

xii) If θB/A = 0 and θ̇B/A = 0, then
⇀
ωB/A = 0.

xiii) The following conditions are equivalent:

a)
⇀
ωB/A = 0.

b) θ̇B/A = 0 and either θB/A = 0 or
A•
n̂ B/A= 0.

c) θ̇B/A = 0 and either θB/A = 0 or
B•
n̂ B/A= 0.

xiv) The following conditions are equivalent:

a)
⇀
ωB/A , 0.

b) Either θ̇B/A , 0 or both θB/A , 0 and
A•
n̂ B/A, 0.

c) Either θ̇B/A , 0 or both θB/A , 0 and
B•
n̂ B/A, 0.

xv) If
⇀
ωB/A , 0, then either θB/A , 0 or θ̇B/A , 0.

Fact 4.7.4. Let FA and FB be frames, and assume that ωB/A , 0 and, for all time t ∈ (t1, t2),
A•
⇀
ωB/A (t) = 0. Then, the following conditions are equivalent:

i) For all time t ∈ (t1, t2),
A•
n̂ B/A (t) = 0.

ii) For all time t ∈ (t1, t2),
⇀
ωB/A(t) × n̂B/A(t) = 0.

Proof. The result follows from Problem 4.20.3. �

For small angles θB/A we have

⇀
ωB/A = θ̇B/An̂B/A + [ 1

2
θ2

B/A + O(θ4
B/A)]n̂B/A ×

A•
n̂ B/A + [θB/A + O(θ3

B/A)]
A•
n̂ B/A (4.7.33)

= θ̇B/An̂B/A − [ 1
2
θ2

B/A + O(θ4
B/A)]n̂B/A ×

B•
n̂ B/A + [θB/A + O(θ3

B/A)]
B•
n̂ B/A, (4.7.34)

|⇀ωB/A| =

√

θ̇2
B/A
+ [θ2

B/A
+ O(θ4

B/A
)] |

A•
n̂ B/A |2. (4.7.35)

where limx→0 O(x)/x exists. We thus have the approximations

⇀
ωB/A ≈ θ̇B/An̂B/A +

1
2
θ2

B/An̂B/A ×
A•
n̂ B/A + θB/A

A•
n̂ B/A, (4.7.36)

⇀
ωB/A ≈ θ̇B/An̂B/A − 1

2
θ2

B/An̂B/A ×
B•
n̂ B/A + θB/A

B•
n̂ B/A, (4.7.37)

|⇀ωB/A| ≈

√

θ̇2
B/A
+ θ2

B/A
|
A•
n̂ B/A |2. (4.7.38)

Consequently,

lim
θB/A→0

⇀
ωB/A = θ̇B/An̂B/A, (4.7.39)
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lim
θB/A→0

|⇀ωB/A| = |θ̇B/A|. (4.7.40)

Therefore, for an infinitisimal rotation from FA to FB, the angular velocity vector
⇀
ωB/A can be

viewed as the eigenaxis of rotation scaled by the rate of rotation. In other words, the physical vector
⇀
ωB/A can be viewed as the instantaneous axis of rotation, where the rate of rotation is given by

|⇀ωB/A| and the direction of rotation is given by the curled fingers of the right hand with the thumb

pointing in the direction of
⇀
ωB/A.

4.8 Angular Acceleration Vector and the Eigenaxis and Eigenangle

Differentiating (4.7.18) and (4.7.19) yields

⇀
αB/A = θ̈B/An̂B/A + θ̇B/A[(1 + cos θB/A)

A•
n̂ B/A + (sin θB/A)n̂B/A ×

A•
n̂ B/A]

+ (1 − cos θB/A)n̂B/A ×
A••
n̂ B/A + (sin θB/A)

A••
n̂ B/A (4.8.1)

= θ̈B/An̂B/A + θ̇B/A[(1 + cos θB/A)
B•
n̂ B/A − (sin θB/A)n̂B/A ×

B•
n̂ B/A]

− (1 − cos θB/A)n̂B/A ×
B••
n̂ B/A + (sin θB/A)

B••
n̂ B/A . (4.8.2)

Fact 4.8.1. Let FA and FB be frames, and let t be an instant of time. Then, the following

statements hold:

i) If θB/A(t) = 0, then
⇀
αB/A(t) = θ̈B/A(t)n̂B/A(t) + 2θ̇B/A(t)

A•
n̂ B/A (t).

ii) If
⇀
αB/A(t) = 0, then

θ̈B/A(t) =
A•
n̂

′

B/A (t)
⇀
ωB/A(t) (4.8.3)

= [sin θB/A(t)]
A•
n̂

′

B/A (t)
A•
n̂ B/A (t) (4.8.4)

= −[sin θB/A(t)]n̂′B/A(t)
A••
n̂ B/A (t), (4.8.5)

|⇀ωB/A(t)|2 = θ̇2
B/A(t) + 2[tan 1

2
θB/A(t)]θ̈B/A(t). (4.8.6)

iii) If θB/A(t) = 0 and
⇀
αB/A(t) = 0, then |⇀ωB/A(t)| = |θ̇B/A|, θ̈B/A(t) = 0, θ̇B/A(t)

A•
n̂ B/A (t) = 0,

and
A•
n̂

′

B/A (t)
⇀
ωB/A(t) = 0.

iv) Assume that
⇀
αB/A(t) = 0 and sin θB/A(t) , 0. Then, θ̈B/A(t) = 0 if and only if

A•
n̂ B/A (t) = 0.

v) Assume that
A••
n̂ B/A (t) = 0. Then,

⇀
αB/A(t) = 0 if and only if θ̈B/A(t) = 0 and θ̇B/A[(1 +

cos θB/A)
A•
n̂ B/A + (sin θB/A)n̂B/A ×

A•
n̂ B/A] = 0.

vi) Assume that
A•
n̂ B/A (t) = 0 and

A••
n̂ B/A (t) = 0. Then,

⇀
αB/A(t) = 0 if and only if θ̈B/A(t) = 0.

Proof. All statements follow from (4.8.1). �
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Fact 4.8.2. Let FA and FB be frames, assume that there exists an instant of time t such that

ωB/A(t) , 0, assume that, for all t,

A•
⇀
ωB/A(t) = 0, and assume that there exists an instant of time t0 such

that RB/A(t0) = I3. Then, for all t ≥ t0 such that sin θB/A(t) , 0, it follows that
A•
n̂ B/A(t) =

B•
n̂ B/A(t) = 0

and θ̈B/A(t) = 0.

Proof. For convenience, let t0 = 0. It follows from Fact 4.3.4 that both ωB/A|B and ωA/B|A are

constant. Furthermore, since OA/B(0) = I3, it follows from (4.3.10) that ωB/A|B = OA/B(0)ωB/A|B =

−ωA/B|A , 0.

Next, it follows from (4.3.17) that

ṘA/B(t) = −ω×B/A|BRA/B(t),

ṘB/A(t) = −ω×A/B|ARB/A(t).

Therefore,

RA/B(t) = e−ω
×
B/A|Bt

RA/B(0) = RA/B(0)eω
×
A/B|At,

RB/A(t) = e−ω
×
A/B|At

RB/A(0) = RB/A(0)eω
×
B/A|Bt.

Hence, it follows from (2.11.43) that, for all t ≥ 0,

2 sin θB/A(t)nB/A(t) × ωB/A|B = [RB/A(t) − RA/B(t)]ωB/A|B

= RB/A(0)eω
×
B/A|BtωB/A|B − RA/B(0)eω

×
A/B|AtωB/A|rmB

= RB/A(0)eω
×
B/A|BtωB/A|B − RA/B(0)e−ω

×
B/A|BtωB/A|B

= RB/A(0)ωB/A|B − RA/B(0)ωB/A|B

= [RB/A(0) − RA/B(0)]ωB/A|B

= 0.

Therefore, for all t ≥ 0 such that sin θB/A(t) , 0, it follows that n̂B/A ×
⇀
ωB/A = 0, and thus

A•
n̂ B/A

× ⇀
ωB/A = 0. It thus follows from Problem 4.20.4 that, for all t ≥ 0 such that sin θB/A(t) , 0, it

follows that
A•
n̂ B/A =

B•
n̂ B/A = 0. Finally, for all t ≥ 0 such that sin θB/A(t) , 0, it follows from (4.8.3)

that θ̈B/A(t) = 0. �

4.9 Angular Velocity Vector and the Eigenaxis-Angle-Vector Derivative

Recall from (2.14.5) that

⇀

ΘB/A
△
= θB/An̂B/A. (4.9.1)

Fact 4.9.1. Let FA and FB be frames. Then,

A•
⇀

ΘB/A =
→
RA/B

B•
⇀

ΘB/A . (4.9.2)

Proof. It follows from (2.11.42) and (4.7.13) that

A•
⇀

ΘB/A = θ̇B/An̂B/A + θB/A

A•
n̂ B/A
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= θ̇B/An̂B/A + θB/A

→
RA/B

B•
n̂ B/A

=
→
RA/B(θ̇B/A

→
RB/An̂B/A + θB/A

B•
n̂ B/A)

=
→
RA/B(θ̇B/An̂B/A + θB/A

B•
n̂ B/A)

=
→
RA/B

B•
⇀

ΘB/A . �

Fact 4.9.2. Let B be a rigid body with body-fixed frame FB, and assume that the orientation of

FB relative to FA is given by
→
RB/A = exp(

⇀

Θ
×

B/A). Then,

A•
→
R B/A =

∫ 1

0

exp

(

τ
⇀

Θ
×

B/A

) A•
⇀

Θ

×

B/A exp

(

(1 − τ)
⇀

Θ
×

B/A

)

dτ, (4.9.3)

A•
→
R A/B =

∫ 1

0

exp

(

τ
⇀

Θ
×

A/B

) A•
⇀

Θ

×

A/B exp

(

(1 − τ)
⇀

Θ
×

A/B

)

dτ, (4.9.4)

and thus

⇀
ω
×
B/A =

A•
→
R B/A

→
RA/B (4.9.5)

=

∫ 1

0

exp

(

τ
⇀

Θ
×

B/A

) A•
⇀

Θ

×

B/A exp

(

τ
⇀

Θ
×′

B/A

)

dτ. (4.9.6)

Consequently,

⇀
ωB/A =

∫ 1

0

exp

(

τ
⇀

Θ
×

B/A

)

dτ

A•
⇀

ΘB/A . (4.9.7)

Furthermore,

⇀
ωB/A =

1

θ2
B/A

(
⇀

ΘB/A

⇀

Θ
′

B/A + (
→
I −

→
RB/A)

⇀

Θ
×

B/A

) A•
⇀

ΘB/A (4.9.8)

=
1

θ2
B/A

(
⇀

ΘB/A

⇀

Θ
′

B/A − (
→
I −

→
RA/B)

⇀

Θ
×

B/A

) B•
⇀

ΘB/A (4.9.9)

=





→
I +

1 − cos θB/A

θ2
B/A

⇀

Θ
×

B/A +
θB/A − sin θB/A

θ3
B/A

⇀

Θ
×2

B/A





A•
⇀

ΘB/A (4.9.10)

=





→
I −

1 − cos θB/A

θ2
B/A

⇀

Θ
×

B/A +
θB/A − sin θB/A

θ3
B/A

⇀

Θ
×2

B/A





B•
⇀

ΘB/A . (4.9.11)

Equivalently,

⇀
ωB/A = θ̇B/An̂B/A + (

→
I −

→
RB/A)n̂B/A ×

A•
n̂ B/A (4.9.12)

= θ̇B/An̂B/A + (
→
I −

→
RA/B)n̂B/A ×

B•
n̂ B/A (4.9.13)
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= θ̇B/An̂B/A + (1 − cos θB/A)n̂B/A ×
A•
n̂ B/A + (sin θB/A)

A•
n̂ B/A (4.9.14)

= θ̇B/An̂B/A − (1 − cos θB/A)n̂B/A ×
B•
n̂ B/A + (sin θB/A)

B•
n̂ B/A . (4.9.15)

In addition,

A•
⇀

ΘB/A=





→
I − 1

2

⇀

Θ
×

B/A +
2 − θB/A cot 1

2
θB/A

2θ2
B/A

⇀

Θ
×2

B/A





⇀
ωB/A, (4.9.16)

B•
⇀

ΘB/A=





→
I +

1

2

⇀

Θ
×

B/A +
2 − θB/A cot 1

2
θB/A

2θ2
B/A

⇀

Θ
×2

B/A





⇀
ωB/A. (4.9.17)

Finally, if
⇀

ΘB/A and

A•
⇀

ΘB/A are parallel, then
⇀
ωB/A =

A•
⇀

ΘB/A .

Proof. Fact 11.14.3 of [1] yields (4.9.3). It then follows that

⇀
ω
×
B/A = −

B•
→
RA/B

→
RB/A =

∫ 1

0

exp

(

τ
⇀

Θ
×′

B/A

) B•
⇀

Θ

×

B/A exp

(

τ
⇀

Θ
×

B/A

)

dτ.

Therefore, it follows from Fact 2.9.8 that

⇀
ωB/A =

∫ 1

0

exp

(

τ
⇀

Θ
×′

B/A

)

dτ

B•
⇀

ΘB/A .

Using Fact 3.10.1, Fact 6.6.9, and Fact 11.13.14 of [1] yields (4.9.9). Using Fact 2.9.4, (4.9.10), and

(4.9.11) yields (4.9.16) and (4.9.17). �

Note that

lim
θB/A→0

1 − cos θB/A

θ2
B/A

=
1

2
, (4.9.18)

lim
θB/A→0

θB/A − sin θB/A

θ3
B/A

=
1

6
, (4.9.19)

lim
θB/A→0

2 − θB/A cot 1
2
θB/A

2θ2
B/A

=
1

12
. (4.9.20)

However, note that, concerning (4.7.29) and (4.7.31),

lim
θB/A→0

cot 1
2
θB/A = ∞. (4.9.21)

The nonexistence of this limit reflects the fact that, if θB/A = 0, then (4.7.18) and (4.7.19) become

⇀
ωB/A = θ̇B/An̂B/A, which is independent of

A•
n̂ B/A and

B•
n̂ B/A .

The equivalence of (4.9.10) and (4.9.16) follows the equality




→
I +

1 − cos θB/A

θ2
B/A

⇀

Θ
×

B/A +
θB/A − sin θB/A

θ3
B/A

⇀

Θ
×2

B/A









→
I − 1

2

⇀

Θ
×

B/A +
2 − θB/A cot 1

2
θB/A

2θ2
B/A

⇀

Θ
×2

B/A



 =
→
I .

(4.9.22)



156 CHAPTER 4

Likewise, the equivalence of (4.9.11) and (4.9.17) follows the equality




→
I −

1 − cos θB/A

θ2
B/A

⇀

Θ
×

B/A +
θB/A − sin θB/A

θ3
B/A

⇀

Θ
×2

B/A









→
I +

1

2

⇀

Θ
×

B/A +
2 − θB/A cot 1

2
θB/A

2θ2
B/A

⇀

Θ
×2

B/A



 =
→
I .

(4.9.23)

Both (4.9.22) and (4.9.23) are consequences of (2.9.4) with θB/A = ‖
⇀

ΘB/A‖2.

4.10 Angular Velocity Vector and Euler-Angle Derivatives

The angular velocity vector can be related to the derivatives of the Euler angles. For 3-2-1

(yaw-pitch-roll) Euler angles Ψ,Θ,Φ (see (2.12.21)), we have

⇀
ωD/A =

⇀
ωD/C +

⇀
ωC/B +

⇀
ωB/A (4.10.1)

= Φ̇ı̂C + Θ̇ ̂B + Ψ̇k̂A. (4.10.2)

Since ı̂D = ı̂C, ̂C = ̂B, and k̂B = k̂A, resolving
⇀
ωD/A in FD yields

⇀
ωD/A = Φ̇ı̂D + Θ̇ ̂C + Ψ̇k̂B (4.10.3)

= Φ̇ı̂D + Θ̇[(cosΦ) ̂D − (sinΦ)k̂D] + Ψ̇[(cosΘ)k̂C − (sinΘ)ı̂C] (4.10.4)

= Φ̇ı̂D + Θ̇(cosΦ) ̂D − Θ̇(sinΦ)k̂D + Ψ̇(cosΘ)[(cosΦ)k̂D + (sinΦ) ̂D] − Ψ̇(sinΘ)ı̂D (4.10.5)

= [−Ψ̇(sinΘ) + Φ̇]ı̂D + [Ψ̇(sinΦ) cosΘ + Θ̇ cosΦ] ̂D + [Ψ̇(cosΦ) cosΘ − Θ̇(sinΦ)]k̂D.

(4.10.6)

Hence

ωD/A|D =





1 0 − sinΘ

0 cosΦ (sinΦ) cosΘ

0 − sinΦ (cosΦ) cosΘ









Φ̇

Θ̇

Ψ̇




. (4.10.7)

We rewrite (4.10.7) as

ωD/A|D = S (Φ,Θ)θ̇, (4.10.8)

where

S (Φ,Θ)
△
=





1 0 − sinΘ

0 cosΦ (sinΦ) cosΘ

0 − sinΦ (cosΦ) cosΘ




, θ

△
=





Φ

Θ

Ψ




. (4.10.9)

Note that S (Φ,Θ) is independent of Ψ and det S (Φ,Θ) = cosΘ. Assuming that S (Φ,Θ) is nonsin-

gular, solving (4.10.8) for θ̇ yields

θ̇ = S (Φ,Θ)−1ωD/A|D, (4.10.10)

where

S (Φ,Θ)−1 △
=





1 (sinΦ) tanΘ (cosΦ) tanΘ

0 cosΦ − sinΦ

0 (sinΦ) secΘ (cosΦ) secΘ




. (4.10.11)

For 3-1-3 (precession, nutation, spin) Euler angles Φ,Θ,Ψ (see (2.12.35)), we have

⇀
ωD/A =

⇀
ωD/C +

⇀
ωC/B +

⇀
ωB/A (4.10.12)
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= Ψ̇k̂C + Θ̇ı̂B + Φ̇k̂A. (4.10.13)

Since k̂A = k̂B, ı̂B = ı̂C, and k̂C = k̂D, resolving
⇀
ωD/A in FD yields

⇀
ωD/A = Ψ̇k̂D + Θ̇ı̂C + Φ̇k̂B

= Ψ̇k̂D + Θ̇[(cosΨ)ı̂D − (sinΨ) ̂D] + Φ̇[(cosΘ)k̂C + (sinΘ) ̂C]

= Ψ̇k̂D + Θ̇(cosΨ)ı̂D − Θ̇(sinΨ) ̂D + Φ̇(cosΘ)k̂D + Φ̇(sinΘ)[(cosΨ) ̂D + (sinΨ)ı̂D]

= [Θ̇(cosΨ) + Φ̇(sinΨ) sinΘ]ı̂D + [Φ̇(cosΨ) sinΘ − Θ̇(sinΨ)] ̂D + [Ψ̇ + Φ̇(cosΘ)]k̂D.

Hence,

ωD/A|D =





0 cosΨ (sinΨ) sinΘ

0 − sinΨ (cosΨ) sinΘ

1 0 cosΘ









Ψ̇

Θ̇

Φ̇




. (4.10.14)

We rewrite (4.10.14) as

ωD/A|D = S (Ψ,Θ)θ̇, (4.10.15)

where

S (Ψ,Θ)
△
=





0 cosΨ (sinΨ) sinΘ

0 − sinΨ (cosΨ) sinΘ

1 0 cosΘ




, θ

△
=





Ψ

Θ

Φ




. (4.10.16)

Note that S (Ψ,Θ) is independent of Φ and det S (Φ,Θ) = sinΘ. Assuming that S (Ψ,Θ) is nonsin-

gular, solving (4.10.15) for θ̇ yields

θ̇ = S (Φ,Θ)−1ωD/A|D, (4.10.17)

where

S (Ψ,Θ)−1 △
=





−(sinΨ) cotΘ −(cosΨ) cotΘ 1

cosΨ − sinΨ 0

(sinΨ) cscΘ (cosΨ) cscΘ 0




. (4.10.18)

4.11 Angular Velocity Vector and Euler-Vector Derivative

Recall from (2.15.15) that the eigenaxis angle vector is given by

⇀
εB/A = (sin 1

2
θB/A)n̂B/A. (4.11.1)

Fact 4.11.1. Let FA and FB be frames. Then,

A•
⇀
ε B/A =

→
RA/B

B•
⇀
ε B/A . (4.11.2)

Proof. It follows from (2.11.42) and (4.7.13) that

A•
⇀
ε B/A =

1
2
θ̇B/A(cos 1

2
θB/A)n̂B/A + (sin 1

2
θB/A)

A•
n̂ B/A

= 1
2
θ̇B/A(cos 1

2
θB/A)n̂B/A + (sin 1

2
θB/A)

→
RA/B

B•
n̂ B/A

=
→
RA/B[ 1

2
θ̇B/A(cos 1

2
θB/A)

→
RB/An̂B/A + (sin 1

2
θB/A)

B•
n̂ B/A]
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=
→
RA/B[ 1

2
θ̇B/A(cos 1

2
θB/A)n̂B/A + (sin 1

2
θB/A)

B•
n̂ B/A]

=
→
RA/B

B•
⇀
ε B/A . �

The following result relates the derivative of the Euler vector to the angular velocity vector.

Fact 4.11.2. Let FA and FB be frames. Then,

ηB/Aη̇B/A +
⇀
ε
′
B/A

B•
⇀
ε B/A = 0, (4.11.3)

η̇B/A = − 1
2

⇀
ε
′
B/A

⇀
ωB/A, (4.11.4)

B•
⇀
ε B/A=

1
2
(ηB/A

⇀
ωB/A +

⇀
εB/A ×

⇀
ωB/A). (4.11.5)

⇀
ωB/A = 2(ηB/A

B•
⇀
ε B/A − η̇B/A

⇀
εB/A −

⇀
εB/A ×

B•
⇀
ε B/A). (4.11.6)

Proof. To prove (4.11.3), differentiate (2.15.25) with respect to FA.

To prove (4.11.4), note that it follows from (4.7.18) that

− 1
2

⇀
ε
′
B/A

⇀
ωB/A = − 1

2
(sin 1

2
θB/A)n̂′B/A[θ̇B/An̂B/A + (1 − cos θB/A)n̂B/A ×

A•
n̂ B/A + (sin θB/A)

A•
n̂ B/A]

= − 1
2
θ̇B/A sin 1

2
θB/A

= η̇B/A.

Next, to prove (4.11.5), note that it follows from (4.7.31) and (4.7.22) that

B•
⇀
ε B/A =

1
2
θ̇B/AηB/An̂B/A + (sin 1

2
θB/A)

B•
n̂ B/A

= 1
2
θ̇B/AηB/An̂B/A +

1
2
(sin 1

2
θB/A)[n̂×B/A + (cot 1

2
θB/A)(

→
I − n̂B/An̂′B/A)]

⇀
ωB/A

= 1
2
θ̇B/AηB/An̂B/A + [ 1

2
(sin 1

2
θB/A)n̂×B/A +

1
2
ηB/A(

→
I − n̂B/An̂′B/A)]

⇀
ωB/A

= 1
2
θ̇B/AηB/An̂B/A + [ 1

2
(sin 1

2
θB/A)n̂×B/A +

1
2
ηB/A

→
I ]
⇀
ωB/A − 1

2
θ̇B/AηB/An̂B/A

= 1
2
[ηB/A

→
I + (sin 1

2
θB/A)n̂×B/A]

⇀
ωB/A

= 1
2
(ηB/A

→
I +

⇀
ε
×
B/A)

⇀
ωB/A.

Finally, to prove (4.11.6), multiply both sides of (4.11.5) by 2
⇀
ε
×
B/A to obtain

2
⇀
εB/A ×

B•
⇀
ε B/A = ηB/A

⇀
εB/A ×

⇀
ωB/A +

⇀
εB/A × (

⇀
εB/A ×

⇀
ωB/A)

= ηB/A(2

B•
⇀
ε B/A − ηB/A

⇀
ωB/A) +

⇀
ε
′
B/A

⇀
ωB/A

⇀
εB/A − |

⇀
εB/A|2

⇀
ωB/A

= ηB/A(2

B•
⇀
ε B/A − ηB/A

⇀
ωB/A) +

⇀
ε
′
B/A

⇀
ωB/A

⇀
εB/A − (1 − η2

B/A)
⇀
ωB/A
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= 2ηB/A

B•
⇀
ε B/A − 2η̇B/A

⇀
εB/A −

⇀
ωB/A. �

Fact 4.11.3. Let FA and FB be frames, and define εB/A|B
△
=

⇀
εB/A

∣
∣
∣
∣
B
. Then,

ηB/Aη̇B/A + ε
T
B/A|Bε̇B/A|B = 0, (4.11.7)

η̇B/A = − 1
2
εT

B/A|BωB/A|B, (4.11.8)

ε̇B/A|B =
1
2
(ηB/AωB/A|B + εB/A|B × ωB/A|B), (4.11.9)

ωB/A|B = 2(ηB/Aε̇B/A|B − η̇B/AεB/A|B − εB/A|B × ε̇B/A|B). (4.11.10)

In terms of the Euler parameter vector

qB/A =

[

ηB/A

εB/A|B

]

=





a

b

c

d





(4.11.11)

defined by (2.15.20), it follows from (4.11.10) that ωB/A|B can be written in terms of q̇B/A as

ωB/A|B = 2





−b a d −c

−c −d a b

−d c −b a




q̇B/A. (4.11.12)

Conversely, it follows from (4.11.8) and (4.11.9) that q̇B/A can be written in terms of ωB/A|B as

q̇B/A =
1

2

[

−εT
B/A|B

ηB/AI3 + ε
×
B/A|B

]

ωB/A|B =
1

2





−b −c −d

a −d c

d a −b

−c b a





ωB/A|B. (4.11.13)

Equations (4.11.8) and (4.11.9) can be written as

q̇B/A = Q(ωB/A|B)qB/A, (4.11.14)

where

Q(ωB/A|B)
△
=

1

2





0 −ωT
B/A|B

ωB/A|B −ω×
B/A|B



 . (4.11.15)

Furthermore, if ωB/A|B is constant, then, for all t ≥ 0,

qB/A(t) = eQ(ωB/A|B)tqB/A(0), (4.11.16)

where

eQ(ωB/A|B)t = cos( 1
2
‖ωB/A|B‖t)I4 +

2 sin( 1
2
‖ωB/A|B‖t)

‖ωB/A|B‖
Q(ωB/A|B). (4.11.17)

4.12 Angular Velocity Vector and Gibbs-Vector Derivative

Recall from (2.17.1) that

⇀
gB/A

△
= (tan 1

2
θB/A)n̂B/A. (4.12.1)
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Therefore,

⇀
gB/A =

1

ηB/A

⇀
εB/A. (4.12.2)

Note that
⇀
gB/A is defined only if θB/A , π, that is, only if

⇀

θB/A ∈ [0, π).

Fact 4.12.1. Let FA and FB be frames. Then,

A•
⇀
g B/A =

→
RA/B

B•
⇀
g B/A . (4.12.3)

Proof. It follows from (2.11.42) and (4.7.13) that

A•
⇀
g B/A =

1
2
θ̇B/A(sec2 1

2
θB/A)n̂B/A + (tan 1

2
θB/A)

A•
n̂ B/A

= 1
2
θ̇B/A(sec2 1

2
θB/A)n̂B/A + (tan 1

2
θB/A)

→
RA/B

B•
n̂ B/A

=
→
RA/B[ 1

2
θ̇B/A(sec2 1

2
θB/A)

→
RB/An̂B/A + (tan 1

2
θB/A)

B•
n̂ B/A]

=
→
RA/B[ 1

2
θ̇B/A(sec2 1

2
θB/A)n̂B/A + (tan 1

2
θB/A)

B•
n̂ B/A]

=
→
RA/B

B•
⇀
g B/A . �

Fact 4.12.2. Let FA and FB be frames, and assume that θB/A , π. Then,

B•
⇀
g B/A =

1
2

(→
I +

⇀
gB/A

⇀
g
′
B/A +

⇀
g
×
B/A

)
⇀
ωB/A. (4.12.4)

Furthermore,

⇀
ωB/A =

2

1 + |⇀gB/A|2
(
→
I − ⇀

g
×
B/A)

B•
⇀
g B/A . (4.12.5)

Proof. It follows from (2.11.42) and (4.7.13) that

B•
⇀
g B/A = −

η̇B/A

η2
B/A

⇀
εB/A +

1

ηB/A

B•
⇀
ε B/A

= −
η̇B/A

η2
B/A

⇀
εB/A +

1

2ηB/A

(ηB/A

→
I +

⇀
ε
×
B/A)

= −
η̇B/A

ηB/A

⇀
gB/A +

1
2
(
→
I +

⇀
g
×
B/A)

= 1
2

⇀
ε
′
B/A

⇀
ωB/A

ηB/A

⇀
gB/A +

1
2
(
→
I +

⇀
g
×
B/A)

= 1
2

⇀
g
′
B/A

⇀
ωB/A

⇀
gB/A +

1
2
(
→
I +

⇀
g
×
B/A)

= 1
2

(→
I +

⇀
gB/A

⇀
g
′
B/A +

⇀
g
×
B/A

)
⇀
ωB/A.
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Finally, it follows from (2.9.8) that

⇀
ωB/A = 2

(→
I +

⇀
gB/A

⇀
g
′
B/A +

⇀
g
×
B/A

)−1 B•
⇀
g B/A

=
2

1 + |⇀gB/A|2
(
→
I − ⇀

g
×
B/A)

B•
⇀
g B/A . �

4.13 6D Velocity Kinematics of a Chain of Rigid Bodies

Consider the chain of rigid bodies shown in Figure 2.22.1. We assume that ωB/A|B(t), ωC/A|C(t),

and ωD/A|D(t) are known for all time t and that the initial orientations OA/B(0), OB/C(0), and OC/D(0)

and the initial displacements rzB/zA |A(0), rzC/zB |A(0), and rzD/zC |A(0) are known. The goal is to deter-

mine rzB/zA |A(t), rzC/zB |A(t), and rzD/zC |A(t) as functions of time.

First, to determine the position of zB relative to zA in FA, note that

A•
⇀
r zB/zA

=
⇀
ωB/A ×

⇀
r zB/zA

. (4.13.1)

Resolving (4.13.1) in FA yields

ṙzB/zA |A = ωB/A|A × rzB/zA |A (4.13.2)

= (OA/BωB/A|B) × rzB/zA |A. (4.13.3)

Since ωB/A|B(t) is known for all t and OA/B(0) is known, integrating Poisson’s equation (4.3.20) in

the form

ȮA/B = OA/Bω
×
B/A|B (4.13.4)

yields OA/B(t). Since OA/B(t)ωB/A|B(t) is known for all t and rzB/zA |A(0) is known, integrating (4.13.3)

yields rzB/zA |A(t).

Next, to determine the position of zC relative to zB in FA, note that

A•
⇀
r zC/zB

=
⇀
ωC/A ×

⇀
r zC/zB

. (4.13.5)

Resolving (4.13.5) in FA yields

ṙzC/zB |A = ωC/A|A × rzC/zB |A (4.13.6)

= (OA/CωC/A|C) × rzC/zB |A. (4.13.7)

Since ωC/A|C(t) is known for all t and OA/C(0) is known, integrating Poisson’s equation (4.3.20) in

the form

ȮA/C = OA/Cω
×
C/A|C (4.13.8)

yields OA/C(t). Since OA/C(t)ωC/A|C(t) is known for all t and rzC/zB |A(0) is known, integrating (4.13.7)

yields rzC/zB |A(t).

Next, to determine the position of zD relative to zC in FA, note that

A•
⇀
r zD/zC

=
⇀
ωD/A ×

⇀
r zD/zC

. (4.13.9)
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Resolving (4.13.9) in FA yields

ṙzD/zC |A = ωD/A|A × rzD/zC |A (4.13.10)

= (OA/DωD/A|D) × rzD/zC |A. (4.13.11)

Since ωD/A|D(t) is known for all t and OA/D(0) is known, integrating Poisson’s equation (4.3.20) in

the form

ȮA/D = OA/Dω
×
D/A|D (4.13.12)

yields OA/D(t). Since OA/D(t)ωD/A|D(t) is known for all t and rzD/zC |A(0) is known, integrating

(4.13.11) yields rzD/zC |A(t). Finally, since rzD/zC |A, rzC/zB |A, and rzB/zA |A are known, it follows that

rzD/zA |A = rzD/zC |A + rzC/zB |A + rzB/zA |A is known.

As an alternative approach, note that

⇀
r zC/zA

=
⇀
r zC/zB

+
⇀
r zB/zA

, (4.13.13)

⇀
r zD/zA

=
⇀
r zD/zC

+
⇀
r zC/zA

. (4.13.14)

Since

B•
⇀
r zB/zA

=

C•
⇀
r zC/zB

=

D•
⇀
r zD/zC

= 0, (4.13.15)

it follows that

⇀
v zB/zA/A =

⇀
ωB/A ×

⇀
r zB/zA

, (4.13.16)

⇀
v zC/zA/A =

⇀
ωC/A ×

⇀
r zC/zB

+
⇀
v zB/zA/A, (4.13.17)

⇀
v zD/zA/A =

⇀
ωD/A ×

⇀
r zD/zC

+
⇀
v zC/zA/A. (4.13.18)

Combining (4.13.16)–(4.13.18) with angular velocities yields





⇀
v zB/zA/A
⇀
ωC/A



 =





0 −⇀r
×
zB/zA

0
→
I





[
0

⇀
ωB/A

]

+

[
0

⇀
ωC/B

]

, (4.13.19)





⇀
v zC/zA/A
⇀
ωD/A



 =





→
I −⇀r

×
zC/zB

0
→
I









⇀
v zB/zA/A
⇀
ωC/A



 +

[
0

⇀
ωD/C

]

, (4.13.20)





⇀
v zD/zA/A
⇀
ωD/A



 =





→
I −⇀r

×
zD/zC

0
→
I









⇀
v zC/zA/A
⇀
ωD/A



 . (4.13.21)

Resolving (4.13.16)–(4.13.18) yields

vzB/zA/A|B = ωB/A|B × rzB/zA |B, (4.13.22)

vzC/zA/A|C = ωC/A|C × rzC/zB |C + vzB/zA/A|C, (4.13.23)

vzD/zA/A|D = ωD/A|D × rzD/zC |D + vzC/zA/A|D, (4.13.24)

and thus resolving (4.13.19)–(4.13.21) yields
[

vzB/zA/A|B
ωC/A|B

]

=

[

0 −r×
zB/zA |B

0 I3

] [

0

ωB/A|B

]

+

[

0

OB/CωC/B|C

]

, (4.13.25)

[

vzC/zA/A|C
ωD/A|C

]

=

[

OC/B −r×
zC/zB |COC/B

0 OC/B

] [

vzB/zA/A|B
ωC/A|B

]

+

[

0

OC/DωD/C|D

]

, (4.13.26)
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[

vzD/zA/A|D
ωD/A|D

]

=

[

OD/C −r×
zD/zC |DOD/C

0 OD/C

] [

vzC/zA/A|C
ωD/A|C

]

. (4.13.27)

Now, assume that, for all time t, the angular velocities ωB/A|B(t), ωC/B|C(t), and ωD/C|D(t), the orien-

tation matrices OC/B(t) and OD/C(t), and the position vectors rzB/zA |B(t), rzC/zB |C(t), and rzD/zC |D(t) are

known. Then (4.13.25)–(4.13.27) yield vzB/zA/A|B(t), vzC/zA/A|C(t), vzD/zA/A|D(t), ωC/A|B(t), ωD/A|C(t),

and ωD/A|D(t) as functions of time. Note that OB/A(0) is not needed for these computations.

For a chain consisting of n ≥ 4 rigid bodies, n equations of the form (4.13.25)–(4.13.27) can be

derived, where one equation is of the form (4.13.25) for the top link of the chain, n − 2 equations

are of the form (4.13.26) for the intermediate links of the chain, and one equation is of the form

(4.13.27) for the bottom link of the chain.

Next, defining the column vectrices

⇀

VA
△
=

[
0

⇀
ωB/A

]

,
⇀

VB
△
=





⇀
v zB/zA/A
⇀
ωC/A



 ,
⇀

VC
△
=





⇀
v zC/zA/A
⇀
ωD/A



 ,
⇀

VD
△
=





⇀
v zD/zA/A
⇀
ωD/A



 (4.13.28)

and the physical matrices

→
TB/A

△
=





0 −⇀r
×
zB/zA

0
→
I




,

→
TC/B

△
=





→
I −⇀r

×
zC/zB

0
→
I




,

→
TD/C

△
=





→
I −⇀r

×
zD/zC

0
→
I




, (4.13.29)

(4.13.19)–(4.13.21) can be written as

⇀

VB =
→
TB/A

⇀

VA +

[
0

⇀
ωC/B

]

, (4.13.30)

⇀

VC =
→
TC/B

⇀

VB +

[
0

⇀
ωD/C

]

, (4.13.31)

⇀

VD =
→
TD/C

⇀

VC. (4.13.32)

Furthermore, defining the 6 × 1 vectors

VA
△
=

[

0

ωB/A|B

]

, VB
△
=

[

vzB/zA/A|B
ωC/A|B

]

, VC
△
=

[

vzC/zA/A|C
ωD/A|C

]

, VD
△
=

[

vzD/zA/A|D
ωD/A|D

]

(4.13.33)

and the 6 × 6 matrices

TB/A
△
=

[

0 −r×
zB/zA |B

0 I3

]

, TC/B
△
=

[

OC/B −r×
zC/zB |COC/B

0 OC/B

]

, (4.13.34)

TD/C
△
=

[

OD/C −r×
zD/zC |DOD/C

0 OD/C

]

, (4.13.35)

(4.13.25)–(4.13.27) can be written as

VB = TB/AVA +

[

0

ωC/B|B

]

, (4.13.36)

VC = TC/BVB +

[

0

ωD/C|C

]

, (4.13.37)

VD = TD/CVC. (4.13.38)
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4.14 6D Acceleration Kinematics of a Chain of Rigid Bodies

Differentiating (4.13.19), (4.13.20), and (4.13.21) with respect to FB, FC, and FD, respectively,

yields





⇀
a zB/zA/A/B

⇀
αC/A



 =





0 −⇀r
×
zB/zA

0
→
I





[
0

⇀
αB/A

]

+

[
0

⇀
αC/B +

⇀
ωB/A ×

⇀
ωC/B

]

, (4.14.1)





⇀
a zC/zA/A/C

⇀
αD/A



 =





→
I −⇀r

×
zC/zB

0
→
I









⇀
a zB/zA/A/B

⇀
αC/A



 +





⇀
ωB/C ×

⇀
v zB/zA/A

⇀
αD/C +

⇀
ωC/A ×

⇀
ωD/C



 , (4.14.2)





⇀
a zD/zA/A/D

⇀
αD/A



 =





→
I −⇀r

×
zD/zC

0
→
I









⇀
a zC/zA/A/C

⇀
αD/A



 +

[ ⇀
ωC/D ×

⇀
v zC/zA/A

0

]

. (4.14.3)

Defining

⇀

AA
△
=

[
0

⇀
αB/A

]

,
⇀

AB
△
=





⇀
a zB/zA/A/B

⇀
αC/A



 ,
⇀

AC
△
=





⇀
a zC/zA/A/C

⇀
αD/A



 ,
⇀

AD
△
=





⇀
a zD/zA/A/D

⇀
αD/A



 ,

(4.14.4)

and using (4.13.29), (4.14.1)–(4.14.3) can be written as

⇀

AB =
⇀

TB/A

⇀

AA +

[
0

⇀
αC/B +

⇀
ωB/A ×

⇀
ωC/B

]

, (4.14.5)

⇀

AC =
⇀

TC/B

⇀

AB +





⇀
ωB/C ×

⇀
v zB/zA/A

⇀
αD/C +

⇀
ωC/A ×

⇀
ωD/C



 , (4.14.6)

⇀

AD =
⇀

TD/C

⇀

AC +

[ ⇀
ωC/D ×

⇀
v zC/zA/A

0

]

. (4.14.7)

Next, by defining the acceleration vectrices that depend on angular accelerations

⇀

AB,α
△
=
→
TB/A

⇀

AA +

[
0

⇀
αC/B

]

, (4.14.8)

⇀

AC,α
△
=
→
TC/B

⇀

AB,α +

[
0

⇀
αD/C

]

, (4.14.9)

⇀

AD,α
△
=
→
TD/C

⇀

AC,α (4.14.10)

and the acceleration vectrices that depend on angular velocities

⇀

AB,ω
△
=

[
0

⇀
ωB/A ×

⇀
ωC/B

]

, (4.14.11)

⇀

AC,ω
△
=
→
TC/B

⇀

AB,ω +





⇀
ωB/C ×

⇀
v zB/zA/A

⇀
ωC/A ×

⇀
ωD/C



 , (4.14.12)

⇀

AD,ω
△
=
→
TD/C

⇀

AC,ω +

[ ⇀
ωC/D ×

⇀
v zC/zA/A

0

]

, (4.14.13)

it follows that

⇀

AB =
⇀

AB,α +
⇀

AB,ω, (4.14.14)
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⇀

AC =
⇀

AC,α +
⇀

AC,ω, (4.14.15)

⇀

AD =
⇀

AD,α +
⇀

AD,ω. (4.14.16)

4.15 Instantaneous Velocity Center of Rotation

Let B be a rigid body with body-fixed frame FB, let p be a point fixed in B, and let FA be a

frame with origin OA. Then p is an instantaneous velocity center of rotation (IVCR) at time t if
⇀
ωB/A(t) , 0 and

⇀
v p/OA/A(t) = 0. The motion of B can be viewed as instantaneously rotating around

p. See Figure 4.15.1.

Let B be a rigid body with body-fixed frame FB, let p be a point fixed in B, let FA be a frame

with origin OA, and let q be a point fixed in B. Then,

⇀
v p/OA/A =

⇀
ωB/A ×

⇀
r p/q +

⇀
v q/OA/A, (4.15.1)

and thus

⇀
ωB/A ·

⇀
v p/OA/A =

⇀
ωB/A ·

⇀
v q/OA/A. (4.15.2)

Fact 4.15.1. Let B be a rigid body with body-fixed frame FB, let p and q be points fixed in B,

let FA be a frame with origin OA, assume that, at time t, p is an IVCR. Then,

⇀
ωB/A ×

⇀
r p/q +

⇀
v q/OA/A = 0, (4.15.3)

⇀
ωB/A ·

⇀
v p/OA/A =

⇀
ωB/A ·

⇀
v q/OA/A = 0. (4.15.4)

Figure 4.15.1: Instantaneous velocity center of rotation. At time t,
⇀
ωB/A(t) , 0. At the same time

t, the point p, which is fixed in B, satisfies
⇀
v p/OA/A(t) = 0. Hence, B is instantaneously rotating

around p.

The following result follows from Fact 4.15.1.

Fact 4.15.2. Let B be a rigid body, and let p be a point fixed in B. Then, at time t, the following

statements are equivalent:

i) p is an IVCR.
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ii)
⇀
ωB/A , 0, and, for every point q fixed in B,

⇀
ωB/A ×

⇀
r p/q +

⇀
v q/OA/A = 0. (4.15.5)

iii)
⇀
ωB/A , 0, and there exists a point q fixed in B such that (4.15.5) is satisfied.

If, at time t,
⇀
ωB/A is nonzero, then Fact 4.15.2 implies that B has no IVCR if and only if there

exists a point q fixed in B such that
⇀
ωB/A ·

⇀
v q/OA/A , 0. This situation occurs, for example, when

the translational velocity of q is parallel to the angular velocity.

Fact 4.15.3. Let B be a rigid body, and let p be a point fixed in B. Then, at time t, p is an

IVCR if and only if
⇀
ωB/A , 0 and there exists a point q fixed in B such that the following conditions

are satisfied:

i)
⇀
ωB/A ·

⇀
v q/OA/A = 0.

ii)
⇀
ωB/A ×





⇀
r p/q −

1

|⇀ωB/A|2
⇀
ωB/A ×

⇀
v q/OA/A



 = 0.

If these conditions are satisfied, then

(|⇀ωB/A|2
→
I − ⇀

ωB/A
⇀
ω
′
B/A)

⇀
r p/q =

⇀
ωB/A ×

⇀
v q/OA/A. (4.15.6)

Proof. Assume that p is an IVCR. Then, Fact 4.15.1 implies i). To prove ii), (4.15.5) and i)

imply that

⇀
ωB/A ×





⇀
r p/q −

1

|⇀ωB/A|2
⇀
ωB/A ×

⇀
v q/OA/A



 =
⇀
ωB/A ×

⇀
r p/q +

⇀
v q/OA/A = 0.

Conversely, (4.15.1), i), and ii) yield

⇀
v p/OA/A =

⇀
ωB/A ×

⇀
r p/q +

⇀
v q/OA/A

=
⇀
ωB/A ×





1

|⇀ωB/A|2
⇀
ωB/A ×

⇀
v q/OA/A



 +
⇀
v q/OA/A

= −⇀v q/OA/A +
⇀
v q/OA/A

= 0.

To obtain (4.15.6), note that (4.15.3) implies

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q +

⇀
v q/OA/A) = 0,

and thus

(
⇀
ωB/A ·

⇀
r p/q)

⇀
ωB/A − |

⇀
ωB/A|2

⇀
r p/q +

⇀
ωB/A ×

⇀
v q/OA/A = 0. (4.15.7)

Solving (4.15.7) for
⇀
r p/q yields (4.15.6). �
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4.16 Instantaneous Acceleration Center of Rotation

Let B be a rigid body with body-fixed frame FB, let p be a point fixed in B, and let FA be a frame

with origin OA. Then p is an instantaneous acceleration center of rotation (IACR) at time t if either

⇀
ωB/A(t) , 0 or

B•
⇀
ωB/A (t) , 0 and

⇀
a p/OA/A(t) = 0. The motion of B can be viewed as instantaneously

rotating or accelerating around p.

Fact 4.16.1. Let B be a rigid body with body-fixed frame FB, let p and q be points fixed in B,

and let FA be a frame with origin OA. Then, at time t, p is an IACR if and only if either
⇀
ωB/A(t) , 0

or

B•
⇀
ωB/A (t) , 0 and

B•
⇀
ωB/A ×

⇀
r p/q +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q) +

⇀
aq/OA/A = 0. (4.16.1)

Fact 4.16.2. Let B be a rigid body with body-fixed frame FB, let p and q be points fixed in B,

and let FA be a frame with origin OA. Assume that, at time t,
⇀
ωB/A = 0,

B•
⇀
ωB/A , 0, and

⇀
aq/OA/A , 0.

Then, p is an IACR of B if and only if the following conditions are satisfied:

i)

B•
⇀
ωB/A ·

⇀
aq/OA/A = 0.

ii)

B•
⇀
ωB/A ×





⇀
r p/q −

1

|
B•
⇀
ωB/A |2

B•
⇀
ωB/A ×

⇀
aq/OA/A





= 0.

If these conditions are satisfied, then



|
B•
⇀
ωB/A |2

→
I−

B•
⇀
ωB/A

B•
⇀
ω

′

B/A





⇀
r p/q =

B•
⇀
ωB/A ×

⇀
aq/OA/A. (4.16.2)

Proof. Assume that, at time t, p is an IACR of B. Since
⇀
ωB/A = 0, (4.16.1) implies

B•
⇀
ωB/A ·

⇀
aq/OA/A =

B•
⇀
ωB/A ·




−

B•
⇀
ωB/A ×

⇀
r p/q −

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q)





= −
B•
⇀
ωB/A ·





B•
⇀
ωB/A ×

⇀
r p/q




= 0,

which proves i). To prove ii), it follows from i) and (4.16.1) that

B•
⇀
ωB/A ×





⇀
r p/q −

1

|
B•
⇀
ωB/A |2

B•
⇀
ωB/A ×

⇀
aq/OA/A





=

B•
⇀
ωB/A ×

⇀
r p/q +

⇀
aq/OA/A = 0.

Conversely, i) implies

⇀
a p/OA/A =

B••
⇀
r p/q + 2

⇀
ωB/A ×

B•
⇀
r p/q +

B•
⇀
ωB/A ×

⇀
r p/q +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q) +

⇀
aq/OA/A
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=

B•
⇀
ωB/A ×





1

|
B•
⇀
ωB/A |2

B•
⇀
ωB/A ×

⇀
aq/OA/A





+
⇀
aq/OA/A

=

B•
⇀
ωB/A ·

⇀
aq/OA/A

|
B•
⇀
ωB/A |2

B•
⇀
ωB/A −

⇀
aq/OA/A +

⇀
aq/OA/A = 0.

Hence, p is an IACR at time t.

To obtain (4.16.2), note that (4.16.1) implies

B•
⇀
ωB/A ×

⇀
a p/OA/A =

B•
⇀
ωB/A × (

⇀
a p/q/A +

⇀
aq/OA/A)

=

B•
⇀
ωB/A ×





B•
⇀
ωB/A ×

⇀
r p/q +

⇀
aq/OA/A




= 0.

Hence,

(

B•
⇀
ωB/A ·

⇀
r p/q)

B•
⇀
ωB/A − (

B•
⇀
ωB/A ·

B•
⇀
ωB/A)

⇀
r p/q +

B•
⇀
ωB/A ×

⇀
aq/OA/A = 0,

which yields (4.16.2). �

Fact 4.16.3. Let B be a rigid body with body-fixed frame FB, let p and q be points fixed in B,

and let FA be a frame with origin OA. Assume that, at time t,
⇀
ωB/A , 0,

B•
⇀
ωB/A= 0, and

⇀
aq/OA/A , 0.

Then, p is an IACR if and only if the following conditions are satisfied:

i)
⇀
ωB/A ·

⇀
aq/OA/A = 0.

ii)
⇀
ωB/A ×





⇀
r p/q −

1

|⇀ωB/A|2
⇀
aq/OA/A



 = 0.

If these conditions are satisfied, then

(|⇀ωB/A|2
→
I − ⇀

ωB/A
⇀
ω
′
B/A)

⇀
r p/q =

⇀
aq/OA/A. (4.16.3)

Proof. Assume that, at time t, p is an IACR of B. Since

B•
⇀
ωB/A = 0, (4.16.1) implies

⇀
ωB/A ·

⇀
aq/OA/A =

⇀
ωB/A · [−

B•
⇀
ωB/A ×

⇀
r p/q −

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q)]

= −⇀ωB/A · [
⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q)] = 0,

which proves i). To prove ii), it follows from (4.16.1) that

⇀
ωB/A ×





⇀
r p/q −

1

|⇀ωB/A|2
⇀
aq/OA/A





=
⇀
ωB/A ×

⇀
r p/q +

⇀
ωB/A ×

1

|⇀ωB/A|2
[
⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q)]
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=
⇀
ωB/A ×

⇀
r p/q −

⇀
ωB/A ×

⇀
r p/q = 0.

Conversely, i) implies

⇀
a p/OA/A =

⇀
a p/q/A +

⇀
aq/OA/A

=
⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q) +

⇀
aq/OA/A

=
⇀
ωB/A ×





⇀
ωB/A ×

1

|⇀ωB/A|2
⇀
aq/OA/A



 +
⇀
aq/OA/A

= −⇀aq/OA/A +
⇀
aq/OA/A = 0.

Hence, p is an IACR at time t.

To obtain (4.16.3), note that (4.16.1) implies

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q) +

⇀
aq/OA/A = 0.

Hence,

(
⇀
ωB/A ·

⇀
r p/q)

⇀
ωB/A − (

⇀
ωB/A ·

⇀
ωB/A)

⇀
r p/q +

⇀
aq/OA/A = 0,

which yields (4.16.3). �

Fact 4.16.4. Let B be a rigid body with body-fixed frame FB, let p and q be points fixed in

B, and let FA be a frame with origin OA. Assume that, at time t,

B•
⇀
ωB/A and

⇀
ωB/A are nonzero and

parallel. Then, p is an IACR if and only if the following conditions are satisfied:

i)
⇀
ωB/A ·

⇀
aq/OA/A = 0.

ii)
⇀
ωB/A and

⇀
r p/q −

1

|⇀ωB/A|4 + |
B•
⇀
ωB/A |2




|⇀ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A




are parallel.

If these conditions are satisfied, then

[(|⇀ωB/A|4 + |
B•
⇀
ωB/A |2)

→
I − κ⇀ωB/A

B•
⇀
ω

′

B/A − |
⇀
ωB/A|2

⇀
ωB/A

⇀
ω
′
B/A]

⇀
r p/q

= |⇀ωB/A|2
⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A, (4.16.4)

where κ
△
=

B•
⇀
ωB/A ·

⇀
ωB/A

|⇀ωB/A|2
.

Proof. Assume that, at time t, p is an IACR. Then, it follows from (4.16.1) that
⇀
ωB/A ·

⇀
aq/OA/A =

0, which proves i). To prove ii), note that (4.16.1) implies

0 =

B•
⇀
ωB/A ×

⇀
r p/q +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q) +

⇀
aq/OA/A

=

B•
⇀
ωB/A ×

⇀
r p/q + (

⇀
ωB/A ·

⇀
r p/q)

⇀
ωB/A − |

⇀
ωB/A|2

⇀
r p/q +

⇀
aq/OA/A. (4.16.5)
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Therefore,

0 =

B•
⇀
ωB/A ×





B•
⇀
ωB/A ×

⇀
r p/q + (

⇀
ωB/A ·

⇀
r p/q)

⇀
ωB/A − |

⇀
ωB/A|2

⇀
r p/q +

⇀
aq/OA/A





= (

B•
⇀
ωB/A ·

⇀
r p/q)

B•
⇀
ωB/A − |

B•
⇀
ωB/A |2

⇀
r p/q − |

⇀
ωB/A|2(

B•
⇀
ωB/A ×

⇀
r p/q) +

B•
⇀
ωB/A ×

⇀
aq/OA/A. (4.16.6)

Furthermore, (4.16.5) implies

B•
⇀
ωB/A ×

⇀
r p/q = −(

⇀
ωB/A ·

⇀
r p/q)

⇀
ωB/A + |

⇀
ωB/A|2

⇀
r p/q −

⇀
aq/OA/A. (4.16.7)

Substituting (4.16.7) into (4.16.6) and using

B•
⇀
ωB/A = κ

⇀
ωB/A yields

0 = (

B•
⇀
ωB/A ·

⇀
r p/q)

B•
⇀
ωB/A − |

B•
⇀
ωB/A |2

⇀
r p/q + |

⇀
ωB/A|2(

⇀
ωB/A ·

⇀
r p/q)

⇀
ωB/A

− |⇀ωB/A|4
⇀
r p/q + |

⇀
ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A

= [κ

B•
⇀
ωB/A ·

⇀
r p/q + |

⇀
ωB/A|2(

⇀
ωB/A ·

⇀
r p/q)]

⇀
ωB/A + |

⇀
ωB/A|2

⇀
aq/OA/A

+

B•
⇀
ωB/A ×

⇀
aq/OA/A − (|

B•
⇀
ωB/A |2 + |

⇀
ωB/A|4)

⇀
r p/q, (4.16.8)

which implies ii).

Conversely, ii) implies that there exists α ∈ R such that

⇀
r p/q =

1

|⇀ωB/A|4 + |
B•
⇀
ωB/A |2




|⇀ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A




+ α

⇀
ωB/A.

Using i) and ii), it follows that

⇀
a p/OA/A =

B•
⇀
ωB/A ×

⇀
r p/q +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
r p/q) +

⇀
aq/OA/A

=

B•
⇀
ωB/A ×





1

|⇀ωB/A|4 + |
B•
⇀
ωB/A |2




|⇀ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A




+ α

⇀
ωB/A





+
⇀
ωB/A ×





⇀
ωB/A ×





1

|⇀ωB/A|4 + |
B•
⇀
ωB/A |2




|⇀ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A




+ α

⇀
ωB/A









+
⇀
aq/OA/A

=
1

|⇀ωB/A|4 + |
B•
⇀
ωB/A |2

B•
⇀
ωB/A ×




|⇀ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A





+
1

|⇀ωB/A|4 + |
B•
⇀
ωB/A |2

⇀
ωB/A ×





⇀
ωB/A ×




|⇀ωB/A|2

⇀
aq/OA/A +

B•
⇀
ωB/A ×

⇀
aq/OA/A
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+
⇀
aq/OA/A

= −⇀aq/OA/A +
⇀
aq/OA/A = 0.

Hence, p is an IACR at time t.

Finally, (4.16.8) implies (4.16.4). �

4.17 Kinematics Based on Chasle’s Theorem

Let B = {y1, . . . , yl} and B′ = {y′
1
, . . . , y′

l
} be identical rigid bodies. Then, Chasle’s theorem

given by Fact 2.21.4 implies that there exist a point z, an eigenaxis n̂, an eigenangle θ, and a real

number α such that, for all i = 1, . . . , l,

⇀
r y′

i
/z =

→
Rn̂(θ)

⇀
r yi/z + αn̂. (4.17.1)

Letting FA and FB be frames that are fixed identically in B and B′, respectively, and differentiating

(4.17.1) yields

⇀
v y′

i
/z/A =

A•
→
R n̂ (θ)

⇀
r yi/z +

⇀

ξ , (4.17.2)

where

⇀

ξ
△
= α̇n̂ + α

A•
n̂ . (4.17.3)

Solving (4.17.1) for
⇀
r yi/z and substituting into (4.17.2) yields

⇀
v y′

i
/z/A =

A•
→
R n̂ (θ)

→
R
′

n̂(θ)(
⇀
r y′

i
/z − αn̂) +

⇀

ξ . (4.17.4)

Noting from (4.2.22) that

A•
→
R n̂ (θ)

→
R
′

n̂(θ) =

A•
→
R B/A

→
RA/B =

→
ΩB/A, (4.17.5)

(4.17.4) can be written as

⇀
v y′

i
/z/A =

→
ΩB/A(

⇀
r y′

i
/z − αn̂) +

⇀

ξ . (4.17.6)

Using
→
ΩB/A =

⇀
ω
×
B/A and rearranging (4.17.6) yields

⇀
v y′

i
/z/A =

⇀
ωB/A ×

⇀
r y′

i
/z + αn̂ × ⇀

ωB/A +
⇀

ξ . (4.17.7)

4.18 Rolling With and Without Slipping

When a disk of radius r is moving in contact with a flat surface, the absence of slipping can be

determined by comparing the velocity of its center to its angular velocity, that is, v = rω, where ω

is the rate of rotation of the disk relative to the surface. The relation v = rω equates the speed of

the center of the disk to the rate of arc length along the path of motion. However, for more general

bodies, it is difficult to determine the arc length. We therefore adopt a more general approach, which

involves the relative velocity between two points that are in contact.

At a given instant of time, the points x1 and x2 are colocated if x1 and x2 are at the same
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location. The following result shows that, if two bodies are in contact, then the relative velocity of

a pair of colocated body-fixed points is independent of the frame with respect to which the velocity

is determined.

Fact 4.18.1. Let FA and FB be frames, let B1 and B2 be bodies, let x1 and x2 be points that are

fixed in B1 and B2, respectively, and assume that B1 and B2 are in contact with x1 and x2 colocated.

Then,

⇀
v x1/x2/A =

⇀
v x1/x2/B. (4.18.1)

Proof. Note that

⇀
v x1/x2/A =

A•
⇀
r x1/x2

=

B•
⇀
r x1/x2

+
⇀
ωB/A ×

⇀
r x1/x2

=
⇀
v x1/x2/B. �

Fact 4.18.1 shows that the choice of frame in the following definition is irrelevant.

Definition 4.18.2. Let FA be a frame, let B1 and B2 be bodies, let x1 and x2 be points that are

fixed in B1 and B2, respectively, and assume that B1 and B2 are in contact with x1 and x2 colocated.

Then, B1 and B2 are rolling without slipping if
⇀
v x1/x2/A = 0. Otherwise, B1 and B2 are slipping.

Fact 4.18.3. Let FA be a frame, let w be a point, let B1 and B2 be bodies, let x1 and x2 be

points that are fixed in B1 and B2, respectively, assume that B1 and B2 are in contact with x1 and

x2 colocated, and assume that B1 and B2 are rolling without slipping. Then,

⇀
v x1/w/A =

⇀
v x2/w/A. (4.18.2)

Proof. Note that

⇀
v x1/w/A =

⇀
v x1/x2/A +

⇀
v x2/w/A =

⇀
v x2/w/A. �

Example 4.18.4. Consider a wheel that rolls without slipping in a straight line on a flat surface,

let p denote a point fixed on the circumference of the disk, let FA denote a body-fixed frame in the

surface, and let x and q denote points that are fixed in the plane. When p is in contact with q, then
⇀
v P/x/A =

⇀
v Q/x/A = 0.

4.19 Examples

Example 4.19.1. Consider a small disk with radius r that rolls without slipping inside a large

hoop of radius R as shown in Figure 4.19.1. Frame FA is fixed to the hoop, frame FB is fixed to the

arm that connects the disk to the center of the hoop, and frame FC is fixed to the disk. Point a is the

center of the hoop, point b is the center of the disk, and point c is fixed in the disk. The distance

from b to c is r0. Point d is fixed to the edge of the disk and point e is fixed on the hoop. Define

angles θ and φ as shown. Determine
⇀
ac/a/A in terms of r,R, r0, φ, φ̇, φ̈ resolved in FB at the instant

that d and e are colocated.

Solution: The frames are related by

FC

φ
−→

3
FB

θ−→
3

FA,
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a
R

ı̂A

̂A

b

r0

c

ı̂B

̂B

ı̂B

̂B

d

e

φ

θ

r

Figure 4.19.1: Example 4.19.1. Disk rolling inside a circle.

with angular velocities
⇀
ωA/B = θ̇k̂A,

⇀
ωB/C = φ̇k̂A.

so that
⇀
ωA/C = (θ̇ + φ̇)k̂A.

Furthermore, the position vectors are

⇀
r c/b = r0 ı̂C,

⇀
r b/a = (R − r)ı̂B,

so that
⇀
r c/a = r0 ı̂C + (R − r)ı̂B.

Hence,

⇀
v c/a/A = r0

A•
ı̂ C + (R − r)

A•
ı̂ B
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= r0(
⇀
ωC/A × ı̂C) + (R − r)(

⇀
ωB/A × ı̂B)

= r0(−φ̇ − θ̇)k̂C × ı̂C + (R − r)(−θ̇)k̂B × ı̂B
= −r0(φ̇ + θ̇) ̂C − (R − r)θ̇ ̂B

= −r0(φ̇ + θ̇)[(sin φ)ı̂B + (cos φ) ̂B] − (R − r)θ̇ ̂B

= −r0(φ̇ + θ̇)(sin φ)ı̂B − [r0(φ̇ + θ̇) cos φ + (R − r)θ̇] ̂B.

Next, the no-slip condition implies

0 =
⇀
v d/e/A =

⇀
v d/a/A −

⇀
v e/a/A.

Since, in addition,
⇀
r e/a is fixed in FA, it follows that

⇀
v d/a/A =

⇀
v e/a/A = 0.

Therefore, when d and e are colocated so that
⇀
r d/b = rı̂B, it follows that

0 =
⇀
v d/a/A

=
⇀
v d/b/A +

⇀
v b/a/A

=

A•
⇀
r d/b + (R − r)

A•
ı̂ B

=

C•
⇀
r d/b +

⇀
ωC/A ×

⇀
r d/b + (R − r)

⇀
ωB/A × ı̂B

=
⇀

0 + (−φ̇ − θ̇)k̂A × rı̂B + (R − r)(−θ̇)k̂A × ı̂B
= −r(φ̇ + θ̇) ̂B − (R − r)θ̇ ̂B

= −(rφ̇ + Rθ̇) ̂B.

Therefore,

θ̇ = − r

R
φ̇,

and thus
⇀
ωA/B = −

r

R
φ̇k̂A,

⇀
ωC/A = ρφ̇k̂A.

where
ρ
△
=

r

R
− 1.

Consequently,
⇀
v c/a/A = αı̂B + β ̂B,

where
α
△
= ρr0φ̇ sin φ, β

△
= ρr0φ̇ cos φ − ρrφ̇.

Finally,

⇀
αc/a/A = α̇ı̂B + α

A•
ı̂ B + β̇ ̂B + β

A•
̂ B

= α̇ı̂B + α
⇀
ωB/A × ı̂B + β̇ ̂B + β

⇀
ωB/A × ̂B

= α̇ı̂B + α
r

R
φ̇k̂A × ı̂B + β̇ ̂B + β

r

R
φ̇k̂A × ̂B
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=

(

α̇ − β r

R
φ̇

)

ı̂B +

(

β̇ + α
r

R
φ̇

)

̂B

= ρ[r0(sin φ)φ̈ + (r2/R − ρr0 cos φ)φ̇2]ı̂B + ρ[(r0 cos φ − r)φ̈ + ρr0(sin φ)φ̇2] ̂B. ⋄
Example 4.19.2. The wheel shown in Figure 4.19.2 has radius R and rotates clockwise at a

constant rate around its center point b, which is pinned to a fixed point in the ground. The point P

denotes a pin located on the circumference of the wheel; this pin slides along the slot in the arm as

shown. The arm is pinned to the ground at point a, which is fixed in the ground, and the distance

from a to b is L. Using your intuition only, make a rough sketch of θ over the interval [t0, tf], where

φ = 0 deg at t = 0, and φ = 180 deg at tf . Mark the points on the plot at which i) θ achieves its

maximum value, and ii) φ = 90 deg. Next, derive expressions for θ̇ and θ̈, and specialize these

expressions to the case φ = 90 deg. Finally, check the signs of θ̇ and θ̈ and determine whether those

signs are consistent with your sketch of θ versus t.

ı̂A

̂A

a L

q

p

b

R

ı̂C
̂C

ı̂B

̂B

θ
φ

γ

Figure 4.19.2: Example 4.19.2. Rotating wheel with slotted arm.

Solution: The frames are related by

FA

θ−→
3

FB

γ
−→

3
FC,

with angular velocities
⇀
ωB/A = θ̇k̂A,

⇀
ωC/B = γ̇k̂A.

Since θ + γ + φ = π, it follows that
⇀
ωC/A = −φ̇k̂A.
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Next, let q
△
= |⇀r P/a| so that

⇀
r P/a = qı̂B. Therefore,

⇀
v P/a/A = q̇ı̂B + q

A•
ı̂ B

= q̇ı̂B + q
⇀
ωB/A × ı̂B

= q̇ı̂B + qθ̇ ̂B.

On the other hand, defining v
△
= Rφ̇, it follows that

⇀
v P/a/A =

⇀
v P/b/A +

⇀
v b/a/A

=

A•
⇀
r P/b

= R
A•
ı̂C

= R
⇀
ωC/A × ı̂C

= −v ̂C

= v(sin γ)ı̂B − v(cos γ) ̂B.

Equating the expressions for
⇀
v P/a/A yields

θ̇ = −v cos γ

q
.

The law of sines implies

sin θ

R
=

sin γ

L
=

sin φ

q
,

while the law of cosines implies

R2 = q2 + L2 − 2qL cos θ

and

q2 = R2 + L2 − 2RL cos φ,

and thus

cos θ =
L − R cos φ

q
=

L − R cos φ
√

R2 + L2 − 2RL cos φ
.

It can be shown that θ is maximized when cos φ = R/L. Furthermore,

θ̇ =
(RL cos φ − R2)φ̇

R2 + L2 − 2RL cos φ
,

and thus

θ̈ =
RL(R2 − L2)(sinφ)φ̇2

(R2 + L2 − 2RL cos φ)2
.

Therefore, when φ = 90 deg it follows that

θ̇ = − R2φ̇

R2 + L2
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Figure 4.19.3: Example 4.19.2. Rotating wheel with slotted arm. The angle θ and angle rates θ̇ and θ̈ are

plotted for 0 ≤ t ≤ π sec assuming that R = 2 m, L = 4 m, and φ̇ = 1 rad/sec. The points marked ‘x’ and ‘o’

denote θ(t1), where φ(t1) = 60 deg and thus the arm is tangent to the wheel, and θ(t2), where φ(t2) = 90 deg,

respectively.

and

θ̈ =
RL(R2 − L2)φ̇2

(R2 + L2)2
.

Note that, when φ = 90 deg, φ̇ is positive, and thus θ̇ is negative. Furthermore, since R < L, it

follows that θ̈ is negative. Figure 4.19.3 shows that the angle θ is maximized at a time t1 at which

the arm is tangent to the wheel, that is, when φ = 60 deg. In addition, at time t2 > t1, φ(t2) = π/2

rad, where θ is decreasing, and the function θ(t) is convex. ⋄
4.20 Theoretical Problems

Problem 4.20.1. Prove (4.6.1) by using (4.2.3) to represent each physical angular velocity

matrix and by resolving each term in FC.

Problem 4.20.2. Let
⇀
x =

⇀
x(t) be a physical vector that is nonzero on the time interval [t1, t2],

and let FA be a frame. Show that

d

dt
|⇀x | = 1

|⇀x |

A•
⇀
x

′
⇀
x .
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Furthermore, show that, if |⇀x(t)| is constant, then
⇀
x(t) and

A•
⇀
x (t) are mutually orthogonal. Finally,

apply this result to the following two cases:

i) The position of a point moving in a circle.

ii) The velocity of a point moving with constant speed in a circle.

Problem 4.20.3. Let FA be a frame, and, for all t ∈ (t1, t2), let x̂(t) be a unit dimensionless

vector and let
⇀
y (t) be a vector such that x̂(t) × ⇀

y (t) = 0 and

A•
⇀
y (t) = 0. Furthermore, assume that

there exists t0 ∈ (t1, t2) such that
⇀
y (t0) , 0. Show that

A•
x̂ (t0) = 0. (Hint: Apply Problem 2.26.1.)

Problem 4.20.4. Let FA and FB be frames, assume that, for all t ∈ (t1, t2),

A•
⇀
ωB/A (t) =

B•
⇀
ωB/A

(t) = 0 and
⇀
ωB/A(t) × n̂B/A(t) = 0, and assume that there exists t0 ∈ (t1, t2) such that

⇀
ωB/A(t0) , 0.

Then,
A•
n̂ B/A(t0) =

B•
n̂ B/A(t0) = 0. (Hint: Apply Problem 4.20.3.)

Problem 4.20.5. Let FA and FB be frames. Show that

⇀
ωB/A =

1
2
(ı̂B ×

A•
ı̂ B + ̂B ×

A•
̂ B + k̂B ×

A•
k̂ B),

⇀
ωB/A = (

A•
̂ B ·k̂B)ı̂B + (

A•
k̂ B ·ı̂B) ̂B + (

A•
ı̂ B · ̂B)k̂B.

Problem 4.20.6. Let FA and FB be frames, and let
⇀
x and

⇀
y be position vectors that are constant

with respect to FB. Show that
A•
⇀
x

′
⇀
y
⇀
ωB/A =

A•
⇀
x ×

A•
⇀
y ,

that is,
(
⇀
ωB/A ×

⇀
x)′

⇀
y
⇀
ωB/A = (

⇀
ωB/A ×

⇀
x) × (

⇀
ωB/A ×

⇀
y ).

Problem 4.20.7. Consider 3-2-1 Euler angles Ψ, Θ, and Φ that transform FA to FD.

i) Determine all values of the Euler angles such that not all angular velocities
⇀
ωD/A can be

attained by Euler-angle derivatives Ψ̇, Θ̇, and Φ̇. In particular, show that not all angular

velocities
⇀
ωD/A can be attained by Euler-angle derivatives if and only if Θ = ±π/2.

ii) Show that, if Θ = ±π/2 and ω , 0, then
⇀
ωD/A = ωk̂D is attainable by Euler-angle derivatives

if and only if Φ = ±π/2.

(Remark: ii) illustrates gimbal lock.)

Problem 4.20.8. Let FA be a frame, and let
⇀
x be a physical vector. Show that

A••
⇀
x

∣
∣
∣
∣
∣
∣
∣
A

=

..
︷︸︸︷

⇀
x
∣
∣
∣
∣
A
.
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Problem 4.20.9. Show that the double transport theorem (4.5.1) can be rewritten so that it has

the same form as (4.5.1) but with A and B interchanged. (Hint: Move the last three terms to the left

hand side and use the transport theorem.)

Problem 4.20.10. Let FA and FB be frames. Show that

A•
B•
⇀
ωB/A =

A••
⇀
ω B/A,

B•
A•
⇀
ωB/A =

B••
⇀
ω B/A,

A••
⇀
ω B/A =

B••
⇀
ω B/A +

⇀
ωB/A ×

B•
⇀
ωB/A,

A•
B•
⇀
ωB/A =

B•
A•
⇀
ωB/A +

⇀
ωB/A ×

B•
⇀
ωB/A .

Problem 4.20.11. Let FA and FB be frames, and let
⇀
x be a physical vector. Show that

A•
B•
⇀
x +

B•
A•
⇀
x =

A••
⇀
x +

B••
⇀
x − ⇀

ωB/A × (
⇀
ωB/A ×

⇀
x),

A•
B•
⇀
x =

B•
A•
⇀
x +

⇀
x ×

B•
⇀
ωB/A .

If, in addition,

B•
⇀
ωB/A= 0, then

B•
A•
⇀
x =

A•
B•
⇀
x = 1

2
[

A••
⇀
x +

B••
⇀
x − ⇀

ωB/A × (
⇀
ωB/A ×

⇀
x)].

Finally, if
⇀
ωB/A = 0, then

B•
A•
⇀
x =

A•
B•
⇀
x = 1

2
(

A••
⇀
x +

B••
⇀
x ).

Confirm these identities for the example
⇀
x = ı̂B and

⇀
ωB/A = ı̂A. (Hint: To prove the second equality,

write
⇀
x = x1 ı̂B + x2 ̂B + x3k̂B.)

Problem 4.20.12. Derive the triple transport theorem

A•••
⇀
x =

B•••
⇀
x + 3

⇀
ωB/A ×

B••
⇀
x + 3

B•
⇀
ωB/A ×

B•
⇀
x + 3

⇀
ωB/A × (

⇀
ωB/A ×

B•
⇀
x )

+ (

B••
⇀
ω B/A +

⇀
ωB/A ×

B•
⇀
ωB/A) × ⇀

x + 2

B•
⇀
ωB/A × (

⇀
ωB/A ×

⇀
x)

+
⇀
ωB/A × (

B•
⇀
ωB/A ×

⇀
x) +

⇀
ωB/A × [

⇀
ωB/A × (

⇀
ωB/A ×

⇀
x)].

4.21 Applied Problems

Problem 4.21.1. For all parts below, assume that the given numbers are exact. In addition,

assume that the Sun, Earth, and Moon all rotate and travel counterclockwise as viewed from “above”

the solar system (that is, looking down on the North Pole of the Earth), and that all orbits are circular

and lie in the same plane. Finally, assume that all stars (including the Sun) do not move relative to

each other.
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i) Assume that the length of the solar day on Earth is 24 hours, and assume that the Earth

completes one orbit around the Sun in relation to the stars every 365.25 solar days (the sidereal

year). Determine the length of the sidereal day, that is, the time it takes for the Earth to rotate

around its axis once relative to a star frame, that is, a frame whose axes have fixed directions

relative to the stars. State your solution in hours and minutes.

ii) In addition to the assumptions in i), assume that the Sun rotates around its axis relative to the

star frame once every 27 solar days. Determine the length of time that it takes the Earth to

rotate around its axis once relative to a Sun body-fixed frame.

iii) Assume that the Moon completes one orbit around the Earth in relation to the stars every

27.3 solar days (which is the Moon’s sidereal period, also called the lunar month). For a

given initial relative configuration, determine the time it takes for the Moon, Earth, and Sun

to return to the same configuration (which is the Moon’s synodic period).

(Hint: Create several frames, including a star frame and frames that are attached to the Sun, Earth,

and Moon as well as the “invisible” arms connecting these bodies. Then, use sums of angular

velocities to determine relationships between the periods.)

Problem 4.21.2. Let FA be a frame that is fixed to a horizontal plane with origin OA. The axis

ı̂A points to the right, and the axis ̂A points downward. A disk B of radius R rolls in a straight path

to the right, which is in the direction of ı̂A. The center of B is the point OB, and FB is fixed to the

disk. The speed v ≥ 0 of OB along the path is not necessarily constant, and the angle φ of B relative

to its starting angle has the rate φ̇ > 0, which is not necessarily constant. As B rolls, it may also

slip, and thus v is not necessarily equal to Rφ̇. Let p denote a point fixed on the circumference of B,

and let q denote a point fixed in the path. Define x
△
= |⇀r q/OA

|. Let c denote the instantaneous contact

point between B and the path.

i) Determine the velocity of q relative to OA with respect to FA resolved in FA.

ii) Determine the velocity of q relative to OA with respect to FB resolved in FA.

iii) Determine the velocity of p relative to OA with respect to FA resolved in FA when p is at the

9:00, 12:00, and 3:00 positions.

iv) Determine the velocity of p relative to OA with respect to FA resolved in FA when p and q are

colocated.

v) Determine the velocity of p relative to OA with respect to FB resolved in FA when p and q are

colocated.

vi) Determine the acceleration of p relative to OA with respect to FA resolved in FA when p and

q are colocated. If v is constant, what is the direction of this acceleration?

Specialize the solutions to i)–v) to the case where B rolls without slipping, that is, v = Rφ̇. Now,

assume that B rolls without slipping.

vii) Show that
⇀
v c/OA/A = vı̂A =

⇀
v c/OB/B = Rφ̇ı̂A.

viii) Determine the velocity of c relative to OA with respect to FB resolved in FA.
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Problem 4.21.3. Consider the gimbal mechanism shown in Figure 4.21.1. Assume that the

angle of the outer gimbal relative to the support is given by ψ(t) = 0.6 sin(20πt), the angle of the

inner gimbal relative to the outer gimbal is θ(t) = 0.3 sin(90πt), and the disk supported by the

inner gimbal spins at 700 rpm with zero initial angle. Resolve the angular velocity and angular

acceleration of the disk relative to the support in a frame attached to the disk, and compute these

vectors at time t = .01 sec.

θ

ψ

Figure 4.21.1: Gimbal mechanism for Problem 4.21.3.

Problem 4.21.4. Consider a horizontal platform connected to the horizontal ground by a ver-

tical pin joint. The platform rotates at a constant rate relative to the ground. Let x and y be distinct

points on the platform.

i) Show that the acceleration of y relative to x with respect to a frame fixed to the ground is

independent of the location of the pin joint relative to x and y.

ii) Now, suppose that the pin joint is mounted on a horizontal X-Y table that can move the pin

joint along an arbitrary path, for example, a straight line or a curve. How does this additional

motion affect the acceleration of y relative to x with respect to a frame fixed to the ground?

Problem 4.21.5. Points a and b are connected by a rigid bar with pin joints at both a and b as

shown in Figure 4.21.2. The pin joint at a moves horizontally to the right with constant velocity

v. The pin joint at b is connected to a disk with center c that rolls clockwise without slipping.

The length of the bar is 2R, and the radius of the disk is R. At the time instant shown, the vector
⇀
r c/b is parallel to the horizontal surface. For the configuration shown, determine the velocity and

acceleration of c relative to a point fixed in the horizontal surface and with respect to a frame that is

also fixed to the horizontal surface. Resolve your solution in the frame that is fixed to the horizontal

surface.
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a

2R

b

c

R

Figure 4.21.2: Bar and disk linkage for Problem 4.21.5.

Problem 4.21.6. The horizontal rod in Figure 4.21.3 moves to the right with constant speed v

with respect to the ground. A pin at the end of the rod slides within the slot that passes through the

center of the wheel. The radius of the wheel is R, and the distance from the center of the wheel to

the rod is d. The wheel rolls clockwise in a straight line without slipping. Let θ denote the angle

between the vertical direction and the direction of the slot. Determine θ̇ and θ̈ as functions of d, R,

v, and θ.

d

Rθ

Figure 4.21.3: Wheel with slot and horizontal rod for Problem 4.21.6.

Problem 4.21.7. The wheel of radius r in Figure 4.21.4 is attached at its center b to an axle,

whose other end is connected to a central hub at the point a. The wheel rolls without slipping along

a circular path on the ground and with radius R. The constant spin rate of the wheel is ω > 0, and

the constant spin rate of the hub is Ω > 0. The directions of rotation are noted in the figure. The

point c is fixed on the edge of the wheel. Determine the velocity of c relative to a with respect to

a frame fixed to the ground at the instant at which c touches the ground and resolved in the ground

frame. Next, derive an equation that relates r, R, ω, and Ω. Finally, determine the acceleration of

c relative to a with respect to the ground frame at the instant at which c touches the ground and

resolved in a frame fixed to the hub.
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Figure 4.21.4: Wheel with hub for Problem 4.21.7.

Symbol Definition

A•
⇀
x Derivative of

⇀
x with respect to frame A

⇀
v y/x/A Velocity vector

A•
⇀
r y/x

⇀
ay/x/A Acceleration vector

A•
⇀
v y/x/A =

A••
⇀
r y/x

⇀
ωB/A Angular velocity vector

→
ΩB/A Angular velocity matrix

⇀
αB/A Angular acceleration vector

⇀
αB/A/C Angular acceleration vector

Table 4.1: Symbols for Chapter 4.





Chapter Five

Geometry and Kinematics in Alternative

Frames

If the orientation of a frame depends on the position of a point x, then the frame is a position-

dependent frame associated with x. The cylindrical and spherical frames are position-dependent

frames.

5.1 Cylindrical Frame

The cylindrical frame Fcyl associated with the point x is obtained by rotating a given frame

FA around the vector k̂A until the vector ı̂A is aligned with the projection of
⇀
r x/OA

onto the plane

spanned by ı̂A and ̂A. Consequently, the cylindrical frame is related to FA by

Fcyl =
→
Rcyl/AFA =

→
Rk̂A

(θ)FA, (5.1.1)

that is,

FA

θ−→
3

Fcyl, (5.1.2)

where the azimuthal angle θ ∈ (−π, π] is the signed angle from ı̂A to
→
Pı̂A, ̂A

⇀
r x/OA

around k̂A, that is,

θ
△
= θ→

Pı̂A , ̂A

⇀
r x/OA

/ı̂A/k̂A

. (5.1.3)

If
⇀
r x/OA

is parallel with k̂A, then θ is defined to be 0. The radial, tangential, and axial axes of the

cylindrical frame Fcyl associated with x are denoted by êr, êt, and êa, respectively, and defined by

êr =
→
Rk̂A

(θ)ı̂A, (5.1.4)

êt =
→
Rk̂A

(θ) ̂A, (5.1.5)

êa = k̂A. (5.1.6)

The cylindrical frame is thus given by

Fcyl = [êr êt êa]. (5.1.7)

It follows from (5.1.3) and (5.1.4) that

→
Pı̂A, ̂A

⇀
r x/OA

= |
→
Pı̂A, ̂A

⇀
r x/OA

|êr. (5.1.8)

See Figure 5.1.1.

The cylindrical frame can be viewed as a body-fixed frame. In particular, consider a shaft
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ı̂A

̂A

êr

êt

k̂A = êa

OA

θ

→
Pı̂A, ̂A

⇀
r x/OA

Figure 5.1.1: The signed angle θ that defines the cylindrical frame is the angle around k̂A from ı̂A to

the projection
→
Pı̂A, ̂A

⇀
r x/OA

of
⇀
r x/OA

onto the plane spanned by ı̂A and ̂A.

aligned with the axis k̂A of the frame FA attached to the base of the shaft. The shaft has a collar.

A telescoping arm with a sleeve joint is attached to the collar at a right angle to the shaft. A rigid

body B is rigidly attached to the tip of the telescoping arm. A body-fixed frame FB is attached to B

such that k̂B is aligned with k̂A and ı̂B is parallel to the telescoping arm. The angle θ is defined to be

θ
△
= θı̂B/ı̂A/k̂A

. Therefore, if θ = 0, then FA and FB are aligned. Consequently, the body-fixed frame

FB is the cylindrical frame Fcyl. See Figure 5.1.2.

Next, it follows from (5.1.6) that

→
Pı̂A, ̂A =

→
Pêr,êt

, (5.1.9)

that is,

ı̂A ı̂A + ̂A ̂A = êrêr + êtêt. (5.1.10)

Using (5.1.8) and (5.1.9), it follows that

→
Pêr,êt

⇀
r x/OA

=
→
Pı̂A, ̂A

⇀
r x/OA

= |
→
Pı̂A, ̂A

⇀
r x/OA

|êr. (5.1.11)

Next, since
→
Rcyl/A =

→
Rk̂A

(θ), it follows from (5.1.4), (5.1.5), (5.1.6), and (2.10.13) that





êr

êt

êa




= Ocyl/A





ı̂A
̂A
k̂A




, (5.1.12)

where, using (2.12.12),

Ocyl/A =
→
Rk̂A

(θ)

∣
∣
∣
∣
∣

T

A

= O3(θ) =





cos θ sin θ 0

− sin θ cos θ 0

0 0 1




. (5.1.13)

Consequently,

êr = (cos θ)ı̂A + (sin θ) ̂A, (5.1.14)

êt = −(sin θ)ı̂A + (cos θ) ̂A, (5.1.15)

êa = k̂A. (5.1.16)
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Figure 5.1.2: Cylindrical frame given as a body-fixed frame.

Next, write

rx/OA |A =
⇀
r x/OA

∣
∣
∣
∣
A
=





r1

r2

r3




, (5.1.17)

rx/OA |cyl =
⇀
r x/OA

∣
∣
∣
∣
cyl
=





rr

rt

ra




. (5.1.18)

Then,





rr

rt

ra




= Ocyl/A





r1

r2

r3




=





(cos θ)r1 + (sin θ)r2

−(sin θ)r1 + (cos θ)r2

r3





. (5.1.19)

Furthermore, with this notation (5.1.11) can be rewritten as

rrêr + rtêt = r1 ı̂A + r2 ̂A = |
→
Pı̂A, ̂A

⇀
r x/OA

|êr, (5.1.20)

which implies that

rt = 0, (5.1.21)

rrêr = r1 ı̂A + r2 ̂A, (5.1.22)
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⇀
r x/OA

= r1 ı̂A + r2 ̂A + r3k̂A = rrêr + raêa, (5.1.23)

rr = |
→
Pı̂A, ̂A

⇀
r x/OA

| =
√

r2
1
+ r2

2
. (5.1.24)

Next, it follows from the second equation in (5.1.19) that

(cos θ)r2 = (sin θ)r1, (5.1.25)

If r1 = r2 = 0, then
⇀
r x/OA

is parallel with k̂A, and thus, by definition, θ = 0. On the other hand, if

r1 = 0 and r2 , 0, then cos θ = 0. In this case, θ = −π/2 if and only if r2 < 0, and θ = π/2 if and

only if r2 > 0. In the case r1 , 0, we have

tan θ =
r2

r1

. (5.1.26)

Since θ is the angle of the complex number r1 + r2 , it follows that

θ = atan2(r2, r1), (5.1.27)

which determines θ for all values of r1 and r2. See (2.3.9). Finally, dotting (5.1.22) with ı̂A yields

r1 = (cos θ)rr, (5.1.28)

while using (5.1.25) yields

r2 = (sin θ)rr. (5.1.29)

The cylindrical coordinates (rr, θ, ra) associated with x are thus given by

rr =

√

r2
1
+ r2

2
, (5.1.30)

θ = atan2(r2, r1), (5.1.31)

ra = r3. (5.1.32)

5.2 Kinematics in the Cylindrical Frame

It follows from (5.1.2) that

⇀
ωcyl/A = θ̇êa, (5.2.1)

and thus

ωcyl/A|cyl =
⇀
ωcyl/A

∣
∣
∣
∣
cyl
= θ̇ êa|cyl =





0

0

θ̇




. (5.2.2)

Alternatively, using (4.3.20) it follows that

ω×cyl/A|cyl = −Ȯcyl/AOA/cyl

= −





−θ̇ sin θ θ̇ cos θ 0

−θ̇ cos θ −θ̇ sin θ 0

0 0 0









cos θ − sin θ 0

sin θ cos θ 0

0 0 1





=





0 −θ̇ 0

θ̇ 0 0

0 0 0




. (5.2.3)
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Next, it follows from (4.3.21) that




A•
ê r

A•
ê t

A•
ê a





= −ω×cyl/A|cyl





êr

êt

êa




. (5.2.4)

Therefore,

A•
ê r = θ̇êt =

⇀
ωcyl/A × êr, (5.2.5)

A•
ê t = −θ̇êr =

⇀
ωcyl/A × êt, (5.2.6)

A•
ê a = 0 =

⇀
ωcyl/A × êa. (5.2.7)

Now, let FA be a frame with origin OA, and let x be a point. Then,
⇀
r x/OA

can be expressed in the

cylindrical frame as

⇀
r x/OA

= rrêr + raêa. (5.2.8)

Therefore,

⇀
v x/OA/A =

A•
⇀
r x/OA

= ṙrêr + rr

A•
ê r + ṙaêa + ra

A•
ê a

= ṙrêr + θ̇rrêt + ṙaêa

= ṙrêr + ṙaêa + θ̇rrêt

=

cyl•
⇀
r x/OA

+
⇀
ωcyl/A ×

⇀
r x/OA

, (5.2.9)

which is the transport theorem for the cylindrical frame. Furthermore,

⇀
a x/OA/A =

A•
⇀
v x/OA/A

= r̈rêr + ṙr

A•
ê r + θ̈rrêt + θ̇ṙrêt + θ̇rr

A•
ê t + r̈aêa + ṙa

A•
ê a

= r̈rêr + θ̇ṙrêt + θ̈rrêt + θ̇ṙrêt − θ̇2rrêr + r̈aêa

= (r̈r − θ̇2rr)êr + (2θ̇ṙr + θ̈rr)êt + r̈aêa

= r̈rêr + r̈aêa + 2θ̇ṙrêt
︸︷︷︸

Coriolis
acceleration

+ θ̈rrêt
︸︷︷︸

A2

acceleration

+ −θ̇2rrêr
︸  ︷︷  ︸

centripetal
acceleration

=

cyl••
⇀
r x/OA

+ 2
⇀
ωcyl/A ×

cyl•
⇀
r x/OA

+

cyl•
⇀
ω cyl/A ×

⇀
r x/OA

+
⇀
ωcyl/A × (

⇀
ωcyl/A ×

⇀
r x/OA

), (5.2.10)

which is the double transport theorem for the cylindrical frame.

5.3 Spherical Frame

The spherical frame Fsph associated with the point x is obtained by rotating the cylindrical frame

around its tangential vector until the radial vector is aligned with the position of x relative to the
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origin of FA. Consequently, the spherical frame is related to the cylindrical frame Fcyl by

Fsph =
→
Rsph/cylFcyl =

→
Rsph/AFA, (5.3.1)

that is,

FA

θ−→
3

Fcyl

φ
−→

2
Fsph, (5.3.2)

where

→
Rsph/cyl =

→
Rêt

(φ), (5.3.3)

êt is the tangential vector (5.1.5) of the cylindrical frame with θ ∈ (−π, π] the azimuthal angle

(5.1.3), and the elevation angle φ ∈ [−π/2, π/2] is the signed angle from the radial vector êr (5.1.4)

of the cylindrical frame to
⇀
r x/OA

around êt, that is,

φ
△
= θ⇀

r x/OA
/êr/êt

. (5.3.4)

Note that
→
Rêt

(φ) denotes a right-hand-rule clockwise rotation around êt for positive values of φ.

Hence, if φ is positive, then the component
⇀
r x/OA

· k̂A of
⇀
r x/OA

in the direction of k̂A is negative. The

spherical frame is thus given by

Fsph =
→
Rêt

(φ)
→
Rk̂A

(θ)FA. (5.3.5)

Furthermore,

⇀
r x/OA

= |⇀r x/OA
|
→
Rêt

(φ)
→
Rk̂A

(θ)ı̂A. (5.3.6)

The spherical frame can be viewed as a body-fixed frame. In particular, consider a rotating shaft

whose axis is aligned with k̂A. A telescoping arm is connected to the shaft by means of a pin. The

telescoping arm has a sleeve, and a rigid body B is rigidly attached to the end of the arm opposite

to the pin. Now, consider a body-fixed frame FB attached to B such that ı̂B is aligned with the arm.

As the shaft rotates, the arm rotates at the pin joint, and the arm extends and retracts, the frame FB

coincides with the spherical frame. See Figure 5.3.3.

Figure 5.3.3: Spherical frame given as a body-fixed frame.
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The axes of the spherical frame Fsph associated with x are up, east, and north, denoted by êu, êe,

and ên, respectively, where

êu =
→
Rêt

(φ)
→
Rk̂A

(θ)ı̂A =
→
Rêt

(φ)êr, (5.3.7)

êe =
→
Rk̂A

(θ) ̂A = êt, (5.3.8)

ên =
→
Rêt

(φ)k̂A. (5.3.9)

Hence,

Fsph = [êu êe ên]. (5.3.10)

Furthermore, it follows from (5.3.6) and (5.3.7) that

⇀
r x/OA

= |⇀r x/OA
|êu. (5.3.11)

Next, it follows from (5.3.5) that




êu

êe

ên




= Osph/A





ı̂A
̂A
k̂A




, (5.3.12)

where

Osph/A =

(→
Rêt

(φ)
→
Rk̂A

(θ)

)∣∣
∣
∣
∣

T

A

=
→
Rk̂A

(θ)

∣
∣
∣
∣
∣

T

A

→
Rêt

(φ)

∣
∣
∣
∣
∣

T

A

= Ocyl/AOA/cyl

→
Rêt

(φ)

∣
∣
∣
∣
∣

T

cyl

Ocyl/A

= O2(φ)O3(θ)

=





cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ









cos θ sin θ 0

− sin θ cos θ 0

0 0 1





=





(cos φ) cos θ (cos φ) sin θ − sin φ

− sin θ cos θ 0

(sin φ) cos θ (sin φ) sin θ cos φ





. (5.3.13)

Consequently,

êu = (cos φ)(cos θ)ı̂A + (cos φ)(sin θ) ̂A − (sin φ)k̂A, (5.3.14)

êe = −(sin θ)ı̂A + (cos θ) ̂A, (5.3.15)

ên = (sin φ)(cos θ)ı̂A + (sin φ)(sin θ) ̂A + (cos φ)k̂A. (5.3.16)

Likewise,

OA/sph =





(cos φ) cos θ − sin θ (sinφ) cos θ

(cos φ) sin θ cos θ (sin φ) sin θ

− sin φ 0 cos φ





, (5.3.17)



192 CHAPTER 5

and thus

ı̂A = (cos φ)(cos θ)êu − (sin θ)êe + (sin φ)(cos θ)ên, (5.3.18)

̂A = (cos φ)(sin θ)êu + (cos θ)êe + (sin φ)(sin θ)ên, (5.3.19)

k̂A = −(sin φ)êu + (cos φ)ên. (5.3.20)

Next, write

rx/OA |A =
⇀
r x/OA

∣
∣
∣
∣
A
=





r1

r2

r3




, (5.3.21)

rx/OA |sph
⇀
r x/OA

∣
∣
∣
∣
sph
=





ru

re

rn




. (5.3.22)

Thus,





ru

re

rn




= Osph/A





r1

r2

r3




=





(cos φ)(cos θ)r1 + (cos φ)(sin θ)r2 − (sin φ)r3

−(sin θ)r1 + (cos θ)r2

(sin φ)(cos θ)r1 + (sin φ)(sin θ)r2 + (cos φ)r3





. (5.3.23)

Next, it follows from (5.3.11) that

ruêu + reêe + rnên = |
⇀
r x/OA

|êu. (5.3.24)

Thus,

re = 0, (5.3.25)

rn = 0, (5.3.26)

⇀
r x/OA

= r1 ı̂A + r2 ̂A + r3k̂A = ruêu, (5.3.27)

ru = |
⇀
r x/OA

| =
√

r2
1
+ r2

2
+ r2

3
. (5.3.28)

Now, it follows from (5.3.16) and (5.3.27) that

r1 = (êu · ı̂A)ru = (cos φ)(cos θ)ru, (5.3.29)

r2 = (êu · ̂A)ru = (cos φ)(sin θ)ru, (5.3.30)

r3 = (êu · k̂A)ru = −(sin φ)ru, (5.3.31)

where the minus sign in (5.3.31) indicates that points for which φ is positive are located in the

southern hemisphere.

Since re = 0, it follows from the second equation in (5.3.23) that

(sin θ)r1 − (cos θ)r2 = 0, (5.3.32)

and thus, as in the case of the cylindrical frame,

θ = atan2(r2, r1). (5.3.33)

Next, since rn = 0 it follows from the third equation in (5.3.23) that

(sin φ)(cos θ)r1 + (sin φ)(sin θ)r2 + (cos φ)r3 = 0. (5.3.34)
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Recall that φ ∈ [−π/2, π/2]. Now, suppose that r1 = r2 = 0. Then, assuming that x is not located

at OA, it follows from (5.3.34) that cos φ = 0, and thus either φ = π/2 or φ = −π/2. Conversely,

suppose that either φ = π/2 or φ = −π/2. Then, it follows from (5.3.34) that

(cos θ)r1 + (sin θ)r2 = 0. (5.3.35)

It now follows from (5.3.32) and (5.3.35) that r1 = r2 = 0.Consequently, either φ = π/2 or φ = −π/2
if and only if r1 = r2 = 0.

Now, assume that r1 and r2 are not both zero. Then, cos φ , 0, and thus we can write

tan φ = − r3

(cos θ)r1 + (sin θ)r2

. (5.3.36)

Hence, using (5.3.32) it follows that

tan φ = − r3
√

r2
1
+ r2

2

∈ (−π/2, π/2), (5.3.37)

and thus

φ = − tan−1 r3
√

r2
1
+ r2

2

(5.3.38)

Note that r3 > 0 if and only if φ < 0. Finally, including the case r1 = r2 = 0, we have

φ =






−π/2, r1 = r2 = 0, r3 > 0,

π/2, r1 = r2 = 0, r3 < 0,

− tan−1 r3√
r2

1
+r2

2

, r2
1
+ r2

2
> 0,

(5.3.39)

or, equivalently,

φ = −atan2

(

r3,

√

r2
1
+ r2

2

)

. (5.3.40)

The spherical coordinates (ru, θ, φ) associated with x are thus given by

ru =

√

r2
1
+ r2

2
+ r2

3
, (5.3.41)

θ = atan2(r2, r1), (5.3.42)

φ = −atan2

(

r3,

√

r2
1
+ r2

2

)

. (5.3.43)

5.4 Kinematics in the Spherical Frame

It follows from (5.3.2) that

⇀
ωsph/A = θ̇êa + φ̇êe, (5.4.1)

and thus

ωsph/A|sph =
⇀
ωsph/A

∣
∣
∣
∣
sph

= θ̇ êa|sph + φ̇ êe|sph

= θ̇Osph/cyl êa|cyl + φ̇ êe|sph
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=





cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ









0

0

θ̇




+





0

φ̇

0





=





−θ̇ sin φ

φ̇

θ̇ cos φ




. (5.4.2)

Alternatively, using (4.3.20) it follows that

ω×sph/A|sph = Osph/AȮA/sph

=





(cos φ) cos θ (cos φ) sin θ − sin φ

− sin θ cos θ 0

(sin φ) cos θ (sin φ) sin θ cos φ





×





−φ̇(sin φ) cos θ − θ̇(cos φ) sin θ −θ̇ cos θ φ̇(cos φ) cos θ − θ̇(sin φ) sin θ

−φ̇(sin φ) sin θ + θ̇(cos φ) cos θ −θ̇ sin θ φ̇(cos φ) sin θ + θ̇(sin φ) cos θ

−φ̇ cos φ 0 −φ̇ sin φ





=





0 −θ̇ cos φ φ̇

θ̇ cos φ 0 θ̇ sin φ

−φ̇ −θ̇ sin φ 0





. (5.4.3)

Next, it follows from (4.3.21) that




A•
ê u

A•
ê e

A•
ê n





= −ω×sph/A|sph





êu

êe

ên




. (5.4.4)

Therefore,

A•
ê u = θ̇(cos φ)êe − φ̇ên =

⇀
ωsph/A × êu, (5.4.5)

A•
ê e = −θ̇(cos φ)êu − θ̇(sinφ)ên =

⇀
ωsph/A × êe, (5.4.6)

A•
ê n = φ̇êu + θ̇(sin φ)êe =

⇀
ωsph/A × ên. (5.4.7)

Now, let FA be a frame with origin OA, and let x be a point. Then,
⇀
r x/OA

can be expressed in the

spherical frame as

⇀
r x/OA

= ruêu. (5.4.8)

Therefore,

⇀
v x/OA/A =

A•
⇀
r x/OA

= ṙuêu + ru

A•
ê u

= ṙuêu + ruθ̇(cos φ)êe − ruφ̇ên

=

sph•
⇀
r x/OA

+
⇀
ωsph/A ×

⇀
r x/OA

, (5.4.9)
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which is the transport theorem for the spherical frame. Furthermore,

⇀
a x/OA/A =

A•
⇀
v x/OA/A

= r̈uêu + ṙu

A•
ê u + [ṙuθ̇(cos φ) + ruθ̈(cos φ) − ruθ̇φ̇ sin φ]êe + ruθ̇(cos φ)

A•
ê e

− (ṙuφ̇ + ruφ̈)ên − ruφ̇
A•
ê n

= r̈uêu + ṙuθ̇(cos φ)êe − ṙuφ̇ên + [ṙuθ̇(cos φ) + ruθ̈(cos φ) − ruθ̇φ̇ sin φ]êe

− ruθ̇(cos φ)[θ̇(cos φ)êu + θ̇(sin φ)ên] − (ṙuφ̇ + ruφ̈)ên − ruφ̇[φ̇êu + θ̇(sin φ)êe]

= [r̈u − ruθ̇
2(cos2 φ) − ruφ̇

2]êu + [2ṙuθ̇(cos φ) + ruθ̈(cos φ) − 2ruφ̇θ̇ sin φ]êe

+ [ruθ̇
2(cos φ)(sin φ) − 2ṙuφ̇ − ruφ̈]ên

= r̈uêu + 2ṙu[θ̇(cos φ)êe − φ̇ên]
︸                     ︷︷                     ︸

Coriolis acceleration

+ ru([θ̈(cos φ) − φ̇θ̇ sin φ]êe − φ̈ên)
︸                                    ︷︷                                    ︸

A2 acceleration

+ −ru[(φ̇2 + θ̇2 cos2 φ)êu + φ̇θ̇(sin φ)êe + θ̇
2(cos φ)(sin φ)ên]

︸                                                                      ︷︷                                                                      ︸

centripetal acceleration

=

sph••
⇀
r x/OA

+ 2
⇀
ωsph/A ×

sph•
⇀
r x/OA

+

sph•
⇀
ω sph/A ×

⇀
r x/OA

+
⇀
ωsph/A × (

⇀
ωsph/A ×

⇀
r x/OA

), (5.4.10)

which is the double transport theorem for the spherical frame. Note that the Coriolis acceleration is

zero if ru is constant.

Note that the Coriolis acceleration is given by

⇀
aCor = 2

⇀
ωsph/A ×

sph•
⇀
r x/OA

= 2ṙu[θ̇(cos φ)êe − φ̇ên]. (5.4.11)

5.5 Frenet-Serret Frame

Let x be a point whose position relative to a point w is parameterized by the real number α. The

position of x relative to w can thus be written as
⇀
r x/w(α). The Frenet-Serret frame is a frame that

depends on the location of x and thus on α. The set of all locations of x over all possible values of α

constitutes the curve C. The parameter α may represent time, in which case the curve can be viewed

as growing in time. Alternatively, α may represent arc length, in which case the location of x can

be found by specifying the distance along the curve from w. Finally, the parameter α can itself be

parameterized by time by writing α = α(t).

This notation is incomplete, however, since it does not indicate which parameterization is chosen

when α is set to a numerical value. For example,
⇀
r x/w(3) is ambiguous. To remove this ambiguity

when confusion can arise, we may write
⇀
r α,x/w(β), where the additional subscript α identifies the

parameter that parameterizes the curve and β denotes a value of α. When an additional subscript is

not used, the choice of parameterization is assumed to be inferred by the argument α in
⇀
r x/w(α).

Resolving
⇀
r x/w(α) in FA, we have

⇀
r x/w(α) = r1(α)ı̂A + r2(α) ̂A + r3(α)k̂A, (5.5.1)



196 CHAPTER 5

where

r1(α)
△
=

⇀
r x/w(α) · ı̂A, (5.5.2)

r2(α)
△
=

⇀
r x/w(α) · ̂A, (5.5.3)

r3(α)
△
=

⇀
r x/w(α) · k̂A. (5.5.4)

The path derivative

Aα•
⇀
r x/w (α) is defined by

Aα•
⇀
r x/w (α)

△
= r′1(α)ı̂A + r′2(α) ̂A + r′3(α)k̂A. (5.5.5)

Hence,

Aα•
⇀
r x/w (α)

∣
∣
∣
∣
∣
∣
∣
A

=





r′
1
(α)

r′
2
(α)

r′
3
(α)




. (5.5.6)

Note that, if α denotes time t, then

Aα•
⇀
r x/w (α) is the usual frame derivative

A•
⇀
r x/w . Consequently, the

path derivative is a generalization of the frame derivative.

Next, let s(α) denote the length of the path from
⇀
r x/w(0) to

⇀
r x/w(α). Then,

s(α) =

∫ α

0

|
Aα•
⇀
r x/w (σ)| dσ, (5.5.7)

which states that path length is the integral of the parametric speed along the path. Therefore,

s′(α) = |
Aα•
⇀
r x/w (α)| =

√

r′2
1

(α) + r′2
2

(α) + r′2
3

(α) (5.5.8)

and, assuming that s′(α) is nonzero,

s′′(α) =
r′

1
(α)r′′

1
(α) + r′

2
(α)r′′

2
(α) + r′

3
(α)r′′

3
(α)

s′(α)

=

Aα•
⇀
r x/w (α) ·

Aα••
⇀
r x/w (α)

s′(α)
. (5.5.9)

It follows from (5.5.8) that s′(α) is nonzero if and only if

Aα•
⇀
r x/w (α) is nonzero.

Next, suppose that α is parameterized by s, that is, α = α(s). Then,
⇀
r s,x/w(s) =

⇀
r α,x/w(α(s)),

where the additional subscripts denote different parameterizations. Then, it follows from the chain

rule that the path-length derivative

As•
⇀
r x/w (α) is given by

As•
⇀
r x/w (s) =

As•
⇀
r s,x/w (s)

=

As•
⇀
r α,x/w (α(s))

= α′(s)

Aα•
⇀
r x/w (α). (5.5.10)
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Since α′(s)s′(α) = 1, we have

As•
⇀
r x/w (α) =

1

s′(α)

Aα•
⇀
r x/w (α). (5.5.11)

As a special case, suppose that α(s) = s. Then, the length of the path from
⇀
r x/w(0) to

⇀
r x/w(α)

is s, and thus s(α) = α. Therefore, s′(α) = 1 and s′′(α) = 0, and thus it follows from (5.5.5) with

α = s and (5.5.8) that

|
As•
⇀
r x/w (s)| = 1. (5.5.12)

Hence,

As•
⇀
r x/w (s) is a unit vector. Therefore,

As•
⇀
r x/w (s) ·

As••
⇀
r x/w (s) = 0. (5.5.13)

The axes of the Frenet-Serret frame FFS associated with x are tangential, normal, and binormal,

denoted by (êt, ên, êb), respectively. The tangential vector êt is the unit tangent vector (see (5.5.12))

to the curve at the location of the point, that is,

êt
△
=

As•
⇀
r x/w (s). (5.5.14)

Using (5.5.10) and (5.5.11) it follows that

êt = α
′(s)

Aα•
⇀
r x/w (α) =

1

s′(α)

Aα•
⇀
r x/w (α). (5.5.15)

Furthermore,

As•
ê t =

As••
⇀
r x/w (s), (5.5.16)

Aα•
ê t =

−s′′(α)

s′2(α)

Aα•
⇀
r x/w (α) +

1

s′(α)

Aα••
⇀
r x/w (α). (5.5.17)

The normal vector ên is defined to be the unit vector in the direction of
Aα•
ê t, that is,

ên
△
=
ρ(α)

s′(α)

Aα•
ê t, (5.5.18)

where

ρ(α)
△
=
|s′(α)|

|
Aα•
ê t |

> 0 (5.5.19)

is the radius of curvature. However, ên is not defined when
Aα•
ê t = 0, that is, when êt is not changing,

for example, if the curve is a straight line or at an inflection point. Furthermore, using (5.5.11)

yields

ên =
ρ(α)

s′3(α)




s′(α)

Aα••
⇀
r x/w (α) − s′′(α)

Aα•
⇀
r x/w (α)




, (5.5.20)
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which, using (5.5.9), can be written as

ên =
ρ(α)

s′4(α)




s′2(α)

Aα••
⇀
r x/w (α) −





Aα•
⇀
r x/w (α) ·

Aα••
⇀
r x/w (α)





Aα•
⇀
r x/w (α)




. (5.5.21)

Note that it follows from (5.5.10) that

Aα•
⇀
r x/w (α) = s′(α)êt (5.5.22)

and thus using (5.5.18) we have

Aα••
⇀
r x/w (α) = s′′(α)êt +

s′2(α)

ρ(α)
ên. (5.5.23)

In the special case α = s, (5.5.20) becomes

ên = ρ(s)
As•
ê t, (5.5.24)

where

ρ(s)
△
=

1

|
As•
ê t |

> 0. (5.5.25)

Hence, it follows from (5.5.24) and (5.5.13) that

ên = ρ(s)

As••
⇀
r x/w (s). (5.5.26)

The vectors êt and ên are orthogonal since êt · êt = 1, and thus êt·
Aα•
ê t = 0. For a circular path, ên

points toward the center of the circle. The plane spanned by êt and ên is called the osculating plane.

To complete the Frenet-Serret frame, the binormal vector is defined by

êb
△
= êt × ên. (5.5.27)

Hence, using (5.5.14), (5.5.26), (5.5.10), and (5.5.21), it follows that

êb = ρ(s)





As•
⇀
r x/w (s) ×

As••
⇀
r x/w (s)





=
ρ(α)

s′3(α)





Aα•
⇀
r x/w (α) ×

Aα••
⇀
r x/w (α)




. (5.5.28)

The plane spanned by êt and êb is called the rectifying plane, while the plane spanned by ên and êb

is called the normal plane. The Frenet-Serret frame is thus given by

FFS = [êt ên êb] =
→
RFS/AFA, (5.5.29)

so that




êt

ên

êb




= OFS/A





ı̂A
̂A
k̂A




. (5.5.30)
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Next, we find the path-length derivatives of the unit vectors (êt, ên, êb). It follows from (5.5.18)

that

As•
ê t = κ(s)ên, (5.5.31)

and thus

Aα•
ê t = κ(α)s′(α)ên, (5.5.32)

where κ(α)
△
= 1/ρ(α) is the curvature. It follows from (5.5.28) that

κ(α) =
|

Aα•
⇀
r x/w (α) ×

Aα••
⇀
r x/w (α)|

|
Aα•
⇀
r x/w (α)|3

. (5.5.33)

Thus, if α = s, then

κ(s) = |
As••
⇀
r x/w (s)|. (5.5.34)

If κ(α) = 0, then ρ(α) = ∞. Taking the magnitude of (5.5.32) and using (5.5.11) yields

κ(α) =
|

Aα•
ê t |

s′(α)

=
1

s′3(α)

∣
∣
∣
∣
∣
∣
∣

s′(α)

Aα••
⇀
r x/w (α) − s′′(α)

Aα•
⇀
r x/w (α)

∣
∣
∣
∣
∣
∣
∣

=
1

s′3(α)

√

s′2(α)|
Aα••
⇀
r x/w (α)|2 − (

Aα•
⇀
r x/w (α) ·

Aα••
⇀
r x/w (α))2. (5.5.35)

Note that, since
Aα•
ê t = κ(α)s′(α)ên and êb are perpendicular, it follows that

0 =
d

ds
(êt · êb)

=
Aα•
ê t · êb + êt ·

Aα•
ê b

= êt ·
Aα•
ê b . (5.5.36)

In addition, since êb · êb = 1, it follows that êb·
Aα•
ê b = 0. Consequently,

Aα•
ê b is orthogonal to

both êt and êb. Since ên is also orthogonal to both êt and êb, it follows that
Aα•
ê b and ên are parallel.

Consequently,
As•
ê b =

1
s′(α)

Aα•
ê b and ên are parallel. We thus define the torsion τ(α) such that

As•
ê b = −τ(α)ên. (5.5.37)

Therefore,

τ(α) = −ên ·
As•
ê b
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= − 1

s′(α)
ên ·

Aα•
ê b

= − ρ(α)

s′10(α)




s′(α)

Aα••
⇀
r x/w (α) − s′′(α)

Aα•
⇀
r x/w





·



[s′3(α)ρ′(α) − 3s′2(α)s′′(α)ρ(α)]





Aα•
⇀
r x/w (α) ×

Aα••
⇀
r x/w (α)





+ s′3(α)ρ(α)





Aα•
⇀
r x/w (α) ×

Aα•••
⇀
r x/w (α)









= − ρ
2(α)

s′6(α)

Aα••
⇀
r x/w (α) ·





Aα•
⇀
r x/w (α) ×

Aα•••
⇀
r x/w (α)




. (5.5.38)

Next, since ên · ên = 1, it follows that ên ·
As•
ê n = 0. Therefore, there exist real numbers γ and δ

such that

As•
ê n = γêt + δêb. (5.5.39)

Using (5.5.37) and taking the path-length derivative of (5.5.27) yields

−τ(α)ên =
As•
ê b

=
As•
ê t × ên + êt ×

As•
ê n

= κ(α)ên × ên + êt × (γêt + δêb)

= −δên. (5.5.40)

Therefore, δ = τ(α). Next, since ên · êt = 0, it follows that

γ =
As•
ê n · êt = −ên ·

As•
ê t

= −ên · [κ(α)ên]

= −κ(α). (5.5.41)

Therefore,

As•
ê n = −κ(α)êt + τ(α)êb. (5.5.42)

In summary, the Frenet-Serret relations (5.5.31), (5.5.42), and (5.5.37) are given by the vectrix

equation





As•
ê t

As•
ê n

As•
ê b





=





0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0









êt

ên

êb




, (5.5.43)
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which can be written as




As•
ê t

As•
ê n

As•
ê b





= −





τ(s)

0

κ(s)





× 



êt

ên

êb




. (5.5.44)

In terms of an arbitrary parameterization involving the parameter α, the Frenet-Serret relations are

given by





Aα•
ê t

Aα•
ê n

Aα•
ê b





=





0 s′(α)κ(α) 0

−s′(α)κ(α) 0 s′(α)τ(α)

0 −s′(α)τ(α) 0









êt

ên

êb




, (5.5.45)

which can be written as




Aα•
ê t

Aα•
ê n

Aα•
ê b





= −





s′(α)τ(α)

0

s′(α)κ(α)





× 



êt

ên

êb




. (5.5.46)

In the special case where α denotes time, we have





A•
ê t

A•
ê n

A•
ê b





= −





s′(t)τ(t)

0

s′(t)κ(t)





× 



êt

ên

êb




. (5.5.47)

To illustrate the meaning of the Frenet-Serret relations, consider the case in which the curve lies

in a plane. Then, êt and ên both lie in the plane, while êb is perpendicular to the plane, and thus
As•
ê b = 0. In this case, the curvature κ(s) is the rate with respect to s of the rotation of êt around êb.

If, however, the curve is not confined to a plane, then the torsion τ(s) is the rate with respect to s of

the rotation of êb around ên.

The Frenet-Serret relations can be viewed as analogous to the vectrix form of Poisson’s equation

given by (4.3.21), that is,





A•
ı̂ B

A•
̂ B

A•
k̂ B





= −ω×B/A|B





ı̂B
̂B
k̂B




. (5.5.48)

Recall that Poisson’s equation applies to a rigid body and is parameterized by time. It is thus

convenient to define the angular velocity of FFS relative to FA as

⇀
ωs,FS/A(s)

△
= τ(s)êt + κ(s)êb, (5.5.49)

which lies in the rectifying plane. Defining

ωs,FS/A|FS
△
=

⇀
ωs,FS/A

∣
∣
∣
∣
FS
=





τ(s)

0

κ(s)




, (5.5.50)
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we can rewrite (5.5.44) as




As•
ê t

As•
ê n

As•
ê b





= −ω×s,FS/A|FS





êt

ên

êb




. (5.5.51)

For an arbitrary parameter α, we define

⇀
ωα,FS/A(α)

△
= τ(α)êt + κ(α)êb, (5.5.52)

ωα,FS/A|FS
△
=

⇀
ωα,FS/A

∣
∣
∣
∣
FS
=





s′(α)τ(α)

0

s′(α)κ(α)




. (5.5.53)

We thus have




Aα•
ê t

Aα•
ê n

Aα•
ê b





= −ω×α,FS/A|FS





êt

ên

êb




. (5.5.54)

Finally, in terms of time, we define

⇀
ωt,FS/A(t)

△
= s′(t)τ(t)êt + s′(t)κ(t)êb, (5.5.55)

ωt,FS/A|FS
△
=

⇀
ωt,FS/A

∣
∣
∣
∣
FS
=





s′(t)τ(t)

0

s′(t)κ(t)




. (5.5.56)

We thus have




A•
ê t

A•
ê n

A•
ê b





= −ω×t,FS/A|FS





êt

ên

êb




. (5.5.57)

Comparing (5.5.57) with (4.3.21), it can be seen that
⇀
ωt,FS/A is the angular velocity of FFS relative

to FA.

To obtain a matrix form of the Frenet-Serret relations, define

xt
△
= êt|A , (5.5.58)

xn
△
= ên|A , (5.5.59)

xb
△
= êb|A , (5.5.60)

X
△
=

[

xt xn xb

]

. (5.5.61)

Thus,

d

dα
X(α) = X(α)ω×α,FS/A|FS, (5.5.62)

which is analogous to the matrix form of Poisson’s equation given by (4.3.17), that is,

ṘB/A = RB/Aω
×
B/A|B. (5.5.63)
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Let the Frenet-Serret frame be defined by the position vector
⇀
r x/w(α), where α is a parameter,

and let
⇀
x(α) be a physical vector that depends on α. Then, the transport theorem in terms of α has

the form

FSα•
⇀
x (α) =

Aα•
⇀
x (α) +

⇀
ωα,FS/A ×

⇀
x(α). (5.5.64)

Finally, let α be a function of time t, and note that

A•
⇀
r x/w (α(t)) = α̇(t)

Aα•
⇀
r x/w (α) (5.5.65)

Therefore,

⇀
v x/w/A(α(t)) = s′(α(t))α̇(t)êt, (5.5.66)

⇀
a x/w/A(α(t)) = [s′(α(t))α̈(t) + s′′(α(t))α̇2(t)]êt +

s′2(α(t))α̇2(t)

ρ(α(t))
ên. (5.5.67)

Equivalently, we can write

⇀
v x/w/A(α(t)) = v(t)êt, (5.5.68)

⇀
a x/w/A(α(t)) = v̇(t)êt +

v2(t)

ρ(α(t))
ên, (5.5.69)

where v(t)
△
= s′(α(t))α̇(t) is the speed.

The following result considers the rotational path of a rigid body whose attitude is given by a

parameterization of (2.14.12). This result is analogous to Fact 4.9.2, where now the angular velocity

is parameterized by α instead of time.

Fact 5.5.1. Let B be a rigid body with body-fixed frame FB, and assume that the physical

rotation matrix that transforms FA to FB is given by
→
RB/A(α) = exp(

⇀

Θ
×

B/A(α)), where θB/A(α)
△
=

|
⇀

ΘB/A(α)| ∈ [0, π]. Furthermore, define n̂B/A(α)
△
= Θ̂B/A(α). Then,

⇀
ωB/A(α) =

1

θ2
B/A

(
⇀

ΘB/A

⇀

Θ
′

B/A + (
→
I −

→
RB/A)

⇀

Θ
×

B/A

) Aα•
⇀

Θ B/A (5.5.70)

=





→
I +

1 − cos θB/A

θ2
B/A

⇀

Θ
×

B/A +
θB/A − sin θB/A

θ3
B/A

⇀

Θ
×2

B/A





Aα•
⇀

Θ B/A . (5.5.71)

Furthermore,

Aα•
⇀

Θ B/A=





→
I − 1

2

⇀

Θ
×

B/A +
2 − θB/A cot

θB/A

2

2θ2
B/A

⇀

Θ
×2

B/A





⇀
ωB/A. (5.5.72)

5.6 Theoretical Problems

Problem 5.6.1. Let x and w be points, and let
⇀
r x/w(α) depend on a parameter α, and let FA and

FB be frames. Show that, if
d

dα
OB/A = 0,
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then
Aα•
⇀
r x/w =

Aα•
⇀
r x/w .

Problem 5.6.2. Consider a helix with radius r and distance between turns h, wrapped around

a cylinder whose axis is aligned with the k̂A axis. Show that this curve is parameterized in terms of

arc length s by

⇀
r x/w(s) =

(

r cos
s

√
r2 + h2

)

ı̂A +

(

r sin
s

√
r2 + h2

)

̂A +

(

hs
√

r2 + h2

)

k̂A.

Furthermore, determine êt, ên, and êb, and show that

κ(s) =
r

r2 + h2
, τ(s) =

h

r2 + h2
.

Problem 5.6.3. Consider the logarithmic spiral curve parameterized by

⇀
r x/w(α) = (eα cosα)ı̂A + (eα sinα) ̂A.

Show that

κ(s) =
1

s
.

Problem 5.6.4. Consider the catenary curve parameterized by

⇀
r x/w(α) = αı̂A +

a

2
(eα/a + e−α/a) ̂A,

where a is a positive constant. Show that

κ(s) =
a

s2 + a
.

Problem 5.6.5. Show that if τ , 0, then κ , 0.

Problem 5.6.6. Let FA be a frame, let w be a point, let B be a rigid body with body-fixed

frame FB, let x and y be points that are fixed in B, and let FFSx
and FFSy

be the Frenet-Serret frames

associated with the curves generated by x and y, respectively. Find a relationship between
→
RFSy/A

and
→
RFSx/A.

5.7 Applied Problems

Problem 5.7.1. Consider a bowling alley located at λ degrees north latitude with bowling lanes

that are l feet long. A ball is rolled down the center of the lane with speed v. Determine the Coriolis

acceleration due to the rotation of the Earth and the resulting lateral position of the ball at the end

of the lane. The bowling alley may be oriented in an arbitrary horizontal direction.



GEOMETRY AND KINEMATICS IN ALTERNATIVE FRAMES 205

Symbol Definition

êr, êt, êa Cylindrical (radial, tangential, axial) frame

êu, êe, ên Spherical (up, east, north) frame

êt, ên, êb Tangential, normal, binormal

(Frenet-Serret) frame

Table 5.1: Symbols for Chapter 5.





Chapter Six

Statics

A body is a finite collection of particles, not necessarily rigid. A body is rigid if its shape does not

change, that is, if the distance between each pair of particles is constant. An inertia point is either a

particle in a body, a point on a rigid massless link connecting two particles, or a point along a rigid

massless link in a (nontrivial) rigid body. In the last case, the link may be rigidly attached to a single

particle without connecting two particles.

6.1 Zeroth and First Moments of Mass

Definition 6.1.1. Let B be a body consisting of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively. Then, the zeroth moment of mass of B is the total mass mB of the body, that is,

mB

△
=

l∑

i=1

mi. (6.1.1)

Now, let w be a point. Then, the center of mass c of B is the point c defined by the position vector

⇀
r c/w

△
=

1

mB

l∑

i=1

mi

⇀
r yi/w, (6.1.2)

and the first moment of mass of B is the physical vector

mB

⇀
r c/w =

l∑

i=1

mi

⇀
r yi/w. (6.1.3)

The following result shows that the location of the center of mass is independent of the choice

of the point w.

Fact 6.1.2. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let w and w′ be points, and define the points c and c′ by

⇀
r c/w

△
=

1

mB

l∑

i=1

mi

⇀
r yi/w, (6.1.4)

⇀
r c′/w′

△
=

1

mB

l∑

i=1

mi

⇀
r yi/w′ . (6.1.5)

Then, c and c′ are colocated.
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Proof. Note that

⇀
r c′/c =

⇀
r c′/w′ +

⇀
r w′/w +

⇀
r w/c

=
⇀
r c′/w′ −

⇀
r c/w +

⇀
r w′/w

=
1

mB

l∑

i=1

mi

⇀
r yi/w′ −

1

mB

l∑

i=1

mi

⇀
r yi/w +

⇀
r w′/w

=
1

mB

l∑

i=1

mi(
⇀
r yi/w′ −

⇀
r yi/w) +

⇀
r w′/w

=
1

mB

l∑

i=1

mi(
⇀
r yi/w′ +

⇀
r w/yi

) +
⇀
r w′/w

=
1

mB

l∑

i=1

mi

⇀
r w/w′ +

⇀
r w′/w

=
⇀
r w/w′ +

⇀
r w′/w =

⇀
r w/w =

⇀

0 . �

Fact 6.1.3. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, and let mB denote the mass of B. Then, c satisfies

l∑

i=1

mi

⇀
r yi/c = 0. (6.1.6)

Proof. Set w = c in (6.1.2). �

6.2 Second Moment of Mass

The second moment of mass of a body is given by the physical inertia matrix
→
JB/z, which

characterizes the mass distribution of a body B relative to a reference point z.

Definition 6.2.1. Let B be a body with particles y1, . . . , yl whose masses are m1, . . . ,ml, re-

spectively, and let z be a point. Then, the physical inertia matrix
→
JB/z of B relative to z is defined

by

→
JB/z

△
=

l∑

i=1

mi

⇀
r
×′

yi/z

⇀
r
×
yi/z
. (6.2.1)

Fact 6.2.2. Let B be a body with particles y1, . . . , yl whose masses are m1, . . . ,ml, respectively,

and let z be a point. Then,

→
JB/z = −

l∑

i=1

mi

⇀
r
×2

yi/z
(6.2.2)

=

l∑

i=1

mi

(

|⇀r yi/z|2
→
I − ⇀

r yi/z

⇀
r
′
yi/z

)

. (6.2.3)
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Now, let FB be a frame. Then,

→
JB/z = Jxx/z|B ı̂B ı̂

′
B + Jyy/z|B ̂B ̂

′
B + Jzz/z|Bk̂Bk̂′B − Jxy/z|B(ı̂B ̂

′
B + ̂B ı̂

′
B)

− Jxz/z|B(ı̂Bk̂′B + k̂B ı̂
′
B) − Jyz/z|B( ̂Bk̂′B + k̂B ̂

′
B). (6.2.4)

Hence,

JB/z|B =





Jxx/z|B −Jxy/z|B −Jxz/z|B
−Jxy/z|B Jyy/z|B −Jyz/z|B
−Jxz/z|B −Jyz/z|B Jzz/z|B




, (6.2.5)

where

Jxx/z|B
△
=

l∑

i=1

mi(ȳ
2
i + z̄2

i ), Jxy/z|B
△
=

l∑

i=1

mi x̄iȳi, (6.2.6)

Jyy/z|B
△
=

l∑

i=1

mi(x̄2
i + z̄2

i ), Jxz/z|B
△
=

l∑

i=1

mi x̄iz̄i, (6.2.7)

Jzz/z|B
△
=

l∑

i=1

mi(x̄2
i + ȳ2

i )

︸                        ︷︷                        ︸

moments of inertia

, Jyz/z|B
△
=

l∑

i=1

miȳiz̄i

︸                 ︷︷                 ︸

products of inertia

, (6.2.8)

and where

ryi/z|B =





x̄i

ȳi

z̄i




. (6.2.9)

Proof. For i = 1, . . . , l,
⇀
r
×′

yi/z
=

⇀
r
×
yi/z
, which implies that (6.2.1) can be written as (6.2.2).

Furthermore, (2.9.13) implies that (6.2.1) can be written as (6.2.3). Next, resolving
→
JB/z in FB

yields

JB/z|B =

l∑

i=1

mi

(

|⇀r yi/z|2I3 − ryi/z|BrT
yi/z|B

)

=

l∑

i=1

mi









x̄2
i
+ ȳ2

i
+ z̄2

i
0 0

0 x̄2
i
+ ȳ2

i
+ z̄2

i
0

0 0 x̄2
i
+ ȳ2

i
+ z̄2

i





−





x̄2
i

x̄iȳi x̄iz̄i

ȳi x̄i ȳ2
i

ȳiz̄i

z̄i x̄i z̄iȳi z̄2
i









,

where

⇀
r yi/z = x̄i ı̂B + ȳi ̂B + z̄ik̂B.

Hence, JB/z|B is given by (6.2.5)–(6.2.8). �

The diagonal entries Jxx/z|B, Jyy/z|B, Jzz/z|B of JB/z|B are the moments of inertia of B relative to z

determined by FB, whereas the off-diagonal entries Jxy/z|B, Jxz/z|B, Jyz/z|B of JB/z|B are the products of

inertia of B relative to z determined by FA.

The following result relates the physical inertia matrix resolved in different frames.
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Fact 6.2.3. Let B be a body, let FA and FB be frames, and let z be a point. Then,

JB/z|A = OA/BJB/z|BOB/A. (6.2.10)

Proof. The result follows from Fact 2.10.11. �

The following result relates the physical inertia matrix of a body to the physical inertia matrix

of the rotated body.

Fact 6.2.4. Let B be a body, let z be point in B, let
→
R be a physical rotation matrix, let B′ be

the body B rotated by
→
R, and let z′ denote the point in B′ corresponding to z in B. Then,

→
JB′/z′ =

→
R
→
JB/z

→
R
′
. (6.2.11)

Proof. Note that

→
JB′/z′ = −

l∑

i=1

mi

⇀
r
×2

y′
i
/z′

= −
l∑

i=1

mi

(→
R
⇀
r yi/z

)×2

= −
l∑

i=1

mi

(
→
R
⇀
r
×
yi/z

→
R
′)2

= −
l∑

i=1

mi

→
R
⇀
r
×2

yi/z

→
R
′

=
→
R




−

l∑

i=1

mi

⇀
r
×2

yi/z





→
R
′

=
→
R
→
JB/z

→
R
′
. �

Fact 6.2.5. Let B be a body, let z be a point in B, let FA and FB be frames, let B′ be the body

B rotated by
→
RA/B, and let z′ be the point in B′ corresponding to z in B. Then,

→
JB′/z′ =

→
RA/B

→
JB/z

→
RB/A. (6.2.12)

Consequently,

JB′/z′ |A = JB/z|B. (6.2.13)

Proof. The equality (6.2.12) follows from (6.2.11). Furthermore,

JB′/z′ |A =
(→
RA/B

→
JB/z

→
RB/A

)∣∣
∣
∣
∣
A

= RA/BJB/z|ARB/A = OB/AJB/z|AOA/B = JB/z|B. �

If JB/z|B is diagonal, that is,

JB/z|B =





Jxx/z|B 0 0

0 Jyy/z|B 0

0 0 Jzz/z|B




, (6.2.14)
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then the axes of FB are principal axes of B relative to z, FB is a principal-axis frame of B relative

to z, and Jxx/z|B, Jyy/z|B, Jzz/z|B are the principal moments of inertia of B relative to z.

The following result shows that every body B has a principal-axis frame relative to every point

z.

Fact 6.2.6. Let B be a body, let z be a point, and let FB be a frame. Then, the following

statements hold:

i) There exists a rotation matrix S such that SJB/z|BS T is diagonal.

ii) There exists a frame FA such that JB/z|A is diagonal.

iii) There exists a physical rotation matrix
→
R such that (

→
R
→
JB/z

→
R
′
)

∣
∣
∣
∣
∣
B

is diagonal.

iv) The following statements are equivalent:

a) FB is a principal-axis frame of B relative to z.

b) The axes of FB are physical eigenvectors of
→
JB/z.

c) The vectors e1, e2, e3 are eigenvectors of JB/z|B.

v) The principal moments of inertia of B relative to z are the eigenvalues of JB/z|B.

Proof. To prove i), note that it follows from the Schur decomposition given by Corollary

5.4.5 given in [1, p. 320] that there exists an orthogonal matrix S ∈ R3×3 such that the positive-

semidefinite matrix D
△
= SJB/z|BS T is diagonal. If det S = 1, then S is a rotation matrix. If det S =

−1, then S can be replaced by −S , which is a rotation matrix that satisfies D = (−S )JB/z|B(−S )T.

To prove ii), let S be given by i). Then, it follows from Problem 2.26.11 that there exists a frame

FA such that OA/B = S . Then

JB/z|A = OA/BJB/z|BOB/A = S JS T

is diagonal.

To prove iii), let the frame FA be given by statement ii), and define
→
R
△
=
→
RB/A. Then

(
→
R
→
JB/z

→
R
′
)

∣
∣
∣
∣
∣
B

= (
→
RB/A

→
JB/z

→
R
′

B/A)

∣
∣
∣
∣
∣
B

= OA/BJB/z|BOB/A

= JB/z|A

is diagonal. �

The following two results summarize properties of the inertia matrix.

Fact 6.2.7. Let B be a body, let z be a point, and let FB be a frame.

Then, the following statements hold:

i) JB/z|B is positive semidefinite.

ii) JB/z|B = 0 if and only if B consists of a single particle colocated with z.

iii) rank JB/z|B , 1.
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iv) rank JB/z|B = 2 if and only if z and all of the particles of B are colinear.

v) JB/z|B is positive definite if and only if B contains at least two particles yi and y j such that
⇀
r yi/z and

⇀
r y j/z are linearly independent.

vi) If B contains three particles that are not colinear, then JB/z|B is positive definite.

vii) If z and B are not coplanar, then JB/z|B is positive definite.

Proof. To prove i), let
⇀
x be a physical vector. Then, it follows from (7.8.2) that

⇀
x
∣
∣
∣
∣

T

B
JB/z|B

⇀
x
∣
∣
∣
∣
B
=

⇀
x
′→
JB/z

⇀
x =

⇀
x
′ l∑

i=1

mi

⇀
r
×′

yi/z

⇀
r
×
yi/z

⇀
x

=

l∑

i=1

mi

⇀
x
′⇀
r
×′

yi/z

⇀
r
×
yi/z

⇀
x =

l∑

i=1

mi(
⇀
r
×
yi/z

⇀
x)′

⇀
r
×
yi/z

⇀
x

=

l∑

i=1

mi|
⇀
r yi/z ×

⇀
x |2 ≥ 0.

Statements ii)–iv) follow from Fact 8.93 and Fact 8.94 given in [1, p. 495].

To prove v), let
⇀
x be a nonzero physical vector. Then, since

⇀
r yi/z and

⇀
r y j/z are linearly indepen-

dent, it follows
⇀
r yi/z×

⇀
x and

⇀
r yy/z×

⇀
x are not both zero. Consequently,

⇀
x
∣
∣
∣
∣

T

B
JB/z|B

⇀
x
∣
∣
∣
∣
B
=

l∑

i=1

mi|
⇀
r yi/z ×

⇀
x |2 > 0,

which implies that JB/z|B is positive definite.

To prove vi), note that, let yi, y j, and yk be particles of B that are not colinear.

To prove vii), note that, since z and B are not coplanar, it follows that B must have at least three

particles that are not colinear. It thus follows from vi) that JB/z|B is positive definite. �

For the following result, let J1, J2, J3 be the moments of inertia of B relative to z determined

by FB, that is, the diagonal entries of JB/z|B. If, in addition, FB is a principal-axis frame, then let

λ1, λ2, λ3 be the principal moments of inertia of B relative to z, that is, the diagonal entries of JB/z|B.

This result shows that the moments of inertia of B may represent the sides of a triangle.

Fact 6.2.8. Let B be a body, and let z be a point. Then, the following statements hold:

i) The moments of inertia J1 ≥ J2 ≥ J3 ≥ 0 of B determined by FB satisfy

J1 ≤ J2 + J3. (6.2.15)

ii) If JB/z|B is positive definite, then the moments of inertia J1 ≥ J2 ≥ J3 > 0 of B determined

by FB satisfy

1 ≤ min

{

J2

J3

,
J1

J2

}

≤ 1
2
(1 +

√
5) ≈ 1.618. (6.2.16)

iii) If z and B do not lie in a single plane, then the moments of inertia J1 ≥ J2 ≥ J3 > 0 of B
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determined by FB satisfy

J1 < J2 + J3 (6.2.17)

and

1 ≤ min

{

J2

J3

,
J1

J2

}

< 1
2
(1 +

√
5) ≈ 1.618. (6.2.18)

iv) The principal moments of inertia λ1 ≥ λ2 ≥ λ3 ≥ 0 of B satisfy

λ1 ≤ λ2 + λ3. (6.2.19)

v) If JB/z|B is positive definite, then the principal moments of inertia λ1 ≥ λ2 ≥ λ3 > 0 of B

determined by FB satisfy

1 ≤ min

{

J2

J3

,
J1

J2

}

≤ 1
2
(1 +

√
5) ≈ 1.618. (6.2.20)

vi) If z and B do not lie in a single plane, then the principal moments of inertia λ1 ≥ λ2 ≥
λ3 > 0 of B satisfy

λ1 < λ2 + λ3 (6.2.21)

and

1 ≤ min

{

λ2

λ3

,
λ1

λ2

}

< 1
2
(1 +

√
5) ≈ 1.618. (6.2.22)

Proof. To prove i), assume for convenience that J1 = Jxx, J2 = Jyy, and J3 = Jzz. Then,

J1 =

l∑

i=1

mi(ȳ
2
i + z̄2

i )

≤
l∑

i=1

mi(ȳ
2
i + 2x̄2

i + z̄2
i )

=

l∑

i=1

mi(x̄2
i + z̄2

i ) +

l∑

i=1

mi(x̄2
i + ȳ2

i )

= J2 + J3.

To prove iii), note that, since z and B do not lie in a single plane, there exist three particles

yi, y j, yk such that
⇀
r yi/z,

⇀
r y j/z,

⇀
r yk/z are linearly independent. Therefore, it follows from Fact 6.2.7

that JB/z|B is positive definite. Furthermore, x̄m is nonzero for some particle ym,, and thus the

inequality in the proof of i) is strict, which proves (6.2.17). The right-hand inequality in (6.2.18) is

a property of triangles given in [9, p. 145]. Statement ii) is a limiting case of iii).

Finally, statements iv)–vi) follow from statements i)–iii) by choosing FB to be a principal-axis

frame. �

Figure 6.2.1 shows the triangular region of feasible principal moments of inertia of a rigid body.

There are five cases that are highlighted for principal moments of inertia λ1 ≥ λ2 ≥ λ3 > 0, where

λ1, λ2, λ3 satisfy the triangle inequality λ1 < λ2 + λ3. Let m be the mass of the rigid body. The

point λ1 = λ2 = λ3 corresponds to a sphere of radius R =

√

5λ1

2m
, a cube whose sides have length
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Figure 6.2.1: Feasible region of the principal moments of inertia λ1, λ2, λ3 of a rigid body satisfying

0 < λ3 ≤ λ2 ≤ λ1, where λ1 < λ2 + λ3. The shaded region shows all feasible values of λ2 and λ3 in

terms of the largest principal moment of inertia λ1. The open dots and dashed line segment indicate

nonphysical, limiting cases.

L =

√

6λ1

m
, and a cylinder of length L and radius R, where L/R =

√
3 and R =

√

2λ1

m
. The point

λ1 = λ2 = 2λ3 corresponds to a cylinder of length L and radius R, where L/R = 3 and R =

√

2λ1

m
.

The point λ1 =
6
5
λ2 = 2λ3, located at the centroid of the triangular region, corresponds to a solid

rectangular body with sides L1 =

√

8λ1

m
> L2 =

√

4λ1

m
> L3 =

√

2λ1

m
.

The remaining cases in Figure 6.2.1 are limiting cases. The point λ1 = 2λ2 = 2λ3 corresponds

to a thin disk of radius R =

√

2λ1

m
. The point λ1 = λ2 and λ3 = 0 corresponds to a thin cylinder of

radius R = 0 and length L =

√

12λ1

m
. Finally, points on the line segment λ1 = λ2 + λ3, where λ2 > λ3

correspond to a thin rectangular plate with sides of length L1 =

√

12λ2

m
> L2 =

√

12λ3

m
.

The following result shows that the inertia of a body is the sum of the inertias of the components

of the body.
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Fact 6.2.9. Let B1 and B2 be bodies, let B3 be the union of B1 and B2, and let z be a point.

Then,

→
JB3/z =

→
JB1/z +

→
JB2/z. (6.2.23)

The following result is an immediate consequence of Fact 6.2.9.

Fact 6.2.10. Let B2 be a body, let B1 be a body contained in B2, let B3 be the body B2 with

the body B1 removed, and let z be a point. Then,

→
JB3/z =

→
JB2/z −

→
JB1/z. (6.2.24)

For symmetric matrices A, B ∈ R3×3, the notation “A ≤ B” means that B− A is positive semidef-

inite. The following result is a consequence of Fact 6.2.9.

Fact 6.2.11. Let B and B̃ be bodies, assume that B is contained in B̃, and let z be a point.

Then,

JB/z|B ≤ J
B̃/z|B. (6.2.25)

The following result shows how the physical inertia matrix can be shifted from the center of

mass to an arbitrary point. This result shows that every shift away from the center of mass increases

the inertia of the body in the sense that
→
JB/c ≤

→
JB/z, that is,

→
JB/z −

→
JB/c is positive semidefinite.

The physical inertia matrix relative to z turns out to be equivalent to the physical inertia matrix of a

modified body B′ consisting of the original body B and a particle of mass mB located at z relative

to the center of mass of B.

Fact 6.2.12. Let B be a body, let mB be the mass of B, let z be a point, and let c be the center

of mass of B. Then,

→
JB/z =

→
JB/c − mB

⇀
r
×2

z/c (6.2.26)

=
→
JB/c + mB

⇀
r
×′

z/c

⇀
r
×
z/c (6.2.27)

=
→
JB/c + mB(|⇀r z/c|2

→
I − ⇀

r z/c
⇀
r
′
z/c). (6.2.28)

Proof. Note that

→
JB/z = −

l∑

i=1

mi

⇀
r
×2

yi/z
= −

l∑

i=1

mi

(
⇀
r
×
yi/c
+
⇀
r
×
c/z

)2

= −
l∑

i=1

mi

[
⇀
r
×2

yi/c
+
⇀
r
×
yi/c

⇀
r
×
c/z +

⇀
r
×
c/z

⇀
r
×
yi/c
+
⇀
r
×2

c/z

]

= −
l∑

i=1

mi

⇀
r
×2

yi/c
−





l∑

i=1

mi

⇀
r yi/c





×
⇀
r
×
c/z −

⇀
r
×
c/z





l∑

i=1

mi

⇀
r yi/c





×

− mB

⇀
r
×2

c/z

=
→
JB/c − mB

⇀
r
×2

z/c =
→
JB/c + mB

⇀
r
×′

z/c

⇀
r
×
z/c =

→
JB/c + mB(|⇀r z/c|2

→
I − ⇀

r z/c
⇀
r
′
z/c). �

The next result follows from Fact 6.2.12.
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Fact 6.2.13. Let B be a body, let mB be the mass of B, let c be the center of mass of B, and let

z1 and z2 be points. Then,

→
JB/z2

=
→
JB/z1

+ mB[
⇀
r
×
z2/z1

⇀
r
×
c/z1
+
⇀
r
×
c/z1

⇀
r
×
z2/z1
− ⇀

r
×2

z2/z1
]. (6.2.29)

Fact 6.2.12 yields the parallel axis theorem given by the following result.

Fact 6.2.14. Let B be a body, let mB be the mass of B, and let z be a point fixed in B, and let

c be the center of mass of B, assume that the frame axis ı̂A is perpendicular to
⇀
r z/c. Then,

Jxx/z|B = Jxx/c|B + mB|
⇀
r z/c|2. (6.2.30)

Proof. Multiplying (6.2.29) on the left and the right by ı̂A yields

Jxx/z|B = ı̂
′
A

→
JB/z ı̂A = ı̂

′
A[
→
JB/c + mB(|⇀r z/c|2

→
I − ⇀

r z/c
⇀
r
′
z/c)]ı̂A = Jxx/c|B + mB|

⇀
r z/c|2. �

A plane of symmetry of a body B is a plane that divides B into two “mirror-image” parts, which

are identical in both geometry and mass properties. Note that the center of mass of B lies on every

plane of symmetry of B.

Fact 6.2.15. Let B be a body, let z be a point, and let FB be a frame. Then, the following

statements hold:

i) If z is an element of a plane of symmetry of B that is parallel to the ı̂B- ̂B plane, then

Jxz/z|B = Jyz/z|B = 0.

ii) If z is an element of a plane of symmetry of B that is parallel to the ı̂B-k̂B plane, then

Jxy/z|B = Jyz/z|B = 0.

iii) If z is an element of a plane of symmetry of B that is parallel to the ̂B-k̂B plane, then

Jxy/z|B = Jxz/z|B = 0.

iv) If B has orthogonal planes of symmetry P1 and P2 that are spanned by pairs of frame axes

of FB, then FB is a principal-axis frame of B relative to every point z ∈ P1 ∪ P2.

Proof. To prove i), note that B contains an even number of particles y1, . . . , y2r whose masses

are m1, . . . ,mr,m1, . . . ,mr and whose locations relative to z and resolved in FB have components

(x̄1, ȳ1, z̄1), . . . , (x̄r, ȳr, z̄r), (x̄1, ȳ1,−z̄1), . . . , (x̄r, ȳr,−z̄r), respectively, where z̄1, . . . , z̄r are nonzero. It

thus follows from (6.2.8) that

Jxz/z|B =

2r∑

i=1

mi x̄iz̄i =

r∑

i=1

mi x̄iz̄i +

2r∑

i=r+1

mi x̄iz̄i =

r∑

i=1

mi x̄iz̄i +

r∑

i=1

mi x̄i(−z̄i) = 0.

Likewise, Jyz = 0. iv) follows from Fact 6.2.12. �

A body that has multiple planes of symmetry need not have two orthogonal planes of symmetry.

For example, a bar whose cross section is an equilateral triangle whose size varies along the length of

the bar has exactly three planes of symmetry, but no pair of these planes of symmetry is orthogonal.

6.3 The Physical Inertia Matrix for Continuum Bodies

For continuum bodies, we replace the finite sums in (6.2.6)–(6.2.8) with integrals.
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Fact 6.3.1. Let B be a continuum body and let z be a point. Then,

→
JB/z = −

∫

B

⇀
r
×2

dm/z dm (6.3.1)

=

∫

B

⇀
r
×′

dm/z

⇀
r
×
dm/z dm (6.3.2)

=

∫

B

|⇀r dm/z|2
→
I − ⇀

r dm/z

⇀
r
′
dm/z dm. (6.3.3)

Now, let FB be a frame. Then,

→
JB/z = Jxx/z|B ı̂B ı̂

′
B + Jyy/z|B ̂B ̂

′
B + Jzz/z|Bk̂Bk̂′B − Jxy/z|B(ı̂B ̂

′
B + ̂B ı̂

′
B)

− Jxz/z|B(ı̂Bk̂′B + k̂B ı̂
′
B) − Jyz/z|B( ̂Bk̂′B + k̂B ̂

′
B), (6.3.4)

that is,

JB/z|B =





Jxx/z|B −Jxy/z|B −Jxz/z|B
−Jyx/z|B Jyy/z|B −Jyz/z|B
−Jzx/z|B −Jzy/z|B Jzz/z|B




, (6.3.5)

where

Jxx/z|B
△
=

∫

B

(y2 + z2) dm, Jxy/z|B
△
=

∫

B

xy dm, (6.3.6)

Jyy/z|B
△
=

∫

B

(x2 + z2) dm, Jxz/z|B
△
=

∫

B

xz dm, (6.3.7)

Jzz/z|B
△
=

∫

B

(x2 + y2) dm

︸                         ︷︷                         ︸

moments of inertia

, Jyz/z|B
△
=

∫

B

yz dm

︸                 ︷︷                 ︸

products of inertia

. (6.3.8)

If the density ρ of the material is constant, then dm = ρdV, and each integral can be written as a

volume integral. For example,

Jxx/z|B = ρ

∫

B

(y2 + z2) dV. (6.3.9)

For a flat plate, this integral becomes an integral over an area, and ρ is the area density, that is, mass

per area. For a thin body, this integral becomes an integral over a length, and ρ is the linear density,

that is, mass per length.

For a continuum body, the center of mass is the unique point fixed in the body and satisfies
∫

B

⇀
r dm/c dm = 0. (6.3.10)

Example 6.3.2. Let B be a homogeneous sphere of mass m and radius r, and let FB be a frame.

Then, the inertia matrix of the sphere relative to its center of mass c determined by FB is given by

JB/c|B =





Jxx/c|B 0 0

0 Jyy/c|B 0

0 0 Jzz/c|B




, (6.3.11)

where Jxx/c|B = Jyy/c|B = Jzz/c|B =
2
5
mr2 are the moments of inertia of B relative to the center of
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mass c determined by FB. Therefore,

JB/c|B =
2

5
mr2I3. (6.3.12)

⋄
Example 6.3.3. Let B be a homogeneous rectangular solid, and let FB be a frame whose axes

ı̂B, ̂B, and k̂B are parallel to the sides of length a, b, and c, respectively. Then,

JB/c|B =





Jxx/c|B 0 0

0 Jyy/c|B 0

0 0 Jzz/c|B




, (6.3.13)

where Jxx/c|B =
1

12
m(b2 + c2), Jyy/c|B =

1
12

m(a2 + c2), and Jzz/c|B =
1

12
m(a2 + b2). If a > b > c,

then Jzz/c|B > Jyy/c|B > Jxx/c|B, where Jzz/c|B, Jyy/c|B, and Jxx/c|B are the major, intermediate, and

minor principal moments of inertia, respectively, of B relative to the center of mass c determined

by FB. If b = c ≈ 0, then the rectangular solid approximates a thin bar, in which case Jxx/c|B ≈ 0 and

Jyy/c|B = Jzz/c|B ≈ 1
12

ma2. If, in addition, c ≈ 0, then the rectangular solid approximates a rectangular

plate with sides a and b, in which case Jxx/c|B ≈ 1
12

mb2, Jyy/c|B ≈ 1
12

ma2, and Jzz/c|B =
1
12

m(a2 + b2).

⋄
Example 6.3.4. Let B be a homogeneous cylinder of length l and radius r, or, equivalently,

a homogeneous disk of thickness l and radius r. Let FB be a frame such that ı̂B is parallel to the

longitudinal axis of the cylinder. Then

JB/c|B =





Jxx/c|B 0 0

0 Jyy/c|B 0

0 0 Jzz/c|B




, (6.3.14)

where Jxx/c|B =
1
2
mr2 and Jyy/c|B = Jzz/c|B =

1
12

m(3r2 + l2) are the principal moments of inertia of B

relative to the center of mass c determined by FB. The cylinder approximates a thin bar if r ≈ 0, in

which case Jxx/c|B ≈ 0 and Jyy/c|B = Jzz/c|B ≈ 1
12

ml2. The cylinder approximates a circular plate if

l ≈ 0, in which case Jxx/c|B =
1
2
mr2 and Jyy/c|B = Jzz/c|B ≈ 1

4
mr2. Finally, if l =

√
3r, then

JB/c|B =
1

5
mr2I3. (6.3.15)

⋄
6.4 Moments, Balanced Forces, and Torques

Let y be an inertia point, let w be a point, and let
⇀

f y be the force applied to y. Then, the moment
⇀

My/w on y relative to w due to
⇀

f y is defined by

⇀

My/w
△
=

⇀
r y/w ×

⇀

f y. (6.4.1)

The moment
⇀

My/w is illustrated by Figure 6.4.1.

We may consider a moment on an inertia point without first introducing a force. Let y be an

inertia point and let w be a point. Then, the physical vector
⇀

M is a moment on y relative to w if there
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exists a force
⇀

f y such that
⇀

M =
⇀
r y/w ×

⇀

f y. Note that the force vector
⇀

f y is not unique.

Intuitively speaking, the moment
⇀

M =
⇀
r y/w×

⇀

f y induces a rotation of y around w in the direction

given by the direction of the curled fingers of the right hand, where the right-hand thumb is pointing

in the direction of
⇀

M.

B

y

r

f

w

y/w

y

Figure 6.4.1: Representation of the moment
⇀

My/w =
⇀
r y/w ×

⇀

f y on the inertia point y in the body B relative to

the point w due to the force
⇀

f y applied to y.

Next, let B be a body with inertia points y1, . . . , yl, for all i = 1, . . . , l, let
⇀

f yi
be the force applied

to yi, and let w be a point. Then, the moment
⇀

MB/w on B relative to w due to
⇀

f y1
, . . . ,

⇀

f yl
is defined

by

⇀

MB/w
△
=

l∑

i=1

⇀

Myi/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
. (6.4.2)

As in the case of an inertia point, we may consider a moment on a body without first introducing

forces. Let B be a body with inertia points y1, . . . , yl, and let w be a point. Then, the physical vector
⇀

M is a moment on B relative to w if there exist forces
⇀

f y1
, . . . ,

⇀

f yl
applied to inertia points y1, . . . , yl,

respectively, such that
⇀

M is the moment on B relative to w due to
⇀

f y1
, . . . ,

⇀

f yl
. Note that the forces

⇀

f y1
, . . . ,

⇀

f yl
are not unique.

Let B be a body with inertia points y1, . . . , yl, and, for all i = 1, . . . , l, let
⇀

f yi
be the force applied

to yi. Then, the total force on B due to
⇀

f y1
, . . . ,

⇀

f yl
is defined by

⇀

f B
△
=

l∑

i=1

⇀

f yi
. (6.4.3)

The forces
⇀

f y1
, . . . ,

⇀

f yl
are balanced if

⇀

f B = 0.
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Fact 6.4.1. Let B be a body with inertia points y1, . . . , yl, for all i = 1, . . . , l, let
⇀

f yi
be the force

applied to yi, and let w and z be points. Then,

⇀

MB/w =
⇀

MB/z +
⇀
r z/w ×

⇀

f B, (6.4.4)

where the total force
⇀

f B is given by (6.4.3). If, in addition, the forces
⇀

f y1
, . . . ,

⇀

f yl
are balanced,

then

⇀

MB/w =
⇀

MB/z. (6.4.5)

Proof.

⇀

MB/w =

l∑

i=1

(
⇀
r yi/w ×

⇀

f yi
) =

l∑

i=1

(
⇀
r yi/z +

⇀
r z/w) ×

⇀

f yi

=

l∑

i=1

(
⇀
r yi/z ×

⇀

f yi
) +

l∑

i=1

(
⇀
r z/w ×

⇀

f yi
)

=
⇀

MB/z +
⇀
r z/w ×

l∑

i=1

⇀

f yi
=

⇀

MB/z +
⇀
r z/w ×

⇀

f B. �

Fact 6.4.1 shows that, if the forces on the body B are balanced, then the moment
⇀

MB/w on B

relative to w is independent of the point w. The next two results focus on this case.

Fact 6.4.2. Let B be a body, let w be a point, let
⇀

f x and
⇀

f y be forces applied to inertia points

x and y in B, respectively, assume that
⇀

f y = −
⇀

f x, and assume that
⇀

f x and
⇀

f y are the only forces

applied to B. Then,

⇀

MB/w =
⇀

My/x =
⇀

Mx/y. (6.4.6)

Proof. Since the forces are balanced, it follows from Fact 6.4.1 that
⇀

MB/w =
⇀

MB/x. Therefore,

⇀

MB/w =
⇀

MB/x =
⇀
r x/x ×

⇀

f x +
⇀
r y/x ×

⇀

f y =
⇀

My/x.

Likewise, it follows from Fact 6.4.1 that
⇀

MB/w =
⇀

MB/y. Therefore,

⇀

MB/w =
⇀

MB/y =
⇀
r x/y ×

⇀

f x +
⇀
r y/y ×

⇀

f y =
⇀

Mx/y. �

Fact 6.4.3. Let B be a body with inertia points y1, . . . , yl, for all i = 1, . . . , l, let
⇀

f yi
be the force

applied to yi, let w be a point, and assume that
⇀

f y1
, . . . ,

⇀

f yl
are balanced. Then, for all j = 1, . . . , l,

⇀

MB/w =

n∑

i=1
i, j

⇀

Myi/y j
. (6.4.7)
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Proof. For convenience, set j = l. Then, note that

⇀

MB/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
=

l−1∑

i=1

(
⇀
r yi/w ×

⇀

f yi
) +

⇀
r yl/w ×

⇀

f yl

=

l−1∑

i=1

(
⇀
r yi/w ×

⇀

f yi
) +

⇀
r yl/w ×




−

l−1∑

i=1

⇀

f yi





=

l−1∑

i=1

(
⇀
r yi/w ×

⇀

f yi
) +

l−1∑

i=1

(
⇀
r w/yl

×
⇀

f yi
)

=

l−1∑

i=1

(
⇀
r yi/yl

×
⇀

f yi
) =

n∑

i=1
i,l

⇀

Myi/yl
. �

Assume that
⇀

f y1
, . . . ,

⇀

f yl
are balanced. Then, Fact 6.4.3 shows that the moment

⇀

MB/w on B due

to
⇀

f y1
, . . . ,

⇀

f yl
is independent of w. In this case, we write

⇀

MB instead of
⇀

MB/w, and we call
⇀

MB the

torque on B due to
⇀

f y1
, . . . ,

⇀

f yl
.

The following result considers forces
⇀

f y1
, . . . ,

⇀

f yl
and the resulting moment

⇀

MB/w. If w is an

inertia point and the additional force −
⇀

f B is applied to w, then the forces
⇀

f y1
, . . . ,

⇀

f yl
,−

⇀

f B are

balanced, and thus the resulting moment
⇀

MB is a torque. In addition, since −
⇀

f B is applied to

w, it does not contribute to the moment relative to w, and thus
⇀

MB =
⇀

MB/w. Since the forces
⇀

f y1
, . . . ,

⇀

f yl
,−

⇀

f B are balanced,
⇀

MB is independent of the choice of reference point. However,
⇀

MB

does depend on the reference point w used to define
⇀

MB/w. If w is not an inertia point, then the

result holds with −
⇀

f B applied to an inertia point z such that
⇀
r w/z is parallel to

⇀

f B.

Fact 6.4.4. Let B be a body with inertia points y1, . . . , yl, let
⇀

f y1
, . . . ,

⇀

f yl
be forces applied

to y1, . . . , yl, respectively, let w be a point, let
⇀

MB/w be the moment on B relative to w due to
⇀

f y1
, . . . ,

⇀

f yl
, and define

⇀

f B
△
=

∑l
i=1

⇀

f yi
. Furthermore, assume there exists an inertia point z in B

such that
⇀
r z/w is parallel to

⇀

f B, and let
⇀

MB denote the torque on B due to the balanced forces
⇀

f y1
, . . . ,

⇀

f yl
,−

⇀

f B applied to y1, . . . , yl, z, respectively. Then,
⇀

MB =
⇀

MB/w.

Proof. Since
⇀
r z/w is parallel to

⇀

f B and
⇀

f y1
, . . . ,

⇀

f yl
,−

⇀

f B are balanced, it follows that the torque
⇀

MB on B due to
⇀

f y1
, . . . ,

⇀

f yl
,−

⇀

f B applied to y1, . . . , yl, z, respectively, is given by

⇀

MB =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
+
⇀
r z/w × (−

⇀

f B) =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
=

⇀

MB/w. �

6.5 Laws of Statics

For a body B, the laws of statics are as follows:
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i) The total force
⇀

f B on B is zero.

ii) The torque
⇀

MB on B due to
⇀

f B is zero.

Note that, since the forces on B are balanced, it follows that, for all points w, the moment
⇀

MB/w on

B relative to w is a torque and thus is independent of w.

6.6 Moment Due to Uniform Gravity

We now consider the total force and moment on a body due to uniform gravity.

Fact 6.6.1. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, and let mB denote the mass of B. Then, the total force
⇀

f B on B due to gravity is given

by

⇀

f B = mB

⇀
g . (6.6.1)

Fact 6.6.2. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, and let w be a point. Then, the moment
⇀

MB/w on B

relative to w due to gravity is given by

⇀

MB/w =
⇀
r c/w × mB

⇀
g . (6.6.2)

In particular,

⇀

MB/c = 0. (6.6.3)

Proof. Note that

⇀

MB/w =

l∑

i=1

(
⇀
r yi/w × mi

⇀
g) =





l∑

i=1

mi

⇀
r yi/w




× ⇀

g

=





1

mB

l∑

i=1

mi

⇀
r yi/w




× mB

⇀
g =

⇀
r c/w × mB

⇀
g . �

Note that, although the location of the center of mass c is independent of the choice of w, the

physical vector
⇀
r c/w depends on w, and thus the moment

⇀

MB/w depends on w.

6.7 Forces and Torques Due to Springs and Rotational Springs

Consider a spring connecting inertia points y and w, where the relaxed length of the spring is

d ≥ 0 and the stiffness of the spring is k > 0. The spring may be in either compression or extension,

in which case its length |⇀r y/w| is either less than d or greater than d, respectively. Then, the force
⇀

f y/w applied to y by the spring is given by

⇀

f y/w = −k(|⇀r y/w| − d)r̂y/w. (6.7.1)
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Note that
⇀

f y/w is aligned with the line passing through y and w. Furthermore,
⇀

f y/w pushes y in the

direction r̂y/w when the spring is in compression, and pushes y in the direction −r̂y/w when the spring

is in extension. Note that the forces applied to y and w are equal and opposite, that is,

⇀

f w/y = −
⇀

f y/w. (6.7.2)

Finally, if d = 0, then (6.7.1) becomes

⇀

f y/w = −k
⇀
r y/w. (6.7.3)

Next, consider rigid bodies B1 and B2 that are connected by a pin joint at a point that is fixed

in both bodies. Let ẑ be a unit dimensionless vector that is parallel with the pin joint. A rotational

spring applies torques to B1 and B2 that are parallel with ẑ. Let x̂1 and x̂2 be unit dimensionless

vectors that are fixed in B1 and B2, respectively, and that are orthogonal to ẑ. Assume that the

rotational spring is relaxed when x̂1 and x̂2 are parallel, and assume that the rotational stiffness of

the rotational spring is κ > 0. Then, the torque
⇀

MB1/B2
applied to B1 by the rotational spring is

given by

⇀

MB1/B2
= −κ(θx̂1/x̂2/ẑ − θ0)ẑ. (6.7.4)

where θ0 is the relaxed angle. Note that the torque
⇀

MB1/B2
applied to B1 by the rotational spring

is clockwise around ẑ when the rotational spring is wound up counterclockwise around ẑ, and vice

versa. Furthermore, the torques applied to B1 and B2 are equal and opposite, that is,

⇀

MB2/B1
= −

⇀

MB1/B2
. (6.7.5)

6.8 Forces and Torques Due to Dashpots and Rotational Dashpots

Consider a dashpot connecting inertia points y and w, where the damping coefficient of the

dashpot is c > 0. Then, the force
⇀

f y/w applied to y by the dashpot is given by

⇀

f y/w = −c
d

dt
|⇀r y/w|r̂y/w. (6.8.1)

Note that
⇀

f y/w is aligned with the line passing through y and w. Furthermore,
⇀

f y/w pushes y in

the direction r̂y/w when the dashpot is compressing, and pushes y in the direction −r̂y/w when the

dashpot is extending. Note that the forces applied to y and w are equal and opposite, that is,

⇀

f w/y = −
⇀

f y/w. (6.8.2)

Next, consider rigid bodies B1 and B2 that are connected by a pin joint at a point that is fixed

in both bodies. Let ẑ be a unit dimensionless vector that is parallel with the pin joint. A rotational

dashpot applies torques to B1 and B2 that are parallel with ẑ. Let x̂1 and x̂2 be unit dimensionless

vectors that are fixed in B1 and B2, respectively, and that are orthogonal to ẑ. Let γ > 0 denote the

rotational damping coefficient. Then, the torque
⇀

MB1/B2
applied to B1 by the rotational dashpot is

given by

⇀

MB1/B2
= −γ d

dt
|θx̂1/x̂2/ẑ|ẑ. (6.8.3)



224 CHAPTER 6

Note that the torque
⇀

MB1/B2
applied to B1 by the rotational spring is clockwise around ẑ when the

rotational dashpot is rotating counterclockwise around ẑ, and vice versa. Furthermore, the torques

applied to B1 and B2 are equal and opposite, that is,

⇀

MB2/B1
= −

⇀

MB1/B2
. (6.8.4)

6.9 Newton’s Third Law

Two inertia points can exert forces on each other in various ways. For example, the inertia

points may be in direct contact, or they may be in indirect contact due to connection by a rigid

massless link, spring, dashpot, or inerter. In addition, two particles can exert noncontacting forces

on each other, such as gravitational forces (which are attractive) or electrostatic forces (which may

be attractive or repulsive). All of these forces are reaction forces. The following fundamental result

is Newton’s third law.

Fact 6.9.1. Let x and y be inertia points that are either in direct contact, in indirect contact

due to connection by a rigid massless link, spring, dashpot, or inerter, or noncontacting through

gravitational or electrostatic forces. Then, the force
⇀

f y/x on y due to x is equal and opposite in

direction to the force
⇀

f x/y on x due to y, that is,
⇀

f y/x = −
⇀

f x/y. Furthermore,
⇀

f y/x and
⇀

f x/y are

parallel with
⇀
r y/x.

Magnetic forces and electrodynamic forces also give rise to reaction forces. However, magnetic

forces involve field lines and polarity, and thus Newton’s third law is more complicated. In addition,

electrodynamic forces do not satisfy Newton’s third law. Henceforth, we consider only reaction

forces that satisfy Newton’s third law stated by Fact 6.9.1. These forces have equal magnitude, are

opposite in direction, and are parallel with the line that passes through the inertia points or particles.

Consider a body consisting of n bodies B1, . . . ,Bn, some of which may be rigid bodies. These

bodies may interact with each other through direct contact (for example, through collisions, rolling,

sliding (with or without friction), and pivoting (with or without friction)), indirect contact (for ex-

ample, through rigid massless links, springs, dashpots, and inerters), or noncontacting forces due to

gravitational or electrostatic forces. Newton’s third law states that each type of interaction produces

reaction forces that are equal in magnitude and opposite in direction. For cases of direct or indirect

contact, the reaction forces are applied to each body at the points of contact or attachment. For

noncontacting reaction forces, the reaction forces are applied to each particle. These reaction forces

depend on the relative displacement, velocity, or acceleration of the bodies at each instant of time.

For i = 1, . . . , n, the total force
⇀

f Bi
on Bi is due to the reaction forces on Bi due to its interaction

with all of the remaining bodies.

Fact 6.9.2. Let B1, . . . ,Bn be bodies, and, for all i = 1, . . . , n, let
⇀

f Bi
denote the total reaction

force on Bi due to direct contact, indirect contact, or noncontacting interaction with the remaining

bodies. Then,
∑n

i=1

⇀

f Bi
=

⇀

0 . If, in particular, n = 2, then
⇀

f B2
= −

⇀

f B1
.

Note that Fact 6.9.2 does not specify the directions of the total force vectors
⇀

f Bi
. Problem 6.14.4

shows that, for two bodies subject to gravitational reaction forces, the total force vectors need not be

parallel with the lines connecting either the centers of mass or the centers of gravity of the bodies.

For a body consisting of n bodies B1, . . . ,Bn, the reaction forces on Bi produce a reaction
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moment on Bi relative to a point w. If the reaction forces on Bi are balanced, then the reaction

moment is a reaction torque. The following result is Newton’s third law for moments.

Fact 6.9.3. Let B1, . . . ,Bn be bodies, let w be a point, and, for all i = 1, . . . , n, let
⇀

MBi/w denote

the moment on Bi relative to w arising from all reaction forces on Bi due to direct contact, indirect

contact, and noncontacting interaction with the remaining bodies. Then
∑n

i=1

⇀

MBi/w =
⇀

0 . If, in

particular, n = 2, then
⇀

MB2/w = −
⇀

MB1/w.

Proof. First, we consider the case n = 2. Let l denote the number of points at which a reaction

force is applied to B1 due to the interaction between B1 and B2. For all j = 1, . . . , l, let z1, j denote a

point in B1 at which a reaction force is applied to B1 due to interaction with B2, and let z2, j denote

the corresponding point in B2. Furthermore, for all j = 1, . . . , l, let
⇀

f 1, j denote the reaction force

on B1 at z1, j, and let
⇀

f 2, j denote the reaction force on B2 at z2, j. Therefore, for all j = 1, . . . , l, the

reaction forces
⇀

f 1, j on B1 and
⇀

f 2, j on B2 at the points z1, j and z2, j, respectively, satisfy
⇀

f 2, j = −
⇀

f 1, j.

Furthermore, Newton’s third law implies that, for all j = 1, . . . , l,
⇀
r z1, j,z2, j

and
⇀

f 1, j are parallel. It

thus follows that

2∑

i=1

⇀

MBi/w =
⇀

MB1/w +
⇀

MB2/w

=

l∑

j=1

rz1, j,w ×
⇀

f 1, j +

l∑

j=1

rz2, j,w ×
⇀

f 2, j

=

l∑

j=1

(
⇀
r z1, j,z2, j

+
⇀
r z2, j,w) ×

⇀

f 1, j −
l∑

j=1

rz2, j,w ×
⇀

f 1, j

=

l∑

j=1

⇀
r z2, j,w ×

⇀

f 1, j −
l∑

j=1

⇀
r z2, j,w ×

⇀

f 1, j

=
⇀

0 .

Now, we consider the case n = 3. Let l1,2 denote the number of points at which a reaction force

is applied to B1 due to the interaction between B1 and B2. For all j = 1, . . . , l1,2, let z1,2; j denote a

point in B1 at which a reaction force is applied to B1 due to interaction with B2, and let z2,1; j denote

the corresponding point in B2. Furthermore, for all j = 1, . . . , l1,2, let
⇀

f 1,2; j denote the reaction force

on B1 at z1,2; j, and let
⇀

f 2,1; j denote the reaction force on B2 at z2,1; j. Therefore, for all j = 1, . . . , l1,2,

the reaction forces
⇀

f 1,2; j on B1 and
⇀

f 2,1; j on B2 at the reaction point z1,2; j and z2,1; j, respectively,

satisfy
⇀

f 2,1; j = −
⇀

f 1,2; j. Furthermore, Newton’s third law implies that, for all j = 1, . . . , l1,2,
⇀
r z1,2; j,z2,1; j

and
⇀

f 1,2; j are parallel. Similar notation applies to the interactions between B1 and B2 as well as

between B2 and B2. It thus follows that

3∑

i=1

⇀

MBi/w =
⇀

MB1/w +
⇀

MB2/w +
⇀

MB3/w
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=

l1,2∑

j=1

rz1,2; j,w ×
⇀

f 1,2; j +

l1,3∑

j=1

rz1,3; j,w ×
⇀

f 1,3; j

+

l1,2∑

j=1

rz2,1; j,w ×
⇀

f 2,1; j +

l2,3∑

j=1

rz2,3; j,w ×
⇀

f 2,3; j

+

l1,3∑

j=1

rz3,1; j,w ×
⇀

f 3,1; j +

l2,3∑

j=1

rz3,2; j,w ×
⇀

f 3,2; j

=

l1,2∑

j=1

rz1,2; j,w ×
⇀

f 1,2; j +

l1,2∑

j=1

rz2,1; j,w ×
⇀

f 2,1; j

l1,3∑

j=1

rz1,3; j,w ×
⇀

f 1,3; j +

l1,3∑

j=1

rz3,1; j,w ×
⇀

f 3,1; j

l2,3∑

j=1

rz2,3; j,w ×
⇀

f 2,3; j +

l2,3∑

j=1

rz3,2; j,w ×
⇀

f 3,2; j

=

l1,2∑

j=1

(rz1,2; j,z2,1; j
+ rz2,1; j,w) ×

⇀

f 1,2; j −
l1,2∑

j=1

rz2,1; j,w ×
⇀

f 1,2; j

l1,3∑

j=1

(rz1,3; j,z3,1; j
+ rz3,1; j,w) ×

⇀

f 1,3; j −
l1,3∑

j=1

rz3,1; j,w ×
⇀

f 1,3; j

l2,3∑

j=1

(rz2,3; j,z3,2; j
+ rz3,2; j,w) ×

⇀

f 2,3; j −
l2,3∑

j=1

rz3,2; j,w ×
⇀

f 2,3; j

=

l1,2∑

j=1

rz2,1; j,w ×
⇀

f 1,2; j −
l1,2∑

j=1

rz2,1; j,w ×
⇀

f 1,2; j

l1,3∑

j=1

rz3,1; j,w ×
⇀

f 1,3; j −
l1,3∑

j=1

rz3,1; j,w ×
⇀

f 1,3; j

l2,3∑

j=1

rz3,2; j,w ×
⇀

f 2,3; j −
l2,3∑

j=1

rz3,2; j,w ×
⇀

f 2,3; j

=
⇀

0 .

A similar argument can be used in the case n ≥ 4. �

The following result is Newton’s third law for torques.

Fact 6.9.4. Let B1, . . . ,Bn be bodies, for all i = 1, . . . , n, assume that the total reaction force
⇀

f Bi
on Bi is zero, and let

⇀

MBi
denote the torque on Bi due to all reaction forces on Bi arising from

direct contact, indirect contact, and noncontacting interaction with the remaining bodies. Then
∑n

i=1

⇀

MBi
=

⇀

0 . If, in particular, n = 2, then
⇀

MB2
= −

⇀

MB1
.

An example of a reaction torque is the case of a frictionless pin joint connecting two rigid

bodies, where the bodies undergo twisting motion that induces a reaction torque that is orthogonal
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to the axis of the pin. Reaction torques also arise due to rotational springs, rotational dashpots, and

rotational inerters. See Section 7.4 and Section 8.11.

6.10 Free-Body Analysis

Consider a quasi-rigid body comprised of multiple interacting rigid bodies. The dynamics of the

quasi-rigid body can be analyzed by considering the dynamics of each rigid body separately, that

is, as a collection of free (unconstrained) bodies subject to external forces and moments as well as

reaction forces and moments. Unlike external forces and moments, the reaction forces and moments

must be determined through simultaneous analysis of the statics or dynamics of each rigid body.

If the reaction forces and moments are conservative, then Lagrangian dynamics can be used to

derive the equations of motion without determining the reaction forces and moments. The conserva-

tive reaction forces and moments can be found subsequently by applying Newton-Euler dynamics.

If, however, the reaction forces and torques dissipate energy, then Lagrangian dynamics cannot be

used, and Newton-Euler methods must be used exclusively.

For a degenerate rigid body, such as a massless link with a single particle attached to one of

its ends, all components of the total force and total torque (arising from either external or reaction

forces and torques) that can produce infinite translational or rotational acceleration must be zero.

Therefore, in the special case of a massless rigid body, such as a massless rigid link, both the

total force and the total torque must be zero. In particular, since springs, dashpots, and inerter are

massless, the total force and total torque on these components must be zero. However, the points on

the massless rigid body are not necessarily colocated with unforced particles.

6.11 Newtonian Bodies

Let B be a body. The force on each inertia point in B is due to a combination of external forces

and internal forces, where the internal forces in B are due to the reaction forces between inertia

points in B. If there are no external forces on B, then an inertia point in B may still be subject

to internal forces. An internal torque in B is a torque on a rigid massless link in B due to the

interactions with another rigid massless link.

The body B is Newtonian if the internal forces between every pair of inertia points in B are

reaction forces, that is, the forces have equal magnitude, are opposite in direction, and are parallel

with the line that passes through the particles, and if the internal torques between every pair of rigid

massless links are equal in magnitude, are opposite in direction, and are parallel. If the interaction

between every pair of inertia points satisfied Newton’s third law, then the body is Newtonian.

Figure 6.11.1 shows a rigid body B composed of particles y1, . . . , yl whose masses are m1, . . . ,

ml, respectively.

Fact 6.11.1. Let B be a body, and assume that B is Newtonian. Then, the total force on B due

to all internal forces is zero, that is, the internal forces are balanced, and the total torque on B due

to all internal forces is zero.

Proof. Let y1, . . . , yl denote the particles of B, and, for all i, j = 1, . . . , l, let
⇀

f yi j
denote the

internal force on particle yi due to particle y j. Since B is Newtonian, it follows that, for all i =

1, . . . , j,
⇀

f yi j
= −

⇀

f y ji
and

⇀

f yii
= 0. Consequently, the total force

⇀

f B,int on B due to internal forces is
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Figure 6.11.1: Newtonian rigid body B, where the internal forces between each pair of particles are equal in

magnitude, opposite in direction, and parallel with the line that passes through the particles.

given by

⇀

f B,int =
∑

i, j=1,...,l
i, j

⇀

f i j = 0.

Next, let w be a point. Since
⇀

f B,int = 0, it follows that the resulting moment
⇀

MB,int on B due to

internal forces is independent of w. Since
⇀

f i j is parallel with
⇀
r yi/y j

, it follows that

⇀

MB,int =
∑

i, j=1,...,l
i, j

⇀
r yi/w ×

⇀

f i j

=
∑

i, j=1,...,l
i< j

⇀
r yi/w ×

⇀

f i j +
∑

i, j=1,...,l
i> j

⇀
r yi/w ×

⇀

f i j

=
∑

i, j=1,...,l
i< j

⇀
r yi/w ×

⇀

f i j +
∑

i, j=1,...,l
i< j

⇀
r y j/w ×

⇀

f ji

=
∑

i, j=1,...,l
i< j

⇀
r yi/w ×

⇀

f i j −
∑

i, j=1,...,l
i< j

⇀
r y j/w ×

⇀

f i j

=
∑

i, j=1,...,l
i< j

(
⇀
r yi/w −

⇀
r y j/w

)

×
⇀

f i j

=
∑

i, j=1,...,l
i< j

⇀
r yi/y j

×
⇀

f i j

= 0. �
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6.12 Center of Gravity and Central Gravity

In this section we do not assume that gravity is uniform, but rather consider central gravity. In

this case, we define the center of gravity, which may be different from the center of mass. We also

consider conditions under which the center of gravity coincides with the center of mass.

The following result is Newton’s law of universal gravitation.

Fact 6.12.1. Let x be a particle whose mass is M, and let y be a particle whose mass is m. Then,

the force on y due to x is given by

⇀

f y/x =
GMm

|⇀r y/x|2
r̂x/y, (6.12.1)

where the universal gravitational constant G is given by

G = 6.67428 N-m2/kg2. (6.12.2)

Let x and y be particles whose masses are M and m, respectively. Then, the force
⇀

f y/x is the

central gravitational force on y due to x, and the weight of y relative to x is given by

wy/x
△
= |

⇀

f y/x| =
GMm

|⇀r y/x|2
. (6.12.3)

Now, let B1 be a body consisting of particles x1, . . . , xm whose masses are M1, . . . ,M j, respectively.

Then, the central gravitational force on y due to B1 is defined by

⇀

f y/B1

△
=

m∑

j=1

⇀

f y/x j
=

m∑

j=1

GM jm

|⇀r y/x j
|2

r̂y/x j
, (6.12.4)

and the weight of y relative to B1 is defined by

wy/B1

△
=

m∑

j=1

wy/x j
=

m∑

j=1

|
⇀

f y/x j
| =

m∑

j=1

GM jm

|⇀r y/x j
|2
. (6.12.5)

Finally, let B2 be a body consisting of particles y1, . . . , yl. Then, the central gravitational force on

B2 due to B1 is defined by

⇀

f B2/B1

△
=

l∑

i=1

⇀

f yi/B1
=

l∑

i=1

m∑

j=1

⇀

f yi/x j
=

l∑

i=1

m∑

j=1

GM jmi

|⇀r yi/x j
|2

r̂yi/x j
, (6.12.6)

and the weight of B2 relative to B1 is defined by

wB2/B1

△
=

l∑

i=1

wyi/B1
=

l∑

i=1

m∑

j=1

wyi/x j
=

l∑

i=1

m∑

j=1

|
⇀

f yi/x j
| =

l∑

i=1

m∑

j=1

GM jmi

|⇀r yi/x j
|2
. (6.12.7)

Fact 6.12.2. Let B1 be a body, let B2 be a body consisting of particles y1, . . . , yl, let w and w′

be points, and define the points g and g′ by

⇀
r g/w

△
=

1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/w, (6.12.8)
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⇀
r g′/w′

△
=

1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/w′ . (6.12.9)

Then, g and g′ are colocated.

Proof. Note that

⇀
r g′/g =

⇀
r g′/w′ +

⇀
r w′/w +

⇀
r w/g =

⇀
r g′/w′ −

⇀
r g/w +

⇀
r w′/w

=
1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/w′ −

1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/w +

⇀
r w′/w

=
1

wB2/B1

l∑

i=1

wyi/B1
(
⇀
r yi/w′ −

⇀
r yi/w) +

⇀
r w′/w

=
1

wB2/B1

l∑

i=1

wyi/B1
(
⇀
r yi/w′ +

⇀
r w/yi

) +
⇀
r w′/w

=
1

wB2/B1

l∑

i=1

wyi/B1

⇀
r w/w′ +

⇀
r w′/w

=





1

wB2/B1

l∑

i=1

wyi/B1





⇀
r w/w′ +

⇀
r w′/w =

⇀
r w/w′ +

⇀
r w′/w = 0. �

Fact 6.12.2 shows that the point g is uniquely defined irrespective of the reference point w.

The following definition is analogous to Definition 6.1.2.

Definition 6.12.3. Let B1 be a body, let B2 be a body composed of particles y1, . . . , yl, and let

w be a point. Then, the center of gravity gB2/B1
of B2 relative to B1 is defined by

⇀
r gB2/B1

/w
△
=

1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/w. (6.12.10)

The following result is analogous to Fact 6.1.3.

Fact 6.12.4. Let B1 be a body, let B2 be a body composed of particles y1, . . . , yl, and let w be

a point. Then, gB2/B1
satisfies

l∑

i=1

wyi/B1

⇀
r yi/gB2/B1

= 0. (6.12.11)

Proof. It follows from (6.12.10) that

1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/gB2/B1

=
1

wB2/B1

l∑

i=1

wyi/B1
(
⇀
r yi/w +

⇀
r w/gB2/B1

)

=
1

wB2/B1

l∑

i=1

wyi/B1

⇀
r yi/w +

1

wB2/B1

l∑

i=1

wyi/B1

⇀
r w/gB2/B1

=
⇀
r gB2/B1

/w +
⇀
r w/gB2/B1

=
⇀
r w/w = 0. �
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The following result gives conditions under which g is independent of G and M and under which

gB2/B1
is colocated with the center of mass of B2.

Fact 6.12.5. Let B1 be a body with particles x1, . . . , xm whose masses are all equal to M, let

B2 be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml, respectively, let w be a

point, and let c2 denote the center of mass of B2. Then,

wB2/B1
= GM

l∑

i=1

m∑

j=1

mi

|⇀r yi/x j
|2
, (6.12.12)

⇀
r gB2/B1

/w =
1

∑l
i=1

∑m
j=1

mi

|⇀r yi/x j
|2

l∑

i=1

m∑

j=1

mi

|⇀r yi/x j
|2
⇀
r yi/w. (6.12.13)

Now, assume that |⇀r yi/x j
| is independent of i and j. Then, gB2/B1

= c2.

Proof. To prove the second statement, define α
△
= |⇀r yi/x j

|2. Then,

⇀
r gB2/B1

/w =
1

∑l
i=1

∑m
j=1

mi

α

l∑

i=1

m∑

j=1

mi

α

⇀
r yi/w

=
1

∑l
i=1

mmi

α

l∑

i=1

mmi

α

⇀
r yi/w =

1
∑l

i=1 mi

l∑

i=1

mi

⇀
r yi/w

=
1

mB2

l∑

i=1

mi

⇀
r yi/w =

⇀
r c2/w. �

The following result shows that, if the distance between two bodies is large, then the center of

gravity of each body is approximately colocated with its center of mass.

Fact 6.12.6. Let B1 be a body with particles x1, . . . , xm whose masses are M1, . . . ,Mm, respec-

tively, let B2 be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml, respectively,

and let c2 denote the center of mass of B2. Furthermore, let γ be a parameter such that, for all

i = 1, . . . , l and for all j = 1, . . . ,m, it follows that |⇀r yi/x j
| → ∞ as γ → ∞ and, for all i1, i2 = 1, . . . , l

and for all j1, j2 = 1, . . . ,m, it follows that
|⇀r yi1

/x j1
|

|⇀r yi2
/x j2
|
→ 1 as γ → ∞. Then,

lim
γ→∞

⇀
r c2/gB2/B1

= 0. (6.12.14)

Proof. For convenience, define αi j
△
= |⇀r yi/x j

|2. Then,

lim
γ→∞

⇀
r gB2/B1

/w = lim
γ→∞

1
∑l

i′=1

∑m
j′=1

M j′mi′

αi′ j′

l∑

i=1

m∑

j=1

M jmi

αi j

⇀
r yi/w

= lim
γ→∞

l∑

i=1

m∑

j=1

M jmi

αi j

∑l
i′=1

∑m
j′=1

M j′mi′

αi′ j′

⇀
r yi/w
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= lim
γ→∞

l∑

i=1

m∑

j=1

M jmi

∑l
i′=1

∑m
j′=1

αi j M j′mi′

αi′ j′

⇀
r yi/w

=

l∑

i=1

m∑

j=1

M jmi
∑l

i′=1

∑m
j′=1 M j′mi′

⇀
r yi/w

=

l∑

i=1

m∑

j=1

M jmi

mB1
mB2

⇀
r yi/w =

l∑

i=1

mi

mB2

⇀
r yi/w =

⇀
r c2/w. �

6.13 Newton’s Third Law for Magnetic Forces and Torques

Let
⇀
my and

⇀
mz be magnetic dipole moments located at the distinct points y and z, respectively.

Let
⇀
r z/y denote the position of z relative to y.At the point z, the magnetic field

⇀

By due to the magnetic

dipole
⇀
my is given by [6, p. 186]

⇀

By(
⇀
r z/y) =

µ0

4π





3
⇀
r z/y ·

⇀
my

|⇀r z/y|5
⇀
r z/y −

1

|⇀r z/y|3
⇀
my




, (6.13.1)

where µ0 is the permeability of free space. For convenience, we adopt Gaussian units such that

µ0 = 4π.

According to Maxwell’s equations, the field
⇀

By due to the dipole
⇀
my is divergence free. To show

this for (6.13.1), note that the Jacobian of
⇀

By at
⇀
r z/y is given by

d

d
⇀
r

⇀

By(
⇀
r )

∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

=
d

d
⇀
r





3

|⇀r |5
⇀
m
′
y

⇀
r
⇀
r − 1

|⇀r |3
⇀
my





∣
∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

= 3
⇀
m
′
y

⇀
r y/z

⇀
r y/z





⇀

∂⇀
r

1

|⇀r |5





∣
∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

+
3

|⇀r y/z|5
⇀
r y/z (

⇀

∂⇀
r

⇀
m
′
y

⇀
r )

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

+
3

|⇀r y/z|5
⇀
m
′
y

⇀
r y/z

(

d

d
⇀
r

⇀
r

)∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

− ⇀
my





⇀

∂⇀
r

1

|⇀r |3





∣
∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

= 3
⇀
m
′
y

⇀
r z/y

⇀
r z/y





−5

|⇀r z/y|7
⇀
r
′
z/y




+

3

|⇀r z/y|5
⇀
r z/y

⇀
m
′
y

+
3

|⇀r z/y|5
⇀
m
′
y

⇀
r z/y

→
I − ⇀

my





−3

|⇀r z/y|5
⇀
r
′
z/y





=
3

|⇀r z/y|5





⇀
my

⇀
r
′
z/y +

⇀
r z/y

⇀
m
′
y +

⇀
m
′
y

⇀
r z/y





→
I − 5

|⇀r z/y|2
⇀
r z/y

⇀
r
′
z/y








. (6.13.2)

Consequently, the divergence of
⇀

By is given by

⇀

∇⇀
r
·
⇀

By(
⇀
r ) = tr

⇀

∂⇀
r

⇀

By(
⇀
r ) = tr

d

d
⇀
r

⇀

By(
⇀
r ) = 0. (6.13.3)



STATICS 233

Since
⇀

By is divergence free, it can be written as the curl of a vector potential, namely,

⇀

Ay(
⇀
r ) =

1

|⇀r |3
⇀
my ×

⇀
r . (6.13.4)

To confirm this, note first that

⇀

∇⇀
r
·




1

|⇀r |3
⇀
r



 = 0. (6.13.5)

It thus follows that

⇀

∇⇀
r
×
⇀

Ay(
⇀
r ) =

⇀

∇⇀
r
×





⇀
my ×

1

|⇀r |3
⇀
r





=
⇀

∇⇀
r
·




1

|⇀r |3
⇀
r





⇀
my − (

⇀
m
′
y

⇀

∇⇀
r
)

1

|⇀r |3
⇀
r

= − d

d
⇀
r





1

|⇀r |3
⇀
r





⇀
my

=





3

|⇀r |5
⇀
r
⇀
r
′
− 1

|⇀r |3
→
I





⇀
my

=
3
⇀
r
′⇀
my

|⇀r |5
⇀
r − 1

|⇀r |3
⇀
my

=
⇀

By(
⇀
r ). (6.13.6)

Note that (6.13.1) can be rewritten as

⇀

By(
⇀
r z/y) =

→
J (

⇀
r z/y)

⇀
my, (6.13.7)

where the second-order tensor
→
J (

⇀
r z/y) is defined by

→
J (

⇀
r z/y)

△
=

1

|⇀r z/y|3
(3r̂z/yr̂′z/y −

→
I ). (6.13.8)

Note that tr
→
J (

⇀
r z/y) = 0,which reflects the divergence-free condition. Note that

→
J (

⇀
r y/z) =

→
J (

⇀
r z/y) =

→
J
′
(
⇀
r y/z).

The force
⇀

f z/y on the magnetic dipole
⇀
mz due to the magnetic dipole

⇀
my is given by [6, p. 189]

⇀

f z/y =
⇀

∇⇀
r
(
⇀
m
′
z

⇀

By(
⇀
r ))

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

. (6.13.9)

Likewise, the torque
⇀
τ z/y on the magnetic dipole

⇀
mz due to the magnetic dipole

⇀
my is given by [6, p.

190]

⇀
τ z/y =

⇀
mz ×

⇀

By(
⇀
r z/y). (6.13.10)
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6.13.1 Newton’s Third Law for Magnetic Forces

The following result provides an expression for
⇀

f z/y and states Newton’s third law for forces arising

from a pair of magnetic dipoles.

Fact 6.13.1.
⇀

f z/y is given by

⇀

f z/y =
3

|⇀r z/y|4
(
⇀
m
′
yr̂z/y

⇀
mz +

⇀
m
′
zr̂z/y

⇀
my +

⇀
m
′
z

⇀
myr̂z/y − 5

⇀
m
′
yr̂z/y

⇀
m
′
zr̂z/yr̂z/y). (6.13.11)

Consequently,
⇀

f z/y and
⇀

f y/z satisfy

⇀

f z/y = −
⇀

f y/z. (6.13.12)

Proof. Using (2.24.11) it follows that, for all vectors
⇀
w and

⇀
v ,

⇀

∂⇀
r
(
⇀
w
′→
J (

⇀
r )

⇀
v )

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

=
⇀

∂⇀
r





3

|⇀r |5
⇀
w
′⇀
r
⇀
v
′⇀
r − 1

|⇀r |3
⇀
w
′⇀
v





∣
∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

= − 15

|⇀r z/y|7
⇀
w
′⇀
r z/y

⇀
v
′⇀
r z/y

⇀
r
′
z/y +

3

|⇀r z/y|5
⇀
v
′⇀
r z/y

⇀
w
′

+
3

|⇀r z/y|5
⇀
w
′⇀
r z/y

⇀
v
′
+

3

|⇀r z/y|5
⇀
w
′⇀
v
⇀
r
′
z/y

=
3

|⇀r z/y|4
(−5

⇀
w
′
r̂z/y

⇀
v
′
r̂z/yr̂′z/y +

⇀
v
′
r̂z/y

⇀
w
′
+
⇀
w
′
r̂z/y

⇀
v
′
+
⇀
w
′⇀
v r̂′z/y). (6.13.13)

Finally, setting
⇀
v =

⇀
my and

⇀
w =

⇀
mz yields

⇀

f z/y =
⇀

∇⇀
r
(
⇀
m
′
z

→
J (

⇀
r )

⇀
my))

∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

=
3

|⇀r z/y|4
(
⇀
m
′
yr̂z/y

⇀
mz +

⇀
m
′
zr̂z/y

⇀
my +

⇀
m
′
z

⇀
myr̂z/y − 5

⇀
m
′
yr̂z/y

⇀
m
′
zr̂z/yr̂z/y)

= −
⇀

f y/z. �

It can be seen from (6.13.11) that the direction of the magnetic force
⇀

f z/y on the dipole
⇀
mz due

to
⇀
my is not necessarily aligned with r̂z/y. This means that Newton’s third law for magnetic forces

does not share the alignment property that holds for mechanical forces, gravity, and electrostatics.

As shown below, this misalignment accounts for an additional contribution to the torque on each

magnetic dipole.

Next, note that the directional derivative of the magnetic field vector
⇀

By in the direction of the

magnetic dipole
⇀
mz is given by

d

dα

⇀

By(
⇀
r y/z + α

⇀
mz)

∣
∣
∣
∣
∣
α=0

=
d

d
⇀
r

⇀

By(
⇀
r )

∣
∣
∣
∣
∣
∣⇀
r=

⇀
r y/z

⇀
mz =

⇀

f z/y. (6.13.14)
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This shows that the misalignment between
⇀

f z/y and r̂z/y arises from the fact that the force
⇀

f z/y on
⇀
mz due to

⇀
my is parallel to the directional derivative of the magnetic field vector

⇀

By in the direction

of the magnetic dipole
⇀
mz.

Example 6.13.2. Consider the dipoles
⇀
my = my ı̂A and

⇀
mz = mz ̂A, where

⇀
r z/y = rı̂A. Then

→
J (

⇀
r z/y) =

1

r3
(3ı̂A ı̂

′
A −

→
I ) =

1

r3
(2ı̂A ı̂

′
A − ̂A ̂

′
A − k̂Ak̂′A), (6.13.15)

and thus

⇀

By(
⇀
r z/y) =

2my

r3
ı̂A. (6.13.16)

It follows from (6.13.11) that

⇀

f z/y =
3mymz

r4
̂A. (6.13.17)

Alternatively, to obtain (6.13.17) directly without using (6.13.11), note that it follows from (6.13.7)

and (6.13.9) that

⇀

f
′

z/y =
⇀

∂⇀
r
(
⇀
m
′
z

→
J (

⇀
r )

⇀
my)

∣
∣
∣
∣
∣⇀
r=rı̂A

= mzmy

⇀

∂⇀
r





1

|⇀r |3
̂′A(3r̂r̂′ −

→
I )ı̂A





∣
∣
∣
∣
∣
∣
∣⇀
r=rı̂A

= 3mzmy

⇀

∂⇀
r





1

|⇀r |5
̂′A
⇀
r ı̂′A

⇀
r





∣
∣
∣
∣
∣
∣
∣⇀
r=rı̂A

= 3mzmy





−5

|⇀r |7
̂′A
⇀
r ı̂′A

⇀
r
⇀
r
′
+

1

|⇀r |5
ı̂′A
⇀
r ̂′A +

1

|⇀r |5
̂′A
⇀
r ı̂′A





∣
∣
∣
∣
∣
∣
∣⇀
r=rı̂A

=
3mzmy

r4
̂′A. ⋄

The following result, which is an immediate consequence of Fact 6.13.1, shows that the net

force arising from an arbitrary collection of magnetic dipoles is zero.

Fact 6.13.3. Suppose that a body consists of magnetic dipoles
⇀
m1, . . . ,

⇀
mn. Then the net mag-

netic force on the body is zero.

6.13.2 Newton’s Third Law for Magnetic Torques

The following result provides an expression for
⇀
τ z/y and states Newton’s third law for torques arising

from a pair of magnetic dipoles.

Fact 6.13.4.
⇀
τ z/y is given by

⇀
τ z/y =

1

|⇀r z/y|3
[3r̂′z/y

⇀
my(

⇀
mz × r̂z/y) − ⇀

mz ×
⇀
my]. (6.13.18)
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Furthermore,

⇀
τ z/y +

⇀
τ y/z +

⇀
r z/y ×

⇀

f z/y = 0, (6.13.19)

where

⇀
r z/y ×

⇀

f z/y =
3

|⇀r z/y|5
[
⇀
r
′
z/y

⇀
my(

⇀
r z/y ×

⇀
mz) +

⇀
r
′
y/z

⇀
mz(

⇀
r y/z ×

⇀
my)]. (6.13.20)

Proof. It follows from (6.13.7), (6.13.8), and (6.13.10) that

⇀
τ z/y =

⇀
mz ×

⇀

By(
⇀
r z/y)

=
⇀
mz ×

→
J (

⇀
r z/y)

⇀
my

=
⇀
mz ×





1

|⇀r z/y|3
(3r̂z/yr̂′z/y −

→
I )





⇀
my

=
1

|⇀r z/y|3
[3r̂′z/y

⇀
my(

⇀
mz × r̂z/y) − ⇀

mz ×
⇀
my]. (6.13.21)

It thus follows from (6.13.11) and (6.13.21) that

⇀
r z/y ×

⇀

f z/y =
3

|⇀r z/y|4
[
⇀
m
′
yr̂z/y(

⇀
r z/y ×

⇀
mz) +

⇀
m
′
zr̂z/y(

⇀
r z/y ×

⇀
my)]

= − 1

|⇀r z/y|3
(3r̂′z/y

⇀
my(

⇀
mz × r̂z/y) − ⇀

mz ×
⇀
my)

− 1

|⇀r z/y|3
(3r̂′y/z

⇀
mz(

⇀
my × r̂y/z) −

⇀
my ×

⇀
mz)

= −(
⇀
τ z/y +

⇀
τ y/z). �

Equation (6.13.19) involves the torque
⇀
τ z/y, which is applied to

⇀
mz due to the magnetic field

generated by
⇀
my, and the torque

⇀
τ y/z, which is applied to

⇀
my due to the magnetic field generated by

⇀
mz. Furthermore, note that, since fy/z = − fz/y and, as noted above, fz/y and fy/z are not aligned with
⇀
r z/y, these forces create an additional torque τf ; this torque can be computed relative to an arbitrary

point. Choosing this point to be y, it follows that

⇀
τ f =

⇀
r z/y ×

⇀

f z/y +
⇀
r y/y ×

⇀

f y/z =
⇀
r z/y ×

⇀

f z/y. (6.13.22)

Consequently,
⇀
r z/y ×

⇀

f z/y in (6.13.19) is the torque due to fz/y and fy/z.

The following result provides a symmetric version of Fact 6.13.4, where the torque
⇀
τ f is evalu-

ated relative to an arbitrary point x.

Fact 6.13.5. Let x be a point. Then,

⇀
τ z/y +

⇀
r z/x ×

⇀

f z/y = −(
⇀
τ y/z +

⇀
r y/x ×

⇀

f y/z). (6.13.23)
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Proof. Using
⇀
r z/y =

⇀
r z/x +

⇀
r x/y, (6.13.19) implies

⇀
τ z/y +

⇀
τ y/z = −

⇀
r z/y ×

⇀

f z/y

= −(
⇀
r z/x +

⇀
r x/y) ×

⇀

f z/y

= −⇀r z/x ×
⇀

f z/y −
⇀
r x/y ×

⇀

f z/y

= −⇀r z/x ×
⇀

f z/y −
⇀
r y/x ×

⇀

f y/z. �

Setting x = y in (6.13.23) recovers (6.13.19).

The following result, which is an immediate consequence of Fact 6.13.4, shows that the net

torque arising from an arbitrary collection of magnetic dipoles is zero.

Fact 6.13.6. Suppose that a body consists of magnetic dipoles
⇀
m1, . . . ,

⇀
mn. Then the net mag-

netic torque on the body is zero.

Example 6.13.7. (Example 6.13.2 continued.) Using (6.13.18) it follows that

⇀
τ z/y =

1

r3
[3ı′Amy ı̂A(mz ̂A × ı̂A) − mz ̂A × my ı̂A] = −

2mymz

r3
k̂A, (6.13.24)

⇀
τ y/z =

1

r3
[−3ı′Amz ̂A(my ı̂A × −ı̂A) − my ı̂A × mz ̂A] = −

mymz

r3
k̂A, (6.13.25)

⇀
τ f = rı̂A ×

3mymz

r4
̂A =

3mymz

r3
k̂A. (6.13.26)

Summing
⇀
τ z/y,

⇀
τ y/z, and

⇀
τ f verifies (6.13.19). ⋄

Analogous results hold for electric dipoles.

6.14 Theoretical Problems

Problem 6.14.1. Let B be a rigid body consisting of particles y1, . . . , yl with masses m1, . . . ,ml,

respectively, and let FB be a body-fixed frame. Show that, for all i = 1, . . . , l,
⇀
v yi/c/B = 0.

Problem 6.14.2. Consider a triangle T with vertices a, b, c, and define the following bodies:

i) B1 consists of three identical particles located at a, b, c.

ii) B2 consists of three thin homogeneous rigid links connecting a, b, c.

iii) B3 is a thin homogeneous triangular-shaped plate with vertices a, b, c.

Show that all three bodies have the same center of mass, which is located at the centroid of T.

Problem 6.14.3. Let B1 and B2 be bodies, and let B3 denote the union of B1 and B2, that is,

B3 is the body whose particles include all of the particles of B1 and B2. Let w be a point. Show

that the center of mass of B3 relative to w lies on the line segment connecting the centers of mass

of B1 and B2 relative to w. In particular, show that the location of the center of mass of B3 relative

to w coincides with the center of mass of two “virtual” particles, namely, a particle y1 located at the
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center of mass of B1 and whose mass is m1, and a particle y2 located at the center of mass of B2 and

whose mass is m2.

Problem 6.14.4. Consider a particle y whose mass is m and a body B that consists of two

particles y1 and y2 with masses m1 and m2, respectively, connected by a massless rigid link of length

ℓ. The distance from y to y1 is ℓ1, and the distance from y to y2 is ℓ2, where ℓ2
1
+ ℓ2

2
= ℓ2. Aside

from the constraint forces on y1 and y2 due to the link, all forces on y, y1, and y2 are due to central

gravitational attraction. Show that Newton’s third law holds in the sense that the force
⇀

f y on y due to

B is equal and opposite in direction to the total force on B due to y, but that the force
⇀

f y on y is not

necessarily aligned with either the center of mass of B or the center of gravity of B. In particular,

show that the following statements are equivalent:

i) ℓ1 = ℓ2.

ii) The center of mass of B coincides with the center of gravity of B.

iii) The force
⇀

f y on y is aligned with the center of mass of B.

iv) The force
⇀

f y on y is aligned with the center of gravity of B.

Problem 6.14.5. Let B be a body subject to at least three forces that do not lie in a single plane,

let z and w be distinct points, and assume that the moments
⇀

MB/w and
⇀

MB/z due to the forces are

equal and nonzero. Does it follow that the forces are balanced? (Note that the converse is true due

to the fact that, if the forces are balanced, then
⇀

MB/w and
⇀

MB/z are independent of w and z and thus

are equal.)

Problem 6.14.6. Let B be a body, let z be a point, and let FB be a frame. Show that Jxx =

ı̂′
B

→
JB/z ı̂B, and provide similar expressions for the remaining components of

→
JB/z

∣
∣
∣
∣
∣
B

. Furthermore,

let n̂ be a unit vector. Under what conditions is n̂′
→
JB/zn̂ a moment of inertia of B? Show that

n̂′
→
JB/zn̂ is a principal moment of inertia of B if and only if n̂ is an eigenvector of

→
JB/z.

Problem 6.14.7. Let B be a homogeneous cube, and let c be its center of mass. Show that

every frame is a principal-axis frame relative to c.

Problem 6.14.8. Let B be a homogeneous rectangular solid whose mass is m, and let FB be a

frame whose axes ı̂B, ̂B, and k̂B are parallel to the sides of length a, b, and c, respectively, where

a > b > c. Determine JB/z|B in the following cases:

i) z is the center of a face of B whose sides have lengths a and b.

ii) z is the center of an edge of B of length a.

iii) z is a vertex of B.

Specialize iii) to the case where the rectangular solid approximates a thin bar, that is, b = c ≈ 0.

Problem 6.14.9. Consider a rectangular plate whose sides have lengths a > b > 0, where
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a =

√

1+
√

5
2

b. Show that J2 =
√

J1J3, and that the right-hand inequality in (6.2.16) holds as an

equality.

Problem 6.14.10. Let B be an annulus, that is, a flat circular ring, with mass m, outer radius

R, and inner radius r. Show that the principal moments of inertia of B relative to it center of mass

are given by m(R2 + r2)/4, m(R2 + r2)/4, and m(R2 + r2)/2. Furthermore, show that if the annulus

is thin, that is, R ≈ r, then the principal moments of inertia of B are given approximately by 1
2
mR2,

1
2
mR2, and mR2. (Hint: Express the moments of inertia of the annulus in terms of the area density

of the material.)

Problem 6.14.11. Let B be a spherical shell with mass m, outer radius R, and inner radius r.

Show that the principal moments of inertia of B relative to it center of mass are given by
2m(R5−r5)

5(R3−r3)
.

Furthermore, show that if the annulus is thin, that is, R ≈ r, then the principal moments of inertia of

B are given approximately by 2mR2/3.

Problem 6.14.12. Determine the physical inertia matrix of a triangular plate relative to its

center of mass. Separately consider the cases where the triangle is a right triangle and the triangle

is isosceles.

Problem 6.14.13. Let B be a body with particles y1, . . . , yl whose masses are m1, . . . ,ml, re-

spectively, let mB be the mass of B, and let c be the center of mass of B. Furthermore, let z be a

point, and let B′ be the body consisting of B and a particle yl+1 of mass mB located at z. Finally, let

c′ be the center of mass of B′. Show that

→
JB/z =

→
JB′/c = 2

→
JB′/c′ −

→
JB/c.

6.15 Applied Problems

Problem 6.15.1. Consider the bar shown in Figure 6.15.1, which has a pin joint at a and whose

opposite end c is attached to a linear spring connected to b. The stiffness of the linear spring is k,

and the relaxed length of the linear spring is zero. In addition, a torsional spring, whose relaxed

angle is zero and whose torsional stiffness κ, is attached to the bar around the pin joint. Determine

the moment on the bar relative to a and due to the force applied to the bar by the linear spring.

Furthermore, determine the longitudinal force on the bar due to the linear spring. Finally, determine

κ.

a

c

k

b

θ

κ

Figure 6.15.1: Bar with linear and torsional springs for Problem 6.15.1.

Problem 6.15.2. The planar triangle shown in Figure 6.15.2 is attached to a vertical wall by
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Symbol Definition

c Center of mass of B

⇀

f Force vector

⇀

Mx/y Moment on x relative to y

⇀

MB/y Moment on B relative to y

Table 6.1: Symbols for Chapter 6.

the pin joint at P, and has point masses m1 and m2 at the remaining vertices y1 and y2, respectively.

There is no mass at the pin joint P, and all links are massless. The angles θ1, θ2, θ3 and opposite sides

ℓ1, ℓ2, ℓ3 are defined in the figure. The side of length ℓ3 is horizontal, and the direction of gravity is

vertical as shown. A third mass M is connected to y1 by a rope that passes around a small wheel

at the point z, which is at the same height as y1. Determine the location of the center of mass of

the triangle. Furthermore, assuming that the triangle and mass M are in equilibrium, determine M.

Finally, assume that the wheel at z and the mass M are moved horizontally to the right side of the

triangle. Show that the triangle is not in equilibrium when the side of length ℓ3 is horizontal.

p

y1

y2

l2

l3

l1

m1

m2

θ1 θ2

θ3

z

M

ı̂A

k̂A

̂A

⇀
g

Figure 6.15.2: Triangular structure for Problem 6.15.2.

Problem 6.15.3. Consider three identical metal spheres that fit exactly inside a metal ring on

a horizontal surface so that each sphere contacts the other two spheres as well as the inner surface

of the ring. A fourth identical metal sphere is placed on top of the three spheres in a pyramid

configuration. Determine the force that each of the three spheres applies to the ring due to the

weight of the fourth sphere.



Chapter Seven

Newton-Euler Dynamics

Forces and moments can be applied to particles and bodies, resulting in changes in translational

momentum and angular momentum. The basis for these changes is Newton’s laws.

7.1 Newton’s First Law for Particles

An unforced particle is a particle that has no forces applied to it. We use the concept of an

unforced particle to define the concept of an inertial frame.

Definition 7.1.1. A frame FA is an inertial frame if, for all unforced particles y and w,

A••
⇀
r y/w = 0. (7.1.1)

Equation (7.1.1) can be written as

⇀
ay/w/A = 0. (7.1.2)

The following result is Newton’s first law. This statement is an axiom that concerns the existence

of an inertial frame.

Fact 7.1.2. There exists an inertial frame.

Newton’s first law cannot be proved mathematically; in fact, it is an approximation to actual

motion. Assuming that Newton’s first law is valid, it is shown in the following section that the stars

provide an approximate inertial frame.

The following result shows that, for each pair of unforced particles y and w, the velocity of y

relative to w with respect to an inertial frame FA is constant. This means that the motion of y relative

to w with respect to an inertial frame FA is along a straight line whose direction is fixed with respect

to FA and with constant speed.

Fact 7.1.3. Let y and w be points, and let FA be a frame. Then, (7.1.1) is satisfied if and only if

there exist physical vectors
⇀
α and

⇀

β such that

A•
⇀
α = 0,

A•
⇀

β = 0, and

⇀
r y/w = t

⇀
α +

⇀

β. (7.1.3)

Proof. To prove sufficiency, note that it follows from (7.1.3) that the velocity of y relative to w
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with respect to FA is given by

A•
⇀
r y/w =

⇀
α,

while the acceleration of y relative to w with respect to FA is given by

A••
⇀
r y/w = 0,

which verifies (7.1.1).

Conversely, resolving (7.1.1) in FA yields

··
︷ ︸︸ ︷

⇀
r y/w

∣
∣
∣
∣
A
=

A••
⇀
r y/w

∣
∣
∣
∣
∣
∣
∣
A

= 0,

which implies that there exist α, β ∈ R3 such that

⇀
r y/w

∣
∣
∣
∣
A
= tα + β.

Therefore, (7.1.3) is satisfied with
⇀
α
△
= FAα and

⇀

β
△
= FAβ. �

Note that
⇀
α and

⇀

β are the physical velocity and physical position vectors given, respectively, by

⇀
α =

A•
⇀
r y/w (t) (7.1.4)

and

⇀

β =
⇀
r y/w(0). (7.1.5)

Therefore,
⇀
α represents the velocity of y relative to w with respect to FA, while

⇀

β represents the

initial position of of y relative to w. Since both vectors are constant with respect to FA, the motion

of y relative to w has the form of a straight line whose direction is constant with respect to FA.

The following result shows that all pairs of inertial frames have zero relative angular velocity.

Fact 7.1.4. Let FB be an inertial frame, and let FA be a frame. Then, FA is an inertial frame if

and only if
⇀
ωB/A = 0.

Proof. Assume that
⇀
ωB/A = 0, and let w and y be unforced particles. Since FB is an inertial

frame, it follows that

B••
⇀
r y/w = 0. It then follows from (4.5.1) that

A••
⇀
r y/w = 0. Consequently, FA is an

inertial frame.

Conversely, let y and w be distinct unforced particles. Since FA and FB are inertial frames, it

follows that

B••
⇀
r y/w =

A••
⇀
r y/w = 0. It then follows from (4.5.1) that

2
⇀
ωB/A ×

B•
⇀
ry/w +

B•
⇀
ωB/A ×

⇀
ry/w +

⇀
ωB/A × (

⇀
ωB/A ×

⇀
ry/w) = 0. (7.1.6)

Now, choose distinct particles y and w such that
⇀
r y/w =

⇀

β, where

B•
⇀

β= 0. Then, it follows from
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(7.1.6) that

B•
⇀
ωB/A ×

⇀

β +
⇀
ωB/A × (

⇀
ωB/A ×

⇀

β) = 0. (7.1.7)

Next, choosing y and w such that, at time t,
⇀
ωB/A and

⇀

β are parallel, it follows from (7.1.7) that,

at time t,

B•
⇀
ωB/A ×

⇀
ωB/A = 0. (7.1.8)

Alternatively, choosing y and w such that, at time t,

B•
⇀
ωB/A and

⇀

β are parallel, it follows from (7.1.7)

and (7.1.8) that, at time t,

B•
⇀
ωB/A ×

B•
⇀
ωB/A = 0. (7.1.9)

Hence,

B•
⇀
ωB/A = 0. Therefore, for all choices of y and w, it follows from (7.1.7) that, at time t,

⇀
ωB/A × (

⇀
ωB/A ×

⇀

β) = 0, (7.1.10)

and thus

(
⇀

β
′
⇀
ωB/A)

⇀
ωB/A = |

⇀
ωB/A|2

⇀

β. (7.1.11)

Finally, choosing distinct y and w such that, at time t,
⇀

β and
⇀
ωB/A are mutually orthogonal, it follows

from (7.1.11) that
⇀
ωB/A = 0. �

Fact 7.1.5. Let FA and FB be inertial frames, and let
⇀
x(t) be a physical vector. Then,

A•
⇀
x (t) =

B•
⇀
x (t), (7.1.12)

A••
⇀
x (t) =

B••
⇀
x (t). (7.1.13)

7.2 Why the Stars Approximate an Inertial Frame

Next, we explain why the distant stars approximate an inertial frame. Intuitively, the distant

stars, although visible to us, are at such a great distance that the angle between every pair does not

change of short time periods. Therefore, the motion of these stars can be viewed as the motion of

unforced particles. Consequently, Newton’s first law implies that the relative motion of an unforced

particle is along a straight line relative to the stars. This motion gives us the impression that the

stars define an inertial frame. Notice that this argument assumes that Newton’s first law is valid; in

other words, the presence of visible stars per se does not imply the validity or approximate validity

of Newton’s first law.

Let FA be an inertial frame. Let w be an unforced particle, and let y1, y2, y3 be distant stars that

form three mutually orthogonal directions as viewed from w starting at time t = 0.Assuming that the

stars are unforced particles, there exist velocity vectors
⇀
α1,

⇀
α2,

⇀
α3 and position vectors

⇀

β1,
⇀

β2,
⇀

β3
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that are constant with respect to FA and satisfy, for all i = 1, 2, 3,

⇀
r yi/w = t

⇀
αi +

⇀

β i. (7.2.1)

Since
⇀

β1 ·
⇀

β2 =
⇀

β2 ·
⇀

β3 =
⇀

β3 ·
⇀

β1 = 0, the angle θi, j formed by the ith and jth stars satisfies

cos θi, j =

⇀
αi ·

⇀
α jt

2 + (
⇀
αi ·

⇀

β j +
⇀
α j ·

⇀

β i)t

‖t⇀αi +
⇀

β i‖ ‖t
⇀
α j +

⇀

β j‖
. (7.2.2)

Because the distances are large, ‖t⇀αi +
⇀

β i‖ and ‖t⇀α j +
⇀

β j‖ are large compared to the numerator of

(7.2.2) over short time intervals. Hence, θi, j remains approximately π/2 rad over short time intervals.

Next, let FS be the frame [r̂y1/w r̂y2/w r̂y3/w], which, over short time intervals, is given approxi-

mately by [β̂1 β̂2 β̂3].Using (4.2.9), it follows that the physical angular velocity matrix of FA relative

to FS is given by

→
ΩS/A = −

→
ΩA/S (7.2.3)

= −[ı̂S
A•
ı̂

′

S + ̂S
A•
̂

′

S + k̂S

A•
k̂

′

S]

= −[r̂y1/w

A•
r̂

′

y1/w
+ r̂y2/w

A•
r̂

′

y2/w
+ r̂y3/w

A•
r̂

′

y3/w
]

≈ −[β̂1

A•
β̂

′

1 + β̂2

A•
β̂

′

2 + β̂3

A•
β̂

′

3]

= 0, (7.2.4)

where the approximation holds over short time intervals and the last equality follows from the fact

that
⇀

β i and thus β̂i are constant with respect to FA. Finally, since FA is an inertial frame, it follows

from Fact 7.1.4 that FS is approximately an inertial frame.

The observation that the stars determine an approximate inertial frame provides a practical

framework for Newton’s first law. These observations are consistent with the everyday experience

that unforced motion evolves in straight lines with respect to the stars but not with respect to frames

that are rotating relative to the stars.

7.3 Newton’s Second Law for Particles

The following result is Newton’s second law. This statement is an axiom that concerns the effect

of forces on particles.

Fact 7.3.1. Let FA be an inertial frame, let y be a particle with mass m, let
⇀

f y be the force acting

on y, and let w be an unforced particle. Then,

m

A••
⇀
r y/w =

⇀

f y. (7.3.1)

Fact 7.3.2. Let FA and FB be inertial frames, let y be a particle, let
⇀

f y be a force acting on y,

and let w be an unforced particle. Then,

A••
⇀
r y/w =

B••
⇀
r y/w. (7.3.2)
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Proof. Since FA and FB are inertial frames, the result follows from Fact 7.1.5. Alternatively,

since FA and FB are inertial frames, it follows from Fact 7.3.1 that m

A••
⇀
r y/w =

⇀

f y and m

B••
⇀
r y/w =

⇀

f y.

Hence,

A••
⇀
r y/w = (1/m)

⇀

f y =

B••
⇀
r y/w. �

The following result considers the acceleration of one particle relative to another particle in the

case where forces are acting on both particles.

Fact 7.3.3. Let FA be an inertial frame, let y1 and y2 be particles whose masses are m1 and m2,

respectively, and let
⇀

f y1
and

⇀

f y2
be the forces acting on y1 and y2, respectively. Then,

m1

A••
⇀
r y1/y2

=
⇀

f y1
− m1

m2

⇀

f y2
. (7.3.3)

Note that, if either y1 or y2 is unforced, then this result specializes to Fact 7.3.1. However,

although (7.3.3) superficially has the form of (7.3.1), it is not a statement of Newton’s second law

since y2 is forced. The distinction between (7.3.3) and (7.3.1) is due to the fact that the force on the

right hand side of (7.3.1) is the force applied to y, whereas the force on the right hand side of (7.3.1)

is not the force applied to y1. Finally, note that, in the case where m2

⇀

f y1
= m1

⇀

f y2
, (7.3.3) becomes

m1

A••
⇀
r y1/y2

= 0. (7.3.4)

Although (7.3.4) superficially has the form of (7.1.1), it is not a statement of Newton’s second law

since both y1 and y2 are forced.

It is often the case that a body is constrained in its motion due to its connection with a plane,

which may represent a floor, ceiling, wall, or the ground. For example, a body may rotate around a

pin joint connected to a wall. To address these problems, it is convenient to view the plane as if it

is unaffected by reaction forces. A massive particle is a particle whose mass is infinite and thus is

unaffected by all forces except gravity. In the absence of gravity, the motion of a massive particle is

identical to the motion of an unforced particle. A body that contains at least one massive particle is

a massive body. Consequently, a massive body that contains at least three massive particles that are

not colinear is unaffected by all forces except gravity itself. Therefore, in the absence of gravity, the

motion of every point in a massive body is identical to the motion of an unforced particle. Finally,

for a massive body, every body-fixed frame is an inertial frame.

It is useful to rewrite (7.3.3) as

m1m2

m1 + m2

A••
⇀
r y1/y2

=
m2

m1 + m2

⇀

f y1
− m1

m1 + m2

⇀

f y2
, (7.3.5)

where m1m2

m1+m2
is the reduced mass. Now, assume that the forces

⇀

f y1
and

⇀

f y2
have approximately the

same magnitude. Then, it can be seen from (7.3.5) that, if m1 is much larger than m2, then

m2

A••
⇀
r y2/y1

≈
⇀

f y2
, (7.3.6)

whereas, if m2 is much larger than m1, then

m1

A••
⇀
r y1/y2

≈
⇀

f y1
. (7.3.7)
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Consequently, the particle with significantly larger mass approximately plays the role of an unforced

particle, and thus a massive particle plays the role of an unforced particle.

7.4 Translational Momentum of Particles and Bodies

Let FA be a frame, let y be a particle with mass m, and let w be a point. Then, the translational

momentum
⇀
py/w/A of y relative to w with respect to FA is defined by

⇀
py/w/A

△
= m

⇀
v y/w/A = m

A•
⇀
r y/w . (7.4.1)

We can thus restate Newton’s second law as follows.

Fact 7.4.1. Let FA be an inertial frame, let y be a particle with mass m, let
⇀

f y be the force acting

on y, and let w be an unforced particle. Then,

A•
⇀
py/w =

⇀

f y. (7.4.2)

We now apply Newton’s second law to each particle in a body B. Let B be a body composed of

particles y1, . . . , yl whose masses are m1, . . . ,ml, respectively, let mB be the mass of B, let c be the

center of mass of B as defined by (6.1.2), let FA be a frame, and let w be a point. Then, the velocity

and acceleration of the center of mass of B relative to w and with respect to FA are given by

⇀
v c/w/A =

A•
⇀
r c/w =

1

mB

l∑

i=1

mi

⇀
v yi/w/A, (7.4.3)

⇀
ac/w/A =

A•
⇀
v c/w =

1

mB

l∑

i=1

mi

⇀
ayi/w/A. (7.4.4)

Hence,

mB

⇀
v c/w/A =

l∑

i=1

mi

⇀
v yi/w/A, (7.4.5)

mB

⇀
ac/w/A =

l∑

i=1

mi

⇀
ayi/w/A. (7.4.6)

Recall that external forces applied to a particle in a body include all forces that are not due to

interactions with other particles in the body. Note that the mass of an inertia point yi is defined to

be zero.

Fact 7.4.2. Let FA be an inertial frame, let B be a body with inertia points y1, . . . , yl whose

masses are m1, . . . ,ml, respectively, and let c be the center of mass of B. Furthermore, for i =

1, . . . , l, let
⇀

f yi
be the external force applied to yi, and let w be an unforced particle. Then,

mB

⇀
ac/w/A =

⇀

f B, (7.4.7)
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where the mass mB of B is defined by

mB

△
=

l∑

i=1

mi (7.4.8)

and the total force
⇀

f B applied to B is defined by

⇀

f B
△
=

l∑

i=1

⇀

f yi
. (7.4.9)

Now, let z be a point. Then,

mB

⇀
ac/z/A + mB

⇀
a z/w/A =

⇀

f B. (7.4.10)

Finally, if the external forces
⇀

f y1
, . . . ,

⇀

f yl
are balanced, then

⇀
ac/w/A = 0, (7.4.11)

and thus

⇀
ac/z/A +

⇀
a z/w/A = 0. (7.4.12)

Proof. Let
⇀

f i j be the internal force on yi due to y j. Since B is a Newtonian body, it follows that
∑

j=1,...,l, j,i

⇀

f i j = 0. Since w is an unforced particle, we thus have

mB

⇀
ac/w/A =

l∑

i=1

mi

⇀
ayi/w/A =

l∑

i=1

mi

A••
⇀
r yi/w =

l∑

i=1





⇀

f yi
+

∑

j=1,...,l
j,i

⇀

f i j





=

l∑

i=1

⇀

f yi
=

⇀

f B,

which proves (7.4.7). Furthermore,

⇀

f B =

l∑

i=1

mi(
⇀
ayi/z/A +

⇀
a z/w/A),

which implies (7.4.10). �

Let B be a body with mass mB, and let c be the center of mass of B. Then, the translational

momentum
⇀
pB/w/A of B relative to w with respect to FA is defined by

⇀
pB/w/A

△
= mB

⇀
v c/w/A = mB

A•
⇀
r c/w . (7.4.13)

The following result restates Fact 7.4.2 in terms of the translational momentum of B.

Fact 7.4.3. Let FA be an inertial frame, let B be a body with inertia points y1, . . . , yl whose

masses are m1, . . . ,ml, respectively, and let c be the center of mass of B. Furthermore, for i =

1, . . . , l, let
⇀

f yi
be the external force applied to yi, and let w be an unforced particle, Then,

A•
⇀
pB/w/A =

⇀

f B, (7.4.14)
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where the mass mB and the total force
⇀

f B are defined by (7.4.8) and (7.4.9), respectively. Finally,

if
⇀

f y1
, . . . ,

⇀

f yl
are balanced, then

A•
⇀
pB/w/A = 0. (7.4.15)

Fact 7.4.3 shows that the acceleration of a body due to all external forces applied to the body

can be viewed as the acceleration of an equivalent particle located at the center of mass of the body,

where the mass of the equivalent particle is equal to the mass of the body and where the applied

force is given by the total force, that is, the sum of all of the forces applied to all of the particles in

the body. Note that the internal forces do not contribute to the total force since the body is assumed

to be Newtonian. If the total force is zero, then the equivalent particle has constant inertial velocity,

that is, constant velocity relative to an unforced particle and with respect to an inertial frame. The

external forces can also cause the body to rotate, as discussed in the following sections.

Suppose that
⇀

f B

∣
∣
∣
∣
∣
A

has a component that is identically zero. Then, it follows from (7.4.14)

that the corresponding component of

A•
⇀
pB/w/A

∣
∣
∣
∣
∣
∣
∣
A

is identically zero. In this case, conservation of

momentum holds along one of the axes of FA, and the corresponding component of the translational

momentum is a constant of the motion relative to FA. If
⇀

f B = 0, then translational momentum is

conserved along all three axes of FA, and all three components of the momentum are constants of

the motion relative to FA.

The following result provides an alternative version of Fact 7.4.2 involving the first moment of

inertia.

Fact 7.4.4. Let FA be an inertial frame, let B be a body with mass mB, let c be the center of

mass of B, let
⇀

f B be the total force on B, let FB be a body-fixed frame, let w be an unforced particle,

and let z be a point. Then,

mB

B•
⇀
v c/z/A + mB

B•
⇀
v z/w/A +

⇀
ωB/A × mB

⇀
v c/z/A +

⇀
ωB/A × mB

⇀
v z/w/A =

⇀

f B. (7.4.16)

If, in addition, B is a rigid body and z is fixed in B, then

mB

B•
⇀
v z/w/A +

⇀
αB/A × mB

⇀
r c/z +

⇀
ωB/A × mB

⇀
v z/w/A +

⇀
ωB/A × (

⇀
ωB/A × mB

⇀
r c/z) =

⇀

f B. (7.4.17)

Proof. Rewriting (7.4.7) as

mB

A•
⇀
v c/w/A =

⇀

f B

and applying the transport theorem yields

mB

B•
⇀
v c/w/A +

⇀
ωB/A × mB

⇀
v c/w/A =

⇀

f B,

which implies (7.4.16). Now, consider the case where B is a rigid body and z is fixed in B. Then,

using

B•
⇀
r z/c = 0 and

B•
⇀
v c/z/A =

⇀
αB/A ×

⇀
r c/z, (7.4.16) implies (7.4.17). �
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7.5 Dynamics of Interconnected Particles

Let B be a body consisting of particles y1, . . . , yl with masses m1, . . . ,ml, respectively, for all

i = 1, . . . , l, let
⇀

f i be the external force applied to yi, let w be an unforced particle, and let FA be an

inertial frame. Furthermore, assume that, for all distinct i, j ∈ {1, . . . , l}, the particles yi and y j are

connected by a dashpot with viscosity ci j ≥ 0 and a spring with stiffness ki j ≥ 0. Note that, for all

i, j = 1, . . . , l, ci j = c ji, cii = 0, ki j = k ji, and kii = 0. Then, for all i ∈ {1, . . . , l}, it follows that

mi

A••
⇀
r yi/w +

l∑

j=1

ci j

A•
⇀
r yi/y j

+

l∑

j=1

ki j

⇀
r yi/y j

=
⇀

f i, (7.5.1)

and thus

M





A••
⇀
r y1/w

...
A••
⇀
r yl/w





+ C





A•
⇀
r y1/w

...
A•
⇀
r yl/w





+ K





⇀
r y1/w

...
⇀
r yl/w





=





⇀

f 1

...
⇀

f l





, (7.5.2)

where M
△
= diag(m1, . . . ,ml),

C
△
=





∑l
j=1 c1 j −c12 −c13 · · · −c1l

−c12

∑l
j=1 c2 j −c23 · · · −c2l

...
...

. . . · · ·
...

−c1l −c2l −c3l · · ·
∑l

j=1 cl j





, (7.5.3)

K
△
=





∑l
j=1 k1 j −k12 −k13 · · · −k1l

−k12

∑l
j=1 k2 j −k23 · · · −k2l

...
...

. . . · · ·
...

−k1l −k2l −k3l · · ·
∑l

j=1 kl j





. (7.5.4)

As a special case, assume that the motion of y1, . . . , yl is confined to a single line in the direction

n̂, where the direction of n̂ is fixed with respect to the inertial frame FA, and that the external forces
⇀

f 1, . . . ,
⇀

f l are parallel with n̂. Then, for all i = 1, . . . , l, it follows that

⇀
r yi/w

△
= qin̂, (7.5.5)

⇀

f i
△
= fin̂. (7.5.6)

Then, (7.5.2) can be written as

Mq̈ +Cq̇ + Kq = f , (7.5.7)
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where

q
△
=





q1

...

ql





, f
△
=





f1
...

fl





. (7.5.8)

Next, defining

Γ
△
=





1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 −1

m1 m2 m3 · · · mn





, (7.5.9)

(7.5.2) can be rewritten as

M̃Γ





A••
⇀
r y1/w

...
A••
⇀
r yl/w





+ C̃Γ





A•
⇀
r y1/w

...
A•
⇀
r yl/w





+ K̃Γ





⇀
r y1/w

...
⇀
r yl/w





= Γ−T





⇀

f 1

...
⇀

f l





, (7.5.10)

where

M̃
△
= Γ−TMΓ−1, C̃

△
= Γ−TCΓ−1, K̃

△
= Γ−TKΓ−1. (7.5.11)

Note that

Γ





⇀
r y1/w

...
⇀
r yl/w





=





⇀
r y1/y2

...
⇀
r yl−1/yl

∑l
i=1 mi

⇀
r yi/w





. (7.5.12)

Furthermore,

detΓ = mB

△
=

l∑

i=1

mi, (7.5.13)

Γ−T =





1 0 0 · · · 0

1 1 0 · · · 0
...

. . .
. . .

. . .
...

1 1 1 · · · 0

1
mB

1
mB

1
mB

· · · 1
mB





− 1

mB





m1 m1 · · · m1

m1 + m2 m1 + m2 · · · m1 + m2

...
...

...
...

mB − ml mB − ml · · · mB − ml

0 0 · · · 0





, (7.5.14)
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and thus

Γ−T





⇀

f 1

...
⇀

f l





=





⇀

f 1
⇀

f 1 +
⇀

f 2

...
⇀

f B −
⇀

f l

1
mB

⇀

f B





−





m1

m1 + m2

...

mB − ml

0





1

mB

⇀

f B. (7.5.15)

Therefore, (7.5.10) can be written as

M̃





A••
⇀
r y1/y2

...
A••
⇀
r yl−1/yl

∑l
i=1 mi

A••
⇀
r yi/w





+ C̃





A•
⇀
r y1/y2

...
A•
⇀
r yl−1/yl

∑l
i=1 mi

A•
⇀
r yi/w





+ K̃





⇀
r y1/y2

...
⇀
r yl−1/yl

∑l
i=1 mi

⇀
r yi/w





=





⇀

f 1 −
m1

mB

⇀

f B
⇀

f 1 +
⇀

f 2 −
m1+m2

mB

⇀

f B
...

−
⇀

f l +
ml

mB

⇀

f B

1
mB

⇀

f B





.

(7.5.16)

In particular, if l = 2, then

1

m1 + m2





m1m2 0

0 1









A••
⇀
r y1/y2

∑2
i=1 mi

A••
⇀
r yi/w





+
1

(m1 + m2)2





−2m1m2c12 (m2 − m1)c12

(m2 − m1)c12 2c12









A•
⇀
r y1/y2

∑2
i=1 mi

A•
⇀
r yi/w





+
1

(m1 + m2)2





−2m1m2k12 (m2 − m1)k12

(m2 − m1)k12 2k12









⇀
r y1/y2

∑2
i=1 mi

⇀
r yi/w




=





m2
m1+m2

⇀

f 1 −
m1

m1+m2

⇀

f 2

1
m1+m2

(
⇀

f 1 +
⇀

f 2)





. (7.5.17)

Furthermore, if l = 3, then

1

mB





m1(m2 + m3) m1m3 0

m1m3 m3(m1 + m2) 0

0 0 1









A••
⇀
r y1/y2

A••
⇀
r y2/y3

∑3
i=1 mi

A••
⇀
r yi/w





+
1

m2
B





c̃11 c̃12 c̃13

c̃12 c̃22 c̃23

c̃13 c̃23 c̃33









A•
⇀
r y1/y2

A•
⇀
r y2/y3

∑3
i=1 mi

A•
⇀
r yi/w





+
1

m2
B





k̃11 k̃12 k̃13

k̃12 k̃22 k̃23

k̃13 k̃23 k̃33









⇀
r y1/y2/A

⇀
r y2/y3

∑3
i=1 mi

⇀
r yi/w





=





⇀

f 1 −
m1

mB

⇀

f B

−
⇀

f 3 +
m3

mB

⇀

f B

1
mB

⇀

f B





. (7.5.18)

where

c̃11
△
=−2m1(m2 + m3)(c12 + c13) + 2m2

1c23,

c̃12
△
= c23m2

B
− m3mB(c12 + 2c13 + 3c23) − m2mB(c13 + c23) + 2m3(m2 + m3)(c12 + c13 + c23),

c̃13
△
=−m1(c12 + c13 + m2(c12 + c13) + 2c23) + m3(c12 + c13),

c̃22
△
= 2m3(m2 − m1)(c13 + c23) + 2m2

3c12,

c̃23
△
=−m1(c13 + c23) + m3(2c12 + c13 + c23) − m2(c13 + c23),

c̃33
△
= 2(c12 + c13 + c23),
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k̃11
△
=−2m1(m2 + m3)(k12 + k13) + 2m2

1k23,

k̃12
△
= k23m2

B
− m3mB(k12 + 2k13 + 3k23) − m2mB(k13 + k23) + 2m3(m2 + m3)(k12 + k13 + k23),

k̃13
△
=−m1(k12 + k13 + m2(k12 + k13) + 2k23) + m3(k12 + k13),

k̃22
△
= 2m3(m2 − m1)(k13 + k23) + 2m2

3k12,

k̃23
△
=−m1(k13 + k23) + m3(2k12 + k13 + k23) − m2(k13 + k23),

k̃33
△
= 2(k12 + k13 + k23).

Again, assume, as a special case, that the motion of y1, . . . , yl is confined to a single line in

the direction n̂, where the direction of n̂ is fixed with respect to the inertial frame FA, and that the

external forces
⇀

f 1, . . . ,
⇀

f l are parallel with n̂. Then, for all i = 1, . . . , l − 1, it follows that

⇀
r yi/yi+1

△
= (qi − qi+1)n̂. (7.5.19)

Now, defining

q̃
△
= Γq =





q1 − q2

...

ql−1 − ql

∑l
i=1 miqi





(7.5.20)

and, with fB
△
=

∑l
i=1 fi,

f̃
△
=





f1 − m1

mB

fB

f1 + f2 − m1+m2

mB

fB
...

− fl +
ml

mB

fB
1

mB

fB





, (7.5.21)

it follows from (7.5.16) that

M̃ ¨̃q + C̃ ˙̃q + K̃q̃ = f̃ . (7.5.22)

Finally, assume that
⇀

f B = 0, and thus the center of mass c of B is unforced. Then, choosing

w = c, it follows that
∑l

i=1 mi

⇀
r yi/w = 0. Hence, (7.5.16) becomes

M̃





A••
⇀
r y1/y2

...
A••
⇀
r yl−1/yl

0





+ C̃





A•
⇀
r y1/y2

...
A•
⇀
r yl−1/yl

0





+ K̃





⇀
r y1/y2

...
⇀
r yl−1/yl

0





=





⇀

f 1
⇀

f 1 +
⇀

f 2

...

−
⇀

f l

0





. (7.5.23)



NEWTON-EULER DYNAMICS 253

Now, truncating the last row and last column of M̃, C̃, and K̃, yields

M̃[l,l]





A••
⇀
r y1/y2

...
A••
⇀
r yl−1/yl





+ C̃[l,l]





A•
⇀
r y1/y2

...
A•
⇀
r yl−1/yl





+ K̃[l,l]





⇀
r y1/y2

...
⇀
r yl−1/yl





=





⇀

f 1
⇀

f 1 +
⇀

f 2

...

−
⇀

f l





, (7.5.24)

where M̃[l,l], C̃[l,l], and K̃[l,l] denote M̃, C̃, and K̃, respectively, after deleting the last row and last

column of each matrix.

7.6 Angular Momentum of Particles and Bodies

Let y be a particle with mass m, let w be a point, and let FA be a frame. Then, the angular

momentum of y relative to w with respect to FA is defined by

⇀

Hy/w/A
△
=

⇀
r y/w × m

⇀
v y/w/A, (7.6.1)

where

⇀
v y/w/A =

A•
⇀
r y/w . (7.6.2)

Now, let B be a body with particles y1, . . . , yl whose masses are m1, . . . ,ml, respectively, let w be a

point, and let FA be a frame. Then, the angular momentum of B relative to w with respect to FA is

defined by

⇀

HB/w/A
△
=

l∑

i=1

⇀

Hyi/w/A, (7.6.3)

where

⇀

Hyi/w/A =
⇀
r yi/w × mi

⇀
v yi/w/A. (7.6.4)

The following result relates the inertial change in the angular momentum of a body to the mo-

ment on the body. For this result, an inertia point is either a particle or a point in a body where a

force is applied. For example, an inertia point may be a point on a massless link connecting two

particles. If no particle is located at the inertia point, then the mass of the inertia point is defined to

be zero.

Fact 7.6.1. Let B be a body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the external

force applied to yi, let w be an unforced particle, and let FA be an inertial frame. Then,

A•
⇀

HB/w/A =
⇀

MB/w, (7.6.5)

where the moment on B relative to w is given by

⇀

MB/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
. (7.6.6)

Proof. For i = 1, . . . , l, let mi be the mass of yi, and, for i, j = 1, . . . , l, let
⇀

f i j be the internal force
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on yi due to y j. Since w is an unforced particle, it follows from Fact 7.3.1 that, for all i = 1, . . . , l,

mi

⇀
ayi/w/A =

⇀

f yi
+

l∑

j=1

⇀

f i j. (7.6.7)

Using (7.6.7) and Fact 4.1.5, it follows that the derivative of the angular momentum with respect to

FA is given by

A•
⇀

Hyi/w/A =

A•
⇀
r yi/w × mi

⇀
v yi/w/A +

⇀
r yi/w × mi

A•
⇀
v yi/w/A

=
⇀
v yi/w/A × mi

⇀
v yi/w/A +

⇀
r yi/w × mi

⇀
ayi/w/A

=
⇀
r yi/w × mi

⇀
ayi/w/A

=
⇀
r yi/w ×





⇀

f yi
+

l∑

j=1

⇀

f i j




.

Summing over the particles y1, . . . , yl yields

A•
⇀

HB/w/A =

l∑

i=1

A•
⇀

Hyi/w/A=

l∑

i=1

⇀
r yi/w ×





⇀

f yi
+

l∑

j=1

⇀

f i j





=

l∑

i=1

⇀
r yi/w ×

⇀

f yi
+

l∑

i=1

⇀
r yi/w ×

l∑

j=1

⇀

f i j

=

l∑

i=1

⇀
r yi/w ×

⇀

f yi
=

⇀

MB/w.

Note that, since B is Newtonian, Fact, 6.11.1 implies that the internal forces are balanced and

the torque
∑l

i=1

⇀
r yi/w ×

∑l
j=1

⇀

f i j on B due to all of the internal forces is zero. Under the stronger

assumption that B is Newtonian, this term is zero due to the fact that, for all distinct i and j,
⇀

f i j =

−
⇀

f ji and
⇀

f i j and
⇀
r yi/y j

are parallel. �

Note that the change in angular momentum given by Fact 7.6.1 is not affected by internal forces

since the body is assumed to be Newtonian.

Fact 7.6.1 relates the inertial change of the angular momentum of a body to the moment on the

body. This result is a direct consequence of Newton’s second law, and thus the angular momentum

of the body and the moment on the body are both defined relative to the unforced particle w, while

the angular momentum and its derivative are defined with respect to an inertial frame. The moment

on the body is due to all of the external forces applied to inertia points in the body. Equation

(7.6.5) is applicable to a body that rotates around a pivot point w relative to which all moments are

determined and whose motion coincides with the motion of an unforced particle.

Since the moment
⇀

MB/w does not depend on the inertial frame FA, it follows that the change in

angular momentum

A•
⇀

HB/w/A is independent of the choice of the inertial frame.

Fact 7.6.2. Let B be a body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the external
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force applied to yi, let w be an unforced particle, and let FA and FB be inertial frames. Then,

A•
⇀

HB/w/A =

B•
⇀

HB/w/A . (7.6.8)

If the external forces
⇀

f y1
, . . . ,

⇀

f yl
are balanced, then the moment

⇀

MB/w is independent of the

point w. Consequently, the change in angular momentum

A•
⇀

HB/w/A is independent of the choice of

the unforced particle w.

Fact 7.6.3. Let B be a body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the external

force applied to yi, assume that
⇀

f y1
, . . . ,

⇀

f yl
are balanced, let w and w′ be unforced particles, and let

FA be an inertial frame. Then,

A•
⇀

HB/w/A =

A•
⇀

HB/w′/A . (7.6.9)

The following result considers the change in angular momentum of a body relative to an arbitrary

point z.

Fact 7.6.4. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be the

center of mass of B, let w and z be points, and let FA be a frame. Then,

⇀

HB/w/A =
⇀

HB/z/A +
⇀
r c/z × mB

⇀
v z/w/A +

⇀
r z/w × mB

⇀
v c/w/A. (7.6.10)

Now, for i = 1, . . . , l, let
⇀

f yi
be the external force applied to yi, assume that w is an unforced particle,

and assume that FA is an inertial frame. Then,

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A =

⇀

MB/z, (7.6.11)

where the moment on B relative to z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =

l∑

i=1

⇀
r yi/z ×

⇀

f yi
. (7.6.12)

Proof. For i = 1, . . . , l, let mi be the mass of yi. To derive (7.6.10), note that

⇀

HB/w/A =

l∑

i=1

⇀

Hyi/w/A

=

l∑

i=1

⇀
r yi/w × mi

⇀
v yi/w/A =

l∑

i=1

(
⇀
r yi/z +

⇀
r z/w) × mi(

⇀
v yi/z/A +

⇀
v z/w/A)

=

l∑

i=1

⇀

Hyi/z/A +
⇀
r c/z × mB

⇀
v z/w/A +

⇀
r z/w × mB

⇀
v c/w/A

=
⇀

HB/z/A +
⇀
r c/z × mB

⇀
v z/w/A +

⇀
r z/w × mB

⇀
v c/w/A.
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Now, assume that FA is an inertial frame and w is an unforced particle. Then,

⇀

MB/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
=

l∑

i=1

(
⇀
r yi/z +

⇀
r z/w) ×

⇀

f yi

=





l∑

i=1

⇀
r yi/z ×

⇀

f yi




+
⇀
r z/w ×

l∑

i=1

⇀

f yi
=

⇀

MB/z +
⇀
r z/w ×

⇀

f B,

where the total force on the body is

⇀

f B
△
=

l∑

i=1

⇀

f yi
.

Using (7.6.5), differentiating (7.6.10), and using (7.4.7) we thus have

⇀

MB/z =
⇀

MB/w −
⇀
r z/w ×

⇀

f B =

A•
⇀

HB/w/A −
⇀
r z/w ×

⇀

f B

=

A•
⇀

HB/z/A +
⇀
v c/z/A × mB

⇀
v z/w/A +

⇀
r c/z × mB

⇀
a z/w/A

+
⇀
v z/w/A × mB

⇀
v c/w/A +

⇀
r z/w × mB

⇀
ac/w/A −

⇀
r z/w ×

⇀

f B

=

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A + mB(

⇀
v c/z/A ×

⇀
v z/w/A +

⇀
v z/w/A ×

⇀
v c/w/A)

=

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A + mB(

⇀
v c/z/A ×

⇀
v z/w/A −

⇀
v c/w/A ×

⇀
v z/w/A)

=

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A + mB(

⇀
v c/z/A ×

⇀
v z/w/A +

⇀
v w/c/A ×

⇀
v z/w/A)

=

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A + mB(

⇀
v c/z/A +

⇀
v w/c/A) × ⇀

v z/w/A

=

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A + mB(

⇀
v w/z/A ×

⇀
v z/w/A)

=

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A. �

If the point z in Fact 7.6.4 is colocated with an unforced particle w′, then it follows from New-

ton’s first law that
⇀
a z/w/A =

⇀
aw′/w/A = 0, and thus (7.6.11) specializes to (7.6.5). This situation

can occur when z is the pivot point of a rotating body, where the pivot point is colocated with an

unforced particle.

By choosing z in Fact 7.6.4 to be the center of mass, we obtain the following result.

Fact 7.6.5. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be the

center of mass of B, let w be a point, and let FA be a frame. Then,

⇀

HB/w/A =
⇀

HB/c/A +
⇀
r c/w × mB

⇀
v c/w/A. (7.6.13)

Now, assume that FA is an inertial frame, and, for i = 1, . . . , l, let
⇀

f yi
be the external force applied
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to yi. Then,

A•
⇀

HB/c/A =
⇀

MB/c, (7.6.14)

where the moment on B relative to c is given by

⇀

MB/c =

l∑

i=1

⇀

Myi/c =

l∑

i=1

⇀
r yi/c ×

⇀

f yi
. (7.6.15)

Note that the form of (7.6.14) is identical to the form of (7.6.5) with w replaced by c whether or

not c is an unforced particle. In fact, (7.6.14) does not involve an unforced particle, which shows

that the center of mass plays a special role with regard to the change in angular momentum.

According to Newton’s third law, reaction forces and moments arise from the interaction of

rigid bodies. Note that the forces at the point z do not contribute to the moment
⇀

MB/z. Therefore,

if z is chosen to be a point at which reaction forces occur (such as a pin joint), then
⇀

MB/z can be

determined without knowledge of the reaction forces at z.

The following result expresses the moment on a body relative to an arbitrary point in terms of

the moment on the body relative to the center of mass of the body.

Fact 7.6.6. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be the

center of mass of B, for i = 1, . . . , l, let
⇀

f yi
be the external force applied to yi, let w be an unforced

particle, let z be a point, and let FA be an inertial frame. Then,

⇀

MB/z =
⇀

MB/c +
⇀
r c/z × mB

⇀
ac/w/A. (7.6.16)

Proof. Using Fact 7.4.2 it follows that

⇀

MB/z =

l∑

i=1

⇀
r yi/z ×

⇀

f yi
=

l∑

i=1

(
⇀
r yi/c +

⇀
r c/z) ×

⇀

f yi

=





l∑

i=1

⇀
r yi/c ×

⇀

f yi




+
⇀
r c/z ×

l∑

i=1

⇀

f yi

=
⇀

MB/c +
⇀
r c/z ×

⇀

f B =
⇀

MB/c +
⇀
r c/z × mB

⇀
ac/w/A. �

Applying Fact 7.6.6 to Fact 7.6.5 yields the following result.

Fact 7.6.7. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be the

center of mass of B, for i = 1, . . . , l, let
⇀

f yi
be the external force applied to yi, let w be an unforced

particle, let z be a point, and let FA be an inertial frame. Then,

A•
⇀

HB/c/A +
⇀
r c/z × mB

⇀
ac/w/A =

⇀

MB/z, (7.6.17)

where the moment on B relative to z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =

l∑

i=1

⇀
r yi/z ×

⇀

f yi
. (7.6.18)
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Setting z = w in Fact (7.6.7) yields the following result.

Fact 7.6.8. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be the

center of mass of B, for i = 1, . . . , l, let
⇀

f yi
be the external force applied to yi, let w be an unforced

particle, and let FA be an inertial frame. Then,

A•
⇀

HB/c/A +
⇀
r c/w × mB

⇀
ac/w/A =

⇀

MB/w, (7.6.19)

where the moment on B relative to w is given by

⇀

MB/w =

l∑

i=1

⇀

Myi/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
. (7.6.20)

Let B be a body, and let w be either an unforced particle or the center of mass of B. Then, it

follows from Fact 7.6.1 and Fact 7.6.5 that

A•
⇀

HB/w/A =
⇀

MB/w, (7.6.21)

Now, suppose that
⇀

MB/w

∣
∣
∣
∣
∣
A

has a component that is identically zero. Then, it follows from (7.6.21)

that the corresponding component of

A•
⇀

HB/w/A

∣
∣
∣
∣
∣
∣
∣
∣
A

is identically zero. In this case, conservation of

angular momentum holds along one of the axes of FA, and the corresponding component of the

angular momentum is a constant of the motion relative to FA. If
⇀

MB/w = 0, then angular momentum

is conserved along all three axes of FA, and all three components of the momentum are constants of

the motion relative to FA.

7.7 Effect of Gravity on Translational Momentum and Angular Momentum

If the bodies in facts 7.4.2, 7.6.1, 7.6.4, 7.6.5, 7.6.7, and 7.6.8 are subject to gravity, then the

external force
⇀

f yi
on yi includes the force mi

⇀
g due to gravity, where

⇀
g is the acceleration due to

gravity. For the case where the body is subject to gravity, we now consider the effect of gravity

separately from the remaining external forces. Throughout this chapter we assume that gravity is

uniform over the body.

The following result restates Fact 7.4.2 with gravity separated from the remaining external

forces.

Fact 7.7.1. Let B be a body with inertia points y1, . . . , yl let mB be the mass of B, let c be

the center of mass of B, assume that B is subject to gravity, for i = 1, . . . , l, let
⇀

f yi,ng be the

nongravitational external force applied to the particle mi, let FA be an inertial frame, let c be the

center of mass of B, and let w be an unforced particle. Then,

mB

⇀
ac/w/A =

⇀

f B, (7.7.1)
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where the total force
⇀

f B applied to B is given by

⇀

f B
△
=





l∑

i=1

⇀

f yi,ng




+ mB

⇀
g . (7.7.2)

Note that it follows from (7.7.1) and (7.7.2) that, if the only external force present is gravity,

then
⇀
ac/w/A =

⇀
g .

The following result restates Fact 7.6.1 with gravity separated from the remaining external

forces. This result is based on Fact 6.6.2.

Fact 7.7.2. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be

the center of mass of B, assume that B is subject to gravity, for i = 1, . . . , l, let
⇀

f yi,ng be the

nongravitational external force applied to yi, let w be an unforced particle, and let FA be an inertial

frame. Then,

A•
⇀

HB/w/A =
⇀

MB/w, (7.7.3)

where the moment on B relative to w is given by

⇀

MB/w =

l∑

i=1

⇀

Myi/w =





l∑

i=1

⇀
r yi/w ×

⇀

f yi,ng




+
⇀
r c/w × mB

⇀
g . (7.7.4)

The following result follows from Fact 7.6.4 with gravity separated from the remaining external

forces.

Fact 7.7.3. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be

the center of mass of B, assume that B is subject to gravity, for i = 1, . . . , l, let
⇀

f yi,ng be the

nongravitational external force applied to yi, let w be an unforced particle, let z be a point, and let

FA be an inertial frame. Then,

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A =

⇀

MB/z, (7.7.5)

where the moment on B relative to z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =





l∑

i=1

⇀
r yi/z ×

⇀

f yi,ng




+
⇀
r c/z × mB

⇀
g . (7.7.6)

The following result follows from Fact 7.6.5 with gravity separated from the remaining external

forces. In this case, gravity has no effect on the change in angular momentum.

Fact 7.7.4. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be

the center of mass of B, assume that B is subject to gravity, for i = 1, . . . , l, let
⇀

f yi,ng be the

nongravitational external force applied to yi, and let FA be an inertial frame. Then,

A•
⇀

HB/c/A =
⇀

MB/c, (7.7.7)



260 CHAPTER 7

where the moment on B relative to c is given by

⇀

MB/c =

l∑

i=1

⇀

Myi/c =

l∑

i=1

⇀
r yi/c ×

⇀

f yi,ng. (7.7.8)

Proof. For i = 1, . . . , l, let mi be the mass of yi. Note that

⇀

MB/c =

l∑

i=1

⇀

Myi/c =

l∑

i=1

(
⇀
r yi/c ×

⇀

f yi
+
⇀
r yi/c × mi

⇀
g)

=

l∑

i=1

⇀
r yi/c ×

⇀

f yi
+





l∑

i=1

mi

⇀
r yi/c




× ⇀

g =

l∑

i=1

⇀
r yi/c ×

⇀

f yi
. �

The following result restates Fact 7.6.7 with gravity separated from the remaining external

forces.

Fact 7.7.5. Let B be a body with inertia points y1, . . . , yl, let mB be the mass of B, let c be the

center of mass of B, for i = 1, . . . , l, let
⇀

f yi,ng be the nongravitational external force applied to yi, let

w be an unforced particle, let z be a point, and let FA be an inertial frame. Then,

A•
⇀

HB/c/A +
⇀
r c/z × mB

⇀
ac/w/A =

⇀

MB/z, (7.7.9)

where the moment on B relative to z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =





l∑

i=1

⇀
r yi/z ×

⇀

f yi,ng




+
⇀
r c/z × mB

⇀
g . (7.7.10)

The following result restates Fact 7.6.8 with gravity separated from the remaining external

forces.

Fact 7.7.6. Let B be a body with inertia points y1, . . . , yl, let B be the mass of B, let c be the

center of mass of B, for i = 1, . . . , l, let
⇀

f yi,ng be the nongravitational external force applied to yi, let

w be an unforced particle, and let FA be an inertial frame. Then,

A•
⇀

HB/c/A +
⇀
r c/w × mB

⇀
ac/w/A =

⇀

MB/w, (7.7.11)

where the moment on B relative to w is given by

⇀

MB/w =

l∑

i=1

⇀

Myi/w =





l∑

i=1

⇀
r yi/w ×

⇀

f yi,ng




+
⇀
r c/w × mB

⇀
g . (7.7.12)

7.8 Euler’s Equation for the Rotational Dynamics of a Rigid Body

The following result expresses the angular momentum of a body in terms of the physical inertia

matrix defined by Definition 6.2.1.

Fact 7.8.1. Let B be a body with particles y1, . . . , yl whose masses are m1, . . . ,ml, respectively,



NEWTON-EULER DYNAMICS 261

let FA and FB be frames, and let z be a point. Then,

⇀

HB/z/A =
→
JB/z

⇀
ωB/A +

⇀

HB/z/B, (7.8.1)

where

→
JB/z =

l∑

i=1

mi

⇀
r
×′

yi/z

⇀
r
×
yi/z
. (7.8.2)

Proof. Using (7.6.4) and the transport theorem it follows that

⇀

Hyi/z/A =
⇀
r yi/z × mi

⇀
v yi/z/A

=
⇀
r yi/z × mi

A•
⇀
r yi/z

=
⇀
r yi/z × mi





B•
⇀
r yi/z +

⇀
ωB/A ×

⇀
r yi/z





=
⇀
r yi/z × mi

(
⇀
v yi/z/B +

⇀
ωB/A ×

⇀
r yi/z

)

.

Summing over the particles in the body and using (2.9.7) yields

⇀

HB/z/A =

l∑

i=1

⇀
r yi/z × mi

(
⇀
ωB/A ×

⇀
r yi/z

)

+

l∑

i=1

⇀
r yi/z × mi

⇀
v yi/z/B

=

l∑

i=1

⇀
r yi/z × mi

(
⇀
ωB/A ×

⇀
r yi/z

)

+
⇀

HB/z/B

= −
l∑

i=1

mi

⇀
r yi/z ×

(
⇀
r yi/z ×

⇀
ωB/A

)

+
⇀

HB/z/B

=

l∑

i=1

mi

⇀
r
×′

yi/z

⇀
r
×
yi/z

⇀
ωB/A +

⇀

HB/z/B

=
→
JB/z

⇀
ωB/A +

⇀

HB/z/B. �

The following result specializes Fact 7.8.1 to the case where B is a rigid body and the point z is

fixed in B.

Fact 7.8.2. Let B be a rigid body with particles y1, . . . , yl whose masses are m1, . . . ,ml, respec-

tively, let FA be a frame, let FB be a body-fixed frame, and let z be a point fixed in B. Then,

⇀

HB/z/B = 0, (7.8.3)

and thus

⇀

HB/z/A =
→
JB/z

⇀
ωB/A. (7.8.4)

Furthermore,

B•
→
J B/z = 0, (7.8.5)
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and thus

B•
⇀

HB/z/A =
→
JB/z

B•
⇀
ωB/A . (7.8.6)

Proof. Since B is a rigid body and z is fixed in B, it follows that, for all i = 1, . . . , l,

B•
⇀
r yi/z = 0.

Hence, (7.8.3) is satisfied, and thus (7.8.1) implies (7.8.4). Furthermore, differentiating (??) yields

(7.8.5). Finally, (7.8.4), (7.8.5), and Fact 4.1.4 yield (7.8.6). �

The following result follows from Fact 7.6.4 and Fact 7.7.3 in the case where B is a rigid body.

This result is Euler’s equation.

Fact 7.8.3. Let B be a rigid body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the

external force applied to yi, let mB be the mass of B, let FB be a body-fixed frame, let FA be an

inertial frame, let w be an unforced particle, let c be the center of mass of B, and let z be a point

fixed in B. Then,

→
JB/z

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/z

⇀
ωB/A +

⇀
r c/z × mB

⇀
a z/w/A =

⇀

MB/z, (7.8.7)

where the moment on B relative to z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =

l∑

i=1

⇀
r yi/z ×

⇀

f yi
. (7.8.8)

If, in addition, B is subject to gravity and, for i = 1, . . . , l,
⇀

f yi,ng is the nongravitational external

force applied to yi, then
⇀

MB/z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =

l∑

i=1

⇀
r yi/z ×

⇀

f yi
+
⇀
r c/z × mB

⇀
g . (7.8.9)

Proof. Using (7.6.11), (7.8.4), and (7.8.6), it follows that

⇀

MB/z =

A•
⇀

HB/z/A +
⇀
r c/z × mB

⇀
a z/w/A

=

A•
︷     ︸︸     ︷

→
JB/z

⇀
ωB/A +

⇀
r c/z × mB

⇀
a z/w/A

=

B•
︷     ︸︸     ︷

→
JB/z

⇀
ωB/A +

⇀
ωB/A ×

→
JB/z

⇀
ωB/A +

⇀
r c/z × mB

⇀
a z/w/A

=
→
JB/z

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/z

⇀
ωB/A +

⇀
r c/z × mB

⇀
a z/w/A. �

The following result specializes Fact 7.8.3 to the case where the point z, which is fixed in B, is

colocated with an unforced particle. In this case,
⇀
a z/w/A = 0.

Fact 7.8.4. Let B be a rigid body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the

external force applied to yi, let mB be the mass of B, let FB be a body-fixed frame, let FA be an
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inertial frame, and let w be an unforced particle that is fixed in B. Then,

→
JB/w

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/w

⇀
ωB/A =

⇀

MB/w, (7.8.10)

where the moment on B relative to w is given by

⇀

MB/w =

l∑

i=1

⇀

Myi/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
. (7.8.11)

If, in addition, B is subject to gravity and, for i = 1, . . . , l,
⇀

f yi,ng is the nongravitational external

force applied to yi, then
⇀

MB/w is given by

⇀

MB/w =

l∑

i=1

⇀

Myi/w =





l∑

i=1

⇀
r yi/w ×

⇀

f yi,ng




+
⇀
r c/w × mB

⇀
g . (7.8.12)

Alternatively, the following result specializes Fact 7.8.3 to the case where the point z is the

center of mass. In this case,
⇀
r c/z = 0, and gravity, if present, does not appear in the equations of

motion.

Fact 7.8.5. Let B be a rigid body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the

external force applied to yi, let mB be the mass of B, let FB be a body-fixed frame, let FA be an

inertial frame, and let c be the center of mass of B. Then,

→
JB/c

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/c

⇀
ωB/A =

⇀

MB/c, (7.8.13)

where the moment on B relative to c is given by

⇀

MB/c =

l∑

i=1

⇀

Myi/c =

l∑

i=1

⇀
r yi/c ×

⇀

f yi
. (7.8.14)

If, in addition, B is subject to gravity and, for i = 1, . . . , l,
⇀

f yi,ng is the nongravitational external

force applied to yi, then
⇀

MB/c is given by (7.8.14).

Note that (7.8.13) has the same form as (7.10.2) except that the unforced particle w in the latter

equation is replaced by the center of mass c. This may seem surprising since there is no assumption

in Fact 7.8.5 that the center of mass is unforced. However, notice that (7.10.2) concerns only the

rotational dynamics of the rigid body. If an additional force −
⇀

f B is applied to B, then the total

force is balanced and the resulting torque
⇀

MB is equal to the original moment
⇀

MB/w. Consequently,

the rotational dynamics are unchanged. In addition, since the total force is balanced, it follows from

Fact 7.4.2 that the center of mass is unforced. Consequently, from the point of view of the rotational

dynamics, the center of mass plays the role of an unforced particle.

Next, the following result specializes Fact 7.6.7 and Fact 7.7.5 to the case where B is a rigid

body.

Fact 7.8.6. Let B be a rigid body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the

external force applied to yi, let mB be the mass of B, let FB be a body-fixed frame, let FA be an

inertial frame, let c be the center of mass of B, let w be an unforced particle, and let z be a point.
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Then,

→
JB/c

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/c

⇀
ωB/A +

⇀
r c/z × mB

⇀
ac/w/A =

⇀

MB/z, (7.8.15)

where the moment on B relative to z is given by

⇀

MB/z =

l∑

i=1

⇀

Myi/z =

l∑

i=1

⇀
r yi/z ×

⇀

f yi
. (7.8.16)

If, in addition, B is subject to gravity and, for i = 1, . . . , l,
⇀

f yi,ng is the nongravitational external

force applied to yi, then

⇀

MB/z =

l∑

i=1

⇀

Myi/z =





l∑

i=1

⇀
r yi/z ×

⇀

f yi,ng




+
⇀
r c/z × mB

⇀
g . (7.8.17)

Finally, the following result specializes Fact 7.6.8 and Fact 7.7.6 to the case where B is a rigid

body.

Fact 7.8.7. Let B be a rigid body with inertia points y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
be the

external force applied to yi, let mB be the mass of B, let FB be a body-fixed frame, let FA be an

inertial frame, let c be the center of mass of B, and let w be an unforced particle. Then,

→
JB/c

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/c

⇀
ωB/A +

⇀
r c/w × mB

⇀
ac/w/A =

⇀

MB/w, (7.8.18)

where the moment on B relative to w is given by

⇀

MB/w =

l∑

i=1

⇀

Myi/w =

l∑

i=1

⇀
r yi/w ×

⇀

f yi
. (7.8.19)

If, in addition, B is subject to gravity and, for i = 1, . . . , l,
⇀

f yi,ng is the nongravitational external

force applied to yi, then

⇀

MB/w =

l∑

i=1

⇀

Myi/w =





l∑

i=1

⇀
r yi/w ×

⇀

f yi,ng




+
⇀
r c/w × mB

⇀
g . (7.8.20)

Example 7.8.8. Consider the rigid body B shown in Figure 7.8.1 consisting of particles y1 and

y2 with masses m1 and m2, respectively, connected by a rigid massless link L of length ℓ. The body-

fixed frame FB is aligned with B such that
⇀
r y2/y1

= ℓı̂B. An external force
⇀

f is applied to the link

at the point z, whose distance from y1 is ℓ0 > 0. Hence,
⇀
r z/y1

= ℓ0 ı̂B. B translates and rotates such

that it remains in the ı̂A- ̂A plane of the inertial frame FA. The point w is colocated with an unforced

particle. The location of the center of mass c of B is given by
⇀
r c/y1

=
m2

mB

ℓı̂B, where mB = m1 +m2.

Note that
⇀
r y2/c =

m1

mB

ℓı̂B. The rotation angle θ is defined such that FA

θ−→
3

FB, so that
⇀
ωB/A = θ̇k̂A.

Using (7.4.7) given by

mB

⇀
ac/w/A =

⇀

f (7.8.21)



NEWTON-EULER DYNAMICS 265

and defining the notation

⇀
r c/w/A

∣
∣
∣
∣
A
=





xc

yc

zc




,

⇀

f

∣
∣
∣
∣
∣
B

=





f1
f2
0




, (7.8.22)

it follows that

mB





ẍc

ÿc

z̈c




= OA/B





f1
f2
0




, (7.8.23)

where

OA/B = O3(−θ) =





cos θ − sin θ 0

sin θ cos θ 0

0 0 1




. (7.8.24)

Next, the physical inertia matrix of B relative to c is given by

→
JB/c =



m1

(

m2

mB

ℓ

)2

+ m2

(

m1

mB

ℓ

)2


 ( ̂B ̂
′
B + k̂Bk̂′B) =

(

m1m2

mB

ℓ2

)

( ̂B ̂
′
B + k̂Bk̂′B), (7.8.25)

and the moment on B relative to c is given by

⇀

MB/c =
⇀
r z/c ×

⇀

f = (
⇀
r z/y1

+
⇀
r y1/c) ×

⇀

f =

(

ℓ0 −
m2

mB

ℓ

)

f2k̂B. (7.8.26)

It thus follows from Euler’s equation (7.8.13) that

m1m2ℓ
2θ̈ = (mBℓ0 − m2ℓ) f2. (7.8.27)

Equations (7.8.23) and (7.8.27) provide a complete description of the dynamics of B.

Figure 7.8.1: Rigid body consisting of two particles connected by a massless link for Example 7.8.8.

Next, we use free-body analysis to determine the reaction forces on the particles and the end-

points of L. Let
⇀

f R1 and
⇀

f R2 denote the reaction forces on y1 and y2, respectively, so that −
⇀

f R1 and

−
⇀

f R2 are the reaction forces applied to the endpoints x1 and x2, respectively, of L. As shown in Fig-

ure 7.8.2, B can be decomposed in three ways. Considering the decomposition in Figure 7.8.2(a), it

follows that

m1
⇀
ay1/w/A =

⇀

f R1, (7.8.28)

and thus

m1
⇀
ay1/c/A = −m1

⇀
ac/w/A +

⇀

f R1 = −
m1

mB

⇀

f +
⇀

f R1. (7.8.29)
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Therefore,

⇀

f R1 =
m1

mB

⇀

f + m1[αB/A ×
⇀
r y1/c + ωB/A × (ωB/A ×

⇀
r y1/c)]

=
m1

mB

⇀

f +
m1m2ℓθ̇

2

mB

ı̂B −
m1m2ℓθ̈

mB

̂B. (7.8.30)

Writing
⇀

f R1 = fR11 ı̂B + fR12 ̂B, it follows that

fR11 =
m1

mB

f1 +
m1m2ℓθ̇

2

mB

, (7.8.31)

fR12 =
m1

mB

f2 −
m1m2ℓθ̈

mB

. (7.8.32)

Using (7.8.27), it follows from (7.8.32) that

fR12 =
m1

mB

f2 −
mBℓ0 − m2ℓ

mBℓ
f2 =

ℓ − ℓ0

ℓ
f2. (7.8.33)

Next, considering the decomposition in Figure 7.8.2(b), it follows that

m2
⇀
ay2/w/A =

⇀

f R2, (7.8.34)

and thus

m2
⇀
ay2/c/A = −m2

⇀
ac/w/A +

⇀

f R2 = −
m2

mB

⇀

f +
⇀

f R2. (7.8.35)

Therefore,

⇀

f R2 =
m2

mB

⇀

f + m2[αB/A ×
⇀
r y2/c + ωB/A × (ωB/A ×

⇀
r y2/c)]

=
m2

mB

⇀

f − m1m2ℓθ̇
2

mB

ı̂B +
m1m2ℓθ̈

mB

̂B. (7.8.36)

Writing
⇀

f R2 = fR21 ı̂B + fR22 ̂B, it follows that

fR21 =
m2

mB

f1 −
m1m2ℓθ̇

2

mB

, (7.8.37)

fR22 =
m2

mB

f2 +
m1m2ℓθ̈

mB

. (7.8.38)

Using (7.8.27), it follows from (7.8.39) that

fR22 =
m2

mB

f2 +
mBℓ0 − m2ℓ

mBℓ
f2 =

ℓ0

ℓ
f2. (7.8.39)

Finally, considering the decomposition in Figure 7.8.2(c), it follows that the total force and

torque on the massless link must be zero. Therefore,

⇀

f =
⇀

f R1 +
⇀

f R2, (7.8.40)

which implies that

f1 = fR11 + fR21, (7.8.41)

f2 = fR12 + fR22. (7.8.42)
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Furthermore,

⇀

ML/y1
=

⇀
r z/y2

×
⇀

f +
⇀
r y2/y1

× (−
⇀

f R2) = (ℓ0 f2 − ℓ fR22)k̂B = 0, (7.8.43)

and thus it follows from (7.8.42) that

fR12 =
ℓ − ℓ0

ℓ
f2, fR22 =

ℓ0

ℓ
f2, (7.8.44)

which agrees with (7.8.32) and (7.8.39).

Next, we consider the case where the external force
⇀

f is applied to the particle y1. In this case,

ℓ0 = 0, and the equations of motion are given by (7.8.23) and by (7.8.27) with ℓ0 = 0, that is,

m1ℓθ̈ = − f2. (7.8.45)

To determine the reaction forces, the external force
⇀

f can be applied to either the endpoint x1 of L

or to y1. In the first approach, the free-body analysis and resulting reaction forces are identical to the

free-body analysis with ℓ0 > 0 except that now ℓ0 = 0. Hence, fR11 and fR21 are given by (7.8.31)

and (7.8.37), respectively, and it follows from (7.8.33) and (7.8.39) that fR12 and fR22 are given by

fR12 = f2, fR22 = 0. (7.8.46)

Therefore, the total force
⇀

f x1
at x1 is given by

⇀

f x1
=

⇀

f −
⇀

f R1

= f1 ı̂B + f2 ̂B − ( fR11 ı̂B + fR12 ̂B)

=
m2

mB

( f1 − m1ℓθ̇
2)ı̂B. (7.8.47)

In the second approach, free-body analysis is based on Figure 7.8.3. It follows from Figure

7.8.3(a) that the moment
⇀

M[L,y2]/y2
relative to y2 applied to the body [L, y2] consisting of L and y2

must be zero. Hence,

⇀

M[L,y2]/y2
=

⇀
r x1/y2

× (−
⇀

f R1) = −ℓı̂B × (− fR11 ı̂B − fR12 ̂B) = ℓ fR12k̂B = 0, (7.8.48)

and thus fR12 = 0. Next, it follows from Figure 7.8.3(b) that fR21 is given by (7.8.37) and that

fR22 = 0. Furthermore, it follows from Figure 7.8.3(c) that
⇀

f R1 +
⇀

f R2 = 0, and thus fR11 + fR21 = 0

and fR12 + fR22 = 0. Hence,

fR11 = − fR21 =
m2

mB

(m1ℓθ̇
2 − f1), (7.8.49)

and thus the total force
⇀

f x1
at x1 is given by

⇀

f x1
= − fR11 ı̂B =

m2

mB

( f1 − m1ℓθ̇
2)ı̂B, (7.8.50)

which agrees with (7.8.47).

Example 7.8.9. Consider two rigid bodies connected by a massless link. Centers of mass of

the bodies can be offset from the ends of the link. Motion is 3D. External force is applied to one of

the bodies. Determine equations of motion and reaction forces.
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Figure 7.8.2: Free-body analysis of the rigid body consisting of two particles connected by a massless link

for Example 7.8.8.
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Figure 7.8.3: Free-body analysis of the rigid body consisting of two particles connected by a massless link

for Example 7.8.8. Note that the external force
⇀

f is applied to the particle y1.



270 CHAPTER 7

Example 7.8.10. Consider two particles connected by massless links to a pin joint. Motion is

planar. External force is applied to one of the particles. Determine equations of motion and reaction

forces.

Example 7.8.11. Consider two rigid bodies connected by massless links to a pin joint. Motion

is 3D. External force is applied along one of the links or to one of the bodies. Determine equations

of motion and reaction forces.

7.9 Euler’s Equation and the Eigenaxis Angle Vector

Let FA and FB be frames, and recall from (4.9.11) that

⇀
ωB/A =

→
S

B•
⇀

ΘB/A, (7.9.1)

where

→
S
△
= α

⇀

Θ
×2

B/A + β
⇀

Θ
×

B/A +
→
I , (7.9.2)

α
△
=
θB/A − sin θB/A

θ3
B/A

, β
△
=

cos θB/A − 1

θ2
B/A

. (7.9.3)

Consequently,

B•
⇀
ωB/A =

→
S

B••
⇀

Θ B/A +

B•
→
S

B•
⇀

ΘB/A, (7.9.4)

where

B•
→
S = α̇

⇀

Θ
×2

B/A + α
(

B•
⇀

Θ

×

B/A

⇀

Θ
×

B/A +
⇀

Θ
×

B/A

B•
⇀

Θ

×

B/A

)

+ β̇
⇀

Θ
×

B/A + β

B•
⇀

Θ

×

B/A . (7.9.5)

Now, substituting (7.9.1) and (7.9.4) into (7.8.5) yields

→
JB/c

(→
S

B••
⇀

Θ B/A +

B•
→
S

B•
⇀

ΘB/A

)

+
(→
S

B•
⇀

ΘB/A

)

×
→
JB/c

(→
S

B•
⇀

ΘB/A

)

=
⇀

MB/c. (7.9.6)

Next, note that

→
S
⇀

ΘB/A =
⇀

ΘB/A, (7.9.7)

and, thus,

B•
→
S

⇀

ΘB/A +
→
S

B•
⇀

ΘB/A =

B•
⇀

ΘB/A . (7.9.8)

Furthermore,

B•
→
S

⇀

ΘB/A = α
⇀

ΘB/A ×
(

B•
⇀

ΘB/A ×
⇀

ΘB/A

)

+ β

B•
⇀

ΘB/A ×
⇀

ΘB/A. (7.9.9)

Hence,

→
S

B•
⇀

ΘB/A =

B•
⇀

ΘB/A −α
⇀

ΘB/A ×
(

B•
⇀

ΘB/A ×
⇀

ΘB/A

)

− β
B•
⇀

ΘB/A ×
⇀

ΘB/A. (7.9.10)
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In addition,

B•
→
S

B•
⇀

ΘB/A = α̇
⇀

Θ
×2

B/A

B•
⇀

ΘB/A +α

B•
⇀

Θ

×

B/A

⇀

Θ
×

B/A

B•
⇀

ΘB/A + β̇
⇀

Θ
×

B/A

B•
⇀

ΘB/A . (7.9.11)

7.10 6D Dynamics of a Rigid Body

In this section we express the translational and rotational dynamics of a rigid body in terms of

6D vectors. In the next section, this formulation is applied to the chain of rigid bodies considered

in Section 2.22, Section 4.13, and Section 4.14.

Let B be a rigid body, let c denote the center of mass of B, let z be a point fixed in B, let w be

an unforced particle, let FB be a body-fixed frame, and let FA be an inertial frame. In addition, let
⇀

f B denote the total force applied to B, and let
⇀

MB/z denote the total moment applied to B relative

to z. It follows from (7.4.17) that the translational dynamics of B are given by

mB

B•
⇀
v z/w/A +

⇀
αB/A × mB

⇀
r c/z +

⇀
ωB/A × mB

⇀
v z/w/A +

⇀
ωB/A × (

⇀
ωB/A × mB

⇀
r c/z) =

⇀

f B. (7.10.1)

and from (7.8.7) that the rotational dynamics of B are given by

→
JB/z

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/z

⇀
ωB/A + mB

⇀
r c/z ×

⇀
a z/w/A =

⇀

MB/z, (7.10.2)

which can be rewritten as

→
JB/z

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/z

⇀
ωB/A + mB

⇀
r c/z ×

B•
⇀
v z/w/A + mB

⇀
r c/z × (

⇀
ωB/A ×

⇀
v z/w/A) =

⇀

MB/z,

(7.10.3)

To construct a single equation for both the translational and rotational dynamics, note that (7.10.1)

and (7.10.3) can be written as the single equation




mB

B•
⇀
v z/w/A +

⇀
αB/A × mB

⇀
r c/z +

⇀
ωB/A × mB

⇀
v z/w/A +

⇀
ωB/A × (

⇀
ωB/A × mB

⇀
r c/z)

→
JB/z

B•
⇀
ωB/A +

⇀
ωB/A ×

→
JB/z

⇀
ωB/A + mB

⇀
r c/z ×

B•
⇀
v z/w/A + mB

⇀
r c/z × (

⇀
ωB/A ×

⇀
v z/w/A)





=





⇀

f B

⇀

MB/z





.

(7.10.4)

Using Jacobi’s identity given by Problem 2.26.6 in the form

mB

⇀
r c/z × (

⇀
ωB/A ×

⇀
v z/w/A) =

⇀
ωB/A × (mB

⇀
r c/z ×

⇀
v z/w/A) − ⇀

v z/w/A × (mB

⇀
r c/z ×

⇀
ωB/A), (7.10.5)

(7.10.4) can be rewritten as





mB

→
I −mB

⇀
r
×
c/z

mB

⇀
r
×
c/z

→
JB/z





B•
︷       ︸︸       ︷




⇀
v z/w/A

⇀
ωB/A




+





⇀
v z/w/A
⇀
ωB/A





× 



mB

→
I −mB

⇀
r
×
c/z

mB

⇀
r
×
c/z

→
JB/z









⇀
v z/w/A

⇀
ωB/A




=





⇀

f B
⇀

MB/z




,

(7.10.6)

where





⇀
v z/w/A
⇀
ωB/A





×
△
=





⇀
ω
×
B/A 0

⇀
v
×
z/w/A

⇀
ω
×
B/A




. (7.10.7)
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By defining

→
JB/z

△
=





mB

→
I −mB

⇀
r
×
c/z

mB

⇀
r
×
c/z

→
JB/z




,

⇀

VB

△
=





⇀
v z/w/A
⇀
ωB/A



 ,
⇀

FB/z
△
=





⇀

f B
⇀

MB/z




, (7.10.8)

(7.10.6) can be written as

→
JB/z

⇀

AB +
⇀

V

×

B

→
JB/z

⇀

VB =
⇀

FB/z. (7.10.9)

where

⇀

AB

△
=

B•
⇀

VB . (7.10.10)

Resolving (7.10.9) in FB yields

JB/z|BAB|B + V
×
B|BJB/z|BVB|B = FB/z|B, (7.10.11)

where

JB/z|B
△
=

[

mBI −mBr×
c/z|B

mBr×
c/z|B JB/z|B

]

, VB|B
△
=

[

vz/w/A|B
ωB/A|B

]

, AB|B
△
= V̇B|B =

[

v̇z/w/A|B
αB/A|B

]

,

(7.10.12)

V×
B|B

△
=





ω×
B/A|B 0

v×
z/w/A|B ω×

B/A|B



 , FB/z|B
△
=

[

fB|B
MB/z|B

]

. (7.10.13)

7.11 6D Dynamics of a Chain of Rigid Bodies

For the chain of rigid bodies shown in Figure 2.22.1, assume that zA is colocated with an un-

forced particle, let cB, cC, and cD denote the center of mass of BB, BC, and BD, respectively. and

define

→
JB/zB

△
=





mB

→
I −mB

⇀
r
×
cB/zB

mB
⇀
r
×
cB/zB

→
J B/zB




,

⇀

VB
△
=





⇀
v zB/w/A
⇀
ωB/A



 ,
⇀

FB/zB

△
=





⇀

f B
⇀

MB/zB




, (7.11.1)

and likewise for BC and BD. Note that the moment
⇀

MB/zB
on BB relative to zB includes external

moments on BB relative to zB, reaction moments on BB due forces applied to BB at the joints

connecting B to A and C, and reaction torques on BB due to the joints connecting B to A and C. It

thus follows from (7.10.9) that

→
JB/zB

⇀

AB +
⇀

V

×

B

→
JB/zB

⇀

VB =
⇀

FB/zB
, (7.11.2)

→
JC/zC

⇀

AC +
⇀

V

×

C

→
JC/zC

⇀

VC =
⇀

FC/zC
, (7.11.3)

→
JD/zD

⇀

AD +
⇀

V

×

D

→
JD/zD

⇀

VD =
⇀

FD/zD
. (7.11.4)

(7.11.5)

where

⇀

AB
△
=

B•
⇀

VB,
⇀

AC
△
=

C•
⇀

VC,
⇀

AD
△
=

D•
⇀

VD . (7.11.6)
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The forces and moments can be written as

⇀

FB/zB
=

⇀

Fext,B/zB
+
⇀

Fint,B, (7.11.7)

⇀

FC/zC
=

⇀

Fext,C/zC
+
⇀

Fint,C, (7.11.8)

⇀

FD/zD
=

⇀

Fext,D/zD
+
⇀

Fint,D, (7.11.9)

where “ext” denotes externally applied forces and moments, and “int” denotes reaction forces and

torques applied at the joints. Hence,

⇀

Fint,B =
⇀

Fint,B/zA
+
⇀

Fint,B/zB
=

⇀

Fint,B/zA
−
⇀

Fint,C/zB
, (7.11.10)

⇀

Fint,C = −
⇀

Fint,B/zB
+
⇀

Fint,C/zC
=

⇀

Fint,C/zB
−
⇀

Fint,D/zC
, (7.11.11)

⇀

Fint,D = −
⇀

Fint,C/zC
=

⇀

Fint,D/zC
. (7.11.12)

Combining (7.11.2)–(7.11.4), (7.11.7)–(7.11.9), and (7.11.10)–(7.11.12) yields

→
JB/zB

⇀

AB +
⇀

V

×

B

→
JB/zB

⇀

VB =
⇀

Fext,B/zB
+
⇀

Fint,B/zA
−
⇀

Fint,C/zB
, (7.11.13)

→
JC/zC

⇀

AC +
⇀

V

×

C

→
JC/zC

⇀

VC =
⇀

Fext,C/zC
+
⇀

Fint,C/zB
−
⇀

Fint,D/zC
, (7.11.14)

→
JD/zD

⇀

AD +
⇀

V

×

D

→
JD/zD

⇀

VD =
⇀

Fext,D/zD
+
⇀

Fint,D/zC
. (7.11.15)

Next, writing
⇀

AB,
⇀

AB, and
⇀

AB as

⇀

AB =
⇀

AB,α +
⇀

AB,ω,
⇀

AC =
⇀

AC,α +
⇀

AC,ω,
⇀

AD =
⇀

AD,α +
⇀

AD,ω. (7.11.16)

where
⇀

AB,α,
⇀

AC,α,
⇀

AD,α,
⇀

AB,ω,
⇀

AC,ω,
⇀

AD,ω are defined by (4.14.8)–(4.14.13), it follows that

(7.11.13)–(7.11.15) can be written as

→
JB/zB

⇀

AB,α = −
→
JB/zB

⇀

AB,ω −
⇀

V

×

B

→
JB/zB

⇀

VB +
⇀

Fext,B/zB
+
⇀

Fint,B/zA
−
⇀

Fint,C/zB
, (7.11.17)

→
JC/zC

⇀

AC,α = −
→
JC/zC

⇀

AC,ω −
⇀

V

×

C

→
JC/zC

⇀

VC +
⇀

Fext,C/zC
+
⇀

Fint,C/zB
−
⇀

Fint,D/zC
, (7.11.18)

→
JD/zD

⇀

AD,α = −
→
JD/zD

⇀

AD,ω −
⇀

V

×

D

→
JD/zD

⇀

VD +
⇀

Fext,D/zD
+
⇀

Fint,D/zC
. (7.11.19)

Finally, we reorder and rewrite (7.11.17)–(7.11.19) as

⇀

Fint,D/zC
=
→
JD/zD

⇀

AD,α +
→
JD/zD

⇀

AD,ω +
⇀

V

×

D

→
JD/zD

⇀

VD −
⇀

Fext,D/zD
, (7.11.20)

⇀

Fint,C/zB
=
→
JC/zC

⇀

AC,α +
→
JC/zC

⇀

AC,ω +
⇀

V

×

C

→
JC/zC

⇀

VC −
⇀

Fext,C/zC
+
⇀

Fint,D/zC
, (7.11.21)

⇀

Fint,B/zA
=
→
JB/zB

⇀

AB,α +
→
JB/zB

⇀

AB,ω +
⇀

V

×

B

→
JB/zB

⇀

VB −
⇀

Fext,B/zB
+
⇀

Fint,C/zB
. (7.11.22)

Note that, assuming that the velocities and accelerations are known, (7.11.20)–(7.11.22) can be

solved recursively for the reaction torques and moments. The same technique can be applied to a

chain consisting of n ≥ 4 rigid bodies, where the recursion proceeds from the bottom link of the

chain to the top link of the chain.
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7.12 Forces and Moments Due to Springs, Dashpots, and Inerters

Forces can be exerted on a pair of particles or inertia points by a spring, dashpot, or inerter.

These forces are internal forces that satisfy Newton’s third law. Likewise, a moment can be exerted

on a pair of rigid bodies by a rotational spring, rotational dashpot, or rotational inerter. Springs and

rotational springs were discussed in Section 7.4. A Newtonian body may possess springs, dashpots,

and inerters as well as rotational springs, rotational dashpots, and rotational inerters.

Consider a dashpot connected to the particles y and w, and assume that the viscosity of the

dashpot is c. Then, the force
⇀

f y/w applied to y by the dashpot is given by

⇀

f y/w = −c

(

d

dt
|⇀r y/w|

)

r̂y/w. (7.12.1)

Furthermore,

⇀

f w/y = −
⇀

f y/w. (7.12.2)

Consider an inerter connected to the particles y and w, and assume that the inertance of the

inerter is b. Then, the force
⇀

f y/w applied to y by the inerter is given by

⇀

f y/w = −b

(

d2

dt2
|⇀r y/w|

)

r̂y/w. (7.12.3)

Furthermore,

⇀

f w/y = −
⇀

f y/w. (7.12.4)

Next, consider rigid bodies B1 and B2 that are connected by a pin joint at a point fixed in both

bodies. Let ẑ be a unit dimensionless vector that is parallel with the pin joint. A rotational dashpot

applies torques to B1 and B2 that are parallel with ẑ. Let x̂1 and x̂2 be unit dimensionless vectors

that are fixed in B1 and B2, respectively, and that are orthogonal to ẑ. Assume that the rotational

viscosity of the rotational spring is ξ > 0. Then, the torque
⇀

MB1/B2
applied to B1 by the rotational

dashpot is given by

⇀

MB1/B2
= −ξθ̇⇀

x1/
⇀
x2/ẑ

ẑ. (7.12.5)

Furthermore, the torques applied to B1 and B2 are equal and opposite, that is,

⇀

MB2/B1
= −

⇀

MB1/B2
. (7.12.6)

Finally, consider rigid bodies B1 and B2 that are connected by a pin joint at a point fixed in both

bodies. Let ẑ be a unit dimensionless vector that is parallel with the pin joint. A rotational dashpot

applies torques to B1 and B2 that are parallel with ẑ. Let x̂1 and x̂2 be unit dimensionless vectors

that are fixed in B1 and B2, respectively, and that are orthogonal to ẑ. Assume that the rotational

inertance of the rotational spring is β > 0. Then, the torque
⇀

MB1/B2
applied to B1 by the rotational

inerter is given by

⇀

MB1/B2
= −βθ̈⇀

x1/
⇀
x2/ẑ

ẑ. (7.12.7)
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Furthermore, the torques applied to B1 and B2 are equal and opposite, that is,

⇀

MB2/B1
= −

⇀

MB1/B2
. (7.12.8)

7.13 Collisions

Consider a body B consisting of particles y1 and y2 whose masses are m1 and m2, respectively,

let c be the center of mass of B, let w be an unforced particle, and let FA be an inertial frame. It thus

follows from (7.4.5) and (7.4.6) that

(m1 + m2)
⇀
v c/w/A = m1

⇀
v y1/w/A + m2

⇀
v y2/w/A, (7.13.1)

(m1 + m2)
⇀
ac/w/A = m1

⇀
ay1/w/A + m2

⇀
ay2/w/A. (7.13.2)

Assuming that the external force applied to B is zero, it follows that
⇀
ac/w/A = 0. It thus follows

from (7.13.1) and (7.13.2) that

A•
︷                       ︸︸                       ︷

m1
⇀
v y1/w/A + m2

⇀
v y2/w/A = 0, (7.13.3)

which shows that the translational momentum of B is conserved with respect to FA.

Next, writing (7.13.3) as

·
︷                               ︸︸                               ︷

m1
⇀
v y1/w/A

∣
∣
∣
∣
A
+ m2

⇀
v y2/w/A

∣
∣
∣
∣
A
= 0 (7.13.4)

and letting

⇀
v y1/w/A(t)

∣
∣
∣
∣
A
=





u1(t)

v1(t)

w1(t)




,

⇀
v y2/w/A(t)

∣
∣
∣
∣
A
=





u2(t)

v2(t)

w2(t)




, (7.13.5)

it follows that, for all times t1 and t2,

m1





u1(t1)

v1(t1)

w1(t1)




+ m2





u2(t1)

v2(t1)

w2(t1)




= m1





u1(t2)

v1(t2)

w1(t2)




+ m2





u2(t2)

v2(t2)

w2(t2)




. (7.13.6)

Now, we view y1 and y2 as small spheres, and assume that y1 and y2 collide and thus are in

contact during a short time interval centered at time tc, where t1 < tc < t2. When y1 and y2 are in

contact, it follows from Newton’s third law that equal and opposite reaction forces
⇀

f R and −
⇀

f R are

applied to the particles y1 and y2, respectively, at the point of contact. Therefore, during contact, it

follows that

m1
⇀
ay1/w/A =

⇀

f R, (7.13.7)

m2
⇀
ay2/w/A = −

⇀

f R. (7.13.8)

For convenience, we assume that these reaction forces are parallel to ı̂B, and thus the force applied

to the particles in the directions of ̂A and k̂A are zero. Therefore, the components of
⇀
v y1/w/A and

⇀
v y2/w/A in the directions ̂A and k̂A are constant, that is,

v1(t1) = v1(t2), v2(t1) = v2(t2), (7.13.9)
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w1(t1) = w1(t2), w2(t1) = w2(t2). (7.13.10)

In the direction ı̂A it follows from (7.13.6) that

m1u1(t1) + m2u2(t1) = m1u1(t2) + m2u2(t2). (7.13.11)

Next, define

uc
△
= u1(tc) = u2(tc), (7.13.12)

which is the common speed of y1 and y2 in the direction ı̂A at tc. Therefore, by conservation of

translational momentum, it follows from (7.13.11) that

m1u1(t1) + m2u2(t1) = m1uc + m2uc = m1u1(t2) + m2u2(t2). (7.13.13)

Hence,

m1u1(t2) − m1uc = −[m2u2(t2) − m2uc] (7.13.14)

and

m1uc − m1u1(t1) = −[m2uc − m2u2(t1)]. (7.13.15)

Dividing the left- and right-hand sides of (7.13.14) and (7.13.15) yields

e
△
=

u1(t2) − uc

uc − u1(t1)
=

u2(t2) − uc

uc − u2(t1)
, (7.13.16)

where e is the coefficient of restitution.

Next, it follows from (7.13.16) that

uc =
u1(t1)u2(t2) − u1(t2)u2(t1)

u1(t1) + u2(t2) − u1(t2) − u2(t1)
. (7.13.17)

Substituting this expression into (7.13.16) yields

e =
u1(t2) − u2(t2)

u2(t1) − u1(t1)
. (7.13.18)

Hence, e is the ratio of the relative velocities of y1 and y2 in the direction ı̂A before and after the

collision. In particular, e = 0 corresponds to the case in which the particles are stuck together after

the collision, whereas e = 1 captures the case in which the relative speed reverses its sign.

For the following result, let TB/w/A(t) be the kinetic energy of B relative to w with respect to

FA, which is given by

TB/w/A(t) = 1
2
m1[u2

1(t) + v2
1(t) + w2

1(t)] + 1
2
m2[u2

2(t) + v2
2(t) + w2

2(t)]). (7.13.19)

Fact 7.13.1. Let y1 and y2 be small spheres whose masses are m1 and m2, respectively, let w

be an unforced particle, and let FA be an inertial frame. Assume that a collision between y1 and y2

occurs at time tc, assume that the reaction forces are parallel to ı̂A, let u1(t) and u2(t) be the signed

speeds of y1 and y2 in the direction ı̂A, that is, u1(t) = ı̂′
A

⇀
v y1/w/A(t) and u2(t) = ı̂′

A

⇀
v y2/w/A(t), and let

t1 < tc < t2. Then,

u1(t2) =
m1 − em2

m1 + m2

u1(t1) +
(1 + e)m2

m1 + m2

u2(t1), (7.13.20)

u2(t2) =
(1 + e)m1

m1 + m2

u1(t1) +
m2 − em1

m1 + m2

u2(t1). (7.13.21)
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Furthermore,

TB/w/A(t2) = TB/w/A(t1) − (1 − e2)
m1m2

m1 + m2

[u1(t1) − u2(t1)]2. (7.13.22)

Finally,

0 ≤ e ≤ 1. (7.13.23)

Proof. Using (7.13.11) and (7.13.18) yields (7.13.20) and (7.13.21), which in turn imply

(7.13.22). To prove (7.13.23), we assume that y1 and y2 move along a line that is parallel to ı̂A.

Consider the case where ı̂′
A

⇀
r y1/y2

(t1) > 0, u2(t1) > 0, and u1(t1) < u2(t1). With these relative lo-

cations and signed speeds, a collision occurs at some time tc > t1. At time tc, ı̂
′
A

⇀
r y1/y2

(tc) = 0 and

u1(tc) = u2(tc). Furthermore, the reaction force
⇀

f R applied to y1 is given by
⇀

f R = fR ı̂A, where

fR > 0, whereas the reaction force −
⇀

f R applied to y2 is given by −
⇀

f R = − fR ı̂A, where − fR < 0.

Consequently, at time t2 after the collision, it follows that ı̂′
A

⇀
r y1/y2

(t2) > 0 and u2(t2) ≤ u1(t2),

where equality holds if and only if the particles stick together. Since u1(t2) − u2(t2) ≥ 0 and

u2(t1) − u1(t1) > 0, it follows that e ≥ 0. An analogous argument applies in the case where

ı̂′
A

⇀
r y2/y1

(t1) > 0, u2(t1) > 0, and u2(t1) < u1(t1). In both cases, e ≥ 0. Using (7.13.22), conser-

vation of energy implies that e ≤ 1.

The case where y1 and y2 are not necessarily moving along the same line is left to the reader. �

Note that the second term on the right-hand side of (7.13.22) represents the amount of energy

dissipated in the collision. Since the occurrence of a collision implies that u1(t1) , u2(t1), it follows

that energy is conserved if and only if e = 1. Furthermore, the amount of dissipated energy is larger

for smaller values of e.

7.14 Center of Percussion and Percussive Center of Rotation

It follows from (7.4.7) that a force applied to a rigid body produces an acceleration of the center

of mass of the body. Furthermore, it follows from (7.8.13) that, if the line of force does not pass

through the center of mass of the body, then the moment on the body relative to the center of

mass is nonzero and produces an angular acceleration of the body. It is reasonable to expect that

the combined translational acceleration of the center of mass and angular acceleration of the body

induces a change in the velocity of every point on the body. If, however, an impulsive force is

applied to a point P in the body, then it turns out that there exists a point R in the body that does not

initially accelerate. The point P is the center of percussion, and the point R is the percussive center

of rotation. This property is made precise by the following result. The notation “0−” denotes the left

limit toward zero, which can be viewed as the response immediately after an impulse at time t = 0.

Fact 7.14.1. Let B be a rigid body with body-fixed frame FB, let FA be an inertial frame, assume

that
⇀
ωB/A(0) = 0, let w be an unforced particle, let P be a point fixed in B, let

⇀

f (t) = f0δ(t)n̂P denote

an impulsive force applied to B at P, and assume that n̂P and
⇀
r P/c are not parallel and n̂P is a

principal axis of
→
JB/c. Then there exists a point R fixed in B such that

⇀
v R/w/A(0−) = 0. In particular,

the location of one such point R is given by

⇀
r R/c =

1

m|
→
J
−1

B/c(
⇀
r P/c × n̂P)|2

[
→
J
−1

B/c(
⇀
r P/c × n̂P)] × n̂P. (7.14.1)
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Proof. It follows from (7.4.7) that

m
⇀
v c/w/A(0−) = f0n̂P (7.14.2)

and, since
⇀
ωB/A(0) = 0, it follows from (7.8.13) that

→
JB/c

⇀
ωB/A(0−) = f0

⇀
r P/c × n̂P. (7.14.3)

Using (7.14.2) and (7.14.3) yields

⇀
v R/w/A(0−) =

⇀
v R/c/A(0−) +

⇀
v c/w/A(0−)

=
⇀
ωB/A(0−) × ⇀

r R/c +
⇀
v c/w/A(0−)

= [ f0
→
J
−1

B/c(
⇀
r P/c × n̂P)] × ⇀

r R/c +
⇀
v c/w/A(0−)

= f0(
⇀
a × ⇀

r R/c +
1

m
n̂P), (7.14.4)

where
⇀
a
△
=
→
J
−1

B/c(
⇀
r P/c × n̂P). Since, by assumption, n̂P and

⇀
r P/c are not parallel, it follows that

⇀
a is

not zero. In addition, since, by assumption, n̂P is a principal axis of
→
JB/c, it follows that there exists

γ > 0 such that
→
JB/cn̂P = γn̂P, and thus

→
J
−1

B/cn̂P = (1/γ)n̂P. Therefore,

n̂′P
⇀
a = n̂′P

→
J
−1

B/c(
⇀
r P/c × n̂P) = (1/γ)n̂′P(

⇀
r P/c × n̂P) = 0. (7.14.5)

Since
⇀
a and n̂P are mutually orthogonal, it follows that

⇀
a × n̂P is not zero. Hence, let R be the point

fixed in B such that

⇀
r R/c = α

⇀
a × n̂P, (7.14.6)

where α
△
= 1/(m|⇀a |2). It thus follows from (7.14.5) that

⇀
v R/w/A(0−) = f0(

⇀
a × ⇀

r R/c +
1

m
n̂P)

= f0[
⇀
a × (α

⇀
a × n̂P) +

1

m
n̂P]

= f0(−α|⇀a |2n̂P +
1

m
n̂P)

= 0. �

Example 7.14.2. Consider a free rigid body B consisting of particles y1 and y2 with masses

m1 and m2, respectively, connected by a massless rigid link of length ℓ. The body frame is chosen

such that
⇀
r y2/y1

= ℓı̂B. The location of the center of mass is
⇀
r c/y1

= ℓc ı̂B, where ℓc
△
=

m2ℓ

m1+m2
, and the

physical inertia matrix is given by

→
JB/c = εı̂B ı̂

′
B + β( ̂B ̂

′
B + k̂Bk̂′B), (7.14.7)

where ε is a small positive number that allows inversion of
→
JB/c and

β
△
= m1ℓ

2
c + m2(ℓ − ℓc)2 =

m1m2ℓ
2

m1 + m2

. (7.14.8)
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Hence,

→
J
−1

B/c =
1

ε
ı̂B ı̂
′
B +

1

β
( ̂B ̂

′
B + k̂Bk̂′B). (7.14.9)

The impulsive force applied to B at the point P is given by
⇀

f (t) = f0δ(t)n̂P, where n̂P = ̂B and
⇀
r P/y1

= ℓP ı̂B. It thus follows that

→
J
−1

B/c(
⇀
r P/c × n̂P) = [

1

ε
̂B ̂
′
B +

1

β
( ̂B ̂

′
B + k̂Bk̂′B)][(ℓP − ℓc)ı̂B × ̂B]

=
ℓP − ℓc

β
k̂B. (7.14.10)

Therefore, it follows from (7.14.1) that

⇀
r R/c =

1

(m1 + m2)|
→
J
−1

B/c(
⇀
r P/c × n̂P)|2

[
→
J
−1

B/c(
⇀
r P/c × n̂P)] × n̂P

= − β2

(m1 + m2)(ℓP − ℓc)2

ℓP − ℓc

β
ı̂B

=
m1m2ℓ

2

(m1 + m2)2(ℓc − ℓP)
ı̂B. (7.14.11)

To confirm this result, note that

⇀
v R/w/A(0−) = f0([

→
J
−1

B/c(
⇀
r P/c × n̂P)] × ⇀

r R/c +
1

m1 + m2

n̂P)

= f0

(

(m1 + m2)(ℓP − ℓc)

m1m2ℓ2
k̂B ×

m1m2ℓ
2

(m1 + m2)2(ℓc − ℓP)
ı̂B +

1

m1 + m2

̂B

)

= 0. (7.14.12)

As a special case, letting P = y2 yields
⇀
r R/c = −ℓc ı̂B, and thus the percussive center of rotation is

y1. ⋄
Example 7.14.3. Consider a rigid body B consisting of a thin uniform bar of length ℓ and

mass m. Let y1 and y2 denote the endpoints of the bar, and let the body frame be chosen such that
⇀
r y2/y1

= ℓı̂B. The location of the center of mass is
⇀
r c/y1

= ℓ
2
ı̂B, and the physical inertia matrix is

given by

→
JB/c = εı̂B ı̂

′
B + β( ̂B ̂

′
B + k̂Bk̂′B), (7.14.13)

where ε is a small positive number that allows inversion of
→
JB/c and

β
△
=

1

12
mℓ2. (7.14.14)

Hence,

→
J
−1

B/c =
1

ε
ı̂B ı̂
′
B +

1

β
( ̂B ̂

′
B + k̂Bk̂′B). (7.14.15)

The impulsive force applied to B at the point P is given by
⇀

f (t) = f0δ(t)n̂P, where n̂P = ̂B and
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⇀
r P/y1

= ℓP ı̂B. It thus follows that

→
J
−1

B/c(
⇀
r P/c × n̂P) = [

1

ε
̂B ̂
′
B +

1

β
( ̂B ̂

′
B + k̂Bk̂′B)][(ℓP − ℓ/2)ı̂B × ̂B]

=
12(ℓP − ℓ/2)

mℓ2
k̂B. (7.14.16)

Therefore, it follows from (7.14.1) that

⇀
r R/c =

1

m|
→
J
−1

B/c(
⇀
r P/c × n̂P)|2

[
→
J
−1

B/c(
⇀
r P/c × n̂P)] × n̂P

= − m2ℓ4

144m(ℓP − ℓ/2)2

12(ℓP − ℓ/2)

mℓ2
ı̂B

=
ℓ2

12(ℓ/2 − ℓP)
ı̂B. (7.14.17)

To confirm this result, note that

⇀
v R/w/A(0−) = f0([

→
J
−1

B/c(
⇀
r P/c × n̂P)] × ⇀

r R/c +
1

m1 + m2

n̂P)

= f0

(

12(ℓP − ℓc)

mℓ2
k̂B ×

ℓ2

12(ℓc − ℓP)
ı̂B +

1

m
̂B

)

= 0. (7.14.18)

As a special case, letting ℓP =
2
3
ℓ yields

⇀
r R/c = − 1

2
ℓı̂B, and thus the percussive center of rotation is

y1. ⋄
7.15 Examples

Example 7.15.1. A simple pendulum consists of a particle y with mass m and a rigid massless

link of length ℓ connected to an inertially nonrotating massive rigid body at the point w. Determine

the reaction force on the particle y, the reaction force on the inertially nonrotating massive rigid

body at w, and derive the equations of motion in terms of θ.

Solution: Assume that FA is an inertial frame, and let FB be a body-fixed frame. These frames

are related by FA

θ−→
1

FB,





ı̂B
̂B
k̂B




=





1 0 0

0 cos θ sin θ

0 − sin θ cos θ









ı̂A
̂A
k̂A




,

and
⇀
ωB/A = θ̇ı̂A = θ̇ı̂B. The position of y relative to w is given by

⇀
r y/w = ℓk̂B. Therefore,

⇀
v y/w/A = ℓ

A•
k̂B = ℓ

⇀
ωB/A × k̂B = ℓθ̇ı̂B × k̂B = −ℓθ̇ ̂B.

Furthermore,

⇀
ay/w/A = −ℓθ̈ ̂B − ℓθ̇

A•
̂B

= −ℓθ̈ ̂B − ℓθ̇2 ı̂B × ̂B
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̂A

k̂A

×ı̂A

k̂B

̂B

×ı̂B

w

y

θ
⇀
g

Figure 7.15.1: Simple pendulum for Example 7.15.1.

= −ℓθ̈ ̂B − ℓθ̇2k̂B.

The reaction force applied to y due to the rigid massless link is given by
⇀

f R = fRk̂B, and thus the

total force on y is given by

⇀

f y = m
⇀
g +

⇀

f R

= mgk̂A + fRk̂B

= mg[(sin θ) ̂B + (cos θ)k̂B] + fRk̂B

= mg(sin θ) ̂B + (mg cos θ + fR)k̂B.

Next, it follows from Newton’s second law m
⇀
ay/w/A =

⇀

f y that

−ℓθ̈ ̂B − ℓθ̇2k̂B = mg(sin θ) ̂B + (mg cos θ + fR)k̂B,

and thus

−ℓθ̈ = mg sin θ

and

−mℓθ̇2 = mg cos θ + fR.

Therefore,

ℓθ̈ + mg sin θ = 0

and

fR = −m(ℓθ̇2 + g cos θ).

The reaction force on the link and thus on w, is thus

−
⇀

f R = m(ℓθ̇2 + g cos θ)k̂B
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= −m(ℓθ̇2 + g cos θ)(sin θ) ̂A + m(ℓθ̇2 + g cos θ)(cos θ)k̂A. ⋄
Example 7.15.2. A physical pendulum consists of a body B connected to an inertially nonro-

tating massive rigid body by means of a frictionless pin joint at the point w. The center of mass of

B is the point c, and the distance from w to c is ℓ. The mass of B is m, and the component of the

moment of inertia of B relative to c along an axis perpendicular to the page is J0. The angle between

the line passing through w and c and the vertical direction is θ.

i) Use Newton-Euler dynamics to derive the equations of motion for B in terms of θ. Also,

determine the reaction force on B at w. Do this in two different ways, namely, by applying Newton’s

second law for rotation relative to w and relative to c.

ii) Specialize the equations of motion and the reaction force to the case where B is a thin bar of

length ℓ0 and mass m.

iii) Specialize the equations of motion and reaction force to the case of a simple pendulum, that

is, where B consists of a rigid massless link of length ℓ1 with a particle of mass m on its end.

̂A

k̂A

×ı̂A

k̂B

̂B

×ı̂B

w

c

B

θ
⇀
g

Figure 7.15.2: Physical pendulum for Example 7.15.2

Solution: i) Assume that FA is an inertial frame, and let FB be a body-fixed frame. These frames

are related by FA

θ−→
1

FB,





ı̂B
̂B
k̂B




=





1 0 0

0 cos θ sin θ

0 − sin θ cos θ









ı̂A
̂A
k̂A




,

and
⇀
ωB/A = θ̇ı̂A = θ̇ı̂B. The position of c relative to w is given by

⇀
r c/w = ℓk̂B. Therefore,

⇀
v c/w/A =

A•
⇀
r c/w = ℓ

A•
k̂B = ℓ

⇀
ωB/A × k̂B = ℓθ̇ı̂B × k̂B = −ℓθ̇ ̂B,
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and thus

⇀
ac/w/A = ℓθ̈ ̂B − ℓθ̇

A•
̂B = −ℓθ̈ ̂B − ℓθ̇2 ı̂B × ̂B = −ℓθ̈ ̂B − ℓθ̇2k̂B.

The reaction force
⇀

f R on B at w is given by

⇀

f R = f1 ̂B + f2k̂B,

and thus the total force on B is given by

⇀

f B =
⇀

f R + m
⇀
g = ( f1 + mg sin θ) ̂B + ( f2 + mg cos θ)k̂B.

Next, it follows from Newton’s second law m
⇀
ay/w/A =

⇀

f y that

−ℓθ̈ ̂B − ℓθ̇2k̂B = ( f1 + mg sin θ) ̂B + ( f2 + mg cos θ)k̂B,

and thus

−mℓθ̈ = f1 + mg sin θ,

−mℓθ̇2 = f2 + mg cos θ.

Therefore,

f1 = −m(ℓθ̈ + g sin θ),

f2 = −m(ℓθ̇2 + g cos θ).

Next, since B lies in the ̂B-k̂A plane, it follows that
→
JB/w = (J0 + mℓ2)ı̂A ı̂

′
A
. Hence, since

⇀
ωB/A = θ̇ı̂A, it follows that

⇀
ωB/A ×

→
JB/w

⇀
ωB/A = 0. Therefore, Newton’s second law for rotation

relative to w implies that

→
JB/w

B•
⇀
ωB/A =

⇀

MB/w.

The moment
⇀

MB/w on B relative to w is given by

⇀

MB/w =
⇀
r c/w × m

⇀
g +

⇀
r w/w ×

⇀

f R = ℓk̂B × mg[(sin θ) ̂B + (cos θ)k̂B] = −ℓmg(sin θ)ı̂B.

Therefore, since

B•
⇀
ωB/A = θ̈ı̂B, it follows that

(J0 + mℓ2)θ̈ = ı̂′A
→
JB/w

B•
⇀
ωB/A = ı̂

′
A[−ℓmg(sin θ)ı̂B] = −ℓmg sin θ.

Hence,

θ̈ +
ℓmg

J0 + mℓ2
sin θ = 0.

Using this expression for θ̈ yields

f1 = −m

(

−ℓ2mg

J0 + mℓ2
sin θ + g sin θ

)

=
mgJ0 sin θ

J0 + mℓ2
.
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Alternatively, applying Newton’s second law for rotation relative to c implies that

→
JB/c

B•
⇀
ωB/A =

⇀

MB/c.

Using

→
JB/c

B•
⇀
ωB/A = J0θ̈ı̂A,

⇀

MB/c =
⇀
r w/c ×

⇀

f R = −ℓk̂B × ( f1 ̂B + f2k̂B) = ℓ f1 ı̂B = −mℓ(ℓθ̈ + g sin θ),

it follows that

J0θ̈ = −mℓ(ℓθ̈ + g sin θ),

that is,

θ̈ +
ℓmg

J0 + mℓ2
sin θ = 0.

ii) Now assume that B is a thin bar of length ℓ0. It thus follows that ℓ0 = 2ℓ, and thus J0 =
1

12
mℓ2

0
= 1

3
mℓ2, and thus J0 + mℓ2 = 1

3
mℓ2

0
= 4

3
mℓ2. Therefore, θ satisfies

θ̈ +
3g

2ℓ0

sin θ = 0.

In addition, the components of the reaction force are given by

f1 = − 1
4
mg sin θ,

f2 = −mg( 1
2
ℓθ̇2 + g cos θ).

iii) Now assume that B consists of a rigid massless link of length ℓ1 with a particle of mass m

on its end. In this case, it follows that J0 = 0 and thus J0 + mℓ2 = mℓ2
1
. Therefore, θ̈ satisfies

θ̈ +
g

ℓ0

sin θ = 0.

In addition, the components of the reaction force are given by

f1 = −m(ℓ1θ̈ + g sin θ) = −mℓ1

(

θ̈ +
g

ℓ1

sin θ

)

= 0,

f2 = −m(ℓ1θ̇
2 + g cos θ).

Note that these expressions agree with Example 7.15.1. ⋄
Example 7.15.3. Consider a long rigid wire that rotates around a pin joint at the point w

connected to an inertially nonrotating massive body at the rate ω = θ̇ relative to an inertial frame. A

bead whose mass is m slides without friction along the wire. The distance from w to the bead is x,

where x(0) > 0 and ẋ(0) = 0. The moment of inertia of the wire around the axis of rotation is I.

i) Assume that ω > 0 is constant. Derive the equation of motion for the bead and determine the

reaction force between the bead and the wire.

ii) Assume that the wire has nonzero initial angular rate θ̇(0) > 0, the pivot joint at w is fric-

tionless, and no external moments are applied to the wire. Consequently, as the bead moves, the

rotation rate θ̇ is not constant. Determine the equations of motion of the body B consisting of the
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bead and the wire, and use conservation of angular momentum with respect to an inertial frame to

determine a constant of the motion.

iii) Use the equations from ii) to show that the bead speeds up and the wire slows down, in

particular, show that, as t → ∞, θ̇(t) → 0, x(t) → ∞, and ẋ(t) → v∞. In addition, determine an

expression for the terminal velocity v∞. Finally, show that θ(t) converges and find its limiting value.

(Note: θ̇ → 0 does not imply that θ converges.)

Figure 7.15.3: Bead on a rotating wire for Example 7.15.3.

Solution: i) Assume that FA is an inertial frame, and let FB be a body-fixed frame. These frames

are related by FA

θ−→
3

FB,





ı̂B
̂B
k̂B




=





cos θ sin θ 0

− sin θ cos θ 0

0 0 1









ı̂A
̂A
k̂A




,

and
⇀
ωB/A = ωk̂A = ωk̂B, where ω

△
= θ̇. The position of y relative to w is given by

⇀
r y/w = xı̂B.

Therefore,

⇀
v y/w/A =

A•
⇀
r y/w=

B•
⇀
r y/w +

⇀
ωB/A ×

⇀
r y/w = ẋı̂B + ωk̂B × xı̂B = ẋı̂B + ωx ̂B.

Furthermore,

⇀
ay/w/A =

A•
⇀
v y/w/A=

B•
⇀
v y/w/A +

⇀
ωB/A ×

⇀
v y/w/A

= ẍı̂B + ωẋ ̂B + ωk̂B × (ẋı̂B + ωx ̂B

= ẍı̂B + ωẋ ̂B + ωẋ ̂B − ω2xı̂B

= (ẍ − ω2x)ı̂B + 2ωẋ ̂B.

Note that ω2xı̂B is the centripetal acceleration and 2ωẋ ̂B is the Coriolis acceleration.

Next, since the bead slides without friction along the wire, the reaction force
⇀

f R on the bead is

in the ̂B direction. Hence,

⇀

f R = fR ̂B.

Now, it follows from Newton’s second law m
⇀
ay/w/A =

⇀

f R that

m(ẍ − ω2x)ı̂B + 2mωẋ ̂B = fR ̂B.
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Therefore,

fR = 2mωẋ,

ẍ = ω2x.

The solution of this differential equation is given by

x(t) = 1
2
(eωt + e−ωt)x(0),

and thus

ẋ(t) = 1
2
ω(eωt − e−ωt)x(0).

Note that, since x(0) > 0, it follows that, for all t ≥ 0, x(t) > 0, and thus fR > 0, which is consistent

with the assumption that ω > 0. Furthermore, note that x(t)→ ∞ as t → ∞.

ii) We no longer assume that ω = θ̇ is constant. Following the same steps as in the case of

constant ω yields

fR = 2mθ̇ẋ, (7.15.1)

ẍ = θ̇2x. (7.15.2)

To determine ω(t), note that the moment of inertia of the wire relative to w is given by

Jwire/w|B =





0 0 0

0 J 0

0 0 J




.

It thus follows from Euler’s equation relative to w resolved in FB that




0

0

Jθ̈




+





0

0

θ̇




×





0

0

Jθ̇




= [

⇀
r y/w × (−

⇀

f R)]

∣
∣
∣
∣
∣
B

=





x

0

0




×





0

− fR
0




=





0

0

−x fR




.

Therefore,

Jθ̈ = −xm(θ̈x + 2θ̇ẋ),

and thus

(Jθ̈ + mx2)θ̈ + 2mxẋθ̇ = 0.

Next, since the external moment applied to the bead and wire is zero, angular momentum is

conserved. To determine this constant of the motion, note that

⇀

Hy/w/A =
⇀
r bead/w × m

⇀
v y/w/A = xı̂B × m

A•
︷︸︸︷

xı̂B

= xı̂B × (ẋı̂B + xı̂B) = mxı̂B × x(
⇀
ωB/A × ı̂B)

= mx2 ı̂B × θ̇(k̂B × ı̂B) = mθ̇x2 ı̂B × ̂B = mθ̇x2k̂A

and

⇀

Hwire/w/A =
→
J wire/w

⇀
ωA/B = Jθ̇k̂A.
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Therefore,

⇀

HB/w/A = (J + mx2)θ̇k̂A.

It thus follows from Newton’s second law for rotation relative to w that

A•
⇀

HB/w/A=
⇀

MB/w = 0.

Therefore,

d

dt
[(J + mx2)θ̇] = 0.

Thus, (J + mx2)θ̇ is a constant of the motion, that is, there exists c0 such that, for all t ≥ 0,

(J + mx2)θ̇ = c0.

Since, by assumption, θ̇(0) > 0, it follows that c0 > 0.

iii) It follows from ii) that, for all t ≥ 0,

ẋ(t) =

∫ t

0

ẍ(s) ds =

∫ t

0

θ̇2(s)x(s) ds. (7.15.3)

By assumption, x(0) > 0. Suppose that there exists ε > 0 such that, for all t ∈ [0, ε), x(t) > 0 and

such that x(ε) = 0. It thus follows from (7.15.3) that, for all t ∈ [0, ε), ẋ(t) > 0. Therefore,

x(ε) = x(0) +

∫ ε

0

ẋ(s) ds > 0,

which is a contradiction. Hence, x(t) > 0 for all t ≥ 0. Consequently, (7.15.3) implies that, for all

t ≥ 0, ẋ(t) > 0. Furthermore, it follows from (7.15.2) that, for all t ≥ 0, ẍ(t) > 0. Hence, ẋ(t) is

positive and increasing on [0,∞), and it follows from

x(t) = x(0) +

∫ t

0

ẋ(s) ds

that x(t)→ ∞ as t → ∞. Hence,

lim
t→∞

θ̇(t) = lim
t→∞

c0

J + mx2(t)
= 0.

The fact that limt→∞ θ̇(t) = 0 is not sufficient to conclude that the angle of the wire converges.

To analyze the convergence of θ,we note that the total energy E(t) of the system is conserved, where

E(t) = 1
2
[J + mx2(t)]θ̇2(t) + 1

2
mẋ2(t).

In fact, note that

Ė(t) = mxẋθ̇2 + (J + mx2)θ̇θ̈ + mẋẍ = 2mxẋθ̇2 + (J + mx2)θ̇θ̈

= 2mxẋθ̇2 + (J + mx2)θ̇
−2mxẋθ̇

J + mx2
= 0.

Therefore, for all t ≥ 0, it follows that

1
2
c0θ̇(t) +

1
2
mẋ2(t) = E(0),
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and thus, for all t ≥ 0,

ẋ(t) =

√

2E(0) − c0θ̇(t)

m
.

Consequently, the terminal velocity v∞ of the bead is given by

v∞ = lim
t→∞

ẋ(t) =

√

2E(0)

m
.

Finally, to determine whether limt→∞ θ̇ is finite, note that

θ(t) =

∫ t

0

c0

J + mx2(s)
ds,

which implies that θ(t) is increasing on [0,∞). Now, let ε satisfy 0 < εv∞. Since v(t)
△
= ẋ(t) is

increasing and v(t) → ∞ as t → ∞, it follows that there exists T > 0 such that, for all t > T,

v∞ − ε < v(t) < v∞. Therefore, since, for all s ≥ T , x(s) ≥ x(T )+ (v∞ − ε)(s− T ), it follows that, for

all t ≥ T,

θ(t) = θ(T ) +

∫ ∞

T

c0

J + mx2(s)
ds

≤ θ(T ) +

∫ ∞

T

c0

J + m[x(T ) + (v∞ − ε)σ]2
ds

= θ(T ) +
c0

m(v∞ − ε)2

∫ ∞

0

1

σ2 +
2x(T )

v∞−εσ +
J+mx2(T )

m(v∞−ε)2

dσ

= θ(T ) +
c0√

mJ(v∞ − ε)





π

2
− tan−1

√

mx2(T )

J



 .

Since θ(t) is increasing on [0,∞), limt→∞ θ̇(t) exists, and thus the wire comes to rest. ⋄
Example 7.15.4. Consider a ball rolling along a beam subject to gravity. The beam rotates

around a pivot joint at its center w due to the weight of the ball as well as an external torque. The

the point w connected to an inertially nonrotating massive body

ı̂A

̂A

θ

ı̂B

̂B

w

b

x

⇀
g

Figure 7.15.4: Ball and beam for Example 7.15.4.
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Let FA be fixed to the ground such that ı̂A is horizontal and ̂A points upward, and let FB be fixed

to beam such that ı̂B and ı̂A are parallel when the beam is horizontal. Then, FA and FB are related

by FA

θ−→
3

FB so that





ı̂B
̂B
k̂B




=





cos θ sin θ 0

− sin θ cos θ 0

0 0 1









ı̂A
̂A
k̂A





and
⇀
ωB/A = θ̇k̂A. Furthermore, since

⇀
r b/w = xı̂B, it follows that

⇀
v b/w/A =

A•
⇀
r b/w = ẋı̂B + x

A•
ı̂ B = ẋı̂B + x

⇀
ωB/A × ı̂B = ẋı̂B + xθ̇ ̂B,

⇀
ab/w/A =

A••
⇀
r b/w

=

B••
⇀
r b/w + 2

⇀
ωB/A ×

B•
⇀
r b/w +

B•
⇀
ωB/A ×

⇀
r b/w +

⇀
ωB/A ×

⇀
ωB/A ×

⇀
r b/w

=
(

ẍ − θ̇2x
)

ı̂B +
(

2θ̇ẋ + θ̈x
)

̂B.

The reaction force applied to the ball by the beam is given by
⇀

f R = fR ̂B, and thus total force

on the ball is given by

⇀

f b =
⇀

f R + m
⇀
g = fR ̂B − mg ̂A = −mg sin θı̂B +

(

fR − mg cos θ
)

̂B.

It thus follows from Newton’s second law m
⇀
ab/w/A =

⇀

f b that

m
(

ẍ − θ̇2x
)

ı̂B + m
(

2θ̇ẋ + θ̈x
)

̂B = −mg sin θı̂B +
(

fR − mg cos θ
)

̂B.

Hence,

ẍ = θ̇2x − g sin θ,

fR = mg cos θ + 2mθ̇ẋ + mθ̈x.

Next, note that
→
JB/w = Jxx ı̂B ı̂

′
B
+ Jyy ̂B ̂

′
B
+ Jzzk̂Bk̂′

B
. Therefore,

⇀
ωB/A ×

→
JB/w

⇀
ωB/A = 0,

→
JB/w

B•
⇀
ωB/A = Jzzθ̈k̂B.

The moment applied to the beam relative to c is given by

⇀

MB/w =
⇀
r b/w ×

(

−
⇀

f R

)

+
⇀

Mext =
(

− x fR + τ
)

k̂B.

Newton’s second law for rotation relative to w implies

→
JB/w

B••
⇀
ω B/A =

⇀

MB/w.

Therefore,

Jzzθ̈k̂B =
(

− x fR + τ
)

k̂B,
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and thus

(

Jzz + mx2)θ̈ = −x
(

mg cos θ + 2mθ̇ẋ
)

+ τ. ⋄
7.16 Theoretical Problems

Problem 7.16.1. Let B1 and B2 be rigid bodies with masses m1 and m2, respectively, let
⇀

f be

a force applied to B1, and assume that B2 is in contact with B1 in such a way that both bodies move

along a straight line. Determine the magnitude of the reaction force between B1 and B2.

Problem 7.16.2. Let FA be an inertial frame, let y1 and y2 be particles with masses m1 and m2,

respectively, and assume that the force
⇀

f 1 is applied to y1 and the force
⇀

f 2 is applied to y2. Show

that

m1m2

m1 + m2

⇀
ay1/y2/A =

m2

m1 + m2

⇀

f 1 −
m1

m1 + m2

⇀

f 2.

In particular, show that, if
⇀

f 1 =
⇀

f and
⇀

f 2 = −
⇀

f , then

m1m2

m1 + m2

⇀
ay1/y2/A =

⇀

f .

Now, specialize the result to the cases where the force is due to a spring, dashpot, or inerter connect-

ing y1 and y2. In each case, provide a differential equation whose solution is the distance between

the particles. In addition, in each case, use the solution of the differential equation to describe the

qualitative behavior of the distance.

Problem 7.16.3. A body consists of particles y1 and y2 with masses m1 and m2, respectively,

connected by a massless link of length ℓ. A force
⇀

f is applied to the point p, which is either along

the link or colocated with one of the particles. The force
⇀

f and all motion is confined to the plane

spanned by ı̂A and ̂A, where FA is an inertial frame. Determine the reaction forces
⇀

f R1 and
⇀

f R2 on

y1 and y2, respectively, in terms of the angular velocity and angular acceleration of the body relative

to FA.

Solution: Let FB be a body-fixed frame, where the direction of ı̂B is along the link from y1 to y2,

and let
⇀

f = f1 ı̂B + f2 ̂B. Let c denote the center of mass of the body, and let
⇀
ωB/A = ωk̂B. Then,

ω̇ =

⇀
r
′
p/c ı̂B f2

Jzz

, Jzz =
m1m2ℓ

2

m1 + m2

,

⇀

f R1 =
m1m2ℓ

m1 + m2

(ω2 ı̂B − ω̇ ̂B) +
m1

m1 + m2

⇀

f ,
⇀

f R2 =
m1m2ℓ

m1 + m2

(−ω2 ı̂B + ω̇ ̂B) +
m2

m1 + m2

⇀

f .

Problem 7.16.4. Let FA be an inertial frame, let y1, y2, and y3 be particles with masses m1, m2,

and m3, respectively, and assume that the forces
⇀

f 12 and
⇀

f 13 are applied to y1, the forces −
⇀

f 12 and
⇀

f 23 are applied to y2, and the forces −
⇀

f 13 and −
⇀

f 23 are applied to y3. Show that

m1m3

m1 + m3

⇀
ay1/y3/A =

⇀

f 13 +
1

m1 + m3

(m1

⇀

f 23 + m3

⇀

f 12),



NEWTON-EULER DYNAMICS 291

m2m3

m2 + m3

⇀
ay2/y3/A =

⇀

f 23 +
1

m2 + m3

(m2

⇀

f 13 − m3

⇀

f 12).

Now, specialize the result to the cases in which the forces are due to springs, dashpots, or inerters

connecting y1, y2, and y3. In each case, provide a differential equation whose solution is the distance

between the particles. Finally, describe the qualitative behavior of the solution in each case.

Problem 7.16.5. Let FA be an inertial frame, let y and z be unforced particles, let x be a particle,

and let
⇀

f be a force applied to x. Show that

⇀
a x/z/A =

⇀
a x/y/A.

Finally, explain why the equation
⇀
v x/z/A =

⇀
v x/y/A.

is not true in general.

Problem 7.16.6. Let FA and FB be inertial frames, and let w and y be unforced particles. Show

that
B•
A•
⇀
ry/w =

A•
B•
⇀
ry/w = 0.

Problem 7.16.7. Consider a rigid body spinning around a principal axis relative to its center of

mass without any applied moments. Use Euler’s equation to show that the body spins indefinitely

around the principal axis.

7.17 Applied Problems

Problem 7.17.1. In Figure 7.17.1, a ball under the influence of gravity rolls without slipping

down a slanted surface of a moving cart. The angle between the slanted surface and the ground is

θ, and the distance between a and b is x. The mass of the ball is m, the radius of the ball is r, and

the mass of the cart is M. The cart is mounted on frictionless, massless wheels, which allow the cart

to translate on the ground, which is an inertially nonrotating massive body. Derive the equations

of motion for the ball and the cart, and determine the normal and tangential components of the

reaction force between the ball and the slanted surface as well as the vertical reaction force between

the slanted surface and the ground.

Problem 7.17.2. The rotating platform in Figure 7.17.2 is connected to the ground by a pin

joint at the point a. The ground can be viewed as an inertially nonrotating massive body with body-

fixed inertial frame FA. The body B consists of a massless bar of length 2R with center at the point

b and with identical small spheres of mass m mounted on each end. The distance from a to b is L.

A motor spins the bar relative to the platform at the rate ω1 > 0, and the platform spins at the rate

ω2 > 0 relative to the ground. Neither ω1 nor ω2 is necessarily constant, and the spin directions are

shown in the figure.

i) Determine the total force
⇀

f B on B resolved in a platform-fixed frame.

ii) Determine the angular momentum
⇀

HB/b/A of B relative to b with respect to FA resolved in

a platform-fixed frame.

iii) Determine the moment
⇀

MB/b on B relative to b resolved in a platform-fixed frame.
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ı̂B

k̂B

x

a

b

θ

⇀
g

Figure 7.17.1: Problem 7.17.1. Ball rolling down a slanted surface of a moving cart for Problem 7.17.1.

Figure 7.17.2: Rotating platform with a rotating bar for Problem 7.17.2

Problem 7.17.3. The uniform disk and uniform shaft shown in Figure 7.17.3 are welded to-

gether in such a way that the angle between the shaft and the line perpendicular to the disk and

passing through its center is θ. The distance from the left end of the shaft to the center of the disk

is d. The mass, length, and radius of the shaft are m1, l1, and r1, respectively, while the mass, thick-

ness, and radius of the disk are m2, l2, and r2, respectively. Resolve the physical inertia matrix of the

assembly relative to its center of mass in a frame FA whose axis ı̂A is aligned with the longitudinal

axis of the shaft and whose axis ̂A is such that the line perpendicular to the disk and passing through

its center lies in the ı̂A- ̂A plane.

Problem 7.17.4. The vertical rotating shaft in Figure 7.17.4 rotates at the constant rate Ω ≥ 0

in the direction shown. The cable, which is horizontal, supports a uniform bar of length l and mass

m. The angle between the bar and the vertical direction is θ. Assume that the bearings that support

the shaft are mounted on an inertially nonrotating massive body. Gravity acts in the direction shown.

Determine the tension in the cable, the reaction force on the bar at point a, and the reaction torque

on the vertical shaft at point a. (Hint: Consider the case Ω = 0 first, and note that every point on the

shaft is colocated with an unforced particle.)
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Figure 7.17.3: Disk welded to a shaft for Problem 7.17.3

Problem 7.17.5. The massless rotating shaft in Figure 7.17.5 is welded to a cylinder whose

mass is m so that the center of mass of the cylinder lies on the shaft and the angle between the shaft

and centerline of the cylinder is θ. The ends of the shaft are prevented from moving transversely by

bearings, which are mounted on an inertially nonrotating massive body. No gravity is present, and a

torque
⇀
τ is applied to the shaft. The length of the shaft is l, the radius and length of the cylinder are

r and h, respectively, and the rotation rate of the assembly relative to the bearings is Ω > 0, which

is not necessarily constant. Determine the reaction forces applied by the bearings to the shaft and

resolve these vectors in a frame that is attached to the shaft and one of whose axes is aligned with

the shaft.

Problem 7.17.6. The vertical rotating shaft in Figure 7.17.6 is welded to a horizontal arm,

which is connected by a frictionless pin joint to a slanted bar, where the angle between the slanted

bar and the horizontal direction is θ. The tip of the slanted bar slides over the ground as the shaft

rotates in the direction shown at the constant angular rate Ω > 0. Assume that the ground is an

inertially nonrotating massive body, and that gravity acts in the direction shown. The length of the

horizontal arm is l1, and the mass and length of the slanted bar are m and l2, respectively. The

coefficient of friction between the tip of the slanted bar and the ground is µ > 0. Determine the

reaction force acting on the slanted bar due to the horizontal arm, the reaction torque acting on the

slanted bar due to the pin joint, the upward reaction force of the ground acting on the slanted bar,

and the horizontal friction force acting on the slanted bar. Resolve these quantities in a frame fixed

to the slanted bar, and express all of their components in terms of θ,Ω, l1,m, l2, g, µ. (Hint: The

friction force opposes the motion of the slanted bar; its magnitude is obtained by multiplying µ by

the magnitude of the upward reaction force of the ground on the slanted bar.)

Problem 7.17.7. The wheel in Figure 7.17.7 is attached to a thin bar by means of a frictionless

pin joint at the center of the wheel. The wheel rolls without slipping on the ground, which is an

inertially nonrotating massive body. Gravity acts in the direction shown. At the time instant t = 0

shown, the disk rotates in the direction shown at the angular rate φ̇(0) > 0, and the angle θ between

the arm and the horizontal direction has the value θ(0) and the rate θ̇(0) > 0. The radius and mass of

the wheel are r and m1, respectively, while the length and mass of the arm are l and m2, respectively.

At time t = 0, determine φ̈(0) and θ̈(0), as well as the horizontal and vertical components of the
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θ

a

Ω

⇀
g

Figure 7.17.4: Rotating shaft with an attached bar and cable for Problem 7.17.4

Figure 7.17.5: Rotating shaft with a rigidly attached cylinder for Problem 7.17.5

reaction force at the pin joint.

Problem 7.17.8. The simple pendulum on a cart shown in Figure 7.17.8 consists of a particle w

with mass M that slides without friction on a horizontal surface on an inertially nonrotating massive

rigid body. The particle w is connected by a rigid massless link of length ℓ to a particle y of mass

m. Determine the reaction force on the particle y and derive the equations of motion of the cart and

pendulum in terms of the directed angle θ and the distance x from w to the point a fixed in the

inertially nonrotating massive rigid body. Finally, show that the equations of motion for the simple

pendulum are recovered in the limit as M → ∞.

7.18 Solutions to the Applied Problems

Solution to Problem 7.17.1.

ẍ =
5(m + M)g sin θ

7M + (2 + 5 sin2 θ)m
, ÿ = g tan θ − 7

5 cos θ
ẍ,
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θ

Ω

⇀
g

Figure 7.17.6: Rotating shaft with a slanted bar contacting the ground for Problem 7.17.6

fT =
−2(m + M)mg sin θ

7M + (2 + 5 sin2 θ)m
, fN =

mg

cos θ

(

1 − 7(m + M) sin2 θ

7M + (2 + 5 sin2 θ)m

)

,

where x is the distance from a to the center of the ball, and y is the distance from the vertical edge

of the cart to an unforced particle on the ground.

Solution to Problem 7.17.2.

⇀

f B = −2mLω̇2 ı̂B − 2mLω2
2 B,

⇀

HB/b/A = 2mR2[−ω2(sin θ)(cos θ)ı̂B + ω1 ̂B + ω2(sin2 θ)k̂B],

⇀

MB/b = mR2[−(ω̇2 sin 2θ + 4ω1ω2 cos2 θ)ı̂B + (2ω̇1 − ω2
2 sin 2θ) ̂B + (2ω̇2 sin2 θ + 2ω1ω2 sin 2θ)k̂B],

where ̂B is aligned with the motor axis and k̂B is pointing up. FC is defined such that k̂C is aligned

with the masses, and ̂C is aligned with the motor axis.

Solution to Problem 7.17.3.

JB3/c3 |A =





α1 + δ1 δ2 0

δ3 β1 + m1l2
4
+ δ4 + m2l2

5
0

0 0 β1 + m1l2
4
+ β2 + m2l2

5




,

m3 = m1 + m2, l3 =
l1

2
+

m2

m3

(

d − l1

2

)

, l4 =
m2

m3

(

l1

2
− d

)

, l5 = d − l1

2
+

m2

m3

(

l1

2
− d

)

,

α1 =
1

2
m1r2

1, α2 =
1

2
m2r2

2, β1 =
1

12
m1(3r2

1 + l21), β2 =
1

12
m2(3r2

2 + l22),

δ1 = α2 cos2 θ + β2 sin2 θ, δ2 = (−α2 + β2)(cos θ) sin θ,

δ3 = (−α2 + β2)(cos θ) sin θ, δ4 = α2 sin2 θ + β2 cos2 θ,

where B3 = B1 ∪B2 and c3 is the center of mass of B3.

Solution to Problem 7.17.4.

T =
1

2
mg tan θ +

1

3
ml(sin θ)Ω2, fay = −

1

2
mg tan θ +

1

6
ml(sin θ)Ω2, faz = mg.
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θ

φ̇(0)

⇀
g

Figure 7.17.7: Rotating wheel with a pivoted bar for Problem 7.17.7

Solution to Problem 7.17.5.

Ω̇ =
12τ

m[6r2 + (h2 − 3r2) sin2 θ]
, fax =

mΩ2 sin 2θ

24L
(h2 − 3r2), fay =

−mΩ̇ sin 2θ

24L
(h2 − 3r2).

Solution to Problem 7.17.6.

fay = −
1

2
mg sin θ − 1

6
mΩ2[2l2 + 6l1 cos θ + l2 cos2 θ + 3l1(tan θ) sin θ],

faz = −
1

6
mΩ2(sin θ)(3l1 + l2 cos θ) +

1

2
mg cos θ, fb =

1

6
m[3g −Ω2(2l2 sin θ + 3l1 tan θ)],

fax = −µ fb, f f = µ fb, Maz = µl2 fb.

fax, fay, faz are the components of
⇀

f a resolved in FC, and FC is defined such that ̂C is aligned with

the slanted bar pointing toward the ground, and ı̂C is out of the page. Maz is a component of
⇀

MB/c

resolved in FC, where B is the slanted bar, and c is its center of mass. The remaining components

of
⇀

MB/c resolved in FC are zero.
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a

w
x

y

θ
⇀
g

Figure 7.17.8: Problem 7.17.8. Simple pendulum attached to a cart for Problem 7.17.8.

Symbol Definition

dm Mass element of B

⇀
py/w/A Momentum of the particle y relative to w

⇀
pB/x/A Momentum of the body B relative to w

→
JB/w Physical inertia matrix of body B relative to w

⇀

HB/w/A Angular momentum of the body B relative to w

Table 7.1: Symbols for Chapter 7.





Chapter Eight

Kinetic and Potential Energy

8.1 Kinetic Energy of Particles and Bodies

Definition 8.1.1. Let let y be a particle with mass m, let w be a point, and let FA be a frame.

Then, the kinetic energy of y relative to w with respect to FA is defined by

Ty/w/A
△
= 1

2
m|⇀v y/w/A|2. (8.1.1)

Definition 8.1.2. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let w be a point, and let FA be a frame. Then, the kinetic energy of B relative to w with

respect to FA is defined by

TB/w/A
△
= 1

2

l∑

i=1

mi|
⇀
v yi/w/A|2. (8.1.2)

The follow result shows that the kinetic energy of a body is the sum of the kinetic energies of its

component bodies.

Fact 8.1.3. Let B1 and B2 be bodies, let B be the body consisting of B1 and B2, let w be a

point, and let FA be a frame. Then,

TB/w/A = TB1/w/A + TB2/w/A. (8.1.3)

The following result relates the kinetic energies of a body relative to two different points.

Fact 8.1.4. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let w and z be points, and let FA be a frame. Then,

TB/w/A = TB/z/A + mB

⇀
v
′
z/w/A

⇀
v c/z/A +

1
2
mB|

⇀
v z/w/A|2. (8.1.4)

Proof. Note that

TB/w/A =
1
2

l∑

i=1

mi

⇀
v
′
yi/w/A

⇀
v yi/w/A

= 1
2

l∑

i=1

mi(
⇀
v yi/z/A +

⇀
v z/w/A)′(

⇀
v yi/z/A +

⇀
v z/w/A)

= 1
2

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/A +

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v z/w/A +

1
2
mB

l∑

i=1

⇀
v
′
z/w/A

⇀
v z/w/A
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= TB/z/A + mB

⇀
v
′
z/w/A

⇀
v c/z/A +

1
2
mB|

⇀
v z/w/A|2. �

Choosing z to be the center of mass yields the following result, which shows that the kinetic

energy of a body relative to an arbitrary point can be viewed as the kinetic energy of the body

relative to its center of mass plus the kinetic energy of the mass of the body concentrated at the

center of mass.

Fact 8.1.5. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let w be a point, and let FA be a frame. Then,

TB/w/A = TB/c/A +
1
2
mB|

⇀
v c/w/A|2. (8.1.5)

The following result expresses the kinetic energy TB/c/A of B relative to its center of mass in

terms of the relative velocities of its particles.

Fact 8.1.6. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, and let FA be a frame. Then,

TB/c/A =
1
2

l∑

i, j=1
i< j

mim j

mB

|⇀v y j/yi/A|2. (8.1.6)

Now assume that B is rigid and FA is body fixed. Then,

TB/c/A = 0. (8.1.7)

Finally, let w be a point. Then,

TB/w/A =
1
2
mB|

⇀
v c/w/A|2. (8.1.8)

Proof. Note that, for all i = 1, . . . , l,

⇀
v c/yi/A =

1

mB

l∑

j=1

m j

⇀
v y j/yi/A

=
1

mB

l∑

j=1

m j(
⇀
v y j/c/A −

⇀
v yi/c/A).

Next, we note the identity

l∑

i=1

mi

∣
∣
∣
∣
∣
∣
∣
∣

l∑

j=1

m j(
⇀
v y j/c/A −

⇀
v yi/c/A)

∣
∣
∣
∣
∣
∣
∣
∣

2

=
mB

2

l∑

i, j=1

mim j|
⇀
v y j/c/A −

⇀
v yi/c/A|2.

Therefore,

TB/c/A =
1
2

l∑

i=1

mi|
⇀
v yi/c/A|2

= 1
2

l∑

i=1

mi

m2
B

∣
∣
∣
∣
∣
∣
∣
∣

l∑

j=1

m j(
⇀
v y j/c/A −

⇀
v yi/c/A)

∣
∣
∣
∣
∣
∣
∣
∣

2
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= 1
4

l∑

i, j=1

mim j

mB

|⇀v y j/c/A −
⇀
v yi/c/A|2

= 1
4

l∑

i, j=1

mim j

mB

|⇀v y j/yi/A|2

= 1
2

l∑

i, j=1
i< j

mim j

mB

|⇀v y j/yi/A|2.

Now assume that B is rigid and FA is body fixed. Then, for all i, j ∈ {1, . . . , l}, it follows that
⇀
v y j/yi/A = 0, which implies (8.1.7). Finally, (8.1.8) follows from (8.1.7) and (8.1.5). �

The following result relates the kinetic energies of a body relative to the same point but with

respect to two different frames.

Fact 8.1.7. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let z be a point, and let FA and FB be frames. Then,

TB/z/A + TB/z/B =
1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A +

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/B. (8.1.9)

If
⇀
ωB/A = 0, then

TB/z/A = TB/z/B. (8.1.10)

Alternatively, if B is rigid, FB is body fixed, and z is fixed in B, then

TB/z/A =
1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A. (8.1.11)

Proof. Note that

TB/z/A + TB/z/B =
1
2

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/A +

1
2

l∑

i=1

mi

⇀
v
′
yi/z/B

⇀
v yi/z/B

= 1
2

l∑

i=1

mi(
⇀
v yi/z/A −

⇀
v yi/z/B)′(

⇀
v yi/z/A −

⇀
v yi/z/B) +

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/B

= 1
2

l∑

i=1

mi(
⇀
ωB/A ×

⇀
r yi/z)

′(
⇀
ωB/A ×

⇀
r yi/z) +

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/B

= 1
2

l∑

i=1

mi

⇀
ω
′
B/A

⇀
r
×′

yi/z

⇀
r
×
yi/z

⇀
ωB/A +

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/B

= 1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A +

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/B. �

Choosing z to be c in Fact 8.1.7 and using Fact 8.1.6 yields the following result.

Fact 8.1.8. Let FA be a frame, let B be a rigid body composed of particles y1, . . . , yl whose

masses are m1, . . . ,ml, respectively, let FB be a body-fixed frame, and let mB denote the mass of B.
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Then,

TB/c/A =
1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A =

1
2

l∑

i, j=1
i< j

mim j

mB

|⇀v y j/yi/A|2. (8.1.12)

The following result expresses the kinetic energy of a body in terms of its physical inertia matrix

and center of mass.

Fact 8.1.9. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let w and z be points, and let FA and FB be frames. Then,

TB/w/A =
1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A + mB

⇀
v
′
z/w/A(

⇀
ωB/A ×

⇀
r c/z) +

1
2
mB|

⇀
v z/w/A|2 + 1

2

l∑

i=1

mi|
⇀
v yi/z/B|2.

(8.1.13)

If, in addition, B is rigid, FB is body fixed, and z is fixed in B, then

TB/w/A =
1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A + mB

⇀
v
′
z/w/A(

⇀
ωB/A ×

⇀
r c/z) +

1
2
mB|

⇀
v z/w/A|2

= 1
2

⇀
ω
′
B/A

⇀

HB/z/A + mB

⇀
v
′
z/w/A(

⇀
ωB/A ×

⇀
r c/z) +

1
2
mB|

⇀
v z/w/A|2. (8.1.14)

Proof. It follows from (8.1.4) that

TB/w/A =
1
2

l∑

i=1

mi

⇀
v
′
yi/z/A

⇀
v yi/z/A + mB

⇀
v
′
z/w/A

⇀
v c/z/A +

1
2
mB|

⇀
v z/w/A|2

= 1
2

l∑

i=1

mi

⇀
v
′
yi/z/B

⇀
v yi/z/B +

1
2

l∑

i=1

mi(
⇀
ωB/A ×

⇀
r yi/z)

′(
⇀
ωB/A ×

⇀
r yi/z)

+
⇀
v
′
z/w/A

l∑

i=1

mi(
⇀
ωB/A ×

⇀
r yi/z) +

1
2
mB|

⇀
v z/w/A|2

= 1
2

l∑

i=1

mi|
⇀
v yi/z/B|2 + 1

2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A + mB

⇀
v
′
z/w/A(

⇀
ωB/A ×

⇀
r c/z) +

1
2
mB|

⇀
v z/w/A|2. �

Choosing z to be colocated with w in Fact 8.1.9 yields the following result.

Fact 8.1.10. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let z be a point, and let FA and FB be frames. Then,

TB/z/A =
1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A +

1
2

l∑

i=1

mi|
⇀
v yi/z/B|2. (8.1.15)

If, in addition, B is rigid, FB is body fixed, and z is fixed in B, then

TB/z/A =
1
2

⇀
ω
′
B/A

→
JB/z

⇀
ωB/A

= 1
2

⇀
ω
′
B/A

⇀

HB/z/A. (8.1.16)
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In particular,

TB/c/A =
1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A

= 1
2

⇀
ω
′
B/A

⇀

HB/c/A. (8.1.17)

Alternatively, choosing z to be the center of mass in Fact 8.1.9 yields the following result.

Fact 8.1.11. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, let w be a point, and let FA and FB be frames. Then,

TB/w/A =
1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A +

1
2
mB|

⇀
v c/w/A|2 + 1

2

l∑

i=1

mi|
⇀
v yi/c/B|2. (8.1.18)

Now assume that B is rigid and FB is body fixed. Then,

TB/w/A =
1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A +

1
2
mB|

⇀
v c/w/A|2

= 1
2

⇀
ω
′
B/A

⇀

HB/c/A +
1
2
mB|

⇀
v c/w/A|2. (8.1.19)

If, in addition, FA is body fixed, then

TB/w/A =
1
2
mB|

⇀
v c/w/A|2. (8.1.20)

Note that (8.1.20) is identical to (8.1.8).

Finally, choosing w to be the center of mass in Fact 8.1.11 yields the following result.

Fact 8.1.12. Let B be a body composed of particles y1, . . . , yl whose masses are m1, . . . ,ml,

respectively, let mB denote the mass of B, and let FA and FB be frames. Then,

TB/c/A =
1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A +

1
2

l∑

i=1

mi|
⇀
v yi/c/B|2. (8.1.21)

Now assume that B is rigid and FB is body fixed. Then,

TB/c/A =
1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A

= 1
2

⇀
ω
′
B/A

⇀

HB/c/A. (8.1.22)

If, in addition, FA is body fixed, then

TB/c/A = 0. (8.1.23)

Note that (8.1.23) is identical to (8.1.7).

It follows from Fact 8.1.12 that, if B is rigid and FA is a body-fixed frame, then TB/c/A = 0,

which is the second statement of Fact 8.1.6.

8.2 Work Done by Forces and Moments on a Body

Energy is a relative concept. Potential energy depends on position relative to a specified refer-

ence point, while kinetic energy depends on velocity relative to a reference point and with respect
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to a specified frame. The work done on a body by a force or moment is the energy transferred to or

removed from the body due to the force or moment.

The following result is a law of physics, and thus is not proved. Since this result concerns the

effect of a force on a particle, and since this effect is governed by Newton’s second law, the reference

point is taken to be an unforced particle.

Fact 8.2.1. Let y be a particle and let w be an unforced particle. Then, the work done on y

relative to w by the force
⇀

f y applied to y as y moves along the path Cy is given by

Wy/w(
⇀

f y,Cy) =

∫

Cy

⇀

f y · d
⇀
r y/w. (8.2.1)

Now, let B be a body with particles y1, . . . , yl. The work done on B relative to the point w by the

force
⇀

f yi
applied to yi as yi moves along the path Cyi

for all i = 1, . . . , l is given by

WB/w(
⇀

f y1
, . . . ,

⇀

f yl
,Cy1

, . . . ,Cyl
) =

l∑

i=1

Wyi/w(
⇀

f yi
,Cyi

). (8.2.2)

Notice that the mass of y plays no role. Therefore, we can consider a point y in place of a particle

with the understanding that Wy/w(
⇀

f y,Cy) denotes the energy transferred to y if y were a particle.

Let FA be a frame. Then, we can rewrite (8.2.1) as

Wy/w(
⇀

f y,Cy) =

∫ sf

0

⇀

f y(s) ·
As•
⇀
r y/w (s) ds

=

∫ sf

0

⇀

f y(s) · êt(s) ds, (8.2.3)

where the path C is parameterized by the path length s in the interval [0, sf] and, by (5.5.14),

êt(s) =

As•
⇀
r y/w (s), which is the unit tangent vector to Cy at s.

The following result is the analogue of Fact 8.2.1 for the case of forces applied to a rigid body.

Fact 8.2.2. Let B be a rigid body with particles y1, . . . , yl, for i = 1, . . . , l, let
⇀

f yi
denote the

force applied to yi, and let Cyi
denote the path of yi. Furthermore, let y be a point fixed in B, let Cy

denote the path of y, let
⇀

f B denote the total force on B, and let w be an unforced particle, and let

FA be a frame. In addition, let the rotational path CB of B be given by
→
RB/A(α) = e

⇀

Θ
×

B/A(α), where

α ∈ [0, αf]. Then, the work done on B relative to the point w by the forces
⇀

f 1, . . . ,
⇀

f l is given by

WB/w(
⇀

f y1
, . . . ,

⇀

f yl
,Cy1

, . . . ,Cyl
) = Wy/w(

⇀

f B,Cy) +WB/A(
⇀

MB,CB), (8.2.4)

where

WB/A(
⇀

MB,CB)
△
=

∫

CB

⇀

MB ·G(
⇀

ΘB/A) d
⇀

ΘB/A, (8.2.5)

⇀

MB

△
=

l∑

i=1

⇀
r yi/y ×

⇀

f yi
, (8.2.6)
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and

G(
⇀

ΘB/A)
△
=

1

|
⇀

ΘB/A|2

(
⇀

ΘB/A

⇀

Θ
′

B/A + (
→
J −

→
RB/A)

⇀

Θ
×

B/A

)

. (8.2.7)

Proof. Let s denote the path length variable for the point y, for i = 1, . . . , l, let si denote the

path length variable for the point yi. Therefore, for i = 1, . . . , l, using the fact that
⇀
r yi/y(α) =

→
RB/A(α)

⇀
r yi/y(0) as well as (4.9.8), we have

d
⇀
r yi/y =

α•
⇀
r yi/y (α)dα

=

α•
→
RB/A (α)dα

⇀
r yi/y(0)

=
⇀
ω
×
B/A(α)

→
RB/A(α)dα

⇀
r yi/y(0)

=
⇀
ω
×
B/A(α)

⇀
r yi/y(α)dα

=
⇀
ωB/A(α) × ⇀

r yi/y(α)dα

= −⇀r yi/y(α) × ⇀
ωB/A(α)dα

= −⇀r yi/y(α) × 1

|
⇀

ΘB/A|2

(
⇀

ΘB/A

⇀

Θ
′

B/A + (
→
J −

→
RB/A)

⇀

Θ
×

B/A

) α•
⇀

ΘB/A dα

= −⇀r yi/y ×G(
⇀

ΘB/A) d
⇀

ΘB/A.

Therefore,

WB/w(
⇀

f y1
, . . . ,

⇀

f yl
,Cy1

, . . . ,Cyl
)

=

l∑

i=1

Wyi/w(
⇀

f yi
,Cyi

)

=

l∑

i=1

∫

Cyi

⇀

f yi
· d⇀r yi/w

=

l∑

i=1

∫ sf

0

⇀

f yi
(s) · d⇀r yi/w(s)

=

l∑

i=1

∫ sf

0

⇀

f yi
(s) ·

As•
⇀
r yi/w (s) ds

=

l∑

i=1

∫ sf

0

⇀

f yi
(s) · [

As•
⇀
r yi/y (s)+

As•
⇀
r y/w (s)] ds

=

l∑

i=1

∫ sf

0

⇀

f yi
(s) ·

As•
⇀
r yi/y (s) ds +

l∑

i=1

∫ sf

0

⇀

f yi
(s)·

As•
⇀
r y/w (s) ds

=

l∑

i=1

∫ sf

0

⇀

f yi
(s) ·

As•
⇀
r si,yi/y (si(s)) ds +

∫ sf

0

l∑

i=1

⇀

f yi
(s)·

As•
⇀
r y/w (s) ds
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=

l∑

i=1

∫ sf

0

⇀

f yi
(s) ·

Asi•
⇀
r yi/y (si)

dsi

ds
ds +

∫ sf

0

⇀

f B(s)·
As•
⇀
r y/w (s) ds

=

l∑

i=1

∫ si,f

0

⇀

f yi
(si) ·

Asi•
⇀
r yi/y (si) dsi +

∫ sf

0

⇀

f B(s) · d⇀r y/w(s)

=

l∑

i=1

∫

Cyi

⇀

f yi
· d⇀r yi/y +

∫ sf

0

⇀

f B(s) · d⇀r y/w(s)

= −
∫

CB

l∑

i=1

⇀

f yi
· (⇀r yi/y ×G(

⇀

ΘB/A) d
⇀

ΘB/A) +Wy/w(
⇀

f B,Cy)

= −
∫

CB

l∑

i=1

(
⇀

f yi
× ⇀

r yi/y) ·G(
⇀

ΘB/A) d
⇀

ΘB/A +Wy/w(
⇀

f B,Cy)

=

∫

CB

l∑

i=1

(
⇀
r yi/y ×

⇀

f yi
) ·G(

⇀

ΘB/A) d
⇀

ΘB/A +Wy/w(
⇀

f B,Cy)

=

∫

CB

⇀

MB ·G(
⇀

ΘB/A) d
⇀

ΘB/A +Wy/w(
⇀

f B,Cy)

= WB/A(
⇀

MB,CB) +Wy/w(
⇀

f B,Cy). �

8.3 Potential Energy of Particles and Bodies

The following result is fundamental.

Fact 8.3.1. Let y be a particle, let
⇀

f y be a force acting on y that depends only on the position

of y, and let w be a point. Then, the following statements are equivalent:

i) For every path C,Wy/w(
⇀

f y,C) depends on the initial and final endpoints z0 and z1, respectively,

of C but is otherwise independent of C.

ii) There exists a function Uy/w that maps physical position vectors into real numbers such that

⇀

f y = −
⇀

∂Uy/w(
⇀
r y/w). (8.3.1)

In this case,

Wy/w(
⇀

f y,C) = Uy/w(
⇀
r z0/w) − Uy/w(

⇀
r z1/w), (8.3.2)

that is,

Uy/w(
⇀
r z1/w) − Uy/w(

⇀
r z0/w) = −

∫

C

⇀

f y · d
⇀
r y/w. (8.3.3)

Proof. To prove ii) implies i), let z(s) denote the path of y along C. Then, note that

Wy/w(
⇀

f y,C) =

∫

C

⇀

f y · d
⇀
r y/w

= −
∫

C

⇀

∂Uy/w(
⇀
r z/w) · d⇀r y/w
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= −
∫ s1

s0

⇀

∂Uy/w(
⇀
r z(s)/w) ·

As•
⇀
r z(s)/w ds

= −
∫ s1

s0

∂Uy/w|A

(
⇀
r z(s)/w

∣
∣
∣
∣
A

)

·
As•
⇀
r z(s)/w

∣
∣
∣
∣
∣
∣
∣
A

ds

= −
∫ s1

s0

∂Uy/w|A

(
⇀
r z(s)/w

∣
∣
∣
∣
A

)

· d

ds

(
⇀
r z(s)/w

∣
∣
∣
∣
A

)

ds

= −
∫ s1

s0

d

ds
Uy/w|A

(
⇀
r z(s)/w

∣
∣
∣
∣
A

)

ds

= Uy/w|A

(
⇀
r z(s0)/w

∣
∣
∣
∣
A

)

− Uy/w|A

(
⇀
r z(s1)/w

∣
∣
∣
∣
A

)

= Uy/w(
⇀
r z(s0)/w) − Uy/w(

⇀
r z(s1)/w)

= Uy/w(
⇀
r z0/w) − Uy/w(

⇀
r z1/w).

To prove i) implies ii), suppose that y is located at z0, and let C denote a path from z0 to z1. Since

Wy/w(
⇀

f y,C) is independent of C, we define

Uy/w(
⇀
r z1/w)

△
= −Wy/w(

⇀

f y,C).

Next, let ε > 0, and let z(s) for s ∈ [0, ε] denote the path Cε given by
⇀
r z(s)/w = sr̂z1/w. Hence z(ε)

denotes the point such that
⇀
r z(ε)/z0

= εr̂z1/w. Note that |⇀r z(ε)/w| = ε. We thus have

Uy/w(
⇀
r z(ε)/w) = −

∫

Cε

⇀

f y · d
⇀
r z(s)/w = −

∫ ε

0

⇀

f y(s) ds · r̂z1/w.

� Needs work

The force
⇀

f y acting on the particle y moving along the path C is a potential force if, for every

point w, condition i) or, equivalently, condition ii), is satisfied. Furthermore, Uy/w(
⇀
r z/w) is the

potential energy of y located at z relative to w associated with the force
⇀

f y. Note that Uy/w(
⇀

0) = 0.

Now consider a body B each of whose particles y1, . . . , yl is acted on by a potential force fyi

associated with the potential energy Uyi
(
⇀
r zi/w), where zi0 and zi1 are the initial and final locations of

yi along Ci, and w is a point. Then,

WB(
⇀

f y1
, . . . ,

⇀

f yl
,C1, . . . ,Cl,w) =

l∑

i=1

[Uyi/w(
⇀
r zi0/w) − Uyi/w(

⇀
r zi1/w)]. (8.3.4)

The moment
⇀

MB/w acting on B relative to w is a potential moment if it arises from forces that are

potential.

We first consider the gravitational potential energy in a uniform gravitational field. Let
⇀
g denote

the acceleration due to gravity.

Fact 8.3.2. Let y be a particle located at the point z, let m be the mass of y, let w be a point, let

FA be a frame, and let the acceleration due to gravity be given by
⇀
g . Then, the force acting on y due
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to gravity is given by
⇀

f y = −m
⇀
g , and the potential energy of y relative to w is given by

Uy/w(
⇀
r z/w) = −m

⇀
r z/w ·

⇀
g . (8.3.5)

Proof. Need proof. �

Let FA be as in Fact 8.3.2, let
⇀
g = −gk̂A, and let

⇀
r
∣
∣
∣
∣
A
= [r1 r2 r3]T. Then,

Uy/w|A(r) = mgr3. (8.3.6)

If, in addition, FB is a frame, then

Uy/wB(r) = mgeT
3OB/Ar. (8.3.7)

The gravitational potential energy of a body B due to a uniform gravitational field is defined to

be the sum of the gravitational potential energy of each particle in B.

Definition 8.3.3. Let B be a body consisting of particles y1, . . . , yl located at points z1, . . . , zl,

respectively. Then, the gravitational potential energy of B relative to w is defined by

UB/w
△
=

l∑

i=1

Uyiw(
⇀
r zi/w). (8.3.8)

Fact 8.3.4. Let B be a body with total mass mB, let w be a point, let c denote the center of

mass of B, and let
⇀
g be the acceleration due to gravity. Then, the gravitational potential energy of

B relative to w is given by

UB/w = −mB

⇀
r c/w ·

⇀
g . (8.3.9)

Proof. Note that

UB/w = −
l∑

i=1

(mi

⇀
r yi/w ·

⇀
g)

= −




l∑

i=1

mi

⇀
r yi/w




· ⇀g

= −mB

⇀
r c/w ·

⇀
g . �

Next we consider the potential energy due to a central gravitational field on the Earth with origin

OE at the center of the Earth. Let µE = GME denote the gravitational constant for the Earth, and

Fact 8.3.5. Let y be a particle with mass m, let OE be the center of the Earth, let FE = Fsph, and

let the potential energy of y relative to OE due to gravity be given by

Uy/OE
(
⇀
r y/OE

) = − µEm
⇀
r y/OE

· êu

. (8.3.10)

Then, the force
⇀

f grav due to gravity is given by

⇀

f grav = −mgêu,
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where g
△
= µE/|

⇀
r y/OE

|2.

Proof. Recall that Fsph = [êu êe ên]. Writing

Uy/OE |E(
⇀
r y/OE

) = −µEm

r1

,

where
⇀
r y/OE

∣
∣
∣
∣
E
= [r1 r1 r3]T, it follows that

−Uy/OE |E(
⇀
r y/OE

) =
[

− µEm

r2
1

0 0
]

.

Therefore,

⇀

f grav

∣
∣
∣
∣
∣

T

E

= −
⇀

∂Uy/OE
(
⇀
r y/OE

)

∣
∣
∣
∣
∣
E

= −∂Uy/OE
(|⇀r y/OE

|e1)

= − µEm

|⇀r y/OE
|2

eT
1

= −mg êu|TE . �

Next, we consider the potential energy of a spring.

Fact 8.3.6. Let y be an inertia point, and assume that y is connected to the inertia point w by

a spring whose stiffness is k and whose relaxed length is d. Then, the force acting on y due to the

spring is given by

⇀

f y = −k(|⇀r y/w| − d)r̂y/w = −
⇀

∂Uy/w|A(
⇀
r z/w), (8.3.11)

where the potential energy Uy/w of y relative to w is given by

Uy/w(
⇀
r z/w) = 1

2
k(|⇀r y/w| − d)2. (8.3.12)

Proof. Let
⇀
r z/w

∣
∣
∣
∣
A
=





x̄

ȳ

z̄




. Then,

Uy/w|A

(
⇀
r z/w

∣
∣
∣
∣
A

)

= 1
2
k(x̄2 + ȳ2 + z̄2 − 2d

√

x̄2 + ȳ2 + z̄2 + d2). (8.3.13)

Therefore,

∂x̄Uy/w|A

(
⇀
r z/w

∣
∣
∣
∣
A

)

=
k

|⇀r y/w|
(|⇀r y/w| − d)x̄,

and thus

∂TUy/w|A

(
⇀
r z/w

∣
∣
∣
∣
A

)

=
k

|⇀r y/w|
(|⇀r y/w| − d)





x̄

ȳ

z̄





= −k(|⇀r y/w| − d) r̂y/w

∣
∣
∣
A

= −
⇀

f y

∣
∣
∣
∣
∣
A

.
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Hence,

⇀

∂Uy/w|A(
⇀
r z/w) = k(|⇀r y/w| − d)r̂y/w. �

8.4 Conservation of Energy

The total energy of a body B relative to w with respect to FA is defined by

EB/w/A
△
= TB/w/A + UB/w. (8.4.1)

Note that EB/w/A includes the kinetic energy of B as well as the potential energy associated with

all potential forces acting on the particles in B, such as gravity (which may be central or uniform)

and springs. The body B is assumed to have finite mass. If B interacts with a massive body, then all

reaction forces due to the massive body are viewed as internal forces, but the kinetic and potential

energy of the massive body are not included. If B consists of particles y1, . . . , yl, then

EB/w/A =

l∑

i=1

[Tyi/w/A + Uyi/w(
⇀
r yi/w)]. (8.4.2)

where, for i = 1, . . . , l, Tyi/w/A =
1
2
mi|

⇀
v yi/w/A|2.

The particles in a body can be subjected to both internal forces (that is, reaction forces) and

external forces. Internal forces, such as sliding with friction, can lead to a decrease in energy, while

external forces can lead to either a decrease or increase in energy. If the internal or external force
⇀

f does not increase or decrease the total energy of the body, then
⇀

f is a conservative force. The

following result shows that all potential forces are conservative forces.

Fact 8.4.1. Let B be a body, let FA be an inertial frame, let w be an unforced particle, and

assume that all internal and external forces applied to B are potential forces. Then, the total energy

of B relative to w with respect to FA is conserved.

Proof. For i = 1, . . . , l, let
⇀

f yi
denote the total force applied to yi. Therefore,

d

dt
EB/w/A =

d

dt

l∑

i=1

[ 1
2
mi|

⇀
v yi/w/A|2 + Uyi/w(

⇀
r yi/w)]

=

l∑

i=1

[

1
2
mi

d

dt
(
⇀
v yi/w/A ·

⇀
v yi/w/A) + ∂Uyi/w(

⇀
r yi/w) · ⇀v yi/w/A

]

=

l∑

i=1

(mi

⇀
ayi/w/A ·

⇀
v yi/w/A −

⇀

f yi
· ⇀v yi/w/A)

=

l∑

i=1

[(mi

⇀
ayi/w/A −

⇀

f yi
) · ⇀v yi/w/A]

= 0. �
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8.5 Theoretical Problems

Problem 8.5.1. Let B be a body consisting of particles y1, . . . , yl with masses m1, . . . ,ml, re-

spectively, let c denote the center of mass of B, and let w be an unforced particle. Assume that,

for all distinct i, j ∈ {1, . . . , l}, the particles yi and y j are connected by a dashpot with viscosity ci j.

(Note that ci j = c ji and cii = 0.) Assume, in addition, that no external forces are applied to B.

i) Show that, for all i ∈ {1, . . . , l}, limt→∞
⇀
v yi/w/A exists and, for all distinct i, j ∈ {1, . . . , l},

limt→∞
⇀
v yi/w/A = limt→∞

⇀
v y j/w/A.

ii) Show that, for all distinct i, j ∈ {1, . . . , l}, limt→∞
⇀
v yi/y j/A = 0.

iii) Show that limt→∞ TB/c/A = 0.

iv) Show that limt→∞ TB/w/A = mB|
⇀
v c/w/A|2.





Chapter Nine

Lagrangian Dynamics

9.1 Lagrangian Dynamics versus Newton-Euler Dynamics

The equations of motion for a body that consists of multiple rigid bodies can be derived by ap-

plying Newton-Euler dynamics individually to each rigid body. Rigid bodies can interact with each

other through rolling, sliding (with or without friction), and pivoting (with or without friction). This

interaction can occur through joints, which may be revolute (rotatable) or prismatic (extendable).

To apply Newton-Euler dynamics to each rigid body, we must determine the forces and moments

acting on each rigid body. Since each rigid body can interact with all other rigid bodies (including

massive bodies) through reaction forces and moments as determined by Newton’s third law, the total

force and moment on each rigid body must include the forces and moments due to the interaction

with the remaining bodies as well as the forces and moments due to gravity.

A rigid body may also be subject to a constraint, such as a connection to another, possibly

massive, rigid body by means of a revolute or prismatic joint. The constraint can be viewed as

equivalent to forces and moments that prevent the interconnected rigid bodies from moving in ways

that violate the constraint. The effect of constraints on the rigid bodies in a body is thus to introduce

contact reaction forces and moments between the rigid bodies; these forces are known as constraint

forces and moments. The massive body is unaffected by constraint forces and moments.

Unfortunately, the task of determining reaction forces and moments due to the interactions be-

tween rigid bodies can be difficult. In 1788, Lagrange discovered that the equations of motion for

a body consisting of multiple rigid bodies can be obtained by performing operations on the kinetic

and potential energies. Lagrangian dynamics circumvents the need to determine the contact forces

and moments between particles and rigid bodies. If the contact forces and moments are of interest,

then these can be determined by using Newton-Euler methods in conjunction with the equations

derived from Lagrangian dynamics.

9.2 Generalized Coordinates

We consider a discrete or continuum body B that consists of particles that can translate as well

as rigid bodies that can translate and rotate. The configuration of B refers to the spatial arrangement

of the particles and rigid bodies in B. The configuration of B can be modeled by using generalized

coordinates qi, each of which is either a position or an angle. More specifically, qi is either a scalar

position along a dimensionless unit vector or a signed angle around a dimensionless unit vector. The

maximum number of generalized coordinates needed to determine the configuration of a body is the

number of degrees of freedom of the body. Each particle that is not constrained is described by three

coordinates, and thus has three degrees of freedom. Likewise, each rigid body that is not constrained

can be modeled by six coordinates and thus has six degrees of freedom. Cylindrical and spherical

coordinates are generalized coordinates. If B consists of l1 particles and l2 rigid bodies, then B can
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have up to 3l1 + 6l2 degrees of freedom. If the particles and rigid bodies in B are constrained, for

example, through revolute or prismatic joints, then the number of degrees of freedom is less than

this number.

Ignoring constraints that may be present, the position of the particle yi in the body B relative to

the point w can be modeled by the three coordinates

⇀
r yi/w

∣
∣
∣
∣
A
=





x̄i

ȳi

z̄i




. (9.2.1)

However, when constraints are considered, it is often convenient to model the configuration of the

body by using r generalized coordinates

q
△
=





q1

...

qr





∈ Rr. (9.2.2)

The coordinates x̄i, ȳi, z̄i for yi can thus be written as

x̄i = x̄i(q, t), (9.2.3)

ȳi = ȳi(q, t), (9.2.4)

z̄i = z̄i(q, t), (9.2.5)

For example, the position of the tip of a pendulum connected by a massless arm to an inertially

nonrotating massive rigid body by means of a revolute joint is constrained to lie on a circle centered

at the joint, while a rigid body can be thought of as being composed of innumerable particles con-

strained to move in such a manner that the distance between each pair of particles is constant. It is,

therefore, useful to consider a body of l particles with p independent physical constraints modeled

by

φ j(x̄1, ȳ1, z̄1, . . . , x̄l, ȳl, z̄l) = 0, j = 1, . . . , p. (9.2.6)

This body possesses r = 3l − p degrees of freedom since only r independent quantities need be

known to determine the configuration. The configuration space of a pendulum is the circle on which

the tip of the pendulum moves, while the configuration space of a rigid body—regardless of the

number of particles comprising the body—is the set of all positions of its center of mass together

with the set of all possible orientations.

Constraints such as (9.2.6), which constrain the positions but not the derivatives of position,

are holonomic. When the constraints on a body are holonomic, it is often possible (but not always

possible, see Chapter 9) to find independent, that is, unconstrained, generalized coordinates that

describe the configuration of the body. The positions of all of the particles, when expressed in

terms of these independent coordinates, automatically satisfy the physical constraints of the body.

For instance, the generalized coordinate for the pendulum is its angular position. Likewise, the

coordinates of the center of mass of a rigid body together with its three Euler angles provide six

generalized coordinates for the rigid body regardless of the number of particles comprising the body.

For the remainder of this chapter we assume that all bodies are holonomic with configurations that

are described by independent, unconstrained generalized coordinates. This assumption is removed

in Chapter 9.
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9.3 Generalized Velocities and Kinetic Energy

The rate of change of the configuration of the body B induces the generalized coordinates to

change with rates called generalized velocities, which are denoted by q̇ = [q̇1 · · · q̇r]
T. If q1, . . . , qr

are independent, then so are q̇1, . . . , q̇r. By applying the chain rule to (9.2.3)–(9.2.5), we obtain the

components of the velocity of the ith particle relative to the point w and with respect to FA as

⇀
v yi/w/A

∣
∣
∣
∣
A
=





ūi

v̄i

w̄i




, (9.3.1)

where

ūi = ūi(q, q̇, t) =

r∑

j=1

∂q j
x̄i(q, t)q̇ j + ∂t x̄i(q, t), (9.3.2)

v̄i = v̄i(q, q̇, t) =

r∑

j=1

∂q j
ȳi(q, t)q̇ j + ∂tȳi(q, t), (9.3.3)

w̄i = w̄i(q, q̇, t) =

r∑

j=1

∂q j
z̄i(q, t)q̇ j + ∂t z̄i(q, t). (9.3.4)

Defining the gradient ∂q x̄i(q, t) ∈ R1×r of xi(q, t) by

∂q x̄i(q, t)
△
=

[

∂q1
x̄i(q, t) · · · ∂qr

x̄i(q, t)
]

, (9.3.5)

which is a row vector, and

αi(q, t)
△
= ∂t x̄i(q, t), βi(q, t)

△
= ∂tȳi(q, t), γi(q, t)

△
= ∂t z̄i(q, t), (9.3.6)

we can rewrite (9.3.2)–(9.3.4) as

ūi = ∂q x̄i(q, t)q̇ + αi(q, t), (9.3.7)

v̄i = ∂qȳi(q, t)q̇ + βi(q, t), (9.3.8)

w̄i = ∂qz̄i(q, t)q̇ + γi(q, t). (9.3.9)

Note that, if the dynamics of the body are time invariant, then αi(q, t), βi(q, t), and γi(q, t) are zero.

Next, letting mi denote the mass of the ith particle of the body B, we write the kinetic energy of

B relative to the point w with respect to FA in terms of its generalized coordinates and generalized

velocities as

TB/w/A(q, q̇, t) = 1
2

l∑

i=1

mi|
⇀
v yi/w/A|2

= 1
2

l∑

i=1

mi[ū
2
i (q, q̇, t) + v̄2

i (q, q̇, t) + w̄2
i (q, q̇, t)]

= 1
2
q̇T

l∑

i=1

mi[∂
T
q x̄i(q, t)∂q x̄i(q, t) + ∂

T
q ȳi(q, t)∂qȳi(q, t) + ∂

T
q z̄i(q, t)∂qz̄i(q, t)]q̇

+

l∑

i=1

mi[αi(q, t)∂q x̄i(q, t) + βi(q, t)∂qȳi(q, t) + γi(q, t)∂qz̄i(q, t)]q̇
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+ 1
2

l∑

i=1

mi[α
2
i (q, t) + β2

i (q, t) + γ2
i (q, t)]. (9.3.10)

Hence

TB/w/A(q, q̇, t) = 1
2
q̇TM(q, t)q̇ + F(q, t)q̇ +G(q, t), (9.3.11)

where the mass matrix M(q, t) ∈ Rr×r is defined by

M(q, t)
△
=

l∑

i=1

mi[∂
T
q x̄i(q, t)∂q x̄i(q, t) + ∂

T
q ȳi(q, t)∂qȳi(q, t) + ∂

T
q z̄i(q, t)∂qz̄i(q, t)] (9.3.12)

and F(q, t) ∈ R1×l and G(q, t) ∈ R are defined by

F(q, t)
△
=

l∑

i=1

mi[αi(q, t)∂q x̄i(q, t) + βi(q, t)∂qȳi(q, t) + γi(q, t)∂qz̄i(q, t)] (9.3.13)

and

G(q, t)
△
= 1

2

l∑

i=1

mi[α
2
i (q, t) + β2

i (q, t) + γ2
i (q, t)]. (9.3.14)

Note that the ( j, k) entry of M(q, t) is given by

M jk(q, t) =

l∑

i=1

mi[∂q j
x̄i(q, t)∂qk

x̄i(q, t) + ∂q j
ȳi(q, t)∂qk

ȳi(q, t) + ∂q j
z̄i(q, t)∂qk

z̄i(q, t)]. (9.3.15)

Finally, if the dynamics of the body are time invariant, then (9.3.11) becomes

TB/w/A(q, q̇, t) = 1
2
q̇TM(q, t)q̇. (9.3.16)

Next, suppose that B is a rigid body with mass m and let FB be a body-fixed frame. Then, it

follows from (8.1.19) that

TB/w/A(q, q̇) = 1
2
m
⇀
v
′
c/w/A

⇀
v c/w/A +

1
2

⇀
ω
′
B/A

→
JB/c

⇀
ωB/A. (9.3.17)

In order to express
⇀
ωB/A as the derivative of components of q, we define q ∈ R6 by

q =





rc

Φ

Θ

Ψ





, (9.3.18)

where

rc
△
=

⇀
r c/w

∣
∣
∣
∣
A

(9.3.19)

and Ψ,Θ,Φ are (3,2,1) Euler angles that define the orientation of FB relative to FA. It thus follows

from (2.12.32) that OB/A = O1(Φ)O2(Θ)O3(Ψ). Consequently, TB/w/A can be written as

TB/w/A(q, q̇) = 1
2
m

⇀
v c/w/A

∣
∣
∣
∣

T

A

⇀
v c/w/A

∣
∣
∣
∣
A
+ 1

2

⇀
ωB/A

∣
∣
∣
∣

T

B

→
JB/c

∣
∣
∣
∣
∣
B

⇀
ωB/A

∣
∣
∣
∣
B

= 1
2
m‖vc‖2 + 1

2





Φ̇

Θ̇

Ψ̇





T

S T(Φ,Θ)
→
JB/c

∣
∣
∣
∣
∣
B

S (Φ,Θ)





Φ̇

Θ̇

Ψ̇




, (9.3.20)
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where

vc
△
= ṙc =

A•
⇀
r c/w

∣
∣
∣
∣
∣
∣
∣
A

=
⇀
v c/w/A

∣
∣
∣
∣
A
, (9.3.21)

and, from (4.10.7),

⇀
ωB/A

∣
∣
∣
∣
B
= S (Φ,Θ)





Φ̇

Θ̇

Ψ̇




, (9.3.22)

where

S (Φ,Θ)
△
=





1 0 − sinΘ

0 cosΦ (cosΘ) sinΦ

0 − sinΦ (cosΘ) cosΦ




. (9.3.23)

Hence,

TB/w/A(q, q̇) = 1
2
q̇TM(q)q̇, (9.3.24)

where M(q) ∈ R6×6 is defined by

M(q)
△
=





mI3 0

0 S T(Φ,Θ)
→
JB/c

∣
∣
∣
∣
∣
B

S (Φ,Θ)





. (9.3.25)

As shown by Problem 4.21.2, however, (9.3.22) is not able to represent all possible angular

velocities due to gimbal lock. To address this issue, (4.9.11) can be used to express
⇀
ωB/A in terms

of the eigenaxis angle vector and its derivative. In this case, define q ∈ R6 by

q =

[

rc

ΘB/A

]

, (9.3.26)

where

rc
△
=

⇀
r c/w

∣
∣
∣
∣
A

(9.3.27)

and, using (2.14.8)

ΘB/A
△
=

⇀

ΘB/A

∣
∣
∣
∣
∣
B

=
⇀

ΘB/A

∣
∣
∣
∣
∣
A

. (9.3.28)

Consequently, TB/w/A can be written as

TB/w/A(q, q̇) = 1
2
m

⇀
v c/w/A

∣
∣
∣
∣

T

A

⇀
v c/w/A

∣
∣
∣
∣
A
+ 1

2

⇀
ωB/A

∣
∣
∣
∣

T

B

→
JB/c

∣
∣
∣
∣
∣
B

⇀
ωB/A

∣
∣
∣
∣
B

= 1
2
m‖vc‖2 + 1

2
Θ̇T

B/AKT(ΘB/A)
→
JB/c

∣
∣
∣
∣
∣
B

K(ΘB/A)Θ̇B/A,

(9.3.29)

where

vc
△
= ṙc =

⇀
v c/w/A

∣
∣
∣
∣
A

(9.3.30)

and, from (4.9.11),

⇀
ωB/A

∣
∣
∣
∣
B
= G(ΘB/A)Θ̇B/A (9.3.31)
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where

K(ΘB/A)
△
= I3 −

1 − cos θB/A

θ2
B/A

Θ×B/A +
θB/A − sin θB/A

θ3
B/A

Θ×2
B/A (9.3.32)

and θB/A
△
= ‖ΘB/A‖. Hence,

TB/w/A(q, q̇) = 1
2
q̇TM(q)q̇, (9.3.33)

where M(q) ∈ R6×6 is defined by

M(q)
△
=





mI3 0

0 GT(ΘB/A)
→
JB/c

∣
∣
∣
∣
∣
B

G(ΘB/A)





. (9.3.34)

Alternatively, the angular velocity vector can be expressed in terms of Euler angles and their deriva-

tives as well as Euler parameters and their derivatives.

The following result shows that the kinetic energy is a positive-definite quadratic form in the

generalized velocities.

Fact 9.3.1. For all generalized coordinates q, the mass matrix M(q) is positive definite.

Proof. Note that M(q) is symmetric and positive semidefinite. To show that M(q) is positive

definite, suppose that q̇ is nonzero. Then, there exists an inertia point yi in B such that
⇀
v yi/w/A is

nonzero. Consequently, TB/w/A is positive. Hence M(q) is positive definite. �

Note that Fact 9.3.1 does not apply to (9.3.25) since S (Φ,Θ) is singular when gimbal lock

occurs.

9.4 Generalized Forces and Moments for Bodies with Forces

Each particle in a body B moves under the influence of external forces, which are external to

the body in origin, as well as internal forces, which result from interactions between the particles

and rigid bodies in B. Internal forces can include reaction forces due to contact between particles

and rigid bodies, as well as forces due to interconnections comprised of springs and dashpots. We

assume in this section that all moments on B are expressed in terms of forces.

Assume that the body B has inertia points y1, . . . , yl, let q1, . . . , qr be independent generalized

coordinates for B, let w be an unforced particle in (9.2.1) and (9.3.1), and let FA be an inertial frame,

as necessitated by the Lagrangian dynamics later in this chapter. Furthermore, for i = 1, . . . , l, let
⇀

f i be the total internal and external force acting on yi excluding conservative contact forces, and let

⇀

f i(t)

∣
∣
∣
∣
∣
A

=





fxi
(t)

fyi
(t)

fzi
(t)




. (9.4.1)

Then, for j = 1, . . . , r, the generalized force or moment Q j due to
⇀

f 1, . . . ,
⇀

f l is defined by

Q j(q, q̇, t)
△
=

l∑

i=1

[ fx̄i
(t)∂q j

x̄i(q) + fȳi
(t)∂q j

ȳi(q) + fz̄i
(t)∂q j

z̄i(q)], (9.4.2)
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which we can be rewritten as

Q j(q, q̇, t) =

l∑

i=1

⇀

f i

∣
∣
∣
∣
∣

T

A

∂q j

(
⇀
r yi/w

∣
∣
∣
∣
A

)

. (9.4.3)

Equivalently, (9.4.2) can be written in terms of velocities as

Q j(q, q̇, t) =

l∑

i=1

⇀

f i

∣
∣
∣
∣
∣

T

A

∂q̇ j

(
⇀
v yi/w/A

∣
∣
∣
∣
A

)

. (9.4.4)

Note that, if q j is a position, then Q j is a force, whereas, if q j is an angle, then Q j is a moment.

Furthermore, note that the ith term in the summation in (9.4.3) is a measure of the effect of the force
⇀

f i on the sensitivity of the position of the inertia point yi to changes in the generalized coordinate

q j.

9.5 Generalized Forces and Moments for Bodies with Moments

If the body B consists of at least one rigid body, then moments may be specified rather than

forces. In this case, each moment can be replaced by a pair of balanced forces, and (9.4.3) can be

used to determine the resulting generalized forces and moments.

Alternatively, (9.4.3) can be replaced by an expression involving moments. In particular, sup-

pose that B is a rigid body subject to exactly two nonzero forces that are not due to conservative

contact. For convenience, assume that these forces are
⇀

f and −
⇀

f applied to inertia points y1 and y2,

respectively. Then, the generalized force Q j is given by

Q j(q, q̇, t) =
⇀

f

∣
∣
∣
∣
∣

T

A

∂q̇ j

(
⇀
v y1/w/A

∣
∣
∣
∣
A

)

−
⇀

f

∣
∣
∣
∣
∣

T

A

∂q̇ j

(
⇀
v y2/w/A

∣
∣
∣
∣
A

)

=
⇀

f

∣
∣
∣
∣
∣

T

A

[

∂q̇ j

(
⇀
v y1/w/A

∣
∣
∣
∣
A

)

− ∂q̇ j

(
⇀
v y2/w/A

∣
∣
∣
∣
A

)]

=
⇀

f

∣
∣
∣
∣
∣

T

A

[

∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A
× ⇀

r y1/w

∣
∣
∣
∣
A

)

− ∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A
× ⇀

r y2/w

∣
∣
∣
∣
A

)]

=
⇀

f

∣
∣
∣
∣
∣

T

A

[

∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A

)

×
(
⇀
r y1/w

∣
∣
∣
∣
A
− ⇀

r y2/w

∣
∣
∣
∣
A

)]

=
⇀

f

∣
∣
∣
∣
∣

T

A

[

∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A

)

× ⇀
r y1/y2

∣
∣
∣
∣
A

]

= −
⇀

f

∣
∣
∣
∣
∣

T

A

[
⇀
r y1/y2

∣
∣
∣
∣
A
× ∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A

)]

= −
(⇀

f

∣
∣
∣
∣
∣
A

× ⇀
r y1/y2

∣
∣
∣
∣
A

)T

∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A

)

=

(

⇀
r y1/y2

∣
∣
∣
∣
A
×

⇀

f

∣
∣
∣
∣
∣
A

)T

∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A

)

=
⇀

Mk

∣
∣
∣
∣
∣

T

A

∂q̇ j

(
⇀
ωB/A

∣
∣
∣
∣
A

)

. (9.5.1)

More generally, suppose that the body B consists of m rigid bodies B1, . . . ,Bm, and, for k =

1, . . . ,m, let FBk
be a body-fixed frame for Bk and let

⇀

Mk denote the total internal and external

torque applied to Bk excluding conservative contact torques. Then, for j = 1, . . . , r, the generalized
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force or moment Q j due to
⇀

M1, . . . ,
⇀

Mm is given in analogy with (9.4.4) by

Q j(q, q̇, t) =

m∑

k=1

⇀

Mk

∣
∣
∣
∣
∣

T

A

∂q̇ j

(
⇀
ωBk/A

∣
∣
∣
∣
A

)

. (9.5.2)

As in the case of forces, if q j is a position, then Q j is a force, whereas, if q j is an angle, then Q j is a

moment.

In order to apply (9.5.2), each angular velocity vector
⇀
ωBk/A

∣
∣
∣
∣
A

must be expressed in terms of the

derivatives of the generalized coordinates. To demonstrate this approach in terms of the Cartesian

coordinates of the centers of mass and eigenaxis angle vectors of the rigid bodies, we define q ∈ R9m

by

q =





rc,1

...

rc,m

ΘB1/A

...

ΘBm/A

Θ̇B1/A

...

Θ̇Bm/A





, (9.5.3)

where, using (2.14.8),

ΘBk/A
△
=

⇀

ΘBk/A

∣
∣
∣
∣
∣
A

=
⇀

ΘBk/A

∣
∣
∣
∣
∣
B

. (9.5.4)

Next, it follows from (4.9.10) that

⇀
ωBk/A

∣
∣
∣
∣
A
= H(ΘBk/A)Θ̇Bm/A, (9.5.5)

where

H(ΘBk/A)
△
= I3 +

1 − cos θBk/A

θ2
Bk/A

Θ×Bk/A
+
θBk/A − sin θBk/A

θ3
Bk/A

Θ×2
Bk/A

(9.5.6)

and θBk/A
△
= ‖ΘBk/A‖. Now, using the fact that ∂q̇ j

Θ̇Bk/A = ∂q j
ΘBk/A, it follows from (9.5.2) and

(9.5.5) that

Q j(q, q̇, t) =

m∑

k=1

⇀

Mk

∣
∣
∣
∣
∣

T

A

H(ΘBk/A)∂q j
(ΘBk/A), (9.5.7)

If both forces and moments are present, then (9.4.3) and (9.5.7) can be combined to obtain

Q j(q, q̇, t) =

l∑

i=1

⇀

f i

∣
∣
∣
∣
∣

T

A

∂q j

(
⇀
r yi/w

∣
∣
∣
∣
A

)

+

m∑

k=1

⇀

Mk

∣
∣
∣
∣
∣

T

A

H(ΘBk/A)∂q j
(ΘBk/A). (9.5.8)

9.6 Lagrange’s Equations: Kinetic Energy Form

The following result provides equations of motion for a body in terms of generalized coordi-

nates. Generalized forces and moments that are due to conservative internal contact forces do not
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need to be considered, and thus these forces and moments are excluded.

Fact 9.6.1. Let B be a body described by generalized coordinates q = [q1 · · · qr]
T, let w be an

unforced particle, and let Q denote all generalized forces and moments except those that arise from

conservative contact, and let FA be an inertial frame. Then, q(t) satisfies

dt∂
T
q̇ TB/w/A(q(t), q̇(t), t) − ∂T

q TB/w/A(q(t), q̇(t), t) = Q(q(t), q̇(t), t). (9.6.1)

Proof. Prove this result. �

Equation (9.6.1) can be rewritten as

dt[M(q(t), t)q̇(t) + F(q(t), t)] − ∂T
q [q̇T(t)M(q(t), t)q̇(t) + F(q(t), t)q̇(t) +G(q(t), t)] = Q(q(t), q̇(t), t).

(9.6.2)

In terms of components j = 1, . . . , r, (9.6.1) can be rewritten as

dt∂q̇ j
TB/w/A(q(t), q̇(t), t) − ∂q j

TB/w/A(q(t), q̇(t), t) = Q j(q(t), q̇(t), t). (9.6.3)

Furthermore,

∂T
q TB/w/A(q, q̇, t) =





1
2
q̇T∂q1

M(q, t)q̇
...

1
2
q̇T∂qr

M(q, t)q̇





+





∂q1
F(q, t)q̇
...

∂qr
F(q, t)q̇





+ ∂T
qG(q, t). (9.6.4)

Equations (9.6.1) are Lagrange’s equations. These equations consist of r second-order ordi-

nary differential equations. Each solution, therefore, requires 2r initial values of the variables

q1, . . . , qr, q̇1, . . . , q̇r. Thus the motion of a body depends on its initial configuration as well as

the initial velocities of all of its constituent particles. The generalized coordinates and the corre-

sponding generalized velocities at each instant together uniquely determine the subsequent motion

of the body.

For the following identity, we suppress the arguments of TB/w/A.

Fact 9.6.2. Let B be a body described by generalized coordinates q = [q1 · · · qr]
T, let w be a

point, and let FA be a frame. For all j = 1, . . . , r, the kinetic energy TB/w/A satisfies

dt∂q̇ j
TB/w/A = ∂

2
q̇ j

TB/w/Aq̈ j + dt[∂
2
q̇ j

TB/w/A]q̇ j + dt[∂q̇ j
TB/w/A)

∣
∣
∣
q̇ j=0

]. (9.6.5)

Proof. For each j ∈ {1, . . . , r}, we can write

TB/w/A(q, q̇, t) = 1
2
q̇TM(q, t)q̇ + F(q, t)q̇ +G(q, t)

= 1
2

M j(q j, q̄ j, ˙̄q j, t)q̇ j
2 + L j(q j, q̄ j, ˙̄q j, t)q̇ j + K j(q̄ j, ˙̄q j, t),

where q̄ j denotes q with q j omitted, and M j, L j, and K j are appropriate functions of the indicated

arguments. We thus have

dt∂q̇ j
TB/w/A(q, q̇, t) = 1

2
dt∂q̇ j

[M j(q j, q̄ j, ˙̄q j, t)q̇
2
j ] + dt∂q̇ j

[L j(q j, q̄ j, ˙̄q j, t)q̇ j] + dt∂q̇ j
[K j(q̄ j, ˙̄q j, t)]

= dt[M j(q j, q̄ j, ˙̄q j, t)q̇ j] + dtL j(q j, q̄ j, ˙̄q j, t)

= M j(q j, q̄ j, ˙̄q j, t)q̈ j + dt[M j(q j, q̄ j, ˙̄q j, t)]q̇ j + dtL j(q j, q̄ j, ˙̄q j, t)

= ∂2
q̇ j

TB/w/A(q j, q̄ j, ˙̄q j, t)q̈ j + dt[∂
2
q̇ j

TB/w/A(q j, q̄ j, ˙̄q j, t)]q̇ j
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+ dt[∂q̇ j
TB/w/A(q j, q̄ j, ˙̄q j, t))

∣
∣
∣
q̇ j=0

]. �

Using Fact 9.6.2 we can rewrite Fact 9.6.1 as follows.

Fact 9.6.3. Let FA be an inertial frame, let B be a body described by generalized coordinates

q = [q1 · · · qr]
T, let w be an unforced particle, and let Q denote all generalized forces and moments

except those that arise from conservative contact. Then, for all j = 1, . . . , r, q(t) satisfies

∂2
q̇ j

TB/w/Aq̈ j + dt[∂
2
q̇ j

TB/w/A]q̇ j + dt[∂q̇ j
TB/w/A)

∣
∣
∣
q̇ j=0

] − ∂q j
TB/w/A = Q j. (9.6.6)

The following observation provides a constant of the motion in special cases.

Fact 9.6.4. Let FA be an inertial frame, let B be a body described by generalized coordinates

q = [q1 · · · qr]
T, let w be an unforced particle, and let Q denote all generalized forces and moments

except those that arise from conservative contact. Furthermore, let j ∈ {1, . . . , r} and assume that

Q j = 0 and TB/w/A does not depend on q j. Then,

dt∂q̇ j
TB/w/A(q(t), q̇(t), t) = 0. (9.6.7)

That is, ∂q̇ j
TB/w/A(q(t), q̇(t), t) is a constant of the motion.

If q j is a position, then the constant ∂q̇ j
TB/w/A(q(t), q̇(t), t) is a constant of momentum, whereas,

if q j is an angle, then the constant ∂q̇ j
TB/w/A(q(t), q̇(t), t) is a constant of angular momentum

9.7 Derivation of Euler’s Equation from Lagrange’s Equations

For the case of a single rigid body, we now use Lagrange’s equations to derive Euler’s equation

given by Fact 7.8.5. We do this for the case where the angular velocity is represented in terms of

3-2-1 Euler angles. To begin, we rewrite (4.10.6) as

⇀
ωD/A = f (Θ, Φ̇, Ψ̇)ı̂D + g(Φ,Θ, Θ̇, Ψ̇) ̂D + h(Φ,Θ, Θ̇, Ψ̇)k̂D, (9.7.1)

where

f (Θ, Φ̇, Ψ̇)
△
= −Ψ̇(sinΘ) + Φ̇, (9.7.2)

g(Φ,Θ, Θ̇, Ψ̇)
△
= Ψ̇(sinΦ)(cosΘ) + Θ̇ cosΦ, (9.7.3)

h(Φ,Θ, Θ̇, Ψ̇)
△
= Ψ̇(cosΦ)(cosΘ) − Θ̇(sinΦ). (9.7.4)

Alternatively, we can rewrite
⇀
ωD/A as

⇀
ωD/A = Φ̇

⇀
x + Θ̇

⇀
y (Φ) + Ψ̇

⇀
z (Φ,Θ), (9.7.5)

where

⇀
x
△
= ı̂D, (9.7.6)

⇀
y (Φ)

△
= (cosΦ) ̂D − (sinΦ)k̂D, (9.7.7)

⇀
z (Φ,Θ)

△
= −(sinΘ)ı̂D + (sinΦ)(cosΘ) ̂D + (sinΦ)(cosΘ)k̂D. (9.7.8)

By writing (9.7.5) as

⇀
ωD/A =

[
⇀
x

⇀
y (Φ)

⇀
z (Φ,Θ)

]

θ̇, (9.7.9)
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where

θ
△
=





Φ

Θ

Ψ




, (9.7.10)

it follows that

⇀
ωD/A

∣
∣
∣
∣
D
= S (Φ,Θ)θ̇, (9.7.11)

where

S (Φ,Θ)
△
=

[
⇀
x
∣
∣
∣
∣
D

⇀
y (Φ)

∣
∣
∣
∣
D

⇀
z (Φ,Θ)

∣
∣
∣
∣
D

]

=
[

S 1 S 2(Φ) S 3(Φ,Θ)
]

=





1 0 − sinΘ

0 cosΦ (sinΦ) cosΘ

0 − sinΦ (cosΦ) cosΘ




. (9.7.12)

Next, we have

D•
⇀
ωD/A = ḟ (Θ, Φ̇, Ψ̇)ı̂D + ġ(Φ,Θ, Θ̇, Ψ̇) ̂D + ḣ(Φ,Θ, Θ̇, Ψ̇)k̂D

= ∇ f θ̇ı̂D + ∇gθ̇ ̂D + ∇ḣ̂θkD

= Φ̇[∂Φ f (Θ, Φ̇, Ψ̇)ı̂D + ∂Φg(Θ, Φ̇, Ψ̇) ̂D + ∂Φh(Θ, Φ̇, Ψ̇)k̂D]

+ Θ̇[∂Θ f (Θ, Φ̇, Ψ̇)ı̂D + ∂Θg(Θ, Φ̇, Ψ̇) ̂D + ∂Θh(Θ, Φ̇, Ψ̇)k̂D]

+ Ψ̇[∂Ψ f (Θ, Φ̇, Ψ̇)ı̂D + ∂Ψg(Θ, Φ̇, Ψ̇) ̂D + ∂Ψh(Θ, Φ̇, Ψ̇)k̂D]

= Φ̇∂Φ
⇀
ωD/A + Θ̇∂Θ

⇀
ωD/A + Ψ̇∂Ψ

⇀
ωD/A, (9.7.13)

where

∂Φ
⇀
ωD/A = [Ψ̇(cosΦ)(cosΘ) − Θ̇ sinΦ] ̂D + [−Ψ̇(sinΦ) cosΘ − Θ̇(cosΦ)]k̂D, (9.7.14)

∂Θ
⇀
ωD/A = −Ψ̇(cosΘ)ı̂D − Ψ̇(sinΦ)(sinΘ) ̂D − Ψ̇(cosΦ)(sinΘ)k̂D, (9.7.15)

∂Ψ
⇀
ωD/A = 0. (9.7.16)

Furthermore, it follows from (9.7.5) that

A•
⇀
ωD/A = Φ̇

A•
⇀
x + Θ̇

A•
⇀
y (Φ) + Ψ̇

A•
⇀
z (Φ,Θ). (9.7.17)

Since

A•
⇀
ωD/A =

D•
⇀
ωD/A, it follows from (9.7.13) and (9.7.17) that

∂Φ
⇀
ωD/A =

A•
⇀
x =

D•
⇀
x +

⇀
ωD/A ×

⇀
x , (9.7.18)

∂Θ
⇀
ωD/A =

A•
⇀
y (Φ) =

D•
⇀
y (Φ) +

⇀
ωD/A ×

⇀
y (Φ), (9.7.19)

∂Ψ
⇀
ωD/A =

A•
⇀
z (Φ,Θ) =

D•
⇀
z (Φ,Θ) +

⇀
ωD/A ×

⇀
z (Φ,Θ). (9.7.20)
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Resolving (9.7.18)–(9.7.20) in FD yields

∂ΦS (Φ,Θ)θ̇ = Ṡ 1 + [S (Φ,Θ)θ̇] × S 1, (9.7.21)

∂ΘS (Φ,Θ)θ̇ = Ṡ 2(Φ) + [S (Φ,Θ)θ̇] × S 2(Φ), (9.7.22)

∂ΨS (Φ,Θ)θ̇ = Ṡ 3(Φ,Θ) + [S (Φ,Θ)θ̇] × S 3(Φ,Θ), (9.7.23)

where

∂ΦS (Φ,Θ) =





0 0 0

0 − sinΦ (cosΦ) cosΘ

0 − cosΦ −(sinΦ) cosΘ




, (9.7.24)

∂ΘS (Φ,Θ) =





0 0 − cosΦ

0 0 −(sinΦ) sinΘ

0 0 −(cosΦ) sinΘ




, (9.7.25)

∂ΨS (Φ,Θ) =





0 0 0

0 0 0

0 0 0




. (9.7.26)

Note that (9.7.21)–(9.7.23) can be written as
[

∂ΦS (Φ,Θ)θ̇ ∂ΘS (Φ,Θ)θ̇ ∂ΨS (Φ,Θ)θ̇
]

= Ṡ (Φ,Θ) + [S (Φ,Θ)θ̇]×S (Φ,Θ). (9.7.27)

Now, let B be a rigid body, let
⇀

M denote the moment applied to B, let FA be an inertial frame,

let w be an unforced particle, and let FD be a body-fixed frame. Furthermore, let Ψ, Θ, and Φ denote

3-2-1 Euler angles so that, by (2.12.28),
→
RB/A =

→
R ı̂C (Φ)

→
R ̂B (Θ)

→
Rk̂A

(Ψ), where FB
△
=
→
Rk̂A

(Ψ)FA,

FC
△
=
→
R ̂B (Θ)FB and FD

△
=
→
R ı̂C (Φ)FC. Next, define the generalized coordinates q1

△
= Φ, q2

△
= Θ, and

q3
△
= Ψ so that q = θ. It thus follows from (9.5.2) that the generalized moment Q1(q, q̇) is given by

Q1(q, q̇) =
⇀

M

∣
∣
∣
∣
∣

T

A

∂Φ̇

(
⇀
ωD/A

∣
∣
∣
∣
A

)

=

(

OA/D

⇀

M

∣
∣
∣
∣
∣
D

)T

∂Φ̇

(

OA/D
⇀
ωD/A

∣
∣
∣
∣
D

)

=
⇀

M

∣
∣
∣
∣
∣

T

D

∂Φ̇

(
⇀
ωD/A

∣
∣
∣
∣
D

)

= MT∂Φ̇(ωD/A)

= MT∂Φ̇[S (Φ,Θ)θ̇]

= MT∂Φ̇[Φ̇S 1 + Θ̇S 2(Φ) + Ψ̇S 3(Φ,Θ)]

= MTS 1

= S T
1 M. (9.7.28)

where M
△
=

⇀

M

∣
∣
∣
∣
∣
D

and ωD/A
△
=

⇀
ωD/A

∣
∣
∣
∣
D
. Therefore,

Q(q, q̇) =





Q1(q, q̇)

Q2(q, q̇)

Q3(q, q̇)




=





S T
1

M

S T
2
(Φ)M

S T
3
(Φ,Θ)M





=





S T
1

S T
2
(Φ)

S T
3
(Φ,Θ)





M = S T(Φ,Θ)M. (9.7.29)
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Next, define J
△
=
→
JB/c

∣
∣
∣
∣
∣
D

. Then, it follows from (8.1.19) that the kinetic energy of B relative to

w with respect to FA is given by

TB/w/A =
1
2

⇀
ω
′
D/A

→
JB/c

⇀
ωD/A +

1
2
mB|

⇀
v c/w/A|2

= 1
2
θ̇TS T(Φ,Θ)JS (Φ,Θ)θ̇ + 1

2
mB|

⇀
v c/w/A|2. (9.7.30)

Therefore, using (9.7.11) it follows that

dt∂
T
q̇ TB/w/A(q, q̇) = dt∂

T
q̇ [ 1

2
θ̇TS T(Φ,Θ)JS (Φ,Θ)θ̇]

= dt[S
T(Φ,Θ)JS (Φ,Θ)θ̇]

= dt[S
T(Φ,Θ)JωD/A]

= S T(Φ,Θ)Jω̇D/A + Ṡ T(Φ,Θ)JωD/A. (9.7.31)

Furthermore, using (9.7.27) we obtain

∂T
q TB/w/A(q, q̇) = ∂T

q [ 1
2
θ̇TS T(Φ,Θ)JS (Φ,Θ)θ̇]

=





∂Φ[ 1
2
θ̇TS T(Φ,Θ)JS (Φ,Θ)θ̇]

∂Θ[ 1
2
θ̇TS T(Φ,Θ)JS (Φ,Θ)θ̇]

∂Ψ[ 1
2
θ̇TS T(Φ,Θ)JS (Φ,Θ)θ̇]





=





θ̇TS T(Φ,Θ)J∂ΦS (Φ,Θ)θ̇

θ̇TS T(Φ,Θ)J∂ΘS (Φ,Θ)θ̇

θ̇TS T(Φ,Θ)J∂ΨS (Φ,Θ)θ̇





=
(

ωT
D/AJ

[

∂ΦS (Φ,Θ)θ̇ ∂ΘS (Φ,Θ)θ̇ ∂ΨS (Φ,Θ)θ̇
])T

=
(

ωT
D/AJ[Ṡ (Φ,Θ) + ω×D/AS (Φ,Θ)]

)T

= Ṡ T(Φ,Θ)JωD/A − S T(Φ,Θ)(ωD/A × JωD/A). (9.7.32)

Consequently, using (9.7.29), (9.7.31), and (9.7.32), it follows from Fact 9.6.1 that

S T(Φ,Θ)Jω̇D/A + S T(Φ,Θ)(ωD/A × JωD/A) = S T(Φ,Θ)M. (9.7.33)

Therefore, assuming that det S (Φ,Θ) = cosΘ , 0 so that S (Φ,Θ) is nonsingular, it follows that

Jω̇D/A + ωD/A × JωD/A = M, (9.7.34)

which is Euler’s equation given by Fact 7.8.5.

Alternatively, we can parameterize the angular velocity in terms of the Euler parameters

qD/A =





q1

q2

q3

q4





=

[

ηD/A

εD/A

]

△
=





cos 1
2
θD/A

(sin 1
2
θD/A)nD/A



 . (9.7.35)

It follows from (4.11.12) that

ωD/A = 2(ηD/Aε̇D/A − η̇D/AεD/A − εD/A × ε̇D/A)

= Q(qD/A)q̇D/A, (9.7.36)
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where

Q(qD/A)
△
= 2





−q2 q1 q4 −q3

−q3 −q4 q1 q2

−q4 q3 −q2 q1




. (9.7.37)

Since q2
1
+ q2

2
+ q2

3
+ q2

4
= 1, we can write

q1 =

√

1 − q2
2
− q2

3
− q2

4
(9.7.38)

and define the vector of generalized coordinates

q
△
=





q2

q3

q4




. (9.7.39)

Therefore,

qD/A
△
=





√

1 − q2
2
− q2

3
− q2

4

q2

q3

q4





(9.7.40)

and, assuming that q1 , 0,

q̇D/A =





−(q2q̇2 + q3q̇3 + q4q̇4)

q1

q̇2

q̇3

q̇4





. (9.7.41)

Furthermore,

ωD/A = 2





q2(q2q̇2 + q3q̇3 + q4q̇4)

q1

+ q1q̇2 + q4q̇3 − q3q̇4

q3(q2q̇2 + q3q̇3 + q4q̇4)

q1

− q4q̇2 + q1q̇3 + q2q̇4

q4(q2q̇2 + q3q̇3 + q4q̇4)

q1

+ q3q̇2 − q2q̇3 + q1q̇4





= 2







q1 +
q2

2

q1



 q̇2 +

(

q4 +
q2q3

q1

)

q̇3 +

(

−q3 +
q2q4

q1

)

q̇4

(

−q4 +
q2q3

q1

)

q̇2 +



q1 +
q2

3

q1



 q̇3 +

(

q2 +
q3q4

q1

)

q̇4

(

q3 +
q2q4

q1

)

q̇2 +

(

−q2 +
q3q4

q1

)

q̇3 +



q1 +
q2

4

q1



 q̇4





= S (q)q̇, (9.7.42)
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where

S (q)
△
= 2





q1 +
q2

2

q1

q4 +
q2q3

q1

−q3 +
q2q4

q1

−q4 +
q2q3

q1

q1 +
q2

3

q1

q2 +
q3q4

q1

q3 +
q2q4

q1

−q2 +
q3q4

q1

q1 +
q2

4

q1





. (9.7.43)

For convenience, we write S (q) = [S 1(q) S 2(q) S 3(q)].

Next, it follows from (9.5.2) that, for i = 2, 3, 4, the generalized moment Qi(q, q̇) is given by

Qi(q, q̇) = MT∂q̇i

(

ωD/A

)

= MT∂q̇i
[S (q)q̇]

= MT∂q̇i
[q̇2S 1(q) + q̇3S 2(q) + q̇4S 3(q)]

= MTS i(q)

= S T
i (q)M. (9.7.44)

Therefore,

Q(q, q̇) = S T(q)M. (9.7.45)

Next, since

TB/w/A =
1
2
q̇TS T(q)JS (q)q̇ + 1

2
mB|

⇀
v c/w/A|2, (9.7.46)

it follows that

dt∂
T
q̇ TB/w/A(q, q̇) = dt∂

T
q̇ [ 1

2
q̇TS T(q)JS (q)q̇]

= dt[S
T(q)JωD/A]

= S T(q)Jω̇D/A + Ṡ T(q)JωD/A. (9.7.47)

Next, a lengthy calculation shows that
[

∂q2
[S (q)q̇] ∂q3

[S (q)q̇] ∂q4
[S (q)q̇]

]

= Ṡ (q) + [S (q)q̇]×S (q). (9.7.48)

Therefore,

∂T
q TB/w/A(q, q̇) = ∂T

q [ 1
2
q̇TS T(q)JS (q)q̇]

=





∂q2
[ 1

2
q̇TS T(q)JS (q)q̇]

∂q3
[ 1

2
q̇TS T(q)JS (q)q̇]

∂q4
[ 1

2
q̇TS T(q)JS (q)q̇]





=





q̇TS T(q)J∂q2
[S (q)q̇]

q̇TS T(q)J∂q3
[S (q)q̇]

q̇TS T(q)J∂q4
[S (q)q̇]
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=





ωT
D/A

J∂q2
[S (q)q̇]

ωT
D/A

J∂q3
[S (q)q̇]

ωT
D/A

J∂q4
[S (q)q̇]





=
(

ωT
D/AJ

[

∂q2
[S (q)q̇] ∂q3

[S (q)q̇] ∂q4
[S (q)q̇]

])T

=
(

ωT
D/AJ[Ṡ (q) + ω×D/AS (q)]

)T

= Ṡ T(q)JωD/A − S T(q)(ωD/A × JωD/A). (9.7.49)

Consequently, using (9.7.45), (9.7.47), and (9.7.49), it follows from Fact 9.6.1 that

S T(q)Jω̇D/A + S T(q)(ωD/A × JωD/A) = S T(q)M. (9.7.50)

Therefore, since by assumption det S (q) = 8/q1 , 0 and thus S (q) is nonsingular, it follows that

Jω̇D/A + ωD/A × JωD/A = M, (9.7.51)

which is Euler’s equation given by Fact 7.8.5.

9.8 Lagrange’s Equations: Potential Energy Form

Potential energy gives rise to generalized forces and moments, and it is convenient to distinguish

generalized forces and moments arising from potential energy from the remaining generalized forces

and moments. We thus write

Q(q, q̇, t) = Qp(q) + Qnp(q, q̇, t), (9.8.1)

where Qp denotes the generalized forces and moments arising from potential energy and Qnp denotes

the remaining generalized forces and moments. To determine the generalized forces and moments

arising from potential energy, we write UB(q) to denote the potential energy of B in terms of

generalized coordinates. The following result is analogous to Fact 8.3.1.

Fact 9.8.1. Let B be a body, let UB(q) denote the potential energy of B in terms of the gener-

alized coordinates q. Then, the generalized force Q associated with UB(q) is given by

Qp(q) = −∂T
q UB(q). (9.8.2)

Proof. Need proof. �

A generalized force or moment associated with the potential energy is called a generalized

potential force or moment. The potential energy and associated generalized potential force for a

collection of springs is given by the following result.

Fact 9.8.2. Consider a collection of s springs such that, for each i = 1, . . . , s, the ith spring

has stiffness ki > 0, relaxed length di ≥ 0, and connects inertia points yi and wi, respectively.

Furthermore, assume that the force of the ith spring is given by

⇀

f yi/wi
= −ki(|

⇀
r yi/wi

| − di)r̂yi/wi
. (9.8.3)
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Furthermore, let q ∈ Rr denote generalized coordinates, and assume that

U(q)
△
= 1

2

s∑

i=1

ki(|
⇀
r yi/wi

| − di)
2 (9.8.4)

can be written as

U(q) = 1
2
(q − d)TK(q − d), (9.8.5)

where K ∈ Rr×r is a symmetric matrix and d
△
= [d1 · · · ds]

T. Then, K is positive semidefinite, and

the corresponding generalized force is given by

Qp(q) = −K(q − d). (9.8.6)

The following result considers rotational springs.

Fact 9.8.3. Consider a collection of s rotational springs such that, for each i = 1, . . . , s, let

Bi and B̂i be rigid bodies that are connected by a pin joint at a point fixed in both bodies. Let ẑ

be a unit dimensionless vector that is parallel with the pin joint, and assume that the ith rotational

spring has rotational stiffness κi > 0, and applies torques that are parallel with ẑ. Let x̂i1 and x̂i2

be unit dimensionless vectors that are fixed in Bi and B̂i, respectively, and that are orthogonal to ẑ.

Assume that the rotational spring is relaxed when x̂i1 and x̂i2 are parallel and that the torque of the

ith rotational spring is given by

⇀

M
Bi/B̂i

= −κiθx̂i1/x̂i2/ẑi
ẑi. (9.8.7)

Furthermore, let q ∈ Rr denote generalized coordinates, and assume that

U(q)
△
= 1

2

s∑

i=1

κiθ
2
x̂1/x̂2/ẑ

(9.8.8)

can be written as

U(q) = 1
2
qTKq, (9.8.9)

where K ∈ Rr×r is a symmetric matrix. Then, K is positive semidefinite, and the corresponding

generalized force is given by

Qp(q) = −Kq. (9.8.10)

The following result reconsiders Fact 8.4.1 in terms of generalized forces and moments. This

result uses Lagrange’s equations to obtain a constant of the motion, namely, the total energy.

Fact 9.8.4. Let B be a body, let w be an unforced particle, let FA be an inertial frame, and

assume that all generalized forces and moments are potential forces and moments. Then, the total

energy of B is conserved.

Proof. First we consider the simpler case where TB/w/A is independent of q. In this case, it

follows from (9.6.6) that

Mq̈(t) = Qp(q(t)).

Omitting the argument t for convenience and using (9.8.2) yields

dtEB/w/A(q, q̇) = dtTB/w/A(q̇) + dtUB(q)
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= q̇TMq̈ + ∂qUB(q)q̇

= q̇TQp(q) − QT
p (q)q̇

= 0.

Next, we consider the case where TB/w/A may depend on q. In this case, it follows from (9.6.1)

that

q̇TQ(q) = 1
2
q̇Tdt∂

T
q̇ [q̇TM(q)q̇] − 1

2
q̇T∂T

q [q̇TM(q)q̇]

= q̇Tdt[M(q)q̇] − 1
2
q̇T∂T

q





r∑

j,k=1

M j,k(q)q̇ jq̇k





= q̇Tdt





∑r
j=1 M1, j(q)q̇ j

...
∑r

j=1 Mr, j(q)q̇ j





− 1
2
q̇T





∑r
j,k ∂q1

M j,k(q)q̇ jq̇k

...
∑r

j,k ∂qr
M j,k(q)q̇ jq̇k





= q̇T





∑r
j=1

∑r
k=1 ∂qk

M1, j(q)q̇kq̇ j + M1, j(q)q̈ j

...
∑r

j=1

∑r
k=1 ∂qk

Mr, j(q)q̇kq̇ j + Mr, j(q)q̈ j





− 1
2
q̇T





∑r
j,k ∂q1

M j,k(q)q̇ jq̇k

...
∑r

j,k ∂qr
M j,k(q)q̇ jq̇k





=

r∑

i, j,k=1

q̇i∂qk
Mi, j(q)q̇kq̇ j +

r∑

i, j=1

Mi, j(q)q̇iq̈ j − 1
2

r∑

i, j,k=1

q̇i∂qk
Mi, j(q)q̇kq̇ j

= 1
2

r∑

i, j,k=1

∂qk
Mi, j(q)q̇iq̇ jq̇k +

r∑

i, j=1

Mi, j(q)q̇iq̈ j. (9.8.11)

Therefore, using (9.8.11) it follows that

dtEB/w/A(q, q̇) = 1
2
dt[q̇

TM(q)q̇] + dtUB(q)

= 1
2
dt

r∑

i, j=1

Mi, jq̇iq̇ j + ∂qUB(q)q̇

= 1
2

r∑

i, j=1





r∑

k=1

∂qk
Mi, jq̇kq̇iq̇ j + Mi, jq̈iq̇ j + Mi, jq̇iq̈ j



 − Qp(q)Tq̇

= 1
2

r∑

i, j,k=1

∂qk
Mi, jq̇iq̇ jq̇k +

r∑

i, j=1

Mi, jq̇iq̈ j − q̇TQp(q)

= 0. �

The Lagrangian of a system with potential UB(q) and kinetic energy TB/w/A(q, q̇) is the function

LB/w/A(q, q̇)
△
= TB/w/A(q, q̇) − UB(q). (9.8.12)

Lagrange’s equations for a system with potential force are given by the following result. This result

is a specialization of Fact 9.6.1.

Fact 9.8.5. Let FA be an inertial frame, let B be a body described by generalized coordinates

q = [q1 · · · qr]
T, let w be an unforced particle, define LB/w/A by (9.8.12), where UB includes all

internal and external potential forces and moments, and let Qnp denote all generalized forces and
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moments except those that arise from UB or conservative contact. Then, q(t) satisfies

dt∂
T
q̇ TB/w/A(q(t), q̇(t), t) − ∂T

q LB/w/A(q(t), q̇(t), t) = Qnp(q(t), q̇(t), t). (9.8.13)

Proof. Show algebra to go from (9.6.1) to (9.8.13). �

If TB/w/A is independent of q, then (9.8.13) can be written as

Mq̈(t) + ∂T
q UB(q(t)) = Qnp(q(t), q̇(t), t). (9.8.14)

9.9 Lagrange’s Equations: Rayleigh Dissipation Function Form

In some cases, it is convenient to decompose the nonpotential force Qnp in terms of a function

R called a Rayleigh dissipation function. We thus write

Qnp(q, q̇, t) = QR(q, q̇, t) + QnpnR(q, q̇, t), (9.9.1)

where QR arises from a Rayleigh dissipation function and QnpnR are generalized forces and moments

that do not arise from a Rayleigh dissipation function. The force or moment QR arising from a

Rayleigh dissipation function R = R(q, q̇) has the form

QR(q, q̇) = −∂T
q̇ R(q, q̇). (9.9.2)

It is usually the case that ∂q̇R(q, 0) = 0 for all q, which implies that no energy dissipation occurs

when the generalized velocities are zero.

The Rayleigh dissipation function for a collection of dashpots is given by the following result.

Fact 9.9.1. Consider a collection of s dashpots such that, for each i = 1, . . . , s, the ith dashpot

has viscosity ci > 0 and connects inertia points yi and wi. Furthermore, for the ith dashpot assume

that the force is given by

⇀

f yi/wi
= −ci(dt |

⇀
r yi/wi

|)r̂yi/wi
. (9.9.3)

Furthermore, let q ∈ Rr denote generalized coordinates, and assume that

R(q, q̇)
△
= 1

2

s∑

i=1

ci(dt |
⇀
r yi/wi

|)2 (9.9.4)

can be written as

R(q, q̇) = 1
2
q̇TC(q)q̇, (9.9.5)

where, for all q ∈ Rr, C(q) ∈ Fr×r is a symmetric matrix. Then, for all q ∈ Rr, C(q) is positive

semidefinite and the corresponding generalized force is given by

QR(q, q̇) = −C(q)q̇. (9.9.6)

The following result presents Lagrange’s equations for a body with Lagrangian LB/w/A(q, q̇),

Rayleigh dissipation function R(q, q̇), and generalized forces and moments QnpnR(q, q̇) that do not

arise from the Rayleigh dissipation function, a potential, or conservative contact.

Fact 9.9.2. Let FA be an inertial frame, let B be a body described by generalized coordinates

q = [q1 · · · qr]
T, let w be an unforced particle, define LB/w/A by (9.8.12), where UB includes all

potential generalized forces and moments, let R be a Rayleigh dissipation function, and let QnpnR
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denote all generalized forces and moments except those that arise from R, UB, or conservative

contact. Then, q satisfies

dt∂
T
q̇ TB/w/A(q(t), q̇(t)) − ∂T

q LB/w/A(q(t), q̇(t)) + ∂T
q̇ R(q(t), q̇(t)) = QnpnR(q(t), q̇(t), t). (9.9.7)

The following result shows that the system dissipates energy if q(t) and q̇(t) are such that

[∂q̇R(q(t), q̇(t))] ˙q(t) > 0.

Fact 9.9.3. Let B be a body, let w be an unforced particle, let FA be an inertial frame, and as-

sume that all generalized forces or moments that are neither conservative reaction forces or moments

nor potential forces or moments are given by the Rayleigh dissipation function R. Then

dtEB/w/A(q(t), q̇(t)) = −[∂q̇R(q(t), q̇(t))]q̇(t). (9.9.8)

Proof. First we consider the simpler case where TB/w/A is independent of q. In this case, it

follows from (9.9.7) that

Mq̈(t) = Qp(q(t)) − ∂T
q̇ R(q, q̇).

Omitting the argument t for convenience, it follows from (9.8.14) that

dtEB/w/A = q̇TMq̈ + ∂qUB(q)q̇

= q̇T[−∂qUB(q) + QR(q, q̇)] + ∂qUB(q)q̇

= QT
R(q, q̇)q̇

= −[∂q̇R(q, q̇)]q̇.

Finally, for the case where TB/w/A depends on q, see the proof of Fact 9.8.4. �

9.10 Examples

Example 9.10.1. Derive the equations of motion for the damped SDOF oscillator.

Solution: A convenient generalized coordinate for such an oscillator is the extension q of the

spring, while the corresponding generalized velocity is the instantaneous rate of extension q̇ of

the spring. The kinetic energy of the oscillator is TB/w/A(q̇) = 1
2
mq̇2, while the potential energy

is UB(q) = 1
2
kq2. The Rayleigh dissipation function for a dashpot with viscosity c is R(q, q̇) =

1
2
cq̇2. The remaining nonconservative generalized force is the external applied force f . Lagrange’s

equations (9.9.7) then yield

mq̈ + cq̇ + kq = f . (9.10.1)

Example 9.10.2. Derive the equations of motion for the bead on the wire considered in Exam-

ple 7.15.3.

Solution: First we consider the case where ω = θ̇ is constant, and thus q1 = x is the only

generalized coordinate. The kinetic energy of the body relative to w with respect to FA is given by

TB/w/A = Twire/w/A + Ty/w/A

= 1
2

⇀
ω
′
B/A

→
J wire/w

⇀
ωB/A +

1
2
m|vy/w/A|2
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= 1
2





0

0

ω





T 



0 0 0

0 I 0

0 0 I









0

0

ω




+ 1

2
m(ẋ2 + x2ω2)

= 1
2
(I + mx2)ω2 + 1

2
mẋ2.

It thus follows from Lagrange’s equations (9.6.1) that

dt∂ẋTB/w/A − ∂xTB/w/A = 0

that

dt(mẋ) − mω2x = 0

that is,

ẍ = ω2x.

To determine the reaction force between the bead and the wire, Newton’s second law implies that

⇀

f R = m
⇀
ay/w/A

= (ẍ − ω2x)ı̂B + 2ωẋ ̂B

= 2ωẋ ̂B.

Therefore, the force applied to the bead is transverse to the wire. Although the bead moves away

from w, the component of the force along the wire is zero. Now, suppose that a stopper is placed

on the wire preventing the bead from moving further along the wire. Then, the reaction force on the

stopper due to the bead is the centrifugal reaction force, whereas the reaction force on the bead due

to the stopper is the centripetal reaction force.

Next, we consider the case where θ̇ is not necessarily constant, and thus the generalized coordi-

nates are q1 = x and q2 = θ. The kinetic energy thus has the form

TB/w/A =
1
2

[

ẋ

θ̇

]T [

m 0

0 I + mx2

] [

ẋ

θ̇

]

.

For q1 it follows from Lagrange’s equations that

ẍ = θ̇2x.

Since TB/w/A is independent of q2 = θ, it follows from Lagrange’s equations that

dt∂θ̇TB/w/A = 0,

and thus

dt[(I + mx2)θ̇] = 0,

which shows that the component of momentum (I+mx2)θ̇ is a constant of the motion. Consequently,

(I + mx2)θ̈ + 2mxẋθ̇ = 0.

To determine the reaction force between the bead and the wire, Newton’s second law implies that

⇀

f R = m
⇀
ay/w/A

= (ẍ − θ̇2x)ı̂B + (θ̈x + 2θ̇ẋ) ̂B

= (θ̈x + 2θ̇ẋ) ̂B.
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Figure 9.10.1: Eccentric rotating mass. This body has translational and

rotational degrees of freedom

As in the case where θ̇ is constant, the reaction force on the bead due to the wire is transverse to the

wire.

Example 9.10.3. Consider the eccentric rotating mass m2 mounted on a cart of mass m1 at

the end of a rigid massless rod of length l as shown in Figure 9.10.1. The mass m1 is constrained

to move along a line under the action of an extensional spring with stiffness k1. The mass m2 is

acted on by a torsional spring with torsional stiffness k2, but is otherwise free to rotate. Derive the

equation of motion for this body.

Solution: Choose FA such that ı̂A is aligned with the motion of the cart. Let x1, y1 and x2, y2

denote the coordinates of the masses m1 and m2, respectively. Then, x1, y1, x2, y2 are generalized

coordinates for the body. However, these coordinates are not independent since they satisfy the

constraints

y1 = c0, (9.10.2)

(x2 − x1)2 + (y2 − y1)2 = l2, (9.10.3)

where c0 is a constant. It is possible to choose a coordinates such that the constant c in (9.10.2) is

zero. With this choice, the constraints (9.10.2) and (9.10.3) have the form (9.2.6) with

φ1(x1, y1, x2, y2) = y1 − c0, (9.10.4)

φ2(x1, y1, x2, y2) = (x2 − x1)2 + (y2 − y1)2 − l2. (9.10.5)

This body is thus holonomic. Since there are four generalized coordinates and two independent

constraints, this body has two degrees of freedom. We thus look for two independent generalized

coordinates. Notice that the mass m1 moves in a straight line, while the mass m2 moves in a circle.

Thus the configuration space of this body is the Cartesian product of a line and a circle, in other

words, the surface of a cylinder. Consequently, we choose the position of m1 (with respect to

a reference point) and the angle θ of m2 as generalized coordinates. Accordingly, let q1 be the

extension of the spring k1 and let q2 = θ.
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In terms of these generalized coordinates, (9.2.3) and (9.2.4) have the form

x1 = q1 + c1, (9.10.6)

y1 = 0, (9.10.7)

x2 = q1 + l sin q2 + c2, (9.10.8)

y2 = −l cos q2, (9.10.9)

where c1 and c2 are constants. The generalized velocities corresponding to the chosen generalized

coordinates are the rate q̇1 of deformation of the spring k1 and the angular rate q̇2 of the are connected

to m2. Equations (9.3.2) and (9.3.3) become

u1 = q̇1, (9.10.10)

v1 = 0, (9.10.11)

u2 = q̇1 + lq̇2 cos q2, (9.10.12)

v2 = lq̇2 sin q2. (9.10.13)

Using (9.10.10)-(9.10.13) in (9.3.11), we obtain the kinetic energy of the body as

TB/w/A(q1, q2, q̇1, q̇2) = 1
2
(m1 + m2)q̇2

1 + m2lq̇1q̇2 cos q2 +
1
2
m2l2q̇2

2. (9.10.14)

The elastic potential energy of the springs is

UB(q1, q2) = 1
2
k1q2

1 +
1
2
k2q2

2.

Forming the Lagrangian as in (9.8.12) and expanding Lagrange’s equations (9.8.13) yields the equa-

tions of motion

(m1 + m2)q̈1 + m2lq̈2 cos q2 − m2lq̇2
2 sin q2 + k1q1 = 0,

m2lq̈1 cos q2 + m2l2q̈2 + k2q2 = 0. ⋄
9.11 Lagrangian Dynamics with Constraints

Use Lagrange multipliers to address constraints on generalized coordinates.

Consider a linkage consisting of 3 links, with the ends pinned to a base. This mechanical system

cannot be modeled by independent generalized coordinates. The sum of the internal angles is 360

degrees.

9.12 Lagrangian Dynamics for Nonholonomic Systems

Consider systems with constraints on the generalized velocities that cannot be integrated to yield

constraints on generalized coordinates.
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9.13 Hamiltonian Dynamics

Consider a particle y with mass m and generalized coordinates q =

[
q1

q2

q3

]

=

[
x

y

z

]

. The total

energy of y relative to an unforced particle w with respect to an inertial frame FA is given by

EB/w/A(q, q̇, t) = 1
2
m(ẋ2 + ẏ2 + ż2) + V(q, t)

= TB/w/A(q, q̇, t) + V(q, t)

= 2TB/w/A(q, q̇, t) − LB/w/A(q, q̇, t). (9.13.1)

In terms of the components of the momentum p =

[
p1

p2

p3

]

=

[
mẋ

mẏ

mż

]

= mq̇, it follows that

EB/w/A(q, q̇, t) =

3∑

i=1

piq̇i − LB/w/A(q, q̇, t)

= pTq̇ − LB/w/A(q, q̇, t). (9.13.2)

Note that p = ∂q̇TB/w/A(q, q̇, t).

More generally, let B be a body with particles y1, . . . , yl whose masses are m1, . . . ,ml, respec-

tively, let w be an unforced particle, and let FA be a frame. As in the case of a single particle, define

the conjugate momentum p ∈ Rl by

p
△
= ∂T

q̇ TB/w/A(q, q̇, t), (9.13.3)

and, in analogy with (9.13.2), define the Hamiltonian HB/w/A(q, p, t) of B relative to w with respect

to FA by

HB/w/A(q, p, t)
△
= pTq̇ − LB/w/A(q, q̇, t). (9.13.4)

Next, recall from (9.3.11) that TB/w/A(q, q̇, t) is given by

TB/w/A(q, q̇, t) = 1
2
q̇TM(q, t)q̇ + F(q, t)q̇ +G(q, t), (9.13.5)

where M(q, t), F(q, t), and G(q, t) are defined by (9.3.12), (9.3.13), and (9.3.14), respectively. It thus

follows from (9.13.3) and (9.13.5) that

p = M(q, t)q̇ + FT(q, t). (9.13.6)

Now, substituting (9.13.6) into (9.13.4) and using (9.13.5) yields

HB/w/A(q, p, t) = [M(q, t)q̇ + FT(q, t)]Tq̇ − LB/w/A(q, q̇, t)

= q̇TM(q, t)q̇ + F(q, t)q̇ − TB/w/A(q, q̇, t) + V(q, t)

= 1
2
q̇TM(q, t)q̇ −G(q, t) + V(q, t)

= EB/w/A(q, q̇, t) − F(q, t)q̇ − 2G(q, t). (9.13.7)

Therefore, if F(q, t) = 0 and G(q, t) = 0, then HB/w/A(q, p, t) = EB/w/A(q, q̇, t), as in the case of a

single particle.

Next, to express HB/w/A(q, p, t) in terms of p rather than q̇, note that it follows from (9.13.6)

that

q̇ = M−1(q, t)[p − FT(q, t)]. (9.13.8)
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Therefore, substituting (9.13.8) into (9.13.7) yields

HB/w/A(q, p, t) = 1
2
[p − FT(q, t)]TM−1(q, t)[p − FT(q, t)] −G(q, t) + V(q, t)

= 1
2

pTM−1(q, t)p − F(q, t)M−1(q, t)p − 1
2
F(q, t)M−1(q, t)FT(q, t) −G(q, t) + V(q, t).

(9.13.9)

Next, note that

dtHB/w/A(q, p, t) = ∂pHB/w/A(q, p, t) ṗ + ∂qHB/w/A(q, p, t)q̇ + ∂tHB/w/A(q, p, t). (9.13.10)

On the other hand, it follows from (9.13.4) and p = ∂q̇LB/w/A(q, q̇, t) that

dtHB/w/A(q, p, t) = ṗTq̇ + pTq̈ − [∂qLB/w/A(q, q̇, t)q̇ + ∂q̇LB/w/A(q, q̇, t)q̈ + ∂tLB/w/A(q, q̇, t)]

= ṗTq̇ + pTq̈ − [∂qLB/w/A(q, q̇, t)q̇ + pTq̈ + ∂tLB/w/A(q, q̇, t)]

= ṗTq̇ − ∂qLB/w/A(q, q̇, t)q̇ − ∂tLB/w/A(q, q̇, t). (9.13.11)

Comparing (9.13.10) and (9.13.11), it follows that

q̇ = ∂T
pHB/w/A(q, p, t), (9.13.12)

∂qLB/w/A(q, q̇, t) = −∂qHB/w/A(q, p, t), (9.13.13)

and

∂tLB/w/A(q, q̇, t) = −∂tHB/w/A(q, p, t). (9.13.14)

Finally, using (9.13.3), the fact that ∂T
q̇ TB/w/A(q, q̇, t) = ∂T

q̇ LB/w/A(q, q̇, t), and (9.13.13), it follows

from (9.8.13) that

ṗ = −∂T
q HB/w/A(q, p, t) + Qnp. (9.13.15)

Equations (9.13.12) and (9.13.15) are Hamilton’s equations.

If ∂tLB/w/A(q, q̇, t) = 0, then it follows from (9.8.13) that

dtHB/w/A(q, p, t) = ṗTq̇ − ∂qLB/w/A(q, q̇, t)q̇

= dt∂q̇LB/w/A(q, q̇, t)q̇ − ∂qLB/w/A(q, q̇, t)q̇

= QT
npq̇. (9.13.16)

Therefore, if Qnp = 0, then HB/w/A(q, p, t) is constant.

9.14 GAK Dynamics

Include Gibbs-Appel-Kane dynamics.

9.15 Theoretical Problems

Problem 9.15.1. Let q ∈ Rr denote generalized coordinates for a body B, and let B ∈ Rr×r be

a positive-semidefinite matrix. For a collection of inerters with generalized force

Qinert(q̈) = −Bq̈,

define the inertance function

I(q̈) = 1
2
q̈TBq̈.
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Show that the kinetic energy of the body with the inerters is given by

TB/w/A(q, q̇) = 1
2
q̇T[M(q) + B]q̇,

where 1
2
q̇TM(q)q̇ is the kinetic energy of B without the inerters.

9.16 Applied Problems

Problem 9.16.1. Two particles, three springs, and one dashpot are interconnected as shown

in Figure 9.16.1. The masses are constrained to move along straight, frictionless tracks that are

mutually orthogonal, as shown. No gravity is present. Springs k1 and k2 are connected to the

point labeled a. The tracks and the point a are embedded in an inertially nonrotating massive body.

The particles are interconnected by a spring with stiffness k and a dashpot with viscosity c. The

relaxed lengths of the springs with stiffnesses k1, k2, and k are, respectively, r1, r2, and r. Derive the

equations of motion, and then specialize these equations to the case where m2 is fixed at a.

a
k1

k2

m1

m2

c

k

Figure 9.16.1: Two-particle body with springs and dashpot for Problem 9.16.1

Problem 9.16.2. In Figure 9.16.2, a rectangular rigid body whose mass is M and a thin bar

whose mass is m and length is l move without friction (due to mounting on small wheels) over the

surface of an inertially nonrotating massive body. The upper end of the thin bar is attached to a pin

that moves without friction along a vertical track on the left edge of the rectangular rigid body. The

pin at the end of the bar is attached to a spring with stiffness k and relaxed length r. The rectangular

rigid body is connected to the right wall of the massive body by a dashpot whose viscosity is c.

Finally, a force
⇀

f is applied as shown to the lower left corner of the rectangular body. Derive the

equations of motion.

Problem 9.16.3. The triangular cart in Figure 9.16.3 with mass m1 is connected to a massive

nonrotating body by means of a spring with stiffness k1. The angle between the slanted surface of

the cart and the horizontal direction is θ. The particle y, whose mass is m2, slides without friction

along the slanted surface attached to a spring with stiffness k2. The relaxed length of both springs is

zero, and gravity acts in the direction shown. Derive the equations of motion.
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Figure 9.16.2: Rectangular rigid body and thin bar for Problem 9.16.2

Figure 9.16.3: Triangular cart with particle and springs for Problem 9.16.3

Problem 9.16.4. The body in Figure 9.16.4 is a rigid bar that has two springs and two particles

that slide without friction along the bar. The bar is attached by a frictionless pin joint to an inertially

nonrotating massive body. Both particles y1 and y2 have mass m, and both springs have stiffness k.

The relaxed length of each spring is l, and gravity acts in the direction shown. The angle θ between

the bar and the direction shown is a prescribed function of time, and thus the inertia of the rigid bar

is irrelevant. Derive the equations of motion.

Problem 9.16.5. The spherical pendulum in Figure 9.16.5 consists of a particle y attached by

a rope to the top of a rigid bar. The length l of the rope is a prescribed function of time. The bar is

attached to an inertially nonrotating massive body. Gravity acts in the vertical direction. Derive the

equations of motion for this body in terms of the angle θ around the bar and the angle φ between the

rope and the bar.

Problem 9.16.6. The two-link pendulum in Figure 9.16.6 is connected to a massive nonrotating
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body by means of a pin joint at the point a. The first link, whose ends are points a and b, has mass

m1 and length l1. The second link, which is connected to the first link at point b by means of a pin

joint, has mass m2 and length l2. The force
⇀

f is applied to the tip of the second link at point c in a

direction that is perpendicular to the second link. Derive the equations of motion for this body.

Problem 9.16.7. The rotating disk D in Figure 9.16.7 is subjected to a moment
⇀

Γ. The particle

y slides without friction along a linear slot on the platform and is attached to a pair of identical

springs, which are relaxed when y is at point b. The center of the disk is the point a, which is

attached by a frictionless pin joint to a massive nonrotating body, and the moment of inertia of the

disk around an axis that is perpendicular to the disk and relative to the point a is JD/a. The path of

y is orthogonal to the line segment connecting a and b. The mass of the particle is m, the distance

from a to b is h, and the stiffness of each spring is k. Derive the equations of motion.

Problem 9.16.8. Consider the two-bar linkage shown in Figure 9.16.8 consisting of two thin

bars, one spring, and one particle. a, b, c, d, e are points. There are pin joints at a, b, c. The thin bar

B1 between a and b has length l and mass m1. The thin bar B2 between b and c has length l and mass

m2. The center of mass of B1 is at d, while the center of mass of B2 is at e. The spring connects

points d and e. The relaxed length of the spring is l/2, and its stiffness is k. Because the bars B1

and B2 have equal length, there are four angles labeled θ. The particle y located at c is attached to

the end of B2 and is mounted on a slider that allows it to move horizontally. The mass of y is m3.

All motion is frictionless. Uniform gravity acts in the direction shown, which is perpendicular to

the line passing through a and c. The force
⇀

f is applied to B2 at point e. The direction of
⇀

f is the

same as the direction of gravity. The moment
⇀

M is a torque applied to B1 at the point a. Derive the

equation of motion for this body in terms of θ.

Problem 9.16.9. Use Lagrangian dynamics to derive the equations of motion for the wheel

with bar considered in Problem 7.17.7 in the form of a coupled pair of second-order differential

equations involving φ and θ. Use these equations to determine the reaction forces at the pin joint.

Problem 9.16.10. Use Lagrangian dynamics to derive the equations of motion for the physical

pendulum considered in Example 7.15.2. Use these equations to determine the reaction forces at

Figure 9.16.4: Rotating bar with two particles and two springs for Problem 9.16.4
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Figure 9.16.5: Spherical pendulum with variable length for Problem 9.16.5

Figure 9.16.6: Two-link pendulum for Problem 9.16.6

the pin joint.

Problem 9.16.11. Use Lagrangian dynamics to derive the equations of motion for the ball

rolling down the inclined plane considered in Problem 7.17.1. Use these equations to determine the

normal and tangential components of the reaction force between the ball and the inclined plane as

well as the vertical reaction force between the inclined plane and the ground.

Problem 9.16.12. Consider the offset rotating pendulum shown in Figure 9.16.9. The vertical

shaft rotates at the rate ω(t), where ω(t) is a differentiable function of time and where ω(t) > 0

corresponds to rotation in the direction shown. The horizontal arm is welded to the vertical shaft at

point b and has length R. The pendulum is connected by a hinge joint to the point a on the horizontal

arm. The pendulum consists of a massless link of length ℓ with a particle y of mass m attached to its

tip. As shown, the pendulum swings in and out of the page. The inertial frame FA is attached to the

ground, the frame FB is attached to the horizontal arm, and the frame FC is attached to the massless
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Figure 9.16.7: Rotating disk with translating particle for Problem 9.16.7

link. The angle between the massless link and the vertical direction is θ, where θ = 0 corresponds to

the downward direction and where θ > 0 denotes clockwise rotation of the pendulum viewed from

b to a. Gravity
⇀
g = gk̂A is in the direction k̂A. Note: No information concerning the mass properties

of the shaft or the arm is needed to do this problem.

i) Use Lagrangian dynamics to obtain a differential equation that describes the motion of the

pendulum in terms of θ̈, θ, ω, ω̇, R, ℓ, and g.

ii) Use Newton’s second law to determine the components of the reaction force
⇀

f R = f1 ı̂C +

f2 ̂C + f3k̂C on the particle y resolved in FC.

iii) Using your solution to 2), apply Euler’s equation to the massless link (not including the

particle y) to obtain additional information concerning f1. Use this information to obtain a

differential equation that describes the motion of the pendulum.

iv) Determine the reaction force and reaction torque on the horizontal arm at the point a.

9.17 Solutions to the Applied Problems

Solution to Problem 9.16.1.

m1q̈1 +
c

l2
(q2

1q̇1 + q1q2q̇2) + k1(q1 − r1) +
k

l
(l − r)q1 = 0,

m2q̈2 +
c

l2
(q2

2q̇2 + q1q2q̇1) + k2(q2 − r2) +
k

l
(l − r)q2 = 0,

where q1 is the distance from mass m1 to a, and q2 is the distance from mass m2 to a.
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Figure 9.16.8: Two-bar linkage with spring for Problem 9.16.8

Solution to Problem 9.16.2.

(m + M)ẍ + cẋ − 1
2
ml[(cos θ)θ̇2 + (sin θ)θ̈] = f ,

1
3
mlθ̈ − 1

2
m(sin θ)ẍ + 1

2
mg cos θ + k(cos θ)(l sin θ − r) = 0,

where x is the distance from the lower left corner of the cart to the wall, and θ is the angle between

the inclined link and the floor.

Solution to Problem 9.16.3.

(m1 + m2)q̈1 + m2 cos θq̈2 + k1q1 = 0,

m2[q̈2 + (cos θ)q̈1] + k2q2 = m2g sin θ,

where q1 is the distance between the vertical edge of the inclined plane and the wall, and q2 is the

distance between m2 and the vertical edge of the inclined plane along the inclined plane.

Solution to Problem 9.16.4.

2q̈1 + q̈2 − (2q1 + q2)θ̇2 +
k

m
(q1 − l) = 2g cos θ,

q̈1 + q̈2 − (q1 + q2)θ̇2 +
k

m
(q2 − l) = g cos θ,

where q1 is the distance between the pin joint and first mass, and q2 is the distance between the first

and second mass.

Solution to Problem 9.16.5.

l2φ̈ + 2ll̇φ̇ − l2θ̇2(sin φ) cos φ + gl sin φ = 0,

l(sin φ)θ̈ + [2l̇ sin φ + 2l(cos φ)φ̇]θ̇ = 0,

where θ is the angle around the bar, and φ is the angle between the rope and the bar.
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Figure 9.16.9: Rotating Pendulum for Problem 9.16.12

Solution to Problem 9.16.6.

βθ̈1 + αθ̈2 − 1
2
m2l1l2(sin θ2)θ̇2(2θ̇1 + θ̇2) + ( 1

2
m1 + m2)gl1 sin θ1 + γ = f (cos θ2l1 + l2),

αθ̈1 + J2θ̈2 +
1
2
m2l1l2 sin θ2θ̇

2
1 + γ = f l2,

where

α = J2 +
1
2
m2l1l2 cos θ2, β = J1 + J2 + m2l21 + m2l1l2 cos θ2, γ = 1

2
m2gl2 sin(θ1 + θ2).

Note that J1 is the moment of inertia of bar 1 with respect to a around an axis coming out of the

page, and J2 is the moment of inertia of bar 2 with respect to b around an axis coming out of the

page.

Solution to Problem 9.16.7.

(JD + mh2 + mx2)θ̈ + 2mxẋθ̇ − mhẍ = τ, ẍ − hθ̈ − xθ̇2 +
2k

m
x = 0,

where x is the distance between y and b, θ is the angle between
⇀
r b/a and îA, and FA is defined such

that ı̂A and ĵA are in the plane of the disk, and k̂A is perpendicular to the disk.

Solution to Problem 9.16.8.

1
3
(m1 + m2)l2θ̈ + (2m2 + 4m3)l2 sin θ(sin θθ̈ + cos θθ̇2) + kl2 sin θ( 1

2
− cos θ)

+ 1
2
(m1 + m2)gl cos θ = M − 1

2
f l cos θ.
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Note that y can move only horizontally.





Chapter Ten

Aircraft Kinematics

10.1 Frames Used in Aircraft Kinematics

An aircraft is modeled as a rigid body that has six degrees of freedom, specifically, three trans-

lational degrees of freedom (translation in three orthogonal directions) and three rotational degrees

of freedom (rotation about three orthogonal axes). The names of these degrees of freedom are given

in Table 10.1.

Translational Rotational

X: Range Φ: Roll

Y: Drift Θ: Pitch

Z: Plunge Ψ: Yaw

Longitudinal Lateral

X: Range Φ: Roll

Θ: Pitch Y: Drift

Z: Plunge Ψ: Yaw

Table 10.1: Aircraft degrees of freedom using the 3-2-1 yaw-pitch-roll Euler-angle rotation se-

quence. On the left, the each degree of freedom is classified as translational or rotational, whereas,

on the right, each degree of freedom is classified as longitudinal or lateral.

Since a single degree of freedom is modeled by one second-order differential equation and thus

two first-order differential equations, the dynamics of a six-degree-of-freedom rigid body such as

an aircraft are described by 6 second-order differential equations and thus 12 first-order differential

equations.

To describe aircraft flight kinematics we consider eight frames, namely, the Earth frame, four

intermediate Earth frames, the aircraft frame, the stability frame, and the wind frame. For simplic-

ity, we assume throughout this book that the atmosphere is stagnant, and thus no ambient wind is

present.

10.2 Earth Frame FE

The Earth frame is assumed to be an inertial frame. The origin OE of the Earth frame is an

arbitrary convenient point on the Earth. As shown in Figure 10.2.1, ı̂E and ̂E are horizontal, while

k̂E points downward, that is, toward the center of the Earth. For convenience, we henceforth assume

that the Earth is flat.

The acceleration due to gravity is the physical acceleration vector

⇀
g = gk̂E, (10.2.1)

where g = 9.8 m/s2 ≈ 32.2 ft/s2. For a falling particle x that is unaffected by atmospheric forces,
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❄̂kE

✾
̂E

❥
ı̂E

OE

Figure 10.2.1: The Earth frame FE.

the acceleration of x relative to OE with respect to FE is given by

⇀
a x/OE/E =

⇀
g . (10.2.2)

10.3 Intermediate Earth Frames and Aircraft Frame FAC

The aircraft frame is fixed to the aircraft, and its origin is the center of mass c of the aircraft.

We assume that the effect of gravity is uniform over the aircraft, and thus the center of mass of the

aircraft coincides with the center of gravity of the aircraft. The aircraft frame origin c, along with

the axes ı̂AC and k̂AC, are assumed to lie in the aircraft plane of symmetry, where the right wing lies

on one side of the plane of symmetry and the left wing lies on the other side. The direction of ı̂AC is

typically, but not necessarily, through the nose of the aircraft, as shown in Figure 10.3.1.

The aircraft frame is related to the Earth frame by a 3-2-1 Euler-angle rotation sequence applied

to the Earth frame. These operations yield two intermediate frames, namely, FE′ defined by the yaw

rotation

FE′ =
→
Rk̂E

(Ψ)FE, (10.3.1)

FE′′ defined by the pitch rotation

FE′′ =
→
R ̂E′ (Θ)FE′ , (10.3.2)

and FAC is achieved by the roll rotation

FAC =
→
R ı̂E′′ (Φ)FE′′ . (10.3.3)

Therefore,

FAC =
→
R ı̂E′′ (Φ)

→
R ̂E′ (Θ)

→
Rk̂E

(Ψ)FE, (10.3.4)
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and we can write

FE

Ψ−→
3

FE′
Θ−→
2

FE′′
Φ−→
1

FAC. (10.3.5)

Note that yaw rotation rotates FE about the axis k̂E of FE, the pitch rotation rotates FE′ about the axis

̂′
E

of FE′ , and the roll rotation rotates FE′′ about the axis ı̂′′
E

of FE′′ . The angles Ψ, Θ, and Φ are the

signed angles given by

Ψ = θı̂E′ /ı̂E/k̂E
= θ ̂E′ / ̂E/k̂E

, (10.3.6)

Θ = θı̂E′′ /ı̂E′ / ̂E′ = θk̂E′′ /k̂E′ / ̂E′
, (10.3.7)

Φ = θ ̂AC/ ̂E′′ /ı̂E′′ = θk̂AC/k̂E′′ /ı̂E′′
. (10.3.8)

The transformation from FE to FAC thus involves two intermediate frames, namely, FE′ and FE′′

❄
k̂AC

ψ

✯

✾
̂AC

θ

❄

❥
ı̂AC✕

φ

c

Figure 10.3.1: The aircraft frame FAC.

The orientation matrices corresponding to the physical rotation matrices
→
Rk̂E

(Ψ),
→
R ̂E′ (Θ), and

→
R ı̂E′′ (Φ), are given, respectively, by

OE′/E = O3(Ψ) =





cosΨ sinΨ 0

− sinΨ cosΨ 0

0 0 1




, (10.3.9)

OE′′/E′ = O2(Θ) =





cosΘ 0 − sinΘ

0 1 0

sinΘ 0 cosΘ




, (10.3.10)
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OAC/E′′ = O1(Φ) =





1 0 0

0 cosΦ sinΦ

0 − sinΦ cosΦ




. (10.3.11)

The vectrices of the four frames are related by




ı̂E′

̂E′

k̂E′




= O3(Ψ)





ı̂E
̂E
k̂E




, (10.3.12)





ı̂E′′

̂E′′

k̂E′′




= O2(Θ)





ı̂E′

̂E′

k̂E′




, (10.3.13)





ı̂AC

̂AC

k̂AC




= O1(Φ)





ı̂E′′

̂E′′

k̂E′′




. (10.3.14)

Combining (10.3.12), (10.3.13), and (10.3.14) yields




ı̂AC

̂AC

k̂AC




= OAC/E′′





ı̂E′′

̂E′′

k̂E′′





= OAC/E′′OE′′/E′





ı̂E′

̂E′

k̂E′





= OAC/E′′OE′′/E′OE′/E





ı̂E
̂E
k̂E





= OAC/E





ı̂E
̂E
k̂E




, (10.3.15)

where

OAC/E = OAC/E′′OE′′/E′OE′/E = O1(Φ)O2(Θ)O3(Ψ)

=





1 0 0

0 cosΦ sinΦ

0 − sinΦ cosΦ









cosΘ 0 − sinΘ

0 1 0

sinΘ 0 cosΘ









cosΨ sinΨ 0

− sinΨ cosΨ 0

0 0 1





=





(cosΘ) cosΨ (cosΘ) sinΨ − sinΘ

(sinΦ)(sinΘ) cosΨ − (cosΦ) sinΨ (sinΦ)(sinΘ) sinΨ + (cosΦ) cosΨ (sinΦ) cosΘ

(cosΦ)(sinΘ) cosΨ + (sinΦ) sinΨ (cosΦ)(sinΘ) sinΨ − (sinΦ) cosΨ (cosΦ) cosΘ





. (10.3.16)

Therefore,

OE/AC = OE/E′OE′/E′′OE′′/AC = O3(−Ψ)O2(−Θ)O1(−Φ)

=





cosΨ − sinΨ 0

sinΨ cosΨ 0

0 0 1









cosΘ 0 sinΘ

0 1 0

− sinΘ 0 cosΘ









1 0 0

0 cosΦ − sinΦ

0 sinΦ cosΦ
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=





(cosΘ) cosΨ (sinΦ)(sinΘ) cosΨ − (cosΦ) sinΨ (cosΦ)(sinΘ) cosΨ + (sinΦ) sinΨ

(cosΘ) sinΨ (sinΦ)(sinΘ) sinΨ + (cosΦ) cosΨ (cosΦ)(sinΘ) sinΨ − (sinΦ) cosΨ

− sinΘ (sinΦ) cosΘ (cosΦ) cosΘ





. (10.3.17)

10.4 Stability Frame FS

Let

⇀
r AC/E

△
=

⇀
r c/OE

(10.4.1)

define the location of the aircraft center of mass relative to the origin of FE, and define the aircraft

velocity vector
⇀

VAC by

⇀

VAC
△
=

E•
⇀
r AC . (10.4.2)

Next, define the projected velocity vector
⇀

VAC,proj, which is the projection of
⇀

VAC onto the plane

spanned by ı̂AC and k̂AC, that is,

⇀

VAC,proj
△
=
→
Pı̂AC,k̂AC

⇀

VAC. (10.4.3)

Since the plane spanned by ı̂AC and k̂AC is the plane of symmetry of the aircraft, it follows that
⇀

VAC,proj is independent of the direction of ı̂AC relative to the nose of the aircraft.

Next, as shown in Figure 10.4.1 and assuming that
⇀

VAC,proj is nonzero, define ı̂S to be the unit

vector aligned along
⇀

VAC,proj, that is,

ı̂S
△
= V̂AC,proj. (10.4.4)

The angle of attack α ∈ (−π, π] is the signed angle from ı̂S to ı̂AC about ̂AC, that is,

α
△
= θı̂AC/ı̂S/ ̂AC

= θ
ı̂AC/

⇀

VAC,proj/ ̂AC

= θk̂AC/k̂S/ ̂AC
. (10.4.5)

The stability frame FS is defined by rotating the aircraft frame by the angle −α about ̂AC, that is,

FS
△
=
→
R ̂AC

(−α)FAC, (10.4.6)

and thus

→
RS/AC =

→
R ̂AC

(−α), (10.4.7)




ı̂S
̂S
k̂S




= OS/AC





ı̂AC

̂AC

k̂AC




=





cosα 0 sinα

0 1 0

− sinα 0 cosα









ı̂AC

̂AC

k̂AC




. (10.4.8)

Hence,

FAC =
→
R ̂AC

(α)FS, (10.4.9)

and thus

→
RAC/S =

→
R ̂AC

(α), (10.4.10)
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❄k̂AC

✲ı̂AC

③̂ıS
③ ⇀

VAC,proj

✎

̂S = ̂AC

k̂S

©• ✻α

✲

α

Figure 10.4.1: Definition of the angle of attack α, which is the angle of rotation about ̂S = ̂AC from

the stability frame FS to the aircraft frame FAC.





ı̂AC

̂AC

k̂AC




= OAC/S





ı̂S
̂S
k̂S




=





cosα 0 − sinα

0 1 0

sinα 0 cosα









ı̂S
̂S
k̂S




. (10.4.11)

Note that

OAC/S = O2(α) = OT
2 (−α) = OT

S/AC. (10.4.12)

The case where
⇀

VAC,proj is zero must be handled separately since α is not defined by (10.4.5).

In this case, we define α to be zero and FS
△
= FAC. However, this definition causes discontinuities,

which are unavoidable.

The stability frame is a velocity-dependent frame since its axes depend on the aircraft velocity

vector
⇀

VAC.

10.5 Wind Frame FW

Assuming that
⇀

VAC is nonzero, we define ı̂W to be the unit vector that points along
⇀

VAC as shown

in Figure 10.5.1, that is,

ı̂W
△
= V̂AC. (10.5.1)

The slideslip angle β ∈ (−π, π] is the signed angle from ı̂S to ı̂W about k̂S, that is,

β
△
= θı̂W/ı̂S/k̂S

= θ ̂W/ ̂S/k̂S
. (10.5.2)

Therefore, the relative wind is in the pilot’s right ear when β is positive.
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❄̂S

✲ı̂S ✲ ⇀

VAC,proj

③ ⇀

VAC

③
ı̂W

✎ ̂W

k̂S = k̂W

©
❄β

✛
β

Figure 10.5.1: Definition of the sideslip angle β, which is the angle of rotation about k̂S = k̂W from

the stability frame FS to the wind frame FW.

The wind frame FW is defined by rotating the stability frame by the angle β about k̂S = k̂W, that

is,

FW
△
=
→
Rk̂S

(β)FS, (10.5.3)

and thus

→
RW/S =

→
Rk̂AC

(β), (10.5.4)




ı̂W
̂W
k̂W




= OW/S





ı̂S
̂S
k̂S




=





cos β sin β 0

− sin β cos β 0

0 0 1









ı̂S
̂S
k̂S




. (10.5.5)

Hence,

FS =
→
Rk̂S

(−β)FW, (10.5.6)

and thus

→
RS/W =

→
Rk̂S

(−β), (10.5.7)




ı̂S
̂S
k̂S




= OS/W





ı̂W
̂W
k̂W




=





cos β − sin β 0

sin β cos β 0

0 0 1









ı̂W
̂W
k̂W




. (10.5.8)

Furthermore,

OW/S = O3(β) = OT
3 (−β) = OT

S/W. (10.5.9)

Consequently, the Earth frame is transformed to the wind frame by the 3-2-1-2-3 rotation se-
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quence Ψ-Θ-Φ-(−α)-β given by

FE

Ψ−→
3

FE′
Θ−→
2

FE′′
Φ−→
1

FAC

−α−→
2

FS

β
−→

3
FW. (10.5.10)

The wind frame is a velocity-dependent frame since its axes depend on the velocity of the

aircraft.

10.6 Aircraft Velocity Vector

We resolve
⇀

VAC in the aircraft frame as

⇀

VAC = U ı̂AC + V ̂AC +Wk̂AC,

and thus

⇀

VAC

∣
∣
∣
∣
∣
AC

=





U

V

W




. (10.6.1)

where U, V, and W are the range rate, drift rate, and plunge rate, respectively. It thus follows from

(10.4.3) that

⇀

VAC,proj = (ı̂AC ı̂
′
AC + k̂ACk̂′AC)

⇀

VAC = U ı̂AC +Wk̂AC. (10.6.2)

Hence,

⇀

VAC =
⇀

VAC,proj + V ̂AC. (10.6.3)

Next, define

U
△
= |

⇀

VAC,proj| =
√

U2 +W2. (10.6.4)

Since V̂AC,proj = ı̂S, it follows that

⇀

VAC,proj = U ı̂S = UV̂AC,proj. (10.6.5)

Next, note that

k̂S ·
⇀

VAC = k̂S · (
⇀

VAC,proj + V ̂AC)

= k̂S · (U ı̂S + V ̂AC)

= Vk̂S · ̂AC

= V[−(sinα)ı̂AC + (cosα)k̂AC] · ̂AC

= 0. (10.6.6)

We thus have

⇀

VAC = U ı̂S + V ̂S,

where

V
△
= ̂S ·

⇀

VAC = ̂AC ·
⇀

VAC = V. (10.6.7)
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Therefore,

⇀

VAC

∣
∣
∣
∣
∣
S

=





U

V

0




. (10.6.8)

Next, we have




U

V

W




= OAC/S





U

V

0




= O2(α)





U

V

0




=





cosα 0 − sinα

0 1 0

sinα 0 cosα









U

V

0




, (10.6.9)

and thus

U = (cosα)U, (10.6.10)

V = V , (10.6.11)

W = (sinα)U. (10.6.12)

Hence,

sinα =
W

√
U2 +W2

, (10.6.13)

cosα =
U

√
U2 +W2

, (10.6.14)

tanα =
W

U
. (10.6.15)

The reverse of (10.6.9) is




U

V

0




= OS/AC





U

V

W




= O2(−α)





U

V

W




=





cosα 0 sinα

0 1 0

− sinα 0 cosα









U

V

W




. (10.6.16)

Therefore,

U = (cosα)U + (sinα)W. (10.6.17)

Finally, it follows from (10.4.5) and (2.3.8) that

α = θ
ı̂AC/

⇀

VAC,proj/ ̂AC

= −θ⇀
VAC,proj/ı̂AC/ ̂AC

= −atan2(−W,U) = atan2(W,U), (10.6.18)

which implies (10.6.15).

Now, consider the wind frame FW, and (10.5.1) implies that

⇀

VAC = VAC ı̂W = VACV̂AC, (10.6.19)

where the airspeed VAC ≥ 0 is given by

VAC
△
= |

⇀

VAC| =
√

U
2
+ V

2
=
√

U2 + V2 +W2. (10.6.20)

From (10.5.10) it follows that

⇀

VAC

∣
∣
∣
∣
∣
W

= OW/S

⇀

VAC

∣
∣
∣
∣
∣
S

= O3(β)
⇀

VAC

∣
∣
∣
∣
∣
S

,
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and thus




U

V

0




=

⇀

VAC

∣
∣
∣
∣
∣
S

= OS/W

⇀

VAC

∣
∣
∣
∣
∣
W

= O3(−β)
⇀

VAC

∣
∣
∣
∣
∣
W

=





cos β − sin β 0

sin β cos β 0

0 0 1









VAC

0

0




. (10.6.21)

Therefore,

U = (cos β)VAC, (10.6.22)

V = V = (sin β)VAC, (10.6.23)

which implies

sin β =
V

VAC

=
V

√

U
2
+ V

2

=
V

√
U2 + V2 +W2

, (10.6.24)

cos β =
U

VAC

=
U

√

U
2
+ V

2

=

√
U2 +W2

√
U2 + V2 +W2

, (10.6.25)

tan β =
V

U
=

V
√

U2 +W2
. (10.6.26)

Finally, it follows from (10.6.26) that

β = θı̂W/ı̂S/k̂S
= atan2(V,U) = atan2(V,

√
U2 +W2). (10.6.27)

Combining (10.6.9) and (10.6.21) yields




U

V

W




=





cosα 0 − sinα

0 1 0

sinα 0 cosα









cos β − sin β 0

sin β cos β 0

0 0 1









VAC

0

0





=





(cosα) cos β −(cosα) sin β − sinα

sin β cos β 0

(sinα) cos β −(sinα) sin β cosα









VAC

0

0





=





(cosα)(cos β)VAC

(sin β)VAC

(sinα)(cos β)VAC




. (10.6.28)

10.7 Range, Drift, Plunge, and Altitude

The position of the aircraft relative to the origin of the Earth frame is given by

⇀
r AC =

⇀
r c/OE

= X ı̂E + Y ̂E + Zk̂E, (10.7.1)

that is,

⇀
r AC

∣
∣
∣
∣
E
=





X

Y

Z




, (10.7.2)
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where X, Y, and Z are the range, drift, and plunge, respectively. The altitude H is defined by H = −Z.

Hence, the aircraft velocity vector
⇀

VAC is given by

⇀

VAC =

E•
⇀
r AC = Ẋ ı̂E + Ẏ ̂E + Żk̂E. (10.7.3)

Therefore,

⇀

VAC

∣
∣
∣
∣
∣
E

= OE/AC

⇀

VAC

∣
∣
∣
∣
∣
AC

, (10.7.4)

it follows from (10.6.1) that




Ẋ

Ẏ

Ż




= OE/AC





U

V

W




, (10.7.5)

where Ẋ, Ẏ , and Ż are the range rate, drift rate, and plunge rate, respectively.

10.8 Heading Angle, Flight-Path Angle, and Bank Angle

The heading angle η is defined to be the signed angle from ı̂E to the projection of
⇀

VAC onto the

horizontal plane about k̂E. This rotation defines the frame FF
△
=
→
RF/EFE. to ı̂W about ̂F. This rotation

defines the frame FG
△
=
→
RG/FFF. The 3-2-1-3-2 Euler-angle rotation sequence η-γ-µ-(−β)-α from FE

to FW is thus given by

FE

η
−→

3
FF

γ
−→

2
FG

µ
−→

1
FW

−β
−→

3
FS

α−→
2

FAC, (10.8.1)

where the signed angle µ is the bank angle. The first two rotations align ı̂E with ı̂W, while the third

rotation rotates FG about ı̂G = ı̂W = V̂AC by the bank angle µ in order to arrive at FW. The η-γ-µ-

(−β)-α Euler-angle rotation sequence from FE to FW can be contrasted with the 3-2-1-2-3 rotation

sequence Ψ-Θ-Φ-(−α)-β given by (10.5.10), where

FE

Ψ−→
3

FE′
Θ−→
2

FE′′
Φ−→
1

FAC

−α−→
2

FS

β
−→

3
FW. (10.8.2)

Together, (10.8.1) and (10.8.2) comprise eight rotation angles and eight frames. Merging these

sequences yields

FE

Ψ−→
3

FE′
Θ−→
2

FE′′
Φ−→
1

FAC

−α−→
2

FS

β
−→

3
FW

−µ
−→

1
FG

−γ
−→

2
FF

−η
−→

3
FE. (10.8.3)

Comparing (10.8.1) and (10.8.2), it follows that

O3(β)O2(−α)O1(Φ)O2(Θ)O3(Ψ) = O1(µ)O2(γ)O3(η). (10.8.4)

Equivalently,

O2(−γ)O1(−µ)O3(β)O2(−α)O1(Φ)O2(Θ)O3(Ψ − η) = I. (10.8.5)

By setting certain angles in (10.8.5) to zero, rotations about the same axis become adjacent and

thus can be combined into a single rotation, thereby reducing the number of factors. The simplest

choice is to set Φ ≡ 0 (wings level flight) in which case (10.8.5) can be written as

O2(−γ)O1(−µ)O3(β)O2(Θ − α)O3(Ψ − η) = I. (10.8.6)
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Since (10.8.6) involves a product of five Euler rotation matrices, setting one of these to zero yields

a product of four Euler rotation matrices, which is amenable to either Fact 2.13.11, Fact 2.13.13, or

Fact 2.13.15. This can be done in five different ways. In fact, setting either Θ ≡ α or Ψ ≡ η yields a

product of three Euler rotation matrices. These two cases are considered by the next two results.

Fact 10.8.1. Assume that Φ ≡ 0 and Θ ≡ α. Then, Ψ, β, η, γ, µ satisfy (10.8.5) if and only if

either γ ≡ µ ≡ β + Ψ − η ≡ 0 or γ ≡ µ ≡ β + Ψ − η ≡ π.

Proof. The result follows by applying Proposition 3 to

O2(−γ)O1(−µ)O3(β + Ψ − η) = I. �

Fact 10.8.2. Assume that Φ ≡ 0 and Ψ ≡ η. Then, Θ, α, β, γ, µ satisfy (10.8.5) if and only if

either µ ≡ β ≡ Θ − α − γ ≡ 0 or µ ≡ β ≡ Θ − α − γ ≡ π.

Proof. The result follows by applying Proposition 3 to

O1(−µ)O3(β)O2(Θ − α − γ) = I. �

Combining Fact 10.8.1 and Fact 10.8.2 yields the following result.

Fact 10.8.3. Assume that Φ ≡ 0, Θ ≡ α, and Ψ ≡ η. Then, β, γ, µ satisfy (10.8.5) if and only if

either β ≡ γ ≡ µ ≡ 0 or β ≡ γ ≡ µ ≡ π.

The next result is a partial converse of Fact 10.8.3.

Fact 10.8.4. Assume that either β ≡ γ ≡ µ ≡ 0 or β ≡ γ ≡ µ ≡ π. Then, Ψ,Θ,Φ, α, η satisfy

(10.8.5) if and only if i) Φ ≡ Ψ − η ≡ 0 and α ≡ Θ, ii) Φ ≡ Ψ − η ≡ π and −α ≡ Θ + π, iii)

α ≡ Θ ≡ π/2 and Φ ≡ η − Ψ, or iv) α ≡ Θ ≡ −π/2 and Φ ≡ Ψ − η.

Proof. The result follows by applying Fact 2.13.15 to

O2(−α)O1(Φ)O2(Θ)O3(Ψ − η) = I. �

The following result considers wings-level, zero-sideslip flight, which is considered in deriving

the equations of linearized flight.

Fact 10.8.5. Assume that Φ ≡ β ≡ 0. Then, Ψ,Θ, α, η, γ, µ satisfy (10.8.5) if and only if i)

µ ≡ Ψ − η ≡ 0 and γ ≡ Θ − α, ii) −µ ≡ Ψ − η ≡ π and −γ ≡ Θ − α + π, iii) γ ≡ Θ − α ≡ π/2 and

µ ≡ Ψ − η, or iv) γ ≡ Θ − α ≡ −π/2 and −µ ≡ Ψ − η.

Proof. The result follows by applying Proposition 5 to

O2(−γ)O1(−µ)O2(Θ − α)O3(Ψ − η) = I. �

Note that, in case i), the bank angle is zero, the yaw angle is equal to the heading angle, and

Θ = α + γ. The condition Θ = α + γ is illustrated in Figure 10.8.1 and Figure 10.8.2.

The next three results follow from Fact 2.13.13.
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Fact 10.8.6. Assume that Φ = µ = 0. Then, Ψ,Θ, α, β, γ, η satisfy

O2(−γ)O3(β)O2(Θ − α)O3(Ψ − η) = I, (10.8.7)

if and only if one of the following conditions is satisfied:

i) β = 0, Ψ = η, and Θ = α + γ.

ii) γ = 0, Θ = α, and Ψ = η − β.

iii) β = π, Ψ = η + π, and Θ = α − γ.

iv) γ = π, Θ = α + π, and Ψ = η + β.

Fact 10.8.7. Assume that Θ = α = γ = 0. Then, Ψ,Φ, β, η, µ satisfy

O1(−µ)O3(β)O1(Φ)O3(Ψ − η) = I, (10.8.8)

if and only if one of the following conditions is satisfied:

i) β = 0, Ψ = η, and Φ = µ.

ii) Φ = µ = 0 and Ψ = η − β.

iii) β = π, Ψ = η + π, and Φ = −µ.

iv) Φ = µ = π and Ψ = η + β.

Fact 10.8.8. Assume that β = 0 and Ψ = η. Then, Θ,Φ, α, γ, µ satisfy

O1(−µ)O2(−α)O1(Φ)O2(Θ − γ) = I, (10.8.9)

if and only if one of the following conditions is satisfied:

i) α = 0, Θ = γ, and Φ = µ.

ii) Φ = µ = 0 and Θ = α + γ.

iii) α = π, Θ = γ + π, and Φ = −µ.

iv) Φ = µ = π and Θ = γ − α.
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❯
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⇀
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✿
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❖

Θ

horizontal

̂S = ̂AC

©•

Figure 10.8.1: Flight path angle γ and pitch angle Θ. In this configuration, the angle of attack α,

which is the angle from
⇀

VAC,proj to ı̂AC, is positive. Note that Θ = α + γ.

❲

k̂AC

❯
k̂S

✿ ı̂AC

✯

✯

ı̂S

⇀

VAC,proj

✻Θ❖
−α

✿

−α

❖

γ

horizontal

̂S = ̂AC

©•

Figure 10.8.2: Flight path angle γ and pitch angle Θ. In this configuration, the angle of attack α is

negative, and thus −α, which is the angle from ı̂AC to
⇀

VAC,proj, is positive. Note that Θ = α + γ.
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10.9 Angular Velocity

The angular velocity of the aircraft relative to the Earth frame is given by
⇀
ωAC/E. Resolving this

vector in the aircraft frame, we define the notation




P

Q

R





△
= ωAC/E

△
=

⇀
ωAC/E

∣
∣
∣
∣
AC
. (10.9.1)

The angular velocity vector
⇀
ωAC/E can be related to the derivatives of the Euler angles. For 3-2-1

(yaw-pitch-roll) Euler angles Ψ,Θ,Φ (see (10.3.5)), it follows that have

⇀
ωAC/E =

⇀
ωAC/E′′ +

⇀
ωE′′/E′ +

⇀
ωE′/E (10.9.2)

= Φ̇ı̂AC + Θ̇ ̂E′′ + Ψ̇k̂E′ . (10.9.3)

Since ı̂AC = ı̂E′′ , ̂E′′ = ̂E′ , and k̂E′ = k̂E, resolving
⇀
ωAC/E in FAC yields

⇀
ωAC/E = Φ̇ı̂AC + Θ̇ ̂E′′ + Ψ̇k̂E′ (10.9.4)

= Φ̇ı̂AC + Θ̇[(cosΦ) ̂AC − (sinΦ)k̂AC] + Ψ̇[(cosΘ)k̂E′′ − (sinΘ)ı̂E′′ ] (10.9.5)

= Φ̇ı̂AC + Θ̇(cosΦ) ̂AC − Θ̇(sinΦ)k̂AC + Ψ̇(cosΘ)[(cosΦ)k̂AC + (sinΦ) ̂AC] − Ψ̇(sinΘ)ı̂AC

(10.9.6)

= [−Ψ̇(sinΘ) + Φ̇]ı̂AC + [Ψ̇(sinΦ) cosΘ + Θ̇ cosΦ] ̂AC + [Ψ̇(cosΦ) cosΘ − Θ̇(sinΦ)]k̂AC.

(10.9.7)

It thus follows that

ωAC/E = (
⇀
ωAC/E′′ +

⇀
ωE′′/E′ +

⇀
ωE′/E)

∣
∣
∣
∣
AC

= (Φ̇ı̂AC + Θ̇ ̂E′′ + Ψ̇k̂E′ )
∣
∣
∣
AC

=





1 0 − sinΘ

0 cosΦ (cosΘ) sinΦ

0 − sinΦ (cosΘ) cosΦ









Φ̇

Θ̇

Ψ̇




. (10.9.8)

Therefore,





Φ̇

Θ̇

Ψ̇




=





1 0 − sinΘ

0 cosΦ (cosΘ) sinΦ

0 − sinΦ (cosΘ) cosΦ





−1 



P

Q

R





=





1 (sinΦ) tanΘ (cosΦ) tanΘ

0 cosΦ − sinΦ

0 (sinΦ) secΘ (cosΦ) secΘ









P

Q

R




, (10.9.9)

which can be integrated to provide the 3-2-1 sequence of Euler angles from FE to FAC. Note that the

inverse can fail to exist for Θ = ± π
2

due to gimbal lock.

For the 3-2-1-3-2 Euler-angle rotation sequence η-γ-µ-(−β)-α defined in (10.8.1), it follows that

have

⇀
ωAC/E =

⇀
ωAC/S +

⇀
ωS/W +

⇀
ωW/G +

⇀
ωG/F +

⇀
ωF/E (10.9.10)

= α̇ ̂AC − β̇k̂S + µ̇ı̂W + γ̇ ̂G + η̇k̂F. (10.9.11)
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Since ̂AC = ̂S, k̂S = k̂W, ı̂W = ı̂G, ̂G = ̂F, and k̂F = k̂E, resolving
⇀
ωAC/E in FAC yields

ωAC/E = α̇ ̂AC|AC − β̇ k̂S

∣
∣
∣
AC
+ µ̇ ı̂W|AC + γ̇ ̂G|AC + η̇ k̂F

∣
∣
∣
AC
, (10.9.12)

where

k̂S

∣
∣
∣
AC
=





− sinα

0

cosα




, (10.9.13)

ı̂W|AC =





(cosα) cos β

sin β

(sinα) cos β




, (10.9.14)

̂G|AC =





(sinα) sin µ − (cosα)(sin β) cos µ

(cos β) cos µ

−(cosα) sin µ − (sinα)(sin β) cos µ




, (10.9.15)

k̂F

∣
∣
∣
AC
=





−
[

(sinα) cos µ + (cosα)(sin β) sin µ
]

cos γ − (cosα)(cos β) sin γ

(cos β)(sin µ) cos γ − (sin β) sin γ
[

(cosα) cos µ − (sinα)(sin β) sin µ
]

cos γ − (sinα)(cos β) sin γ




. (10.9.16)

It thus follows from (10.9.12) that





P

Q

R




=

[

ı̂W|AC ̂G|AC k̂F

∣
∣
∣
AC

̂AC|AC − k̂S

∣
∣
∣
AC

]





µ̇

γ̇

η̇

α̇

β̇





, (10.9.17)

which can be written as




P − β̇ sinα

Q − α̇
R + β̇ cosα




=

[

ı̂W|AC ̂G|AC k̂F

∣
∣
∣
AC

]





µ̇

γ̇

η̇




. (10.9.18)

Therefore,




µ̇

γ̇

η̇




=

[

ı̂W|AC ̂G|AC k̂F

∣
∣
∣
AC

]−1





P − β̇ sinα

Q − α̇
R + β̇ cosα





=
[

a b c
]





P − β̇ sinα

Q − α̇
R + β̇ cosα




, (10.9.19)

where

a =
1

cos γ





−(sinα)(cos µ) sin γ + (cosα)(cos β) cos γ − (cosα)(sin β)(sin µ) sin γ
[

(sinα) sin µ − (cosα)(sin β) cos µ
]

cos γ

−(sinα) cos µ − (cosα)(sin β) sin µ




, (10.9.20)

b =
1

cos γ





(sin β) cos γ + (cos β)(sin µ) sin γ

(cos β)(cos µ) cos γ

(cos β) sin µ




, (10.9.21)

c =
1

cos γ





(cosα)(cos µ) sin γ + (sinα)(cos β) cos γ − (sinα)(sin β)(sin µ) sin γ
[

−(cosα) sin µ − (sinα)(sin β) cos µ
]

cos γ

(cosα) cos µ − (sinα)(sin β) sin µ




. (10.9.22)
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Note that, det
[

ı̂W|AC ̂G|AC k̂F

∣
∣
∣
AC

]

= cos γ, which implies that the inverse in (10.9.19) does

not exist if and only if γ = ± π
2
.

Alternatively, to circumvent gimbal lock, the attitude of the aircraft can be obtained from Pois-

son’s equation given by

ȮAC/E = −ω×AC/EOAC/E. (10.9.23)

10.10 Frame Derivatives

Let
⇀
r be a position vector. Then, the transport theorem given by Fact 4.4.1 implies that

E•
⇀
r =

AC•
⇀
r +

⇀
ωAC/E ×

⇀
r .

Next, note that

E•
⇀
ωAC/E =

AC•
⇀
ω AC/E +

⇀
ωAC/E ×

⇀
ωAC/E =

AC•
⇀
ω AC/E,

that is, the angular acceleration of the aircraft relative to the Earth frame is the same as the angular

acceleration of the aircraft relative to the aircraft frame. Now consider the linear acceleration

E••
⇀
r =

E•
AC•
⇀
r +

E•
︷      ︸︸      ︷

⇀
ωAC/E ×

⇀
r

=

AC••
⇀
r +

⇀
αAC/E/E

=

AC••
⇀
r +

⇀
ωAC/E ×

AC•
⇀
r +

E•
⇀
ωAC/E ×

⇀
r +

⇀
ωAC/E ×





AC•
⇀
r +

⇀
ωAC/E ×

⇀
r





=

AC••
⇀
r + 2

⇀
ωAC/E ×

AC•
⇀
r

︸          ︷︷          ︸

aCor

+

E•
⇀
ωAC/E ×

⇀
r

︸      ︷︷      ︸

aang

+
⇀
ωAC/E ×

(
⇀
ωAC/E ×

⇀
r

)

︸                     ︷︷                     ︸

acent

, (10.10.1)

where aCor, aang, and acent are the Coriolis acceleration, angular-acceleration acceleration, and cen-

tripetal acceleration, respectively.

The cross product of the angular velocity vector

⇀
ωAC/E

∣
∣
∣
∣
AC
=





P

Q

R




(10.10.2)

and the position vector

⇀
r |AC =





r1

r2

r3




(10.10.3)

is given by

⇀
ωAC/E ×

⇀
r = det





ı̂AC ̂AC k̂AC

P Q R

r1 r2 r3




= (Qr3 − Rr2)ı̂AC − (Pr3 − Rr1) ̂AC + (Pr2 − Qr1)k̂AC.
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Since

⇀
ωAC/E

∣
∣
∣
∣

×

AC
=





0 −R Q

R 0 −P

−Q P 0




,

it follows that

(
⇀
ωAC ×

⇀
r )

∣
∣
∣
∣
AC
=

⇀
ωAC/E

∣
∣
∣
∣
AC
× ⇀

r
∣
∣
∣
∣
AC
=

⇀
ωAC/E

∣
∣
∣
∣

×

AC

⇀
r
∣
∣
∣
∣
AC
=





0 −R Q

R 0 −P

−Q P 0









r1

r2

r3




. (10.10.4)

10.11 Problems

Problem 10.11.1. Resolve the velocity vector

⇀

VAC = 72 m/s ı̂AC − 6.3 m/s ̂AC − 43 m/s k̂AC

in the stability and wind frames.

Problem 10.11.2. An aircraft is flying with an angle of attack of 14◦ and no sideslip. The

airspeed |
⇀

VAC| is 94 m/s. Resolve
⇀

VAC in the aircraft frame and in the stability frame.

Problem 10.11.3. An aircraft is flying with an angle of attack of 10◦ and a sideslip angle of

−19◦. The airspeed |
⇀

VAC| is 80 m/s. Resolve
⇀

VAC in the aircraft, stability, and wind frames.

Problem 10.11.4. Resolve the gravity vector
⇀
g symbolically in the aircraft and stability frames.

Then, set Ψ = 22◦, Θ = 5◦, Φ = −24◦, and α = −17◦, and compute the components of
⇀
g in the

aircraft and stability frames.

Problem 10.11.5. Consider the position vector

⇀
r = 6.2 m ı̂E − 14.1 m ̂E + 65.2 m k̂E,

and assume that the orientation of the aircraft frame relative to the Earth frame is given by the yaw,

pitch, and roll Euler angles Ψ = 62◦, Θ = 7◦, Φ = −12◦. Then, resolve
⇀
r in the aircraft frame.

Check your solution by comparing the magnitude of
⇀
r computed from

⇀
r resolved in both frames.

Problem 10.11.6. An aircraft is flying with velocity
⇀

VAC, which is constant with respect to the

Earth frame. Its angle of attack is −13◦, sideslip angle is 24◦, and airspeed |
⇀

VAC| is 85 m/s. The

aircraft then rolls about ı̂AC by +23◦ while the velocity vector remains fixed with respect to the Earth

frame. Resolve the velocity vector
⇀

VAC in the aircraft frame after the roll is complete, and determine

the new angle of attack and sideslip.

Problem 10.11.7. Write a Matlab program (and include your code) that implements the trans-

formation (4.10.7) from 3-2-1 Euler-angle rates to angular velocity components. Next, derive and

confirm the reverse transformation

Φ̇ = P + Q(sinΦ) tanΘ + R(cosΦ) tanΘ,

Θ̇ = Q cosΦ − R sinΦ,
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Ψ̇ = (Q sinΦ + R cosΦ) secΘ,

and write a Matlab program that implements it. Finally, let

(Φ,Θ,Ψ) = (−52◦,−29◦, 14◦),

(Φ̇, Θ̇, Ψ̇) = (16 deg/sec,−7 deg/sec, 19 deg/sec),

and compute (P,Q,R). Then, use the computed values of (P,Q,R) in the reverse transformation and

compute (Φ̇, Θ̇, Ψ̇). Verify that you recover the original values of (Φ̇, Θ̇, Ψ̇).

Problem 10.11.8. Consider an aircraft flying at constant speed and zero roll angle in a hori-

zontal circle of radius R and with center at the point OE. The left wing of the aircraft is pointing

toward the center of the circle. The magnitude of the angular velocity vector
⇀
ωAC/E is ω. Use the

double transport theorem to determine the acceleration

E••
⇀
r AC in terms of r̂AC. Resolve

E••
⇀
r AC in FAC.

Problem 10.11.9. Let êrw denote a unit vector pointing from the fuselage of an aircraft along

the right wing of the aircraft. Show that the stability and wind frames are given by





ı̂S
̂S
k̂S




=





̂S × k̂S

êrw

⇀

VAC×êrw

|
⇀

VAC×êrw |





,





ı̂W
̂W
k̂W




=





⇀

VAC

k̂W × ı̂W
⇀

VAC×êrw

|
⇀

VAC×êrw |





.

(Remark: These expressions show that the stability and wind frames can be constructed from the

aircraft velocity vector and one additional vector, namely, the body-fixed vector êrw. Therefore, the

stability and wind frames are velocity-dependent frames. Note that the LVLH frame for spacecraft

is also a velocity-dependent frame, where the additional vector points from the spacecraft to the

center of the Earth.)

Problem 10.11.10. Compare the (2, 3) entries of OAC/E and OAC/WOW/E to show that

sin µa =
(sinΦ) cosΘ + (sin βa) sin γa

(cos βa) cos γa

.
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Symbol Definition

FE Earth Frame

ı̂E, ̂E, k̂E Earth frame axes

FAC Aircraft frame

ı̂AC, ̂AC, k̂AC Aircraft frame axes

OE Origin of FE

c Aircraft center of mass and origin of FAC

X,Y,Z Components of
⇀

VAC resolved in FAC

⇀
r AC/E

⇀
r c/OE

FS Stability frame

ı̂S, ̂S, k̂S Stability frame axes

FW Wind frame

ı̂W, ̂W, k̂W Wind frame axes

U,V,W Components of
⇀

VAC resolved in FAC

U,V ,W Components of
⇀

VAC resolved in FS

Table 10.2: Symbols for Chapter 10, part 1.
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Symbol Definition

α Angle of attack angle from ı̂S to ı̂AC

β Sideslip angle from ı̂S to ı̂W

γ Flight path angle from the horizontal in FE to ı̂S

η Heading angle

µ Bank angle

Ψ Yaw angle from ı̂E to ı̂AC

Θ Pitch angle from the horizontal in FE to ı̂AC

Φ Roll angle about ı̂AC

⇀
ωAC/E Angular velocity of FAC relative to FE

P,Q,R Components of
⇀
ωAC/E resolved in FAC

Table 10.3: Symbols for Chapter 10, part 2.





Chapter Eleven

Aircraft Dynamics

11.1 Aerodynamic Forces

The total aerodynamic force
⇀

FA on the center of mass c of the aircraft is given as the sum of

force vectors

⇀

FA =
⇀

D +
⇀

E +
⇀

L, (11.1.1)

where

⇀

D
△
= −Dı̂W, (11.1.2)

⇀

E
△
= −E ̂W, (11.1.3)

⇀

L
△
= −Lk̂W (11.1.4)

are the drag, side drag, and lift vectors, respectively. Note that D is a positive number, E may be

positive or negative, and L is positive if the angle of attack is nonnegative. Hence,

⇀

FA = −Dı̂W − E ̂W − Lk̂W, (11.1.5)

and thus

⇀

FA

∣
∣
∣
∣
∣
W

=





−D

−E

−L




. (11.1.6)

It follows from (10.6.19) that the velocity vector can be written as
⇀

VAC = VAC ı̂W, and thus the

direction of the drag vector
⇀

D is opposite to the aircraft velocity. Therefore,
⇀

D points in the direction

of the wind relative to the aircraft. Furthermore, the lift force
⇀

L and the side drag
⇀

E are orthogonal

to
⇀

VAC. The contribution of the control surfaces to
⇀

D,
⇀

E, and
⇀

L and thus to the net aerodynamic

force changes as the deflections of the control surfaces change.

In the stability frame, we write
⇀

FA as

⇀

FA = FAx
ı̂S + FAy

̂S + FAz
k̂S, (11.1.7)

and thus

⇀

FA

∣
∣
∣
∣
∣
S

=





FAx

FAy

FAz





. (11.1.8)
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The overbar denotes a component of a vector resolved in the stability frame. Alternatively, in the

aircraft frame we can write
⇀

FA as

⇀

FA = FAx
ı̂AC + FAy

̂AC + FAz
k̂AC, (11.1.9)

and thus

⇀

FA

∣
∣
∣
∣
∣
AC

=





FAx

FAy

FAz




. (11.1.10)

Next, since k̂S = k̂W, (11.1.7) can be written as

⇀

FA = FAx
ı̂S + FAy

̂S + FAz
k̂W. (11.1.11)

Therefore, it follows from (11.1.5) and (11.1.11) that

L = −FAz
. (11.1.12)

Consequently,

−Dı̂W − E ̂W = FAx
ı̂S + FAy

̂S, (11.1.13)

and thus

D2 + E2 = F
2

Ax
+ F

2

Ay
. (11.1.14)

Next, since ̂AC = ̂S, (11.1.9) can be written as

⇀

FA = FAx
ı̂AC + FAy

̂S + FAz
k̂AC. (11.1.15)

Therefore, it follows from (11.1.7) and (11.1.15) that

FAy
= FAy

. (11.1.16)

Consequently,

FAx
ı̂AC + FAz

k̂AC = FAx
ı̂S + FAz

k̂S, (11.1.17)

and thus

F2
Ax
+ F2

Az
= F

2

Ax
+ F

2

Az
. (11.1.18)

Next, we have

⇀

FA

∣
∣
∣
∣
∣
S

=





FAx

FAy

FAz





= OS/W

⇀

FA

∣
∣
∣
∣
∣
W

=





cos β − sin β 0

sin β cos β 0

0 0 1









−D

−E

−L





=





−(cos β)D + (sin β)E

−(sin β)D − (cos β)E

−L




. (11.1.19)
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In terms of the aircraft frame,
⇀

FA is given by

⇀

FA

∣
∣
∣
∣
∣
AC

=





FAx

FAy

FAz




= OAC/S

⇀

FA

∣
∣
∣
∣
∣
S

=





cosα 0 − sinα

0 1 0

sinα 0 cosα









FAx

FAy

FAz





=





(cosα)FAx
− (sinα)FAz

FAy

(sinα)FAx
+ (cosα)FAz





. (11.1.20)

Alternatively, using (11.1.19) it follows that

⇀

FA

∣
∣
∣
∣
∣
AC

=





FAx

FAy

FAz




= OAC/S

⇀

FA

∣
∣
∣
∣
∣
S

= OAC/S





FAx

FAy

FAz





=





cosα 0 − sinα

0 1 0

sinα 0 cosα









−D cos β + E sin β

−(sin β)D − (cos β)E

−L





=





−(cosα)(cos β)D + (cosα)(sin β)E + (sinα)L

−(sin β)D − (cos β)E

−(sinα)(cos β)D + (sinα)(sin β)E − (cosα)L





. (11.1.21)

Finally, if E is negligible, then it follows from (11.1.14) that

D =

√

F
2

Ax
+ F

2

Ay
, (11.1.22)

⇀

FA

∣
∣
∣
∣
∣
S

=





−(cos β)D

−(sin β)D

−L




, (11.1.23)

and from (11.1.21) that

⇀

FA

∣
∣
∣
∣
∣
AC

=





−(cosα)(cos β)D + (sinα)L

−(sin β)D

−(sinα)(cos β)D − (cosα)L





. (11.1.24)

11.2 Translational Momentum Equations

Recall that

⇀
r AC

△
=

⇀
r c/OE

(11.2.1)

denotes the location of the center of mass of the aircraft relative to the origin of the Earth. In

addition, the velocity
⇀

VAC of the aircraft relative to the point a with respect to the Earth frame is
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❄k̂S = k̂W

✻

⇀

L =
⇀

FAz

☛
̂W

☛
⇀

E

✿
ı̂AC

❲
k̂AC

✛
⇀

FAx

✐

⇀

D

✲
ı̂S

✲
⇀

VAC,proj

❑ α

q
⇀

VAC

q
ı̂W

✙
β

⇀

FAy

©•

Figure 11.1.1: Aerodynamic forces. The vectors ı̂W and ̂W point obliquely out of the page, while
⇀

D points obliquely into the page.

given by

⇀

VAC
△
=

E•
⇀
r AC . (11.2.2)

To apply Newton’s second law, we assume that OE is an unforced particle and FE is an inertial frame.

The acceleration of the aircraft center of mass relative to OE is thus given by

⇀
ac/OE/E =

E•
⇀
v c/OE/E =

E•
⇀

V AC . (11.2.3)

It thus follows from Newton’s second law that

m

E•
⇀

V AC = m
⇀
g +

⇀

FA +
⇀

FT, (11.2.4)

where m
⇀
g is the weight of the aircraft and

⇀

FT is the engine thrust force. Using the transport theorem

(4.4) to introduce the derivative with respect to the aircraft frame FAC into (11.2.4) yields

m(

AC•
⇀

V AC +
⇀
ωAC/E ×

⇀

VAC) = m
⇀
g +

⇀

FA +
⇀

FT. (11.2.5)

Resolving (11.2.5) in the aircraft frame yields

m





AC•
⇀

V AC

∣
∣
∣
∣
∣
∣
∣
∣
AC

+ (
⇀
ωAC/E ×

⇀

VAC)

∣
∣
∣
∣
∣
AC




= m

⇀
g
∣
∣
∣
∣
AC
+

⇀

FA

∣
∣
∣
∣
∣
AC

+
⇀

FT

∣
∣
∣
∣
∣
AC

. (11.2.6)
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Note that

⇀
ωAC/E

∣
∣
∣
∣
AC
=





P

Q

R




. (11.2.7)

Resolving the gravity vector in the Earth frame as
⇀
g = gk̂E yields

⇀
g
∣
∣
∣
∣
E
=





0

0

g




. (11.2.8)

Using (10.3.16) to transform to the aircraft frame yields

⇀
g
∣
∣
∣
∣
AC
= OAC/E

⇀
g
∣
∣
∣
∣
E
=





−(sinΘ)g

(sinΦ)(cosΘ)g

(cosΦ)(cosΘ)g




. (11.2.9)

Hence, we define




gx

gy

gz





△
=





−(sinΘ)g

(sinΦ)(cosΘ)g

(cosΦ)(cosΘ)g




. (11.2.10)

Notice that the yaw angle Ψ does not appear in
⇀
g
∣
∣
∣
∣
AC

due to the fact that the k̂E-axis rotation of the

Earth frame does not change the direction of gravity relative to the aircraft.

For the thrust force we express

⇀

FT

∣
∣
∣
∣
∣
AC

=





FTx

FTy

FTz




=





cosΦT 0 sinΦT

0 1 0

− sinΦT 0 cosΦT









FT

0

0




=





(cosΦT)FT

0

−(sinΦT)FT




, (11.2.11)

where FT = |
⇀

FT| is the engine force magnitude and ΦT is the angle from ı̂AC to the engine force

direction, as shown in Figure 11.2.2. We assume that the component of the engine thrust in the

direction ̂AC is zero.

Now, since

AC•
⇀

V AC =

AC•
︷                        ︸︸                        ︷
(

U ı̂AC + V ̂AC +Wk̂AC

)

= U̇ ı̂AC + V̇ ̂AC + Ẇk̂AC,

we have

AC•
⇀

V AC

∣
∣
∣
∣
∣
∣
∣
∣
AC

=





U̇

V̇

Ẇ




. (11.2.12)

Substituting (11.2.7), (11.2.10), (11.2.11), and (11.2.12) into (11.2.6) we obtain the range-rate,

drift-rate, and plunge-rate equations

m(U̇ − VR +WQ) = mgx + FAx
+ FTx

, (11.2.13)

m(V̇ + UR −WP) = mgy + FAy
, (11.2.14)

m(Ẇ − UQ + VP) = mgz + FAz
+ FTz

, (11.2.15)
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✒

⇀

FT

✯

rT •
c

ı̂AC

❑
ΦT

Figure 11.2.2: Thrust force and engine geometry.

or, equivalently, using (11.1.21),

m(U̇ − VR +WQ) = −(sinΘ)mg − (cos β)(cosα)D + (sinα)L + (cosΦT)FT, (11.2.16)

m(V̇ + UR −WP) = (sinΦ)(cosΘ)mg − (sin β)D, (11.2.17)

m(Ẇ − UQ + VP) = (cosΦ)(cosΘ)mg − (cos β)(sinα)D − (cosα)L − (sinΦT)FT. (11.2.18)

11.3 Rotational Momentum Equations

Let

⇀

HAC/E
△
=

⇀

HAC/c/E =
→
J AC/c

⇀
ωAC/E (11.3.1)

denote the angular momentum of the aircraft relative to the center of mass c of the aircraft with

respect to FE, where the physical inertia matrix of the aircraft relative to the center of mass is given

by

→
J AC/c =

∫

AC

|⇀r dm/c|2
→
I − ⇀

r dm/c
⇀
r
′
dm/c dm. (11.3.2)

Using (7.8.4) we have

⇀

HAC/E

∣
∣
∣
∣
∣
AC

=





Hx

Hy

Hz




=
→
J AC/c

∣
∣
∣
∣
∣
AC

⇀
ωAC/E

∣
∣
∣
∣
AC
=





Jxx −Jxy −Jxz

−Jxy Jyy −Jyz

−Jxz −Jyz Jzz









P

Q

R




. (11.3.3)

Assuming that ı̂AC-k̂AC is a plane of symmetry of the aircraft, it follows that

Jxy =

∫

AC

xy dm = 0, (11.3.4)

Jyz =

∫

AC

yz dm = 0. (11.3.5)
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Consequently,

→
J AC/c

∣
∣
∣
∣
∣
AC

=





Jxx 0 −Jxz

0 Jyy 0

−Jxz 0 Jzz




, (11.3.6)

and thus

Hx = JxxP − JxzR, (11.3.7)

Hy = JyyQ, (11.3.8)

Hz = JzzR − JxzP. (11.3.9)

Next, Euler’s equation (7.8.13) for the aircraft is given by

→
J AC/c

AC•
⇀
ω AC/E +

⇀
ωAC/E ×

→
J AC/c

⇀
ωAC/E =

⇀

MAC/c, (11.3.10)

where

⇀

MAC/c
△
=

⇀

MA/c +
⇀

MT/c (11.3.11)

is the total moment acting on the aircraft relative to c, and
⇀

MA/c and
⇀

MT/c are the aerodynamic and

thrust moments relative to c, respectively. The aerodynamic moment is produced by the air flow

over both the fixed and variable (that is, control) surfaces of the aircraft.

In the aircraft frame, we have

⇀

MAC/c

∣
∣
∣
∣
∣
AC

=





LAC

MAC

NAC




=

⇀

MA/c

∣
∣
∣
∣
∣
AC

+
⇀

MT/c

∣
∣
∣
∣
∣
AC

, (11.3.12)

where

⇀

MA/c

∣
∣
∣
∣
∣
AC

=





LA

MA

NA




,

⇀

MT/c

∣
∣
∣
∣
∣
AC

=





LT

MT

NT




.

Hence,




LAC

MAC

NAC




=





LA

MA

NA




+





LT

MT

NT




. (11.3.13)

Now resolving Euler’s equation (11.3.10) in the aircraft frame yields




→
J AC/c

AC•
⇀
ω AC





∣
∣
∣
∣
∣
∣
∣
AC

+

(
⇀
ωAC/E ×

→
J AC/c

⇀
ωAC/E

)∣∣
∣
∣
∣
AC

=
⇀

MAC/c

∣
∣
∣
∣
∣
AC

, (11.3.14)

which yields




JxxṖ − JxzṘ

JyyQ̇

JzzṘ − JxzṖ




+





0 −R Q

R 0 −P

−Q P 0









JxxP − JxzR

JyyQ

JzzR − JxzP




=





LAC

MAC

NAC




. (11.3.15)

Equation (11.3.15) can now be written component-wise as

JxxṖ + (Jzz − Jyy)QR − Jxz(Ṙ + PQ) = LAC, (11.3.16)
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JyyQ̇ + (Jxx − Jzz)PR + Jxz(P
2 − R2) = MAC, (11.3.17)

JzzṘ + (Jyy − Jxx)PQ + Jxz(QR − Ṗ) = NAC. (11.3.18)

Each equation (11.3.16), (11.3.17), and (11.3.18) has three terms, each representing a physical

effect. The first term is the angular acceleration, the next term is the gyroscopic precession, and the

last term is the inertia coupling. For the ı̂AC-axis angular-velocity component,

JxxṖ
︸︷︷︸

angular
acceleration

+ (Jzz − Jyy)QR
︸          ︷︷          ︸

gyroscopic
precession

− Jxz(Ṙ + PQ)
︸         ︷︷         ︸

inertial coupling

= LAC
︸︷︷︸

roll
moment

. (11.3.19)

11.4 Summary of the Aircraft Equations of Motion

Translational kinematics (see (10.7.5))




Ẋ

Ẏ

Ż




= OE/AC





U

V

W




, (11.4.1)

where OE/AC is given by (10.3.17).

Rotational kinematics (see (10.9.8))




P

Q

R




=





1 0 − sinΘ

0 cosΦ (cosΘ) sinΦ

0 − sinΦ (cosΘ) cosΦ









Ψ̇

Θ̇

Φ̇




. (11.4.2)

Translational momentum (see (11.2.16), (11.2.17), and (11.2.18))

m(U̇ − VR +WQ) = −(sinΘ)mg − (cos β)(cosα)D + (sinα)L + (cosΦT)FT, (11.4.3)

m(V̇ + UR −WP) = (sinΦ)(cosΘ)mg − (sin β)D, (11.4.4)

m(Ẇ − UQ + VP) = (cosΦ)(cosΘ)mg − (cos β)(sinα)D − (cosα)L − (sinΦT)FT. (11.4.5)

Rotational momentum (see (11.3.16), (11.3.17), and (11.3.18))

JxxṖ + (Jzz − Jyy)QR − Jxz(Ṙ + PQ) = LAC = LA + LT, (11.4.6)

JyyQ̇ + (Jxx − Jzz)PR + Jxz(P
2 − R2) = MAC = MA + MT, (11.4.7)

JzzṘ + (Jyy − Jxx)PQ + Jxz(QR − Ṗ) = NAC = NA + NT. (11.4.8)

11.5 Aircraft Equations of Motion in State Space Form

Consider the continuous-time state-space model ẋ = f (x, u), where x ∈ Rn is the state and

u ∈ Rp is the input. Let

x =
[

X Y Z U V W Φ Θ Ψ P Q R
]T
, (11.5.1)

u =
[

D L FT LAC MAC NAC

]T
. (11.5.2)

The aircraft equations of motion (11.4.1)–(11.4.8) in the state-space form are given by

Ẋ = (cosΘ)(cosΨ)U + [(sinΦ)(sinΘ) cosΨ − (cosΦ) sinΨ] V

+ [(cosΦ)(sinΘ) cosΨ + (sinΦ) sinΨ] W, (11.5.3)
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Ẏ = (cosΘ)(sinΨ)U + [(sinΦ)(sinΘ) sinΨ + (cosΦ) cosΨ] V

+ [(cosΦ)(sinΘ) sinΨ − (sinΦ) cosΨ] W, (11.5.4)

Ż = −(sinΘ)U + (sinΦ)(cosΘ)V + (cosΦ)(cosΘ)W, (11.5.5)

U̇ = VR −WQ − (sinΘ)g − (cos β)(cosα)
D

m
+ (sinα)

L

m
+ (cosΦT)

FT

m
, (11.5.6)

V̇ = −UR +WP + (sinΦ)(cosΘ)g − (sin β)
D

m
, (11.5.7)

Ẇ = UQ − VP + (cosΦ)(cosΘ)g − (cos β)(sinα)
D

m
− (cosα)

L

m
− (sinΦT)

FT

m
, (11.5.8)

Φ̇ = P + (sinΦ)(tanΘ)Q + (cosΦ)(tanΘ)R, (11.5.9)

Θ̇ = (cosΦ)Q − (sinΦ)R, (11.5.10)

Ψ̇ = (sinΦ)(secΘ)Q + (cosΦ)(secΘ)R, (11.5.11)

Ṗ =
1

JxxJzz − J2
xz

[

(JyyJzz − J2
zz − J2

xz)QR + Jxz(Jxx − Jyy + Jzz)PQ + JzzLAC + JxzNAC

]

, (11.5.12)

Q̇ =
1

Jyy

[

(Jzz − Jxx)PR + Jxz(R
2 − P2) + MAC

]

, (11.5.13)

Ṙ =
1

JxxJzz − J2
xz

[

(−JxxJyy + J2
xx + J2

xz)PQ + Jxz(−Jxx + Jyy − Jzz)QR + JxzLAC + JxxNAC

]

,

(11.5.14)

where

α = atan2(W,U), (11.5.15)

β = atan2(V,
√

U2 +W2). (11.5.16)

11.6 Problems

Problem 11.6.1. Show that the moment on the rigid body B relative to the point w due to the

force
⇀

f applied to the particle x in B does not change if the force
⇀

f is applied instead to another

particle y in B located along the line that is parallel to
⇀

f and that passes through x.

Problem 11.6.2. Consider Figure 11.2.2. Determine
⇀

MT

∣
∣
∣
∣
∣
AC

in terms of FT = |
⇀

FT|, ΦT, and rT.

(Hint: Use Problem 11.6.1.)

Problem 11.6.3. Assuming the symmetry of a typical aircraft, use the discrete formulas given

by (6.2.6)–(6.2.8) to show that four of the entries of the physical inertia matrix resolved in the

aircraft frame are zero.
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Symbol Definition

⇀

FA Aerodynamic force vector

⇀

D Drag force

⇀

E Side force

⇀

L Lift force

D Drag

E Side drag

L Lift

FAx
, FAy

, FAz
Force components in FS

FAx
, FAy

, FAz
Force components in FAC

⇀

FT Engine thrust force vector

FT Magnitude of the thrust force vector

ΦT Angle between the thrust force and ı̂AC

⇀

MAC Total moment vector

LAC Total roll moment in FS

MAC Total pitch moment in FS

NAC Total yaw moment in FS

LAC Total roll moment in FAC

MAC Total pitch moment in FAC

NAC Total yaw moment in FAC

Table 11.1: Symbols for Chapter 11, part 1.
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Symbol Definition

⇀

MA Aerodynamic moment vector

LA Aerodynamic roll moment in FS

MA Aerodynamic pitch moment in FS

NA Aerodynamic yaw moment in FS

LA Aerodynamic roll moment in FAC

MA Aerodynamic pitch moment in FAC

NA Aerodynamic yaw moment in FAC

⇀

MT Thrust moment vector

LT Thrust roll moment in FS

MT Thrust pitch moment in FS

NT Thrust yaw moment in FS

LT Thrust roll moment in FAC

MT Thrust pitch moment in FAC

NT Thrust yaw moment in FAC

→
J AC/c Aircraft physical inertia matrix relative to c

Table 11.2: Symbols for Chapter 11, part 2.





Chapter Twelve

Steady Flight and Linearization

The goal of linearization is to approximate the nonlinear aircraft equations of motion with linear

equations to facilitate the analysis of flight characteristics in the vicinity of steady flight. The lin-

earized equations are easier to analyze than the original nonlinear equations and involve stability

derivatives that can be estimated using computational fluid dynamics (CFD) codes or measurements

obtained from experiments in a wind tunnel.

12.1 Steady Flight

Recall that

⇀

VAC =

E•
⇀
r AC . (12.1.1)

The conditions for steady flight are

AC•
⇀

V AC = 0, (12.1.2)

AC•
⇀
ω AC/E = 0. (12.1.3)

These conditions state that the velocity vector
⇀

VAC is constant with respect to the aircraft frame

FAC, and the angular velocity vector
⇀
ωAC/E is constant with respect to the aircraft frame FAC and the

Earth frame FE.Under these conditions, we denote
⇀

VAC and
⇀
ωAC/E by

⇀

VAC0
and

⇀
ωAC/E0

, respectively,

where

⇀

VAC0

∣
∣
∣
∣
∣
AC

=





U0

V0

W0




,

⇀
ωAC/E0

∣
∣
∣
∣
AC
=





P0

Q0

R0




. (12.1.4)

Therefore, U0,V0,W0, P0,Q0,R0 are constant.

In the case of zero ambient wind, the following steady flight regimes are defined, although not

all of these regimes are feasible for many aircraft.

• Hovering flight. The aircraft maintains a constant location relative to the Earth. Therefore,
⇀

VAC = 0.

• Straight-line flight. The aircraft flies in a straight line relative to the Earth with its wings level,

that is, with Φ0 = 0. Therefore, its translational velocity relative to the Earth is nonzero and

constant with respect to both the aircraft and Earth frames, and its angular velocity vector
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relative to the Earth is zero. Straight-line flight may be either climbing (γ > 0), horizontal

(γ = 0), or descending (γ < 0). In all of these cases,

E•
⇀

V AC = 0,
⇀

VAC is nonzero, and
⇀
ωAC/E = 0.

• Bullet flight. The aircraft flies in a straight line relative to the Earth while rotating relative to

the Earth around its velocity vector. Therefore, its translational velocity relative to the Earth

is constant with respect to the Earth and is parallel to its angular velocity vector relative to the

Earth. Hence,

E•
⇀

V AC = 0, and
⇀

VAC and
⇀
ωAC/E are nonzero and parallel.

• Circular flight. The aircraft flies in a circle relative to the Earth. The circle may be either

horizontal or tilted relative to the Earth, while the aircraft attitude along the circle may be

either banked or level. Therefore, its translational velocity relative to the Earth is not constant

and is perpendicular at all time instants to its angular velocity vector relative to the Earth. In

all of these cases,
⇀

VAC and
⇀
ωAC/E are nonzero and mutually orthogonal.

• Helical flight. The aircraft flies in a helix relative to the Earth. Therefore, its translational

velocity vector is not constant with respect to the Earth and is neither parallel nor orthogonal

to its angular velocity vector relative to the Earth. In this case,
⇀

VAC and
⇀
ωAC/E are nonzero

and neither parallel nor mutually orthogonal. A special case of helical flight is a barrel roll,

where the wheels of the aircraft can be viewed as rolling on the inside of a cylinder.

In all steady flight regimes, VAC, γ, τ, α, and β are constant. However, the Euler angles Ψ, Θ,

and Φ and the altitude H may vary with time.

Steady flight where

AC•
⇀
g = 0, that is, the gravity vector is constant with respect to FAC, is called

trim flight. Equivalently, Φ and Θ are constant. Since

AC•
⇀

V AC = 0, an equivalent condition is Φ and

γ are constant. Therefore, steady flight is trim flight if and only if steady flight is either 1) hovering

flight, 2) straight-line flight, 3) circular flight in a horizontal plane, or 4) helical flight around a

vertical axis. In trim flight, the total force on the aircraft is constant with respect to FAC (zero in

hovering and straight-line flight), and the total moment on the aircraft is zero. The force and moment

conditions are equivalent to the conditions that the thrust is constant and the control surfaces are set

to constant trim angles.

12.2 Taylor Series and Linearization

The Taylor series expansion at a of an infinitely differentiable function f is expressed as

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · · (12.2.1)

In a more compact form, we have

f (x) =

∞∑

i=0

f (i)(a)

i!
(x − a)i. (12.2.2)

Example 12.2.1. Using the Taylor expansion, we have

sin(Φ0 + φ) ≈ sinΦ0 + (cosΦ0)φ, (12.2.3)
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cos(Φ0 + φ) ≈ cosΦ0 − (sinΦ0)φ. (12.2.4)

Hence, for Φ0 = 0, we have the small-angle approximations

sin φ ≈ φ, (12.2.5)

cos φ ≈ 1. (12.2.6)

Using (12.2.5) and (12.2.6) and using trigonometric identities, it follows that

sin(Φ0 + φ) = (sinΦ0) cos φ + (cosΦ0) sin φ

≈ sinΦ0 + (cosΦ0)φ, (12.2.7)

cos(Φ0 + φ) = (cosΦ0) cos φ − (sinΦ0) sin φ

≈ cosΦ0 − (sinΦ0)φ, (12.2.8)

which agree with (12.2.3) and (12.2.4). ⋄
For a multivariable function, we write

f (x, y) = f (a, b) +
∂ f

∂x

∣
∣
∣
∣
∣
(a,b)

(x − a) +
∂ f

∂y

∣
∣
∣
∣
∣
(a,b)

(y − b)

+
1

2

∂2 f

∂x2

∣
∣
∣
∣
∣
∣
(a,b)

(x − a)2 +
∂2 f

∂x∂y

∣
∣
∣
∣
∣
∣
(a,b)

(x − a)(y − b)

+
1

2

∂2 f

∂y2

∣
∣
∣
∣
∣
∣
(a,b)

(y − b)2 + · · · . (12.2.9)

Truncating the series (12.2.9) to the first power in x and y yields the approximation

f (x, y) ≈ f (a, b) +
∂ f

∂x

∣
∣
∣
∣
∣
(a,b)

(x − a) +
∂ f

∂y

∣
∣
∣
∣
∣
(a,b)

(y − b). (12.2.10)

The following alternative procedure is often convenient when linearizing the aircraft equations

of motion:

i) Replace each variable with the sum of its steady value and a perturbation.

For instance, U = U0 + u, where U0 is the steady value and u is the pertur-

bation.

ii) Ignore products of perturbation variables.

iii) Subtract the steady equation from the equation obtained in i) to cancel all

terms that involve only the steady values.

12.3 Linearization of the Aircraft Kinematics and Dynamics at Straight-

Line, Horizontal, Wings-Level, Zero-Sideslip Steady Flight

We linearize the aircraft equations of motion at the steady flight condition where the aircraft

flies in a horizontal straight line with wings level, constant angle of attack, and zero sideslip angle.

Let Ψ0, Θ0, and Φ0 = 0 denote, respectively, the steady values of the 3-2-1 yaw, pitch, and roll

Euler angles from FE to FAC, let α0 and β0 = 0 denote the steady values of the angle of attack and

sideslip angle, and let η0 = Ψ0, γ0 = 0, and µ0 = 0 denote, respectively, the steady values of the

3-2-1 heading, flight-path, and bank Euler angles from FE to FW. Fact 10.8.6, Fact 10.8.7, and Fact
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10.8.8 provide special cases of these angles. For straight-line, horizontal, wings-level, steady flight,

we consider the case where

Ψ0 = η0, (12.3.1)

Θ0 = α0, (12.3.2)

Φ0 = µ0 = 0, (12.3.3)

β0 = 0, (12.3.4)

γ0 = 0. (12.3.5)

Under these conditions, Ψ0,Θ0,Φ0, α0, β0, η0, γ0, µ0 satisfy i) of Fact 10.8.6, ii) of Fact 10.8.6, and

ii) of Fact 10.8.8. In the next section we redefine FAC so that Θ0 = 0 and thus α0 = 0. With this

redefinition, Ψ0,Θ0,Φ0, α0, β0, η0, γ0, µ0 also satisfy i) of Fact 10.8.7, ii) of Fact 10.8.7, and i) of

Fact 10.8.8.

Steady flight implies that U0, V0, and W0 are constant. Since β0 = 0, it follows from (10.6.23)

that V0 = 0, while (10.6.15) implies that

W0 = (tanα0)U0. (12.3.6)

Therefore,

U0 = constant, V0 = 0, W0 = (tanα0)U0 = constant. (12.3.7)

Finally, (10.9.8) implies that

P0 = Q0 = R0 = 0. (12.3.8)

To introduce the perturbed aircraft velocities, we write

⇀

VAC

∣
∣
∣
∣
∣
AC

=





U

V

W




=





U0 + u

V0 + v

W0 + w




=





U0 + u

v

W0 + w




. (12.3.9)

Linearizing (10.6.15) yields

δα =
−(cos2 α0)W0

U2
0

u +
cos2 α0

U0

w. (12.3.10)

Next, note that

U2
0

U2
0
+W2

0

=
1

1 + ( W0

U0
)2
=

1

1 + ( sinα0

cosα0
)2
= cos2 α0. (12.3.11)

It follows from (12.3.11) that (12.3.10) can also be written as

δα =
−W0

U2
0
+W2

0

u +
U0

U2
0
+W2

0

w. (12.3.12)

Hence, if follows from (12.3.10) and (12.3.11) that

w =
W0

U0

u + (sec2 α0)U0δα =
W0

U0

u +
U2

0
+W2

0

U0

δα. (12.3.13)

Likewise, linearizing (10.6.24) yields

δβ =
1

√

U2
0
+W2

0

v. (12.3.14)
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Hence,

v =
U0

cosα0

δβ =

√

U2
0
+W2

0
δβ. (12.3.15)

Using (10.3.17) and (10.7.5), it follows that the steady range, drift, and plunge X0, Y0, and Z0

satisfy

Ẋ0 = (cosΘ0)(cosΨ0)U0 + (sinΘ0)(cosΨ0)W0, (12.3.16)

Ẏ0 = (cosΘ0)(sinΨ0)U0 + (sinΘ0)(sinΨ0)W0, (12.3.17)

Ż0 = −(sinΘ0)U0 + (cosΘ0)W0. (12.3.18)

In terms of altitude, (12.3.18) implies

Ḣ0 = (sinΘ0)U0 − (cosΘ0)W0. (12.3.19)

The perturbations x, y, and z of X = X0 + x, Y = Y0 + y, and Z = Z0 + z satisfy

ẋ = (cosΘ0)(cosΨ0)u − (sinΨ0)v + (sinΘ0)(cosΨ0)w + (W0 sinΨ0)φ

+ (W0 cosΘ0 − U0 sinΘ0)(cosΨ0)θ − (U0 cosΘ0 +W0 sinΘ0)(sinΨ0)ψ, (12.3.20)

ẏ = (cosΘ0)(sinΨ0)u + (cosΨ0)v + (sinΘ0)(sinΨ0)w − (W0 cosΨ0)φ

+ (W0 cosΘ0 − U0 sinΘ0)(sinΨ0)θ + (U0 cosΘ0 +W0 sinΘ0)(cosΨ0)ψ, (12.3.21)

ż = −(sinΘ0)u + (cosΘ0)w − (U0 cosΘ0 +W0 sinΘ0)θ. (12.3.22)

The altitude perturbation h of H = H0 + h thus satisfies

ḣ = (sinΘ0)u − (cosΘ0)w + (U0 cosΘ0 +W0 sinΘ0)θ. (12.3.23)

Note that (12.3.20)–(12.3.23) are expressed in terms of u, v, w, φ, θ, and ψ. Alternatively,

(12.3.20)–(12.3.23) can be expressed in terms of u, θ, φ, ψ, δα, and δβ. In particular, using (12.3.2),

(12.3.13) and (12.3.15), (12.3.20)–(12.3.23) can be rewritten as

ẋ =
cosΨ0

cosΘ0

u + (W0 sinΨ0)φ + (W0 cosΘ0 − U0 sinΘ0)(cosΨ0)θ

− (U0 cosΘ0 +W0 sinΘ0)(sinΨ0)ψ +
W0 cosΨ0

cosΘ0

δα − U0 sinΨ0

cosΘ0

δβ, (12.3.24)

ẏ =
sinΨ0

cosΘ0

u − (W0 cosΨ0)φ + (W0 cosΘ0 − U0 sinΘ0)(sinΨ0)θ

+ (U0 cosΘ0 +W0 sinΘ0)(cosΨ0)ψ +
W0 sinΨ0

cosΘ0

δα +
U0 cosΨ0

cosΘ0

δβ, (12.3.25)

ż = −(U0 cosΘ0 +W0 sinΘ0)θ +
U0

cosΘ0

δα. (12.3.26)

The altitude perturbation h of H = H0 + h thus satisfies

ḣ = (U0 cosΘ0 +W0 sinΘ0)θ − U0

cosΘ0

δα. (12.3.27)

Next, substituting Ψ = Ψ0 + ψ, Θ = Θ0 + θ, Φ = Φ0 + φ = φ, α = α0 + δα = Θ0 + δα,

β = β0 + δβ = δβ, η = η0 + δη = Ψ0 + δη, γ = γ0 + δγ = δγ, and µ = µ0 + δµ = δµ, in (10.8.5) yields

O2(−δγ)O1(−δµ)O3(δβ)O2(−Θ0 − δα)O1(φ)O2(Θ0 + θ)O3(ψ − δη) = I. (12.3.28)
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❄
⇀

WAC

❄k̂E

❖
⇀

L =
⇀

FAz

❲ k̂S

✒

⇀

FT

ΦT■
✯

ı̂AC

✯

❑ α0
✿

⇀

VAC0,proj

✿ ı̂S
γ0

❑

✲
ı̂E

⇀

FAx✿

Figure 12.3.1: Steady flight definitions. All vectors shown lie in the aircraft plane of symmetry.

Using the Euler orientation matrices (2.12.14)–(2.12.16) with the trigonometric approximations

(12.2.3)–(12.2.4) and neglecting the products of perturbation variables on the left side of (12.3.28)

yields




1 −(sinΘ0)φ + ψ + δβ − δη −θ + δα + δγ
(sinΘ0)φ − ψ − δβ + δη 1 −(cosΘ0)φ + δµ

θ − δα − δγ (cosΘ0)φ − δµ 1




= I, (12.3.29)

which yields the linearized relations

θ = δα + δγ, (12.3.30)

ψ =
−(cosΘ0)δβ + (sinΘ0)δµ + (cosΘ0)δη

cosΘ0

, (12.3.31)

φ =
δµ

cosΘ0

. (12.3.32)

Next, consider the perturbed angular-velocity components

⇀
ωAC/E

∣
∣
∣
∣
AC
=





P

Q

R




=





P0 + p

Q0 + q

R0 + r




=





p

q

r




, (12.3.33)

and the perturbed 3-2-1 Euler angles




Φ

Θ

Ψ




=





Φ0 + φ

Θ0 + θ

Ψ0 + ψ




=





φ

Θ0 + θ

Ψ0 + ψ




. (12.3.34)
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Since Ψ0 and Θ0 are constant, linearizing (10.9.8) yields




p

q

r




=





1 0 − sinΘ0

0 1 0

0 0 cosΘ0









φ̇

θ̇

ψ̇




, (12.3.35)

that is,

p = φ̇ − (sinΘ0)ψ̇, (12.3.36)

q = θ̇, (12.3.37)

r = (cosΘ0)ψ̇. (12.3.38)

Therefore,





φ̇

θ̇

ψ̇




=





1 0 − sinΘ0

0 1 0

0 0 cosΘ0





−1 



p

q

r




=





1 0 tanΘ0

0 1 0

0 0 secΘ0









p

q

r




, (12.3.39)

that is,

φ̇ = p + (tanΘ0)r, (12.3.40)

θ̇ = q, (12.3.41)

ψ̇ = (secΘ0)r. (12.3.42)

It thus follows from (12.3.30) and (12.3.37) that

q = δα̇ + δγ̇. (12.3.43)

Furthermore, it follows from (12.3.31) and (12.3.38) that

r = −(cosΘ0)δβ̇ + (sinΘ0)δµ̇ + (cosΘ0)δη̇. (12.3.44)

Next, consider the range equation (11.2.13) resolved in FAC given by

m(U̇ − VR +WQ) = −(sinΘ)mg + FAx
+ FTx

. (12.3.45)

For straight-line steady flight, (12.3.45) becomes

m(U̇0 − V0R0 +W0Q0) = −(sinΘ0)mg + FAx0
+ FTx0

. (12.3.46)

Since U̇0 = Q0 = R0 = 0, it follows from (12.3.46) that

−(sinΘ0)mg + FAx0
+ FTx0

= 0. (12.3.47)

Now, replace each variable with the sum of its steady value and a perturbation to obtain

m[U̇0 + u̇ − (V0 + v)(R0 + r) + (W0 + w)(Q0 + q)] = − sin(Θ0 + θ)mg + FAx0
+ fAx

+ FTx0
+ fTx

.

(12.3.48)

Using the trigonometric approximation (12.2.7) and neglecting the products of perturbation vari-

ables yields

m(U̇0 + u̇ − V0r − R0v − V0R0 +W0Q0 +W0q + Q0w)

= −[sinΘ0 + (cosΘ0)θ]mg + FAx0
+ fAx

+ FTx0
+ fTx

. (12.3.49)
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Now subtracting the steady equation (12.3.47) from (12.3.49) and using the fact that P0 = Q0 =

R0 = 0 yields the linearized range-rate equation

mu̇ = −mW0q − (cosΘ0)mgθ + fAx
+ fTx

, (12.3.50)

which is linear in terms of the perturbation variables u, q, and θ.

Similarly, the linearized drift-rate and plunge-rate equations (11.2.14) and (11.2.15) are given

by

mv̇ = −mU0r + mW0 p + (cosΘ0)mgφ + fAy
, (12.3.51)

mẇ = mU0q − (sinΘ0)mgθ + fAz
+ fTz

. (12.3.52)

Using (12.3.13), (12.3.50), and (12.3.52) it follows that δα satisfies

m(sec2 α0)δα̇ = m





W2
0

U0

+ U0



 q +

(

(cosΘ0)
W0

U0

− sinΘ0

)

mgθ + fAz
+ fTz

− W0

U0

( fAx
+ fTx

).

(12.3.53)

Finally, it follows from (11.3.16), (11.3.17), and (11.3.18) that the linearized roll-rate, pitch-rate,

and yaw-rate equations are given by

Jxx ṗ − Jxzṙ = lA + lT, (12.3.54)

Jyyq̇ = mA + mT, (12.3.55)

Jzzṙ − Jxz ṗ = nA + nT. (12.3.56)

12.4 Linearized Kinematics and Dynamics in the Case Θ0 = 0

In this section, we continue to consider the case where the aircraft flies in a horizontal straight

line with wings level, constant angle of attack, and zero sideslip angle. In addition, we choose the

aircraft frame FAC such that ı̂AC = V̂AC0
. Since β0 = 0, it follows that V̂AC0,proj = V̂AC0

, and thus

(10.4.5) implies that

α0 = θı̂AC/V̂AC0
/ ̂AC
= 0. (12.4.1)

Hence, (12.3.2) implies that Θ0 = 0, and (12.3.6) implies that W0 = 0. Therefore, for this choice of

FAC, Θ0 = 0. The benefit of working with this choice of FAC instead of FAC is the fact that many

expressions are simplified in the case where Θ0 = 0. It is important to keep in mind that the frame

FAC is body-fixed but depends on the steady flight condition.

With this choice of FAC, it follows from (12.3.16)–(12.3.18) that

Ẋ0 = U0, (12.4.2)

Ẏ0 = 0, (12.4.3)

Ż0 = 0. (12.4.4)

Furthermore, it follows from (12.3.20)–(12.3.22) and (12.3.30) that the perturbations x, y, z of X0,

Y0, Z0 satisfy

ẋ = u, (12.4.5)

ẏ = v + U0ψ, (12.4.6)

ż = U0δα − U0θ = −U0δγ. (12.4.7)
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The altitude perturbation h = −z of H = H0 + h thus satisfies

ḣ = U0(θ − δα) = U0δγ. (12.4.8)

Next, (12.3.10) and (12.3.14) become

δα =
1

U0

w, (12.4.9)

δβ =
1

U0

v. (12.4.10)

It thus follows from (12.3.31), (12.4.6), and (12.4.10) that

ẏ = U0(δβ + ψ) = U0δη. (12.4.11)

Next, (12.3.30), (12.3.31), and (12.3.32) become

θ = δα + δγ, (12.4.12)

ψ = −δβ + δη, (12.4.13)

φ = δµ. (12.4.14)

Furthermore, it follows from (12.3.40)–(12.3.42) that

φ̇ = p, (12.4.15)

θ̇ = q, (12.4.16)

ψ̇ = r. (12.4.17)

Hence, the perturbations of the angular-velocity components coincide with the perturbations of the

Euler-angle rates. We thus refer to p, q, and r as the roll-rate, pitch-rate, and yaw-rate perturbations,

respectively. In addition, the linearized longitudinal equations (12.3.50), (12.3.51), and (12.3.52)

become

mu̇ = −mgθ + fAx
+ fTx

, (12.4.18)

mv̇ = −mU0r + mgφ + fAy
, (12.4.19)

mẇ = mU0q + fAz
+ fTz

. (12.4.20)

Using (12.4.10), equation (12.4.19) becomes

mU0δβ̇ = −mU0r + mgφ + fAy
. (12.4.21)

Finally, using (12.4.9), equation (12.4.20) becomes

mU0δα̇ = mU0q + fAz
+ fTz

. (12.4.22)

12.5 Summary of the Aircraft Equations of Motion Linearized at Straight-

Line, Horizontal, Wings-Level, Zero-Sideslip Steady Flight

Assume Ψ0 = 0.

Translational kinematics

ẋ = (cosΘ0)u + (sinΘ0)w + (W0 cosΘ0 − U0 sinΘ0)θ, (12.5.1)

ẏ = v −W0φ + (U0 cosΘ0 +W0 sinΘ0)ψ, (12.5.2)

ż = −(sinΘ0)u + (cosΘ0)w − (U0 cosΘ0 +W0 sinΘ0)θ. (12.5.3)
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Rotational kinematics

p = φ̇ − (sinΘ0)ψ̇, (12.5.4)

q = θ̇, (12.5.5)

r = (cosΘ0)ψ̇. (12.5.6)

Translational momentum

mu̇ = −mW0q − (cosΘ0)mgθ + fAx
+ fTx

, (12.5.7)

mv̇ = −mU0r + mW0 p + (cosΘ0)mgφ + fAy
, (12.5.8)

mẇ = mU0q − (sinΘ0)mgθ + fAz
+ fTz

. (12.5.9)

Rotational momentum

Jxx ṗ − Jxzṙ = lA + lT, (12.5.10)

Jyyq̇ = mA + mT, (12.5.11)

Jzzṙ − Jxz ṗ = nA + nT. (12.5.12)

12.6 Linearized Aircraft Equations of Motion in State Space Form

Consider the state-space model ẋ = Ax + Bu, where the state x ∈ R12 and the input u ∈ R11 are

defined by

x
△
=

[

x y z u v w φ θ ψ p q r
]T
, (12.6.1)

u
△
=

[

fAx
fAy

fAz
lA mA nA fTx

fTz
lT mT nT

]T
. (12.6.2)

The matrices A ∈ R12×12 and B ∈ R12×11 corresponding to the linearized kinematics and dynamics
(12.5.1)–(12.5.12) are given by

A =





0 0 0 cosΘ0 0 sinΘ0 0 W0(cosΘ0) − U0 sinΘ0 0 0 0 0

0 0 0 0 1 0 −W0 0 U0(cosΘ0) +W0 sinΘ0 0 0 0

0 0 0 − sinΘ0 0 cosΘ0 0 −U0(cosΘ0) −W0 sinΘ0 0 0 0 0

0 0 0 0 0 0 0 −(cosΘ0)g 0 0 −W0 0

0 0 0 0 0 0 (cosΘ0)g 0 0 W0 0 −U0

0 0 0 0 0 0 0 − sinΘ0 0 0 U0 0

0 0 0 0 0 0 0 0 0 1 0 tanΘ0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 secΘ0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0





,

(12.6.3)
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B =





0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
1
m

0 0 0 0 0 1
m

0 0 0 0

0 1
m

0 0 0 0 0 0 0 0 0

0 0 1
m

0 0 0 0 1
m

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0
Jzz

Jxx Jzz−J2
xz

0
Jxz

Jxx Jzz−J2
xz

0 0
Jzz

Jxx Jzz−J2
xz

0
Jxz

Jxx Jzz−J2
xz

0 0 0 0 1
Jyy

0 0 0 0 1
Jyy

0

0 0 0
Jxz

Jxx Jzz−J2
xz

0 Jxx

Jxx Jzz−J2
xz

0 0
Jxz

Jxx Jzz−J2
xz

0 Jxx

Jxx Jzz−J2
xz





. (12.6.4)

12.7 Problems

Problem 12.7.1. A stunt plane is flying in steady circular flight, where the circular flight path

is contained in a vertical plane. The steady sideslip angle, steady angle of attack, and steady roll

angles are zero. At the lowest point on the circle the pilot’s head is closer to the ground than the

pilot’s feet are. The plane completes one revolution in 83 sec, and the radius of the circle is 4,100

ft. Resolve
⇀

VAC and
⇀
ωAC/E in the aircraft frame. Draw a diagram that illustrates your solution.

Problem 12.7.2. The acceleration due to gravity on the surface of the Earth is 9.8 m/sec2, and

the radius of the Earth is approximately 6.3 × 106 m. Use this data and Newton’s law of universal

gravitation to compute µE = GmE, where G is the universal gravitational constant and mE is the

mass of the Earth.

Problem 12.7.3. Let FE denote a star-oriented frame with origin OE at the center of the Earth,

and let FM denote a body-fixed Moon frame with origin OM at the center of the Moon. Next, define

the position vector of the Moon relative to the Earth by

⇀
r M/E

△
=

⇀
r OM/OE

and the velocity vector of the Moon relative to the center of the Earth with respect to the star frame

by

⇀

VM
△
=

⇀
v OM/OE/E =

E•
⇀
r M/E =

E•
⇀
r OM/OE

.

Draw a diagram that shows the velocity vector
⇀

VM and the angular velocity vector
⇀
ωM/E. Explain

why the Moon is in steady flight around the Earth, that is,

M•
⇀

V M = 0,

M•
⇀
ωM/E =

E•
⇀
ωM/E = 0.

Furthermore, by attaching another frame to the invisible arm linking the Earth to the Moon, show
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that
M•
⇀
r M/E = 0.

Furthermore, using the fact that the centripetal acceleration of the Moon is equal to the acceleration

of the Moon as given by Newton’s law of universal gravitation, determine the distance from the

Earth to the Moon by deriving and using the relation

|⇀r M/E| = 3

√

µE

|⇀ωM/E|2
.

(Hints: You will need the value of µE = GmE from the previous problem as well as the facts that

the period of the Moon’s orbit around the Earth is 28 days, the Moon’s orbit around the Earth is a

circle, and the same “side” of the Moon is always facing the Earth. Note that

⇀

VM =
⇀
ωM/E ×

⇀
r M/E

and that the centripetal acceleration of the Moon is

⇀
αcent =

⇀
ωM/E ×

⇀

VM.

Next, show that the magnitude of
⇀
αcent is equal to the magnitude of the acceleration

⇀
g due to Earth’s

gravity at the Moon’s location, which is given by

|⇀g | = µE

|⇀r M/E|2
.)

(Remark: This exercise and Problem 12.7.3 show that knowing only the acceleration due to gravity

on the surface of the Earth, the period of the Moon around the Earth, and the radius of the Earth, it

is possible to determine the distance from the Earth to the Moon.)

Problem 12.7.4. Derive (12.3.10) and (12.3.14).

Problem 12.7.5. Derive (12.3.35).

Problem 12.7.6. Derive the linearized sway and plunge equations (12.3.51) and (12.3.52).

Problem 12.7.7. Derive the linearized roll, pitch, and yaw equations (12.3.54)–(12.3.56).

Problem 12.7.8. Consider the rotational kinematics equation

Φ̇ = P + Q(sinΦ) tanΘ + R(cosΦ) tanΘ.

Linearize this equation near the steady (not necessarily zero) values (P0,Q0,R0,Θ0,Φ0). (Hint:

Note that (d/dΘ) tanΘ = sec2 Θ.)
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Symbol Definition

fAx
Frontal aerodynamic force perturbation in FAC

fAy
Side aerodynamic force perturbation in FAC

fAz
Downward aerodynamic force perturbation in FAC

fTx
Thrust force perturbation in FAC along ı̂AC

fTz
Thrust force perturbation in FAC along k̂AC

lAC Total roll-moment perturbation on the aircraft

mAC Total pitch-moment perturbation on the aircraft

nAC Total yaw-moment perturbation on the aircraft

lA Aerodynamic roll-moment perturbation in FAC

mA Aerodynamic pitch-moment perturbation in FAC

nA Aerodynamic yaw-moment perturbation in FAC

lT Thrust roll-moment perturbation in FAC

mT Thrust pitch-moment perturbation in FAC

nT Thrust yaw-moment perturbation in FAC

Table 12.1: Symbols for Chapter 12.





Chapter Thirteen

Static Stability and Stability Derivatives

Static stability means that the initial motion of the aircraft after a perturbation from steady flight

is such that the magnitude of the perturbation decreases. Static stability is determined by the sign

of the stability derivatives, which are the partial derivatives of the forces and moments with respect

to perturbations from steady flight.

We use the following conventions for the signs of the control-surface deflections. For the rudder

deflection, δr > 0 means trailing edge is left. This deflection causes negative yaw. For the elevator

deflection, δe > 0 means trailing edge down. This deflection causes negative pitch. For the aileron

deflection, δa > 0 means right aileron up. This deflection causes positive roll. The ailerons always

move in opposite directions.

The analysis of aerodynamic forces and moments is greatly facilitated by choosing FAC such that

Θ0 = 0, and thus W0 = 0 and α0 = 0. We make this assumption in all discussions of aerodynamic

effects.

13.1 Force Coefficients

Let

S
△
= wing area,

b
△
= wing tip-to-tip distance,

c
△
= wing mean chord,

ρ
△
= air density,

VAC
△
= aircraft speed,

pd
△
= dynamic pressure = 1

2
ρV2

AC.

These data are used to nondimensionalize physical variables.

The drag coefficient is defined by

CD
△
=

D

pdS
, (13.1.1)

the side drag coefficient is defined by

CE
△
=

E

pdS
, (13.1.2)

and the lift coefficient is defined by

CL
△
=

L

pdS
. (13.1.3)
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For the force components in the aircraft frame, the aerodynamic force coefficients are defined

by

Cx
△
=

FAx

pdS
, (13.1.4)

Cy
△
=

FAy

pdS
, (13.1.5)

Cz
△
=

FAz

pdS
. (13.1.6)

Likewise, we define the thrust coefficients

CTx
△
=

FTx

pdS
, (13.1.7)

CTy
△
=

FTy

pdS
, (13.1.8)

CTz
△
=

FTz

pdS
. (13.1.9)

13.2 Steady Force Coefficients

We assume horizontal straight-line steady flight. The steady velocity vector
⇀

VAC0
resolved in

FAC is given by

⇀

VAC0

∣
∣
∣
∣
∣
AC

=





U0

0

0




. (13.2.1)

Therefore, the steady dynamic pressure is given by

pd0
= 1

2
ρU2

0 . (13.2.2)

The steady drag, side drag, and lift coefficients are defined by

CD0

△
=

D0

pd0
S
, (13.2.3)

CE0

△
=

E0

pd0
S
, (13.2.4)

CL0

△
=

L0

pd0
S
. (13.2.5)

It follows from (13.1.4)–(13.1.6) that

Cx0
=

FAx0

pd0
S
, (13.2.6)

Cy0
=

FAy0

pd0
S
, (13.2.7)

Cz0
=

FAz0

pd0
S
. (13.2.8)
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For a symmetric aircraft, it follows that

FAy0
= −E0 = 0, (13.2.9)

and thus

Cy0
= 0. (13.2.10)

Furthermore, it follows from (11.1.21) that

Cx = −(cosα)(cos β)CD + (cosα)(sin β)CE + (sinα)CL, (13.2.11)

and thus

Cx0
= −CD0

, (13.2.12)

which is consistent with the fact that, during steady flight, ı̂AC = ı̂W.

The steady thrust coefficients are given by

CTx0

△
=

FTx0

pd0
S
, (13.2.13)

CTy0

△
=

FTy0

pd0
S
, (13.2.14)

CTz0

△
=

FTz0

pd0
S
. (13.2.15)

13.3 Linearization of Forces

13.3.1 Lift Coefficient

Expanding (13.1.3) at steady flight yields

CL(u, q, r, δα, δα̇, δβ, δβ̇, δe) ≈ CL0
+

1

U0

CLu0
u +

c

2U0

CLq0
q +

b

2U0

CLr0
r

+CLα0
δα +

c

2U0

CLα̇0
δα̇ +CLβ0

δβ +
b

2U0

CLβ̇0
δβ̇ +CLδe0

δe, (13.3.1)

where CL0
is the steady lift coefficient. It is usually the case that CLα0

> 0 and CLδe0
> 0. The

dynamic stability derivatives CLu0
, CLq0

, and CLr0
are nondimensionalized using the conventions

CLu0

△
=

∂CL

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.3.2)

CLq0

△
=

∂CL

∂
(

cq

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.3.3)

CLr0

△
=

∂CL

∂
(

br
2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.3.4)
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CLα0

△
=
∂CL

∂δα

∣
∣
∣
∣
∣
0

, (13.3.5)

CLα̇0

△
=

∂CL

∂
(

cδα̇
2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.3.6)

CLβ0

△
=
∂CL

∂δβ

∣
∣
∣
∣
∣
0

, (13.3.7)

CLβ̇0

△
=

∂CL

∂

(

bδβ̇

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
0

. (13.3.8)

13.3.2 Drag Coefficient

Ignoring the dependence on the elevator δe, we write the drag polar as the parabolic function

CD = CDpar
+

C2
L

πeAR
= CDpar

+ KC2
L, (13.3.9)

where AR
△
= b2/S is the aspect ratio, e is the Oswald efficiency factor, and K

△
= 1/(πeAR). Typically,

e ≈ 0.8, while e always satisfies e < 1, which accounts for nonelliptical lift distribution. CDpar
is the

parasitic drag coefficient. Hence,

CD0

△
= CD0

= CDpar
+ KC2

L0
≥ CDpar

, (13.3.10)

where CL0
is the lift coefficient in steady flight, and CL0

> 0 by assumption.

Expanding CD, we have

CD(u, q, r, δα, δα̇, δβ, δβ̇, δe) ≈ CD0
+

1

U0

CDu0
u +

c

2U0

CDq0
q +

b

2U0

CDr0
r

+CDα0
δα +CDα̇0

δα̇ +CDβ0
δβ +CDβ̇0

δβ̇ +CDδe0
δe. (13.3.11)

Differentiating (13.3.9) with respect to α yields

CDα0
=

∂

∂α
[CDpar

+ KC2
L]

∣
∣
∣
∣
∣
0

= 2KCL0
CLα0

, (13.3.12)

and similarly for u, q, r, δα̇, δβ, δβ̇, δe. We thus have

CD(u, q, r, δα, δα̇, δβ, δβ̇, δe) ≈ CD0
+

2

U0

KCL0
CLu0

u +
c

U0

KCL0
CLq0

q +
b

U0

KCL0
CLr0

r

+ 2KCL0
CLα0

δα + 2KCL0
CLα̇0

δα̇

+ 2KCL0
CLβ0

δβ + 2KCL0
CLβ̇0

δβ̇ + 2KCL0
CLδe0

δe. (13.3.13)

Note that the steady value of δe is defined to be zero, although the trim angle of the elevator depends

on the flight condition.
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13.3.3 Force Coefficients in FAC

We now look at perturbations of the steady flight forces. The goal is to express the perturbed

aerodynamic forces in terms of the stability derivatives. We represent the force perturbations in the

aircraft frame. Perturbing
⇀

VAC yields

⇀

VAC

∣
∣
∣
∣
∣
AC

=





U0

0

0




+





u

v

w




=





U0 + u

v

w




. (13.3.14)

For the perturbed angular velocity
⇀
ωAC/E

∣
∣
∣
∣
AC

, we have

⇀
ωAC/E

∣
∣
∣
∣
AC
=





p

q

r




. (13.3.15)

The perturbed aerodynamic forces resolved in the aircraft frame are

⇀

FA

∣
∣
∣
∣
∣
AC

=





FAx

FAy

FAz




=





FAx0
+ fAx

FAy0
+ fAy

FAz0
+ fAz




, (13.3.16)

where fAx
, fAy

, and fAz
are perturbations to the components of the aerodynamic force resolved in the

aircraft frame. We can express fAx
and fAz

as functions of u, δα, δα̇, and δe, and fAy
as a function of

v, p, δβ, δβ̇, δa, and δr. We do not consider the perturbations v and w since these perturbations are

captured by δβ and δα, respectively, as shown by (12.3.14) and (12.3.10), respectively.

We thus have the linear approximations

fAx
(u, q, δα, δα̇, δe) ≈

∂ fAx

∂u

∣
∣
∣
∣
∣
0

u +
∂ fAx

∂q

∣
∣
∣
∣
∣
0

q +
∂ fAx

∂δα

∣
∣
∣
∣
∣
0

δα +
∂ fAx

∂δα̇

∣
∣
∣
∣
∣
0

δα̇ +
∂ fAx

∂δe

∣
∣
∣
∣
∣
0

δe, (13.3.17)

fAy
(p, r, δβ, δβ̇, δa, δr) ≈

∂ fAy

∂p

∣
∣
∣
∣
∣
∣
0

p +
∂ fAy

∂r

∣
∣
∣
∣
∣
∣
0

r +
∂ fAy

∂δβ

∣
∣
∣
∣
∣
∣
0

δβ +
∂ fAy

∂δβ̇

∣
∣
∣
∣
∣
∣
0

δβ̇ +
∂ fAy

∂δa

∣
∣
∣
∣
∣
∣
0

δa +
∂ fAy

∂δr

∣
∣
∣
∣
∣
∣
0

δr,

(13.3.18)

fAz
(u, q, δα, δα̇, δe) ≈

∂ fAz

∂u

∣
∣
∣
∣
∣
∣
0

u +
∂ fAz

∂q

∣
∣
∣
∣
∣
∣
0

q +
∂ fAz

∂δα

∣
∣
∣
∣
∣
∣
0

δα +
∂ fAz

∂δα̇

∣
∣
∣
∣
∣
∣
0

δα̇ +
∂ fAz

∂δe

∣
∣
∣
∣
∣
∣
0

δe. (13.3.19)

To obtain nondimensional partial derivatives of dimensionless coefficients, we use u
U0

,
bp

2U0
,

cq

2U0
,

br
2U0

, cδα̇
2U0

, and
bδβ̇

2U0
. For example, (13.3.17) becomes

fAx
(u, q, δα, δα̇, δe) =

∂ fAx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

1

U0

u +
∂ fAx

∂
(

cq

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

c

2U0

q +
∂ fAx

∂δα

∣
∣
∣
∣
∣
0

δα +
∂ fAx

∂
(

cδα̇
2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

c

2U0

δα̇ +
∂ fAx

∂δe

∣
∣
∣
∣
∣
0

δe,

(13.3.20)

and likewise for (13.3.18) and (13.3.19).
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13.3.4 Linearization of FAx

We write

FAx
= pdS Cx ≈ FAx0

+ fAx
. (13.3.21)

Note that

pd
△
=

1

2
ρV2

AC =
1

2
ρ[(U0 + u)2 + v2 + w2]. (13.3.22)

Using (13.3.21), the first partial in (13.3.20) is given by

∂ fAx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

=
∂(pdS Cx)

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= pd0
S

∂Cx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

+
∂pd

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

S Cx0
. (13.3.23)

Now, we define

Cxu0

△
=

∂Cx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.3.24)

pdu0

△
=

∂pd

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

(13.3.25)

so that

∂ fAx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= pd0
S Cxu0

+ pdu0
S Cx0

. (13.3.26)

Differentiating (13.2.11) with respect to u/U0 yields

Cxu0
= −CDu0

, (13.3.27)

where CDu0
is the speed damping derivative.

Next, to determine pdu0
, we use (12.3.13) to express w in (13.3.22) in terms of u and δα. There-

fore,

∂pd

∂u

∣
∣
∣
∣
∣
0

= ρ(U0 + u) ≈ ρU0, (13.3.28)

and thus, from (13.3.25),

pdu0
= ρU2

0 = 2pd0
. (13.3.29)

Therefore,

∂ fAx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S (2CD0

+CDu0
). (13.3.30)

Next, since pdq0
= 0, it follows that

∂ fAx

∂
(

cq

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S CDq0

. (13.3.31)
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Finally, since pdα0
= 0 it follows that

∂ fAx

∂δα

∣
∣
∣
∣
∣
0

= pd0
S (CL0

−CDα0
). (13.3.32)

Substituting (13.3.30), (13.3.31), and (13.3.32), into (13.3.20) yields

fAx
(u, q, δα, δα̇, δe) ≈ −

pd0
S

U0

(2CD0
+CDu0

)u −
pd0

S c

2U0

CDq0
q

+ pd0
S (CL0

−CDα0
)δα −

pd0
S c

2U0

CDα̇0
δα̇ − pd0

S CDδe0
δe. (13.3.33)

13.3.5 Linearization of FAy

From (13.1.5) we have

FAy
= pdS Cy ≈ FAy0

+ fAy
. (13.3.34)

It thus follows from (11.1.21) that

Cy = −(sin β)CD − (cos β)CE , (13.3.35)

and thus

Cy0
= −CE0

= 0. (13.3.36)

Using (13.3.34) and (13.3.35) yields

∂ fAy

∂
(

bp

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S CEp0

, (13.3.37)

∂ fAy

∂
(

br
2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S CEr0

, (13.3.38)

∂ fAy

∂δβ

∣
∣
∣
∣
∣
∣
0

= −pd0
S (CD0

+CEβ0
), (13.3.39)

∂ fAy

∂

(

bδβ̇

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S CEβ̇0

, (13.3.40)

∂ fAy

∂δa

∣
∣
∣
∣
∣
∣
0

= −pd0
S CEδa0

, (13.3.41)

∂ fAy

∂δr

∣
∣
∣
∣
∣
∣
0

= −pd0
S CEδr0

. (13.3.42)

Substituting (13.3.37)–(13.3.42) into (13.3.18) yields

fAy
(p, r, δβ, δβ̇, δa, δr) ≈ −

pd0
S b

2U0

CEp0
p −

pd0
S b

2U0

CEr0
r − pd0

S (CD0
+CEβ0

)δβ −
pd0

S b

2U0

CEβ̇0
δβ̇
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− pd0
S CEδa0

δa − pd0
S CEδr0

δr. (13.3.43)

The condition CEβ0
< 0 implies static stability since sideslip to the right induces a force to the left.

On the other hand, if δr > 0, then the left rudder causes a right force, and thus CEδr0
> 0.

13.3.6 Linearization of FAz

From (13.1.6) we have

FAz
= pdS Cz ≈ FAz0

+ fAz
. (13.3.44)

Note that it follows from (11.1.21) that

Cz = −(sinα)(cos β)CD + (sinα)(sin β)CE − (cosα)CL, (13.3.45)

and thus

Cz0
= −CL0

. (13.3.46)

Then,

∂ fAz

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S

(

CLu0
+ 2CL0

)

. (13.3.47)

In addition,

∂ fAz

∂
(

cq

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

= −pd0
S CLq0

, (13.3.48)

where

CLq0

△
=

∂CL

∂
(

cq

2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

. (13.3.49)

Furthermore,

∂ fAz

∂δα

∣
∣
∣
∣
∣
∣
0

= −pd0
S

(

CLα0
+CD0

)

, (13.3.50)

CLα̇0

△
=

∂CL

∂
(

cδα̇
2U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

. (13.3.51)

Substituting into (13.3.19), we have

fAz
(u, q, δα, δα̇, δe) ≈ −

pd0
S

U0

(

2CL0
+CLu0

)

u −
pd0

S c

2U0

CLq0
q − pd0

S (CLα0
+CD0

)δα

−
pd0

S c

2U0

CLα̇0
δα̇ − pd0

S CLδe0
δe. (13.3.52)
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13.3.7 Linearization of Thrust Coefficients

The perturbed thrust forces resolved in the aircraft frame are given by

⇀

FT

∣
∣
∣
∣
∣
AC

=





FTx

FTy

FTz




=





FTx0
+ fTx

FTy0
+ fTy

FTz0
+ fTz




, (13.3.53)

where fTx
, fTy

, and fTz
are perturbations of the components of the thrust force resolved in the aircraft

frame.

Expanding the thrust-force perturbations yields

fTx
(u, q, δα, δα̇, δe) ≈

∂ fTx

∂u

∣
∣
∣
∣
∣
0

u +
∂ fTx

∂q

∣
∣
∣
∣
∣
0

q +
∂ fTx

∂δα

∣
∣
∣
∣
∣
0

δα +
∂ fTx

∂δα̇

∣
∣
∣
∣
∣
0

δα̇ +
∂ fTx

∂δe

∣
∣
∣
∣
∣
0

δe, (13.3.54)

fTy
(p, r, δβ, δβ̇, δa, δr) ≈

∂ fTy

∂p

∣
∣
∣
∣
∣
∣
0

p +
∂ fTy

∂r

∣
∣
∣
∣
∣
∣
0

r +
∂ fTy

∂δβ

∣
∣
∣
∣
∣
∣
0

δβ +
∂ fTy

∂δβ̇

∣
∣
∣
∣
∣
∣
0

δβ̇ +
∂ fTy

∂δa

∣
∣
∣
∣
∣
∣
0

δa +
∂ fTy

∂δr

∣
∣
∣
∣
∣
∣
0

δr,

(13.3.55)

fTz
(u, q, δα, δe) ≈

∂ fTz

∂u

∣
∣
∣
∣
∣
∣
0

u +
∂ fTz

∂q

∣
∣
∣
∣
∣
∣
0

q +
∂ fTz

∂δα

∣
∣
∣
∣
∣
∣
0

δα +
∂ fTz

∂δα̇

∣
∣
∣
∣
∣
∣
0

δα̇ +
∂ fTz

∂δe

∣
∣
∣
∣
∣
∣
0

δe. (13.3.56)

In addition, we define the thrust force derivatives

CTxu0

△
=

∂CTx

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.3.57)

CTzu0

△
=

∂CTz

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

. (13.3.58)

13.4 Moment Coefficients

For the moment components in the aircraft frame, the aerodynamic moment coefficients are

defined by

Cl
△
=

LA

pdS b
, (13.4.1)

Cm
△
=

MA

pdS c
, (13.4.2)

Cn
△
=

NA

pdS b
. (13.4.3)

Likewise, the thrust moment coefficients are defined by

CTl
△
=

LT

pdS b
, (13.4.4)

CTm
△
=

MT

pdS c
, (13.4.5)
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CTn
△
=

NT

pdS b
. (13.4.6)

13.5 Linearization of Moments

13.5.1 Linearization of the Roll Moment

We now express the perturbed aerodynamic moments in terms of the stability derivatives. For

the roll moment we have

LA = pdS bCl ≈ LA0
+ lA, (13.5.1)

and thus

LA0
= pd0

S bCl0 . (13.5.2)

Therefore,

lA(p, r, δβ, δβ̇, δa, δr) ≈
pd0

S b2

2U0

Clp0
p +

pd0
S b2

2U0

Clr0
r + pd0

S bClβ0
δβ +

pd0
S b2

2U0

Clβ̇0
δβ̇

+ pd0
S bClδa0

δa + pd0
S bClδr0

δr. (13.5.3)

13.5.1.1 Clp0

As the aircraft rolls, the induced drag creates a moment.

13.5.1.2 Clr0

As the aircraft yaws, the wing tip that is moving faster due to the rotation around k̂AC creates

greater lift than the wing tip that is moving more slowly. This difference in lift creates a roll moment.

13.5.1.3 Clβ0

Suppose the aircraft velocity
⇀

VAC is perturbed by ∆
⇀

VAC with δβ > 0. We need LA < 0 and hence

Clβ0
< 0 in order to roll away from the sideslip perturbation and thus reduce the sideslip perturbation

in accordance with static stability. Note that δα increases as δβ decreases.

Clβ0
is the stability derivative corresponding to the roll moment LA caused by sideslip. It is

affected by the fuselage, the wing dihedral, the wing position on the fuselage, and its sweep angle.

13.5.1.4 Effect of Wing Dihedral on Clβ0

We first consider the wing dihedral with the aircraft sideslipping to the right, as shown in Figure

13.5.1.

Note that, if Γ > 0, the wing is dihedral, otherwise it is anhedral. In Figure 13.5.2, Vn1
is the

normal component of Vair due to V , and Vn2
is the normal component of Vair due to W. The normal
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◦
❑ Γ❯Γ

Figure 13.5.1: Dihedral wings with angle Γ. The aircraft is pointing out of the page.

◦
V
❯Γ

Vn1

✗

−k̂n

❑ Γ

W
Vn2

Figure 13.5.2: Wing normal velocity (front view). The aircraft is sideslipping to its right.
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wing cross section

✯
⇀

VAC,proj + ∆
⇀

Vn

✻

∆
⇀

Vn
❑
δα

✿ ⇀

VAC,proj

α0

❑

Figure 13.5.3: Perturbed angle of attack.

velocity
⇀

Vn of
⇀

Vair on the right wing is then

⇀

Vn = (Vn1
+ Vn2

)(−k̂n), (13.5.4)

and the change ∆Vn in normal velocity of
⇀

Vair on the right wing due to dihedral is

∆Vn = (Vn1
+ Vn2

−W)(−k̂n). (13.5.5)

Note that

cosΓ =
Vn2

W
(13.5.6)

and

sinΓ =
Vn1

V
. (13.5.7)

Substituting (13.5.6) and (13.5.7) into (13.5.5), we have

∆Vn = (cosΓ)W + (sinΓ)V −W ≈ W + VΓ −W = VΓ. (13.5.8)

From Figure 13.5.4, we have

V = (tan β)U ≈ δβU. (13.5.9)

Hence,

tan δα =
∆Vn

U
≈ ΓV

U
≈ δβUΓ

U
= δβΓ. (13.5.10)

For small perturbations, we have,

δα ≈ δβΓ. (13.5.11)

Thus, α0 is perturbed by δα, which effectively increases the angle of attack of the right wing due to

sideslipping to the right, as shown in Figure 13.5.4. A similar analysis shows that, on the left wing,

the angle of attack is decreased by δα. This effect results in a negative roll moment. Hence Clβ0
< 0,

which implies static stability.
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V

U

✒
⇀

VAC

✠

⇀

Vair

✠

δβ

Figure 13.5.4: Effect of sideslip and dihedral.

◦ ❄

δα < 0
✻

δα > 0

Figure 13.5.5: High wing (front view). The aircraft is sideslipping to its right. The flow around the

fuselage perpendicular to the wing produces a negative roll moment.

13.5.1.5 Effect of Wing Position on Clβ0

Consider first a high wing as in Figure 13.5.5. The cross flow field velocity due to sideslip to the

right is equal to δβU. This sideslip causes the aircraft to roll to the left, with a roll moment LA < 0.

Hence, since positive sideslip induces a negative roll moment, it follows that Clβ0
< 0. Hence, high

wing has the same effect as wing dihedral.

Consider now a low wing as in Figure 13.5.6, and a positive sideslipping to the right, with,

again, a flow field velocity δβU. In this case, Clβ0
> 0, and a positive sideslip induces a positive roll

moment, while a negative sideslip causes a negative roll moment. Wing dihedral is sometimes used

to counteract this effect.

13.5.1.6 Effect of Wing Sweep on Clβ0

As shown in Figure 13.5.7, the sweep angle of the wings affects the aircraft response to sideslip.

A sideslip to the right causes increased lift by the right wing, and thus, causes a negative roll mo-

ment.



408 CHAPTER 13

◦
✻

δα > 0

❄

δα < 0

Figure 13.5.6: Low wing (front view). The aircraft is sideslipping to its right. The flow around the

fuselage perpendicular to the wing produces a positive roll moment.
>

>

>

>

>

Vair

Figure 13.5.7: Clβ0
is negative due to wing sweep since for δβ > 0 the lift of the right wing is greater than the

lift of the left wing.

Finally, note that Clβ0
is also affected by the horizontal and vertical tails.

13.5.1.7 Clδa0

The control derivative Clδa0
is the aileron-roll derivative. Since right aileron up is positive, it

follows that Clδa0
is positive.

13.5.1.8 Clδr0

The control derivative Clδr0
is the adverse rudder-roll derivative.

13.5.2 Linearization of the Pitch Moment

For the pitch moment we have

MA = pdS cCm ≈ MA0
+ mA, (13.5.12)
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and thus

MA0
= pd0

S cCm0
. (13.5.13)

Therefore,

mA(u, q, δα, δα̇, δe) ≈
pd0

S c

U0

(2Cm0
+Cmu0

)u +
pd0

S c
2

2U0

Cmq0
q

+ pd0
S cCmα0

δα +
pd0

S c
2

2U0

Cmα̇0
δα̇ + pd0

S cCmδe0
δe. (13.5.14)

13.5.2.1 Cmα0

For pitch static stability, we perturb α0 = 0 to α = α0 + δα = δα, to obtain

Cm(δα) ≈ Cm0
+Cmα0

δα, (13.5.15)

where Cm0

△
= Cm(0) and the pitch moment is

MA = MA0
+ mA, (13.5.16)

with

MA0
= Cm0

pdS c. (13.5.17)

The perturbed moment is

MA = Cm(δα)pdS c = Cm0
pdS c + ∆Cm pdS c, (13.5.18)

where

∆Cm
△
= Cm(δα) −Cm(0) ≈ Cmα0

δα. (13.5.19)

Hence, the change in moment is

mA = ∆Cm pdS c ≈ Cmα0
pdS cδα. (13.5.20)

If δα > 0, that is, the nose goes up, then the change in moment is negative. Thus,

∆Cm < 0, (13.5.21)

and hence

Cmα0
≈ ∆Cm

δα
< 0. (13.5.22)

Next, we link Cmα
to the center of mass c. First, referring to Figure 13.5.8, we note that ac is the

aerodynamic center, which, for a wing alone, is usually fixed at the location xac = c/4. Furthermore,

the moment on the aircraft

⇀

Mac = Mac ̂S (13.5.23)

relative to ac is independent of α and is generally nonzero. The point cp is the center of pressure,

where xcp moves as α changes. The center of pressure has the property that the moment on the

aircraft relative to cp is zero for all α.
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❄
⇀

WAC

•
c

❄k̂E

❖
⇀

L

❲
k̂S

❯ k̂AC

cp •

• ac

xcp

xac

xc

0

ı̂AC
✯

❑
α0

✿
⇀

VAC

✿
ı̂S✲
ı̂E

✾

⇀

D

Figure 13.5.8: Pitching moment analysis assuming zero sideslip.

We compute the moment
⇀

Mc on the aircraft relative to the center of mass,

⇀

Mc = (xc − xcp)
︸     ︷︷     ︸

<0

ı̂AC ×
⇀

L

= (xc − xac)ı̂AC ×
⇀

L
︸               ︷︷               ︸

aerodynamic moment

+ (xac − xcp)ı̂AC ×
⇀

L
︸                ︷︷                ︸

aerodynamic moment

= (xc − xac)L(cosα) ̂S +
⇀

Mac

= [(xc − xac)L + Mac](cosα) ̂S

� [(xc − xac)
︸     ︷︷     ︸

<0

L + Mac
︸︷︷︸

<0

] ̂S. (13.5.24)

Writing

⇀

Mc = Mc ̂S, (13.5.25)

we have

Mc

pdS c
= [(xc − xac)L + Mac]

1

pdS c

or

Mc

pdS c
=

xc − xac

c

L

pdS
+

Mac

pdS c
. (13.5.26)
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Cm

α

C′mα

•
α′

0

new trim

due to increased

mass at nose

Cmα

•

original trim

α0

Figure 13.5.9: Change in pitching moment coefficient due to a change in trim.

Therefore, defining

Cmc

△
=

Mc

pdS c
, (13.5.27)

we have

Cmc
=

xc − xac

c
CL +Cmac

, (13.5.28)

where the pitch moment coefficient Cmac
is independent of α. Since Cmα

= Cmc
, we have

Cmα
=

xc − xac

c
CLα + 0. (13.5.29)

At the steady flight conditions, (13.5.29) becomes

Cmα0
=

xc − xac

c
CLα0

. (13.5.30)

Since xc− xac < 0 we have Cmα0
< 0 with static stability as shown. On the other hand, if xc− xac > 0,

then Cmα0
> 0 and the aircraft is statically unstable.

Now suppose that additional mass is added at the nose. Then, from Figure 13.5.9, we can see

that C′mα
< Cmα

< 0. Hence, Cmα
becomes more negative as xc decreases.

13.5.2.2 Cmu0

Cmu0
is the Mach tuck derivative. Suppose that Cmu0

is positive. Therefore, an increase in speed

(that is, a positive speed perturbation) leads to an increase in the pitch moment (that is, a positive

pitch-moment perturbation), which causes the aircraft to pitch up. Since CDα0
> 0, the increase in

speed leads to an increase in drag. The additional drag, however, counteracts the increase in speed.
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The speed perturbation thus has a tendency to decrease, which shows that Cmu0
> 0 corresponds to

static stability. However, in many aircraft, Cmu0
is negative, and thus the aircraft is statically unstable.

In particular, as u increases, xac shifts toward the rear of the plane. It follows from (13.5.29) that

Cmα
decreases, which means that, for α > 0, the pitch moment decreases and the nose goes down.

The drag thus decreases, which leads to an increase in speed.

13.5.2.3 Cmq0

Cmq0
is the pitch-damping derivative. Values Cmq0

< 0 corresponds to static stability.

13.5.2.4 Cmδe0

The control derivative Cmδe0
is the elevator pitch derivative. For a rear-mounted elevator, Cmδe0

is negative.

13.5.3 Linearization of the Yaw Moment

For the yaw moment we have

NA = pdS bCn ≈ NA0
+ nA, (13.5.31)

and thus

NA0
= pd0

S bCn0
. (13.5.32)

Therefore,

nA(p, r, δβ, δβ̇, δr, δa) ≈
pd0

S b2

2U0

Cnp0
p +

pd0
S b2

2U0

Cnr0
r + pd0

S bCnβ0
δβ

+
pd0

S b2

2U0

Cnβ̇0
δβ̇ + pd0

S bCnδr0
δr + pd0

S bCnδa0
δa. (13.5.33)

For a symmetric airfoil, Cn0
= 0.

13.5.3.1 Cnβ0

Cnβ0
is the static directional stability derivative, also called the weathervane stability derivative.

Cnβ0
> 0 implies static stability in yaw due to sideslip since sideslip to the right causes a yaw

moment to the right. Therefore, yawing into sideslip so that δβ decreases is statically stable. In

contrast, rolling away from sideslip so that δβ decreases implies static stability.

The rudder control derivative Cnδr0
is negative. The term Cnδa0

is the adverse aileron-yaw deriva-

tive, which is negative.

13.5.4 Linearization of the Thrust Moments

We linearize the thrust roll moment as

LT = pdS bCTl ≈ LT0
+ lT, (13.5.34)
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where

lT(δβ) ≈ ∂lT

∂δβ

∣
∣
∣
∣
∣
0

δβ. (13.5.35)

Therefore,

lT(δβ) ≈ pd0
S bCTlβ0

δβ, (13.5.36)

where

CTlβ0

△
=
∂CTl

∂δβ

∣
∣
∣
∣
∣
0

. (13.5.37)

We linearize the thrust pitch moment as

MT = pdS cCTm ≈ MT0
+ mT, (13.5.38)

where

mT(u, δα) ≈ ∂mT

∂u

∣
∣
∣
∣
∣
0

u +
∂mT

∂δα

∣
∣
∣
∣
∣
0

δα. (13.5.39)

Therefore,

mT(u, δα) ≈
pd0

S c

U0

(2CTm0
+CTmu0

)u + pd0
S cCTmα0

δα, (13.5.40)

where

CTmu0

△
=

∂CTm

∂
(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
∣
0

, (13.5.41)

CTmα0

△
=
∂CTm

∂δα

∣
∣
∣
∣
∣
0

. (13.5.42)

We linearize the thrust yaw moment as

NT = pdS bCTn ≈ NT0
+ nT, (13.5.43)

where

nT(δβ) ≈ ∂nT

∂δβ

∣
∣
∣
∣
∣
0

δβ. (13.5.44)

Therefore,

nT(δβ) ≈ pd0
S bCTnβ0

δβ, (13.5.45)

where

CTnβ0

△
=
∂CTn

∂δβ

∣
∣
∣
∣
∣
0

. (13.5.46)

13.6 Adverse Control Derivatives

13.6.1 Adverse Aileron-Yaw

As shown in Figure 13.6.10, since the left wing has increased lift due to aileron down, it also has

increased drag. Hence, the aircraft turns right but sideslips to the left, which explains the “adverse”
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terminology. To cancel this moment, we can use the rudder δr. From the yaw moment expression

(13.5.33), we have

Cnδr0
δr +Cnδa0

δa = 0, (13.6.1)

that is,

δr = −
Cnδa0

Cnδr0

δa. (13.6.2)

Note that Cnδa0
and Cnδr0

do not change sign, whereas δa and δr change sign as these control

surfaces move. The adverse aileron-yaw moment is due to Cnδa0
< 0.

down

roll   r   i g h t

less lift, less drag

up
δa > 0

yaw left

more lift, more drag

Figure 13.6.10: Adverse aileron-yaw.

13.6.2 Adverse Rudder-Roll

To cancel the adverse rudder-roll moment, we use the aileron. It follows from the roll moment

expression (13.5.3) that

Clδr0
δr +Clδa0

δa = 0. (13.6.3)

Solving for the aileron deflection δa yields

δa = −
Clδr0

Clδa0

δr. (13.6.4)

Note that Clδa0
does not change sign, but δa and δr change sign as the control surfaces move. In

addition, the sign of Clδr0
depends on the angle of attack. To see this, let

⇀

Lδr denote the lift due to
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the rudder. As shown in Figure 13.6.11 and Figure 13.6.12 for the case of left rudder,
⇀

Lδr is aligned

with ̂AC and applied to the aircraft at the point c′ on the vertical tail. The component of the roll

moment along ı̂AC due to
⇀

Lδr relative to c is thus given by

Lδr = (
⇀
r c′/c ×

⇀

Lδr) · ı̂AC, (13.6.5)

where
⇀

Lδr = λ ̂AC and
⇀
r c′/c = µx ı̂AC + µzk̂AC. Note that λ > 0 and µx < 0. However, the sign of

µz depends on the angle of attack. In particular, if the angle of attack is low, then Figure 13.6.11

shows that µz is negative, whereas, if the angle of attack is high, then Figure 13.6.12 shows that µz

is positive. Note that, in both cases, the axis ı̂AC is defined to be aligned with
⇀

VAC0
in steady flight.

To determine whether the rudder-roll effect is adverse or proverse, note that

Lδr =
⇀
r c′/c · (

⇀

Lδr × ı̂AC)

=
⇀
r c′/c · (λ ̂AC × ı̂AC)

= −λ(µx ı̂AC + µzk̂AC) · k̂AC

= −λµz. (13.6.6)

If the angle of attack is low, and thus µz is negative, it follows from (13.6.6) that Lδr is positive,

and thus
⇀

Lδr is aligned with ̂AC. Hence, Clδr0
is positive. Therefore, in a left turn, that is, when

δr is positive, the aircraft has a tendency to roll right. Therefore, the rudder-roll effect is adverse.

Alternatively, if the angle of attack is high, and thus µz is positive, it follows from (13.6.6) that Lδr

is negative, and thus
⇀

Lδr is aligned with − ̂AC. Hence Clδr0
is negative. Therefore, in a left turn, that

is, when δr is positive, the aircraft has a tendency to roll left. Therefore, the rudder-roll effect is

proverse.

Figure 13.6.11: Adverse rudder-roll. The case of left rudder (δr > 0) for low angle of attack is shown here.

The lift
⇀

Lδr due to the rudder is aligned with ̂AC and is applied to the point c′ on the vertical tail. The aircraft

center of mass is denoted by c. The roll due to rudder is adverse since the component µz of
⇀
r c/c′ along k̂AC is

negative.

u q δα δα̇ δe

Range CD > 0 < 0 < 0 < 0 > 0

Pitch Cm > 0 < 0 < 0 < 0 < 0

Plunge CL > 0 > 0 > 0 > 0 > 0

Table 13.1: Signs of longitudinal stability derivatives for static stability, as well as the signs of the

control derivatives.
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Figure 13.6.12: Proverse rudder-roll. The case of left rudder (δr > 0) for high angle of attack is shown here.

The lift
⇀

Lδr due to the rudder is aligned with ̂AC and is applied to the point c′ on the vertical tail. The aircraft

center of mass is denoted by c. The roll due to rudder is proverse since the component µz of
⇀
r c/c′ along k̂AC is

positive.

p r δβ δβ̇ δa δr

Roll Cl < 0 < 0 < 0 < 0 > 0 ±
Drift CE < 0 > 0 < 0 < 0 < 0 > 0

Yaw Cn < 0 < 0 > 0 > 0 < 0 < 0

Table 13.2: Signs of lateral stability derivatives for static stability, as well as the signs of the control

derivatives.

13.7 Problems

Problem 13.7.1. Consider the expression (13.6.2), which shows how to set the rudder to cancel

adverse aileron-yaw. Then, draw two diagrams (one for right aileron up and one for left aileron up)

and check the signs of all terms in the equation to confirm that they are all correct.

Problem 13.7.2. Consider the expression (13.6.4), which shows how to set the ailerons to

cancel adverse rudder-roll. Then, draw two diagrams (one for rudder right and one for rudder left)

and check the signs of all terms in the equation to confirm that they are all correct.

Problem 13.7.3. Derive (13.3.27).



STATIC STABILITY AND STABILITY DERIVATIVES 417

CL(u, q, r, δα, δα̇, δe) CL0
+ 1

U0
CLu0

u + c
2U0

CLq0
q + b

2U0
CLr0

r

+CLα0
δα + c

2U0
CLα̇0

δα̇ +CLδe0
δe

CL0

L0

pd0
S

CLu0

∂CL

∂

(

u
U0

)

∣
∣
∣
∣
∣
∣
∣
0

CLq0

∂CL

∂

(
cq

2U0

)

∣
∣
∣
∣
∣
∣
∣
0

CLr0

∂CL

∂

(

br
2U0

)

∣
∣
∣
∣
∣
∣
∣
0

CLα0

∂CL

∂δα

∣
∣
∣
0

CLα̇0

∂CL

∂

(

cδα̇
2U0

)

∣
∣
∣
∣
∣
∣
∣
0

CLδe0

∂CL

∂δe

∣
∣
∣
0

CD(u, q, r, δα, δα̇, δe) CD0
+ 1

U0
CDu0

u + c
2U0

CDq0
q + b

2U0
CDr0

r

+CDα0
δα +CDα̇0

δα̇ +CDδe0
δe

CD0

D0

pd0
S

CDu0
2KCL0

CLu0

CDq0
2KCL0

CLq0

CDr0
2KCL0

CLr0

CDα0
2KCL0

CLα0

CDα̇0
2KCL0

CLα̇0

CDδe0
2KCL0

CLδe0

Table 13.3: Lift and drag stability derivatives. These stability derivatives model the aerodynamic

forces applied to the aircraft due to perturbations away from steady longitudinal flight.





Chapter Fourteen

Linearized Dynamics and Flight Modes

14.1 Linearized Longitudinal Equations of Motion

We now incorporate the stability derivatives within the linearized longitudinal equations of mo-

tion (12.4.18), (12.4.22), and (12.3.55) for the range-rate, angle-of-attack, and pitch-rate perturba-

tions, respectively. This yields the linearized longitudinal equations of motion

u̇ = −
pd0

S

mU0

(

2CD0
+CDu0

)

︸                      ︷︷                      ︸

Xu0

u +
pd0

S

mU0

(2CTx0
+CTxu0

)

︸                    ︷︷                    ︸

XTu0

u +
pd0

S

m

(

CL0
−CDα0

)

︸                 ︷︷                 ︸

Xα0

δα

+
pd0

S c

2mU0

CDq0

︸       ︷︷       ︸

Xq0

q +
pd0

S c

2mU0

CDα̇0

︸       ︷︷       ︸

Xα̇0

δα̇ − gθ +
pd0

S

m
CDδe0

︸      ︷︷      ︸

Xδe0

δe, (14.1.1)

U0δα̇ = −
pd0

S

mU0

(2CL0
+CLu0

)

︸                    ︷︷                    ︸

Zu0

u −
pd0

S

mU0

(2CTz0
+CTzu0

)

︸                       ︷︷                       ︸

ZTu0

u −
pd0

S

m
(CLα0

+CD0
)

︸                    ︷︷                    ︸

Zα0

δα

+ U0q −
pd0

S c

2mU0

CLq0

︸          ︷︷          ︸

Zq0

q −
pd0

S c

2mU0

CLδα̇0

︸           ︷︷           ︸

Zα̇0

δα̇ −
pd0

S

m
CLδe0

︸         ︷︷         ︸

Zδe0

δe, (14.1.2)

q̇ =
pd0

S c

JyyU0

(2Cm0
+Cmu0

)

︸                    ︷︷                    ︸

Mu0

u +
pd0

S c

JyyU0

(2CTm0
+CTmu0

)

︸                       ︷︷                       ︸

MTu0

u +
pd0

S c

Jyy

Cmα0

︸       ︷︷       ︸

Mα0

δα

+
pd0

S c

Jyy

CTmα0

︸         ︷︷         ︸

MTα0

δα +
pd0

S c
2

2JyyU0

Cmq0

︸         ︷︷         ︸

Mq0

q +
pd0

S c
2

2JyyU0

Cmδα̇0

︸         ︷︷         ︸

Mα̇0

δα̇ +
pd0

S c

Jyy

Cmδe0

︸        ︷︷        ︸

Mδe0

δe. (14.1.3)

By introducing the longitudinal stability parameters, which are defined in Table 14.1, (14.1.1)–

(14.1.3) can be written as

u̇ − Xα̇0
δα̇ =

(

Xu0
+ XTu0

)

u + Xα0
δα + Xq0

q − gθ + Xδe0
δe, (14.1.4)

(U0 − Zα̇0
)δα̇ = (Zu0

+ ZTu0
)u + Zα0

δα + (U0 + Zq0
)q + Zδe0

δe, (14.1.5)

q̇ − Mα̇0
δα̇ =

(

Mu0
+ MTu0

)

u +
(

Mα0
+ MTα0

)

δα + Mq0
q + Mδe0

δe. (14.1.6)
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Stability

Parameter
Definition Value Units

Xu0
− pd0

S

mU0
(2CD0

+CDu0
) −0.0074 1/sec

Xq0

pd0
S c

2mU0
CDq0

0.0000 1/sec

Xα0

pd0
S

m
(CL0

−CDα0
) 8.9782 ft/sec2-rad

Xα̇0

pd0
S c

mU0
CDα̇0

0.0000 1/sec

Xδe0

pd0
S

m
CDδe0

0.0000 ft/sec2-rad

XTu0

pd0
S

mU0
(2CTx0

+CTxu0
) 0.0000 1/sec

Zu0
− pd0

S

mU0
(2CL0

+CLu0
) −0.1390 1/sec

Zq0
− pd0

S c

2mU0
CLq0

−1.8598 ft/sec-rad

Zα0
− pd0

S

m
(CLα0

+CD0
) −445.7224 ft/sec2-rad

Zα̇0
− pd0

S c

2mU0
CLα̇0

−0.8705 ft/sec-rad

Zδe0
− pd0

S

m
CLδe0

−42.1968 ft/sec2-rad

ZTu0
− pd0

S

mU0
(2CTz0

+CTzu0
) 0.0000 1/sec

Mu0

pd0
S c

JyyU0
(2Cm0

+Cmu0
) 0.0011 rad/ft-sec

Mq0

pd0
S c2

2JyyU0
Cmq0

−0.9397 1/sec

Mα0

pd0
S c

Jyy
Cmα0

−7.4416 1/sec2

Mα̇0

pd0
S c

2

2JyyU0
Cmα̇0

−0.4062 1/sec

Mδe0

pd0
S c

Jyy
Cmδe0

−17.6737 1/sec2

MTu0

pd0
S c

JyyU0
(2CTm0

+CTmu0
) −0.0002 1/ft-sec

MTα0

pd0
S c

Jyy
CTmα0

0.0000 1/sec2

Table 14.1: Longitudinal stability parameters. These data for a business jet with air speed U0 = 400

kt are given in [10, p. 330].

Combining (14.1.4), (14.1.5), (14.1.6), and (12.4.16) for u, δα, q, and θ yields

Υ





u̇

δα̇

q̇

θ̇





=





Xu0
+ XTu0

Xα0
Xq0

−g

Zu0
+ ZTu0

Zα0
U0 + Zq0

0

Mu0
+ MTu0

Mα0
+ MTα0

Mq0
0

0 0 1 0









u

δα

q

θ





+





Xδe0

Zδe0

Mδe0

0





δe, (14.1.7)
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where

Υ =





1 −Xα̇0
0 0

0 U0 − Zα̇0
0 0

0 −Mα̇0
1 0

0 0 0 1





. (14.1.8)

Assuming that U0 − Zα̇0
is not zero, it follows that





u̇

δα̇

q̇

θ̇





= Υ−1





Xu0
+ XTu0

Xα0
Xq0

−g

Zu0
+ ZTu0

Zα0
U0 + Zq0

0

Mu0
+ MTu0

Mα0
+ MTα0

Mq0
0

0 0 1 0









u

δα

q

θ





+ Υ−1





Xδe0

Zδe0

Mδe0

0





δe, (14.1.9)

where

Υ−1 =





1
Xα̇0

U0−Zα̇0

0 0

0 1
U0−Zα̇0

0 0

0
Mα̇0

U0−Zα̇0

1 0

0 0 0 1





. (14.1.10)

Consequently, (14.1.9) can be written as

ẋ = Ax + Bδe, (14.1.11)

where

x
△
=





u

δα

q

θ





, (14.1.12)

A
△
=





Xu0
+ XTu0

+
Xα̇0

(Zu0
+ZTu0

)

U0−Zα̇0

Xα0
+

Xα̇0
Zα0

U0−Zα̇0

Xq0
+

Xα̇0
(U0+Zq0

)

U0−Zα̇0

−g

Zu0
+ZTu0

U0−Zα̇0

Zα0

U0−Zα̇0

U0+Zq0

U0−Zα̇0

0

Mu0
+ MTu0

+
Mα̇0

(Zu0
+ZTu0

)

(U0−Zα̇0
)2 Mα0

+ MTα0
+

Mα̇0
Zα0

(U0−Zα̇0
)2 Mq0

+
Mα̇0

(U0+Zq0
)

(U0−Zα̇0
)2 0

0 0 1 0





, (14.1.13)

B
△
=





Xδe0
+

Xα̇0
Zδe0

U0−Zα̇0

Zδe0

U0−Zα̇0

Mδe0
+

Mα̇0
Zδe0

U0−Zα̇0

0





. (14.1.14)

Combining (14.1.11)–(14.1.14) with the range- and altitude-perturbation equations (12.4.5) and
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(12.4.8) yields the linearized longitudinal equations of motion given by





u̇

δα̇

q̇

θ̇

ẋ

ḣ





=





Xu0
+ XTu0

+
Xα̇0

(Zu0
+ZTu0

)

U0−Zα̇0

Xα0
+

Xα̇0
Zα0

U0−Zα̇0

Xq0
+

Xα̇0
(U0+Zq0

)

U0−Zα̇0

−g 0 0

Zu0
+ZTu0

U0−Zα̇0

Zα0

U0−Zα̇0

U0+Zq0

U0−Zα̇0

0 0 0

Mu0
+ MTu0

+
Mα̇0

(Zu0
+ZTu0

)

(U0−Zα̇0
)2 Mα0

+ MTα0
+

Mα̇0
Zα0

(U0−Zα̇0
)2 Mq0

+
Mα̇0

(U0+Zq0
)

(U0−Zα̇0
)2 0 0 0

1 0 0 0 0 0

0 −U0 0 U0 0 0









u

δα

q

θ

x

h





+





Xδe0
+

Xα̇0
Zδe0

U0−Zα̇0

Zδe0

U0−Zα̇0

Mδe0
+

Mα̇0
Zδe0

U0−Zα̇0

0

0

0





δe. (14.1.15)

In the special case where Xα̇0
= 0, Zα̇0

= 0, and Mα̇0
= 0, (14.1.15) becomes





u̇

δα̇

q̇

θ̇

ẋ

ḣ





=





Xu0
+ XTu0

Xα0
Xq0

−g 0 0

Zu0
+ZTu0

U0

Zα0

U0

U0+Zq0

U0
0 0 0

Mu0
+ MTu0

Mα0
+ MTα0

Mq0
0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 −U0 0 U0 0 0









u

δα

q

θ

x

h





+





Xδe0

Zδe0

U0

Mδe0

0

0

0





δe. (14.1.16)

14.2 Transfer Functions for Longitudinal Motion

Assuming zero initial conditions, taking the Laplace transform of the linearized longitudinal

equations (14.1.4), (14.1.5), (14.1.6), and using q̂(s) = sθ̂(s) from (12.4.16), we obtain

sû(s) =
(

Xu0
+ XTu0

)

û(s) + Xα0
δα̂(s) + Xq0

sθ̂(s) + Xα̇0
sδα̂(s) − gθ̂(s) + Xδe0

δê(s), (14.2.1)

U0sδα̂(s) = (Zu0
+ ZTu0

)û(s) + Zα0
δα̂(s) + (U0 + Zq0

)sθ̂(s) + Zα̇0
sδα̂(s) + Zδe0

δê(s), (14.2.2)

s2θ̂(s) =
(

Mu0
+ MTu0

)

û(s) +
(

Mα0
+ MTα0

)

δα̂(s) + Mq0
sθ̂(s) + Mα̇0

sδα̂(s) + Mδe0
δê(s). (14.2.3)

These equations can be written in matrix form as





s − (Xu0
+ XTu0

) −Xα̇0
s − Xα0

−Xq0
s + g

−(Zu0
+ ZTu0

) (U0 − Zα̇0
)s − Zα0

−(U0 + Zq0
)s

−(Mu0
+ MTu0

) −Mα̇0
s − (Mα0

+ MTα0
) s2 − Mq0

s









û(s)

δα̂(s)

θ̂(s)





=





Xδe0

Zδe0

Mδe0





δê(s).

(14.2.4)
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Inverting the 3 × 3 matrix coefficient in (14.2.4) yields the transfer functions

Gu/δe(s) =
û(s)

δê(s)
=

Aus3 + Bus2 +Cus + Du

s4 + Es3 + Fs2 +Gs + H
, (14.2.5)

Gδα/δe(s) =
δα̂(s)

δê(s)
=

Aαs3 + Bαs2 +Cαs + Dα

s4 + Es3 + Fs2 +Gs + H
, (14.2.6)

Gθ/δe(s) =
q̂(s)

δê(s)
=

Bθs
3 +Cθs

2 + Dθs

s4 + Es3 + Fs2 +Gs + H
, (14.2.7)

Gq/δe(s) =
θ̂(s)

δê(s)
=

Bθs
2 +Cθs + Dθ

s4 + Es3 + Fs2 +Gs + H
. (14.2.8)

The coefficients of the transfer functions (14.2.5)–(14.2.8) are functions of the stability parameters.

In particular, since the leading numerator coefficient is CB, it follows that

Au = Xδe0
+

Xα̇0
Zδe0

U0 − Zα̇0

, Aα =
Zδe0

U0 − Zα̇0

, Bθ = Mδe0
+

Mα̇0
Zδe0

U0 − Zα̇0

. (14.2.9)

Note that the numerator in (14.2.8) is quadratic rather than cubic, which is due to the fact that, for

the output θ, CB = 0. For details, see Section 15.14.

Next, it follows from (12.4.5) that the range perturbation x satisfies

ẋ = u, (14.2.10)

and thus

x̂(s) =
1

s
û(s). (14.2.11)

It thus follows from (14.2.6) and (14.2.11) that

Gx/δe(s) =
Aus3 + Bus2 +Cus + Du

s(s4 + Es3 + Fs2 +Gs + H)
. (14.2.12)

For an elevator impulse δe(t) = δeδ(t), it follows that the asymptotic range perturbation is

lim
t→∞

x(t) = lim
s→0

sGx/δe(s)δe =
Du

H
δe. (14.2.13)

Next, it follows from (12.4.8) that the altitude perturbation h satisfies

ḣ = U0δγ = U0(θ − δα), (14.2.14)

and thus

ĥ(s) =
U0

s
δγ̂(s) =

U0

s
[θ̂(s) − δα̂(s)]. (14.2.15)

Hence,

Gh/δe(s) =
U0

s

δ̂γ(s)

δê(s)
=

U0

s

(

θ̂(s)

δê(s)
− δα̂(s)

δê(s)

)

=
U0

s
[Gθ/δe(s) −Gδα/δe(s)]

=
−U0Aαs3 + U0(Bθ − Bα)s2 + U0(Cθ −Cα)s + U0(Dθ − Dα)

s(s4 + Es3 + Fs2 +Gs + H)
. (14.2.16)
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For an elevator impulse δe(t) = δeδ(t), it thus follows that the asymptotic altitude perturbation is

given by

lim
t→∞

h(t) = lim
s→0

sĥ(s) =
U0(Dθ − Dα)

H
δe. (14.2.17)

The characteristic polynomial p(s) = s4 + Es3 + Fs2 +Gs + H of A given by (14.1.13) can be

factored as

p(s) = (s2 + 2ζphωn,phs + ω2
n,ph)(s2 + 2ζspωn,sps + ω2

n,sp). (14.2.18)

The roots of p, which are the eigenvalues of A, depend on the flight condition, the mass distribution,

and the airplane geometry. The eigenvalues and corresponding eigenvectors of A given by (14.1.13)

define eigensolutions that represent flight modes. These flight modes are the phugoid mode and the

short period mode.

14.3 Linearized Lateral Equations of Motion

We now incorporate the stability derivatives within the lateral equations of motion (12.3.56),

(12.4.21), and (12.3.54) for yaw rate, sideslip, and roll rate, respectively. This yields the linearized

lateral equations of motion

ṙ − Jxz

Jzz

ṗ =
pd0

S b2

2JzzU0

Cnr0

︸        ︷︷        ︸

Nr0

r +





pd0
S b

Jzz

Cnβ0

︸       ︷︷       ︸

Nβ0

+
pd0

S b

Jzz

CTnβ0

︸        ︷︷        ︸

N
Tβ0





δβ +
pd0

S b2

2JzzU0

Cnp0

︸        ︷︷        ︸

Np0

p

+
pd0

S b2

2JzzU0

Cnβ̇0

︸        ︷︷        ︸

Nβ̇0

δβ̇ +
pd0

S b

Jzz

Cnδa0

︸       ︷︷       ︸

Nδa0

δa +
pd0

S b

Jzz

Cnδr0

︸       ︷︷       ︸

Nδr0

δr, (14.3.1)

U0δβ̇ = −
pd0

S b

2mU0

CEr0

︸       ︷︷       ︸

−Yr0

r − U0r −
pd0

S

m
(CD0

+CEβ0
)

︸                 ︷︷                 ︸

−Yβ0

δβ −
pd0

S b

2mU0

CEp0

︸       ︷︷       ︸

−Yp0

p −
pd0

S b

2mU0

CEβ̇0

︸       ︷︷       ︸

−Yβ̇0

δβ̇

+ gφ −
pd0

S

m
CEδa0

︸      ︷︷      ︸

−Yδa0

δa −
pd0

S

m
CEδr0

︸      ︷︷      ︸

−Yδr0

δr, (14.3.2)

ṗ − Jxz

Jxx

ṙ =
pd0

S b2

2JxxU0

Clr0

︸        ︷︷        ︸

Lr0

r +





pd0
S b

Jxx

Clβ0

︸      ︷︷      ︸

Lβ0

+
pd0

S b

Jxx

CTlβ0

︸        ︷︷        ︸

LTβ0





δβ +
pd0

S b2

2JxxU0

Clp0

︸        ︷︷        ︸

Lp0

p

+
pd0

S b2

2JxxU0

Clβ̇0

︸        ︷︷        ︸

Lβ̇0

δβ̇ +
pd0

S b

Jxx

Clδa0

︸       ︷︷       ︸

Lδa0

δa +
pd0

S b

Jxx

Clδr0

︸       ︷︷       ︸

Lδr0

δr. (14.3.3)
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By introducing the lateral stability parameters, which are defined in Table 14.2, (14.3.1)–(14.3.3)

can be written as

ṙ − Jxz

Jzz

ṗ = Nr0
r + (Nβ0

+ NTβ0
)δβ + Np0

p + Nβ̇0
δβ̇ + Nδa0

δa + Nδr0
δr, (14.3.4)

U0δβ̇ = (Yr0
− U0)r + Yβ0

δβ + Yp0
p + Yβ̇0

δβ̇ + gφ + Yδa0
δa + Yδr0

δr, (14.3.5)

ṗ − Jxz

Jxx

ṙ = Lr0
r + (Lβ0

+ LTβ0
)δβ + Lp0

p + Lβ̇0
δβ̇ + Lδa0

δa + Lδr0
δr. (14.3.6)

Combining (14.3.4)–(14.3.6) and (12.4.15) for r, δβ, p, and φ yields

Γ





ṙ

δβ̇

ṗ

φ̇





=





Nr0
Nβ0
+ NTβ0

Np0
0

Yr0
− U0 Yβ0

Yp0
g

Lr0
Lβ0
+ LTβ0

Lp0
0

0 0 1 0









r

δβ

p

φ





+ Γ





Nδa0
Nδr0

Yδa0
Yδr0

Lδa0
Lδr0

0 0









δa

δr



 , (14.3.7)

where

Γ
△
=





1 −Nβ̇0
− Jxz

Jzz
0

0 U0 − Yβ̇0
0 0

− Jxz

Jxx
−Lβ̇0

1 0

0 0 0 1





. (14.3.8)

Assuming that U0 − Yβ̇0
is not zero, it follows that





ṙ

δβ̇

ṗ

φ̇





= Γ−1





Nr0
Nβ0
+ NTβ0

Np0
0

Yr0
− U0 Yβ0

Yp0
g

Lr0
Lβ0
+ LTβ0

Lp0
0

0 0 1 0









r

δβ

p

φ





+ Γ−1





Nδa0
Nδr0

Yδa0
Yδr0

Lδa0
Lδr0

0 0









δa

δr



 , (14.3.9)

where

Γ−1 =





Jxx Jzz

Jxx Jzz−J2
xz

Jxx(JzzNβ̇0
+JxzLβ̇0

)

(U0−Yβ̇0
)(Jxx Jzz−J2

xz)

Jxz Jxx

Jxx Jzz−J2
xz

0

0 1
U0−Yβ̇0

0 0

Jxz Jzz

Jxx Jzz−J2
xz

Jzz(JxxLβ̇0
+JxzNβ̇0

)

(U0−Yβ̇0
)(Jxx Jzz−J2

xz)

Jxx Jzz

Jxx Jzz−J2
xz

0

0 0 0 1





. (14.3.10)

In the special case where Yβ̇0
= 0, Lβ̇0

= 0, and Nβ̇0
= 0, (14.3.9) becomes





ṙ

δβ̇

ṗ

φ̇





= Γ−10





Nr0
Nβ0
+ NTβ0

Np0
0

Yr0
−U0

U0

Yβ0

U0

Yp0

U0

g

U0

Lr0
Lβ0
+ LTβ0

Lp0
0

0 0 1 0









r

δβ

p

φ





+ Γ−10





Nδa0
Nδr0

Yδa0

U0

Yδr0

U0

Lδa0
Lδr0

0 0









δa

δr



 , (14.3.11)
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where

Γ0
△
=





1 0 − Jxz

Jzz
0

0 1 0 0

− Jxz

Jxx
0 1 0

0 0 0 1





, Γ−10 =





Jxx Jzz

Jxx Jzz−J2
xz

0
Jxz Jxx

Jxx Jzz−J2
xz

0

0 1 0 0

Jxz Jzz

Jxx Jzz−J2
xz

0
Jxx Jzz

Jxx Jzz−J2
xz

0

0 0 0 1





. (14.3.12)

With the aileron and rudder deflections δa and δr as inputs, (14.3.9) can be written as the state

space equation

ẋ = Ax + B

[

δa

δr

]

, (14.3.13)

where

x
△
=





r

δβ

p

φ





, A
△
= Γ−1





Nr0
Nβ0
+ NTβ0

Np0
0

Yr0
− U0 Yβ0

Yp0
g

Lr0
Lβ0
+ LTβ0

Lp0
0

0 0 1 0





, B
△
= Γ−1





Nδa0
Nδr0

Yδa0
Yδr0

Lδa0
Lδr0

0 0





.

(14.3.14)

Writing Γ−1 as

Γ−1 =





γ11 γ12 γ13 0

0 γ22 0 0

γ31 γ32 γ11 0

0 0 0 1





. (14.3.15)

it follows that

B =





γ11Nδa0
+ γ12Yδa0

+ γ13Lδa0
γ11Nδr0

+ γ12Yδr0
+ γ13Lδr0

γ22Yδa0
γ22Yδr0

γ31Nδa0
+ γ32Yδa0

+ γ11Lδa0
γ31Nδr0

+ γ32Yδr0
+ γ11Lδr0

0 0





. (14.3.16)

Combining (14.3.13) with the yaw- and drift-perturbation equations (12.4.17) and (12.4.6)

yields the linearized lateral equations of motion given by




ṙ

δβ̇

ṗ

φ̇

ψ̇

ẏ





= Γ̃−1





Nr0
Nβ0
+ NTβ0

Np0
0 0 0

Yr0
− U0 Yβ0

Yp0
g 0 0

Lr0
Lβ0
+ LTβ0

Lp0
0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 U0 0 0 U0 0









r

δβ

p

φ

ψ

y





+ Γ̃−1





Nδa0
Nδr0

Yδa0
Yδr0

Lδa0
Lδr0

0 0

0 0

0 0









δa

δr



 ,

(14.3.17)

where

Γ̃
△
=

[

Γ 0

0 I2

]

, Γ̃−1 =

[

Γ−1 0

0 I2

]

. (14.3.18)
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Stability

Parameter
Definition Value Units

Yβ0
− pd0

S

m
(CD0

+CEβ0
) −55.4022 ft/sec2-rad

Yp0
− pd0

S b

2mU0
CEp0

0.0000 ft/sec-rad

Yr0
− pd0

S b

2mU0
CEr0

0.7689 ft/sec-rad

Yβ̇0
− pd0

S b

2mU0
CEβ̇0

0.0000 ft/sec-rad

Yδa0
− pd0

S

m
CEδa0

0.0000 ft/sec2-rad

Yδr0
− pd0

S

m
CEδr0

10.4733 ft/sec2-rad

Lβ0

pd0
S b

Jxx
Clβ0

−4.1845 1/sec2

Lp0

pd0
S b2

2JxxU0
Clp0

−0.4365 1/sec

Lr0

pd0
S b2

2JxxU0
Clr0

0.1571 1/sec

Lβ̇0

pd0
S b2

2JxxU0
Clβ̇0

0.0000 1/sec

Lδa0

pd0
S b

Jxx
Clδa0

6.7714 1/sec2

Lδr0

pd0
S b

Jxx
Clδr0

0.6543 1/sec2

LTβ0

pd0
S b

Jxx
CTlβ0

0.0000 1/sec2

Nβ0

pd0
S b

Jzz
Cnβ0

2.8643 1/sec2

Np0

pd0
S b2

2JzzU0
Cnp0

0.0046 1/sec

Nr0

pd0
S b2

2JzzU0
Cnr0

−0.1148 1/sec

Nβ̇0

pd0
S b2

2JzzU0
Cnβ̇0

0.0000 1/sec

Nδa0

pd0
S b

Jzz
Cnδa0

−0.3879 1/sec2

Nδr0

pd0
S b

Jzz
Cnδr0

−1.6847 1/sec2

NTβ0

pd0
S b

Jzz
CTnβ0

0.0000 1/sec2

Jxx 27915 slg-ft2

Jzz 47085 slg-ft2

Jxz 450 slg-ft2

Table 14.2: Lateral stability parameters. These data for a business jet with air speed U0 = 400 kt

are given in [10, p. 330].



428 CHAPTER 14

14.4 Transfer Functions for Lateral Motion

Assuming zero initial conditions, taking the Laplace transform of the linearized lateral equations

(14.3.4)–(14.3.6) and using sφ̂(s) = p̂(s) from (12.4.15) and sψ̂(s) = r̂(s) from (12.4.17) yields

sr̂(s) − Jxz

Jzz

s2φ̂(s) = Nr0
r̂(s) + (Nβ0

+ NTβ0
)δβ̂(s) + Np0

sφ̂(s) + Nβ̇0
sδβ̂(s) + Nδa0

δâ(s) + Nδr0
δr̂(s),

(14.4.1)

U0sδβ̂(s) = (Yr0
− U0)r̂(s) + Yβ0

δβ̂(s) + Yp0
sφ̂(s) + Yβ̇0

sδβ̂(s) + gφ̂(s) + Yδa0
δâ(s) + Yδr0

δr̂(s),

(14.4.2)

s2φ̂(s) − Jxz

Jxx

sr̂(s) = Lr0
r̂(s) + (Lβ0

+ LTβ0
)δβ̂(s) + Lp0

sφ̂(s) + Lβ̇0
sδβ̂(s) + Lδa0

δâ(s) + Lδr0
δr̂(s).

(14.4.3)

These equations can be written in matrix form as





s − Nr0
−Nβ̇0

s − (Nβ0
+ NTβ0

) −(
Jxz

Jzz
s2 + Np0

s)

U0 − Yr0
(U0 − Yβ̇0

)s − Yβ0
−(Yp0

s + g)

−(
Jxz

Jxx
s + Lr0

) −Lβ̇0
s − (Lβ0

+ LTβ0
) s2 − Lp0

s









r̂(s)

δβ̂(s)

φ̂(s)





=





Yδa0
Yδr0

Lδa0
Lδr0

Nδa0
Nδr0









δâ(s)

δr̂(s)



 .

(14.4.4)

Inverting the 3 × 3 matrix coefficient in (14.4.4) and considering aileron deflection yields

Gr/δa(s) =
r̂(s)

δâ(s)
=

Ar,δas3 + Br,δas2 +Cr,δas + Dr,δa

s4 + E′s3 + F′s2 +G′s + H′
, (14.4.5)

Gδβ/δa(s) =
δβ̂(s)

δâ(s)
=

Aβ,δas3 + Bβ,δas2 +Cβ,δas + Dβ,δa

s4 + E′s3 + F′s2 +G′s + H′
, (14.4.6)

Gp/δa(s) =
p̂(s)

δâ(s)
=

Bφ,δas3 +Cφ,δas2 + Dφ,δas

s4 + E′s3 + F′s2 +G′s + H′
, (14.4.7)

Gφ/δa(s) =
φ̂(s)

δâ(s)
=

Bφ,δas2 +Cφ,δas + Dφ,δa

s4 + E′s3 + F′s2 +G′s + H′
. (14.4.8)

Likewise, for rudder deflection, (14.4.4) yields

Gr/δr(s) =
r̂(s)

δr̂(s)
=

Ar,δr s3 + Br,δr s2 +Cr,δr s + Dr,δr

s4 + E′s3 + F′s2 +G′s + H′
, (14.4.9)

Gδβ/δr(s) =
δβ̂(s)

δr̂(s)
=

Aβ,δr s3 + Bβ,δr s2 +Cβ,δr s + Dβ,δr

s4 + E′s3 + F′s2 +G′s + H′
, (14.4.10)

Gp/δr(s) =
p̂(s)

δr̂(s)
=

Bφ,δr s3 +Cφ,δr s2 + Dφ,δr s

s4 + E′s3 + F′s2 +G′s + H′
, (14.4.11)

Gφ/δr(s) =
φ̂(s)

δr̂(s)
=

Bφ,δr s2 +Cφ,δr s + Dφ,δr

s4 + E′s3 + F′s2 +G′s + H′
. (14.4.12)

The coefficients of the transfer functions (14.4.5)–(14.4.12) are functions of the stability pa-

rameters. In particular, since the leading numerator coefficient is CB, it follows using the notation

(14.3.15), that

Ar,δa = γ11Nδa0
+ γ12Yδa0

+ γ13Lδa0
, Ar,δr = γ11Nδr0

+ γ12Yδr0
+ γ13Lδr0

(14.4.13)

Aβ,δa = γ22Yδa0
, Aβ,δr = γ22Yδr0

, (14.4.14)
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Bφ,δa = γ31Nδa0
+ γ32Yδa0

+ γ11Lδa0
, Bφ,δr = γ31Nδr0

+ γ32Yδr0
+ γ11Lδr0

. (14.4.15)

Note that the numerators in (14.4.8) and (14.4.12) are quadratic rather than cubic, which is due to

the fact that, for the output φ, CB = 0. For details, see Section 15.14.

Next, it follows from (12.4.17) that the yaw perturbation ψ satisfies

ψ̇ = r, (14.4.16)

and thus

ψ̂(s) =
1

s
r̂(s). (14.4.17)

For aileron deflection, it follows from (14.4.5) and (14.4.17) that

Gψ/δa(s) =
ψ̂(s)

δâ(s)
=

Ar,δas3 + Br,δas2 +Cr,δas + Dr,δa

s(s4 + E′s3 + F′s2 +G′s + H′)
. (14.4.18)

For an aileron impulse δa(t) = δaδ(t), it thus follows that the asymptotic yaw perturbation is

lim
t→∞

ψ(t) = lim
s→0

sψ̂(s) =
Dr,δa

H′
δa. (14.4.19)

Likewise, for rudder deflection, it follows from (14.4.9) and (14.4.17) that

Gψ/δr(s) =
ψ̂(s)

δr̂(s)
=

Ar,δr s3 + Br,δr s2 +Cr,δr s + Dr,δr

s(s4 + E′s3 + F′s2 +G′s + H′)
. (14.4.20)

For a rudder impulse δr(t) = δrδ(t), it thus follows that the asymptotic yaw perturbation is

lim
t→∞

ψ(t) = lim
s→0

sψ̂(s) =
Dr,δr

H′
δr. (14.4.21)

Next, it follows from (12.4.11) that the drift perturbation y satisfies

ẏ = U0δη = U0(ψ + δβ). (14.4.22)

and thus

ŷ(s) =
U0

s
δη̂(s) =

U0

s
[ψ̂(s) + δβ̂(s)]. (14.4.23)

Hence, for aileron deflection,

Gy/δa(s) =
U0

s

δ̂η(s)

δâ(s)
=

U0

s

(

ψ̂(s)

δâ(s)
+
δβ̂(s)

δâ(s)

)

=
U0

s
[Gψ/δa(s) +Gδβ/δa(s)]

=
U0

s

[

Ar,δas3 + Br,δas2 +Cr,δas + Dr,δa

s(s4 + E′s3 + F′s2 +G′s + H′)
+

Aβ,δas3 + Bβ,δas2 +Cβ,δas + Dβ,δa

s4 + E′s3 + F′s2 +G′s + H′

]

=
U0Aβ,δas4 + U0(Ar,δa + Bβ,δa)s3 + U0(Br,δa +Cβ,δa)s2 + U0(Cr,δa + Dβ,δa)s + U0Dr,δa

s2(s4 + E′s3 + F′s2 +G′s + H′)
.

(14.4.24)

For an aileron impulse δa(t) = δaδ(t), it thus follows that the asymptotic drift perturbation is

lim
t→∞

y(t) = lim
s→0

sŷ(s) = sign

(

U0Dr,δa

H′
δa

)

∞. (14.4.25)

An analogous result holds for a rudder impulse.
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The characteristic polynomial p(s) = s4 + E′s3 + F′s2 + G′s + H′ of A given by (14.3.14) can

be factored as

p(s) = (s2 + 2ζDrωn,Drs + ω
2
n,Dr)

(

s +
1

τr

) (

s +
1

τs

)

, (14.4.26)

where τr and τs are real numbers. The roots of p, which are the eigenvalues of A, depend on the flight

condition, the mass distribution, and the airplane geometry. The eigenvalues and corresponding

eigenvectors of A given by (14.3.14) define eigensolutions that represent flight modes. These flight

modes are the Dutch roll mode, spiral mode, and roll mode.

14.5 Combined Linearized Longitudinal and Lateral Equations of Motion

By combining the linearized longitudinal equations of motion (14.1.15) with the linearized lat-

eral equations of motion (14.3.17) as well as the linearized kinematic equations of motion (12.4.15)–

(12.4.17), we obtain the complete linearized longitudinal and lateral equations





u̇

δα̇

q̇

θ̇

ẋ

ḣ

δβ̇

ṗ

ṙ

φ̇

ψ̇

ẏ





=

Γ





Xu0
+ XTu0

Xα0
Xq0

−g 0 0 0 0 0 0 0 0

Zu0
+ ZTu0

Zα0
U0 + Zq0

0 0 0 0 0 0 0 0 0

Mu0
+ MTu0

Mα0
+ MTα0

Mq0
0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 −U0 0 U0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Yβ0
Yp0

Yr0
− U0 g 0 0

0 0 0 0 0 0 Lβ0
+ LTβ0

Lp0
Lr0

0 0 0

0 0 0 0 0 0 Nβ0
+ NTβ0

Np0
Nr0

0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 U0 0 0 0 U0 0









u

δα

q

θ

x

h

δβ

p

r

φ

ψ

y
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+ Γ





Xδe0
0 0

Zδe0
0 0

Mδe0
0 0

0 0 0

0 0 0

0 0 0

0 Yδa0
Yδr0

0 Lδa0
Lδr0

0 Nδa0
Nδr0

0 0 0

0 0 0

0 0 0









δe

δa

δr





,

(14.5.1)

where

Γ
△
=





I6 0 0

0 Γ 0

0 0 I2




, Γ

−1
=





I6 0 0

0 Γ−1 0

0 0 I2




, (14.5.2)

and Γ0 and its inverse are defined by (14.3.12).

14.6 Eigenflight

Eigenflight is the motion of an aircraft near steady flight as given by an eigensolution of the

linearized dynamics. Eigensolutions are also called modal solutions. For details see Section 15.3.

Consider the unforced linear time invariant system

ẋ(t) = Ax(t) (14.6.1)

with initial condition

x(0) = x0,

where x(t) ∈ Rn and A ∈ Rn×n. Let λ ∈ C and v ∈ Cn, and consider a solution to (14.6.1) of the form

x(t) = Re(eλtv), (14.6.2)

whose initial value is

x0 = Re v. (14.6.3)

Substituting (14.6.2) into (14.6.1) yields the eigenvalue-eigenvector equation

Av = λv. (14.6.4)

Note that λ may be complex, in which case the associated eigenvector v may also be complex.

Consequently, if λ ∈ C is an eigenvalue of A and v ∈ Cn is an associated eigenvector, then x(t)

given by (14.6.2) is a solution of (14.6.1) with the initial condition (14.6.3). The solution x(t) is an

eigensolution.
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If λ represents underdamped motion with damping ratio ζ and undamped natural frequency ωn,

then we can write

λ = −ζωn + ωn

√

1 − ζ2. (14.6.5)

In terms of the decay rate

σ
△
= −ζωn (14.6.6)

and the damped natural frequency

ωd = ωn

√

1 − ζ2, (14.6.7)

λ can be written as

λ = σ + ωd. (14.6.8)

Next, since v is complex, we can write

v = vR + vI, (14.6.9)

where vR and vI are real vectors. Then, substituting λ and v into (14.6.2) yields

x(t) = Re e(σ+ ωd)t(vR + vI)

= Re eσt[cos(ωdt) +  sin(ωdt)](vR + vI)

= eσt[vR cos(ωdt) − vI sin(ωdt)]. (14.6.10)

Alternatively, we can represent each component of v in polar form by writing

v =





r1e φ1

r2e φ2

r3e φ3

r4e φ4





. (14.6.11)

The component-wise magnitude and angle of v are given by

|v| =





r1

r2

r3

r4





, ∠v =





φ1

φ2

φ3

φ4





. (14.6.12)

Substituting v into (14.6.2) yields

x(t) = Re e(σ+ ωd)t





r1e φ1

r2e φ2

r3e φ3

r4e φ4





= eσt Re





r1e (ωdt+φ1)

r2e (ωdt+φ2)

r3e (ωdt+φ3)

r4e (ωdt+φ4)





= eσt





r1 cos (ωdt + φ1)

r2 cos (ωdt + φ2)

r3 cos (ωdt + φ3)

r4 cos (ωdt + φ4)





, (14.6.13)

where eσt is the decay envelope, and φi is the phase shift of the ith component. Note that

x(0) =





r1 cos φ1

r2 cos φ2

r3 cos φ3

r4 cos φ4





= Re v. (14.6.14)

Hence the ith component of the initial value x(0) is given by ri cos φi.
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14.7 Longitudinal Flight Modes

The roots of the longitudinal characteristic polynomial (14.2.18), which are typically under-

damped, give rise to the longitudinal flight modes. In particular, the complex root

λph = −ζphωn,ph + ωn,ph

√

1 − ζ2
ph

(14.7.1)

corresponds to the phugoid mode. Furthermore, the complex root

λsp = −ζspωn,sp + ωn,sp

√

1 − ζ2
sp (14.7.2)

corresponds to the short period mode. The natural frequency ωn,ph of λph is lower than the natural

frequency ωn,sp of λsp.

14.7.1 Phugoid Mode

The phugoid mode is associated with low damping, that is, ζph << 1, and a long period Tph =
2π
ωn,ph

of oscillation, typically 30 sec to 120 sec.

We now show, by means of a numerical example, that the phugoid mode is a roller-coaster-type

oscillation, which trades kinetic and potential energy. In particular, we show that the perturbation

states θ and u are oscillatory and δα ≈ 0, which implies that α is approximately constant.

Consider a 747-100 aircraft flying at 40,000 ft at Mach 0.8. The aircraft state is ẋ = Ax, where

x =





u

δα

q

θ





, A =





−2.02e(−2) 7.88 −6.5e(−1) −3.22e(+1)

−2.54e(−4) −1.02 9.05e(−1) 0

7.95e(−11) −2.5 −1.39 0

0 0 1 0





, (14.7.3)

where the units of x are given by

[x] =





m/s

rad

rad/s

rad





. (14.7.4)

Computing the eigenvalues of A we find

λph = −0.0087 ± 0.074 rad/sec

for the phugoid mode and
λsp = −1.206 ± 1.49 rad/sec

for the short period mode, which are represented in Figure 14.7.1. Therefore, ωd,ph = 0.074 rad/sec,

ωn,ph = 0.0745 rad/sec, ζph = 0.117, ωd,sp = 1.49 rad/sec, ωn,sp = 1.92 rad/sec, and ζsp = 0.628.

These results are summarized in Table 14.3

By normalizing the range velocity component to 1, the phugoid eigenvector is given by

vph =





1 m/sec

−9.6e(−5) − 5.0e(−7) rad

1.74e(−4) − 8.4e(−6) rad/sec

−3.8e(−4) − 2.3e(−3) rad





. (14.7.5)
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0.5 1−0.5−1

0.5

1

−0.5

−1

phugoid

short

period

Figure 14.7.1: Phugoid and short period eigenvalues.

Mode ωn ζ ζωn ωd T = 2π
ωn

T1/2 =
ln 2
ζωn

phugoid 0.0745 rad/sec 0.117 .0087 0.074 84.34 sec 79.5 sec

short period 1.92 rad/sec 0.628 1.21 1.49 3.27 sec 0.57 sec

Table 14.3: Longitudinal mode characteristics.
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The component-wise magnitude of vph is

|vph| =





1 m/sec

9.6e(−5) rad

1.74e(−4) rad/sec

2.33e(−3) rad





(14.7.6)

with phase

∠vph =





0◦

−179.7◦

−2.83◦

−99.48◦





=





0 rad

−3.137 rad

−0.0484 rad

−1.736 rad





. (14.7.7)

Using (14.6.13) the eigensolution for the state x(t) defined by (14.7.3) is written as

x(t) = eσpht Re e ωd,pht





r1e φ1

r2e φ2

r3e φ3

r4e φ4





= eσpht





r1 cos(ωd,pht + φ1)

r2 cos(ωd,pht + φ2)

r3 cos(ωd,pht + φ3)

r4 cos(ωd,pht + φ4)





. (14.7.8)

It thus follows from (14.7.6) and (14.7.7) that

u(t) = e−0.0087t cos(ωd,pht) m/sec, (14.7.9)

δα(t) = 9.6e(−5)e−0.0087t cos(ωdph
t − 3.136) rad, (14.7.10)

q(t) = 1.74e(−4)e−0.0087t cos(ωd,pht − 0.0484) rad/sec, (14.7.11)

θ(t) = 2.33e(−3)e−0.0087t cos(ωd,pht − 1.736) rad. (14.7.12)

Note that (14.7.10) shows that δα is small compared to θ. Consequently, θ ≈ δγ.

To approximate the phugoid mode, we use the fact, based on the numerical results above, that

δα ≈ 0. Therefore, ignoring δα, it follows from the first two equations in (14.2.4) that
[

s −
(

Xu0
+ XTu0

)

−Xq0
s + g

−(Zu0
+ ZTu0

) −(U0 + Zq0
)s

] [

û(s)

θ̂(s)

]

=

[

Xδe0

Zδe0

]

δê(s). (14.7.13)

The characteristic polynomial is thus given by

p(s) = s2 −
(

Xu0
+ XTu0

−
(Zu0
+ ZTu0

)Xq0

U0 + Zq0

)

s −
(Zu0
+ ZTu0

)g

U0 + Zq0

. (14.7.14)

Assuming that Xq0
= 0, Zq0

= 0, and ZTu0
= 0, p(s) becomes

p(s) = s2 −
(

Xu0
+ XTu0

)

s −
Zu0

g

U0

. (14.7.15)

Using the expression for Zu0
given in Table 14.1, it follows that

ωn,ph ≈

√

−Zu0
g

U0

=

√

gpd0
S (2CL0

+CLu0
)

mU2
0

. (14.7.16)

Since CLu0
<< CL0

and CL0
=

mg

pd0
S

, we obtain

ωn,ph ≈

√

gpd0
S

mU2
0

(

2mg

pd0
S

)

=

√

2g2

U2
0

=
√

2
g

U0

. (14.7.17)
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For the phugoid damping it follows from (14.7.15) that

ζph ≈
−(Xu0

+ XTu0
)

2ωn,ph

. (14.7.18)

Table 14.1 implies

Xu0
=
−pd0

S (2CD0
+CDu0

)

mU0

, (14.7.19)

XTu0
=

pd0
S (2CTx0

+CTxu0
)

mU0

. (14.7.20)

Letting CTxu0
= 0 and CTx0

= 0, it follows from (14.7.18)–(14.7.20) that

ζph =
pd0

S (2CD0
+CDu0

)

2mU0ωn,ph

=
pd0

S (2CD0
+CDu0

)

2
√

2mg
=

(2CD0
+CDu0

)

2
√

2

1

CL0

. (14.7.21)

At low speed, CDu0
≈ 0, and thus (14.7.21) becomes

ζph =
CD0√
2CL0

, (14.7.22)

which is proportional to 1
L/D

. Therefore, for high L/D, ζph is low.

14.7.2 Short Period Mode

The short period mode is associated with the higher frequency eigenvalue λsp in (14.2.18). The

short period mode is underdamped with high ζsp compared to ζph, high frequency ωn,sp, and period

Tsp =
2π
ωn,sp

, Typically, Tsp is approximately 2 sec. Computational results show that the eigensolution

characteristics are that u is constant while θ and δα oscillate.

To approximate the short period mode, set u = 0 in (14.2.4), which yields




(

U0 − Zα̇0

)

s − Zα0
−

(

U0 + Zq0

)

s

−Mα̇0
s − (Mα0

+ MTα0
) s2 − Mq0

s





[

δα̂(s)

θ̂(s)

]

=

[

Zδe0

Mδe0

]

δê(s). (14.7.23)

For convenience, we now assume that Zα̇0
= 0, Zq0

= 0, Mα̇0
= 0, and MTα0

= 0. Then, (14.7.23)

becomes
[

U0s − Zα0
−U0s

−Mα0
s2 − Mq0

s

] [

δα̂(s)

θ̂(s)

]

=

[

Zδe0

Mδe0

]

δê(s). (14.7.24)

Then, the characteristic equation obtained from (14.7.24) is given by

(s2 − Mq0
s)

(

U0s − Zα0

)

− U0Mα0
s = 0, (14.7.25)

which can be written as

U0s3 − (Mq0
U0 + Zα0

)s2 +
(

Mq0
Zα0
− Mα0

U0

)

s = 0. (14.7.26)

Dividing (14.7.26) by s and U0 yields the quadratic equation

p(s) = s2 −
(

Mq0
+

Zα0

U0

)

s +

(
Mq0

Zα0

U0

− Mα0

)

= 0. (14.7.27)
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Hence, the transfer functions (14.2.6) and (14.2.8) can be written as

Gδα(s)/δe(s) =
Zδe0

s + Mδe0
U0 − Mq0

Zδe0

U0 p(s)
, (14.7.28)

Gθ(s)/δe(s) =
U0Mδe0

s + Mα0
Zδe0
− Zα0

Mδe0

U0sp(s)
. (14.7.29)

It follows from (14.7.27) that the short period undamped natural frequency and damping ratio are

given by

ωn,sp =

√

Mq0
Zα0

U0

− Mα0
, (14.7.30)

ζsp = −
Mq0
+

Zα0

U0

2ωn,sp

. (14.7.31)

Note that Mα0
< 0 is required for static stability. For dynamic stability, the roots of the quadratic

polynomial (14.7.27) must have negative real parts. This condition is satisfied if and only if the

argument of the square root in (14.7.30) is positive, that is,

Mα0
<

Mq0
Zα0

U0

, (14.7.32)

Mq0
+

Zα0

U0

< 0. (14.7.33)

Now, if the center of mass c of the aircraft is sufficiently forward of the center of pressure, then

using the expression for Mα0
given by Table 14.1 ωn,sp becomes

ωn,sp ≈
√

−Mα0
=

√

−Cmα0
pd0

S c

Jyy

. (14.7.34)

Note that ωn,sp increases with −Cmα0
and pd0

, and decreases with Jyy. We also note that the main

component of ζsp is Mq0
, which is the pitch-damping derivative.

14.8 Lateral Flight Modes

Equation (14.4.26) yields the eigenvalues for the Dutch roll mode, which involves sideslip, roll,

yaw oscillations, the roll mode, and the spiral mode. The spiral mode, which involves slow roll

and a slow yaw, is stable for Clβ0
<< 0. The roll mode is unstable for large α and τr and is largely

unaffected by δa.

14.8.1 Dutch Roll Mode

To be written.

14.8.2 Roll Mode

To be written.
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14.8.3 Spiral Mode

To be written.

14.9 Problems

Problem 14.9.1. Show that the numerator of the transfer function in (14.2.8) from δe to θ is

second order. Hint: Show CB = 0 and see Section 15.14.

Problem 14.9.2. Determine Au, Aα, and Bθ in terms of the stability parameters. Hint: See

Section 15.14.

Problem 14.9.3. Consider the transfer function (14.4.20) from rudder δr to yaw-angle per-

turbation ψ. Show that this transfer function is not asymptotically stable, and use Routh to derive

conditions that guarantee that it is semistable (see Chapter 15). For an impulse rudder deflection,

use (14.4.20) to determine the asymptotic yaw-angle perturbation, and use (14.4.10) to determine

the asymptotic sideslip perturbation. Explain physically why a rudder impulse produces new steady

yaw and heading angles, and contrast this behavior with pitch motion, where the pitch angle returns

to its original value after an elevator impulse.

This type of stability is consistent with the fact that, unlike pitch motion, which is affected by the

direction of gravity, the to return its heading to the original value after a sideslip or roll perturbation,

thus leading to a new steady-state heading angle.

Problem 14.9.4. The linearized longitudinal dynamics of a business jet in straight, horizontal,

wings-level flight have the characteristic polynomial

p(s) = s4 + 2.01s3 + 8.05s2 + 0.085s + 0.068.

Check stability using the Routh criterion (see Chapter 15), compute the roots of p using Matlab,

identify the short period and phugoid roots, determine the damping ratio and natural frequencies of

the roots, and compute the time for each eigensolution to decay by 50%.

Problem 14.9.5. The linearized longitudinal dynamics of an F-104 fighter flying in straight,

horizontal, wings-level flight are modeled by the 4th-order system ẋ = Ax, where x = [u δα θ θ̇]T

and the dynamics matrix is given by

A =





−2.02e(−2) 7.88 −3.22e(+1) −6.5e(−1)

−2.54e(−4) −1.02 0 9.05e(−1)

0 0 0 1

7.95e(−11) −2.5 0 −1.39





.

Note the order of the states, which is slightly different from (14.7.3). The units of u are m/sec, the

units of δα and θ are rad, and the units of θ̇ are rad/sec. Then, do the following:

i) Compute the phugoid and short period eigenvalues. Plot these poles as four ×’s in the

complex plane.

ii) Compute the damping ratio, undamped natural frequency, damped natural frequency, un-

damped period, and time to 50% decay for each mode.

Problem 14.9.6. For the F-104 in Problem 14.9.5:
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i) Compute the eigenvector vph for the phugoid mode, and normalize the u component to 1.

ii) Convert the phugoid eigenvector into its magnitude and angle components.

Problem 14.9.7. Simulate the phugoid eigenflight mode of the F-104 in Problem 14.9.5 using

the eigensolution x(t) = Re eλphtvph, where vph is the phugoid eigenvector. Assume that the initial

condition for θ is given by θ(0) = 0.5 deg and assume that the steady speed is U0 = 500 miles per

hour. Then, use Matlab to plot all four states for three full oscillations of the damped motion as

functions of time. Furthermore, compute the altitude perturbation and plot three full oscillations of

the altitude as a function of range.

Problem 14.9.8. Let q(t) and θ(t) be given by the eigensolution expressions (14.7.11) and

(14.7.12), respectively. Show that θ̇(t) = q(t).





Chapter Fifteen

Linear Dynamical Systems

15.1 Vectors and Matrices

A mathematical vector is a column of scalars

x =





x1

x2

...

xn





∈ Rn.

The transpose of x is the row vector

xT =
[

x1 x2 · · · xn

]

∈ R1×n.

The dot product of the vectors x, y ∈ Rn is given by

xTy = x1y1 + x2y2 + · · · + xnyn ∈ R,

where

y =





y1

y2

...

yn





∈ Rn.

A matrix has the form

A =





a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

...
. . .

...

an,1 an,2 · · · an,m





∈ Rn×m.

Letting

y =





y1

...

yn





= Ax,

it follows that, for i = 1, ..., n,

yi = rowi(A)x =
[

ai,1 ai,2 · · · ai,m

]

x,
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where rowi(A) is the ith row of A. Letting

B =





b1,1 b1,2 · · · b1,l

b21 b2,2 · · · b2,l

...
. . .

...

bm,1 bm,2 · · · bm,l





∈ Rm×l,

the product of A and B is given by

AB = A
[

col1(B) · · · coll(B)
]

=
[

Acol1(B) · · · Acoll(B)
]

∈ Rn×l,

where coli(B) is the ith column of B. The matrix A ∈ Rn×n is square. The n × n identity matrix is

given by

I =





1 0 · · · 0

0 1 · · · 0
...

. . .
...

0 0 · · · 1





∈ Rn×n.

Suppose A, B ∈ Rn×n and AB = I. Then B = A−1, that is, B is the inverse of A. A has an inverse

if and only if det A , 0, that is, the determinant of A is nonzero. For n = 2 the determinant is given

by

det

[

a b

c d

]

= ad − bc,

while, for n = 3, we have

det





a b c

d e f

g h i




= a det

[

e f

h i

]

− b det

[

d f

g i

]

+ c det

[

d e

g h

]

.

The inverses of these matrices are given by

[

a b

c d

]−1

=
1

det

[

a b

c d

]

[

d −b

−c a

]

and





a b c

d e f

g h i





−1

=
1

det





a b c

d e f

g h i









det

[

e f

h i

]

− det

[

d f

g i

]

det

[

d e

g h

]

− det

[

b c

h i

]

det

[

a c

g i

]

− det

[

a b

g h

]

det

[

b c

e f

]

− det

[

a c

d f

]

det

[

a b

d e

]





T

.

For A ∈ Rn×n, Table 15.1 presents several types of special matrices.
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Name Property Example

Symmetric AT = A





a b

b c





Skew Symmetric AT = −A





0 b

−b 0





Orthogonal A−1 = AT





1 0

0 1





Nilpotent A2 = 0





1 1

−1 −1





Idempotent A2 = A 1
2





1 1

1 1





Nonsingular det A , 0





1 2

3 4





Table 15.1: Special matrices.

15.1.1 Existence and Uniqueness of Solutions to Linear Equations

Let A ∈ Rn×n, x ∈ Rn, and b ∈ Rn, and consider

Ax = b. (15.1.1)

We wish to determine whether x ∈ Rn satisfying (15.1.1) exists, and, if so, whether the solution x is

unique. It is helpful to consider the special case

Ax = 0. (15.1.2)

Fact 15.1.1. x = 0 is a solution of (15.1.2).

Note that A(αx) = 0 for all α ∈ R. Hence, (15.1.2) has either one solution or an infinite number

of solutions.

Fact 15.1.2. x = 0 is the unique solution of (15.1.2) if and only if det A , 0.

Fact 15.1.3. (15.1.1) has a unique solution if and only if det A , 0. In this case, the unique

solution is x = A−1b.
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15.2 Complex Numbers, Vectors and Matrices

A complex number z ∈ C is written as

z = x + y,

where  =
√
−1 and x and y are real numbers.

Let z1 = x1 + y1  ∈ C and z2 = x2 + y2  ∈ C, where x1, x2, y1, y2 ∈ R.

Definition 15.2.1. Complex addition is defined by

z1 + z2 = x1 + x2 + (y1 + y2) .

Definition 15.2.2. Complex multiplication is defined by

z1z2 = (x1 + y1)(x2 + y2 )

= x1x2 − y1y2 + (x1y2 + x2y1) .

Definition 15.2.3. Complex conjugation is defined by

z̄1 = x1 − y1 .

Definition 15.2.4. Complex division is defined by

z1

z2

=
z1z̄2

z2z̄2

=
x1x2 + y1y2 + (x2y1 − x1y2) 

x2
2 + y2

2
.

Definition 15.2.5. The magnitude |z| of the complex number z is defined as

|z1| =
√

z1z̄1 =

√

x1
2 + y1

2.

The complex number z = x + y  is written in polar form as

z = |z|e θ = |z|(cos θ + (sin θ) ),

where θ = atan2(y, x). Therefore, for all z , 0 and all α ∈ R,

zα = |z|α
[

(cosαθ) + (sinαθ) 
]

.

Let x1, . . . , xn, y1, . . . , yn be real numbers. Then a complex vector is a vector of complex num-

bers. We write

z =





x1 + y1 

x2 + y2 
...

xn + yn 





∈ Cn.

Furthermore, let x1,1, . . . , xn,m, y1,1, . . . , yn,m be real numbers. Then a complex matrix is a matrix of

complex numbers. We write

A =





x1,1 + y1,1  · · · x1,m + y1,m 
...

...

xn,1 + yn,1  · · · xn,m + yn,m 





∈ Cn×m.
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Define

z̄
△
=





x1 − y1 

x2 − y2 
...

xn − yn 





∈ Cn

and

Ā
△
=





x1,1 − y1,1  · · · x1,m − y1,m 
...

...

xn,1 − yn,1  · · · xn,m − yn,m 





∈ Cn×m.

Vector and matrix addition are given by entry-wise addition.

Define the conjugate transpose of the complex vector z ∈ Cn by

z∗
△
= z̄T,

as well as its magnitude by

|z| △=
√

z̄Tz =
√

z∗z.

The dot product of the complex vectors z1, z2 ∈ Cn is given by

z1
∗z2 = z̄1

Tz2 ∈ C.

The conjugate transpose of the matrix A ∈ Cn×m is defined by

A∗
△
= ĀT = ĀT.

15.3 Eigenvalues and Eigenvectors

Let A ∈ Rn×n, x ∈ Cn, and λ ∈ C, assume that x is nonzero, and assume that

Ax = λx. (15.3.1)

Then λ is an eigenvalue of A, and x is an associated eigenvector. Note that an eigenvector must be

nonzero by definition. Eigenvalues are related to modal frequencies, while eigenvectors are related

to mode shapes.

Fact 15.3.1. (15.3.1) holds if and only if (λI − A)x = 0.

Fact 15.3.2. (15.3.1) has a nonzero solution x if and only if det(λI − A) = 0.

Example 15.3.3. Let

A =

[

1 0

0 2

]

Then

(λI − A)x = 0
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implies that
[

λ − 1 0

0 λ − 2

] [

x1

x2

]

=

[

0

0

]

.

Therefore,

(λ − 1)x1 = 0 and (λ − 2)x2 = 0. (15.3.2)

Since x , 0, we must have either x1 , 0 or x2 , 0, and, correspondingly, either λ = 1 or λ = 2. If

λ1 = 1, then

x =

[

x1

0

]

, where x1 , 0, (15.3.3)

while, if λ2 = 2, then

x =

[

0

x2

]

, where x2 , 0. (15.3.4)

Example 15.3.4. Let

A =

[

0 −1

1 0

]

.

Then

(λI − A)x = 0

implies that
[

λ 1

−1 λ

] [

x1

x2

]

=

[

0

0

]

.

Therefore,

λx1 + x2 = 0,

−x1 + λx2 = 0,

which implies that λ =  or λ = − . If λ = , then

x =

[

1

− 

]

,

while, if λ = − , then

x =

[

1



]

.

Definition 15.3.5. The characteristic polynomial of A is

p(s)
△
= det(sI − A). (15.3.5)

Definition 15.3.6. The characteristic equation of A is

p(λ) = 0. (15.3.6)

Note that s represents an arbitrary complex number in (15.3.5), whereas s = λ in (15.3.6)

denotes a root of p.
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Fact 15.3.7. Let A ∈ Rn×n. Then the characteristic polynomial of A is an nth-order polynomial

with real coefficients.

Fact 15.3.8. Let A ∈ Rn×n, and let λ ∈ C. Then λ is an eigenvalue of A if and only if λ is a root

of the characteristic polynomial of A, that is, λ satisfies the characteristic equation of A.

It follows from Fact 15.3.7 and Fact 15.3.8 that a real n × n matrix has n eigenvalues, which are

not necessarily distinct.

Fact 15.3.9. If A is diagonal, then the diagonal entries of A are the eigenvalues of A.

Fact 15.3.10. Let A ∈ Rn×n, and let λ1, . . . , λn be the eigenvalues of A. Then

det A =

n∏

i=1

λi (15.3.7)

and

tr A =

n∑

i=1

Aii =

n∑

i=1

λi. (15.3.8)

Fact 15.3.11. Let A ∈ Rn×n, and let λ be an eigenvalue of A. Then λ2 is an eigenvalue of A2.

Proof. Note that

Av = λv.

Therefore,

A2v = λAv = λ2v. �

Fact 15.3.12. Let A ∈ Rn×n, assume that A is nonsingular, and let λ be an eigenvalue of A. Then

1/λ is an eigenvalue of A−1.

Proof. Note that

λv = Av.

Therefore,

λA−1v = A−1Av,

and thus

A−1v =
1

λ
v. �

Fact 15.3.13. Let A ∈ Rn×n, and assume that A is symmetric. Then every eigenvalue of A is

real.

Fact 15.3.14. Let A ∈ Rn×n, and assume that A is skew symmetric. Then every eigenvalue of A

is imaginary.
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Definition 15.3.15. Let A ∈ Rn×n, assume that A is symmetric, and let x ∈ Rn. Then xTAx is a

quadratic form.

Definition 15.3.16. Let A ∈ Rn×n, and assume that A is symmetric. Then, A is positive semidef-

inite (PSD) if xTAx ≥ 0 for all x ∈ Rn. Furthermore, A is positive definite (PD) if xTAx > 0 for all

nonzero x ∈ Rn.

Fact 15.3.17. Let A ∈ Rn×n and assume that A is symmetric. Then, A is PSD if and only if

every eigenvalue of A is nonnegative.

Fact 15.3.18. Let A ∈ Rn×n and assume that A is symmetric. Then, A is PD if and only if every

eigenvalue of A is positive.

15.4 Single-Degree-of-Freedom Systems

m

✲
q

✲f

c

k

Figure 15.4.1: The damped oscillator

We study the dynamics of the spring-mass-damper system shown in Figure 15.4.1, where q(t)

is the position of the mass m. Note that q(t) > 0 if and only if the spring extends to the right from

its relaxed configuration, whereas q(t) < 0 if and only if the spring compresses to the left from

its relaxed configuration. Likewise, q̇(t) > 0 if and only if the dashpot pulls to the left with force

−cq̇(t), whereas q̇(t) < 0 if and only if the dashpot pushes to the right with force −cq̇(t).

Applying Newton’s second law (see Chapter 3) to the mass yields

mq̈(t) = ftotal(t) = f (t) − kq(t) − cq̇(t).

Dividing through by m yields

q̈(t) +
c

m
q̇(t) +

k

m
q(t) =

1

m
f (t).

Next define the natural frequency

ωn
△
=

√

k

m

and the damping ratio

ζ
△
=

c

2
√

mk
.
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Then

q̈(t) + 2ζωnq̇(t) + ω2
nq(t) =

1

m
f (t).

The following special cases are of interest.

Undamped Rigid Body (URB) (k = 0, c = 0)

m

✲
q

✲f

Figure 15.4.2: Undamped rigid body

q̈(t) =
1

m
f (t) (15.4.1)

Damped Rigid Body (DRB) (k = 0)

m

✲
q

✲f

c

Figure 15.4.3: Damped rigid body

q̈(t) +
c

m
q̇(t) =

1

m
f (t) (15.4.2)

Undamped Oscillator (UO) (c = 0)

q̈(t) +
k

m
q(t) =

1

m
f (t). (15.4.3)
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m

✲
q

✲f

k

Figure 15.4.4: Undamped oscillator

m

✲
q

✲f

c

k

Figure 15.4.5: Damped oscillator

Damped Oscillator (DO)

q̈(t) +
c

m
q̇(t) +

k

m
q(t) =

f (t)

m
. (15.4.4)

15.5 Matrix Differential Equations

For t ≥ 0 consider the scalar differential equation

ẋ(t) = ax(t), x(0) = x0, (15.5.1)

where a is a real number. Then

x(t) = eat x0

is a solution of (15.5.1), as can be verified by substitution. Since (15.5.1) is a linear differential

equation, it has a unique solution.

Now consider the matrix differential equation

ẋ(t) = Ax(t), x(0) = x0, (15.5.2)

where x ∈ Rn and A ∈ Rn×n. Then

x(t) = eAt x0 (15.5.3)

is the unique solution, where eAt is the matrix exponential defined by the Taylor expansion

eAt = I + tA +
1

2
t2A2 +

1

3!
t3A3 + · · · .
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To verify that (15.5.3) is a solution of (15.5.2) note that

d(eAt)

dt
= 0 + A + tA2 +

1

2
t2A3 + · · · = A

(

I + tA +
1

2
t2A2 + · · ·

)

= AeAt.

Example 15.5.1. Let

A =

[

1 0

0 2

]

.

From Example 15.3.3 we know that the eigenvalues are λ1 = 1 and λ2 = 2. The matrix exponential

is given by

eAt = I + t

[

1 0

0 2

]

+
1

2
t2

[

1 0

0 4

]

+ · · ·

=





1 + t + 1
2
t2 + · · · 0

0 1 + 2t + 1
2
t2(4) + · · ·





=





et 0

0 e2t



 .

Note that eAt involves eλ1t and eλ2t.

Example 15.5.2. Let

A =

[

0 ω

−ω 0

]

.

From Example 15.3.3 we know that λ1 = ω and λ2 = − ω. The matrix exponential is given by

eAt = I + ωt

[

0 1

−1 0

]

+
1

2
ω2t2

[

−1 0

0 −1

]

+
1

3!
ω3t3

[

0 −1

1 0

]

+ · · ·

=





1 − 1
2
ω2t2 + · · · ωt − 1

6
ω3t3 + · · ·

−ωt + 1
6
ω3t3 − · · · 1 − 1

2
ω2t2 + · · ·





=

[

cosωt sinωt

− sinωt cosωt

]

.

15.6 Eigensolutions

Fact 15.6.1. Let A ∈ Rn×n, let λ ∈ C be an eigenvalue of A, and let v ∈ Cn be an eigenvector

associated with λ. Furthermore, let

ẋ(t) = Ax(t), x(0) = Re v. (15.6.1)

Then

x(t) = Re(eλtv) (15.6.2)

is a solution of (15.6.1).
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Proof. Let v = y + z, where y, z ∈ Rn. Then,

x(t) = Re(eλtv)

= Re[e(σ+ ω)t(y + z)]

= Re[eσt(cosωt +  sinωt)(y + z)]

= eσt(y cosωt − z sinωt).

Hence,

ẋ(t) = eσt[(σ cosωt − ω sinωt)y − (σ sinωt + ω cosωt)z].

Furthermore,

Ax(t) = A Re(eλtv)

= Re(eλtAv)

= Re(eλtλv)

= Re(eσt(cosωt +  sinωt)(σ + ω)(y + z))

= eσt[(σ cosωt − ω sinωt)y − (σ sinωt + ω cosωt)z].

Therefore,

ẋ(t) = Ax(t), x(0) = Re v,

which shows that x(t) = Re[eλtv] is a solution of ẋ(t) = Ax(t).

As an alternative proof, we do not decompose the complex variables λ and v into their real and

complex parts. Then,

ẋ(t) =
d

dt
Re(eλtv) = Re

[

d

dt
(eλtv)

]

= Re(eλtλv) = Re(eλtAv) = A Re(eλtv) = Ax(t),

which, together with x(0) = Re(eλ0v) = Re v, shows that x(t) satisfies (15.6.1). �

Definition 15.6.2. The solution (15.6.2) of (15.6.1) is an eigensolution.

15.7 State Space Form

Consider the nth-order differential equation

dnq(t)

dtn
+ an−1

dn−1q(t)

dtn−1
+ · · · + a1

dq(t)

dt
+ a0q(t) = b0u(t) (15.7.1)

and define the state vector

x
△
=





x1

x2

...

xn−1

xn





△
=





q

dq

dt

...

dn−2q

dtn−2

dn−1q

dtn−1





. (15.7.2)
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In state space form the differential equation (15.7.1) can be written as





ẋ1

ẋ2

.

.

.

ẋn−1

ẋn





=





0 1 0 · · · 0

0 0 1 · · · 0
...

. . .

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1









x1

x2

...

xn−1

xn





+





0

0
...

0

b0





u(t). (15.7.3)

Equation (15.7.3) is the state equation

ẋ(t) = Ax(t) + Bu(t), (15.7.4)

while the output equation has the form

y(t) = Cx(t) + Du(t). (15.7.5)

Example 15.7.1. Consider the differential equation for the damped oscillator

q̈(t) = − c

m
q̇(t) − k

m
q(t) +

f (t)

m
.

Define the state variables x1(t)
△
= q(t) and x2(t)

△
= q̇(t) and assume that the output y(t) is given by the

position q(t). Then
[

ẋ1(t)

ẋ2(t)

]

=

[

0 1

− k
m
− c

m

] [

x1(t)

x2(t)

]

+

[

0
1
m

]

f (t),

y(t) =
[

1 0
]
[

x1(t)

x2(t)

]

. (15.7.6)

15.8 Linear Systems with Forcing

Consider the state space system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (15.8.1)

y(t) = Cx(t) + Du(t). (15.8.2)

Then, the solution x(t) of (15.8.1) is given by

x(t) = eAt x0 +

∫ t

0

eA(t−τ)Bu(τ) dτ, (15.8.3)

and thus

y(t) = CeAt x0
︸ ︷︷ ︸

free response

+

∫ t

0

CeA(t−τ)Bu(τ) dτ + Du(t)

︸                               ︷︷                               ︸

forced response

. (15.8.4)

Define the impulse response function

H(t)
△
= CeAtB + δ(t)D, (15.8.5)
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where δ(t) is the unit impulse function at t = 0 defined in the next section. Then it follows from the

sifting property (15.9.2) that

y(t) = CeAt x0 +

∫ t

0

H(t − τ)u(τ) dτ

︸                  ︷︷                  ︸

convolution

. (15.8.6)

15.9 Standard Input Signals

Definition 15.9.1. The unit impulse function δ(t) at t = 0 has the property

δ(t)
△
=

{

0, t , 0,

∞, t = 0,

and
∫ b

a

δ(t) dt = 1, a ≤ 0 < b. (15.9.1)

Note that δ(t) is a right-sided impulse function (see Figure 15.9.7). It follows from (15.9.1) that the

units of the unit impulse function are given by [δ(t)] = 1/sec. The unit impulse function has the

sifting property
∫ b

a

g(t)δ(t − t0) dt = g(t0), a ≤ t0 < b, (15.9.2)

where δ(t − t0) is the delayed unit impulse function at t = t0.

✻

0 t

Figure 15.9.6: The unit impulse function δ(t)

A force impulse at time t0 has the form

f (t) = f0δ(t − t0), (15.9.3)

where the dimensions [ f0] of f0 are momentum.

An impulse at t = 0 imparts a nonzero initial velocity but zero change in position. The forced

response with an impulse is thus equivalent to a particular free response.
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0 ε

1/ε

t

Figure 15.9.7: Approximate right-sided unit impulse function

✻

0 t0 t

Figure 15.9.8: The delayed unit impulse function δ(t − t0)

Definition 15.9.2. The function 1(t) is a unit step function, where

1(t)
△
=

{

0, t < 0,

1, t ≥ 0.

The function 1(t − t0) is a delayed unit step function.

The unit step function is dimensionless. A force impulse at time t0 has the form

f (t) = f01(t − t0), (15.9.4)

where the dimensions [ f0] of f0 are force.

Definition 15.9.3. The function t1(t) is the unit ramp. The function (t− t0)1(t− t0) is a delayed

unit ramp.

Definition 15.9.4. The function

f (t) = f0 sin (ωt + φ) (15.9.5)

is a sinusoid.
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0

1

t

Figure 15.9.9: The unit step function 1(t)

0 t0 t

Figure 15.9.10: The delayed unit step function 1(t − t0)

15.10 Laplace Transform

Definition 15.10.1. Given the function q(t), the Laplace transform of q(t) is defined by

q̂(s)
△
= L{q(t)} △=

∫ ∞

0

e−stq(t) dt. (15.10.1)

Note that [q̂(s)] = sec × [q(t)] and [s] = 1/sec. From (15.10.1) it follows that

L{q̇(t)} =
∫ ∞

0

e−stq̇(t) dt = e−stq(t)

∣
∣
∣
∣
∣

∞

t=0

+ s

∫ ∞

0

e−stq(t) dt = sq̂(s) − q(0).

Similarly,

L{q̈(t)} = s2q̂(s) − sq(0) − q̇(0).

Note the formulas

L{δ(t)} =
∫ ∞

0

e−stδ(t) dt = e0 = 1,

L{1(t)} =
∫ ∞

0

e−st1(t) dt =

∫ ∞

0

e−st dt = −1

s
e−st

∣
∣
∣
∣
∣

∞

0

=
1

s
,
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0 t

Figure 15.9.11: The unit ramp function

L{t1(t)} = 1

s2
, L{t21(t)} = 2

s3
,

L
{

eat
}

=
1

s − a
, L

{

e−at
}

=
1

s + a
,

L

{∫ t

0

q(τ) dτ

}

=
1

s
L{q(t)},

L {sin(ωt)} = L

{

1

2 

(

e ωt − e− ωt
)
}

=
1

2 

(

1

s − ω
− 1

s + ω

)

=
1

2 

2 ω

s2 + ω2
=

ω

s2 + ω2
,

L {cos(ωt)} = L

{

1

ω

d

dt
sin(ωt)

}

=
1

ω
s

ω

s2 + ω2
=

s

s2 + ω2
.

Note that

L {cos(0t)} = s

s2 + 02
=

1

s
= L {1(t)} .

15.10.1 Time Delay

The Laplace transform of a time delay is given by

L{y(t − τ)} = e−τsŷ(s). (15.10.2)

15.10.2 s-shift

An s-shift in the Laplace transform is represented in the time domain as

L{e−aty(t)} = ŷ(s + a). (15.10.3)

Hence

L−1{ŷ(s + a)} = e−aty(t) (15.10.4)
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and

L−1{ŷ(s − a)} = eaty(t). (15.10.5)

Example 15.10.2.

L{e−at sin(ωt)} = ω

(s + a)2 + ω2
.

15.10.3 Time Multiplication

Time multiplication corresponds to s-differentiation. In particular,

L{ty(t)} = −ŷ′(s), (15.10.6)

where ŷ′(s) is the derivative of ŷ(s) with respect to s. Hence,

L−1{ŷ′(s)} = −ty(t).

Note the dual formula

L{ẏ(t)} = sŷ(s) − y(0). (15.10.7)

15.11 Solving Differential Equations

Taking the Laplace transform of

q̈(t) + q(t) = 0

yields

L{q̈(t)} + L{q(t)} = 0.

Therefore,

s2q̂(s) − sq(0) − q̇(0) + q̂(s) = 0

and

q̂(s) =
sq(0)

s2 + 1
+

q̇(0)

s2 + 1
.

Hence,

q(t) = q(0) cos(t) + q̇(0) sin(t).

Example 15.11.1. Consider the differential equation

q̈(t) = − c

m
q̇(t) − k

m
q(t) +

f (t)

m
.

Taking the Laplace transform yields

q̂(s) =
mq(0)s + cq(0) + mq̇(0)

ms2 + cs + k
︸                         ︷︷                         ︸

free response

+
1

ms2 + cs + k
f̂ (s)

︸                ︷︷                ︸

forced response

.
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Note that the free response is a ratio of polynomials in s. Furthermore, the coefficient of f̂ (s)

is a ratio of polynomials in s. A ratio of polynomials in s is a rational function, while the rational

function from the input to the output is a transfer function.

Definition 15.11.2. A zero of a rational function is a root of the numerator. A pole of a rational

function is a root of the denominator.

Example 15.11.3. Consider the forced response of the damped rigid body

q̈(t) + 2q̇(t) = u(t).

If u(t) = δ(t), then the position is given by

q̂(s) =
1

s2 + 2s
.

Define the velocity v(t) = q̇(t). Then,

v̇(t) + 2v(t) = u(t).

Alternatively, if u(t) = 1(t), then the velocity is given by

v̂(s) =
1

s(s + 2)
.

Therefore, the position impulse response is identical to the velocity response.

15.11.1 Partial Fractions

Partial fractions is a technique for finding the time-domain signal corresponding to a Laplace

transform.

Example 15.11.4. Consider

ŷ(s) =
(s + 2)(s + 4)

s(s + 1)(s + 3)
.

Use partial fractions to show

y(t) =
8

3
1(t) − 3

2
e−t − 1

6
e−3t.

15.12 Initial Value and Initial Slope Theorems

The following result is the initial value theorem.

Fact 15.12.1.

y(0+)
△
= lim

t→0
y(t) = lim

s→∞
sŷ(s).

The following result is the initial slope theorem.

Fact 15.12.2.

ẏ(0+)
△
= lim

t→0
ẏ(t) = lim

s→∞
s[sŷ(s) − y(0)].
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Example 15.12.3. If y(t) = 1(t), then

y(0+) = lim
s→∞

s
1

s
= 1.

If y(t) = cos(ωt), then

y(0+) = lim
s→∞

s
s

s2 + ω2
= 1.

Example 15.12.4. Consider the unit-slope ramp

y(t) = t.

Then,

ẏ(0+) = lim
s→∞

s[sŷ(s) − y(0)] = lim
s→∞

s(s
1

s2
− 0) = 1.

15.13 Final Value Theorem

We say that limt→∞ y(t) exists if it is a number. If either limt→∞ y(t) = ∞ or limt→∞ y(t) = −∞,
then limt→∞ y(t) does not exist but is infinite. This convention is consistent with the fact that ∞ is

not a number. The following cases can occur.

i) y(t) remains bounded but limt→∞ y(t) does not exist. For example, y(t) = sin(ωt).

ii) y(t) is not bounded (and thus limt→∞ y(t) does not exist) and, in addition, neither

limt→∞ y(t) = ∞ nor limt→∞ y(t) = −∞. For example, y(t) = et sin t.

iii) y(t) is not bounded and limt→∞ y(t) does not exist but is infinite. For example, y(t) = et, in

which case, limt→∞ y(t) = ∞.

iv) limt→∞ y(t) exists.

The following result is the final value theorem.

Fact 15.13.1. Assume that every pole of ŷ(s) is either in the open left half plane or is zero.

Then,

lim
t→∞

y(t) = lim
s→0+

sŷ(s). (15.13.1)

Fact 15.13.1 implies that, if every pole of ŷ(s) is either in the open left half plane or is zero, then

the right-hand side of (15.13.1) gives the correct limit of y(t) as t → ∞. In this case we say that

the final value theorem is legal. Note, however, that limt→∞ y(t) exists if and only if s = 0 is not a

repeated pole of ŷ(s). Hence, the limit on the left hand side of (15.13.1) does not exist in the case

where ŷ(s) has a repeated pole at zero. Nevertheless, the use of (15.13.1) in this case is legal.

Example 15.13.2. If y(t) = 1(t), then

lim
t→∞

y(t) = lim
s→0+

s
1

s
= 1.

If y(t) = −t1(t), then

lim
t→∞

y(t) = lim
s→0+

s
−1

s2
= lim

s→0+

−1

s
= −∞.
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If y(t) = e−t, then

lim
t→∞

y(t) = lim
s→0+

s
1

s + 1
= 0.

If y(t) = et, then

lim
t→∞

y(t) = lim
s→0+

s
1

s − 1
= 0,

which is incorrect.

Note that the limit from the right s → 0+ is needed in the second example to obtain the correct

sign.

Example 15.13.3. Consider the damped oscillator with a real zero z given by

y(t) =
s − z

s2 + 2ζωns + ω2
n

.

Assume that the input f (t) is the unit step f (t) = f01(t). From the final value theorem it follows that

lim
t→∞

y(t) = lim
s→0

s
s − z

s2 + 2ζωns + ω2
n

f0

s
=
− f0z

ω2
n

.

Furthermore, from the initial value theorem it follows that

lim
t→0

y(t) = lim
s→∞

s
s − z

s2 + 2ζωns + ω2
n

f0

s
= 0,

while, from the initial slope theorem it follows that

lim
t→0

ẏ(t) = lim
s→∞

s2 s − z

s2 + 2ζωns + ω2
n

f0

s
= f0.

It can be seen that, if z < 0, then the values of the step response for small values of time have the

same sign as the limiting value of the step response. However, if z > 0, then the values of the step

response for small values of time have the opposite sign of the limiting value of the step response.

The latter case is known as initial undershoot. The positive zero, which is called a nonminimum

phase zero, is responsible for the initial undershoot.

15.14 Laplace Transforms of State Space Models

Consider

ẋ(t) = Ax(t) + Bu(t), (15.14.1)

y(t) = Cx(t) + Du(t). (15.14.2)

Then

sx̂(s) − x(0) = Ax̂(s) + Bû(s), (15.14.3)

ŷ(s) = Cx̂(s) + Dû(s). (15.14.4)

Hence,

ŷ(s) = C(sI − A)−1x(0)
︸              ︷︷              ︸

free response

+

G(s)
︷                   ︸︸                   ︷
(

C(sI − A)−1B + D
)

û(s)
︸                         ︷︷                         ︸

forced response

. (15.14.5)
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G(s) thus has the state space realization

G(s) ∼
[

A B

C D

]

.

We write

G(s) = C(sI − A)−1B + D

=
1

s
C

(

I − 1

s
A

)−1

B + D

=
1

s
C

(

I +
1

s
A +

1

s2
A2 + · · ·

)

B + D

= D +
1

s
CB +

1

s2
CAB + · · ·

= H0 +
1

s
H1 +

1

s2
H2 + · · · , (15.14.6)

where H0, H1, and H2 are Markov parameters. Note that the expansion (15.14.6) of G(s) converges

for all sufficiently large values of |s|.

Consider the third-order transfer function G(s) of the form

G(s) =
b3s3 + b2s2 + b1s + b0

s3 + a2s2 + a1s + a0

. (15.14.7)

Taking the limit of G(s) we obtain

b3 = lim
s→∞

G(s) = D. (15.14.8)

In the case D = 0, G(s) has the form

G(s) =
b2s2 + b1s + b0

s3 + a2s2 + a1s + a0

, (15.14.9)

and thus

b2 = lim
s→∞

sG(s) = CB. (15.14.10)

Furthermore, if D = 0 and CB = 0, then G(s) has the form

G(s) =
b1s + b0

s3 + a2s2 + a1s + a0

, (15.14.11)

and thus

b1 = lim
s→∞

s2G(s) = CAB. (15.14.12)

Finally, if D = 0, CB = 0, and CAB = 0, then G(s) has the form

G(s) =
b0

s3 + a2s2 + a1s + a0

, (15.14.13)

and thus

b0 = lim
s→∞

s3G(s) = CA2B. (15.14.14)
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Note that all leading zero coefficients of the numerator as well as the first nonzero coefficient of

the numerator are Markov parameters. The remaining coefficients of the numerator are not Markov

parameters. The same pattern holds if G(s) is of arbitrary order.

Example 15.14.1. Consider the differential equation for the damped oscillator

q̈(t) = − c

m
q̇(t) − k

m
q(t) +

f (t)

m
.

Define the state variables x1(t)
△
= q(t) and x2(t)

△
= q̇(t) and assume that the output y(t) is the velocity

q̇(t). Then
[

ẋ1(t)

ẋ2(t)

]

=

[

0 1

− k
m
− c

m

] [

x1(t)

x2(t)

]

+

[

0
1
m

]

f (t),

y(t) =
[

0 1
]
[

x1(t)

x2(t)

]

,

and

G(s) =
[

0 1
]
([

s 0

0 s

]

−
[

0 1

− k
m
− c

m

])−1 [

0
1
m

]

=
s

ms2 + cs + k
.

Every pole of G(s) is an eigenvalue of A. In addition, in most cases every eigenvalue of A is a

pole of G(s). As an exception, consider the DRB with velocity output y(t) = v(t) = q̇(t). Then the

eigenvalues of A =

[

0 1

0 − c
m

]

are λ1 = 0 and λ2 = − c
m

. Also,

ŷ(s) = v̂(s) =
s

s2 + c
m

s
=

1

s + c
m

. (15.14.15)

The pole at 0 is canceled by the zero at 0 since the position state is unobservable by the velocity

measurement.

15.15 Pole Locations and Response

Consider the transfer function for the damped oscillator with position output, which is given by

G(s) =
1/m

s2 + 2ζωns + ω2
n

. (15.15.1)

For 0 ≤ ζ ≤ 1, the poles of (15.15.1) are given by

λ1, λ2 = −ζωn ±
√

1 − ζ2ωn . (15.15.2)

If ζ = 0, then the poles are imaginary and are given by λ = ±ωn , which is the undamped case.

If 0 < ζ < 1, then the poles are complex, which is the underdamped case. Defining the damped

natural frequency

ωd =

√

1 − ζ2ωn, (15.15.3)

(15.15.2) can be written as

λ1, λ2 = −ζωn ± ωd . (15.15.4)
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If ζ = 1, then the poles are repeated and are given by λ = −ζωn, which is the critically damped

case. In the undamped, underdamped, and critically damped cases we have

|λ| = ωn. (15.15.5)

Therefore, the distance from the pole to the origin determines the natural frequency. Furthermore,

defining the angle θ by

ζ = sin θ, (15.15.6)

it follows that the angle that each pole subtends at the origin from the imaginary axis determines the

damping.

If ζ ≥ 1, then the poles are real and are given by

λ1, λ2 = −ζωn ±
√

ζ2 − 1ωn.

If ζ > 1, then the roots are real and distinct, which is the overdamped case. If ζ is large, then

λ1 ≈ − 1
2
ωn/ζ and λ2 ≈ −2ζωn. Thus λ2 is the faster pole, and λ1 is the slower pole.

Consider the case in which the input is the force impulse f (t) = f0δ(t). Then, for the undamped

case, the impulse response of (15.15.1) is given by

y(t) =
f0

mωn

sinωnt. (15.15.7)

For the underdamped case, the impulse response of (15.15.1) is given by

y(t) =
f0

mωd

e−ζωnt sinωdt. (15.15.8)

For the critically damped case, the impulse response of (15.15.1) is given by

y(t) =
f0

m
te−ωnt. (15.15.9)

Finally, for the overdamped case, the impulse response of (15.15.1) is given by

y(t) =
f0

m
√

ζ2 − 1ωn

e−ζωnt sinh(
√

ζ2 − 1ωnt). (15.15.10)

In all cases, the real part of the root determines the rate of decay, and the imaginary part determines

the frequency of oscillation.

■

✙

×

−ζωn

ωn

√

1 − ζ2

θ

ωn

Figure 15.15.12: Relationships among pole location, damping, and natural frequency
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Open Left Half Plane (OLHP) Imaginary Axis (IA) Open Right Half Plane (ORHP)

not repeated ce−at sin(ωt)

repeated cte−at sin(ωt)

not repeated sin(ωt)

repeated t sin(ωt)

not repeated ceat sin(ωt)

repeated cteat sin(ωt)

not repeated ce−at

repeated cte−at

not repeated c

repeated ct

not repeated ceat

repeated cteat

not repeated ce−at sin(ωt)

repeated cte−at sin(ωt)

not repeated sin(ωt)

repeated t sin(ωt)

not repeated ceat sin(ωt)

repeated cteat sin(ωt)

Figure 15.15.13: This figure shows the type of response that arises from nonrepeated and repeated

poles located in the open left half plane, imaginary axis, and open right half plane. The center

column represents the imaginary axis, the center row represents the real axis, and the center square

represents the origin.

The free responses for the various damping cases are summarized in Table ??.

Property Name Free Response

ζ = 0 undamped sinusoid

0 < ζ < 1 underdamped decaying sinusoid

ζ = 1 critically damped decaying exponentials

ζ > 1 overdamped decaying exponentials

Table 15.2: Free responses for damping cases

15.16 Stability

Stability concerns the free response only, and thus can be determined by either the matrix A of a

state space model or the poles of G. We assume that G is formed from the state space model without

pole-zero cancellation. For example, pole-zero cancellation can occur for the damped rigid body

with velocity output.

Equivalent conditions for G to be Unstable (US):

• x(t)→ ∞ as t → ∞ for at least one x(0).
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• At least one entry of eAt is unbounded.

• Not Lyapunov stable.

• At least one pole of G(s) is in the ORHP or is repeated on the imaginary axis.

• Example: Undamped rigid body.

Equivalent conditions for G to be Lyapunov Stable (LS):

• For all x(0), x(t) is bounded.

• Every entry of eAt is bounded.

• Each eigenvalue of A is in the OLHP or is not repeated on the imaginary axis.

• Each pole of G(s) is in the OLHP or is not repeated on the imaginary axis.

• Example: Undamped oscillator.

Equivalent conditions for G to be Semistable (SS):

• For all x(0), limt→∞ x(t) exists.

• Each eigenvalue of A is in the OLHP or is not repeated at the origin.

• limt→∞ eAt exists.

• Each pole of G(s) is in the OLHP or is not repeated at the origin.

• Example: Damped rigid body.

Equivalent conditions for G to be Asymptotic Stable (AS):

• For all x(0), x(t)→ 0 as t → ∞.

• Each eigenvalue of A is in the OLHP.

• limt→∞ eAt = 0.

• Each pole of G(s) is in the OLHP.

• Example: Damped oscillator.

The following result, which is illustrated by Figure 15.16.14, shows how the three types of

stability are related.

Fact 15.16.1. AS =⇒ SS =⇒ LS

Definition 15.16.2. The transfer function G(s) is bounded-input, bounded-output (BIBO) sta-

ble if, for every bounded input signal u(t), the output y(t) of G(s) is bounded.

Example 15.16.3. Consider the undamped rigid body

v̂(s) =
1

ms
f̂ (s)

with velocity output and force step input f (t) = f01(t). Then the velocity v(t) is unbounded due

to the constant forcing and thus constant acceleration. Mathematically, v(t) is the integral of a step

function. Physically, the velocity under nonzero constant forcing increases without bound. Hence,

the transfer function

G(s) =
1

ms

is not BIBO stable.
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AS

SSLSUS

Figure 15.16.14: Stability Venn Diagram

Example 15.16.4. Consider the undamped oscillator with position output and harmonic force

input f (t) = sinωnt. The output y(t) has repeated poles on the imaginary axis. The corresponding

time-domain response, called resonance, is an oscillation of increasing amplitude with a linear

envelope. Hence

G(s) =
1

s2 + ω2
n

(15.16.1)

is not BIBO stable.

Fact 15.16.5. G(s) is BIBO stable if and only if G(s) is asymptotically stable.

15.17 Routh Test

Fact 15.17.1. Suppose that all of the roots of the polynomial

p(s) = sn + an−1sn−1 + · · · + a1s + a0

are in the open left half plane. Then a0, . . . , an−1 are positive.

Fact 15.17.2. Let n = 2. Then both roots of

p(s) = s2 + a1s + a0

are in the open left half plane if and only if a0 and a1 are positive.

Fact 15.17.3. Let n = 3. Then all three roots of

p(s) = s3 + a2s2 + a1s + a0

are in the open left half plane if and only if a0, a1, a2 are positive and

a0 < a1a2. (15.17.1)
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Fact 15.17.4. Let n = 4. Then all four roots of

p(s) = s4 + a3s3 + a2s2 + a1s + a0

are in the open left half plane if and only if a0, a1, a2, a3 are positive and

a0a2
3 + a2

1 < a1a2a3. (15.17.2)

The above results are special cases of the Routh test. Conditions can be derived for arbitrary

values of n.

15.18 Matlab Operations

15.18.1 atan2

The Matlab command atan2(y, x) computes the angle θ ∈ (−π, π] of the complex number x + y.

Example 15.18.1. For x = 1 and y = 1,

θ = atan2(y, x) = atan2(1, 1) =
π

4
.

For x = −1 and y = −1,

θ = atan2(−1,−1) = −3π

4
.

Note that, in both cases, tan θ = 1.

15.18.2 expm

The Matlab command expm(A) computes the exponential eA of the matrix A.

15.18.3 rlocus

Consider the basic servo loop consisting of the transfer function G(s) = N(s)/D(s) and the

controller K(s) = kNK(s)/DK(s), where k ≥ 0 is a constant. Then, the loop transfer function is

defined by

L(s)
△
= G(s)K(s) = kL0(s), (15.18.1)

where

L0(s)
△
=

N0(s)

D0(s)
, N0(s)

△
= N(s)NK(s), D0(s)

△
= D(s)DK(s). (15.18.2)

Let u(t) and y(t) be the input and output of the plant G, respectively, let r(t) denote the command,

and let e(t) = r(t) − y(t) denote the error. Then, the error and command are related by

ê(s) = S (s)r̂(s), (15.18.3)

where the sensitivity function S (s) is defined by

S (s)
△
=

1

1 + L(s)
. (15.18.4)
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−
✲

✻

✲✲r

✲e = r − y

u yGK

We use the notation

N0(s) = (s − z1) · · · (s − zm) = sm + bm−1sm−1 + · · · + b1s + b0 (15.18.5)

and

D0(s) = (s − p1) · · · (s − pn) = sn + an−1sn−1 + · · · + a1s + a0, (15.18.6)

where m < n. Note that z1, . . . , zm and p1, . . . , pn are the zeros and poles of L0, respectively. The

numerator and denominator coefficients of L0 are represented by the row vectors num and den,

respectively, where

num =
[

1 bm−1 · · · b1 b0

]

, den =
[

1 an−1 · · · a1 a0

]

. (15.18.7)

The MATLAB command rlocus(num,den) plots the root locus of L.

Note that N0 and D0 are assumed to be monic polynomials. If these polynomials are not monic,

then they can be scaled to be monic, and the scaling is incorporated in the gain k. For the root locus

analysis in this section, we assume that k is nonnegative. The case in which k is negative can also

be considered but is less useful in practice.

The root locus is a sketch of the locations of the poles of S (s) as k increases. To determine these

locations, note that

S (s) =
1

1 + k
N0(s)

D0(s)

=
D0(s)

D0(s) + kN0(s)
=

Ñ(s)

D̃(s)
. (15.18.8)

For small values of k, the poles of S (s) are approximately the roots of D0(s), that is, the poles of the

loop transfer function; these poles are also called the open-loop poles. However, for large values of

k, some of the poles of S (s) are approximately roots of N0(s).

The following rules are useful for sketching the root locus, which is a plot of the locations of

the closed-loop poles as k increases from zero to infinity.

Rule #1. Plot the poles and zeros of L0(s), using “×” to denote each pole, and “◦” to denote

each zero.

Rule #2. The root locus is conjugate symmetric.

Rule #3. Intervals on the real axis to the left of an odd number of real poles and zeros are subsets

of the root locus, while the remaining intervals are not. Complex poles and zeros can be ignored

when applying this rule.

Rule #4. Each zero attracts exactly one pole.

Rule #5. If a pole is repeated q times, then the departure angles of the q poles are all different
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and are given by

φdep =
1

q





m∑

i=1

ψi −
n−q∑

i=1

φi ± 180◦ ± 360◦ℓ



 , (15.18.9)

where
∑m

i=1 ψi is the sum of the angles from all of the zeros to the departing poles, and
∑n−q

i=1
φi is

the sum of the angles from the remaining (non-departing) poles to the departing poles. The signs

± and the integer ℓ can be chosen to obtain distinct angles between −180 deg and 180 deg. If the

departing poles are real, then complex conjugate zeros can be ignored in the first sum and complex

conjugate poles can be ignored in the second sum.

Rule #6. The n−m excess poles approach infinity along n−m asymptotes drawn from the center

α, which is given by

α
△
=

bm−1 − an−1

n − m
=

P − Z

n − m
, (15.18.10)

where P is the sum of all of the poles of L0(s) and Z is the sum of all of the zeros of L0(s).

Rule #7. If n − m = 1, then the asymptote is in the direction of the negative real axis. In this

case, the location of the center is irrelevant. If n − m = 2, then the asymptotes point 90 and −90

degrees relative to the positive real axis. If n − m = 3, then the asymptotes point in directions that

are 60 degrees, 180 degrees, and −60 degrees relative to the positive real axis. If n−m = 4, then the

asymptotes point in directions that are 45 degrees, 135 degrees, and −135 degrees, and −45 degrees

relative to the positive real axis. More generally, the number of asymptotes is r = n − m, and the

angles between the asymptotes relative to the positive real axis are (2i + 1)180/r degrees, where

i = 0, . . . , r − 1.

15.19 Dimensions and Units

15.19.1 Mass and Force

For pound force,

1 lb = 1 slug-ft/sec2 = 4.4 N, (15.19.1)

where N denotes newton. On the surface of the Earth, 1 kg weighs 9.8 N, while 1 slug weighs 32.2

lb. Conversion between slugs and kilograms is

1 slug = 14.59 kg. (15.19.2)

15.19.2 Force, Impulse, and Momentum

The impulse δ(t) has the units

[δ(t)] = 1/sec. (15.19.3)

For the force impulse f (t) = f0δt, the coefficient f0 has the units

[ f0] = [ f (t)]/[δ(t)] = kg-m/sec, (15.19.4)

which are the units of momentum. Specific impulse is given by f0/m, which has the units

[ f0/m] = m/sec, (15.19.5)
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that is, velocity.

15.20 Problems

Problem 15.20.1. Consider the 3 × 3 matrix

A =





3 0 2

4 3 5

7 2 6




.

Manually compute the determinant and inverse of A. Then compute these quantities using Matlab

to check your solution.

Problem 15.20.2. Use Matlab to compute the eigenvalues of the matrix A in Problem 15.20.1.

Then use Matlab to show that the determinant is the product of the eigenvalues, and show that the

trace (the sum of the diagonal entries) is the sum of the eigenvalues. Furthermore, use Matlab to

compute the eigenvalues of A2 and A−1, and discuss how they are related to the eigenvalues of A.

Problem 15.20.3. Using the “randn” command in Matlab, form a random 4×2 matrix A. Then

compute the 4 × 4 matrix AAT. Using Matlab to compute the eigenvalues of the symmetric matrix

AAT, check whether this matrix is positive semidefinite. Then, show mathematically (by hand, not

using Matlab) that xTAATx ≥ 0 for all vectors x. (Hint: Define z = ATx.)

Problem 15.20.4. Let A be an n × n matrix and let p(s) = det(sI − A) be the characteristic

polynomial of A. The Cayley-Hamilton theorem states that p(A) = 0. Check this fact by obtaining

the characteristic polynomial p(s) for the matrix

A =

[

0 1

−a0 −a1

]

,

and then showing that p(A) = 0. Repeat these steps for

A =





0 1 0

0 0 1

−a0 −a1 −a2




.

Do all of these symbolic calculations by hand.

Problem 15.20.5. The eigenvalues of a matrix are the roots of its characteristic polynomial.

Consider the 3 × 3 matrix in Problem 15.20.4 with a0 = −2, a1 = 5, and a2 = 3, and use Matlab to

show numerically that the roots of p(s) are indeed the eigenvalues of A. Use roots(p) and eig(A) for

your computations.

Problem 15.20.6. Show that the matrix

A =

[

cos θ sin θ

− sin θ cos θ

]

is orthogonal. Also, check whether the matrix

B =

[

cos θ sin θ

sin θ − cos θ

]

is orthogonal. Determine by hand (not by Matlab) the determinants and eigenvalues of these matri-
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ces. Finally, choose several values of θ and multiply the vector [1 1]T by these matrices. Discuss

how the resulting vectors compare to the original vector in terms of their length and direction. You

can use a calculator but do not use Matlab.

Problem 15.20.7. Use the dot product to compute the angle between the vectors [3 2]T and

[−2 4]T.

Problem 15.20.8. Solve the differential equation

ẋ(t) = ax(t) + b

analytically by evaluating the convolution integral given by (15.8.3). Under what conditions does

limt→∞ x(t) exist? In the case where the limit exists, determine the limiting value. How could you

guess the limiting value without solving the equation?

Problem 15.20.9. Using the solution to Problem 15.20.8, write down the solution to the scalar

ordinary differential equation

ẋ(t) = −2x(t) + 8.

This equation represents the step response of a linear system, where the constant 8 is the value of

the step input. Plot the solutions for the initial conditions x(0) = 5 and x(0) = −4 in the same figure.

Be sure to label all axes of your figure and give it an appropriate caption. Determine limt→∞ x(t)

from the plot and compare that numerical value with the analytical limit. Explain how the limiting

value of x(t) depends on the constants in the problem, namely, the coefficient of x(t), the value of

the input step, and the initial condition.

Problem 15.20.10. Consider ẋ = Ax, and let λ = σ + ω be a complex eigenvalue of A with

associated complex eigenvector

v =

[

3

1

]

+ 

[

1

4

]

.

Consider three different eigenvalues (of different matrices A) given by ω = 1 and σ = −1, 0, 1.

Then, for each value of σ, plot the corresponding eigensolutions

x(t) =

[

x1(t)

x2(t)

]

= Re(eλtv)

in the x1, x2 plane, where the curve is parameterized by t. Use arrows to denote how the solution

evolves as t increases, and explain how the properties of the eigensolution depend on σ.

Problem 15.20.11. Let λ, λ̄ = −ζωn ± ωn

√

1 − ζ2  denote a complex conjugate pair of under-

damped eigenvalues. Show that

ωn = |λ|, ζ = −λ + λ̄
2|λ|

, ωd =
λ − λ̄

2 
.

Problem 15.20.12. Let λ1, λ2 = −ζωn ± ωn

√

ζ2 − 1 denote a pair of overdamped eigenvalues.

Show that

ωn =
√

λ1λ2, ζ = − λ1 + λ2

2
√
λ1λ2

.

Problem 15.20.13. Use l’Hopital’s rule to derive (15.15.9) from (15.15.8).
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Problem 15.20.14. Consider the damped oscillator (DO) with acceleration output. Write this

system in A, B,C,D form, where A is of size 2 × 2.

Problem 15.20.15. Use the initial value theorem to determine the initial value of each of the

following functions: y(t) = t, y(t) = t + 1, y(t) = sin 2t, and y(t) = cos 2t.

Problem 15.20.16. Use the initial slope theorem to determine the initial slopes of the functions

in the previous problem.

Problem 15.20.17. Use Laplace transforms to analytically determine the response of v̇ + 2v =

sin 5t for an arbitrary initial condition v(0). Then show that you can choose a special initial condition

v(0) so that the response is exactly harmonic, that is, there is no transient (non-harmonic) component

of the solution. Finally, confirm your solution by using ODE45 to simulate the system with this

special initial condition as well as another initial condition.

Problem 15.20.18. A motor with constant applied torque is modeled as the damped rigid body

Jθ̈ + cθ̇ = τ01(t), where J is the load inertia, c is the viscous damping coefficient, and τ0 is the

moment. The initial angle θ(0) and initial angular rate θ̇(0) are zero. Use Laplace transforms and

the final value theorem to determine the terminal angular rate limt→∞ θ̇(t). Also compute the same

limit by using the time-domain solution obtained from Laplace transforms.

Problem 15.20.19. For

ŷ(s) =
1

s(s2 + s + 1)
,

use partial fractions to show that

y(t) = 1(t) − e−
1
2

t cos





√
3

2
t



 −
1
√

3
e−

1
2

t sin





√
3

2
t



 .

Problem 15.20.20. Consider an object falling under the force of gravity. Ignore drag and

model the motion as an undamped rigid body. Use Laplace transforms to express the position q(t)

as a function of t, q(0), q̇(0), and g.

Problem 15.20.21. A body with mass M is falling under the force of gravity. Atmospheric

drag is modeled by a dashpot coefficient D, so that the system is modeled as a damped rigid body.

Assuming initial velocity v0, use Laplace transforms to find the velocity v(t) for t > 0. Then use the

final value theorem to compute the terminal velocity limt→∞ v(t).

Problem 15.20.22. Consider an iron sphere and a wooden sphere of the same size and smooth-

ness. Does the iron sphere fall faster than the wooden sphere? Use the undamped rigid body to show

that, if there is no drag, then the spheres fall at the same rate. Now consider the more realistic case

in which drag is present. Using the damped rigid body, and assuming that the damping coefficient

is the same for both spheres, determine whether or not the heavier body falls faster than the lighter

body. (Hint: First consider the terminal velocities and perform some Matlab simulation.)

Problem 15.20.23. Consider the damped rigid body with ramp force input u(t) = f0t and

velocity output. Use Laplace transforms and partial fractions to determine the forced response for

t ≥ 0.
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Problem 15.20.24. Consider the undamped rigid body in two cases, namely, 1) position out-

put with unit impulse input, and 2) velocity output with unit step input. Show that the Laplace

transforms of the forced outputs have the same form in both cases. Next, explain how the same

expression correctly captures both outputs even though the outputs have different dimensions.

Problem 15.20.25. Consider the rigid body force-to-velocity transfer function

G(s) =
1

ms

with harmonic input f (t) = a sinωt. Use Laplace transforms to determine the forced velocity

response q̇(t) for t ≥ 0. For the forced response, assume that the initial conditions are zero so that

the free response is zero.

Problem 15.20.26. Determine the forced response of 2q̈+17q = 5 f with output y(t) = q(t) and

input f (t) = sin 2t. Check your solution by using either Matlab or Simulink to plot your analytical

solution.

Problem 15.20.27. Consider the damped rigid body with position output, and write it in state

space form ẋ = Ax. Then determine eAt by using the fact that the Laplace transform of the matrix

exponential eAt is (sI−A)−1 and taking the inverse Laplace transform of each entry of (sI−A)−1. Use

this result to determine the free response of the damped rigid body with initial position q(0), initial

velocity q̇(0), and output y(t) given by the mass position. Finally, determine limt→∞ eAt by using the

expression you obtained for eAt as well as by applying the final value theorem to each separate entry

of (sI − A)−1. What kind of matrix is limt→∞ eAt?

Problem 15.20.28. An engineer has shown that the output response of a new airframe devel-

oped for a UAV application is given by

y(t) = 2e−6t.

Use the initial value theorem to determine ÿ(0+). (Note the two dots.) Check your solution by

computing ÿ(t) and then setting t = 0. (Hint: Note that

L{ÿ(t)} = s2ŷ(s) − sy(0) − ẏ(0).

You may use the time-domain expression for y(t) to determine y(0) and ẏ(0).)

Problem 15.20.29. For each transfer function G(s) below with input u and output y, determine

whether the use of the final value theorem is legal, and, if so, use it to determine the limit of the

output y(t) as t → ∞. Explain why or why not the use of the final value theorem is legal in each

case.

i) G(s) =
−5

s(s + 7)2
, u(t) = 3e−2t.

ii) G(s) =
5

s − 3
, u(t) = 71(t) − 3δ(t − 4.2).

iii) G(s) =
−4

s2 + 2.4s + .3
, u(t) = 6t2.

Problem 15.20.30. For both systems described below (described by a transfer function and

input) and without using a calculator or computer, determine whether the use of the final value
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theorem is legal, and, if so, use the final value theorem to determine the limit of the output y(t) as

t → ∞. Explain why or why not the use of the final value theorem is legal in each case. Simulate

the first system using the Matlab “impulse” command. Simulate the second system using Simulink

with integrator blocks but not the transfer function block. (Hint: Use a pair of nested feedback loops

each of which has an integrator in the forward path.) If y(t) converges, verify that the value of y(t)

as t becomes very large agrees with the result of the final value theorem. Run your Simulink model

from a Matlab script and plot y(t) as a function of time from your Matlab script.

i) G(s) =
s2 − 1

s(3s3 + 2s2 + 4s + 3)
, u(t) = 2δ(t).

ii) G(s) =
1

s(s2 + 3s + 1)
, u(t) = −2e−t sin 2t.

Problem 15.20.31. For the systems described below and without using a calculator or com-

puter, determine whether the use of the final value theorem is legal, and, if so, use the final value

theorem to determine the limit of the output y(t) as t → ∞. Explain why or why not the use of

the final value theorem is legal in each case. Model the first system with Simulink and simulate

the system. Simulate the second system using the Matlab “impulse” command. If y(t) converges,

verify that the value of y(t) as t becomes very large agrees with the result of the final value theorem.

Run your Simulink model from a Matlab script and plot y(t) as a function of time from your Matlab

script.

i) The free response of the damped rigid body with initial position q(0), initial velocity q̇(0),

and output y(t) given by the mass position. Obtain the limit symbolically. For the Simulink

model, use the numerical values m = 3 kg, c = 4 kg/s, q(0) = 1 m, and q̇(0) = −2 m/s.

ii) The forced response of a system whose transfer function is

G(s) =
4s2 − 12s − 16

2s5 + 2s4 + 4s3 + 2s2 + s

with the impulsive input u(t) = 3δ(t − 1).

Problem 15.20.32. Without taking inverse Laplace transforms, use the initial and final value

theorems as well as knowledge of the pole locations to sketch the step response of the transfer

function

G(s) =
4s − 3

s2 + 0.8s + 4
.

Be sure to qualitatively capture the direction of the step response for small positive time t as well

as the asymptotic behavior for large time t. What features does your sketch illustrate? Model this

system with Simulink and simulate the system. You may use the ‘transfer function’ block in your

Simulink model. Run your Simulink model from a Matlab script and plot the step response from

your Matlab script.

Problem 15.20.33. Flight testing of a new aircraft reveals that it has a pair of underdamped

complex conjugate poles. Testing reveals that the time to 50% decay is T seconds, while analytical

modeling shows that the imaginary parts of the poles are ±ωd, where ωd > 0. Derive an expression

for the damping ratio ζ in terms of T and ωd. Finally, show that the expression for ζ satisfies

0 < ζ < 1. (Hint: T = (ln 2)/(ζωn).)

Problem 15.20.34. Flight testing of a new aircraft reveals that it behaves like an overdamped
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oscillator. Analytical models are used to determine the value of ωn. Measurements show that the

time to 50% decay is T seconds. Derive an expression for the damping ratio ζ in terms of T and ωn.

Finally, show that the expression for ζ satisfies ζ ≥ 1. (Note: Consider only the slow eigenvalue of

the overdamped oscillator.)

Problem 15.20.35. Consider the eigenvalues of the matrix

A =

[

0 1

−k/m −c/m

]

for the undamped (c = 0) and damped (c > 0) oscillators. Let k = 2.5 kg/s2 and m = 7 kg. Plot the

locations of the eigenvalues as ×’s in the complex plane for a range of values of c. Choose a range

that includes undamped, underdamped, critically damped, and overdamped cases. For each value

of c, plot a “×” in the complex plane.

Problem 15.20.36. Show analytically that the poles of the undamped, underdamped, and crit-

ically damped oscillators satisfy |λ1| = |λ2| = ωn. Furthermore, show that the poles of the over-

damped oscillator satisfy λ1λ2 = ω
2
n. Explain the meaning of these results in terms of the plot you

made in the previous problem.

Problem 15.20.37. Consider the second-order state space (A, B,C,D) system with

A =

[

0 1

−2 −3

]

, B =

[

0

1

]

, C =
[

1 1
]

, D = 0.

Determine the transfer function G(s) for this system. Show that G(s) is actually a first-order transfer

function due to pole-zero cancelation. Finally, determine a first-order state space (Â, B̂, Ĉ, D̂) sys-

tem whose transfer function is the same G. (Remark: Given a transfer function G we are usually

interested in a realization (A, B,C,D) of G of the lowest possible order, that is, where the size of A is

as small as possible. For this first-order system you can easily construct this realization by looking

at the form of the transfer function and setting C = 1.)

Problem 15.20.38. Consider the longitudinal dynamics of a commercial aircraft given by

α̇(t) = −0.313α(t) + 56.7q(t) + 0.232δe(t),

q̇(t) = −0.0139α(t) − 0.426q(t),

θ̇(t) = −0.5θ(t) + 0.0203δe(t),

where α is the angle of attack in rad, q is the pitch rate in rad/sec, θ is the pitch angle in rad, and

δe is the elevator deflection angle in rad. Assume that α(0) = q(0) = θ(0) = 0. Let the input of

the system be the elevator deflection angle δe, and the output of the system be the pitch angle θ.

Derive equations for this system in state space and transfer function form. Model this system in

Simulink using only integrator blocks, gain blocks, and summation blocks. Also model this system

in Simulink using a state space block.

Force both Simulink models with a step input given by a 3-degree elevator deflection. Plot the

resulting pitch angle and verify that the two models give exactly the same response.

Problem 15.20.39. Take the Simulink model you constructed without using the state space

block in Problem 15.20.38, and then put that entire model inside a subsystem block. Set the input

to the subsystem block to be the elevator input and set the output of the subsystem block to be the

pitch angle. Now we want to use feedback control to make the aircraft maintain a pitch angle of 3
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degrees. Set up proportional control whose input is the error between the true pitch angle and the

desired pitch angle and whose output is the elevator deflection angle. Tune the proportional control

to obtain the best possible response. Run your Simulink model from a MATLAB script and plot

both the true pitch angle and the desired pitch angle on the same axes. For clarity, plot the true pitch

angle using a solid blue line, and plot the desired pitch angle using a dashed red line. Are you able

to follow the command using proportional control?

Now set up an integral controller whose input is the error between the true pitch angle and the

desired pitch angle, and whose output is the elevator deflection angle. Add a gain block to the output

of the integrator block and tune the gain to obtain the best possible result. Run your Simulink model

from a MATLAB script and plot the true pitch angle and the desired pitch angle on the same axes.

For clarity, plot the true pitch angle using a solid blue line and the desired pitch angle using a dashed

red line. Are you able to follow the command using integral control? Note the relationship between

the Laplace transform of a step command and the transfer function of an integrator.

Problem 15.20.40. Consider the same Simulink setup as in Problem 15.20.39. Now, we want

to use feedback control to make the aircraft follow an oscillation in pitch angle given by sin t. Set up

integral control that takes the error between the true pitch angle and the desired pitch angle as input

and outputs elevator deflection angle. Add a gain block to the output of the integrator block and

tune the gain to obtain the best possible result. Change the relative tolerance to 10−10 by selecting

“Simulation”, then “Model Configuration Parameters.” Run your Simulink model from a MATLAB

script and plot both the true pitch angle and the desired pitch angle on the same axes. Plot the true

pitch angle using a solid blue line and the desired pitch angle using a dashed red line. Are you able

to follow the command using integral control?

Now set up the controller as the transfer function

G(s) =
1

s2 + 1
. (15.20.1)

Let the input to this transfer function be the error between the true pitch angle and the desired

pitch angle and let its output be the elevator deflection angle. Add a gain block to the output of

this transfer function and tune it to try and get the best result. Run your Simulink model from a

MATLAB script and plot both the true pitch angle and the desired pitch angle on the same plot. Plot

the true pitch angle using a solid blue line and the desired pitch angle using a dashed red line. Are

you able to follow the command using this transfer function?

Next, set up the controller as the transfer function

G(s) =
2

s2 + 4
. (15.20.2)

Let this transfer function take the error between the true pitch angle and the desired pitch angle as

input and let it output the elevator deflection angle. Add a gain block to the output of this transfer

function and tune it to try and get the best result. Run your Simulink model from a MATLAB script

and plot both the true pitch angle and the desired pitch angle on the same plot. Plot the true pitch

angle using a solid blue line and the desired pitch angle using a dashed red line. Are you able to

follow the command using this transfer function?

What can you infer from the last two problems in terms of the relationship between the command

signal and the poles of the controller? Hint: Consider the Laplace transforms of sin t and sin 2t?

Problem 15.20.41. Redo Problems 15.20.39 and 15.20.40, but instead of the dynamics of the
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aircraft, let the plant be given by the transfer function

G(s) =
4s2 + 4s + 1

s3 + s2 + πs + 0.777
. (15.20.3)

You may use the transfer function block in your Simulink model. Is your conclusion here the same

as your conclusion in Problem 15.20.40?

Problem 15.20.42. Redo Problem 15.20.39 for different aircraft dynamics, given by

α̇(t) = −0.313α(t) + 56.7q(t) + 0.232δe(t),

q̇(t) = −0.0139α(t) − 0.426q(t) + 0.0203δe(t),

θ̇(t) = 56.7q(t),

where α is the angle of attack in rad, q is the pitch rate in rad/sec, θ is the pitch angle in rad, and

δe is the elevator deflection angle in rad. Assume that α(0) = q(0) = θ(0) = 0. Let the input of the

system be the elevator deflection angle δe, and the output of the system be the pitch angle θ. You

may use the state space block in your Simulink model. Is your conclusion here the same as your

conclusion in Problem 15.20.39? Why or why not?

Problem 15.20.43. Consider the basic servo loop with a SISO plant G and SISO controller Gc

chosen such that the closed-loop system is asymptotically stable. Assume that neither G nor Gc has

a zero at zero. Then, do the following:

i) Case 1: Show that if Gc has at least one integrator, then the asymptotic error to a step

command is zero (whether or not G has an integrator). Determine the asymptotic value of

the control.

ii) Case 2: Show that if G has at least one integrator, then the asymptotic error to a step

command is zero (whether or not Gc has an integrator). Determine the asymptotic value of

the control.

iii) Case 3: Show that if G has at least one integrator but Gc has no integrators, then the

asymptotic error to a step command in the presence of a nonzero constant disturbance is

not zero. The disturbance is added to the control.

iv) Case 4: Show that if Gc has at least one integrator, then the asymptotic error to a step

command in the presence of a nonzero constant disturbance is zero whether or not G has

an integrator.

v) Illustrate the above four cases using Simulink with G(s) = 1/(s2 + 2s + 1) and Gc(s) =

1/(s2 + 2s), or vice versa. Plot the plant output, the command-following error, and the

control input. Write an mfile to check stability using the 4th-order Routh conditions in the

notes as well as root locus with the gain running from 0 to 1.

Problem 15.20.44. Consider the basic servo loop with a SISO plant G and SISO controller Gc

chosen such that the closed-loop system is asymptotically stable. The command and disturbance

are steps, which may or may not be zero. The disturbance is added to the control. Assume that the

measurement y that is fed back is corrupted by an unknown nonzero constant bias, that is, y = y0+b,

where y0 is the plant output and b is the unknown constant bias. Since b is unknown, we are not

able to use its value in the control law. The “false” error that the controller operates on is e = r − y.

However, the true error is etrue = r − y0. Then, do the following:
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i) Case 1: Show that if Gc has at least one integrator, then the asymptotic error is zero

(whether or not G has an integrator) but the asymptotic true error is not zero. Show that

this statement holds for all values of the command and disturbance.

ii) Case 2: Assume that neither G nor Gc has an integrator, and assume that G has at least one

zero at zero. Show that, if the command is zero, then the true error converges to zero for

all values of the disturbance.

iii) Case 3: Assume that neither G nor Gc has an integrator, and assume that L = GGc has at

least one zero at zero. Determine necessary and sufficient conditions on the command and

disturbance such that the true error converges to zero. Use this result to show that, if the

command is not zero and the disturbance is zero, then the true error does not converge to

zero.

iv) Illustrate the above three cases using Simulink. For Case 1, let G(s) = 1/(s2 + 2s + 1) and

Gc(s) = 1/(s2 + 2s). For Case 2, let G(s) = s/(s2 + 2s + 1) and Gc(s) = 1/(s2 + 2s + 2).

For Case 3, let G(s) = s/(s2 + 2s + 1) and Gc(s) = 1/(s2 + 2s + 2).

v) Is it possible to follow a step command (in the sense of the true error) despite the presence

of an unknown measurement bias?

Problem 15.20.45. Consider the second-order system described by the differential equation

ÿ + ẏ − 3y = u.

i) Assuming y(0) = ẏ(0) = 0, derive the transfer function of the system from û(s) to ŷ(s).

ii) Simulate the system with the step input u(t) = 1(t − 1) for 100 sec. How does y(t) evolve

in time? Attach a plot of y(t).

iii) Now include the proportional feedback control law û(s) = Kpê(s), and simulate the closed-

loop system with the step command r(t) = 1(t − 1) for 20 sec. Choose Kp such that the

maximum overshoot in y(t) is less than 100%, and |e(t)| = |r(t) − y(t)| is less than 0.2 for

t > 10. Does the error converge to zero as t increases? Comparing your results from the

previous part, what is the benefit of using proportional feedback compared to open loop?

Attach a screenshot of your Simulink model, as well as plots of e(t) and y(t) showing that

the design requirements are met.

iv) Using your choice of Kp from iii), now introduce the proportional-integral (PI) control law

û(s) =

(

Kp +
KI

s

)

ê(s),

and simulate the closed-loop system with the command r(t) = 1(t − 1) for 50 sec. Adjust

KI so that the maximum overshoot in y(t) is less than 100%, |e(t)| < 0.2 for t > 10,

and |e(t)| < 0.01 for t > 50. Does the command-following error converge to zero as t

increases? Comparing your results from the previous part, what is the benefit of integral

control? Attach a screenshot of your Simulink model, as well as plots of e(t) and y(t)

showing that the design requirements are met. Keep in mind that too much control might

destabilize the closed-loop system. Keeping Kp the same, increase KI and show that the

closed-loop system becomes unstable.

v) Using Kp and KI from iv), now consider the harmonic command r(t) = sin(2t), and simu-

late the closed-loop system for 50 sec. Attach a plot of e(t). Does the PI control law drive

the tracking error e(t) to zero in this case?
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vi) Replace the PI control law in v) with the feedback control law

û(s) =

(

20 +
5s

s2 + 4

)

ê(s),

and simulate the closed-loop system with the harmonic reference input r(t) = sin(2t) for

50 seconds. Attach a plot of e(t). Is the command-following error driven to zero in this

case?

vii) Compare the Laplace transforms of the step input r(t) = 1(t) and the harmonic input

r(t) = sin(2t) with the Laplace transform of the PI controller, and the controller you used

in vi). Compare the denominators of the input signals and the controller. Also, compare

the Laplace transform of a step/ramp command and the denominator of the loop transfer

function for a type I/II control system. What pattern do you see?

Problem 15.20.46. Consider the second-order transfer function

G(s) =
1

s2 + 3s − 2

controlled by the PI controller

K(s) = KP +
KI

s

in a servo loop. Determine the values of KP and KI that render the closed-loop system asymptotically

stable by sketching the region in the KP,KI plane of stabilizing gains.

Problem 15.20.47. Consider the type II control system with plant

G(s) =
1

s(s + 1)

and PI controller

K(s) = KP +
KI

s

in a servo loop. First, determine the values of KP and KI that provide zero asymptotic error for

a ramp command. Next, use Matlab or Simulink to simulate the closed-loop system, and choose

KP and KI for good rise time and reasonable overshoot for a step command. Next, plot the error

response for a ramp command, and verify numerically and analytically using the final value theorem

that the ramp command error converges to zero.

Problem 15.20.48. Sketch the root loci for the following loop transfer functions by using the

root locus rules and then check your sketches using Matlab’s root locus function:

i) L(s) =
(s+1)(s+2)

(s−1)(s−2)(s−3)
.

ii) L(s) =
(s+2)2

(s+1)(s2+1)
.

Problem 15.20.49. At Mach 0.6, an experimental aircraft has unstable phugoid eigenvalues

0.04 ± 0.12  and stable short period eigenvalues −4.3 ± 5.7 . Wind tunnel testing reveals that the

elevator-to-pitch transfer function has one zero located at −0.2. Using proportional control, sketch

the root locus, determine the center and asymptotes, and discuss the stability of the closed-loop

longitudinal dynamics for high values of k.
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Problem 15.20.50. An experimental aircraft has unstable phugoid eigenvalues 0.04 ± 0.12 

and stable short period eigenvalues −4.3 ± 5.7 . Wind tunnel testing reveals that, at Mach 0.6,

the elevator-to-pitch transfer function has three real zeros located at −0.3,−1.7,−8.4. Sketch the

root locus and discuss the stability of the closed-loop longitudinal dynamics using a proportional

control. Indicate (but you do not need to compute) the point on the root locus at which all poles have

at least
√

2/2 damping by marking the intersection of the root locus and the 0.707 damping-ratio

line. (Note: Problem 16.8.5 explains why this minimum value of damping is desirable.)

Problem 15.20.51. Consider the linearized model of a Boeing 747 aircraft in straight and level

flight given by

ẋ = Ax + Bu,

y = Cx + Du,

where

x =





β

r

p

φ





, u =

[

δr

δa

]

,

A =





−0.0558 −0.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0

−3.05 0.388 −0.4650 0

0 0.0805 1 0





, B =





0.00729 0

−0.475 0.00775

0.153 0.143

0 0





.

Determine the eigenvalues of A. What kind of stability does the aircraft have? Which poles corre-

spond to the Dutch roll mode?

Problem 15.20.52. Consider the linearized aircraft model in Problem 15.20.51. Plot the zeros

of the four SISO transfer functions from the inputs δr and δa to the outputs r and φ. Next, use

Matlab or Simulink to plot the impulse response of all four transfer functions. Finally, apply root

locus to each of the four transfer functions with proportional feedback.

Problem 15.20.53. The goal of this problem is to design a yaw-rate damper for the aircraft

in Problem 15.20.49 in order to improve its response to disturbances. A yaw-rate damper is an

essential part of an aircraft autopilot for improving handling quality. Note that “yaw-rate” refers to

the k̂AC-axis gyro perturbation r = ψ̇. Design a yaw-rate damper using proportional feedback with

the rudder as the control input, and determine the proportional feedback gain that yields the largest

damping ratio for all closed-loop poles. Finally, impulse the rudder operating in closed loop and

plot the response of all four states. Repeat the above steps for the ailerons. Which control input

provides a better yaw-rate damper, rudder or ailerons?

Problem 15.20.54. Using full-state feedback (C = I4) in Problem 15.20.49, design a controller

using the “place” command in MATLAB. Plot the impulse response of the closed-loop system for

all eight combinations of inputs and outputs, and compare these results to the results of Problem

15.20.51.

Problem 15.20.55. Determine all equilibria x̄ and control offsets ū that satisfy Ax̄+ Bū = 0 for

each of the following systems and give a physical explanation for each equilibrium (for example,

constant position, zero velocity, constant force):
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i) URB with position and velocity states.

ii) URB with just velocity state.

iii) DRB with position and velocity states.

iv) DRB with just velocity state.

v) DO with position and velocity states.

Problem 15.20.56. Consider state space models for URB, DRB, UO, and DO, where the state

consists of the position and velocity of the mass. Then do the following:

i) Check the controllability of each model.

ii) Assume that the output is position. Check the observability of each model.

iii) Assume that the output is velocity. Check the observability of each model.

Problem 15.20.57. In this problem we study the effect of nonzero initial conditions. Consider

the basic servo loop, where G and Gc are such that the closed-loop dynamics are asymptotically

stable.

i) By using Laplace transforms that include the free response, show that, for each command

r, the asymptotic response of the error is independent of the initial states of the plant and

controller.

ii) Rerun Case 1 of Problem 6 of Homework 1 with Simulink, but now use state space blocks

and set the initial conditions of the plant and controller to be nonzero. Are the conclusions

for zero initial conditions still valid for nonzero initial conditions?

Problem 15.20.58. In this problem we study the effects of pole-zero cancellation, where the

canceled pole and zero are either negative, zero, or positive. All cases are to be studied by using

Simulink. Six Simulink models are needed to consider all cases.

i) Use state space models to form the cascade G1(s) = 1
s+1

followed by G2(s) = s+1
(s+2)2 . Give

both models nonzero initial conditions, force G1 with a constant input, and add a constant

disturbance to the output of G1 to serve as the input to G2. Describe the response of G1

and G2. How do the initial conditions and external inputs affect the outputs? What is the

effect of reversing the order of G1 and G2?

ii) Same as part i) but now with G1(s) = 1
s

and G2(s) = s
(s+2)2 . Consider the reverse case as

well.

iii) Same as part i) but now with G1(s) = 1
s−1

and G2(s) = s−1
(s+2)2 . Consider the reverse case as

well.

Problem 15.20.59. With Simulink we cannot say that the pole-zero cancellation in Problem

(15.20.58) iii) is exact since Simulink does not simulate the system exactly. Therefore, we now

determine the effect of unstable pole-zero cancellation by exact analysis of an example. Consider

both cases, that is, with G1 preceding G2 and vice versa. Assume that the external inputs to G1 and

G2 are zero. Therefore, in the case where G1 precedes G2, it follows that G1 has only a free response

and G2 has both a free response and a forced response due to the output of G1. As an example, let
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G1(s) = 1
s−1

and G2(s) = s−1
(s+1)2 . It is helpful to note that

e

[
0 1
−1 −2

]

t
= e−t

[

1 + t t

−t 1 − t

]

.

Check this by showing that eA0 = I2 and d
dt

eAt = AeAt. You may use symbolic integration to deter-

mine the response of these systems.





Chapter Sixteen

Frequency Response

16.1 Phase Shift and Time Shift

Consider harmonic signals with the same frequency. The harmonic signals in Figure 16.1.1

have different amplitudes but the same phase, whereas the harmonic signals in Figure 16.1.2 have

the same amplitude but different phases. Our goal is to relate phase shift to time shift.

0 5 10 15 20
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−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 16.1.1: Sinusoids with the same phase shifts but different amplitudes.

To consider harmonic signals with the same amplitude but different phase shifts, consider

f (t) = sin(ωt), (16.1.1)

g(t) = sin(ωt + φ), (16.1.2)

where φ ∈ [−π, π] is the phase shift. To solve for the time shift, we solve for the time delay ∆t

shown in Figure 16.1.3 from g(t) = 0. We obtain (see Figure 16.1.3)

sin(ω∆t + φ) = 0 (16.1.3)

and thus,

∆t = − φ
ω
. (16.1.4)

We thus have

g(t) = sin(ωt − ω∆t) = sin(ω(t − ∆t)). (16.1.5)
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Figure 16.1.2: Sinusoids with the same amplitude but different phase shifts.

If φ > 0, then ∆t < 0, and thus g(t) is advanced relative to f (t). On the other hand, if φ < 0, then

∆t > 0, and thus g(t) is delayed relative to f (t).
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Figure 16.1.3: Phase shift as a time delay.

Now consider

f (t) = sin(ωt + φ), (16.1.6)

g(t) = sin(ωt + φ̂), (16.1.7)

as shown in Figure 16.1.4. Now suppose that 0 < φ̂ − φ ≤ 180. In this case, we say that g(t) leads

f (t) or f (t) lags g(t). Note that leading by more than 180◦ is equivalent to lagging by less than 180◦.

We can express f (t) as the phasor

f (t) = Im e(ωt+φ) , (16.1.8)

which is shown in Figure 16.1.5. Leading and lagging are represented in Figure 16.1.6.
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Figure 16.1.4: Sinusoids g(t) and f (t), where g(t) leads f (t).

16.2 Frequency Response Law for Linear Systems

Suppose that a harmonic input (such as a forcing) is applied to an asymptotically stable linear

system. Then the output of the system, which consists of the sum of the free and forced response,

approaches sinusoidal motion whose frequency is the same as the input frequency. The limiting

sinusoidal motion is called the harmonic steady-state response. Note, however, that the response

does not have a “limit” in the usual mathematical sense since it does not approach a constant value.

The harmonic steady-state response exists for semistable and Lyapunov stable systems as long

as a pole of the Laplace transform of the input signal does not coincide with a pole of the transfer

function.

The transient behavior of the system before its response reaches harmonic steady state depends

on the poles and zeros of the system, the initial conditions of the internal states, and the sinusoidal

input.

The ratio of the amplitude of the harmonic steady-state response to the amplitude of the har-

monic input is equal to the magnitude of the transfer function evaluated at the input frequency

ω, that is, |G(ω )|, while the phase shift of the harmonic steady-state response relative to the

phase of the input is given by the phase of the transfer function at the input frequency, that is,

atan2(Im G(ω ),Re G(ω )). Note that the harmonic steady-state response leads the input if 0 <

∠G(ω ) < 180, whereas the harmonic steady-state response lags the output if −180 < ∠G(ω ) < 0

For the input

u(t) = u0 sin(ωt + φ0), (16.2.1)

the harmonic steady-state output is given by

yhss(t) = M(ω)u0 sin(ωt + φ0 + φ(ω)), (16.2.2)

where

M(ω)
△
= |G(ω )| (16.2.3)
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Figure 16.1.5: Phasor representation.

is the magnitude and

φ(ω)
△
= ∠G(ω ) (16.2.4)

is the phase. The magnitude and phase satisfy

M(ω)e φ(ω) = G(ω ). (16.2.5)

16.3 Frequency Response Plots for Linear Systems Analysis

Plots of the magnitude M(ω) versus input frequency ω and of the phase φ(ω) versus input

frequency ω are called Bode plots. The plot of magnitude versus frequency is the magnitude plot,

while the plot of phase versus frequency is the phase plot. It is convenient to express these plots

using base-10 logarithmic scales for the magnitude and frequency. In particular, the magnitude

is often scaled 20log10M(ω), referred to as decibels (dB). Logarithmic scales are convenient for

plotting the magnitude of a product of transfer functions since the logarithms of the magnitudes of

the factors can be added.

The Matlab commands for creating the Bode plot are bode(A,B,C,D) and bode(num,den), which

are described in Appendix C. The Bode plot can be constructed for all transfer functions G(s)

whether or not G(s) is asymptotically stable, semistable, Lyapunov stable, or unstable. However,

the magnitude and phase shift characteristics of G(s) have a harmonic steady-state interpretation

only when the harmonic steady-state response exists, as discussed in the previous subsection.

Properties of the Bode frequency response plots include:

• The magnitude |G( ω)| is finite if and only if ω is not a pole of G.

• The DC gain is the magnitude at zero frequency, that is, |G(0)|; the DC phase is either zero

degrees or −180 degrees depending on whether G(0) is positive or negative. In the Bode plot

the DC gain is evident from the low frequency part of the magnitude plot.

• For a linear system with more poles than zeros, that is, n > m, the magnitude approaches zero
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Figure 16.1.6: Phasor representation of leading and lagging sinusoids.

as the frequency tends to infinity; in the Bode plot, the magnitude plot tends to −∞ dB as the

frequency tends to infinity.

• Each local maximum at a nonzero frequency corresponds to a pair of complex eigenvalues

with damping ratio less than
√

2/2, that is, an underdamped mode with sub-resonant damping.

• The total change in the phase from low frequency to high frequency is given by (m − n)90◦,

where d
△
= n − m is the relative degree of G, that is, the excess of poles over zeros.

• The frequency ωmco at which the magnitude is unity (or, equivalently, zero dB) is the magni-

tude crossover frequency. The phase margin is defined as

PM = 180◦ − ∠G(ωmco ). (16.3.1)

• The frequency ωpco at which the phase is 180 degrees is the phase crossover frequency. The

gain margin is defined as

GM = −20 log |G(ωpco )|. (16.3.2)

16.4 Pole at Zero

Consider

G(s) =
1

ms
.

With s = ω , G(s) becomes

G(ω ) =
1

mω 
=
− 
mω

.

Hence

|G(ω )| = 1

mω
.
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We plot 20log |G(ω )| versus log ω. We write

y = 20log |G(ω )|

= 20log

∣
∣
∣
∣
∣

1

mω

∣
∣
∣
∣
∣

= −20log |mω|
= −20log m − 20log ω

= −20x + b, (16.4.1)

where x
△
= log m and b

△
= −20log ω.

Consider

G(ω ) =
1

mω 
=
− 
mω
= −  1

mω
. (16.4.2)

The magnitude of G(ω ) is

|G(ω )| = 1

mω
(16.4.3)

with phase

∠G(ω ) = −90◦. (16.4.4)

Figure 16.4.7 represents the phase of G(ω ) on the unit circle, while Figure 16.4.8 represents G(ω )

on the Bode phase plot.

The magnitude crossover frequency ωmco satisfies |G(ωmco )| = 1 sec/kg. Therefore,

1

mωmco

= 1
sec

kg−rad
, (16.4.5)

and therefore

ωmco =
1

m

rad

sec
. (16.4.6)

Note that the magnitude crossover frequency depends on the units chosen for time and mass, and

thus is primarily useful for dimensionless transfer functions.

o

Im G(j    )

Re G(j    )ω

ω

270

mω
1( )G(j    ) = −j       ω

−90

o

Figure 16.4.7: Phase representation on the unit circle.
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Figure 16.4.8: Phase representation in the Bode phase plot.

16.5 Real Poles

Consider

G(s) =
α

s − p
. (16.5.1)

Substituting s = ω , we obtain

G(ω ) =
α

ω  − p
. (16.5.2)

Note that if p < 0, then G is asymptotically stable, whereas, if p > 0, then G is unstable. The

magnitude of G(ω ) is

|G(ω )| = |α|
√

ω2 + p2
. (16.5.3)

For ω << p,

|G(ω )| ≈ |α|
|p|

(16.5.4)

while, for ω >> p,

|G(ω )| ≈ |α|
|ω|
. (16.5.5)

Now, for ω = |p|, the magnitude of G(ω ) becomes

|G( |p|)| = |α|
√

2p2
=

√
2

2

|α|
|p|
. (16.5.6)

Hence, ∆dB is found from

∆dB = 20 log |G( |p|)| − 20 log |G( 0)|

= 20 log





√
2

2

|α|
|p|



 − 20 log

(

|α|
|p|

)

= 20 log





√
2

2



 = 20 log 2−1/2 = −10 log 2 = −3 dB. (16.5.7)
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Consider

z = a + b (16.5.8)

as represented on Figure 16.5.9. To find the phase θ, we can write

tan θ =
Im z

Re z
. (16.5.9)

Consequently,

∠G(ω ) = atan2(Im G(ω ),Re G(ω )). (16.5.10)

The function atan2(a,b) is discussed in Appendix C.

z = a + jb

Im

Re

  z = θ

Figure 16.5.9: Phase representation in the complex plane.

16.6 Complex Poles

Consider

q̂(s) = G(s) f̂ (s), (16.6.1)

where

G(s) =
1

ms2 + cs + k
=

1/m

s2 + 2ζωns + ω2
n

. (16.6.2)

Substituting s = ω , yields

G(ω ) =
1/m

−ω2 + 2ζωn(ω ) + ω2
n

=
1/m

ω2
n − ω2 + (2ζωnω) 

=
(1/m)[ω2

n − ω2 − (2ζωnω) ]

(ω2
n − ω2)2 + (2ζωnω)2

. (16.6.3)
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16.6.1 bode

The Matlab command for plotting the frequency response of a transfer function is given by

bode(A,B,C,D), where A, B,C,D define the state equations for the linear system with the desired in-

put variable and the desired output variable. The function can also be used in the form

bode(num,den) where num and den are defined as in Subsection 15.18.3.

16.6.2 Asymptotic Phase Shift

It is useful to be able to estimate the phase shift of the transfer function at both asymptotically low

and high frequency.

First, we consider the low-frequency limit. If s = 0 is neither a pole nor zero of G, then

∠G(0) =






0 deg, G(0) > 0,

180 deg, G(0) < 0.

Next, if s = 0 is a zero of G and G(s) = srĜ(s), where s is not a zero of Ĝ, then

lim
ω→0+

∠G( ω) =






90r deg, Ĝ(0) > 0,

−90r deg, Ĝ(0) < 0.

Finally, if s = 0 is a pole of G and G(s) = Ĝ(s)/sr, where s is not a pole of Ĝ, then

lim
ω→0+

∠G( ω) =






−90r deg, Ĝ(0) > 0,

90r deg, Ĝ(0) < 0.

Next, we consider the high-frequency limit. In this case, we have

lim
ω→∞
∠G( ω) = lim

ω→0+
∠G( ω) + (p+ − p− + z− − z+ + p0 + z0)90 deg,

where p−, p+, z−, z+ is the number of OLHP poles, ORHP poles, OLHP zeros, and ORHP zeros,

respectively, and p0, z0 is the number of nonzero imaginary-axis poles and zeros, respectively.

16.7 Electrical Filter Example

A lowpass filter reduces noise at high frequency. From the impedance law, we have

V = IZ = ZI

or

I =
V

Z
.

Here Z = Z(s) is a transfer function.

Example 16.7.1. Consider a circuit involve a resistor and capacitor in series with input voltage

Vin across the both components and and output voltage Vout across the capacitor only. Then,

Vin − Vout = RI
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and

Vout =
I

Cs
=

Vin − Vout

RCs
. (16.7.1)

Solving for Vout in (16.7.1, we obtain
(

1 +
1

RCs

)

Vout =
1

RCs
Vin

or

Vout =
1

RCs + 1
Vin =

1
RC

s + 1
RC

Vin.

Now, the current I is

I =
Cs

RCs + 1
Vin.

Hence, at high frequency,

I =
Cω 

RCω  + 1
Vin(ω ) ≈ 1

R
Vin(ω ).

16.8 Problems

Problem 16.8.1. Suppose that a sensor with first-order dynamics has a time constant of .031

sec and a DC gain of 9.2. (Hint: G(s) = α
T s+1

.) Now suppose that the input to the sensor is 4.6 volts

corrupted by (which means “added to”) 60-Hz electrical noise with amplitude 3.3 mV. Describe

the sensor output after a large amount of time passes by giving the amplitude and phase of both

of its harmonic components, that is, the DC component and the 60-Hz component. Do this two

different ways. First, use Laplace transforms to determine the transient and harmonic steady-state

components of the output. Next, use G(ω ) to determine the magnitude and phase shift of the

harmonic steady-state component of the output.

Problem 16.8.2. Suppose that a voltage amplifier with first-order dynamics G(s) = α
T s+1

has a

time constant of T = 0.037 sec and DC gain of α = 43.1. A sinusoidal input signal with amplitude

of 2.8 volts yields, after an initial transient, a sinusoidal response with amplitude 76.2 volts. What

were the frequencies of the input sinusoid and the output sinusoid?

Problem 16.8.3. A lag filter has a pole at -2, a zero at -6, and a DC gain of 10. At the frequency

4 rad/sec, what is the magnitude of the filter in dB and what is the phase of the filter in degrees?

(Use just a calculator for this problem.)

Problem 16.8.4. Consider the transfer function

G(s) =
1

s2 + 2ζωns + ω2
n

with ωn = 1 rad/sec. Use Matlab to plot the magnitude and phase Bode plots of this function for ω

from .01 to 100 for ζ = .1, .3, .5, .7, .9. Put all plots in the same figure.

Problem 16.8.5. Consider the transfer function

G(s) =
1

s2 + 2ζωns + ω2
n

.
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Assume that the system is underdamped, that is, 0 < ζ < 1. Use calculus to determine the resonance

frequency ωr at which the magnitude |G( ω)| is maximized, and determine |G( ωr)|. Check whether

your solution agrees with the figure from the previous problem. In addition, determine the range of

values of ζ for which the magnitude of the transfer function is never greater than the value of its DC

gain.

Problem 16.8.6. Sketch Bode magnitude and phase plots by hand for each of the following

transfer functions. You can use Matlab to print an “empty” log-log grid for your sketch. Be sure

that the range of ω is large enough to include all important features of your plots. Explain how each

plot was constructed. Check your sketches by plotting with the Matlab Bode function.

i) G(s) = s+2
s+10

(lead).

ii) G(s) = s+10
s+2

(lag).

iii) G(s) = s−2
s+10

.

iv) G(s) = s−2
s+2

(allpass).

v) G(s) = s
s+2

(washout).

Problem 16.8.7. For each of the following transfer functions, sketch the Bode magnitude and

phase plots by hand. You can use Matlab to print an “empty” log-log grid for your sketch. Be sure

that the range of ω is large enough to include all important features of your plots. Explain how each

plot was constructed. Check your sketches by plotting with Matlab.

i) G(s) = s2

(s+1)2(s+10)2 (rooftop).

ii) G(s) =
(s+1)(s+100)

s(s+5)(s+10)
.

Problem 16.8.8. Consider the asymptotically stable loop transfer function

L(s) =
10

s2 + 2s + 1
.

Show that the closed-loop transfer function S (s) = 1/(1 + L(s)) is asymptotically stable, and use

Matlab to plot the magnitude and phase Bode plots for S . Then, write a Matlab program to show

numerically that ∫ ∞

0

ln |S (ω )| dω = 0.

Explain this result in terms of the “balance” between attenuation and amplification.

Problem 16.8.9. Consider the unstable loop transfer function

L(s) =
4

(s − 1)(s + 2)
.

Show that the closed-loop transfer function S (s) is asymptotically stable, and use Matlab to plot the

Bode plots for S . Then, write a Matlab program to show numerically that
∫ ∞

0

ln |S (ω )| dω = π.

Discuss the “balance” between attenuation and amplification.
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Problem 16.8.10. Consider the loop transfer function

L(s) =
2.5(s + 100)

(s + 1)2
.

Sketch the gain and phase Bode plots of L(s). Use your plot to indicate the magnitude crossover

frequency ωmco, the phase crossover frequency ωpco, the gain margin, and the phase margin.

Problem 16.8.11. Consider the damped rigid body plant

G(s) =
1

s(s + 1)
.

Then, do the following:

i) Assume K(s) = 1 so that L(s) = G(s). Sketch the Nyquist plot and determine the gain and

phase margins.

ii) Instead of unity feedback, consider the lead controller Gc(s) = k(s + 2)/(s + 20) so that

L(s) = Gc(s)G(s). For k = 1, use Matlab to determine whether the lead provided by this

lead controller increases the phase margin.

iii) Draw the root locus in terms of k.

iv) Choose k so that the complex conjugate poles have damping ratio ζ =
√

2/2.

v) For the value of k that you chose, determine the asymptotic error for the unit ramp input

1/s2.

(Hint: You can solve the problem directly by equating the product of (s − a)(s2 + 2ζωns + ω2
n) with

the cubic obtained from the closed loop transfer function with k as the unknown parameter. Then,

you can get a cubic equation in a or ωn.)

Problem 16.8.12. The lateral dynamics of an experimental aircraft are modeled by the transfer

function 1/(τs + 1), where τ > 0 is a time constant. For this transfer function a basic servo loop is

closed with the integral controller KI/s.

i) Determine the values of KI for which the closed-loop system is asymptotically stable.

ii) For which values of KI is the asymptotic error to a unit-slope ramp command less than

0.025?

iii) For a value of KI such that the closed-loop system is asymptotically stable, determine

the amplitude of the harmonic steady-state component of the error due to the command

r(t) = r0 cos(ωt).

Problem 16.8.13. At a given Mach number, the open-loop longitudinal dynamics of an exper-

imental aircraft are given by L(s) = 1/[s(s + 1)2].

i) Sketch the Bode plot of L (magnitude and phase plots).

ii) Determine the phase crossover frequencyωpco and the gain margin in dB of the closed-loop

system and illustrate them on the Bode plot. (Hint: log10 2 ≈ 0.3.)

iii) Sketch the Nyquist plot of L.

iv) Indicate the phase crossover frequency ωpco and the gain margin on the Nyquist plot. Be

sure that what you show on the Nyquist plot is consistent with the Bode plot.
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Problem 16.8.14. At a given Mach number, the open-loop longitudinal dynamics of an unsta-

ble experimental aircraft are given by

L(s) =
4(s + 10)

(s − 1)(s − 2)
.

i) Sketch the Bode plot of L (magnitude and phase plots).

ii) Sketch the Nyquist plot of L.

iii) Apply the Nyquist test to this system and use it to assess closed-loop stability.





Chapter Seventeen

Solutions to Chapter 15

Problem 15.20.1. Consider the 3 × 3 matrix

A =





3 0 2

4 3 5

7 2 6




.

Manually compute the determinant and inverse of A. Then compute these quantities using Matlab

to check your answer.

Solution 15.20.1.

Let

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33




=





3 0 2

4 3 5

7 2 6





Then, its determinant is

detA= a11C11 + a12C12 + a13C13

= 3(3 · 6 − 2 · 5) − 0(4 · 6 − 7 · 5) + 2(4 · 2 − 7 · 3)

=−2

where Ci j is the cofactor associated with its corresponding element. And its inverse is

A−1 =
1

detA





C11 C12 C13

C21 C22 C23

C31 C32 C33





T

=





−4 −2 3

−5.5 −2 3.5

6.5 3 −4.5





Checking with Matlab,

>> A = [3 0 2; 4 3 5; 7 2 6]

A =

3 0 2

4 3 5

7 2 6

>> detA = det(A)
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detA =

-2

>> invA = inv(A)

invA =

-4.0000 -2.0000 3.0000

-5.5000 -2.0000 3.5000

6.5000 3.0000 -4.5000
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Problem 15.20.2. Use Matlab to compute the eigenvalues of the matrix A in Problem 15.20.1. Then

use Matlab to show that the determinant is the product of the eigenvalues, and show that the trace

(the sum of the diagonal entries) is the sum of the eigenvalues. Furthermore, use Matlab to compute

the eigenvalues of A2 and A−1, and discuss how they are related to the eigenvalues of A.

Solution 15.20.2.

The eigenvalues of A are

>> evalue_of_A = eig(A)

evalue_of_A = {9.8467, 2.2438, -0.0905}

The product of the eigenvalues is

>> prod(evalue_of_A)

ans = -2.0000

which is equal to the determinant of A computed in the Solution 15.20.1. The sum of eigenvalues is

>> sum(evalue_of_A)

ans = 12.0000

which is equal to trA = 3 + 3 + 6 = 12. The trace of A can also be computed using the following in

MATLAB

>> trace(A)

ans = 12.0000

The eigenvalues of A2 and A−1 are respectively,

>> eig(Aˆ2)

ans = {96.9570, 5.0349, 0.0082}

>> eig(inv(A))

ans = {-11.0472, 0.4457, 0.1016}

Each eigenvalue of A2 is the square of each eigenvalue of A. Also, each eigenvalue of A−1 is the

reciprocal of each eigenvalue of A. Checking with Matlab,

>> evalue_of_A

ans = {10.6031, 0.1515, 1.2454}

>> evalue_of_A.ˆ2

ans = {96.9570, 5.0349, 0.0082}

>> 1./evalue_of_A

ans = {-11.0472, 0.4457, 0.1016}

These relations can be generalized and analytically proven with the aid of Jordan canonical decom-

position (or simply diagonalizaton if all of the eigenvalues are distinct like A above).
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Problem 15.20.3. Using the “randn” command in Matlab, form a random 4 × 2 matrix A. Then

compute the 4 × 4 matrix AAT. Using Matlab to compute the eigenvalues of the symmetric matrix

AAT, check whether this matrix is positive semidefinite. Then, show mathematically (by hand, not

using Matlab) that xTAATx ≥ 0 for all vectors x. (Hint: Define z = ATx.)

Solution 15.20.3.

>> A = rand(4,2)

A =

0.9501 0.8913

0.2311 0.7621

0.6068 0.4565

0.4860 0.0185

>> A*A’

ans =

1.6972 0.8989 0.9834 0.4782

0.8989 0.6342 0.4881 0.1264

0.9834 0.4881 0.5766 0.3034

0.4782 0.1264 0.3034 0.2365

>> eig(A*A’)

ans = {0.0000 0.0000 0.2632 2.8813}

All the eigenvalues of symmetric matrix AAT are greater than or equal to zero, which implies that it

is positive semidefinite. Finally,

xTAATx = (xTA)(ATx) = (ATx)T(ATx) = zTz ≥ 0

Note zTz =
∑

z2
i
.

Since this inequality holds for all vectors x, it completes the proof.
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Problem 15.20.4. Let A be an n × n matrix and let p(s) = det(sI − A) be the characteristic poly-

nomial of A. The Cayley-Hamilton theorem states that p(A) = 0. Check this fact by obtaining the

characteristic polynomial p(s) for the matrix

A =

[

0 1

−a0 −a1

]

,

and then showing that p(A) = 0. Repeat these steps for

A =





0 1 0

0 0 1

−a0 −a1 −a2




.

Do all of these symbolic calculations by hand.

Solution 15.20.4.

The characteristic polynomial of the matrix

A =

[

0 1

−a0 −a1

]

is

p(s) = |sI − A| =
∣
∣
∣
∣
∣
∣

s −1

a0 s + a1

∣
∣
∣
∣
∣
∣
= s2 + a1s + a0.

To verify the Cayley-Hamilton theorem, we evaluate

p(A) = A2 + a1A + a0I2

where I2 is the 2 × 2 identity matrix. This is evaluated to be

p(A) =

[

−a0 −a1

a0a1 −a0 + a2
1

]

+ a1

[

0 1

−a0 −a1

]

+ a0

[

1 0

0 1

]

=

[

0 0

0 0

]

.

Thus, A is seen to be a root of its characteristic polynomial.

For the matrix

A =





0 1 0

0 0 1

−a0 −a1 −a2




,

the characteristic polynomial is

p(s) = |sI − A| =

∣
∣
∣
∣
∣
∣
∣
∣

s −1 0

0 s −1

a0 a1 s + a2

∣
∣
∣
∣
∣
∣
∣
∣

= s3 + a2s2 + a1s + a0.

We evaluate
[

p(A) = A3 + a2A2 + a1A + a0I3

]

where I3 is the 3 × 3 identity matrix. Substituting for

A, we obtain

p(A) =





−a0 −a1 −a2

a0a2 −a0 + a1a2 −a1 + a2
2

a0a1 − a0a2
2

a2
1
− a2(−a0 + a1a2) −a0 + a1a2 − a2(−a1 + a2

2
)





+ a2





0 0 1

−a0 −a1 −a2

a0a2 −a0 + a1a2 −a1 + a2
2




+ a1





0 1 0

0 0 1

−a0 −a1 −a2
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+ a0





1 0 0

0 1 0

0 0 1




=





0 0 0

0 0 0

0 0 0




,

which verifies the Cayley-Hamilton theorem.
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Problem 15.20.5. The eigenvalues of a matrix are the roots of its characteristic polynomial. Con-

sider the 3× 3 matrix in Problem 15.20.4 with a0 = −2, a1 = 5, and a2 = 3, and use Matlab to show

numerically that the roots of p(s) are indeed the eigenvalues of A. Use roots(p) and eig(A) for your

computations.

Solution 15.20.5.

Substituting for a0, a1, and a2, we obtain

p(s) = s3 + 3s2 + 5s − 2 for A =





0 1 0

0 0 1

2 −5 −3




.

The roots of A are

>> roots([1 3 5 -2])

ans =

-1.6641 + 1.8230i

-1.6641 - 1.8230i

0.3283

Also, the eigenvalues of A are given by

>> A = [ 0 1 0 ; 0 0 1 ; 2 -5 -3 ]

>> eig(A)

ans =

0.3283

-1.6641 + 1.8230i

-1.6641 - 1.8230i

which numerically verifies that the roots of p(s) are indeed the eigenvalues of A.
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Problem 15.20.6. Show that the matrix

A =

[

cos θ sin θ

− sin θ cos θ

]

is orthogonal. Also, check whether the matrix

B =

[

cos θ sin θ

sin θ − cos θ

]

is orthogonal. Determine by hand (not by Matlab) the determinants and eigenvalues of these matri-

ces. Finally, choose several values of θ and multiply the vector [1 1]T by these matrices. Discuss

how the resulting vectors compare to the original vector in terms of their length and direction. You

can use a calculator but do not use Matlab.

Solution 15.20.6.

For the first matrix,

AAT =

[

cos θ sin θ

− sin θ cos θ

] [

cos θ − sin θ

sin θ cos θ

]

=

[

cos2 θ + sin2 θ − cos θ sin θ + sin θ cos θ

− sin θ cos θ + cos θ sin θ cos2 θ + sin2 θ

]

=

[

1 0

0 1

]

= I2,

which verifies that A is orthogonal by definition. The determinant of A is

detA = cos2 θ + sin2 θ = 1

The eigenvalues of A are the roots of the characteristic polynomial p(λ) = det(λI − A). The roots of

the polynomial are λ = cos θ ±  sin θ.

Similarly for the second matrix,

AAT =

[

cos θ sin θ

sin θ − cos θ

] [

cos θ sin θ

sin θ − cos θ

]

=

[

cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ cos2 θ + sin2 θ

]

=

[

1 0

0 1

]

= I2,

which verifies that A is orthogonal by definition. Its determinant is

detA = − cos2 θ − sin2 θ = −1

The eigenvalues of A are the roots of the characteristic polynomial p(λ) = det(λI − A). The roots of

the polynomial are λ = ±1.

Now let θ = 76◦ = 1.3265 rad. Then, for the first matrix,
[

cos θ sin θ

− sin θ cos θ

] [

1

1

]

=

[

0.2419 0.9703

−0.9703 0.2419

] [

1

1

]

=

[

1.2122

−0.7284

]

,

which shows that the given vector is rotated by 76◦ clockwise. Similarly for the second matrix,
[

cos θ sin θ

sin θ − cos θ

] [

1

1

]

=

[

0.2419 0.9703

0.9703 −0.2419

] [

1

1

]

=

[

1.2122

0.7284

]

,

which shows that the original vector is rotated by 76◦ clockwise followed by mirroring about the

x-axis while keeping the magnitude.
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Problem 15.20.7. Use the dot product to compute the angle between the vectors [3 2]T and [−2 4]T.

Solution 15.20.7.

We use the definition of dot product:

x · y = |x||y| cos θ

Let x = [3 2]T and y = [−2 4]T. Then, the angle between these vectors is

cos θ =
x · y
|x||y|

=
3 · (−2) + 2 · 4

√
32 + 22

√

(−2)2 + 42
= 0.1240

⇒ θ = arccos 0.1240 = 1.4464rad = 82.875deg
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Problem 15.20.8. Solve the differential equation

ẋ(t) = ax(t) + b

analytically by evaluating the convolution integral expression given by (15.8.3). Under what condi-

tions does limt→∞ x(t) exist? When the limit exists, determine the limiting value. How could you

guess the limiting value without solving the equation?

Solution 15.20.8.

Let u = 1, A = a, and B = b. Substituting these into the convolution integral expression yields,

x(t) = eat x0 +

∫ t

0

ea(t−τ)bdτ

= eat x0 −
b

a
ea(t−τ)|t0

= eat x0 −
b

a

(

1 − eat
)

= eat

(

b

a
+ x0

)

− b

a
.

The limiting value exist if and only if a is negative and the limiting value is limt→∞ x(t) = −b/a.

Since the limiting value of x(t) is the value of x(t) when ẋ(t) = 0, it can be guessed from the

differential equation that limt→∞ x(t) = −b/a.
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Problem 15.20.9. Using the solution to Problem 15.20.8, write down the solution to the scalar

ordinary differential equation

ẋ(t) = −2x(t) + 8.

This equation represents the step response of a linear system, where the constant 8 is the value of

the step input. Plot the solutions for the initial conditions x(0) = 5 and x(0) = −4 in the same figure.

Be sure to label all axes of your figure and give it an appropriate caption. Determine limt→∞ x(t)

from the plot and compare that numerical value with the analytical limit. Explain how the limiting

value of x(t) depends on the constants in the problem, namely, the coefficient of x(t), the value of

the input step, and the initial condition.

Solution 15.20.9.

Let a = −2 and b = 8. Substituting these into the solution (from Problem 15.20.8.) yields,

x(t) = e−2t(−4 + x0) + 4

The limiting value is, limt→∞ x(t) = 4.

For x(0) = 5 it yields,

x(t) = e−2t + 4.

For x(0) = −4 it yields,

x(t) = −8e−2t + 4.

The plot is shown in Figure A.0.1.

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

5

t

x

Step Response

 

 

x(0)= 5

x(0) = −4

Figure 17.0.1: Problem 15.20.9 Step Response

The limiting value can be determined from Figure 1 as limt→∞ x(t) = 4. This value matches the

analytical limit found earlier.

The M-file used to create the plot is given below.
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<HWChapterLinSysProblem9.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem9 Soln

clear all; close all;

t = 0:0.01:2.5;

xa = exp(-3*t)+ 4; xb = -8*exp(-3*t)+ 4;

figure(1);

plot(t,xa,’b-’,t,xb,’k--’);

xlabel(’t’);

ylabel(’x’);

title(’Step Response’);

legend(’x(0) = 5’,’x(0) = -4’,’location’,’best’);

grid on;
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Problem 15.20.10. Consider ẋ = Ax, and let λ = σ + ω be a complex eigenvalue of A with

associated complex eigenvector

v =

[

3

1

]

+ 

[

1

4

]

.

Consider three different eigenvalues (of different matrices A) given by ω = 1 and σ = −1, 0, 1.

Then, for each value of σ, plot the eigensolutions

x(t) =

[

x1(t)

x2(t)

]

= Re(eλtv)

in the x1, x2 plane, where the curve is parameterized by t. Use arrows to denote how the solution

evolves as t increases, and explain how the properties of the eigensolution depend on σ.

Solution 15.20.10.

We use the eigensolution
x(t) = Re(eλtv)

Let x(t) = [x1(t) x2(t)]T . Figures 17.0.2 – 17.0.6 show the time responses of x(t) for each eigenvalue.

It is clear that the time response
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Figure 17.0.2: Problem 15.20.10. Time Responses of Eigensolution with λ = −1 + 1 
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Figure 17.0.3: Problem 15.20.10. Time Responses of Eigensolution with λ = 0 + 1 

• converges if Re λ < 0
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Figure 17.0.4: Problem 15.20.10. Time Responses of Eigensolution with λ = 1 + 1 
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Figure 17.0.5: Problem 15.20.10. Phase Planes for Eigensolution

• oscillates if Re λ = 0

• diverges if Re λ > 0.

The M-file used to create the plots is given below

<HWChapterLinSysProblem10.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem10 Soln

clear all; home; close all;

v = [3 1]’ + j*[ 1 4]’; lam1 = -1+j; lam2 = 0+j; lam3 = 1+j;

t=0:0.01:10; for ii=1:length(t)

x1(:,ii) = real(exp(lam1*t(ii))*v);

x2(:,ii) = real(exp(lam2*t(ii))*v);

x3(:,ii) = real(exp(lam3*t(ii))*v);

end

figure(1); plot(t,x1(1,:),’-’); xlabel(’t’); ylabel(’x_1(t)’); grid
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Figure 17.0.6: Problem 15.20.10. Phase Plane for Eigensolution

title(’Time Response for \lambda = -1+1j’)

figure(2); plot(t,x1(2,:),’-’); xlabel(’t’); ylabel(’x_2(t)’); grid

title(’Time Response for \lambda = -1+1j’)

figure(3); plot(t,x2(1,:),’-’); xlabel(’t’); ylabel(’x_1(t)’); grid

title(’Time Response for \lambda = 0+1j’)

figure(4); plot(t,x2(2,:),’-’); xlabel(’t’); ylabel(’x_2(t)’); grid

title(’Time Response for \lambda = 0+1j’)

figure(5); plot(t,x3(1,:),’-’); xlabel(’t’); ylabel(’x_1(t)’); grid

title(’Time Response for \lambda = 1+1j’)

figure(6); plot(t,x3(2,:),’-’); xlabel(’t’); ylabel(’x_2(t)’); grid

title(’Time Response for \lambda = 1+1j’)

figure(7); plot(x1(1,:),x1(2,:),’-’); xlabel(’x_1(t)’);

ylabel(’x_2(t)’); grid on; title(’Phase Plane for \lambda = -1+1j’)

figure(8); plot(x2(1,:),x2(2,:),’-’); xlabel(’x_1(t)’);

ylabel(’x_2(t)’); grid on; title(’Phase Plane for \lambda = 0+1j’)

figure(9); plot(x3(1,:),x3(2,:),’-’); xlabel(’x_1(t)’);

ylabel(’x_2(t)’); grid on; title(’Phase Plane for \lambda = 1+1j’)
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Problem 15.20.11. Let λ, λ̄ = −ζωn± ωn

√

1 − ζ2 denote a complex conjugate pair of underdamped

eigenvalues. Show that

ωn = |λ|, ζ = −λ + λ̄
2|λ|

, ωd =
λ − λ̄

2 
.

Solution 15.20.11.

Substituting λ into the right hand side we get,

|λ|=
√

(−ζωn)2 + (ωn

√

1 − ζ2)2

⇒ |λ|=
√

(ζ2ω2
n) + (ω2

n(1 − ζ2))

⇒ |λ|=ωn

√

ζ2 + 1 − ζ2

⇒ |λ|=ωn

Next, substituting λ and λ̄ into the right hand side we get,

−λ + λ̄
2|λ|

=−−2ζωn

2ωn

⇒ −λ + λ̄
2|λ|

= ζ

Once again, substituting λ and λ̄ into the right hand side we get,

λ − λ̄
2 
=

2 ωn

√

1 − ζ2

2 

⇒ λ − λ̄
2 
=ωn

√

1 − ζ2

⇒ λ − λ̄
2 
=ωd

Note that ωd , ωn

√

1 − ζ2.
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Problem 15.20.12. Let λ1, λ2 = −ζωn±ωn

√

ζ2 − 1 denote a pair of overdamped eigenvalues. Show

that

ωn =
√

λ1λ2 (17.0.1)

and

ζ = − λ1 + λ2

2
√
λ1λ2

. (17.0.2)

Solution 15.20.12.

First, substitute λ1 and λ2 into the right side,
√

λ1λ2 =
√

λ1λ2

⇒
√

λ1λ2 =

√

(−ζωn + ωn

√

ζ2 − 1)(−ζωn − ωn

√

ζ2 − 1)

⇒
√

λ1λ2 =

√

ζ2ω2
n − ω2

n(ζ2 − 1)

⇒
√

λ1λ2 =ωn

√

ζ2 − (ζ2 − 1)

⇒
√

λ1λ2 =ωn

Once again, substitute λ1 and λ2 into the right side and simplify the expression,

− λ1 + λ2

2
√
λ1λ2

=− λ1 + λ2

2
√
λ1λ2

⇒ − λ1 + λ2

2
√
λ1λ2

=
2ζωn

2ωn

⇒ − λ1 + λ2

2
√
λ1λ2

= ζ
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Problem 15.20.13. Use l’Hopital’s rule to derive (15.15.9) from (15.15.8).

Solution 15.20.13.

Knowing that ωd =
√

1 − ζ2ωn, let

f (ζ) =
f0

m
e−ζωnt sin(

√

1 − ζ2ωnt), (17.0.3)

g(ζ) =

√

1 − ζ2ωn. (17.0.4)

Using l’Hopital’s rule

lim
ζ→1

f (ζ)

g(ζ)
= lim

ζ→1

f
′
(ζ)

g
′
(ζ)

(17.0.5)

= lim
ζ→1

f0

m

−ωnte−ζωnt sin(
√

1 − ζ2ωnt) + e−ζωnt −ζωnt√
1−ζ2

cos(
√

1 − ζ2ωnt)

−ζωn√
1−ζ2

(17.0.6)

=
f0

m
lim
ζ→1

−ωnte−ζωnt sin(
√

1 − ζ2ωnt)
−ζωn√

1−ζ2

+ e−ζωntt cos(

√

1 − ζ2ωnt) (17.0.7)

=
f0

m
te−ζωnt. (17.0.8)
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Problem 15.20.14. Consider the damped oscillator (DO) with acceleration output. Write this sys-

tem in A, B,C,D form, where A is of size 2 × 2.

Solution 15.20.14.

A damped oscillator is described by

mq̈ + cq̇ + kq = F.

We need to write this system in the form,

ẋ(t) = Ax + Bu

y = Cx + Du

where u is the input and y is the output.

We first transform the 2nd order system into state space form.

Let x = [x1 x2]T = [q q̇]T . Then,

ẋ1 = q̇ = x2

ẋ2 = q̈ = − k

m
q − c

m
q̇ = − k

m
x1 −

c

m
x2 +

1

m
F

Re-writing into the matrix form,
[

ẋ1

ẋ2

]

=

[

0 1

− k
m
− c

m

] [

x1

x2

]

+

[

0
1
m

]

F ⇔ ẋ = Ax + Bu

The system has an acceleration output, so

y= q̈ = − k

m
q − c

m
q̇ = − k

m
x1 −

c

m
x2 +

1

m
F

Re-writing into the matrix form,

y =
[

− k
m
− c

m

]
[

x1

x2

]

+
1

m
F ⇔ y = Cx + Du

So we have,

A=

[

0 1

− k
m
− c

m

]

B=

[

0
1
m

]

C =
[

− k
m
− c

m

]

D=
[

1
m

]
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Problem 15.20.15. Use the initial value theorem to determine the initial value of each of the fol-

lowing functions: y(t) = t, y(t) = t + 1, y(t) = sin 2t, and y(t) = cos 2t.

Solution 15.20.15.

The initial value theorem states that

y(0+) = lim
s→∞

sŷ(s), (17.0.9)

if the limit lims→∞ sŷ(s) exists, where ŷ(s) is the Laplace transform of y(t).

• y(t) = t ⇒ ŷ(s) = 1
s2 . Hence, y(0+) = lims→∞ s 1

s2 = 0.

– Setting t = 0 yields y(0) = 0, which confirms the initial value theorem.

• y(t) = t + 1⇒ ŷ(s) = 1
s2 +

1
s
. Hence, y(0+) = lims→∞ s

(
1
s2 +

1
s

)

= lims→∞
(

1
s
+ 1

)

= 1.

– Setting t = 0 yields y(0) = 1.

• y(t) = sin 2t ⇒ ŷ(s) = 2
s2+4

. Hence, y(0+) = lims→∞ s
(

2
s2+4

)

= lims→∞
2/s

1+(4/s2)
= 0.

– Setting t = 0 yields y(0) = sin 0 = 0.

• y(t) = cos 2t ⇒ ŷ(s) = s
s2+4

. Hence, y(0+) = lims→∞ s
(

s
s2+4

)

= lims→∞
1

1+(4/s2)
= 1.

• Setting t = 0 yields y(0) = cos 0 = 1.
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Problem 15.20.16. Use the initial value theorem to determine the initial slopes of the functions in

the previous problem.

Solution 15.20.16.

From the initial value theorem, we know that

y
′
(0+) = lim

s→∞
s(sŷ(s) − y(0)), (17.0.10)

if the limit lims→∞ s2ŷ(s) exists, where ŷ(s) is the Laplace transform of y(t).

• y(t) = t ⇒ ŷ(s) = 1
s2 . Hence, y

′
(0+) = lims→∞ s2 1

s2 = 1.

– Since y′(t) = 1, setting t = 0 yields y′(0) = 1, which confirms the initial value theorem.

• y(t) = t + 1⇒ ŷ(s) = 1
s2 +

1
s
. Hence, y

′
(0+) = lims→∞ s

(

s
(

1
s2 +

1
s

)

− 1
)

= 1.

– Since y′(t) = 1, setting t = 0 yields y′(0) = 1.

• y(t) = sin 2t ⇒ ŷ(s) = 2
s2+4

. Hence, y
′
(0+) = lims→∞ s2

(
2

s2+4

)

= lims→∞
2

1+(4/s2)
= 2.

– Since y′(t) = 2 cos 2t, setting t = 0 yields y′(0) = 2 cos 0 = 2.

• y(t) = cos 2t ⇒ ŷ(s) = s
s2+4

. Hence, y
′
(0+) = lims→∞ s

(

s
(

s
s2+4

)

− 1
)

= 0.

– Since y′(t) = 2 sin 2t, setting t = 0 yields y′(0) = 2 sin 0 = 0.



520 CHAPTER 17

Problem 15.20.17. Use Laplace transforms to analytically determine the response of v̇+2v = sin 5t

for an arbitrary initial condition v(0). Then show that you can choose a special initial condition v(0)

so that the response is exactly harmonic, that is, there is no transient (non-harmonic) component of

the solution. Finally, confirm your answer by using ODE45 to simulate the system with this special

initial condition as well as another initial condition.

Solution 15.20.17.

Taking into account the non-zero initial conditions, the Laplace transform of v̇+ 2v = sin 5t is given

below

(s + 2)v̂(s)= v(0) +
5

s2 + 25

⇒ v̂(s)=
v(0)

s + 2
+

5

(s + 2)(s2 + 25)

Using partial fraction decomposition, it yields

v̂(s)=
v(0)

s + 2
+

5

(s + 2)(s2 + 25)

⇒ v̂(s)=
v(0)

s + 2
+

5

29(s + 2)
− 5s − 10

29(s2 + 25)

⇒ v̂(s)=
v(0)

s + 2
+

5

29(s + 2)
− 5s

29(s2 + 25)
+

10

29(s2 + 25)

The response is then obtained by taking the inverse Laplace transformation, which yields
[

v(t) =
(

v(0) +
5

29

)

e−2t − 5

29
cos 5t +

2

29
sin 5t.

]

If the initial condition is chosen to be v(0) = −5/29, then the exponential term is cancelled out,

which yields [

v(t) = − 5

29
cos 5t +

2

29
sin 5t.

]

Apparently, now the response is harmonic. Figure 17.0.7 compares the exact harmonic response

with the response including a non-harmonic component.

The M-file used to create plots is given below

<HWChapterLinSysProblem17.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem17 Soln

function HWChapterLinSysProblem17

v01 = -5/29; %yields only harmonic response

v02 = 1/5; %choose something other than -5/29

tspan = 0:0.1:5; %timespan for ode solution

% Solution using ODE45

[t1,v1] = ode45(@f,tspan,v01);

[t2,v2] = ode45(@f,tspan,v02);
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% Plot

figure(1);clf;

hold on

plot(t1,v1,’b’)

plot(t1,v2,’r--’)

xlabel(’Time (s)’)

ylabel(’v(t)’)

legend(’v(0) = -5/29’,’v(0) = 1/5’)

end

function vdot = f(t,v)

vdot = -2*v + sin(5*t);

end

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

v
(t

)

 

 

v(0) = −5/29

v(0) = 1/5

Figure 17.0.7: Problem 15.20.17. Response of the System
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Problem 15.20.18. A motor with constant applied torque is modeled as the damped rigid body

Jθ̈ + cθ̇ = τ01(t), where J is the load inertia, c is the viscous damping coefficient, and τ0 is the

moment. The initial angle θ(0) and initial angular rate θ̇(0) are zero. Use Laplace transforms and

the final value theorem to determine the terminal angular rate limt→∞ θ̇(t). Also compute the same

limit by using the time-domain solution obtained from Laplace transforms.

Solution 15.20.18.

Let v(t) = θ̇(t). Then the given equation is expressed as

Jv̇(t) + cv = τ01(t)

Taking Laplace transforms on both sides of the equation with zero initial conditions, we get the

forced response given by

(Js + c)v̂(s)= τ0/s

⇒ v̂(s)=
τ0

s(Js + c)

⇒ v̂(s)=
τ0

cs
− Jτ0

c(Js + c)

The inverse transform then yields the time domain solution for the velocity

v(t)=
τ0

c
− τ0

c
e−

c
J

t.

Hence, the terminal velocity is given by

lim
t→∞

v(t)=
τ0

c
.

The final value theorem provides the same result:

lim
t→∞

v(t) = lim
s→0

sv̂(s)=
τ0

c

Also this result can be guessed from the given equation as follows: if there is a steady-state terminal

velocity, then the acceleration v̇→ 0 as t → ∞. Thus,

lim
t→∞

(Jv̇(t) + cv(t))= lim
t→∞

τ0

⇒ lim
t→∞

cv(t)= τ0

⇒ lim
t→∞

v(t)=
τ0

c
.
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Problem 15.20.19. For

ŷ(s) =
1

s(s2 + s + 1)
,

use partial fractions to show that

y(t) = 1(t) − e−
1
2

t cos





√
3

2
t



 −
1
√

3
e−

1
2

t sin





√
3

2
t



 .

Solution 15.20.19.

Using partial fractions, we can write

1

s(s2 + s + 1)
=

A

s
+

Bs +C

s2 + s + 1
=

(A + B)s2 + (A +C)s + A

s(s2 + s + 1)
,

where we find A = 1 and B = C = −1. This gives

ŷ(s) =
1

s
+
−(s + 1)

s2 + s + 1
=

1

s
+
−(s + 1

2
)

(s + 1
2
)2 + 3

4

+
− 1

2

(s + 1
2
)2 + 3

4

.

Then, taking the inverse Laplace of ŷ(s) and using the s-shift rule, we obtain

y(t) = 1(t) − e−
1
2

t cos





√
3

2
t



 −
1

2

2
√

3
e−

1
2

t sin





√
3

2
t





= 1(t) − e−
1
2

t cos





√
3

2
t



 −
1
√

3
e−

1
2

t sin





√
3

2
t



 .
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Problem 15.20.20. Consider an object falling under the force of gravity. Ignore drag and model

the motion as an undamped rigid body. Use Laplace transforms to express the position q(t) as a

function of t, q(0), q̇(0), and g.

Solution 15.20.20.

Let us start by defining

q̈(t) , g. (17.0.11)

Taking the Laplace of this equation, we get

s2q(s) − sq(0) − q̇(0) =
g

s
(17.0.12)

q(s) =
q(0)

s
+

q̇(0)

s2
+

g

s3
. (17.0.13)

Now take the inverse Laplace to yield

q(t) = q(0) + q̇(0)t +
gt2

2
. (17.0.14)
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Problem 15.20.21. A body with mass M is falling under the force of gravity. Atmospheric drag is

modeled by a dashpot coefficient D, so that the system is modeled as a damped rigid body. Assuming

initial velocity v0, use Laplace transforms to find the velocity v(t) for t > 0. Then use the final value

theorem to compute the terminal velocity limt→∞ v(t).

Solution 15.20.21.

The damped rigid body is expressed as

Mq̈ + Dq̇ = Mg

⇒ Mv̇ + Dv = Mg

v(0) = v0

Using Laplace

sv̂(s) − v(0) +
D

M
v̂(s) =

g

s
.

This gives

(s +
D

M
)v̂(s) = v0 +

g

s
or

v̂(s) =
v0

s + D
M

+
g

s(s + D
M

)
.

Now using partial fractions

g

s(s + D
M

)
=

a

s
+

b

s + D
M

or g = as +
D

M
a + bs.

For s = 0,

g =
aD

M
⇒ a =

gM

D
.

For s = − D
M

,

g = −bD

M
⇒ b = −gM

D
.

Taking the inverse Laplace of v̂(s), we obtain

v(t) = v0e−
D
M

t − gM

D
e−

D
M

t +
gM

D
1(t)

=

(

v0 −
gM

D

)

e−
D
M

t +
gM

D
1(t).

Using the final value theorem, we obtain

lim
t→∞

v(t) = lim
s→0

sv̂(s) =
Mg

D
.
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Problem 15.20.22. Consider an iron sphere and a wooden sphere of the same size and smoothness.

Does the iron sphere fall faster than the wooden sphere? Use the undamped rigid body to show that,

if there is no drag, then the spheres fall at the same rate. Now consider the more realistic case in

which drag is present. Using the damped rigid body, and assuming that the damping coefficient is

the same for both spheres, determine whether or not the heavier body falls faster than the lighter

body. (Hint: First consider the terminal velocities and perform some Matlab simulation.)

Solution 15.20.22. With no atmospheric drag, the equation of motion of a rigid body is,

v̇(t) = g.

Since the mass cancels out, both objects fall equally.

With atmospheric drag,

v̇ +
D

M
v = g.

The analytical solution for v(t) is (from Problem 15.20.21),

v(t) =

(

v0 −
gM

D

)

e−
D
M

t +
gM

D
.

Assuming a zero initial velocity for simplicity, it yields,

v(t) =
gM

D

(

1 − e−
D
M

t
)

.

Now, let v1 and v2 be the velocities of a wooden sphere and an iron sphere, respectively. Now, we

prove that if M1 < M2, then for all t ≥ 0, v1(t) ≤ v2(t).

First, we prove the following.

Fact 17.0.1. Given a differentiable function f : [0,∞) → R, if f (y) − f (x) ≤ y − x, ∀y ≥ x,

then f ′(x) ≤ 1, ∀x.

Proof.

f (y) − f (x) ≤ y − x, ∀y ≥ x

⇒ f (y) − f (x)

y − x
≤ 1, ∀y ≥ x

⇒ lim
y→x+

f (y) − f (x)

y − x
≤ 1,

⇒ f ′(x) ≤ 1, ∀x.

Fact 17.0.2. If f (x) = xe−1/x, x > 0, then f ′(x) ≤ 1.

Proof. By power series expansion,

1 +
1

x
< e1/x = 1 +

1

x
+

1

2!

1

x2
+

1

3!

1

x3
+ · · · .

So,

e−1/x

(

1 +
1

x

)

< 1.
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Thus,

f ′(x) = e−1/x + xe−1/x

(

1

x2

)

= e−1/x

(

1 +
1

x

)

< 1.

Using Fact 17.0.1 and 17.0.2, it is true that

y ≥ x

⇒ ye−1/y − xe−1/x ≤ y − x.

Now let y = M2/Dt and x = M1/Dt where M2 < M1. Then,

⇒ M2

Dt
e−Dt/M2 − M1

Dt
e−Dt/M1 <

M2

Dt
− M1

Dt

⇒ M2e−Dt/M2 − M1e−Dt/M1 < M2 − M1

⇒ M1

(

1 − e−Dt/M1

)

< M2

(

1 − e−Dt/M2

)

⇒ gM1

D

(

1 − e−Dt/M1

)

<
gM2

D

(

1 − e−Dt/M2

)

⇒ v1(t) < v2(t)

Therefore, heavier objects fall faster than lighter objects in the presence of atmospheric drag.

Alternative Solution

For the terminal velocity,

lim
t→∞

vi(t) = lim
t→∞

gMi

D

(

1 − e−Dt/Mi

)

=
gMi

D
, for i = 1, 2

Thus, if M2 > M1 then

gM2

D
>

gM1

D

⇒v2(t∞) > v1(t∞)

For the transient velocities, we show them numerically.

Note that the magnitude of the damping coefficient (D) determines the slope of the transient velocity,

while the mass determines the settling time.

The M-file used to create the plot is given below.

<HWChapterLinSysProble22.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem22 Soln

clear all;clc;close all

D = 1;

g = 9.8;
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M1 = 1;

M2 = 2;

t = 0:.1:10;

v1 = g*M1/D*(1-exp(-D*t/M1));

v2 = g*M2/D*(1-exp(-D*t/M2));

figure(1);clf

plot(t,v1)

hold on

plot(t,v2,’g--’)

xlabel(’Time (s)’)

ylabel(’v(t)’)

title(’Comparion of velocities’)

legend(’v_1(t)’,’v_2(t)’)

Figure 17.0.8: Problem 15.20.22. Comparision of velocities.
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Problem 15.20.23. Consider the damped rigid body with ramp force input u(t) = f0t and velocity

output. Use Laplace transforms and partial fractions to determine the forced response for t ≥ 0.

Solution 15.20.23.

The equation of motion for a damped rigid body is given by,

mq̈(t) + cq̇(t) = f (t)

Let v(t) = q̇(t). Then,

mv̇(t) + cv(t) = f (t)

Taking the Laplace transform on both sides and rearranging,

v̂(s) =
1

ms + c
f̂ (s)

Given, f (t) = u(t) = f0t, which implies that

L{ f (t)} = f̂ (s) =
f0

s2

Hence,

v̂(s) =
1

ms + c
· f0

s2
=

f0

s2(ms + c)

Decomposition into partial fractions yields

1

s2(ms + c)
=

A

s
+

B

s2
+

Z

ms + c

Z =
m2

c2

B =
1

c

A = −m

c2

Thus,

v̂(s) = f0

(

− m

c2s
+

1

cs2
+

m2/c2

ms + c

)

Taking the inverse Laplace transform, yields

v(t) = f0

(

−m

c2
+

t

c
+

m

c2
e
− c

m
t
)

which is the velocity response of the damped rigid body for a ramp force input.
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Problem 15.20.24. Consider the undamped rigid body in two cases, namely, 1) position output with

unit impulse input, and 2) velocity output with unit step input. Show that the Laplace transforms

of the outputs have the same form in both cases. Next, explain how the same expression correctly

captures both outputs even though the outputs have different dimensions.

Solution 15.20.24.

The undamped rigid body is given by

q̈(t) =
1

m
f (t)

s2q̂(s) − sq(0) − q̇(0) =
1

m
f̂ (s)

1) position output with unit force impulse input f (t) = f0δ(t)

q̂(s) =
1

ms2
f̂ (s)

=
1

ms2
· f0

=
f0

ms2
(17.0.15)

2) velocity output with unit force step input f (t) = f01(t)

v̂(s) = sq̂(s) =
1

ms
f̂ (s)

=
1

ms
· f0

s

=
f0

ms2
(17.0.16)

The same expression captures both outputs but the dimensions of the outputs are different.

Case 1): [q̂(s)] = m-sec

In this case [ f0] is momentum.

[
1

ms2
] · [ f0] = (1/((kg)(1/sec2)) · (kg-m/sec) = m-sec

Case 2): [v̂(s)] = m/sec · sec = m

In this case [ f0] is force.

[
1

ms
] · [ f0] = (1/((kg)(1/sec2)) · (kg-m/sec2) = m
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Problem 15.20.25. Consider the rigid body force-to-velocity transfer function

G(s) =
1

ms

with sinusoidal input f (t) = a sinωt. Use Laplace transforms to determine the forced velocity

response q̇(t) for t ≥ 0. For the forced response, assume that the initial conditions are zero so that

the free response is zero.

Solution 15.20.25.

Let v(t) = q̇(t). Then,

v̂(s) = G(s) f̂ (s)

=
1

ms

aω

s2 + ω2

=
a

mω
(
1

s
− s

s2 + ω2
)

Taking the inverse Laplace transform, yields

v(t) =
a

mω
− a

mω
cos(ω(t)).
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Problem 15.20.26. Determine the forced response of 2q̈ + 17q = 5 f with output y(t) = q(t) and

input f (t) = sin 2t. Check your answer by using either Matlab or Simulink to plot your analytical

solution.

Solution 15.20.26.

2q̈(t) + 17q(t) = 5 f (t).

Taking the Laplace transform

q̂(s) =
5 f̂ (s)

2s2 + 17

=
10

(s2 + 4)(2s2 + 17)

=
5

9

2

s2 + 22
− 10

9

√

2

17

√

17
2

s2 + (

√

17
2

)2

Taking the inverse Laplace transform

q(t) =
5

9
sin(2t) − 10

9

√

2

17
sin(

√

17

2
t).

The M-file used to create the plot is given below.

<HWChapterLinSysProble26.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem26 Soln

clear all;clc;close all

t = 0:0.1:50;

q = 5/9*sin(2*t) - 10/9*sqrt(2/17)*sin(sqrt(17/2)*t);

figure(1);clf

plot(t,q)

xlabel(’t’)

ylabel(’q(t)’)

title(’Matlab Result’)
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Figure 17.0.9: Problem 15.20.24. Analytical solution

Problem 15.20.27. Consider the damped rigid body with position output, and write it in state

space form ẋ = Ax. Then determine eAt by using the fact that the Laplace transform of the matrix

exponential eAt is (sI − A)−1 and taking the inverse Laplace transform of each entry of (sI − A)−1.

Use this result to determine the free response of the damped rigid body with initial displacement

q(0), initial velocity q̇(0), and output y(t) given by the mass position. Finally, determine limt→∞ eAt

by using the expression you obtained for eAt as well as by applying the final value theorem to each

separate entry of (sI − A)−1. What kind of matrix is limt→∞ eAt?

Solution 15.20.27.

A damped rigid body is described by,

mq̈ + cq̇ = F.

Here we assume there is no input, so F = 0. We need to write this system in the form,

ẋ = Ax

We first transform the 2nd order system into state space form. Let x = [x1 x2]T = [q q̇]T . Then,

ẋ1 = q̇ = x2

ẋ2 = q̈ = − c

m
q̇ = − c

m
x2

Re-writing into the matrix form,
[

ẋ1

ẋ2

]

=

[

0 1

0 − c
m

] [

x1

x2

]

⇔ ẋ = Ax

We are given that,

L{eAt}= (sI − A)−1

⇒ (sI − A)−1 =

[

s −1

0 s + c
m

]−1

=
1

s(s + c
m

)

[

s + c
m

1

0 s

]

=





1
s

1
s(s+ c

m
)

0 1
s+ c

m
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FVT shows that,

lim
t→∞

eAt = lim
s→0
{s(sI − A)−1} = lim

s→0
s





1
s

1
s(s+ c

m
)

0 1
s+ c

m



 = lim
s→0





1 1
(s+ c

m
)

0 s
s+ c

m





lim
t→∞

eAt =

[

1 m
c

0 0

]

Converting to the time domain we have,

eAt =L−1{(sI − A)−1} =
[

1 −m
c

e−
c
m

t + m
c

0 e−
c
m

t

]

lim
t→∞

eAt =

[

1 m
c

0 0

]

The free response of this system is described by y(t) = CeAt x(0). So we have,

lim
t→∞

y(t) =
[

1 0
]
[

1 m
c

0 0

] [

q(0)

q̇(0)

]

= q(0) +
m

c
q̇(0)

The matrix limt→∞ eAt is an idempotent matrix. An idempotent matrix holds the property A = A2.
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Problem 15.20.28. An engineer has shown that the output response of a new airframe developed

for a UAV application is given by
y(t) = 2e−6t.

Use the initial value to determine ÿ(0+). (Note the two dots.) Check your answer by computing ÿ(t)

and then setting t = 0. (Hint: Note that

L{ÿ(t)} = s2ŷ(s) − sy(0) − ẏ(0).

You may use the time-domain expression for y(t) to determine y(0) and ẏ(0).)

Solution 15.20.28.

First find the Laplace transform of y(t),

ŷ(s) = L{y(t)} = L{2e−6t} = 2

s + 6
. (17.0.17)

Let

z(t) = ÿ(t), (17.0.18)

then

L{z(t)} = L{ÿ(t)}
⇒ ẑ(s) = s2ŷ(s) − sy(0) − ẏ(0). (17.0.19)

Now rewrite the initial value theorem stated in the class in terms of z(t) as below

z(0+) = lim
s→∞

sẑ(s). (17.0.20)

Combining (17.0.19) and (17.0.20) we get

z(0+) = lim
s→∞

s
(

s2ŷ(s) − sy(0) − ẏ(0)
)

. (17.0.21)

Now using (17.0.17) we have

z(0+) = lim
s→∞

s

(

s2 2

s + 6
− s(2) − (−12)

)

= lim
s→∞

(

72s

s + 6

)

= 72.

To check the answer, evaluate

ÿ(t) = 72e−6t,

⇒ ÿ(0) = 72.
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Problem 15.20.29. For each of transfer functions G(s) below with input u and output y, determine

whether the use of the final value theorem is legal, and, if so, use it to determine the limit of the

output y(t) as t → ∞. Explain why or why not the use of the final value theorem is legal in each

case.

i) G(s) =
−5

s(s + 7)2
, u(t) = 3e−2t.

ii) G(s) =
5

s − 3
, u(t) = 71(t) − 3δ(t − 4.2).

iii) G(s) =
−4

s2 + 2.4s + .3
, u(t) = 6t2.

Solution 15.20.29.

i)

û(s)=
3

s + 2

⇒ ŷ(s)=G(s)û(s) =
−15

s(s + 2)(s + 7)2

It follows that ŷ(s) has four poles, out of which, three are in the open left half plane (OLHP) and

one at zero. Hence, the final value theorem is legal. Since the pole at the origin is not repeated, the

limit is finite and is given by

lim
t→∞

y(t) = lim
s→0

sŷ(s) = −15/98 ≃ −0.1531

ii)

û(s)=
7

s
− 3e−4.2s

⇒ ŷ(s)=G(s)û(s) =
5

s − 3

(

7

s
− 3e−4.2s

)

⇒ ŷ(s)=
5(7 − 3se−4.2s)

s(s − 3)

It follows that ŷ(s) has a pole in the open right half plane (ORHP). Hence the final value theorem is

not legal.

iii)

û(s)=
6 · 2
s3

⇒ ŷ(s)=G(s)û(s) =
−4

s2 + 2.4s + .3

12

s3

⇒ ŷ(s)=
−48

s3(s2 + 2.4s + .3)

It follows that FVT is legal since the poles of ŷ(s) are in the OLHP or at the origin. However, limit

does not exist, but is infinite, since the pole at the origin is repeated.

lim
t→∞

y(t) = lim
s→0

sŷ(s)→ −∞
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Problem 15.20.30. For both systems described below (described by a transfer function and input)

and without using a calculator or computer, determine whether the use of the final value theorem

is legal, and, if so, use the final value theorem to determine the limit of the output y(t) as t → ∞.

Explain why or why not the use of the final value theorem is legal in each case. Simulate the first

system using the Matlab “impulse” command. Simulate the second system using Simulink with

integrator blocks but not the transfer function block. (Hint: Use a pair of nested feedback loops

each of which has an integrator in the forward path). If y(t) converges, verify that the value of y(t)

as t becomes very large agrees with the result of the final value theorem. Run your Simulink model

from a Matlab script and plot y(t) as a function of time from your Matlab script.

i) G(s) =
s2 − 1

s(3s3 + 2s2 + 4s + 3)
, u(t) = 2δ(t).

ii) G(s) =
1

s(s2 + 3s + 1)
, u(t) = −2e−t sin 2t.

Solution 15.20.30. i)

L{δ(t)}= 1

⇒ û(s)= 2

⇒ ŷ(s)=G(s)û(s) =
2(s2 − 1)

s(3s3 + 2s2 + 4s + 6)
=

2
3
(s2 − 1)

s(s3 + 2
3

s2 + 4
3

s + 6
3
)

Using the Routh test for the cubic polynomial in the denominator, we have

a2a1 − a0 = −
1

9
< 0,

which implies that the cubic polynomial is not asymptotically stable. Therefore, ŷ(s) has at least one

nonzero pole in the CRHP. Hence the final value theorem is not legal. Use the MATLAB command

>> impulse([2 0 -2],[3 2 4 3 0],12)

to get the plot shown in Figure 17.0.10. As seen in the figure, the output diverges due to a pair of

ORHP poles.

ii)

L{−2e−t sin 2t}= û(s) =

(

−2 × 2

(s + 1)2 + 22

)

⇒ ŷ(s)=G(s)û(s) =
−4

s(s2 + 2s + 5)(s2 + 3s + 1)

Using the Routh test for the second order polynomial in the denominator, which implies that all the

poles of s2 + 2s + 5 and s2 + 3s + 1 are in OLHP, and thus are stable. Therefore, the final value

theorem is legal. Since s = 0 is not a repeated pole, the limit exists.

lim
t→∞

y(t) = lim
s→0

sŷ(s) = −0.8

The M-file used to run the Simulink model (shown in Figure 17.0.11) and create the plot (Figure

17.0.12) is given below

<HWChapterLinSysProblem30.m>
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Figure 17.0.10: Problem 15.20.30 i). Impulse Response of the System G(s) =

s2 − 1

s(3s3 + 2s2 + 4s + 5)
.

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem30 Soln

close all; clc; clear all;

k1 = 1/2; k2 = 2;

t = 0:0.1:100;

u = -2*exp(-t).*sin(2*t);

sim(’Pb_30_Model’,[t(1) t(end)])

figure(1);clf

plot(y.Time,y.Data)

grid on

ylabel(’Response’)

xlabel(’Time (sec)’)

ylim([-1.2 0.4])
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Figure 17.0.11: Problem 15.20.30 ii) Simulink Model ’Pb 30 Model’.
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Figure 17.0.12: Problem 15.20.30 ii). Response of the System G(s) =
1

s(2s2 + 3s + 1)
to the input

u(t) = −2e−t sin(2t)..
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Problem 15.20.31. For the systems described below and without using a calculator or computer,

determine whether the use of the final value theorem is legal, and, if so, use the final value theorem

to determine the limit of the output y(t) as t → ∞. Explain why or why not the use of the final

value theorem is legal in each case. Model the first system with Simulink and simulate the system.

Simulate the second system using the Matlab “impulse” command. If y(t) converges verify that the

value of y(t) as t becomes very large agrees with the result of the final value theorem. Run your

Simulink model from a Matlab script and plot y(t) as a function of time from your Matlab script.

i) The free response of the damped rigid body with initial displacement q(0), initial velocity

q̇(0), and output y(t) given by the mass position. Obtain the limit symbolically. For the

Simulink model, use the numerical values m = 3 kg, c = 4 kg/s, q(0) = 1 m, and q̇(0) = −2

m/s.

ii) The forced response of a system whose transfer function is

G(s) =
4s2 − 12s − 16

2s5 + 2s4 + 4s3 + 2s2 + s

with the impulsive input u(t) = 3δ(t − 1).

Solution 15.20.31. i) We start from the equation of motion for the damped rigid body with no input:

mq̈ + cq̇ = 0, q(0), q̇(0)

⇒ L{mq̈ + cq̇}= 0

⇒ m(s2q̂ − sq(0) − q̇(0)) + c(sq̂ − q(0))= 0

⇒ s(ms + c)q̂=mq(0)s + mq̇(0) + cq(0)

⇒ q̂=
mq(0)s + mq̇(0) + cq(0)

s(ms + c)

Note that the poles s = 0, -c/m are located at the origin and in the OLHP, respectively. Thus, the

final value theorem is legal. Hence,

q∞ = lim
s→0

sq̂(s) = lim
s→0

mq(0)s + mq̇(0) + cq(0)

ms + c
=

mq̇(0) + cq(0)

c

The M-file used to run the Simulink model (shown in Figure 17.0.13) and create the plot (Figure

17.0.14) is given below

<HWChapterLinSysProblem31.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem31 Soln

close all; clc; clear all;

% Mass Spring Damper System

m = 3; %kg

c = 4; %kg/sec

% System matrices



SOLUTIONS TO CHAPTER 15 541

Figure 17.0.13: Problem 15.20.31 ii) Simulink Model ’Pb 31 Model’.

A = [0 1;

0 -c/m];

B = [0;

1/m];

C = [1 0];

D = 0;

% Initial condition

x0 = [1; %position

-2];%velocity

% Running Simulink Model

sim(’Pb_31_Model’,[0 40]) %runs the model

% Plotting free response

figure(1);clf

plot(pos_FreeResponse.Time,pos_FreeResponse.Data)

grid on

ylabel(’Position (m)’)

xlabel(’Time (sec)’)

title(’Free Response’)

ylim([-0.8 1.2])

ii)

L{δ(t − 1)}= e−s

⇒ û(s)= 3e−s

⇒ ŷ(s)=G(s)û(s) =
(4s2 − 12s − 16)(3e−s)

2s5 + 2s4 + 4s3 + 2s2 + s

=
12(s2 − 3s − 4)e−s

2s(s4 + s3 + 2s2 + s + 0.5)

Using the Routh test for the quadratic polynomial in the denominator, we have a0 =
1
2
> 0, a1 =

1 > 0, a2 = 2 > 0, a3 = 1 > 0, a4 = 1 > 0, and a0a2
3
+ a2

1
= 1.5 < 2 = a1a2a3 which implies that the

polynomial is asymptotically stable. Thus four poles of ŷ(s) are located in the OLHP and one pole



542 CHAPTER 17

0 5 10 15 20 25 30 35 40

Time (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
o
s
it
io

n
 (

m
)

Free Response

X: 40

Y: -0.5

Figure 17.0.14: Problem 15.20.31 ii). Free response of the damped rigid body.

at the origin. Hence the final value theorem is legal and the limit is given below

y∞ = lim
t→∞

y(t) = lim
s→0

sŷ(s) = −48

The MATLAB code

>> impulse(3*[4 -12 -16],[2 2 4 2 1 0],[1:.01:20])

gives the response plot as shown in Figure 17.0.15.
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Figure 17.0.15: Problem 15.20.31. Response of the system G(s) =
4s2 − 12s − 16

2s5 + 2s4 + 4s3 + 2s2 + s
with

the impulsive input u(t) = 3δ(t − 1).
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Problem 15.20.32. Without taking inverse Laplace transforms, use the initial and final value theo-

rems as well as knowledge of the pole locations to sketch the step response of the transfer function

G(s) =
4s − 3

s2 + 0.8s + 4
.

Be sure to qualitatively capture the direction of the step response for small positive time t as well as

the settling behavior for large time t. What features does your sketch illustrate? Model this system

with Simulink and simulate the system. You may use the ‘transfer function’ block in your Simulink

model. Run your Simulink model from a Matlab script and plot the step response from your Matlab

script.

Solution 15.20.32. Given input u(t) = 1(t) and the transfer function G(s) = 4s−3
s2+.8s+4

, we have the

response,

ŷ(s) = G(s)û(s) =
4s − 3

s(s2 + .8s + 4)
(17.0.22)

The Initial Value Theorem, the Initial Slope Theorem and the Final Value Theorem can be used to

qualitatively plot the step response. The Initial Value Theorem states that

y(0+) = lim
s→∞

sŷ(s)

where ŷ(s) is the Laplace transform of the response and y(0+) is the initial value of the response

function. Applying the IVT to (17.0.22),

y(0+) = lim
s→∞

s
4s − 3

s(s2 + .8s + 4)

= lim
s→∞

4s − 3

(s2 + .8s + 4)
= 0

The initial value of the response function is 0.

The Initial Slope Theorem states that

y
′
(0+) = lim

s→∞
s(sŷ(s) − y(0))

where y
′
(0+) is the initial slope of the response function. Applying the IST to (17.0.22),

y
′
(0+) = lim

s→∞
s2 4s − 3

s(s2 + .8s + 4)

= lim
s→∞

4 − 3
s

1 + 0.8
s
+ 4

s2

= 4

The initial slope of the response function is positive, which means that the response function is

positive initially.

Now apply the Final Value Theorem. The poles of ŷ(s) are 0, −0.4± 1.96. Since all of the poles

are either in the OLHP or at the origin, it is legal to use the FVT. Applying the FVT to (17.0.22)

yields

lim
t→∞

y(t) = lim
s→0+

sŷ(s)

= lim
s→0+

s
4s − 3

s(s2 + .8s + 4)
= −3

4

The response is negative for large time t.
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Figure 17.0.16: Problem 15.20.32. Simulink Model ’Pb 32 Model’.

Hence, initially the response is positive, but after some time the response reverses its direction

and finally converges to a negative value. This phenomenon of starting in the “wrong” direction

is because of the nonminimum-phase zero (real zero in the ORHP) in the transfer function G(s).

The response generated using Simulink is shown in Figure 17.0.17. Note that, because the poles

have nonzero imaginary part, the response is oscillatory. The M-file used to run the Simulink model

(shown in Figure 17.0.16) and create the plot (Figure 17.0.17) is given below

<HWChapterLinSysProblem32.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem32 Soln

close all; clc; clear all;

% Numerator and denominator of the transfer function

num = [4 -3];

den = [1 0.8 4];

% Running Simulink Model

sim(’Pb_32_Model’,[0 40]) %runs the model

% Plotting step response

figure(1);clf

plot(y.Time,y.Data)

grid on

ylabel(’y(t)’)

xlabel(’Time (sec)’)

ylim([-2 1.2])
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Figure 17.0.17: Problem 15.20.32. Step Response of the System G(s) =
4s − 3

s(s2 + 0.8s + 4)
.
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Problem 15.20.33.

Flight testing of a new aircraft reveals that it has a pair of underdamped complex conjugate

poles. Testing reveals that the time to 50% decay is T seconds, while analytical modeling shows

that the imaginary parts of the poles are ±ωd, where ωd > 0. Derive an expression for the damping

ratio ζ in terms of T and ωd. Show that your expression for ζ satisfies 0 < ζ < 1. (Hint: T =

(ln 2)/(ζωn).)

Solution 15.20.33.

The underdamped complex conjugate poles are −ζωn ± ωn

√

1 − ζ2, where ζ > 0 and ωn > 0.

Given the imaginary part is ±ωd, where ωd > 0, we have,

ωn

√

1 − ζ2 = ωd. (17.0.23)

The response of the system will be a decaying sinusoid, where the amplitude is given by e−ζωnt (note

that only the real part of the pole determines the amplitude of the response). At t = 0, the amplitude

is 1. At t = T , the amplitude reduces by 50%. Hence,

[

e−ζωnT =
1

2
,

]

=⇒ ωn =
ln 2

ζT
. (17.0.24)

From (17.0.23) and (17.0.24),

ln 2

ζT

√

1 − ζ2 = ωd

⇐⇒
√

1 − ζ2 ln 2 = ζωdT,

⇐⇒

√

1

ζ2
− 1 =

ωdT

ln 2
,

⇐⇒ 1

ζ2
= 1 +

(
ωdT

ln 2

)2

,

⇐⇒ ζ =

√
[

1/

(

1 +
(
ωdT

ln 2

)2
)]

.

Since, ωd > 0, T > 0, and ln 2 > 0, clearly 0 < ζ < 1.
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Problem 15.20.34. Flight testing of a new aircraft reveals that it behaves like an overdamped

oscillator. Analytical models are used to determine the value of ωn. Measurements show that the

time to 50% decay is T seconds. Derive an expression for the damping ratio ζ in terms of T and ωn.

Finally, show that your expression for ζ satisfies ζ ≥ 1. (Note: Consider only the slow eigenvalue

of the overdamped oscillator.)

Solution 15.20.34.

The overdamped complex conjugate poles are λ1, λ2 = −ζωn±ωn

√

ζ2 − 1,where ζ > 0 and ωn > 0.

Consider the slow eigenvalue λ1 for evaluating the time take for 50% decay, then

eλ1T =
1

2

⇔ λ1 = −
ln 2

T

⇔ −ζωn + ωn

√

ζ2 − 1 = − ln 2

T

⇔ ζωn − ωn

√

ζ2 − 1 =
ln 2

T

⇔ ζ −
√

ζ2 − 1 =
ln 2

ωnT

⇔ ζ − ln 2

ωnT
=

√

ζ2 − 1. (17.0.25)

Let ln 2
ωnT
= b, a constant, then squaring equation (17.0.25) on both sides we obtain

ζ2 + b2 − 2ζb = ζ2 − 1

⇔ 2ζb = b2 + 1. (17.0.26)

Hence,

ζ =
1

2

(

b +
1

b

)

. (17.0.27)

Using λ2 gives the same expression for ζ. Now, to prove that ζ ≥ 1 in (17.0.27), note that

(b − 1)2 ≥ 0

⇔ b2 − 2b + 1 ≥ 0

⇔ b2 + 1 ≥ 2b

⇔ 1

2

(

b +
1

b

)

≥ 1.
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Problem 15.20.35. Consider the eigenvalues of the matrix

A =

[

0 1

−k/m −c/m

]

for the undamped (c = 0) and damped (c > 0) oscillators. Let k = 2.5 kg/s2 and m = 7 m. Plot the

locations of the eigenvalues as ×’s in the complex plane for a range of values of c. Choose a range

that includes undamped, underdamped, critically damped, and overdamped cases. For each value

of c, plot a “×” in the complex plane.

Solution 15.20.35.

The characteristic equation of the given matrix A is

det(λI − A) = det

[

λ −1

k/m λ + c/m

]

= 0

⇒ λ2 +
c

m
λ +

k

m
= 0

Hence the eigenvalues are

λ1, λ2 =






± 
√

k
m

if c = 0 (undamped)

−c± 
√

4mk−c2

2m
if c2 < 4mk (underdamped)

− c
2m

if c2 = 4mk (critically damped)
−c±
√

c2−4mk
2m

if c2 > 4mk (overdamped)

Figure 17.0.18 shows the loci of eigenvalues including all these cases when k = 2.5 kg/s2 and

m = 7 kg.
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Figure 17.0.18: Problem 15.20.33. Loci of Eigenvalues k = 2.5 kg/s2 and m = 7 kg.

Below is the Matlab code that was used to produce the figure.

<HWChapterLinSysProblem35.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem35 Soln



SOLUTIONS TO CHAPTER 15 549

clear all; close all;

c = 0:0.1:12; k = 2.5; m = 7;

lambda1 = (-c + sqrt(c.ˆ2 - 4*m*k))/(2*m); lambda2 = (-c - ...

sqrt(c.ˆ2 - 4*m*k))/(2*m);

figure(1);clf

plot(real(lambda1), imag(lambda1), ’x’, ...

real(lambda2), imag(lambda2), ’x’)

xlabel(’Re\lambda’); ylabel(’Im\lambda’);

title(’Loci of Eigenvalues, k = 3, m = 6’);

grid on;
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Problem 15.20.36. Show analytically that the poles of the undamped, underdamped, and critically

damped oscillators satisfy |λ1| = |λ2| = ωn. Furthermore, show that the poles of the overdamped

oscillator satisfy λ1λ2 = ω
2
n. Explain the meaning of these results in terms of the plot you made in

the previous problem.

Solution 15.20.36.

For the undamped, underdamped, and critically damped oscillators, the eigenvalues of the oscillator

can be expressed in terms of the damping ratio ζ and the natural frequency ωn:1

λ1, λ2 = −ζωn ± ωn

√

1 − ζ2

Hence

|λ1| = |λ2| = | − ζωn ± ωn

√

1 − ζ2| =
√

(ζωn)2 + ω2
n(1 − ζ2) = ωn

Note that, |λ1| = |λ2| = ωn gives a circle in the complex plane. Similarly for the overdamped case,

the eigenvalues are

λ1, λ2 = −ζωn ± ωn

√

ζ2 − 1

from which

λ1λ2 = (−ζωn + ωn

√

ζ2 − 1)(−ζωn − ωn

√

ζ2 − 1) = ω2
n

1Note that the oscillator is undamped if ζ = 0 and is critically damped if ζ = 1.
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Problem 15.20.37. Consider the second-order state space (A, B,C,D) system with

A =

[

0 1

−2 −3

]

, B =

[

0

1

]

, C =
[

1 1
]

, D = 0.

Determine the transfer function G(s) for this system. Show that G(s) is actually a first-order transfer

function due to pole-zero cancelation. Finally, determine a first-order state space (Â, B̂, Ĉ, D̂) sys-

tem whose transfer function is the same G. (Remark: Given a transfer function G we are usually

interested in a realization (A, B,C,D) of G of the lowest possible order, that is, where the size of A is

as small as possible. For this first-order system you can easily construct this realization by looking

at the form of the transfer function and setting C = 1.)

Solution 15.20.37.

The transfer function can be evaluated using the relation,

G(s) = C(sI − A)−1B + D.

Substituting the matrices we obtain,

G(s) =
(s + 1)

(s + 1)(s + 2)
=

1

(s + 2)
.

A first order state space system that has the same transfer function is given by

A = −2; B = 1

C = 1; D = 0.
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Problem 15.20.38. Consider the longitudinal dynamics of a commercial aircraft given by

α̇(t) = −0.313α(t) + 56.7q(t) + 0.232δe(t),

q̇(t) = −0.0139α(t) − 0.426q(t),

θ̇(t) = −0.5θ(t) + 0.0203δe(t),

where α is the angle of attack in rad, q is the pitch rate in rad/sec, θ is the pitch angle in rad, and

δe is the elevator deflection angle in rad. Assume that α(0) = q(0) = θ(0) = 0. Let the input of

the system be the elevator deflection angle δe, and the output of the system be the pitch angle θ.

Derive equations for this system in state space and transfer function form. Model this system in

Simulink using only integrator blocks, gain blocks, and summation blocks. Also model this system

in Simulink using a state space block.

Force both Simulink models with a step input given by a 3-degree elevator deflection. Plot the

resulting pitch angle and verify that the two models give exactly the same response.

Solution 15.20.38.

The state space (A, B,C,D) system is given by

A =





−0.313 56.7 0

−0.0139 −0.426 0

0 0 −0.5




, B =





0.232

0

0.0203




, C =

[

0 0 1
]

, D = 0.

The transfer function can be evaluated using the relation,

G(s) = C(sI − A)−1B + D.

Substituting the matrices we obtain,

G(s) =
0.0203

(s + 0.5)
.

The M-file used to run the Simulink model (shown in Figure 17.0.19) and create the plot (Figure

17.0.20) is given below

<HWChapterLinSysProblem38.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem38 Soln

clear all; close all; clc

% State Space

A = [-0.313 56.7 0; %alphadot

-0.0139 -0.426 0; %qdot

0 0 -0.5]; %thetadot

B = [0.232 0 0.0203]’;

C = [0 0 1];

D = 0;

% Initial condition

alpha0 = 0; %For alphadot integrator block

q0 = 0; %For qdot integrator block
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theta0 = 0; %For thetadot integrator block

x0 = [alpha0 q0 theta0]’; %For State Space Block

% Transfer function

s = tf(’s’);

G = C*inv(s*eye(3)-A)*B

% Input

delta_e = 3; %deg

% Simulation

sim(’Pb_38_Model’,[0 40])

% Plotting

figure(1);clf

hold on

plot(theta_model.Time,rad2deg(theta_model.Data))

plot(theta_StateSpace.Time,rad2deg(theta_StateSpace.Data),’r--’)

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’From Model Based on Gains and Integrators’,’From State Space Model’)
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Figure 17.0.19: Problem 15.20.31 ii) Simulink Model ’Pb 38 Model’.
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Figure 17.0.20: Problem 15.20.31. Comparison of the responses.
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Problem 15.20.39. Take the Simulink model you constructed without using the state space block

in Problem 15.20.38, and then put that entire model inside a subsystem block. Set the input to

the subsystem block to be the elevator input and set the output of the subsystem block to be the

pitch angle. Now we want to use feedback control to make the aircraft maintain a pitch angle of 3

degrees. Set up proportional control whose input is the error between the true pitch angle and the

desired pitch angle and whose output is the elevator deflection angle. Tune the proportional control

to obtain the best possible response. Run your Simulink model from a MATLAB script and plot

both the true pitch angle and the desired pitch angle on the same axes. For clarity, plot the true pitch

angle using a solid blue line, and plot the desired pitch angle using a dashed red line. Are you able

to follow the command using proportional control?

Now set up an integral controller whose input is the error between the true pitch angle and the

desired pitch angle, and whose output is the elevator deflection angle. Add a gain block to the output

of the integrator block and tune the gain to obtain the best possible result. Run your Simulink model

from a MATLAB script and plot the true pitch angle and the desired pitch angle on the same axes.

For clarity, plot the true pitch angle using a solid blue line and the desired pitch angle using a dashed

red line. Are you able to follow the command using integral control? Note the relationship between

the Laplace transform of a step command and the transfer function of an integrator.

Solution 15.20.39.

For proportional control with gain Kp, the sensitivity function is given by

S (s) =
1

1 + L
=

s + 0.5

s + 0.5 + 0.0203Kp

The Laplace transform of the error signal ê(s) for a step command r̂(s) = 0.0524/s, is given by

ê(s) = S (s)r̂(s) =
s + 0.5

s + 0.5 + 0.0203Kp

0.0524

s

Using the Routh test for first-order polynomial in the denominator, we have a0 = 0.5+0.0203Kp > 0,

which implies that the polynomial is asymptotically stable for all Kp > −24.6. Hence, we have one

pole in the OLHP and one pole at the origin, and thus FVT is legal for all Kp > −24.6. FVT yields

the following asymptotic error

lim
t→∞

e(t) = lim
s→0+

sê(s)

= lim
s→0+

0.0524(s + 0.5)

s + 0.5 + 0.0203Kp

=
0.0262

0.5 + 0.0203Kp

.

It follows that the asymptotic error is non-zero. Also note that, increasing the gain Kp yields smaller

error.

For integral control with gain Ki, the sensitivity function is given by

S (s) =
1

1 + L
=

s(s + 0.5)

s2 + 0.5s + 0.0203Ki

The Laplace transform of the error signal ê(s) for a step command r̂(s) = 0.0524/s, is given by

ê(s) = S (s)r̂(s) =
0.0524(s + 0.5)

s2 + 0.5s + 0.0203Ki

Using the Routh test for second-order polynomial in the denominator, we have a1 = 0.5 > 0,

a0 = 0.0203Ki > 0, which implies that the polynomial is asymptotically stable for all Ki > 0.
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Hence, FVT is legal for all Ki > 0. FVT yields the following asymptotic error

lim
t→∞

e(t) = lim
s→0+

sê(s)

= lim
s→0+

0.0524s(s + 0.5)

s2 + 0.5s + 0.0203Ki

= 0.

It follows that the asymptotic error is zero for any choice of Ki > 0, however, different choices of

the gain Ki will yield different transient responses. Also, note that, the Laplace transform of a step

command and the transfer function of an integrator have same poles.

The M-file used to run the Simulink models (shown in Figures 17.0.21 and 17.0.23) and create

the plots (Figures 17.0.22 and 17.0.24) is given below

<HWChapterLinSysProblem39.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem39 Soln

clear all; clc

% Initial condition

alpha0 = 0;

q0 = 0;

theta0 = 0;

% Command

pitch_cmd = 3; %deg

% ---- Proportional Control -----

% Proportional Gain

Kp = 100;

% Simulation

sim(’Pb_39_ProportionalControl_Model’,[0 40])

% Plotting

figure(1);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Proportional Control: Kp = 100’)

% ---- Integral Control -----

% Integral Gain

Ki = 4;
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Figure 17.0.21: Problem 15.20.31 Simulink Model ’Pb 39 KpCntrl Model’.
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Figure 17.0.22: Problem 15.20.31. Response of the aircraft.

% Simulation

sim(’Pb_39_IntegralControl_Model’,[0 40])

% Plotting

figure(2);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Integral Control: Ki = 4’)



SOLUTIONS TO CHAPTER 15 559

Figure 17.0.23: Problem 15.20.31 Simulink Model ’Pb 39 KiCntrl Model’.
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Figure 17.0.24: Problem 15.20.31. Response of the aircraft.
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Problem 15.20.40. Consider the same Simulink setup as in Problem 15.20.39. Now, we want to

use feedback control to make the aircraft follow an oscillation in pitch angle given by sin t. Set up

integral control that takes the error between the true pitch angle and the desired pitch angle as input

and outputs elevator deflection angle. Add a gain block to the output of the integrator block and

tune the gain to obtain the best possible result. Change the relative tolerance to 10−10 by selecting

“Simulation”, then “Model Configuration Parameters.” Run your Simulink model from a MATLAB

script and plot both the true pitch angle and the desired pitch angle on the same axes. Plot the true

pitch angle using a solid blue line and the desired pitch angle using a dashed red line. Are you able

to follow the command using integral control?

Now set up the controller as the transfer function

G(s) =
1

s2 + 1
.

Let the input to this transfer function be the error between the true pitch angle and the desired

pitch angle and let its output be the elevator deflection angle. Add a gain block to the output of

this transfer function and tune it to try and get the best result. Run your Simulink model from a

MATLAB script and plot both the true pitch angle and the desired pitch angle on the same plot. Plot

the true pitch angle using a solid blue line and the desired pitch angle using a dashed red line. Are

you able to follow the command using this transfer function?

Next, set up the controller as the transfer function

G(s) =
2

s2 + 4
.

Let this transfer function take the error between the true pitch angle and the desired pitch angle as

input and let it output the elevator deflection angle. Add a gain block to the output of this transfer

function and tune it to try and get the best result. Run your Simulink model from a MATLAB script

and plot both the true pitch angle and the desired pitch angle on the same plot. Plot the true pitch

angle using a solid blue line and the desired pitch angle using a dashed red line. Are you able to

follow the command using this transfer function?

What can you infer from the last two problems in terms of the relationship between the command

signal and the poles of the controller? Hint: Consider the Laplace transforms of sin t and sin 2t?

Solution 15.20.40.

For integral control with gain Ki, the sensitivity function is given by

S (s) =
1

1 + L
=

s(s + 0.5)

s2 + 0.5s + 0.0203Ki

The Laplace transform of the error signal ê(s) for a harmonic command r̂(s) = 1/(s2 + 1), is given

by

ê(s) = S (s)r̂(s) =
s(s + 0.5)

s2 + 0.5s + 0.0203Ki

1

s2 + 1

Note that ê(s) has two poles on the imaginary axis, and hence FVT is not legal. Consequently,

FVT can not be used to determine the gain Ki that gives a zero asymptotic error. However, Ki can

be tuned to get the best possible response. Figure 17.0.26 shows the response of the aircraft for

Ki = 30. Note that the error is nonzero.
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For the controller K/(s2 + 1), the sensitivity function is given by

S (s) =
1

1 + L
=

(s2 + 1)(s + 0.5)

s3 + 0.5s2 + s + 0.5 + 0.0203K

The Laplace transform of the error signal ê(s) for a harmonic command r̂(s) = 1/(s2 + 1), is given

by

ê(s) = S (s)r̂(s) =
s + 0.5

s3 + 0.5s2 + s + 0.5 + 0.0203K

Using the Routh test for third-order polynomial in the denominator, we have a2 = 0.5 > 0, a1 = 1 >

0, a0 = 0.5+0.0203K > 0 and a2a1 = 0.5 > a0 = 0.5+0.0203K, which implies that the polynomial

is asymptotically stable for all −24.63 < K < 0. Hence, FVT is legal for all −24.63 < K < 0. FVT

yields the following asymptotic error

lim
t→∞

e(t) = lim
s→0+

sê(s)

= lim
s→0+

s(s + 0.5)

s3 + 0.5s2 + s + 0.5 + 0.0203K
= 0.

It follows that the asymptotic error is zero for any choice of −24.63 < K < 0, however, different

choices of the gain K will yield different transient responses. Also, note that, the Laplace transform

of the given harmonic command and the transfer function of the controller have same poles. Figure

?? shows the response of the aircraft for K = −20. Note that the error goes to zero asymptotically.

For the controller 2K/(s2 + 4), the sensitivity function is given by

S (s) =
1

1 + L
=

(s2 + 4)(s + 0.5)

s3 + 0.5s2 + 4s + 2 + 0.0406K

The Laplace transform of the error signal ê(s) for a harmonic command r̂(s) = 1/(s2 + 1), is given

by

ê(s) = S (s)r̂(s) =
(s2 + 4)(s + 0.5)

(s3 + 0.5s2 + 4s + 2 + 0.0406K)

1

(s2 + 1)

Note that ê(s) has two poles on the imaginary axis, and hence FVT is not legal. Consequently, FVT

can not be used to determine the gain K that gives a zero asymptotic error. However, K can be tuned

to get the best possible response. Figure ?? shows the response of the aircraft for K = −40. Note

that the error is nonzero.

The M-file used to run the Simulink models (shown in Figures 17.0.25, 17.0.27 and 17.0.29)

and create the plots (Figures 17.0.26, 17.0.28 and 17.0.30) is given below

<HWChapterLinSysProblem40.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem40 Soln

clear all; clc

% Initial condition

alpha0 = 0;

q0 = 0;

theta0 = 0;
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% ---- Integral Control -----

% Integral Gain

Ki = 30;

% Simulation

sim(’Pb_40_KiCntrl_Model’,[0 40])

% Plotting

figure(1);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Integral Control’)

% ---- Internal Model Control (Model with Cmd Freq) -----

% Gain

K = -20;

% Simulation

sim(’Pb_40_IMCntrlWithCmdFreq_Model’,[0 40])

% Plotting

figure(2);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Controller: G(s) = -20/(sˆ2+1)’)

% ---- Internal Model Control (Model without Cmd Freq) -----

% Gain

K = -40;

% Simulation

sim(’Pb_40_IMCntrlWithoutCmdFreq_Model’,[0 40])

% Plotting

figure(3);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)
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Figure 17.0.25: Problem 15.20.31 Simulink Model ’Pb 40 KiCntrl Model’.
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Figure 17.0.26: Problem 15.20.31. Response of the aircraft.

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Controller: G(s) = -2(40)/(sˆ2+4)’)
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Figure 17.0.27: Problem 15.20.31 Simulink Model ’Pb 40 IMCntrlWithCmdFreq Model’.
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Figure 17.0.28: Problem 15.20.31. Response of the aircraft.

Figure 17.0.29: Problem 15.20.31 Simulink Model ’Pb 40 IMCntrlWithoutCmdFreq Model’.
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Figure 17.0.30: Problem 15.20.31. Response of the aircraft.
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Problem 15.20.41. Redo Problems 15.20.39 and 15.20.40, but instead of the dynamics of the

aircraft, let the plant be given by the transfer function

G(s) =
4s2 + 4s + 1

s3 + s2 + πs + 0.777
.

You may use the transfer function block in your Simulink model. Is your conclusion here the same

as your conclusion in Problem 15.20.40?

Solution 15.20.41.

A similar FVT analysis as in the solutions for Problems 15.20.39 and 15.20.40 can be done and

reached to the aame conclusions.

The M-file used to run the Simulink models (shown in Figures 17.0.31, 17.0.33, 17.0.35, 17.0.37

and 17.0.39) and create the plots (Figures 17.0.32, 17.0.34, 17.0.36, 17.0.38 and 17.0.40) is given

below

<HWChapterLinSysProblem41.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem41 Soln

clear all; clc

% ---------- Step Command ---------

% Command

pitch_cmd = 3; %deg

% ---- Proportional Control -----

% Proportional Gain

Kp = 20;

% Simulation

sim(’Pb_41_ProportionalControl_Model’,[0 40])

% Plotting

figure(1);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Proportional Control: Kp = 20’)

% ---- Integral Control -----
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% Integral Gain

Ki = 0.2;

% Simulation

sim(’Pb_41_IntegralControl_Model’,[0 40])

% Plotting

figure(2);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Integral Control: Ki = 0.2’)

% ------------ Harmonic Command (sin t) --------

% Integral Gain

Ki = 4;

% Simulation

sim(’Pb_41_IntegralCntrl_HarmonicCmd_Model’,[0 40])

% Plotting

figure(3);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Integral Control: Ki = 4’)

% ---- Internal Model Control (Model with Cmd Freq) -----

% Gain

K = 0.2;

% Simulation

sim(’Pb_41_CntrllWithCmdFreq_HarmonicCmd_Model’,[0 40])

% Plotting

figure(4);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)
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Figure 17.0.31: Problem 15.20.31 Simulink Model ’Pb 41 ProportionalControl Model’.

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Controller: G(s) = 0.2/(sˆ2+1)’)

% ---- Internal Model Control (Model without Cmd Freq) -----

% Gain

K = -0.15;

% Simulation

sim(’Pb_41_CntrllWithoutCmdFreq_HarmonicCmd_Model’,[0 40])

% Plotting

figure(5);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Controller: G(s) = -2(0.15)/(sˆ2+4)’)
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Figure 17.0.32: Problem 15.20.31. Response of the aircraft.

Figure 17.0.33: Problem 15.20.31 Simulink Model ’Pb 41 IntegralControl Model’.
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Figure 17.0.34: Problem 15.20.31. Response of the aircraft.
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Figure 17.0.35: Problem 15.20.31 Simulink Model ’Pb 41 IntegralControl HarmonicCmd Model’.
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Figure 17.0.36: Problem 15.20.31. Response of the aircraft.

Figure 17.0.37: Problem 15.20.31 Simulink Model ’Pb 41 CntrllWithCmdFreq HarmonicCmd Model’.
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Figure 17.0.38: Problem 15.20.31. Response of the aircraft.

Figure 17.0.39: Problem 15.20.31 Simulink Model ’Pb 41 CntrllWithoutCmdFreq HarmonicCmd Model’.
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Figure 17.0.40: Problem 15.20.31. Response of the aircraft.
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Problem 15.20.42. Redo Problem 15.20.39 for different aircraft dynamics, given by

α̇(t) = −0.313α(t) + 56.7q(t) + 0.232δe(t),

q̇(t) = −0.0139α(t) − 0.426q(t) + 0.0203δe(t),

θ̇(t) = 56.7q(t),

where α is the angle of attack in rad, q is the pitch rate in rad/sec, θ is the pitch angle in rad, and

δe is the elevator deflection angle in rad. Assume that α(0) = q(0) = θ(0) = 0. Let the input of the

system be the elevator deflection angle δe, and the output of the system be the pitch angle θ. You

may use the state space block in your Simulink model. Is your conclusion here the same as your

conclusion in Problem 15.20.39? Why or why not?

Solution 15.20.42.

The state space (A, B,C,D) system is given by

A =





−0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0




, B =





0.232

0.0203

0




, C =

[

0 0 1
]

, D = 0.

The transfer function can be evaluated using the relation,

G(s) = C(sI − A)−1B + D.

Substituting the matrices we obtain,

G(s) =
1.151(s + 0.1541)

s(s2 + 0.739s + 0.9215)
.

For proportional control with gain Kp, the sensitivity function is given by

S (s) =
1

1 + L
=

s(s2 + 0.739s + 0.9215)

s(s2 + 0.739s + 0.9215) + 1.151Kp(s + 0.1541)

The Laplace transform of the error signal ê(s) for a step command r̂(s) = 0.0524/s, is given by

ê(s) = S (s)r̂(s) =
0.0524(s2 + 0.739s + 0.9215)

s3 + 0.739s2 + (0.9215 + 1.151Kp)s + 0.1774Kp

Using the Routh test for third-order polynomial in the denominator, we have a2 = 0.5 > 0, a1 = 1 >

0, a0 = 0.1774Kp > 0 and a2a1 = 0.739(0.9215 + 1.151Kp) > a0 = 0.1774Kp, which implies that

the polynomial is asymptotically stable for all Kp > 0. Hence, FVT is legal for all Kp > 0. FVT

yields the following asymptotic error

lim
t→∞

e(t) = lim
s→0+

sê(s)

= lim
s→0+

0.0524s(s2 + 0.739s + 0.9215)

s3 + 0.739s2 + (0.9215 + 1.151Kp)s + 0.1774Kp

= 0.

It follows that the asymptotic error is zero for any choice of Kp > 0, however, different choices of

the gain Kp will yield different transient responses. Note that, this result is different from the result

of Problem 15.20.39, where the proportional control yields a non-zero asymptotic error. Also, note

that, sine the plant has a pole at 0, therefore, an integrator is not required in the controller for step

command following.

A similar FVT analysis for the integral control with gain Ki yields zero asymptotic error.
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The M-file used to run the Simulink models (shown in Figures 17.0.41 and 17.0.43) and create

the plots (Figures 17.0.42 and 17.0.44) is given below

<HWChapterLinSysProblem42.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem42 Soln

clear all; close all; clc

% State Space

A = [-0.313 56.7 0; %alphadot

-0.0139 -0.426 0; %qdot

0 56.7 0]; %thetadot

B = [0.232 0.0203 0]’;

C = [0 0 1];

D = 0;

% Initial condition

alpha0 = 0; %For alphadot integrator block

q0 = 0; %For qdot integrator block

theta0 = 0; %For thetadot integrator block

x0 = [alpha0 q0 theta0]’; %For State Space Block

% ---------- Step Command ---------

% Command

pitch_cmd = 3; %deg

% ---- Proportional Control -----

% Proportional Gain

Kp = 2;

% Simulation

sim(’Pb_42_ProportionalControl_Model’,[0 40])

% Plotting

figure(1);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Proportional Control: Kp = 2’)

% ---- Integral Control -----
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Figure 17.0.41: Problem 15.20.31 Simulink Model ’Pb 42 ProportionalControl Model’.
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Figure 17.0.42: Problem 15.20.31. Response of the aircraft.

% Integral Gain

Ki = 0.2;

% Simulation

sim(’Pb_42_IntegralControl_Model’,[0 40])

% Plotting

figure(2);clf

hold on

plot(time,rad2deg(pitch_desired),’r--’)

plot(time,rad2deg(pitch_true))

xlabel(’Time (sec)’)

ylabel(’Pitch Response (deg)’)

legend(’Desired Pitch’,’True Pitch’,’location’,’best’)

title(’Integral Control: Ki = 0.2’)
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Figure 17.0.43: Problem 15.20.31 Simulink Model ’Pb 42 IntegralControl Model’.

0 5 10 15 20 25 30 35 40

Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

P
it
c
h

 R
e

s
p

o
n

s
e

 (
d

e
g

)

Integral Control: Ki = 0.2

Desired Pitch

True Pitch

Figure 17.0.44: Problem 15.20.31. Response of the aircraft.
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Problem 15.20.43. Consider the basic servo loop with a SISO plant G and SISO controller Gc

chosen such that the closed-loop system is asymptotically stable. Assume that neither G nor Gc has

a zero at zero. Then, do the following:

i) Case 1: Show that if Gc has at least one integrator, then the asymptotic error to a step

command is zero (whether or not G has an integrator). Determine the asymptotic value of

the control.

ii) Case 2: Show that if G has at least one integrator, then the asymptotic error to a step

command is zero (whether or not Gc has an integrator). Determine the asymptotic value of

the control.

iii) Case 3: Show that if G has at least one integrator but Gc has no integrators, then the

asymptotic error to a step command in the presence of a nonzero constant disturbance is

not zero. The disturbance is added to the control.

iv) Case 4: Show that if Gc has at least one integrator, then the asymptotic error to a step

command in the presence of a nonzero constant disturbance is zero whether or not G has

an integrator.

v) Illustrate the above four cases using Simulink with G(s) = 1/(s2 + 2s + 1) and Gc(s) =

1/(s2 + 2s), or vice versa. Plot the plant output, the command-following error, and the

control input. Write an mfile to check stability using the 4th-order Routh conditions in the

notes as well as root locus with the gain running from 0 to 1.

Solution 15.20.43.
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Problem 15.20.44. Consider the basic servo loop with a SISO plant G and SISO controller Gc

chosen such that the closed-loop system is asymptotically stable. The command and disturbance

are steps, which may or may not be zero. The disturbance is added to the control. Assume that the

measurement y that is fed back is corrupted by an unknown nonzero constant bias, that is, y = y0+b,

where y0 is the plant output and b is the unknown constant bias. Since b is unknown, we are not

able to use its value in the control law. The “false” error that the controller operates on is e = r − y.

However, the true error is etrue = r − y0. Then, do the following:

i) Case 1: Show that if Gc has at least one integrator, then the asymptotic error is zero

(whether or not G has an integrator) but the asymptotic true error is not zero. Show that

this statement holds for all values of the command and disturbance.

ii) Case 2: Assume that neither G nor Gc has an integrator, and assume that G has at least one

zero at zero. Show that, if the command is zero, then the true error converges to zero for

all values of the disturbance.

iii) Case 3: Assume that neither G nor Gc has an integrator, and assume that L = GGc has at

least one zero at zero. Determine necessary and sufficient conditions on the command and

disturbance such that the true error converges to zero. Use this result to show that, if the

command is not zero and the disturbance is zero, then the true error does not converge to

zero.

iv) Illustrate the above three cases using Simulink. For Case 1, let G(s) = 1/(s2 + 2s + 1) and

Gc(s) = 1/(s2 + 2s). For Case 2, let G(s) = s/(s2 + 2s + 1) and Gc(s) = 1/(s2 + 2s + 2).

For Case 3, let G(s) = s/(s2 + 2s + 1) and Gc(s) = 1/(s2 + 2s + 2).

v) Is it possible to follow a step command (in the sense of the true error) despite the presence

of an unknown measurement bias?

Solution 15.20.44.
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Problem 15.20.45. Consider the second-order system described by the differential equation ÿ + ẏ −
3y = u.

i) Assuming y(0) = ẏ(0) = 0, derive the transfer function of the system from û(s) to ŷ(s).

ii) Simulate the system with the step input u(t) = 1(t − 1) for 100 sec. How does y(t) evolve

in time? Attach a plot of y(t).

iii) Now include the proportional feedback control law û(s) = Kpê(s), and simulate the closed-

loop system with the step command r(t) = 1(t − 1) for 20 sec. Choose Kp such that the

maximum overshoot in y(t) is less than 100%, and |e(t)| = |r(t) − y(t)| is less than 0.2 for

t > 10. Does the error converge to zero as t increases? Comparing your results from the

previous part, what is the benefit of using proportional feedback compared to open loop?

Attach a screenshot of your Simulink model, as well as plots of e(t) and y(t) showing that

the design requirements are met.

iv) Using your choice of Kp from iii), now introduce the proportional-integral (PI) control law

û(s) =

(

Kp +
KI

s

)

ê(s),

and simulate the closed-loop system with the command r(t) = 1(t − 1) for 50 sec. Adjust

KI so that the maximum overshoot in y(t) is less than 100%, |e(t)| < 0.2 for t > 10,

and |e(t)| < 0.01 for t > 50. Does the command-following error converge to zero as t

increases? Comparing your results from the previous part, what is the benefit of integral

control? Attach a screenshot of your Simulink model, as well as plots of e(t) and y(t)

showing that the design requirements are met. Keep in mind that too much control might

destabilize the closed-loop system. Keeping Kp the same, increase KI and show that the

closed-loop system becomes unstable.

v) Using Kp and KI from iv), now consider the harmonic command r(t) = sin(2t), and simu-

late the closed-loop system for 50 sec. Attach a plot of e(t). Does the PI control law drive

the tracking error e(t) to zero in this case?

vi) Replace the PI control law in v) with the feedback control law

û(s) =

(

20 +
5s

s2 + 4

)

ê(s),

and simulate the closed-loop system with the harmonic reference input r(t) = sin(2t) for

50 seconds. Attach a plot of e(t). Is the command-following error driven to zero in this

case?

vii) Compare the Laplace transforms of the step input r(t) = 1(t) and the harmonic input

r(t) = sin(2t) with the Laplace transform of the PI controller, and the controller you used

in vi). Compare the denominators of the input signals and the controller. Also, compare

the Laplace transform of a step/ramp command and the denominator of the loop transfer

function for a type I/II control system. What pattern do you see?

Solution 15.20.45.
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Problem 15.20.46. Consider the second-order transfer function

G(s) =
1

s2 + 3s − 2

controlled by the PI controller

K(s) = KP +
KI

s

in a servo loop. Determine the values of KP and KI that render the closed-loop system stable by

sketching the region in the KP,KI plane of stabilizing gains.

Solution 15.20.46.

The closed-loop transfer function is,

G̃(s) =
G(s)K(s)

1 +G(s)K(s)
=

KPs + KI

s3 + 3s2 + (KP − 2)s + KI

.

Using the Routh test for the third order polynomial (a0 < a2a1), we determine the condition for the

closed-loop system to be stable:

KI < 3(KP − 2) , KP > 2 , KI > 0

The shaded area in the figure below represents the region in KPKI-plane where the closed-loop

system is stable.
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Figure 17.0.45: Problem 15.20.46 Stable Region in KP,KI-plane
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Problem 15.20.47. Consider the type II control system with plant

G(s) =
1

s(s + 1)

and PI controller

K(s) = KP +
KI

s

in a servo loop. First, determine which values of KP and KI provide zero steady-state error for a

ramp command. Next, use Matlab or Simulink to simulate the closed-loop system, and choose KP

and KI for good rise time and reasonable overshoot for a step command. Plot the error response for

a ramp command, and verify numerically and analytically that the ramp command error converges

to zero.

Solution 15.20.47.

The reference-to-output relation in the Laplace domain is,

Y(s) =
G(s)K(s)

1 +G(s)K(s)
R(s) =

KPs + KI

s3 + s2 + KPs + KI

R(s)

from which the reference-to-error relation is,

E(s)=R(s) − Y(s)

=

(

1 − G(s)K(s)

1 +G(s)K(s)

)

R(s)

=
1

1 +G(s)K(s)
R(s) = S (s)R(s)

⇒ E(s)=
s2(s + 1)

s3 + s2 + KPs + KI

R(s)

Substituting R(s) = 1/s2 for the ramp input and using final value theorem yields,

e∞ = lim
s→0

sE(s) = lim
s→0

s(s + 1)

s3 + s2 + KPs + KI

= 0

whatever values KP and KI might take as long as the denominator polynomial is asymptotically

stable. Therefore using the Routh test for the stability of the 3rd order polynomial (a0 < a2a1), we

have

0 < KI < KP

Figure 17.0.46 shows the output response y(t) for a unit step command r(t) = 1 with

KP = 15 , KI = 1.

Here the transfer function is given by,

G̃(s) =
G(s)K(s)

1 +G(s)K(s)
=

KPs + KI

s3 + s2 + KPs + KI

and the following diagram shows the relevant Simulink model.

Figure 17.0.47 shows the error response e(t) for a unit ramp command r(t) = t with KP = 5 , KI = 2,

which verifies that the ramp command error converges to zero. The diagram shows the relevant

Simulink model.
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Figure 17.0.46: Problem 15.20.37. Output response for a unit step command with KP = 15 KI = 1
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Figure 17.0.47: Problem 15.20.37. Error response for a unit ramp command with KP = 5 KI = 2



582 CHAPTER 17

Problem 15.20.48. Sketch the root loci for the following loop transfer functions by using the root

locus rules and then check your sketches using Matlab’s root locus function:

i) L(s) =
(s+1)(s+2)

(s−1)(s−2)(s−3)
.

ii) L(s) =
(s+2)2

(s+1)(s2+1)
.

Solution 15.20.48.

Refer to Figure 17.0.48.

−10 −8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6

8
Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

−6 −5 −4 −3 −2 −1 0
−4

−3

−2

−1

0

1

2

3

4
Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

Figure 17.0.48: Problem 15.20.38. Root Locus for i) L(s) =
(s+1)(s+2)

(s−1)(s−2)(s−3)
and ii) L(s) =

(s+2)2

(s+1)(s2+1)
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Problem 15.20.49. At Mach .6, an experimental aircraft has unstable phugoid eigenvalues 0.04 ±
0.12  and stable short period eigenvalues −4.3 ± 5.7 . Wind tunnel testing reveals that the elevator-

to-pitch transfer function has one zero located at −0.2. For proportional control, sketch the root

locus, determine the center and asymptotes, and discuss the stability of the closed-loop longitudinal

dynamics for high values of k.

Solution 15.20.49.

From the given conditions, the open loop transfer function is,

G(s)=
(s + 0.2)

[s − (0.04 ± 0.12 j)][s − (−4.3 ± 5.7 j)]

⇒ G(s)=
(s + 0.2)

(s2 − 0.08s + 0.016)(s2 + 8.6s + 50.98)

The root locus of the closed-loop transfer function in terms of the proportional gain K is given in

Figure 17.0.49.

−20 −15 −10 −5 0 5
−15

−10

−5

0

5

10

15
Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−0.6

−0.4

−0.2

0

0.2

0.4

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

Figure 17.0.49: Problem 15.20.39. Root Locus for G(s) and its close-up around the short period

mode

The center and asymptotes are determined as,

α=

∑

pi −
∑

zi

n − m
=

(0.04 ∗ 2 + (−4.3) ∗ 2) − (−0.2))

4 − 1
= −2.7733

φ=
(2l + 1)π

n − m
=
π

3
, π,

5π

3
l = 0, 1, 2

In the root locus, as the gain k increases, the unstable phugoid modes becomes stable, whereas the

stable short period mode becomes unstable. In order for both modes to be stable, the gain k should

be selected in the approximate range of 4.25 < k < 417.
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Problem 15.20.50. An experimental aircraft has unstable short period eigenvalues 0.04± 0.12  and

stable phugoid eigenvalues −4.3 ± 5.7 . Wind tunnel testing reveals that, at Mach .6, the elevator-

to-pitch transfer function has three real zeros located at −0.3,−1.7,−8.4. Sketch the root locus and

discuss the stability of the closed-loop longitudinal dynamics using a proportional control. Indicate

(but you do not need to compute) the point on the root locus at which all poles have at least
√

2/2

damping by marking the intersection of the root locus and the 0.707 damping-ratio line. (Note:

Problem 16.8.5 explains why this minimum value of damping is desirable.

Solution 15.20.50.

From the given condition, the open-loop transfer function is,

G(s) =
(s + 0.3)(s + 1.7)(s + 8.4)

[s − (0.04 ± 1.12 j)][s − (−4.3 ± 5.7 j)]

⇒G(s) =
(s + 0.3)(s + 1.7)(s + 8.4)

(s2 − 0.08s + 0.016)(s2 + 8.6s + 50.98)

The root locus of the closed-loop transfer function in terms of gain K is given below in the following

figure. As shown in the figure, the stability characteristics of the short period mode is satisfactory
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Figure 17.0.50: Problem 15.20.40. Root Locus for G(s) and its close-up around the short period

mode

over a large range of gain K. In order to enhance the stability characteristics of phugoid mode,

choose K ≃ 2.9, which results in the following satisfactory characteristics:

s=−0.301 ± 0.299 j

ζsp = 0.709

ωnsp = 0.424
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Problem 15.20.51. Consider the linearized model of a Boeing 747 aircraft in straight and level

flight given by

ẋ = Ax + Bu,

y = Cx + Du,

where

x =





β

r

p

φ





, u =

[

δr

δa

]

,

A =





−0.0558 −0.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0

−3.05 0.388 −0.4650 0

0 0.0805 1 0





, B =





0.00729 0

−0.475 0.00775

0.153 0.143

0 0





.

Determine the eigenvalues of A. What kind of stability does the aircraft have? Which poles corre-

spond to the Dutch roll mode?

Solution 15.20.51.

The eigen values of A are

λ1,2 = −0.0329 ± 0.9467 

λ3 = −0.5627

λ4 = −0.0073

Since all the eigen values are in OLHP, the aircraft is asymptotically stable in the lateral mode. λ1,2

corresponds to the Dutch roll mode.

<HWChapterLinSysProblem51.m>

% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem51 Soln

clear all;

A = [-0.0558 -0.9968 0.0802 0.0415;

0.598 -0.115 -0.0318 0;

-3.05 0.388 -0.4650 0;

0 0.0805 1 0];

B = [ 0.00729 0 ;

-0.475 0.00775 ;

0.153 0.143 ;

0 0];

eig_val = eig(A)
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Problem 15.20.52. Consider the linearized aircraft model in Problem 15.20.51. with outputs r

and φ. Plot the zeros of all four SISO transfer functions. Next, use Matlab or Simulink to plot the

impulse response of all four transfer functions. Finally, apply root locus to each of the four transfer

functions with proportional feedback.

Solution 15.20.52.

The zeros, impulse-responses and root-loci of Gr/δr, Gr/δa, Gφ/δr, and Gφ/δa are given by Figures

17.0.51, 17.0.52, 17.0.53, and 17.0.54, respectively.
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.

<HWChapterLinSysProblem52.m>
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% AE345: Flight Dynamics and Control

% Problem ChapterLinSysProblem52 Soln

clear all;

A = [-0.0558 -0.9968 0.0802 0.0415;

0.598 -0.115 -0.0318 0;

-3.05 0.388 -0.4650 0;

0 0.0805 1 0];

B = [ 0.00729 0 ;

-0.475 0.00775 ;

0.153 0.143 ;

0 0];

D = [0 0];

%%%%---------------- Output r

C_r = [0 1 0 0];

% Input rudder

[num_r_dr,den_r_dr] = ss2tf(A,B,C_r,D,1);

G_r_dr = tf(num_r_dr,den_r_dr);

% Input aileron

[num_r_da,den_r_da] = ss2tf(A,B,C_r,D,2);

G_r_da = tf(num_r_da,den_r_da);

%%%%---------------- Output phi

C_phi = [0 0 0 1];

% Input rudder

[num_phi_dr,den_phi_dr] = ss2tf(A,B,C_phi,D,1);

G_phi_dr = tf(num_phi_dr,den_phi_dr);

% Input aileron

[num_phi_da,den_phi_da] = ss2tf(A,B,C_phi,D,2);

G_phi_da = tf(num_phi_da,den_phi_da);

figure(1);clf;

subplot(3,1,1)

plot(real(roots(num_r_dr)),imag(roots(num_r_dr)),’o’)

hold on

plot([0 0],[-1.5 1.5],’k--’)

plot([-3 5],[0 0],’k--’)

xlabel(’Real Axis’)

ylabel(’Imaginary Axis’)

subplot(3,1,2)

impulse(G_r_dr)

subplot(3,1,3)

rlocus(G_r_dr)
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suptitle(’G_{r / \deltar}’)

figure(2);clf;

subplot(3,1,1)

plot(real(roots(num_r_da)),imag(roots(num_r_da)),’o’)

hold on

plot([0 0],[-1.5 1.5],’k--’)

plot([-3 5],[0 0],’k--’)

xlabel(’Real Axis’)

ylabel(’Imaginary Axis’)

subplot(3,1,2)

impulse(G_r_da)

subplot(3,1,3)

rlocus(G_r_da)

suptitle(’G_{r / \deltaa}’)

figure(3);clf;

subplot(3,1,1)

plot(real(roots(num_phi_dr)),imag(roots(num_phi_dr)),’o’)

hold on

plot([0 0],[-1.5 1.5],’k--’)

plot([-3 5],[0 0],’k--’)

xlabel(’Real Axis’)

ylabel(’Imaginary Axis’)

subplot(3,1,2)

impulse(G_phi_dr)

subplot(3,1,3)

rlocus(G_phi_dr)

suptitle(’G_{\phi / \deltar}’)

figure(4);clf;

subplot(3,1,1)

plot(real(roots(num_phi_da)),imag(roots(num_phi_da)),’o’)

hold on

plot([0 0],[-1.5 1.5],’k--’)

plot([-3 5],[0 0],’k--’)

xlabel(’Real Axis’)

ylabel(’Imaginary Axis’)

subplot(3,1,2)

impulse(G_phi_da)

subplot(3,1,3)

rlocus(G_phi_da)

suptitle(’G_{\phi / \deltaa}’)
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Chapter Eighteen

Solutions to Chapter 16

Problem 16.8.1. Suppose that a sensor with first-order dynamics has a time constant of .031 sec

and a DC gain of 9.2. (Hint: G(s) = α
T s+1

.) Now suppose that the input to the sensor is 4.6 volts

corrupted by (which means “added to”) 60-Hz electrical noise with amplitude 3.3 mV. Describe the

sensor output after a large amount of time passes by giving the amplitude and phase of both of its

harmonic components, that is, the DC component and the 60-Hz component. Do this two different

ways. First use Laplace transform to determine the transient and harmonic steady-state components

of the output. Next, use G(ω ) to determine the magnitude and phase shift of the harmonic steady-

state component of the output.

Solution 16.8.1.

The first-order sensor dynamics are given by,

G(s) =
9.2

0.031s + 1

and the input is,

u(t)= 4.6 sin(0t + 90◦) + 3.3 × 10−3 sin(120πt)

The magnitude and phase of the harmonic components can be directly evaluated from the sensor

transfer function and the input.

For the DC component, which corresponds to a zero frequency sinusoid:

4.6|G( ω)|ω=0πrad/sec = 4.6

∣
∣
∣
∣
∣

9.2

0.031 0π + 1

∣
∣
∣
∣
∣

= 4.6(9.2) = 42.32

ArgG( ω)|ω=0πrad/sec =− tan−1(0.031 × 0π) = 0◦

Thus the amplitude and phase of this harmonic component are 42.32 and 0◦ respectively.

For the 60-Hz component:

3.3 × 10−3|G( ω)|ω=120πrad/sec = 3.3 × 10−3

∣
∣
∣
∣
∣

9.2

0.031 120π + 1

∣
∣
∣
∣
∣

= 3.3 × 10−3(0.7844) = 2.6 × 10−3

ArgG( ω)|ω=120πrad/sec =− tan−1(0.031 × 120π) = −85.16◦

Therefore, the amplitude and phase of this harmonic component are 2.6× 10−3 and −85.15◦ respec-

tively.

cf. Note that the magnitude and phase of the harmonic components can also be evaluated using
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Laplace transforms to derive y(t). The output in the Laplace domain is given by,

U(s) =
4.6

s
+

1.2441

s2 + (120π)2

Y(s) = G(s)U(s) =
42.32

s(0.031s + 1)
+

11.4457

(0.031s + 1)[s2 + (120π)2]

⇒ Y(s) =
42.32

s
− 1.3118

0.031s + 1
+
−2.6 × 10−3s + 0.0832

s2 + (120π)2
.

Calculating the inverse Laplace of the output, the DC component is:

f (t) = 42.32 sin(0t + 90◦ + 0◦)

and the 60-Hz component is:

h(t)= h1(t) + h2(t)

=−2.6 × 10−3 cos(120πt) + 2.2 × 10−4 sin(120πt)

= 2.6 × 10−3 sin(120πt − 85.15◦).

Each of the two harmonic components give the same amplitude and phase as calculated previously.
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Problem 16.8.2. Suppose that a voltage amplifier with first-order dynamics G(s) = α
T s+1

has a time

constant of T = 0.037 sec and DC gain of α = 43.1. A sinusoidal input signal with amplitude of 2.8

volts yields, after an initial transient, a sinusoidal response with amplitude 76.2 volts. What were

the frequencies of the input sinusoid and the output sinusoid?

Solution 16.8.2.

Recall that the input and output sinusoids have the same frequency for a linear system and that

|G( ω)| represents the amplitude of the sinusoidal output due to the sinusoidal input with unit am-

plitude.

G( ω) =
α

Tω + 1

⇒|G( ω)| = α
√

1 + T 2ω2

¿From the given condition, we have,

1

|G( ω)|
=

2.8

76.2

⇒ α
√

1 + T 2ω2
=

76.2

2.8

⇒ω =

√

(2.8α/76.2)2 − 1

T 2
= 33.19rad/sec
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Problem 16.8.3. A lag filter has a pole at -2, a zero at -6, and a DC gain of 10. At the frequency 4

rad/sec, what is the magnitude of the filter in dB and what is the phase angle of the filter in degrees?

(Use just a calculator for this problem.)

Solution 16.8.3.

The transfer function for the lag filter is of the form,

G(s) = k
s + 6

s + 2
,

which implies that,

G( ω) = k
ω + 6

ω + 2
.

Given dc gain G(0) = 10, we have k = 10
3

. At ω = 4 rad/sec,

G(4 ) =
10

3

4  + 6

4  + 2
.

The magnitude and phase are given by,

20 log10 |G(4 )| = 14.6,

∠G(4 ) = −29.75◦.
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Problem 16.8.4. Consider the transfer function

G(s) =
1

s2 + 2ζωns + ω2
n

with ωn = 1 rad/sec. Use Matlab to plot the magnitude and phase Bode plots of this function for ω

from .01 to 100 for ζ = .1, .3, .5, .7, .9. Put all plots in the same figure.

Solution 16.8.4.

Refer to Figure 18.0.1.
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Figure 18.0.1: Problem 9. Bode Plot of G(s) = 1

s2+2ζωn s+ω2
n

(ωn = 1rad/sec , ζ = 0.1 − 0.9)
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Problem 16.8.5. Consider the transfer function

G(s) =
1

s2 + 2ζωns + ω2
n

.

Assume that the system is underdamped, that is, 0 < ζ < 1. Use calculus to determine the resonance

frequency ωr at which the magnitude |G( ω)| is maximized, and determine |G( ωr)|. Check whether

your answer agrees with the figure from the previous problem. In addition, determine the range of

values of ζ for which the magnitude of the transfer function is never greater than the value of its DC

gain.

Solution 16.8.5.

The magnitude of the given transfer function is:

|G( jω)| =
∣
∣
∣
∣
∣
∣

1

ω2
n − ω2 + 2 jζωnω

∣
∣
∣
∣
∣
∣
=

1
√

ω4 + 2(2ζ2 − 1)ω2
nω

2 + ω4
n

From the extremum condition d|G( jω)|/dω = 0, it turns out that the resonance frequency is,





|G( ωr)| = 1

2ζω2
n

√
1−ζ2

if ζ < 1√
2
≃ 0.707

|G( ωr)| = 1

ω2
n

if ζ > 1√
2
≃ 0.707

Thus,





ωr = ωn

√

1 − 2ζ2 if ζ < 1√
2
≃ 0.707

ωr = 0 if ζ > 1√
2
≃ 0.707

In Problem 16.8.4, ζ = 0.1−0.7 corresponds to the former and ωr = ωn

√

1 − 2ζ2 = 0.9592−0.5292

whereas ζ = 0.9 corresponds to the latter and ωr = 0. These results agree with the figure in Problem

16.8.4.

For ζ > 1/
√

2 the gain of the transfer function is never greater than its DC gain (the gain at ω = 0).

ζ = 1/
√

2 is called resonance damping.
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Problem 16.8.6. Sketch Bode magnitude and phase plots AND the Nyquist plot by hand for each

of the following transfer functions. You can use Matlab to print an “empty” log-log grid for your

sketch. Be sure that the range of ω is large enough to include all important features of your plots.

Explain how each plot was constructed. Check your sketches by plotting with the Matlab Bode and

Nyquist functions. Question: What is strange about the Nyquist plots that Matlab draws?

i) G(s) = s+2
s+10

(lead).

ii) G(s) = s+10
s+2

(lag).

iii) G(s) = s−2
s+10

.

iv) G(s) = s−2
s+2

(allpass).

v) G(s) = s
s+2

(washout).

Solution 16.8.6.

First sketch Bode plots for such basic forms as G1(s) = (s+ n) and G2(s) = 1/(s+ d) where n and d

are constants. Noting that each G(s) above can be expressed as G(s) = G1(s)G2(s), simply use the

additivity of magnitude (in log scale) and phase of complex variables. That is,

20 log10 |G( jω)|= 20 log10 |G1( jω)| + 20 log10 |G2( jω)|
Arg G( jω)=Arg G1( jω) + Arg G2( jω)

In order to draw the Nyquist plots, first evaluate |G( jω)| and Arg G( jω) at such critical points as zero

frequency, infinite frequency, crossover frequency, etc. Then use continuity to draw for ω ∈ [0,∞]

and employ symmetry about the ReG(jω)-axis to complete the plots for ω ∈ [−∞,∞]. (Nyquist

plots are symmetric about the ReG(jω)-axis.) Figures 6-11 are obtained from the Matlab commands

‘bode’ and ‘nyquist’.
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Figure 18.0.3: Problem 16.8.6(ii). Bode and Nyquist Plots of G(s) = s+10
s+2
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Figure 18.0.4: Problem 16.8.6(iii). Bode and Nyquist Plots of G(s) = s−2
s+10
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Figure 18.0.5: Problem 16.8.6(iv). Bode and Nyquist Plots of G(s) = s−2
s+2
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Figure 18.0.6: Problem 16.8.6(v). Bode and Nyquist Plots of G(s) = s
s+2
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Problem 16.8.7. For each of the following transfer functions, sketch the Bode magnitude and phase

plots by hand. You can use Matlab to print an “empty” log-log grid for your sketch. Be sure that

the range of ω is large enough to include all important features of your plots. Explain how each plot

was constructed. Check your sketches by plotting with Matlab.

i) G(s) = s2

(s+1)2(s+10)2 (rooftop).

ii) G(s) =
(s+1)(s+100)

s(s+5)(s+10)
.

Solution 16.8.7.

For a brief description of how to construct bode plots, refer to the previous problem. Figure 16.8.7

is obtained from the Matlab command ‘bode’.
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(s+1)2(s+10)2 and G(s) =
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Problem 16.8.8. Consider the asymptotically stable loop transfer function

L(s) =
−1

s2 + 2s + 3
.

Show that the closed-loop transfer function S (s) = 1/(1 + L(s)) is asymptotically stable, and use

Matlab to plot the magnitude and phase Bode plots for S . Then, write a Matlab program to show

numerically that ∫ ∞

0

ln |S ( ω)| dω = 0.

Explain this result in terms of the “balance” between attenuation and amplification.

Solution 16.8.8..

The closed-loop transfer function is,

S (s) =
1

1 + L(s)
=

s2 + 2s + 3

s2 + 2s + 2
.

Its poles are, s = −1 ± , from which we see that S (s) is asymptotically stable. Figure 18.0.8 shows

the bode plot for S (s). The following Matlab code numerically shows that
∫ ∞

0
ln |S ( ω)| dω =
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Figure 18.0.8: Problem 16.8.8. Bode Plot for S (s) = s2+2s+3
s2+2s+2

0.0021 ≃ 0. Attenuation is exactly balanced by amplification in this transfer function.

clear all;

w0 = 0; wf = 10ˆ4; dw = 0.01; w = w0:dw:wf;

S = ((j*w).ˆ2 + 2*j*w + 3)./((j*w).ˆ2 + 2*j*w + 2);

Int_ = log(abs(S)); Int = sum(Int_)*dw
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Problem 16.8.9. Consider the unstable loop transfer function

L(s) =
4

(s − 1)(s + 2)
.

Show that the closed-loop transfer function S (s) is asymptotically stable, and use Matlab to plot the

Bode plots for S . Then, write a Matlab program to show numerically that
∫ ∞

0

ln |S ( ω)| dω = π.

Discuss the “balance” between attenuation and amplification.

Solution 16.8.9.

The closed-loop transfer function is,

S (s) =
1

1 + L(s)
=

s2 + s − 2

s2 + s + 2
.

Its poles are s = (−1±
√

7 )/2, from which we conclude that S (s) is asymptotically stable. Figure 3

shows the bode plot for S (s). As in Problem 1, it can be shown that,
∫ ∞

0
ln |S ( ω)| dω = 3.1412 ≃ π.

This transfer function amplifies the input signal at every frequency.
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Figure 18.0.9: Problem 16.8.9. Bode Plot for S (s) = s2+s−2
s2+s+2
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Problem 16.8.10. Consider the loop transfer function

L(s) =
2.5(s + 100)

(s + 1)2
.

Sketch the gain and phase Bode plots of L(s). Use your plot to indicate the magnitude crossover

frequency ωmco, the phase crossover frequency ωpco, the gain margin, and the phase margin.

Solution 16.8.10.

The Bode plot and the loop transfer function is given in Figure 18.0.10.
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Figure 18.0.10: Problem 1, Bode Plot for L(s) =
2.5(s+100)

(s+1)2

From the graph, we see that,

GM=∞
PM= 16.2 deg at ωmco = 15.9 rad/sec
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Problem 16.8.11. Consider the damped rigid body plant

G(s) =
1

s(s + 1)
.

i) Assume unity feedback so that L(s) = G(s). Sketch the Nyquist plot and deter-

mine the gain and phase margins.

ii) Instead of unity feedback, consider the lead controller Gc(s) = k(s + 2)/(s + 20)

so that L(s) = Gc(s)G(s). For k = 1, use Matlab to determine whether the lead

provided by this lead controller increases the phase margin.

iii) Draw the root locus in terms of k.

iv) Choose k so that the complex conjugate poles have damping ratio ζ =
√

2/2.

v) For the value of k that you chose, determine the steady state error for the unit

ramp input 1/s2.

(Hint: You can solve the problem directly by equating the product of (s − a)(s2 + 2ζωns + ω2
n) with

the cubic obtained from the closed loop transfer function with k as the unknown parameter. Then

you can get a cubic equation in a or ωn.)

Solution 16.8.11.

(i) Figure 18.0.11 shows the Nyquist plot of the given loop transfer function. Since it crosses the

ReG( jω)-axis at the origin, its gain margin is infinite. Also it turns out to cross the unit circle

centered at the origin when the frequency ω = 0.786 rad/sec. Therefore the phase margin is

PM = tan−1 [ImG(jω)/ReG(jω)] ≃ 51.8 deg

(ii) Simply use the command ‘margin’ to obtain the gain and phase margin along with bode plot.

Figure 18.0.12 shows the bode plot indicating phase margins before and after the lead com-

pensator is used. The phase margin has been increased from PM = 51.8 deg to PM = 86.9

deg. (Also note that the margin (before the compensator is used) is consistent with the result

in part (i).)

(iii) Figure shows the root locus for the closed-loop

(iv) The closed-loop transfer function is,

G̃(s) =
G(s)Gc(s)

1 +G(s)Gc(s)
=

k(s + 2)

s3 + 21s2 + (k + 20)s + 2k

Balancing the cubic characteristic polynomial with the given factored form yields

s3 + 21s2 + (k + 20)s + 2k = (s − a)(s2 + 2ζωns + ω2
n)

⇒ s3 + 21s2 + (k + 20)s + 2k = s3 + (
√

2ωn − a)s2 + (ω2
n −
√

2aωn)s − aω2
n

⇒






21 =
√

2ωn − a

k + 20 = ω2
n −
√

2aωn

2k = −aω2
n

Rearranging for ω yields a cubic equation
√

2ω3
n − 23ω2

n + 42
√

2ωn − 40 = 0,
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Figure 18.0.11: Problem 16.8.11(i). Nyquist plot for L(s) = 1
s(s+1)

which results in

ωn = {13.2561, 1.8607, 1.1467}
a= {−2.2531,−18.3686,−19.3783}
k= {197.9617, 31.7973, 12.7410}

Now using Routh’s test for stability, we have

a0 − a2a1 = 2k − 21(k + 20) = −19k − 420 < 0 if k > 0,

which implies that the closed-loop system is asymptotically stable if k > 0. Hence it follows

that all three gains computed above yields the closed-loop stability. Finally introducing the

three k’s into the characteristic polynomial and solving for s results in

s =






−2.2531,−9.3734 ± 9.3734 

−18.3686,−1.3157 ± 1.3157 

−19.3783,−0.8109 ± 0.8109 

Note that the real and imaginary parts of all the complex roots have the same magnitude,

which corresponds to the damping ratio of ζ = 1/
√

2 and thus satisfies the given requirement.

(v) The reference-to-error transfer function is given by

E(s) = R(s) − Y(s) =
1

1 +G(s)Gc(s)
R(s)

⇒ E(s) =
s(s + 1)(s + 20)

s3 + 21s2 + (k + 20)s + 2k
R(s)

⇒ e∞ = lim
s→0

sE(s) =
10

k
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⇒ e∞ = {0.0505, 0.3145, 0.7849}

The highest gain k = 197.9617 yields the smallest steady state error e∞ = 0.0505 for the ramp

input. transfer function in terms of k.
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Figure 18.0.12: Problem 16.8.11(ii). Phase margin for L(s) = 1
s(s+1)

and L(s) = s+2
s(s+1)(s+20)
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Figure 18.0.13: Problem 16.8.11(v). Root Locus for L(s) =
k(s+2)

s(s+1)(s+20)
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Problem 16.8.12. The lateral dynamics of an experimental aircraft are modeled by the transfer

function 1/(τs + 1), where τ > 0 is a time constant. For this transfer function a basic servo loop is

closed with the integral controller KI/s.

i) Determine the values of KI for which the closed-loop system is asymptotically stable.

ii) For which values of KI is the steady-state error to a unit-slope ramp command less than

0.025?

iii) For a value of KI such that the closed-loop system is asymptotically stable, determine the

amplitude of the harmonic steady-state response to the command r(t) = r0 cos(ωt).

Solution 16.8.12.

The open loop transfer function is given by

L =
1

τs + 1

KI

s
=

KI

s(τs + 1)
. (18.0.1)

The sensitivity transfer function is given by

S =
1

1 + L
=

s2 + 1
τ

s

s2 + 1
τ

s +
KI

τ

, (18.0.2)

and the closed loop transfer function is given by

Gc =
L

1 + L
=

KI

τ

s2 + 1
τ

s +
KI

τ

, (18.0.3)

i) Applying the Routh criterion, the closed-loop system is asymptotically stable if and only if
1
τ
> 0 and KI

τ
> 0, that is, KI > 0 and τ > 0.

ii) Now, use the FVT to evaluate the steady-state error. For a unit ramp input we have,

lim
t→∞

e(t) = lim
s→0

s ê(s) = lim
s→0

s S
1

s2
= lim

s→0
s

s2 + 1
τ

s

s2 + 1
τ

s +
KI

τ

1

s2
=

1

KI

. (18.0.4)

The steady state error limt→∞ e(t) < 0.025 if and only if KI > 40

iii) Applying the fundamental theorem of linear systems, the amplitude of the harmonic steady-

state response to the command r(t) = r0 cos(ωt) is given by

y0 = |Gc( ω)|r0 =

∣
∣
∣
∣
∣
∣
∣

KI

τ

−ω2 + ω
τ
+

KI

τ

∣
∣
∣
∣
∣
∣
∣

r0 =
KIr0

√

ω2 + (KI − τω2)2
. (18.0.5)
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Problem 16.8.13. At a given Mach number, the open-loop longitudinal dynamics of an experimental

aircraft are given by

L(s) =
1

s(s + 1)2
.

i) Sketch the Bode plot of L (magnitude and phase plots).

ii) Determine the phase crossover frequency ωpco and the gain margin in dB of the closed-loop

system and illustrate them on the Bode plot. (Hint: log10 2 = 0.3)

iii) Sketch the Nyquist plot of L.

iv) Indicate the phase crossover frequency ωpco and the gain margin on the Nyquist plot. Be sure

that what you show on the Nyquist plot is consistent with the Bode plot.

Solution 16.8.13.

i) Due to the pole at zero, the Bode magnitude plot has a slope of -20 dB/dec and the phase plot has

−90◦ phase for low values of ω. Due to the poles at 1, the Bode magnitude plot has a slope of -60

dB/dec and the phase plot has −270◦ phase for ω > 1. Figure 18.0.14 shows the Bode magnitude

and phase plots for L(s) = 1
s(s+1)2 .
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Figure 18.0.14: Problem 16.8.13: Bode magnitude and phase plots for L(s) = 1
s(s+1)2 . The phase

and gain margins are also shown.

ii) The phase crossover frequency ωpco = 1 rad/s and the gain margin GM = 6.02 dB. The gain

crossover frequency ωgco = 0.682 rad/s and the phase margin PM = 21.5 deg.
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iii) Consider the open loop transfer function

L( ω) =
1

ω( ω + 1)2
= − 2

(1 + ω2)2
−  1 − ω2

ω(1 + ω2)2
. (18.0.6)

As ω → 0, L( ω) → −2 + ∞ and as ω → ∞, L( ω) → 0. Also note that Im(L( ω)) = 0 for

ω = 1, that is, the Nyquist plot crosses the negative real axis at -0.5 which corresponds to ω = 1.

The Nyquist plot is shown in Figure 18.0.15.
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Figure 18.0.15: Problem 16.8.13: Nyquist plot for L(s) = 1
s(s+1)2 .

iv) The phase crossover frequency ωpco = 1 rad/s and L( ) = −0.5. Hence, the gain margin GM

= 20 log10(1 − |L( )|) = 6.02 dB. The gain crossover frequency ωgco = 0.683 rad/s and the phase

margin PM = arctan 0.377
0.936
= 21.9◦. Figure 18.0.16 shows ωpco and ωgco on the Nyquist plot.
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Figure 18.0.16: Problem 16.8.13: Theωpco andωgco are shown on the Nyquist plot for L(s) = 1
s(s+1)2 .
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Problem 16.8.14. At a given Mach number, the open-loop longitudinal dynamics of an unstable

experimental aircraft are given by

L(s) =
4(s + 10)

(s − 1)(s − 2)
.

i) Sketch the Bode plot of L (magnitude and phase plots).

ii) Sketch the Nyquist plot of L.

iii) Apply the Nyquist test to this system and use it to assess closed-loop stability.

Solution 16.8.14.

i) The bode plot of L is shown on Fig. 0.0.9.
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Figure 18.0.17: Problem 16.8.14. Bode Plot for L(s) =
4(s+10)

(s−1)(s−2)

ii) The Nyquist plot of L is given by Fig. 0.0.10.

iii) The curve meets the real axis at 0 and -1.33. There is 2 counterclockwise encirclements of

-1 so N = −2. Since L(s) has 2 open loop poles in the right half plane, P = 2. Then, Z = N + P =

−2 + 2 = 0 which indicates that the system is stable.
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Figure 18.0.18: Problem 16.8.14. Bode Plot for L(s) =
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