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TAM 4730/5730 Intermediate Dynamics and Vibrations

Homework

Date of this version: December 1, 2014

Hyperlinks look like this. Dates in headings below are the dates of the associated lecture.

Wed. Aug 26

1. Simplest dynamics with Polar coordinates. This is the simplest dynamics
problem, but posed in polar coordinates. Assume a particle is on a plane with no
force on it. So, you know it moves at constant speed in a constant direction. Now
write the differential equations

*
a D*

0

in polar coordinates. a) Solve them numerically for various initial conditions. b)
Plot the solution and check that the motion is a straight line at constant speed. c)
Using your numerical result, pick a way to measure how straight the path is, and see
how straight a line your polar coordinate solution gives. d) Is the path more straight
when you lower the numerical tolerances.

Wed. Sept 3

2. Canon ball. A cannon ball m is launched at angle � and speed v0. It is acted on
by gravity g and a viscous drag with magnitude jcvj.
(a) Find position vs time analytically.

(b) Find a numerical solution using � D �=4, v0 D 1m=s, g D 1m=s2, m D 1 kg.

(c) Compare the numeric and analytic solutions. At t D 2 how big is the error?
How does the error depend on specified tolerances or step sizes?

(d) Use larger and larger values of v0 and for each trajectory choose a time interval
so the canon at least gets back to the ground. Plot the trajectories (using equal
scale for the x and y axis. As v ! 1 what is the eventual shape? [Hint: the
answer is simple and interesting.]

(e) For any given v0 there is a best launch angle �� for maximizing the range. As
v0 !1 to what angle does �� tend? Justify your answer as best you can with
careful numerics, analytical work, or both.

3. Mass hanging from spring. Consider a point mass hanging from a zero-rest-length
linear spring in a constant gravitational field.

(a) Set up equations. Set up for numerical solution. Plot 2D projection of 3D
trajectories.

(b) By playing around with initial conditions, find the most wild motion you can find
(wild means most wiggles, or most complicated). Make one or more revealing
plots. [Hint: Make sure the features you observe are properties of the system
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and not due to numerical errors. That is, check that the features do not change
when the numerics is refined.]

(c) Using analytical methods justify your answer to part (b).

4. Central force. These two problems are both about central forces. One does not
follow from the other.

(a) Find a central force law so that for circular orbits the speed is independent of
radius.

(b) By numerical experiments, and trial and error, try to find a period motion that
is neither circular nor a straight line for some central force besides F D �kr or
F D �GmM=r2. In your failed searches, before you find a periodic motion, do
the motions always have regular patterns or are they sometimes chaotic looking
(include some pretty pictures)?

To do this properly you probably need to do numerical root finding. Once you
have your system you can define a function whose input is the initial conditions
and the time of integration and whose output is the difference between the initial
state and the final state. You want to find that input which makes the output
the zero vector.

Wed. Sept 10

5. Canon ball. A cannon ball m is launched at angle � and speed v0. It is acted on
by gravity g and a quadratic drag with magnitude jcv2j.
(a) Find a numerical solution using � D �=4, v0 D 1m=s, g D 1m=s2, m D 1 kg.

(b) Numerically calculate (by integrating PW D P along with the state variables)
the work done by the drag force. Compare this with the change of the total
energy. Make a plot showing that the difference between the two goes to zero
as the integration gets more and more accurate.

6. What means “rate of change of angular momentum”? Consider a moving
particle P. Consider also a moving point C (moving relative to a Newtonian frame F
that has an origin 0). For which of these definitions of

*

H =C Is the following equation

of motion true (that is, consistent with
*

F D m*a)?

*

MC D P*
H=C

In each case say whether the definition works i) in general, or ii) for some special
cases concerning the motions of P and C that you name.

(a)
*

H=C D*
rP=C0 �*vP=0m,

where C’ is a point fixed in F that instantaneously coincides with C.

(b)
*

H=C D*
rP=C �*vP=0m.

(c)
*

H=C D*
rP=C �*vP=Cm.

That is, for each possible definition of
*

H =C you need to calculate
P*
H=C by differenti-

ation and see if and when you get *rP=C �m*a
P=F .
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7. Mechanics of two or more particles

(a) For two particles with mass m1 and m2 what is the period of circular motion if
the distance between the particles is d and the only force is the force between
them, F D Gm1m2=r

2?

(b) Pick numbers for G;m1; m2 and r and, using appropriate initial conditions, test
your analytical result with a numerical simulation. Make any plots needed to
make your result convincing.

(c) For three equal particles, m1 D m2 D m3 D 1 and G D 1 what is the angular
speed for circular motion on a circle with diameter of d D 1?

(d) Check your result with a numerical simulation.

8. Montgomery’s eight. (From Ruina/Pratap). Three equal masses, say m D 1,
are attracted by an inverse-square gravity law with G D 1. That is, each mass is
attracted to the other by F D Gm1m2=r

2 where r is the distance between them. Use
these unusual and special initial positions:

.x1; y1/ D .�0:97000436; 0:24308753/
.x2; y2/ D .�x1;�y1/
.x3; y3/ D .0; 0/

and initial velocities

.vx3; vy3/ D .0:93240737; 0:86473146/

.vx1; vy1/ D �.vx3; vy3/=2
.vx2; vy2/ D �.vx3; vy3/=2:

For each of the problems below show accurate computer plots and explain any cu-
riosities.

(a) Use computer integration to find and plot the motions of the particles. Plot
each with a different color. Run the program for 2.1 time units.

(b) Same as above, but run for 10 time units.

(c) Same as above, but change the initial conditions slightly.

(d) Same as above, but change the initial conditions more and run for a much longer
time.

Wed. Sept 17

9. Konig’s Theorem The total kinetic energy of a system of particles is

EK D
1

2

X
miv

2
i :

(a) Derive an expression of this form

EK D
1

2
mtotv

2
G C :::you fill in the rest::::
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(b) Is it always true that �X
*

F ext
�
�*vG D d

dt

�
1

2
mtotv

2
G

�
�

Defend your answer with unassailable clear reasoning (that is, a proof or a
counter-example).

(c) Is it always true that the power of internal forces is equal to the rate of change
of the quantity you filled in part (a) above (just the second half of the full
expression)? Provide a proof or a counter-example. (A good solution is expected
from those in 5730).

=

10. What means “rate of change of angular momentum” for a SYSTEM of
particles? Consider a system of moving particles with moving center of mass at G.
Consider also a moving point C (moving relative to a Newtonian frame F that has an
origin 0). For which of these definitions of

*

H =C Is the following equation of motion

true (that is, consistent with
*

F D m*a)?

*

MC D P*
H=C

In each case say whether the definition works i) in general, or ii) for some special
cases concerning the motions of P and C that you name.

(a)
*

H=C DP*
ri=C0 �*vi=C0mi ,

where C’ is a point fixed in F that instantaneously coincides with C.
(Hint: this definition is good one, always!)

(b)
*

H=C DP*
ri=C �*vi=0mi .

(This strange definition is used in the classic book by Housner and Hudson)

(c)
*

H=C DP*
ri=C �*vi=Cmi .

(Hint: this is the most important candidate definition, but it’s only good for
special kinds of C, namely: C = COM, C is fixed and ...)

That is, for each possible definition of
*

H =C you need to calculate
P*
H=C by differentia-

tion and see if and when you get
P

*
ri=C �*ai=0. If you are short for time just consider

cases (a) and (c) and note their agreement if C is stationary or if C=G.

11. Rotation with zero angular momentum. This is a concrete example showing
that a system can rotate while having zero angular momentum at all times. If you
don’t like this example, or want to do a different one for any reason, any substitution
is fine. But it needs to be backed by a clear (numerical is fine) calculation.

Consider a massless rigid plate in space. On this plate are marked x and y axes.
There are 4 equal masses attached to the plate. Two of them are welded (glued, fixed)
to the plate on the y axis at y D �2. Two of them are forced, by massless machinery
that rides on the plate, to move in a circle with radius r D 1 centered at x D �2, and
starting at x D �3, respectively. They move such that the line connecting them goes
through the origin at all times. The right mass moves according to this equation,
using polar coordinates centered at y D 0; x D 2:

r D 1; � D .1 � cos.t// � for 0 � t � �:
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That is, the mass goes around the circle once in a nice smooth motion. The other
mass moves accordingly (same motion, reflected through the origin).

Use conservation of angular momentum for the system to find the net rotation � of
the masses on the y axis at the end of one rotation of the x� axis masses. Numerical
integration is fine. [Hint: The equation

*

H=0 D
*

0 tells you P�.t/.]
12. Two masses This problem has 2 independent educational goals:

(a) Motivate the use of kinematic constraints.

(b) Introduce the simplest of a class of vibrations problems you should master. At
this point it is mastery of derivation of the equations. You should check that
you can reproduce the lecture example with no sign errors without looking up
anything.

Two masses m1 and m2 are constrained to move frictionlessly on the x axis. Initially
they are stationary at positions x1.0/ D 0 and x2.0/ D `0. They are connected with
a linear spring with constant k and rest length `0. A force is applied to the second
mass. It is a step, or ‘Heaviside’ function

F.t/ D F0H.t/ D
(
0 if t < 0

F0 if t � 0

(a) Write code to calculate, plot and (optionally) animate the motions for arbitrary
values of the given constants.

(b) Within numerical precision, should your numerical solution always have the
property that F D .m1 Cm2/aG where xG D .x1m1 C x2m2/=.m1 Cm2/? (As
always in this course, yes or no questions are not multiple choice, but need
justification that another student, one who got the opposite answer, would find
convincing. )

(c) Use your numerics to demonstrate that if k is large the motion of each mass is,
for time scales large compared to the oscillations, close to the center of mass
motion.

(d) 5730 only: Using analytic arguments, perhaps inspired by and buttressed with
numerical examples, make the following statement as precise as possible:

For high values of k the system nearly behaves like a single mass.

Of course, in detail, the system has 2 degrees of freedom (DOF). So you are
looking for a way to measure the extent to which the system is 1 DOF, and in
which conditions (for which extreme values of parameters and times) the system
is close to 1 DOF by that measure. There is not a simple single unique answer
to this question.

Wed. Sept 24

13. Two masses constrained This is an elaboration of the problem above, replacing
the spring with a rigid rod. As per lecture, set up the DAEs and solve them using
Matlab using numbers of your choice. Note the increasing error (as time progresses)
in the satisfaction of the constraint. Compare this solution with the the method from
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the problem above (where you use some very large value of k). Which one is faster?
more accurate in predicting COM motion?

14. Simple pendulum. Derive the simple pendulum equation R� C g
`

sin � D 0 as many
ways as you can without looking anything up in books. For example, in all cases
using polar coordinates,

(a) linear momentum and manipulate the equations to eliminate constraint force

(b) linear momentum, dot with Oe
�

(c) linear momentum, cross with *
r

(d) angular momentum

(e) conservation of energy

(f) power balance

(g) Lagrange equations (if you know them already, not if you don’t).

15. Pendulum numerics. Set up the pendulum in cartesian coordinates. Express
the constant length constraint as a set of linear equations restricting the accelera-
tion. Solve these (3 2nd order) DAE equations with numerical integration and initial
conditions and parameters of your choosing. No polar coordinates allowed. Quan-
titatively compare your solution with a solution of the simple pendulum equations
(For the comparison you need to either compute x from � or vice versa. Integrate
for a long enough time so you can detect drift away from satisfying the kinematic
constraint.

16. Pendulum with an awkward parameterization By any means you like, for
a simple pendulum find the equations of motion using y (horizontal position) as
your parameterization of the configuration. That is, find a 2nd order differential
equation determining Ry in terms of y, Py and physical parameters (g;m; `). Using
numerics, quantitatively compare the solution of this ODE with a solution of the
simple pendulum equations (Note, you can assume the pendulum is hanging down,
hence x > 0. This problem is different from the DAE problem above in that you
should obtain a single 2nd order ODE, not a set of 3 equations.

17. 2D Dumbell. Two equal masses m D 1 are constrained by a rod to be a distance
` D 1 apart. At t D 0 they have equal and opposite velocities (v D 1) perpendicular
to the rod. Use a set of 5 DAEs (

*

F D m*a & the constraint equation .x2 � x1/
2 C

.y2 � y1/
2 D `2 with numerical integration to find the subsequent motion. Use plots

and/or animation to help debug your code. Using what you know about systems of
particles (e.g., momentum, angular momentum, constraint equation, energy) quantify
as many different numerical errors as you can.

18. Canonball. A cannon fires a projectile that experiences gravity and quadratic drag
FD D cDv

2). Cannonball mass m D 1 kg, acceleration due to gravity g D 10m=s2,
and drag coefficient is cD D 0:5 kg=m (same example used in class).

(a) Find a trajectory (using whichever numerical tool you choose, but dont just
guess!) so that the projectile hits the ground at x D 2m given using a launch
speed of v0 D 10m=s. Find the launch angle and a plot of the trajectory.
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(b) Imagine you want an efficient cannon that can hit a point at least 2m away with
the minimum possible launch speed. Find the angle and launch velocity that
achieve this.

19. (5730 only). Consider the Montgomery 8 (or not?) problem again (3 point masses
mutually attracted by gravity) using mi D G D 1. Find a periodic solution by op-
timizing both the initial conditions and simulation time so that the error between
initial and final state (positions and velocities) goes to 0. Afterwards simulate for 5+
periods to demonstrate that your solution is periodic. The following initial conditions
are a reasonable guess:

Mass 1: X1=-0.755; Y1=0.355; Vx1=0.9955; Vy1=0.07855;

Mass 2: X2=1.155; Y2=-0.0755; Vx2=0.1055; Vy2=0.4755;

Mass 3: X3=-0.4055; Y3=-0.3055; Vx3=-1.1055; Vy3=-0.5355;

A good initial guess for the period is 8 . Hint: Youll be most successful if you
bound your search near to these values. If you dont use variable bounds (e.g. in
FMINCON), youll probably find the trivial solution where everything equals 0. If
you want to go on with this problem, you can try it again using Matlabs BVP4C
command (which does this particular problem more elegantly).

Fri Oct. 3

20. Inverted pendulum with shaking base. A uniform stick with length ` is con-
nected to a hinge at its lower end. That hinge is shaking up and down with a specified
acceleration a.t/ (could be a specified position, differentiated twice).

(a) Find the equations of motion (duplicate lecture calculation).

(b) Simulate the motion to show that the pendulum can be stable when upright.
[Hint: Use an oscillating base with a small displacement amplitude (� � `) and
a big enough frequency (a� g).]

(c) Do again with DAEs, and show that your results quantitatively agree.

Wed. Oct 8

21. Double pendulum Consider the double pendulum made with two bars. Hinges
are at the origin 0 and the elbow E. For definiteness (and so we can check solutions
against each other) both bars are uniform with the same length ` D 1 (in some
consistent unit system). g D 1. Neglect all friction and assume there are no joint
motors.

(a) Set up and numerically solve (there is no analytic solution) to the governing
equations that you find using AMB. You may refer to lecture notes, but you
should be able to do it on your own by the time you hand in the work. Assume
that at t D 0 the upper arm is horizontal, sticking to the right, and the fore-arm
is vertical up (like looking from the front at a driver using hand signals to signal
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a right turn). Integrate until t D 30. Draw the (crazy) trajectory of the end of
the forearm.

(b) Use Solve again by DAEs equations. By comparing numerical solutions, show
that the governing equations are the same as those obtained using AMB.

(c) Animate your solution. Send it by email to Andy Ruina. Email subject: Int
Dyn Double Pendulum Animation. Put your solution in a folder. Name the
folder: YOURNAME-Double. In the folder have a function called ROOT (and
other well-commented Matlab files). Running ROOT should give an animation
within 30s. Zip the folder. Call the zipped file YOURNAME-Double. That is,
Andy is grading the animations, and Katie is grading your handed in HW.

22. Bead on parabolic wire For a frictionless point-mass bead sliding on a rigid wire
on the curve y D cx2 with gravity in the �y direction, find the equation of motion.

(a) Derive the equations of motion using the x axis as the generalized coordinate.

Mon. Oct. 20

23. Braking stability 2D, looking down. Consider the steering stability of a car going
straight ahead with either the front brakes locked or the rear brakes locked. The
steering is locked and straight ahead. For simplicity assume that the center of mass
is at ground height between the front and back wheels. Assume that the locked
wheels act the same as a single dragging point on the centerline of the car midway
between the wheels.

(a) Develop the equations of motion.

(b) Set them up for computer solution.

(c) For some reasonable parameters and initial conditions find the motion and make
informative plots that answer the question about steering stability. Note, in this
problem where there is no steady state solution you have to make up a reasonable
definition of steering stability.

(d) See what analytical results you can get about the steering stability (as dependent
on the car geometry, mass distribution, the coefficient of friction and the car
speed). As much as you have time and interest, illustrate your results with
graphs and animations of numerical integrations.

(e) Hints. Check that your governing equations reduce to the lecture equations
when the friction is zero. Check special cases of the numerical solutions with
solutions you know other ways. A challenge is to think of as many of these as you
can (even if you don’t check all of them). That is, for some special parameter
values and/or initial conditions you know features of the solution (examples: 1)
no friction means energy is conserved 2) with friction and no initial rotation
slowing is with constant acceleration, etc).

24. Bead on parabolic wire, Lagrange Equations For a frictionless point-mass bead
sliding on a rigid wire on the curve y D cx2 with gravity in the �y direction, find
the equation of motion.
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(a) Derive the equations of motion using the x axis as the generalized coordinate.
Check that this agrees with the Newton-Euler approach.

(b) A curve in the xy plane is described by the following equation:

y D cs2;

where s is arc-length along the curve y D cs2, starting at x D y D 0 (x is only
defined implicitly on this curve, using the equation ds D

p
.dx/2 C .dy/2. A

bead slides on that wire with gravity. Use Lagrange equations to find the EoM.
[Hint: this is a really easy problem].
Extra credit:

i) draw the curve (probably requires numerical integration or ODE solution),

ii) find a more normal description for the curve (e.g., a parametric equation),
[Hint: It is a famous curve, with a special name and all.]

25. Mass in slot on turntable. A rigid turntable (mt ; It ) is free to rotate about a
hinge at it’s center. It has in it a straight frictionless slot that passes a distance d

from it’s center. A mass ms slides in the slot. For minimal coordinates use rotation
of the disk � from the position in which the slot is horizontal and below the disk
center, and the distance s the mass is from the point where the slot is closest to the
center of the disk.

Top view

x

y

(a) Find the acceleration of the mass in terms of d; � P�; R�; s; Ps and Rs. Extra credit:
Do this one or two more different ways and check that all give the same answer
when reduced to x and y coordinates.

i. Write the position of the mass in terms of d; � and s using base vectors O{
and O|. Differentiate twice.

ii. Write the position using O{0, which aligns with the slot, and O|0. Differentiate
twice using that PO{0 D *

! � O{0 D ! O|0 and PO|0 D �*! � O|0 D �! O{0
iii. Use the five-term acceleration formula (using *

vrel D Ps O{0 and *
arel D Rs O{0).

(b) Find the equations of motion (That is, find R� and Rs in terms of fixed parameters
and position and velocity variables.). Do this using AMB for the whole system
about the center and fLMB for the massg�O{0.

(c) Find the equations of motion using Lagrange equations, and check for agreement.

(d) Assume ICs that s.0/ D 0; Ps.0/ D v0; �.0/ D 0 and P�.0/ D !0 > 0. As t ! 1
does � !1? (As for all questions, please explain in a way that would convince
a non-believer.)

26. Cart and pendulum A cart m1 slides frictionlessly on a level surface. A massless
stick with length ` is hinged to it with a mass m2 at the end. Take � D 0 to be the
configuration when the pendulum is straight down. Use gravity g.
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(a) Find the full non-linear governing equations using Newton-Euler (N-E, Linear
and angular momentum balance).

(b) and using Lagrange. Show that you get the same equations as for N-E.

27. Double pendulum kinematics Consider a double pendulum where both links have
length `. Consider two sets of minimal coordinates:

(a) Absolute angles �1; �2. These are the angles from the vertical of the two links.

(b) Relative angles �1; � D �2 � �1.

Calculate the acceleration of the end of the second link in terms of the two sets, and
their derivatives.

� For the first set do this, as we have done before, by considering a non-rotating
frame that moves with the end of the first link. This involves basic polar coor-
dinate formulas.

� For the second set, consider a reference frame that is glued to the first link.
Then use the ‘5-term acceleration formula’ to calculate the acceleration of the
end of the second link.

Show that the two methods give the same answer.

Wed. Oct 29

28. Rolling cylinder A uniform cylinder with mass m and radius r rolls without slip
outside and on top of a cylinder with radius R. Gravity g pulls it down.

(a) Are the full non-linear differential equations the same as those of an inverted
pendulum? If so, or not, explain why this is expected.

(b) Assume the rolling cylinder is released from rest almost exactly at the top:
� D 0C. At what angle will it lose contact. Find an analytic formula for this
[Hint: use energy conservation.] Extra: if you like, compare the result with a
numerical solution of the ODEs using ‘events’

29. Rolling eccentric cylinder 5730 students only. A cylinder with radius R has center
of mass G offset from the cylinder center C by a distance d < R. It has total mass
M , radius R and moment of inertia IG about it’s center of mass. It rolls without
slip down a ramp with slope  , propelled by gravity g.

(a) Find the equations of motion.

(b) Find the needed coefficient of friction to enforce the rolling constraint.

(c) After release from rest how far does it roll before it skips into the air.

It’s ok to use numerical solutions based on any non-trivial parameter choices. No
need for parameter sweeps.

Interesting extension if you have lots of time: With appropriate initial conditions,
this can roll on a level ramp then skip, then do about a full revolution in the air, then
land with no no relative velocity at impact (thus conserving energy) and continue
rolling and skipping. This is explained, somewhat, in a paper on Ruina’s www page:
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“A collisional model ...” (figure 4). The calculation details are like those in this paper
“Persistent Passive Hopping ...”. I would love someone to build a model of this.

30. A rigid object (m; IG) moves on the plane with no gravity or other forcing. It has
on it two skates

(a) that are not parallel, and

(b) neither one is on the normal line of the other.

(a) Find the motion by writing unconstrained Lagrange Equations. Then calcu-
late generalized forces associated with the constraints. Then supplement the
Lagrange equations with constraint equations (two times over: write the skate
velocity constraint and differentiate it). Then solve the equations numerically
using example parameters of your choosing.

(b) The solution above can also be found by simple elementary means. If you don’t
see this, make an animation of the solution above. Compare the result.

31. Mass and spring vibration. The harmonically forced vibration of a damped
oscillator is given by this equation:

m Rx C c Px C kx D A cos!0t C B sin!0t

(a) Assume that the mass is connected to the spring and to the dashpot, the other
ends of which are at C and D, respectively. Define x as the displacement of the
mass in inertial space. For each of the cases below, find A and B. The latter
three cases are from excitation by a moving base.

i. C and D are fixed and a force F D F0 sin!0t acts on the mass.

ii. C is fixed and D oscillates with � D �0 sin!0t .

iii. D is fixed and C oscillates with � D �0 sin!0t .

iv. C and D oscillate together with � D �0 sin!0t .

(b) For the following problems, solve the governing equation above numerically us-
ing, say ODE45 using various appropriate forcings and initial conditions. For
definiteness use the underdamped case m D 1; c D 1; k D 1.

i. Set A D 0; B D 0 and c D 0. Using numerics find the natural frequency !n.
Do this using ‘events’ (for the mass released from rest, find the time until the
velocity gets to zero from above). Then calculate the frequency from this
measure period. Compare the result with the analytic result !n D

p
k=m.

ii. Now set A D 0; B D 0 and c D 1 and find the damped natural frequency
!d . Compare this with the analytic result.

iii. Using ’events’ that do not terminate the integration, and using the logarith-
mic decrement method, find the damping ratio � (‘zeta’). Compare with
the analytic result.

iv. Draw a frequency response curve (each point on this curve requires a full
simulation). For example, use A or B = 0 and the other equal to 1 and look
at the amplitude of steady state response. The hard part here is running
the simulation long enough so that the response is ”steady state”. Compare
this curve with an analytically derived curve. Using the numerics, find, as
accurately as you can, the frequency at which the amplitude of the steady
state response is maximum.
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v. Compare the three frequencies: 1) natural frequency, 2) damped natural
frequency and 3) ‘resonance’ frequency (frequency which gives maximum
amplitude response). Note their order and note how close, or not, they are
to each other.

Wed. Nov 5

32. Mass and spring vibration. Consider the sinusoidally forced, damped, linear
oscillator.

m Rx C c Px C kx D F0 cos!0t

Your goal is to be able to define and do elementary derivations related to !n; !d ; !r ; �;D
and Q. Gain confidence finding these things from each other or from data. Write:
“ I am % on top of this. I am insecure about .”

33. a) Old Qualifying exam
Observation: No honest student could say “Could do, but I won’t learn from this.”

i Pick a 2D dynamics Q-exam problem, hopefully one that is not trivial for you.
You can find such questions on the course www page.

ii Don’t write on page backs. Staple this problem separate from your other HW.
Page 1: problem statement, Page 2: start of solution. No more than 3 pages
total.

iii This should not be a record of your brainstorming, it should be a clear write-up
of a solution. (Practice brainstorming. Just don’t show that here.)

iv State assumptions. Describe methods if the calculation is too long for details to
show. Name generalizations and how you could/would deal with them.

v Write in such a way that you will make a competent reader, say a TA or professor
in a course like this, think you are a clear thinker with mastery of the topic
and good communication skills. Meanwhile convince another imagined skeptical
member of this class that your solution is correct.

vi MAIN INITIAL GOAL: Reduce the problem to one or more precisely defined me-
chanics problems. State reasonable assumptions. Don’t need complete sentences.
Clear sentence fragments & shorthand ok.

vii SECONDARY GOAL: Use precise mechanics reasoning to solve, or set up solu-
tions.

viii THIRD GOAL: Describe why your solution does or does not make sense.

34. Old HW Do, or redo, and previously assigned HW that you have not done yet
properly. If you have done well on all HW so far and have time, do another Q-exam
problem or two.

Fri. Nov. 14

35. Multi-DoF motion.

(a) Draw a line of n masses m˙i (where 2 � n � 4) connected to the left walls and to
each other with various springs ki with rest-lengths `i0and dashpots ci . Assume
no external forcing.
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(b) Write the equations in matrix form, where you have filled in the various matrices
in terms of the masses, and the spring and dashpot constants.

(c) Now redefine *
x to be the deviation from the unforced solution. This way the

governing ODE is a linear homogeneous equation.

(d) Pick some values for all the constants, and some initial condition *
x0 (pick a list

of numbers) and *
v0 D

*

0 and some time span that gives nice plots. Use ODE45
to plot the positions of the masses as a function of time (all on the same plot).

(e) Now assume a sinusoidal forcing with a mode shape and frequency of your
choosing. Use ODE45 to find, by integrating for a long-enough time, the steady
state response.

(f) Now find the homogeneous and particular solution using Matlab to evaluate an
analytical solution (using the backslash and EIG commands).

(g) Show that the two solutions above agree.

36. Old Q exam question. Fill up your 6 hours of HW time, or more than that if that
pleases you, solving one or more Q exam questions, as per above.

Mon. Dec. 1

37. Three masses normal modes. Three equal masses are in a line between two rigid
walls. They are separated from each other and the walls by four equal springs.

(a) Write the equations of motion in matrix form.

(b) By guessing/intuition find one of the normal modes.

(c) Using the MATLAB eig function find all three normal modes.

(d) Using numerical integration, with masses released from rest with a normal mode
shape (*x0 D *u i ), show that you get normal mode (synchronous) oscillations.

38. Normal modes, solving an IVP. (IVP = Initial Value Problem). For your three
mass system (above), find the motion if you are given initial positions and velocities.
In some special cases (including at least one normal mode shape) check your motion
against direct integration of the ODEs.

39. Double Pendulum normal modes. Use your double pendulum solutions with the
following simplifications:

(a) both links have the same length `;

(b) all mass is in two equal point masses (one at the elbow, one at the hand), so
I1 D I2 D 0;

(c) linearize: drop all terms that involve products like P�21 ; P�22 or P�21 . For both �s
replace sin � with � and cos � with 1.

Thus write the small amplitude double pendulum equations in this form:

M R*� CK
*

� D*

0:

Here,
*

� D ��1 �2�
0, and M and K are 2� 2 symmetric matrices whose entries are

expressions involving, m,g and `. Use the normal mode approach (e.g., the problem
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above) to find the normal modes. Use one of these, with small amplitude, as as
initial conditions for your full non-linear simulator and show that you get (nearly)
synchronous motion.

40. Normal modes by inspection. For each of the systems below find as many normal
modes, and their frequencies, as you can without doing matrix calculations. Then,
if you like and can, check your work with matrix calculations.

(a) 1D. Three equal masses in a line connected by two springs. No springs are
connected to ground.

(b) 3D. Two unequal masses, m1 and m2, are at points *r1 and *
r2 in 3D space and

are connected by one spring k. No springs are connected to ground.

(c) 2D. 4 point masses are arranged in a square. The 4 edges are equal massless
springs.

(d) A regular hexagon has equal point masses at the vertices and equal springs on
the edges. No springs are connected to ground. Just find one mode of vibration
that does not have zero frequency.

(e) 1D. An infinite line of equal point masses m is connected by an infinite line of
equal springs k. One normal mode oscillation is given by

*
v D �� � � � 1 1 � 1 1 � 1 : : : �0

with ! D 2
p
k=m. Find another mode and frequency. Challenge: find more.

[Hint 1: this problem has impenetrably beautiful simple solutions which you
might, with some luck, guess and, with some skill, check. Hint 2: If you assume
the solution is periodic with period n then the stiffness matrix can be written
as an n � n matrix. You can use this to numerically find normal modes which,
if you look at them (say, plot the vector components vs their indecies) should
reveal a pattern. Then you can use that same matrix to check if you detected
the pattern correctly. ]

41. Damped normal modes. Consider 3 equal masses in a line held between 2 walls by
4 equal springs. A single small dashpot (c D :1

p
mk) connects the leftmost mass from

the wall at its left. Assume the initial velocity is zero. Assume the initial position is
a mode shape with mass one having a displacement of 1. Plot position vs time for
the first mass for all three mode shapes. Comment on the similarity and differences
between the results for the three methods below. Make any other revealing plot(s)
you can think of.

(a) Numerical ODE solution (an arbitrarily exact numerical method).

(b) Solution using first order odes and the matrix exponential (an exact method,
numerically evaluated).

(c) Solution using modal damping:

i. Pick � and � so that C D �M C �K gives about the right decay rate for
the fastest and slowest modes (a numerically evaluated analytic expression
for the slightly wrong problem).

ii. Use the change of coordinates that reduces undamped problem to diagonal
form in terms of modal coordinates:

R*r C P 0M�1=2CM�1=2P� �� �
OC

P*r C�*r D*

0:
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Only if you are lucky is this OC diagonal (for example if C D �M C �K). If
it isn’t, which it isn’t for this HW problem, replace the OC matrix with the
diagonal part of OC . Then find the solution for each mode (A numerically
evaluated analytic solution to a more nearby problem).

42. Modal forcing This problem is interesting. Consider our favorite 3 mass system,
from problem 42 above: 3 equal masses in a line separated by 4 springs. Assume that
all springs are parallel to dampers with c D :1

p
mk. If you are short of time, leave

off the damping (use c D 0). Now consider this problem.

(a) The system starts from rest at t D 0.

(b) A force F D F0 sin.
q

2k
m
t / is applied to the left mass. You can think of this as a

small force if you like (although the words “small” and “large” have no meaning
in the solution of linear problems).

Now solve this problem various ways and notice some interesting features by making
relevant plots.

(a) Solve using your favorite Matlab ODE solver.

(b) Plot the positions of all three masses as a function of time. Make two plots: 1)
Use a long enough time scale so that you get a sense of steady state response;
2) Use a short enough time so you can see the amplitude growing.

(c) Use modal forcing for the mode *v D �1 0 � 1�0. Note that for this diagonal-
izeable problem, the modal solution is exact.

(d) Make similar plots. Note that in this solution the middle mass does not move
at all.

Main question: Given that the modal solution is exact. And given that in that
modal solution the middle mass does not move. What makes the right mass move?

43. Write a final exam question. You should write a clear candidate final exam
question on one page. You should write a clear solution on the following page(s), 2
page max. Single sided (don’t write on backs). These 2 or 3 pages should be stapled
together separate from your other homework problems. Your question should not be
like that of anyone else you know. Hand printing and hand drawing are fine. Some
of these will be scanned and posted before the final exam. At least one from the
scanned bunch, possibly slightly modified, will be on the final exam.

A good final exam question has these properties:

(a) The question is clear.

(b) Most of the people who could do it well in a relaxed 6 hours could do it decently
in just 30 minutes.

(c) Most people who mastered all the prerequisite course material, and all of the
course homeworks, and all the lecture material and all of the readings should
be able to do it.

(d) Most people who had the pre-requisite courses but didn’t take this course (or
its equivalent) should not be able to do it.

(e) Getting the problem right should be indicative of having (hopefully useful) skills
and knowledge related to this course. For example, asking “What did Professor
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Ruina dress up as on Halloween?” might fulfill all of the requirements above,
but not this one.

(f) Not too many jokes in the problem statement or in the solution. If it’s too cute,
people get annoyed.

(g) The solution should be maximally illuminating. With minimum reading effort,
someone who doesn’t know how to do the problem should learn and understand
how.

(h) One good type of problem would be of a type that you couldn’t do at the course
start, can do well now, and wish was on the final exam.

44. Final computation project. Due at the end of the semester. This is an extension
of the double pendulum homework. The minimal version is to simulate and animate
both a triple pendulum and also a 4-bar linkage. For the triple-pendulum the equa-
tions of motion should be found three different ways. In both problems the numerical
solutions should be checked as many ways as possible (Energy conservation, limiting
cases where simple-pendulum motion is expected, etc). Optional extras are a) to
simulate and animate more complicated mechanisms of your choice (e.g., 4,5, n link
pendulum or closed kinematic loop) and b) to find periodic motions, c) to derive the
4-bar linkage equations by up to three methods (in total).

Deliverables:

(a) Send one zip file called YourName4730.zip or Yourame5730.zip.

i. That should be a compressed version of a single folder.

ii. In that folder should be a collection of Matlab files

iii. In that folder should be a *README file explaining how to use the Matlab
files. It should be VERY EASY to use the files for simple demonstrations

iv. In that folder should be a file called REPORT.pdf. It could be made from
WORD, LateX or scanned handwork, or any mixture of those. It should
explain what you have done, how, and give sample output. This is the
main demonstration of your effort. As appendices this should include your
documented matlab files.

(b) On a date to be posted, you will have 4 minutes to demonstrate animations of
your simulations on your own laptop. A signup will be posted.

Problems below not yet assigned

45. Intro to damped modes. Consider the set of ODEs

Pz D Az

where z is a list of scalar functions of time and A is a constant real matrix. Here you
are to test, in Matlab, the basic theory of the solutions of equations like this.

(a) Generate a fairly random n� n matrix A using RAND or any other way. You can
use any positive integer 3 � n � 100 that pleases you.
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(b) Find any eigenvalue � and associated eigenvector v of A (these will undoubtedly
be complex).

(c) For a sequence of, say, 100 or 1000 times, starting at t D 0, plot the real part of
e�tv1 versus t , where v1 is the first component of the eigenvector. Pick a length
of time where the curve is variable enough to be interesting, but not so variable
that no details can be detected.

(d) Find the vector w which is the real part of v.

(e) Solve
Pz D Az

using ODE45 with the initial condition z0 D w. Plot z(1) vs t from this solution
and compare it with the plot above. If nothing pops out, someone made a
mistake. Explain the interesting relation as best you can.

46. Normal Mode Numerics Much of this problem solution can be done by recycling
previous solutions. Given M;K; x0; v0 one can find x.t/ and v.t/ three ways.

(a) Write a matlab function SOLVENUM

[xmatrix] = solvenum(M,K,x0,v0,tspan);

The output is an array, each row of which are the values of x at the corresponding
time in span. Use ODE45 and any other functions you write.

(b) Write a matlab function SOLVEMODE

[xmatrix] = solvemode(M,K,x0,v0,tspan);

that solves the same problem by using eigenvectors of M�1K. Make sure your
function works even when K is indefinite (even when there are motions that
have no potential energy).

(c) Write a matlab function SOLVENORM

[xmatrix] = solvenorm(M,K,x0,v0,tspan);

that solves the same problem by using eigenvectors of M�1=2KM�1=2. Make
sure your function works even when K is indefinite (even when there are motions
that have no potential energy).

(d) Show that all three functions above give the same solution for the linearized
cart and pendulum.
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47. Cylinder in a pipe. . A thin-walled hollow cylinder with radius R and mass M

rolls without slip on level ground. Inside it rolls, without slip, a disk with radius
r < R and mass m. Gravity g points down. Find the equations of motion (two
ways if you have time and energy and would find it educational). Find the modes of
small oscillation and their frequencies. One of these should make clear intuitive sense.
Can you find at least one special case in which you can check the other? [For those
interested in such: can you find a conservation law associated with the translation
invariance of the governing equations? (There is one, but I don’t know what it is)]

48. Mass in slot on a turntable. 2D. A turntable with mass M and moment of inertia
I is held in place at its center with a bearing and a torsional spring kt . Along one
diameter of the disk is a slot in which a mass m slides with no friction. A zero-rest-
length spring pulls it to the center with spring constant k. Find the equations of
motion at least two different ways. Find the normal modes and frequencies.

35. b,c,d,...) Same as (a).
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Problems below not yet finalized nor assigned

49. Damping of homogeneous Solution. Consider 3 equal masses m and 4 equal
springs k in line (wall-spring1-mass1-spring2-mass2-spring3-mass3-spring4-wall). There
is also a small dashpot c � 2

p
mk parallel to spring 1. A force F D F0 sin!t is

applied to mass 3. The system is released from rest at *
x D �1 1 1�0. Pick numbers

you like for m; k; c; F0 and !.

(a) Using ODE45, find the positions of the three masses vs time. Plot for long
enough time that the transient motion has died out.

(b) Set c D 0 and find the steady state motion using matrix methods.

(c) Make a plot that shows that the solutions to the two problems above are very
close at long times.

(d) Explain (That is, show that you understand the moral of this story. This was
all explained in lecture in the context of vibration isolation, but was not written
on the board.)

50. Rolling cylinder moment of inertia.

(a) Consider a cylinder with center of mass at its center rolling down a ramp. Find
the equations of motion using IG (the moment of inertia about the center of
mass) and IC (the moment of inertia about the ground contact point).

(b) Do the problem above, but with a cylinder whose center of mass is off-center.
Why don’t the two methods give the same answer for this problem, whereas
they do for (a)?

51. Rolling cylinder

(a) Consider a cylinder with center of mass at its center rolling down a ramp. Find
the equations of motion using IG (the moment of inertia about the center of
mass) and IC (the moment of inertia about the ground contact point.

(b) Do the problem above, but with a cylinder whose center of mass is off-center.
Why don’t the two methods give the same answer for this problem, whereas
they do for (a)?

52. Rolling disk, general motion You must give a final demonstration of derivations
and functioning software (30 min per student). Do these parts in any order that
pleases you. Acknowledge clearly the source of all help that you got.

(a) Derive the equations of motion of a rolling disk at least 2 different ways (not
just steady precession, but general rolling motion). Some options: Newton-
Euler with Euler angles, N-E with rotation matrices, Lagrange with Lagrange
multipliers, viscous contact with the limit of viscosity going to zero, etc.

(b) Set up the equations you get by both means for simulation.

(c) Check that for some fairly arbitrary initial condition that both solutions above
give the same motion.
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(d) See that at least one set of your equations reduces to the steady precession
equations that you previously derived by other means.

(e) Animate one of your solutions (showing a disk, the plane, and the path made
by the contact point.).

(f) Check that Energy is conserved in your simulation.

(g) Show, in your simulations, that fast rolling is stable and slow rolling is not
stable.

(h) Show by analysis that fast rolling is stable and slow rolling is not stable.

Problems below will not be assigned in Fall 2014

53. Euler’s method. If needed, review Euler’s method of numerical solution of ordinary
differential equations (ODEs) in your ODE text or from the WWW. Consider the
differential equation Px D x with initial conditions x0 D 1 solved over the interval
0 � t � 1. In all cases write your own code and do not use any Matlab ODE solvers.

(a) Use any time step you like to calculate x.1/ and check that the result is reason-
ably close to e � 2:718281828::: .

(b) Solve the equation many times using time steps of h D 10�n there n = 0, 1, 2,
... as high as your computer and patience will allow. [hint: for large values of n
storing intermediate values in the calculation is time consuming. And if you do
store intermediate values, initialize variables with code like:

x = zeros(1,10^n).

Note that large n will take much time in any case.

(c) Plot the error vs n on a log-log plot.

(d) For what value of n is the error smallest?

(e) Can you rationalize that result?

(f) If you did not know the analytic result, how could you determine the optimal
value of n for the most accurate solution?

54. Relation between axis-angle and rotation matrix. Given the formula *
r D

�R�*r D cos � *
r C .1� cos �/.n �*r/nC sin �n�*r derived in lecture, write the rotation

matrix in terms of the components of n and � .

55. Rotation of a book. Draw a book. Now imagine

(a) Rotating it first 90� about the z axis and then 90� about the x axis.

(b) Rotating it first 90� about the x axis and then 90� about the z axis.

(c) Draw the book before and after for each of these two cases.

(d) Find R and RT for each of these cases.

(e) Find n and � for each of these cases, draw the vector n on the pictures of the
book for both of these cases.
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56. Free motion of a rigid body Given that �IG � D
2
4 A 0 0

0 B 0

0 0 C

3
5 , a perfectly

general rigid body in principal co-ordinates

(a) For the special case that A D B and C D 2A find the motion very near spinning
about the symmetry axis. Animate a disk moving like that from your simulation.
Draw a 2D projection of the path of two particles on the boundary of the disk.
Note that for small angles these are almost circular paths tilted slightly one with
respect to the other. Can you think of a simple explanation for this?

(b) Now consider a more general case C > B > A. Set up for numerical solution and
animation the motion of such a body. For pictoral purposes you can represent
the body as an ellipsoid, a box, or a jumping jack, as you find convenient or
fun. Check in simulation that for rotation nearly about the 1 and 3 axes that
the rotation is stable. Check that rotation about the 2 axis is not stable. The
instability should show in animation, and in a plot of the position of some point
on the nominal axis of rotation. Look at the motion for initial conditions in ! of
�01�� and see if you can qualitatively predict the motion without looking at your
computer animations [Hint: angular momentum and energy are both conserved
but the motion ! D �010� is unstable.]

57. Steady precession of a rolling disk. A disk or radius r rolls in steady circles
on a ground track with radius R. The key is the ground contact condition that the
velocity of the point on the disk which touches the ground is zero.

(a) For a given disk, find all solutions. There is a 2 parameter family of them.

(b) Assume that, instead of rolling, the disk slides with no friction (and the ground
contact point need not have zero velocity). Find all steady solutions where the
ground contact traces a circle. There is a 2 parameter family of these.

(c) Find all solutions common to the two cases above.

(d) Take a coin or flat disk and roll it on a flat ground. Look at it as it shutters.
Which of the solutions above do you think the disk actually tracks? Why?
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