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Filename:Summaryofmechanics

Reference Tables:  The front and back tables concisely summarize much of the text material.

0) The laws of mechanics apply to any collection of material or ‘body.’ This body could be the overall system of study
or any part of it. In the equations below, the forces and moments are those that show on a free body diagram. Interacting
bodies cause equal and opposite forces and moments on each other.

I) Linear Momentum Balance (LMB)/Force Balance
Equation of Motion F i L The total force on a body is equal

to its rate of change of linear
momentum.

(I)

Impulse-momentum
(integrating in time)

t2

t1
F i ·dt L Net impulse is equal to the change in

momentum.
(Ia)

Conservation of momentum
(if F i 0 )

L = 0
L = L2 L1 0

When there is no net force the linear
momentum does not change.

(Ib)

Statics

(if L is negligible)
F i 0 If  the  inertial   terms  are  zero  the 

net force on system is zero. 
(Ic)

II) Angular Momentum Balance (AMB)/Moment Balance
Equation of motion MC HC The sum of moments is equal to the

rate of change of angular momentum.
(II)

Impulse-momentum (angular)
(integrating in time)

t2

t1
MCdt HC The net angular impulse  is equal to

the change in angular momentum.
(IIa)

Conservation of angular momentum
(if MC 0)

HC 0
HC HC2 HC1 0

If there is no net moment about point
C then the angular momentum about
point C does not change.

(IIb)

Statics

(if HC is negligible)
MC 0 If the inertial terms are zero then the

total moment on the system is zero.
(IIc)

III) Power Balance (1st law of thermodynamics)
Equation of motion Q P EK EP Eint

E

Heat flow plus mechanical power
into a system is equal to its change
in energy (kinetic + potential +
internal).

(III)

for finite time
t2

t1
Qdt

t2

t1
Pdt E The net energy flow going in is equal

to the net change in energy.
(IIIa)

Conservation of Energy
(if Q P 0)

E 0
E E2 E1 0

If no energy flows into a system,
then  its energy does not change.

(IIIb)

Statics
(if EK is negligible)

Q P EP Eint If there is no change of kinetic energy
then the change of potential and
internal energy is due to mechanical
work and heat flow.

(IIIc)

Pure Mechanics
(if heat flow and dissipation
are negligible)

P EK EP In a system well modeled as purely
mechanical the change of kinetic
and potential energy is due to mechanical
work on the system.

(IIId)

Summary of Mechanics



Some definitions (Also see the index and back tables)
*r or *x Position e.g.,*ri � *ri=O is the position of a point i

relative to the origin, O.

*v � d*r

dt
Velocity e.g.,*vi � *vi=O is the velocity of a point i

relative to O, measured in a non-rotating ref-
erence frame.

*a � d*v

dt
D d2*r

dt2
Acceleration e.g.,*ai �*ai=O is the acceleration of a point i

relative to O, measured in a Newtonian frame.
*
F Force e.g., the force on A from B is FA from B.
*
M or

*
MC D

*
M=C Moment or Torque e.g., the moment of a collection of forces

about point C.
*! Angular velocity A measure of rotational velocity of a rigid ob-

ject. *!B = angular velocity of rigid object B.
*� � P*! Angular acceleration A measure of rotational acceleration of a rigid

object.

*
L �

8<
:
P

mi
*vi discreteR

*vdm continuous
Linear momentum A measure of a system’s net translational rate

(weighted by mass).

D mtot
*vcm

P*
L �

8<
:
P

mi
*ai discreteR

*adm continuous
Rate of change of linear momen-
tum

The aspect of motion that balances the net
force on a system.

D mtot
*acm

*
H=C �

8<
:
P

*ri=C � mi
*vi discreteR

*r=C �*vdm continuous
Angular momentum about point C A measure of the rotational rate of a system

about a point C (weighted by mass and dis-
tance from C).

P*
H=C �

8<
:
P

*ri=C � mi
*ai discreteR

*r=C �*adm continuous
Rate of change of angular momen-
tum about point C

The aspect of motion that balances the net
torque on a system about a point C.

EK �
8<
:

1
2

P
miv

2
i discrete

1
2

R
v2dm continuous

Kinetic energy A scalar measure of net system motion.

Eint D (heat-like terms) Internal energy The non-kinetic non-potential part of a sys-
tem’s total energy.

P � P *
Fi �*vi C

P *
Mi �*!i Power of forces and torques The mechanical energy flow into a system.

Also, P � PW , rate of work.

�Icm� �

2
6664
I cmxx I cmxy I cmxz

I cmxy I cmyy I cmyz

I cmxz I cmyz I cmzz

3
7775 Moment of inertia matrix about

center of mass (cm)
A measure of the mass distribution in a rigid
object.
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18 Constrained particles and rigid objects 926
The dynamics of particles and rigid objects is studied using the relative-
motion kinematics ideas from chapter 15. This is the capstone chapter
for a two-dimensional dynamics course. After this chapter a good stu-
dent should be able to navigate through and use most of the skills in the
concept map inside the back cover.
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A Units and dimensions 994
Some important things don’t fit in a homework-driven course. These ap-
pendices are about some of those things.

This first appendix is about units and dimensions. Most important is this:
A quantity is the product of a number and a unit.

Thus units are part of a calculation. Some simple advice follows: a) bal-
ance units, b) carry units and c) check units. Rules for changing units
also follow.
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B.2 A critique of Coulomb friction . . . . . . . . . . . . . . . . . 1009
B.3 Another expression for Coulomb friction . . . . . . . . . . . 1013

C The simplest ODEs and their solutions 1016
Here is a quick review of some of the most common simple ODES. These
are the ODEs that engineers should just know, like they know that the
derivative of sin.t/ is cos.t/.

C.1 Solutions of the simplest ODEs . . . . . . . . . . . . . . . . 1016
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*
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Preface
General issues about content, level, organization, style and motivation. Study
advice starts on page 16.

This is an engineering statics and dynamics text. It is both an introduction,
aimed primarily at middle-level engineering students, and a reference. The
book emphasizes use of vectors, free-body diagrams, momentum and energy
balance and computation. More importantly, perhaps, the book is meant to
help build an intuition for mechanics.

Prerequisite and co-requisite skills. We assume you start with some math
skills.

� Freshman calculus. Readers are assumed to have facility with the
basic geometry, algebra, trigonometry, differentiation and integration
used in elementary calculus. Some of these topics are briefly reviewed
in this book, but not as ab initio tutorials.

� This books shows how to set up algebraic and differential equations for
computer solution. You need to know, or be simultaneously learning, a
computer language or package which can solve sets of linear algebraic
equations, numerically integrate simple ordinary differential equations
and make decent plots.

You may have had exposure to other useful subjects detailed foreknowledge
of which this book does not assume.

� Completion of freshman physics may help but is not needed.

� Vector topics, especially dot and cross products, are introduced here
from scratch in the context of mechanics.

� A background in linear algebra wouldn’t hurt, but the reduction of
linear equations to matrix form is taught here. A key fact from lin-
ear algebra, also presented here, is that linear algebraic equations are
usually easy to solve on a computer.

� A course in differential equations would also add perspective. But the
basic concepts of differential equations are presented here as needed.
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Organization
Mechanics could be subdivided into statics vs dynamics, particle vs rigid ob-
ject vs many objects (‘multi-object’), and 1 vs 2 vs 3 spatial dimensions (1D,
2D & 3D). Thus a mechanics table of contents might have one chunk of text
for each of the 2 � 3 � 3 D 18 combinations:

I. Statics

A. particle
� 1D, 2D, 3D

B. rigid object
� 1D, 2D, 3D

C. many objects
� 1D, 2D, 3D

II. Dynamics

A. particle
� 1D, 2D, 3D

B. rigid object
� 1D, 2D, 3D

C. many objects
� 1D, 2D, 3D

However, these 2 � 3 � 3 D 18 chunks vary greatly in difficulty; 1D statics
is low-level high school material and 3D multi-object dynamics is difficult
graduate material. Further, the chunks use various overlapping concepts and
skills. So it is not sensible to organize a book into 18 corresponding chapters.
Nonetheless, some vestiges of the scheme above are used in all books, and
the general flow of this book is from the bottom back left corner of the box in
the figure, towards the diagonal opposite. The details of the organization, as
visible in the annotated table of contents on the previous pages, has evolved
through trial and error, review and revision, and many semesters of student
testing.

The first eight chapters cover the basics of statics and the rest of the book
covers the basics of engineering dynamics. Relatively harder topics, which
might be skipped in quicker or less-advanced courses, are identifiable by
chapter, section or subsection titles with words like “three-dimensional” or
“advanced”.

Coverage for courses. The sections have been divided so that the home-
work problems selected from one section are usually about half of a typical
weekly homework assignment. The theory and examples from one section
might be adequately covered in about one lecture, plus or minus.

A leisurely one semester statics course, or a more fast-paced half-
semester prelude to strength of materials should use chapters 1-8, excluding
topics of less interest. A typical one semester dynamics course will cover
most of chapters 9-16, reviewing chapters 1-3 at the start. A lower-level one-
semester statics and dynamics course can cover the less advanced parts of
chapters 1-6 and 9-14. An advanced full-year statics and dynamics course
could cover most of the book. That is, the statics portion of the book fits eas-
ily in a semester, and the whole of the dynamics portion in a bit more than a
semester. Chapters 15-16 can also be used as a start for a second advanced
dynamics course. A student who has learned the statics part of this book is
well-prepared for using statics in engineering practice, for learning Strength
of Materials and for going on to Dynamics. A student who has learned the

complexity
of objects

number of 
spatial

dimensions

how much
inertia

1D 2D
3D

static

dynamic

particle

many
bodies

one 
body

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



14 Chapter 0. Preface Preface

dynamics portion is well prepared to go on to learn Vibrations, Systems Dy-
namics or more advanced Multi-object Dynamics.

Organization and formatting

Each subject is covered in various ways.

� Every section starts with descriptive text and short examples motivat-
ing and describing the theory;

� More detailed explanations of the theory are in boxes interspersed in
the text. For example, one box explains the common derivation of an-
gular momentum balance from

*

F D m*
a (page 1028), one explains the

genius of the wheel (page 218), and another connects *
! based kine-

matics to Oer and Oe� based kinematics (page 892);

� Sample problems (marked with a gray border) at the end of each sec-
tion show how to do homework-like calculations. These set an example
by their consistent use of free-body diagrams, systematic application
of basic principles, vector notation, units, and checks against both in-
tuition and special cases;

� Homework problems at the end of each chapter give students a chance
to practice mechanics calculations. The first problems for each section
build a student’s confidence with the basic ideas. The problems are
ranked in approximate order of difficulty, with theoretical problems
coming later. Problems marked with a * have an answer at the back
of the book;

� Reference tables on the inside covers and end pages concisely sum-
marize much of the content in the book. These tables can save students
the time of hunting for formulas and definitions.

Notation

Clear vector notation helps students do problems. One common class of stu-
dent errors comes from copying a textbook’s printed bold vector F the same
way as a plain-text scalar F . We help reduce this error by use a redundant
vector notation, a bold and harpooned

*

F .
As for all authors and teachers concerned with motion in two and three

dimensions (kinematics) we have struggled with the tradeoffs between a pre-
cise notation and a simple notation. Perfectly precise notations are complex
and intimidating. Simple notations are ambiguous and hide key information.
Our attempt at clarity without too much clutter is summarized in the box on
page 42.

Relation to other mechanics books
The bulk of the content of this book can be found in other places including
freshman physics texts, other engineering texts, and hundreds of classics.
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Freshman physics texts encompass much of this book’s contents. How-
ever, this book is a bit deeper, more rigorous and more oriented to engi-
neering. After freshman physics students often have only a vague notion of
what mechanics is, and how it can be used. For example, many students
leave freshman physics with the sense that a free-body diagram (or ‘force
diagram’) is a vague conceptual picture with arrows for various forces and
motions drawn on it this way and that. Even the freshman-text illustrations
sometimes do not make clear which force is acting on which object. Also,
because freshman physics tends to avoid use of college math, many students
leave freshman physics with little sense of how to use vectors or calculus to
solve mechanics problems. This book aims to lead students who may start
with these fuzzy freshman-physics notions into a world of precise, yet still
intuitive, mechanics.

Various statics and dynamics textbooks cover much of the same material
as this one. These textbooks have modern applications, ample samples, lots
of pictures, and lots of homework problems. Many are excellent in some
ways. Most of today’s engineering professors learned from one of these
books. Nonetheless we wrote this book hoping to do still better. This book is
somewhat different in organization and approach. Some of our goals include

� showing the unity of the subject,

� presenting a complete description of the subject,

� clear notation in figures and equations,

� integration of the applicability of computers,

� consistent use of units throughout,

� introduction of various insights into how things work,

� a friendly writing style.

This book also uses some important but not well-enough known concepts 1.
Between about 1689 and 1960 hundreds of books were written with ti-

tles like Statics, Engineering mechanics, Dynamics, Machines, Mechanisms,
Kinematics, or Elementary physics. Many thoughtfully cover most of the
material here and sometimes much more. But none are good modern text-
books; they lack an appropriate pace, style and organization; they are too
reliant on geometry skills and not enough on vectors and numerics; and they
don’t have enough modern applications, sample calculations, illustrations, or
homework problems. But much good mechanics can be found only in these
older books 2. If you love mechanics you will enjoy pondering ideas in
some of these books.

What do you think?
We have tried to make it as easy as possible for you to learn basic mechanics
from this book. We present truth as we know it and as we think it is effec-
tively communicated. Nonetheless we have surely made some technical and
strategic errors. Please let us know your thoughts so that we can improve
future editions.

1For example, we use angular
momentum balance (appropriately
expressed) with respect to any possibly-
accelerating point, not just points
selected from an arcane list.

2Here are three good and universally
respected classics:

J.P. Den Hartog’s Mechanics orig-
inally published in 1948 but still
available as an inexpensive reprint (well
written and insightful);

J.L. Synge and B.A. Griffith, Principles
of Mechanics through page 408. Orig-
inally published in 1942, reprinted in
1959 (good pedagogy but dry); and

E.J. Routh’s, Dynamics of a Sys-
tem of rigid bodies, Vol 1 (the
“elementary” part through chapter 7.
Originally published in 1905, but
reprinted in 1960). Routh also has 5
other idea- packed statics and dynamics
books. Routh shared college gradua-
tion honors with the now-more-famous
physicist James Clerk Maxwell.
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3“Exams are harder than home-
work.” Some struggling students say “I
can do the homework problems. I just
can’t do the exams. Exams are harder
and trickier.” These students may be
fooling themselves. Most exams are not
trickier than the homework. And when
we have checked, many students who
got through homework with help, can’t
do simplified versions of those same
problems when they have no help.

Rudra Pratap, pratap@mecheng.iisc.ernet.in
Andy Ruina, ruina@cornell.edu

To the student
How to study. The use of computers.

Nature’s rules are so strict that, to the extent that you know the rules, you
can make reliable predictions about how Nature, the set of all things, behaves.
In particular, most objects of concern to engineers obediently follow a subset
of Nature’s rules called the laws of Newtonian mechanics. So, if you learn
the laws of mechanics, as this book should help you to do, you will be able
to make quantitative predictions about how things stand, move, and fall. And
you will gain intuition about the mechanics part of Nature’s rules.

How to use this book
Here is some general guidance.

Check your own understanding

Most likely you want a decent grade by successfully getting through the
homework assignments and exams. You will naturally get help by looking
at examples and samples in the text or lecture notes, by looking up formulas
in the front and back covers of this book, and by asking questions of friends,
teaching assistants and professors. What good are books, notes, classmates
or teachers if they don’t help you do the homework? All the examples and
sample problems in this book, for example, are just for this purpose.

But watch out. Too much use of help from books, notes and people can
lead to self deception 3. After you finish a problem using such help you
should, at least sometimes, check that you have actually learned to solve the
problem.

To see if you have learned to do a problem, do it again, justifying each
step, without looking up even one small (‘oh, I almost knew that’) thing.

If you find that you can’t do a problem totally alone, you gain two learning
opportunities. First, you can learn the missing skill or idea. But more deeply,
by getting stuck after you have been able to get through with help, you can
learn things about your learning process. Often the real source of difficulty
isn’t a key formula or fact, but something more subtle. We hope you can learn
some of these useful, and more subtle, ideas from the general text discussions
here.
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Read the parts that are at your level

You might be science and math school-smart, mechanically inclined, and al-
ready especially interested in mechanics. Or you might be reluctantly taking
this class to fulfill a requirement. In either case this book is meant for you.
The sections start with generally accessible introductory material and include
simple examples. The early sample problems in each section are also easy.
But we also have discussions of the theory and other more advanced appli-
cations and asides to challenge more motivated students. If you are a nerd,
please be patient with the slow introductions and the calculations that go line
by line without skipping steps. On the other hand, if you are just trying to get
through a course using this book, don’t get hung up by every side discussion
about history or theory.

Calculation strategies and skills
We try to demonstrate a systematic approach to solving problems. But its
impossible to reduce all mechanics problem solutions to one clear recipe
(despite the generally applicable recipe on the inside back cover). Suppose
a recipe existed to solve all statics and dynamics problems. Then someone
could write a computer program that followed the recipe. The course you
are taking could be cancelled. And your mind could be freed from mechan-
ics problem solutions like you freed from the tedium of long division by
having a calculator 4. There is an art to solving mechanics problems and
understanding their solutions. This applies to homework problems and also
engineering design problems. Art and insight, as opposed to application of a
fixed precise algorithm, is what makes engineering require humans and not
just computers. We hope you learn some of this art. For starters, here are
some tips.

Understand the question

It is tempting to start writing equations and quoting principles when you first
see a problem. However, it is usually worth a few minutes (and sometimes a
few hours) to try to

Get an intuitive sense of a problem before jumping to equations.

Before you draw any sketches or write equations, think: does the problem
make sense? What information has been given? What are you trying to
find? Is what you are trying to find determined by what is given? What
physical laws make the problem solvable? What extra information do you
think you need? What information have you been given that you don’t need?
You should first get a general sense of the problem to steer you through the
technical details.

Some students find they can read every line of sample problems yet can-
not do test problems, or, later on, cannot do applied design work effectively.

4Actually, computers can do me-
chanics. This book presents some meth-
ods which computers can handle well.
Once a problem has been reduced to a
precise mechanical model a computer
code could take over. Such might be
called a ‘finite-element’ program or a
‘rigid-body’ dynamics program. But,
even with a computer’s help, you will
do better if you can do simple mechan-
ics problems without a computer.

Analogy with long-division. Since the
mid 1970s, division by a 3 (or more)
digit number is not done by pencil-and-
paper long-division but with a calculator
or computer. Nonetheless, understand-
ing division (that, for example, it is in-
verse multiplication, or that division by
zero is bad or which number to divide
by which in real problems) is necessary.
And such knowledge comes better by
practice manipulating numbers in one’s
head and on paper. Similarly, it is use-
ful to know mechanics solution meth-
ods well, even for problems that can be
solved by a computer package.
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5A tree analogy. Say you are inter-
ested in how energy gets stored in a tree.
The energy flows to the roots from the
trunk. The branches feed the trunk, the
twigs feed the branches, and the leaves
feed the twigs with energy from the sun.
But the flow goes the opposite way, from
the leaves on down to the roots. But
if you try to invent a tree by starting
at the leaves with no knowledge of the
root you could easily get lost and con-
nect leaves to electric wires or gas pipes
— all nonsense. There’s no point in con-
necting the leaves to anything until you
have a sense of the whole tree from the
roots up.

This failing may come from following details without spending time, think-
ing and gaining an overall sense of the problems.

Think through your solution strategy

For problem solutions you read, like those in this book, someone had to think
about the order of work. You also have to think about the order of your work.
You will find some tips in the text and samples. But it is your job to own the
material, to learn how to think about it your own way, to become an expert in
your own style, and to do the work in the way that makes things most clear
to you.

The order of calculation is often backwards from the order of
thinking

When working out how to solve a problem, you often start ‘backwards’, with
general principles, then look at terms you need to know. If these are not
given, then you think how to figure those from other terms, and so on. On
the other hand, when you go to calculate an answer you have to start with
the information given and work your way ‘forwards’ into the equation which
has your answer from the information given 5. To find the net worth of a
corporation you add the value of the various divisions. To get the value of
a division you add up the values of the factories. For each factory you add
up the value of the pieces of machinery. But to get an actual corporate value
you have to start by evaluating the pieces of machinery in each factory and
working from the known towards the answer. Beware that

A polished calculation, especially an algorithmic recipe or computer
program, is often written in the inverse order of the thinking that went
into making it.

Real problem solving goes both ways. You think about what you need in
order to calculate what you want. But you also think about what you can
calculate easily from what is plainly given to you. You reach from the un-
known towards the known details. And you work with known details towards
answers of any kind, wanted or not. And you thus hunt out, building from
details and simultaneously reaching back from the goal, a route leading all
the way from the known details to the goal.

Look for equations containing unknowns. Don’t look for
formulas that evaluate unknowns.

In elementary science and math we often learn formulas like

V D LWH; d D 1

2
at2; and x D �b �

p
b2 � 4ac

2a
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to find V; d; or x. So it is common wishful thinking for newcomers to hope
for a formula that generates the sought unknown in terms of given quantities.
Rather, you should

Find relations that contain variables of interest; don’t worry about
whether they are on the right or left side of an equation. Don’t worry
about whether the variables are alone or isolated.

Most often, you will not know a formula where the thing you want is on the
left and everything given is on the right. You will have, say,

V D LWH when you want to find W from V;L; and H ,

d D 1

2
at2 when you want to find t from a and d , and

ax2 C bx C c D 0 when you want to find x from a; b; and c.

Once you get this far the only problem left is math 6. Here are ways of think-
ing that may help.

1) Pretend you know a math and computer genius. She is helpful but
doesn’t know any mechanics. Your first, and main, task is to write
things down so she could finish up for you. She doesn’t want to help?
Then realize that finishing up without her is a separate job for you. You
will do this later when you take off your mechanics hat and put on your
math-genius hat.

2) Be an egotist. Pretend you are omniscient and know everything. Then
write down true statements about those things; equations that contain
terms that omniscient-you already know: “If I knew x; y and z the
following equation would be true.” Then relax your ego a bit. Count
equations and unknowns to see if you, or at least your math genius
friend, could solve for some of the things you previously pretended to
know.

Vectors and free-body diagrams
Someone who can solve lots of mechanics problems has must have a good
mental toolbox. Necessarily included are two well-worn tools:

� A vector calculator that always keeps vectors and scalars distinct, and

� A reliable and clear free-body diagram drawing tool.

Because many of the terms in mechanics equations are vectors, the ability
to do vector calculations is essential (here is some math you may have to
learn better). Because the concept of an isolated system is at the core of
mechanics, every mechanics practitioner needs the ability to draw a good
free-body diagram. The second and third chapters will help you build your
own set of these two most-important tools.

6For this and other courses, you
should be good at solving math prob-
lems with your pencil and with a com-
puter. But you should distinguish be-
tween the task of setting up a math prob-
lem and the task of solving it. Solving
often takes most of the time and most
of the space on your paper, but it’s not
where your thoughts should start. The
important new material for you in this
book is about setting up the math prob-
lems that arise in mechanics, not about
solving them. Of course you should de-
velop your math skills too, but that’s not
the main new content here.
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Figure 0.1: Thinking outside of the
books. A famous puzzle asks: using
4 contiguous straightline segments con-
nect all 9 dots that are in a square 3 � 3
array. The only solution has segments
extending outside the “box” of 9 points.
Hence the expression “thinking outside
of the box”.

Guarantee: If you learn to

� do clear correct vector algebra and to
� draw good free-body diagrams

you will do well at mechanics.

(Assuming, of course, that you don’t totally stop studying then and there.)

Thinking outside the books
It is fun to puzzle out how things work. It’s satisfying to do calculations
that make realistic predictions. Mechanics is interesting in its own right and,
interesting or not, it feels good to take pride in new skills. We wrote this
book because we want to help you learn the subject if you are interested, and
get through it if you must. But we don’t know the sure path through your
resources (say a path with 4 straight segments, see fig. 0.1) that will get you
to deeper understanding.

We do know that to learn deeply you need to

think outside of the confines of your usual study resources.

That is, think when you are relaxed, away from the pressures of books, notes,
pencils or paper, say when you are walking, showering or lying down. These
are the places where you naturally work out life problems, but they are good
places to work out mechanics problems too.

Having an animated mechanics discussion with friends is also good. You
should enjoy your inner nerd socially. Are your friends turned off by tech-
talk? There are billions of people out there, you should be able to find one or
two that would like to talk shop with you.

0.1 A note on computation
Mechanics is a physical subject. The concepts in mechanics do not depend
on computers. But mechanics is also a quantitative subject; relevant amounts
(of length, mass, force, moment, time, etc) are described with numbers, and
relations are described using equations and formulas. Computers are very
good with numbers and formulas. Thus, the modern practice of engineering
mechanics uses computers. The most-needed computer skills for mechanics
are:

� solution of simultaneous linear algebraic equations,

� plotting, and

� numerical solution of ODEs (Ordinary Differential Equations).
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More basically, an engineer also needs the ability to routinely evaluate stan-
dard functions (x3, cos�1 � , etc.), to enter and manipulate lists and arrays of
numbers, and to write short programs.

Classical languages, applied packages, and simulators

Programming in standard languages such as Fortran, Basic, Pascal, C++, or
Java probably take too much time to use in solving simple mechanics prob-
lems. Thus an engineer needs to learn to use one or another widely avail-
able computational package (e.g., MATLAB, O-MATRIX, SCI-LAB, OC-
TAVE, MAPLE, MATHEMATICA, MATHCAD, TKSOLVER, LABVIEW,
etc). We assume that students have learned, or are learning such a pack-
age. Although none of the homework here depends on such, we also en-
courage you to play with packaged mechanics simulators (e.g., INVENTOR,
WORKING MODEL, ADAMS, DADS, ODE, etc) for testing and building
your intuition.

How we explain computation

Solving a mechanics problem involves
1. Reducing a physical problem to a well posed mathematical problem;

2. Solving the math problem using some combination of pencil and paper
and numerical computation; and

3. Giving physical interpretation of the mathematical solution.
This book is primarily about setup (a) and interpretation (c), neither of which
particularly depends on what method is used to solve the equations. If a prob-
lem requires computation, the exact computer commands vary from package
to package. Because we don’t know which computer package you are us-
ing we show computer calculations using an informal pseudo computer lan-
guage. For reference, typical commands are summarized on page 23.

Required computer skills

Here, in a little more detail, are the primary computer skills you need.

� Linear algebraic equations. Many mechanics problems are statics or
‘instantaneous mechanics’ problems. These problems involve trying
to find some forces or accelerations at a given configuration of a sys-
tem. These problems can generally be reduced to the solution of linear
algebraic equations of this general type: solve

3 x C 4 y D 8

�7 x C p
2 y D 3:5

for x and y. In practice the number of variables and equations can
be quite large. Some computer packages will let you enter equations
almost as written above. In our pseudo language we would write:

eqset = { 3*x + 4*y = 8
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-7*x + sqrt(2)*y = 3.5 }
solve eqset for x and y

Other packages may require you to set up your equations in matrix form�
3 4

�7 p
2

�
� �� �

A

�
x

y

�
����
z

D
�

8

3:5

�
� �� �

b

or Az D b

which in computer-speak might look something like this:

A = [ 3 4
-7 sqrt(2) ]

b = [ 8 3.5 ]’
solve A*z=b for z

where A is a 2 � 2 matrix, b is a column of 2 numbers (the ’ indicates
that the row of numbers b should be transposed into a column), and
the two elements of z are x and y. For systems of two equations, like
above, a computer is hardly needed. But for systems of three equations,
pencil and paper work is sometimes error prone. Given the tedium,
the propensity for error, and the availability of electronic alternatives,
pencil and paper solution of four or more equations is an anachronism.

� Plotting. In order to see how a result depends on a parameter, or to see
how a quantity varies with position or time, it is useful to see a plot.
Any plot based on more than a few data points or a complex formula is
far more easily drawn using a computer than by hand. Most often you
can organize your data into a set of .x; y/ pairs stored in an x list and a
corresponding y list. A simple computer command will then plot x vs
y. The pseudo-code below, for example, plots a circle using 100 points

npoints = [0 1 2 3 ... 100]
theta = npoints * 2 * pi / 100
x = cos(theta)
y = sin(theta)
plot y vs x

where npoints is the list of numbers from 1 to 100, theta is a list
of 100 numbers evenly spaced between 0 and 2� and x and y are lists
of 100 corresponding x; y coordinate points on a circle.

� ODEs The result of using the laws of dynamics is often a set of ordinary
differential equations which need to be solved. A simple example
would be:

Find x at t D 5 given that
dx

dt
D x and that at t D 0, x D 1.

The solution to this problem can be found easily enough by hand to
be x.5/ D e5. But often the differential equations are just too hard for
pencil and paper solution. Fortunately the numerical solution of Ordi-
nary Differential Equations (ODEs) is already programmed into sci-
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entific and engineering computer packages. The simple problem above
is solved with computer code equivalent to these informal commands:

ODES = { xdot = x }
ICS = { xzero = 1 }
solve ODES with ICS until t=5

which will yield a list of values for paired values for t and x the last of
which will be t D 5 and x close to e5 � 148:4.

Examples of informal computer commands
We use informal computer commands that are not as strict as any
real computer package. You will translate informal commands, like
those below, into commands your package understands. This refer-
ence table uses mathematical ideas which you may or may not know
before you read this book, but these will be introduced in the text
when needed.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x=7 Set the variable x to 7.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
omega=13 Set ! to 13.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
u=[1 0 -1 0]
v=[2 3 4 pi]

Define u and v to be the lists
shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t= [.1 .2 .3 ... 5] Set t to the list of 50 numbers

implied by the expression.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y=v(3) sets y to the third value of v (in

this case 4).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A=[1 2 3 6.9

5 0 1 12 ]
Set A to the array shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
z= A(2,3) Set z to the element of A in the

second row and third column.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
w=[3

4
2
5]

Define w to be a column vector.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
w = [3 4 2 5]’ Same as above. ’ means

transpose.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
u+v Vector addition. In this case the

result is �3 3 3 ��.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
u*v Element by element

multiplication, in this case
�2 0 � 4 0�.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sum(w) Add the elements of w , in this

case 14.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cos(w) Make a new list, each element of

which is the cosine of the
corresponding element of �w�.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mag(u) The square root of the sum of the
squares of the elements in �u�, in
this case 1.41421...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
u dot v The vector dot product of

component lists �u� and �v�, (we
could also write sum(A*B).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C cross D The vector cross product of
*
C

and
*
D, assuming the three

element component lists for �C �
and �D� have been defined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A matmult w Use the rules of matrix

multiplication to multiply �A�
and �w�.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
eqset = f3x + 2y = 6

6x + 7y = 8g
Define ‘eqset’ to stand for the set
of 2 equations in braces.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
solve eqset

for x and y
Solve the equations in ‘eqset’ for
x and y.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
solve Ax=b for x Solve the matrix equation

�A��x� D �b� for the list of
numbers x. This assumes A and
b have already been defined.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for i = 1 to N

such and such
end

Execute the commands ‘such and
such’N times, the first time with
i D 1, the second with i D 2, etc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
plot y vs x Assuming x and y are two lists

of numbers of the same length,
plot the y values vs the x values.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
solve ODEs
with ICs
until t=5

Assuming a set of ODEs and ICs
have been defined, use numerical
integration to solve them and
evaluate the result at t D 5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With an informality consistent with what is written above, other
commands are introduced as needed.
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CHAPTER 1
What is mechanics?

Mechanics can predict forces and motions by using the three pillars of the
subject: I. models of physical behavior, II. geometry, and III. the basic me-
chanics balance laws. The laws of mechanics are informally summarized
in this introductory chapter. The extreme accuracy of Newtonian mechanics
is emphasized, despite relativity and quantum mechanics supposedly having
‘overthrown’ seventeenth century physics. Various uses of the word ‘model’
are described.

Contents
1.1 The three pillars . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Mechanics is wrong, why study it? . . . . . . . . . . . . . . 31
1.3 The hierarchy of models . . . . . . . . . . . . . . . . . . . . 33
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Mechanics is the study of force, deformation and motion, and the relations
between them. We care about forces because we want to know how hard
to push something to make it move or whether it will break when we push.
We care about deformation and motion because we want things to move or
not move in certain ways. Towards these ends our goals are to solve special
versions of this general mechanics problem:

The general mechanics problem: Given some (possibly idealized)
information about the properties, forces, deformations, and motions of
a mechanical system, make useful predictions about other aspects of its
properties, forces, deformations, and motions.

By system, we mean a tangible thing such as a wheel, a gear, a car, a bridge,
a human finger, a butterfly, a skateboard and rider, a quartz-watch timing
crystal, a building in an earthquake, a rocket, or the piston in an engine. Will
a wheel slip? a gear tooth break? a car tip over? What is the biggest truck
that can cross a given bridge? Which muscles are used when you hit a key
on your computer? How do people balance on skateboards? How does size
effect the frequency of crystal vibration? Which buildings are more likely to
fall in what kinds of earthquakes? What is the relation between gas-ejection
rate and thrust in a rocket? What forces are on the connecting rod in an
engine?

For each special case of the general mechanics problem we need to
identify the system(s) of interest, idealize the system(s), use classical (high
school, Euclidean) geometry to describe the layout, deformation and mo-
tion, and finally use the laws of Newtonian mechanics. Those who want to
know how machines, structures, plants, animals and planets hold together
and move about need to know Newtonian mechanics. As best we can ex-
trapolate, in another two or three hundred years people who want to design
robots, buildings, airplanes, boats, prosthetic devices, and large or micro-
scopic machines will likely still use the equations and principles we now call
Newtonian mechanics 1.

1.1 The three pillars
Any mechanics problem can be divided into 3 parts, which we think of as the
3 major pillars that hold up the subject:

1The laws of classical mechanics,
however expressed, are named for Isaac
Newton because his theory of the world,
the Principia published in 1689, con-
tains much of the still-used theory.
Newton used his theory to explain the
motions of planets, the trajectory of a
cannon ball, why there are tides, and
many other things.
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1. Constitutive laws: the mechanical behavior of objects and materi-
als;

2. Kinematics: the geometry of motion and distortion; and
3. Kinetics: the laws of mechanics (

*

F D m*
a, etc.).

Let’s discuss each of these ideas a little more so you can get an overview
before digging into the details in later chapters.

Pillar 1: Mechanical behavior, constitutive laws
The first pillar of mechanics is mechanical behavior. The Mechanical behav-
ior of something is the description of how loads cause deformation (or vice
versa). When something carries a force, it stretches, shortens, shears, bends,
or breaks. Your finger tip squishes when you poke something. Too large a
force on a gear in an engine causes it to break. The force of air on an insect
wing makes it bend. Various geologic forces bend, compress and break rock.
This relation between force and deformation can be viewed in a few ways.

Definition of force. First, the relation between force and deformation gives
us a definition of force. Force can be defined by the amount of spring stretch
it causes. Thus, most modern force measurement devices measure force indi-
rectly by measuring the deformation it causes in a calibrated spring of some
kind. That force can be defined in terms of deformation is one justification
for calling ‘mechanical behavior’ the first pillar. It gives us a notion of force
even before we introduce the laws of mechanics.

Steel vs chewing gum. Second, a piece of steel distorts under a given load
differently than a same-sized piece of chewing gum. This observation, that
different objects deform differently with the same loads, implies that an ob-
ject’s properties affect its mechanics. The relations of an object’s deforma-
tions to the forces that are applied are called the mechanical properties of
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the object. Mechanical properties are sometimes called constitutive laws be-
cause the mechanical properties describe how an object is constituted (mean-
ing ‘what it is made from’), at least from a mechanics point of view. The
classic example of a constitutive law is that of a linear spring which you
remember from your elementary physics classes:

‘F D kx’

(spring tension is proportional to stretch). To do mechanics we have to make
assumptions and idealizations about the constitutive laws applicable to the
parts of a system. How stretchy (elastic) or gooey (viscous) or otherwise de-
formable is an object? The set of assumptions about the mechanical behavior
of the system is sometimes called the constitutive model.

Deformation is often hard to see. Distortion in the presence of forces is
easy to see or imagine in the flesh of squeezed fingertips, in chewing gum
between teeth or when a piece of paper bends. But pieces of rock or metal
have deformation that is essentially invisible and sometimes hard to imagine.
With the exceptions of things like rubber, flesh, or objects that are very small
in one or two directions (thin sheets and wires), solid objects that are not in
the process of breaking typically change their sizes much less than 1% when
loaded. Most structural materials deform less than one part per thousand with
working loads. These small deformations, even though essentially invisible,
are important because they are enough to break bones and collapse bridges.

Rigid-object mechanics. Part of good engineering is to idealize away
things that are not important. Unimportant features unnecessarily clutter
the mind and also make calculations harder. When deformations are not
of much consequence engineers usually wish them away. Mechanics cal-
culations in which deformation has been neglected are called rigid-object
(or rigid-body 1) mechanics because a rigid (infinitely stiff) solid would not
deform at all. Rigidity, the assumption of infinite stiffness, is an extreme con-
stitutive assumption. However, the assumption of rigidity greatly simplifies
many calculations while still generating adequate predictions for many prac-
tical problems. The assumption of rigidity also simplifies the introduction
of more general mechanics concepts. Thus, for understanding the steering
dynamics of a car we might treat the car as a rigid object, whereas for crash
analysis where rigidity is clearly a poor approximation, we might treat a car
as highly deformable.

Contact behavior. Most constitutive models describe the material inside
an object. But to solve a mechanics problem involving friction or collisions
one also has to have a constitutive model for the contact interactions. The
standard friction model (or idealization) ‘F � �N ’ is an example of a con-
tact constitutive model, as is the elementary ‘restitution’ model for collisions
‘vC D ev�’.

1‘Rigid body’ is another phrase
meaning ‘rigid object’. Things ideal-
ized as ‘Rigid-objects’ are often called
‘rigid-bodies’, using the old-fashioned
language that physical things were ab-
stractly called ‘bodies’. Think of a guy
with a robe and beard squinting through
a brass telescope and deeply pondering
‘celestial bodies’. Now that mechan-
ics is used widely to describe biological
things like people, the word ‘body’ can
be confusing. For example, ‘rigid-body’
biomechanics might be inferred to be
the study of people with rigid rigor mor-
tis muscles, so called ‘stiffs’. Or, often
in biomechanics we think of the parts of
the body as rigid, say the fore-arm or the
shank of the leg. It is confusing to say
that the human body is modeled as a col-
lection of rigid bodies. Easier to say the
body is modeled as a collection of rigid
objects. Here we will often, although
not religiously, adopt the ordinary En-
glish that things are objects and things
whose deformation we neglect are rigid
objects.
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In summary, we need a model of a system’s mechanical behavior before
we can make useful predictions. Useful models can sound absurdly extreme,
as in the assumption that a piece of a human body is rigid.

Pillar 2: The geometry of motion and deformation,
kinematics
In mechanics we use classical Greek (Euclidean) geometry to describe the
layout, deformation and large-motions of objects. Deformation is defined by
changes of lengths and angles between various pairs and triplets of points.
Motion is defined by the changes of the position of points in time. Length,
angle, similar triangles, the curves that particles follow and so on can be
studied and understood without Newton’s laws and thus make up the second
independent pillar: geometry and kinematics.

Large motions. Many machines and machine parts are designed to move
something relatively far. Bicycles, planes, elevators, and hearses are designed
to move people; a clockwork, to move clock hands; insect wings, to move
insect bodies; and forks, to move potatoes. A connecting rod is designed to
move a crankshaft; a crankshaft, to move a transmission; and a transmission,
to move a wheel. And wheels are designed to move skateboards, bicycles
and cars of various kinds.

The description of the motion of these things, of how the positions of
the pieces change with time, of how the connections between pieces restrict
the motions, of the curves traversed by the parts of a machine, and of the
relations of these curves to each other is called kinematics. Kinematics is the
study of the geometry of motion (or of geometry in motion).

Motion versus deformation. The idea behind the word deformation is cor-
rectly conveyed by the misspelling, ‘deform-motion’. Deformations usually
involve small changes of distance between points on one object, whereas net
motion (see the paragraph above) involves large changes of distance between
points on different objects. We often need to understand deformation of in-
dividual parts to predict when they will break. Sometimes the motion asso-
ciated with deformation is important in itself, like when designing a building
to not sway too much in the wind. And sometimes the larger net transport
motion is of interest; for example we would like all points on a plane to
travel about the same large distance from New York to Bangalore. Really,
deformation and motion are not distinct topics; both involve keeping track
of the positions of points. The distinction we make is for simplicity. Try-
ing to simultaneously describe deformations and large motions is just too
complicated for beginners to understand, and also too complicated for most
engineering practice. So the ideas are kept (somewhat artificially) separate
in elementary mechanics courses such as this one. As separate topics, the
geometry needed to understand small deformations (called ‘strains’) and the
geometry needed to understand large motions of rigid objects (called ‘par-
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ticle and rigid-object kinematics’) are both basic parts of mechanics. (This
book, however, only considers deformation in the context of linear springs.)

Pillar 3: Relation of force to motion, the laws of
mechanics, kinetics
The same intuitive ‘force’ that causes deformation also causes motion, or
more precisely, acceleration of mass. The relation between force and accel-
eration of mass makes up the third pillar holding up mechanics. We loosely
call this Newton’s laws; synonyms include the laws of mechanics, momentum
and energy balance and kinetics. 2Force is related to deformation by mate-
rial properties (elasticity, viscosity, etc.) and force is related to motion by the
laws of mechanics summarized in the front cover. In words and informally,
these are: 3

0) The laws of mechanics apply to any system (rigid or not):
a) Force and moment are the measure of

mechanical interaction; and
b) Action D minus reaction applies to all interactions,

( ‘every action has an equal and opposite reaction’);
I) The net force on a system causes a net linear acceleration

(linear momentum balance),
II) The net turning effect of forces on system causes it to

rotationally accelerate (angular momentum balance), and
III) The change of energy of a system is due to the energy flow

into the system (energy balance).

A non-minimal set of assumptions. The principles of action and reaction,
linear momentum balance, angular momentum balance, and energy balance,
are actually redundant in various ways. Linear momentum balance can be de-
rived from angular momentum balance and sometimes vice-versa (see page
1028). Energy balance equations can often be derived from the momentum
balance equations. And the principle of action and reaction can be derived
from the momentum balance equations. In engineering practice, however,
we worry little about which idea could be derived from the others for the
problem under consideration. The four assumptions in O-III above are not a
mathematically minimal set, but they are all accepted truths by practitioners
of mechanics.

A lot follows from the laws of Newtonian mechanics, including the con-
tents of this book. When these ideas are supplemented with idealizations of
the mechanical behavior of particular systems (e.g., of machines, buildings
or human bodies), they lead to predictions about motions and forces. There

2Kinetics and kinematics. It is easy
to confuse these similar looking and
sounding words. Kinematics concerns
geometry with no mention of force, and
kinetics concerns the relation of force
to motion. The following (backwards)
anti-mnemonic device might help you.
Adding ‘ma’ to the middle of the word
kinetics gives the word ‘kinematics’,
whereas adding the concept m*a (as in
mass times acceleration) to the concept
of kinematics gives the concept called
kinetics.

3Newton’s laws vs the modern ap-
proach. Isaac Newton’s original three
laws are:

1) an object in motion tends to stay
in motion,

2)
*
F D m*a for a particle, and

3) the principle of action and reac-
tion.

These three Newton laws could be used
as a starting point for the study of me-
chanics.
The more modern approach here leads
to the same ends. Why not just do it
Newton’s way? One confusion in using
Newton’s original statements is trying to
understand how the first law is not just
a special case of the second law. One
thought of modern historians of Science
is that Newton’s first law is implicitly,
by describing what happens when there
is no force, defining force. In this view
Newton’s first law is somewhat equiva-
lent to what we call law (0a). Another
advantage to the more modern approach
is that we can think of angular momen-
tum and energy as fundamental quanti-
ties with general import, not just quanti-
ties relevant to the particular models or
systems for which we can make deriva-
tions based on Newton’s particle me-
chanics.
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is an endless stream of results about the mechanics of one or another special
system. Some of these results are classified into entire fields of research such
as ‘fluid mechanics,’ ‘vibrations,’ ‘seismology,’ ‘granular flow,’ ‘biomechan-
ics,’ or ‘celestial mechanics.’

The four basic ideas also lead to mathematically advanced formulations
of mechanics with names like ‘Lagrange’s equations,’ ‘Hamilton’s equa-
tions,’ ‘virtual work’, and ‘variational principles.’ If you go on in mechanics,
you may learn some of these things in more advanced courses.

Statics, dynamics, and strength of materials
Elementary mechanics is sometimes partitioned into three courses named
‘statics’, ‘dynamics’, and ‘strength of materials’. These subjects vary in how
much they emphasize material properties, geometry, and Newton’s laws.

Statics is mechanics with the idealization that the acceleration of mass is
negligible in Newton’s laws. The first eight chapters of this book provide a
thorough introduction to statics. Things need not be standing exactly still to
be well idealized with statics. Actually, nothing is exactly still anyway. But,
as the name implies, statics is generally about things that don’t move much.
In statics, the first pillar of mechanics, constitutive laws, is generally intro-
duced without fanfare by the (implicit) assumption of rigidity. Other consti-
tutive assumptions used in statics include inextensible ropes, linear springs,
and frictional contact. The material properties used as examples in elemen-
tary statics are simple. Also, because things don’t move or deform much in
statics, the geometry of deformation and motion are all but ignored. Despite
the commonly applied vast simplifications, statics is useful for the analysis
of natural and engineered structures, of slow machines or the light parts of
fast machines, and of other things (say, the stability of boats).

Dynamics concerns the non-negligible acceleration of mass. Chapters 9
and on of this book introduce dynamics. As with statics, the first pillar of me-
chanics, constitutive laws, is given a relatively minor role in the elementary
dynamics presented here. For the most part, the same library of elementary
properties are used with little fanfare (rigidity, in-extensibility, linear elas-
ticity, and friction). Dynamics thus concerns kinematics and kinetics. Once
one has mastered statics, the hard part of dynamics is the kinematics. Dy-
namics is useful for the analysis of, for example, fast machines, vibrations,
and ballistics.

Strength of materials expands statics to include material properties and
also pays more attention to distributed forces (e.g., ‘traction’ and ‘stress’).
This book only occasionally touches lightly on strength-of-materials top-
ics like stress (loosely, force per unit area), strain (a way to measure de-
formation), and linear elasticity (a commonly used constitutive idealization
of solids that generalizes the concept of a spring). Strength of materials gives
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equal emphasis to all three pillars of mechanics. Strength of materials is use-
ful for predicting the amount of deformation in a structure or machine, where
it is most likely to break with a given load, and whether or not it is likely to
break with that load.

1.2 Why study Newtonian mechanics
when it has been overthrown by
modern physics?

We are repeatedly reminded that Newtonian ideas have been replaced by
relativity and quantum mechanics. So why, in the 21st century, should you
read this book and learn ideas, remnants of the nineteenth century, which are
known to be wrong?

First off, this criticism is maybe a bit off base: general relativity and
quantum mechanics are inconsistent with each other, not yet united by a
universally-accepted deeper theory of everything. So strict consistency with
modern physics, as we know it, isn’t possible. But how big are the errors
we make when we do classical mechanics, neglecting various more modern
physics discoveries?
Special relativity. The errors from neglecting the effects of special relativity

are on the order of v2=c2 where v is a typical speed in your problem
and c is the speed of light. The biggest errors are associated with the
fastest objects. For, say, calculating space shuttle trajectories this leads
to an error of about

v2

c2
�
�

5mi= s
3 � 108 m=s

�2
� :000000001 � one millionth of one percent

General relativity errors having to do with the non-flatness of space are
so small that the genius Einstein had trouble finding a place where the
deviations from Newtonian mechanics could be observed at all. Finally
he predicted a small, barely measurable effect on the predicted motion
of the planet Mercury. Newtonian mechanics predicts a fixed elliptical
orbit. Einstein’s equations correctly predicted that the elliptical path
itself rotates (precesses) once every 3 million years, that’s about 45
arc-sec (an 80th of a degree) per century. So the Newtonian ‘error’
is about one part in 108 (like a one cent error in a millionaire’s bank
balance). Global positioning satellites (GPS) do actually take general
relativity into account to prevent errors of about one part in a billion (a
millimeter error over a thousand kilometers).

Uncertainty principle. In classical mechanics we assume we can know ex-
actly where something is and how fast it is going. But according to
quantum mechanics this is impossible. The product of the uncertainty
�x in position of an object, and the uncertainty �p of its momentum
must be greater than Planck’s constant �. Planck’s constant is small;
� � 1 � 10�34joule� s. The fractional error in position is biggest
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for small objects moving slowly. So if one measures the location of
a computer chip with mass m D 10�4 kg to within �x D 10�6 m �
a twenty fifth of a thousands of an inch, the uncertainty in its velocity
�v D �p=m is only

�x�p D � ) �v D m�=�x � 10�24 m= s � 10�15inches per year:

Brownian motion. In classical mechanics we usually (although not always)
neglect fluctuations associated with the thermal vibrations of atoms.
But any object in thermal equilibrium with its surroundings constantly
undergoes changes in size, pressure, and energy, as it interacts with the
environment. For example, the internal energy per particle of a sample
at temperature T fluctuates with amplitude

�E

N
D 1p

N

q
kBT

2cV ;

where kB is Boltzmann’s constant, T is the absolute temperature, N
is the number of particles in the sample, and cV is the specific heat.
Water has a specific heat of 1 cal=K, or around 4 Joule/K. At room
temperature of 300 Kelvin, for 1023 molecules of water, these values
lead to an uncertainty of only 7:2 � 10�21 Joule in the the internal
energy of the water. Thermal fluctuations are big enough to visibly
move pieces of dust in an optical microscope (Brownian motion), and
to generate variations in electric currents that are easily measured, but
for most engineering mechanics purposes they are negligible. However,
if thermal fluctuations are of interest, they can be modeled reasonably
accurately using Newtonian mechanics at the atomic scale.

Physics errors vs modeling errors. As described above, classical New-
tonian physics is an accurate approximation of Nature for engineers, with
errors typically on the order of parts per billion. On the other hand, the errors
within mechanics, due to imperfect modeling or inaccurate measurement,
are, except in extreme situations (like GPS), far greater than the errors due to
the imperfection of Newtonian mechanics theory. For example, mechanical
force measurements are typically off by a percent or so, distance measure-
ments by a part in a thousand, and material properties are rarely known to
one part in a hundred and often not even one part in 10. That is, even in the
most accurate of circumstances, your mechanics calculations will typically
be off by at least 100,000 times more than the laws of mechanics themselves
are off.

On the other hand, if your engineering mechanics calculations make inac-
curate predictions this will surely be because of errors in modeling or mea-
surement (lets assume no math mistakes), not inaccuracies in the laws of
mechanics.
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Only in special circumstances are classical mechanics predictions off
because of neglect of relativity, quantum mechanics, or statistical me-
chanics.

You can trust Newtonian mechanics. In summary, Newtonian mechan-
ics is accurate enough, and also much simpler to use than the theories which
have ‘overthrown’ it. You have trusted your life many times to engineers who
treated classical mechanics as ‘truth’ and in turn, your engineering mechan-
ics work will justly be based on the laws of classical mechanics. Although
perhaps philosophically objectionable, it is reasonable engineering practice
to

Think of the laws of mechanics as absolute truth.

1.3 Models, modeling, and the hierarchy
of models

A plastic toy car guided by a child’s hand crashes into another toy car
(fig. 1.1). The toys are models of cars. In Engineering and Science, how-
ever, the word model has a broader meaning. For example, in this broader
sense the toy crash is a model of a real car crash. The model of the crash
event is that two plastic things are guided together by human hands. Its as
if there are two parallel universes, the ‘real’ one and the ‘model’ one. And
the whole real process of car collision is ‘modeled by’ the crashing of toy
cars. The word model then means that cars are replaced by plastic toys and
the laws of mechanics replaced by the guiding of the child’s hands. And the
results of the collision are replaced by whatever damage occurs to the plastic
toys.

The commuting diagram. A model, in this broader sense, is represented
abstractly by a commuting diagram, as shown in Fig. 1.2. The top row is
the system to be modeled, say the real cars. The real car collision is the
workings of the system w, as dictated by nature’s laws in their full subtlety
and complexity, taking into account all known and as-yet unknown physics.
And the way the cars move and deform and end up damaged is the system
behavior SB. Parallel to this in the bottom row of the figure is the model
universe. A plastic car R represents a real car by having about the same
shape. The laws of nature w are ‘modeled by’ the manipulation rules in the
model m, in this case the guidance of the child’s hands. And the result of
the real crash SB is ‘modeled by’ the result of the play crash. The model is
compared to reality by making an association between bent car metal with
scratched toy plastic.
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We will rate this as a ‘good model’ if the damage to the plastic mimics
the damage to a real car. This is expressed by the success at ‘commuting’,
in the mathematical sense of the word commuting. Is the result of making a
model and then carrying out the model process (down then right) the same as
the result of the process then modeled (right then down)? In the language of
the commuting diagram the question is,

Does S
t! R

m!RB give the same result as S
w!SB

b!RB?

For example, we compare the prediction of damaged plastic to what the real
car damage would translate to as cracks and scratches on the plastic? If they
agree well then the model ‘commutes’. That is, starting with the real system
you get the same answer these two ways: 1) by applying the real workings
and then the translate to what you would expect to see in the model and 2) by
modeling the car in plastic and applying the model workings. Using the toy

Filename:tfigure1-commute-model

Figure 1.1: Toy cars and real cars.
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car example we can see aspects that commute and aspects that don’t. That
both the real cars and the toy cars end up with a crooked orientation is a sign
of the model “commuting”. That’s a good feature of the model. That the
toy car passengers have no scratches and that the people in the real cars have
aching necks is a lack of commuting, and a defect in ‘the model’.

Mathematical vs physical models. In the toy crash example above the
‘model’ included a physical object, the toy car. More commonly in science
and engineering the model is a constellation of ideas with no physical object
involved. For example, if a solid ‘is modeled as’ a rigid object that means

Filename:tfigure1-commute
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What is a model?    A commuting diagram.
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 translating the sytem or its
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Figure 1.2: The commuting diagram. This 4-block diagram gives one definition of a model. The system S has behaviors SB that happen
because of the systems workings w. What is a model? Overall the model includes a representation R of the system, the manipulation
rules m which yield the behavior RB of the model (the Behavior of the Representation). That is, the ‘model’ includes the representation
(say, a toy car) of a thing (a real car), what that representation can do (how the toy car can move), and what results (the toy car crash).
Translation rules t tell you how to make the Representation R given the real System S. For example, we make a small plastic object with
the same shape and color as the real car, we move it with our hands in ways that mimic real car motion, and we compare the appearance of
the physical damage of the real car and the plastic car. And once one has made a prediction of the Behavior RB, one needs translation rules
b to describe what the model behavior predicts about the system behavior. For example, if see a scratch on the plastic toy we predict a dent
in the real car. In science, engineering and math models the Representations are often a list of numbers for, say, the masses and lengths of
parts, etc.. The manipulation rules are often algebraic or differential equations. The predictions are numbers or graphs that come from the
solution of the equations. The laws of Newtonian mechanics make up a model for the motions of objects which, in turn, depend on many
sub-models, such as the concept of a force and of a rigid object.
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1‘Models’ in biology. In biology
the word model is used sometimes used
casually to mean‘experimental subject’.
But the intent of an ‘animal model’ is
that, say, the growth of cancer in a mon-
key is meant to mimic (‘model’) the
growth of similar cancer in a human.

the motion of the object will be calculated by assuming that the solid does
not deform. No piece of plastic representing the object is needed.
1

Models in engineering. In engineering, we use models to make predictions
about reality. So the ‘commuting’ ability is usually expressed by comparing
the model predictions to reality, wrapping three quarters of the way counter-
clockwise around the diagram from the system (at the upper left) down to its
model representation through the model manipulations to the model behav-
ior and back up to the prediction for reality (at the upper right). But instead
of plastic cars and children’s hands moving them an engineering model rep-
resents an object by its physical parameters and its behavior by governing
equations.

Models are pervasive. All this abstraction about modeling is confusing
partly because we are surrounded by it all the time. Explaining modeling to
you is like explaining water to a fish. For example, language and thought are
themselves, in a sense, models of reality.

What makes a good model? Good features for a model include:

� Applicability to a broad range of systems,
� Prediction of a broad range of phenomena,

� Making accurate predictions (ie, ‘commuting’ so that the route S
t!

R
m!RB gives the same result as S

w!SB
b!RB),

� Simplicity, and
� Lack of ambiguity in the rules t , m and b and thus clear model predic-

tions.

Usually when setting up or choosing a model you need to make tradeoffs.
For example, accurate (good) models are often complicated (bad) and simple
(good) models are often ambiguous (bad), etc..

Mechanics models
In a course like this we are concerned with a hierarchy of models.

Space and time. Most basically we model space, time and matter as having
all the common-sense features that we are used to. For example we assume
that the location of any point in space can be described by its x, y, and z

coordinates relative to some origin.

The laws of mechanics. Second, we model all of nature’s rules for motion
with the basic laws of (classical, Newtonian) mechanics. As stated in the
previous section with reference to modern physics concepts, Newtonian me-
chanics is a high-quality model whose errors (or lack of ability to commute)
will likely be of no significance to you ever in your life.
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Properties. Third, we have models of objects and forces. In this book, as
opposed to a book about structural mechanics, we generally ‘model’ solid
things as particles or as non-deforming rigid objects. This non-deformation
model gives an error that typically ranges from a small fraction of a percent
up to a few percent. Models of forces can be very accurate, for example you
can know gravity forces, if you know where you are on the earth (see page
A.3), to about one part in 106. Some other force models are also reasonably
accurate, like the description of linear springs (typically 1% accurate or so).
And some force models are basically poor, like for friction and collisions
(with typical errors of 20-50%), we just don’t know good models for friction
and collision forces, so we use and try to understand the bad models we have
cooked up so far.

The modeling process. Given this hierarchical collection of mechanics
models we next get to the engineer’s task of ‘modeling’. Given a real ma-
chine, how do we ‘model’ it as made up of various mechanics models from
the paragraphs above? Which parts do we approximate as rigid objects,
which as massless linear springs, etc? This modeling task is an important
part of engineering practice.

However, before one can develop the art of engineering modeling one
needs to know how to work with the range of common engineering mod-
els. In terms of the diagram in Fig. 1.2 you need to know how to do the
manipulations m for a given candidate models before you can develop the
art of determining what particular models should be used to represent your
system of interest. Much more specifically, for elementary mechanics you
need to know how particles and rigid objects interact and move, assuming
they governed by the common models for their interactions. Understanding
how particles and rigid objects interact and move is the core of this book.

Models in homework problems. Most often the problem statement im-
plicitly tells you what model to use, although sometimes in a mildly dis-
guised language (in order to start training your modeling skills). Judging
whether or not a given model is good (i.e., commutes, corresponds well with
reality) is an important part of engineering practice. So we will point out de-
ficiencies in various models here and there. Further, because some of these
models are pretty good, you can use your intuition (another model!) to guide
your learning of mechanics models and, conversely, you can use your new
understanding of mechanics models to improve your intuition about reality.

Utility of rigid-object-mechanics models. The bottom line is this. If you
understand how particles and rigid bodies interact and move according to the
‘rigid-object-mechanics’ model, basically the contents of this book, you will
understand a lot about how many real things hold together, fall apart, stay in
place and move.
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CHAPTER 2
Vector algebra for

mechanics: position,
force and moment

The key vectors for statics, namely relative position, force, and moment, are
used to develop vector skills. Notational clarity is emphasized because good
vector calculation demands distinguishing vectors from scalars. Vector addi-
tion is motivated by the need to add forces and relative positions. Dot prod-
ucts are motivated as the tool which reduces vector equations to scalar equa-
tions. And cross products are motivated as the formula which correctly cal-
culates the heuristically motivated quantities of moment and moment about
an axis.
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In this book you will learn to use the laws of mechanics which were in-
formally introduced in Chapter 1. The most fundamental quantities in me-
chanics are the two scalars,

� mass m and

� time t ,

and the two vectors,

� relative position *
ri=O (position of point i relative to point O), and

� force
*

F (acting on a system of interest) 1

Scalars are typed with an ordinary font (t and m) and vectors are typed in
bold with a harpoon on top (*ri=O,

*

F ). All the other scalars (see box 2.1 on
page 41 ) and vectors (see box 2.2 on page 42) we use in mechanics are de-
fined in terms of m; t;*ri=O and

*

F . You are already good at scalar arithmetic
and algebra (adding, subtracting, multiplying and dividing ordinary numbers
and symbols representing numbers). For mechanics you also need facility
with the vector arithmetic and algebra explained in this chapter.

What is a vector?
Whereas a scalar is just a (possibly dimensional) single number, a thing with
magnitude and a sign 2,

a vector is a (possibly dimensional) quantity that is fully described by
both magnitude and direction.

Example: NorthEast 2 cm
As a first vector example, consider a line segment with a length (magnitude) of
2 cm. The segment has a tail end and a head end and is pointed Northeast. Lets call
this vector

*
A (see fig. 2.1).

*
A

defD 2 cm long line segment pointed Northeast

In terms of our basic list at the top of the page,
*
A is the relative position*rh=t of its

head h relative to its tail t .

1Actually, one can argue that
*
F isn’t

fundamental because it can be defined in
terms ofm and*a which, in turn, defined
in terms of*r and t . But both historically
and in most engineering practice,

*
F is a

treated as a fundamental quantity.

Filename:tfigure-northeast

⇀
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Figure 2.1: Vector
*
A is 2 cm long and

points Northeast. Two copies of
*
A are

drawn to show that where the drawing
is placed doesn’t effect the vector. Its
the same vector drawn in two different
places.

2By ‘dimensional’ we mean ‘with
units’ like meters, Newtons, or kg. We
don’t mean having an abstract vector-
space dimension, as in one, two or three
dimensional.
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3In abstract mathematics they don’t
bother to talk about magnitudes and di-
rections. All they care about is vec-
tor arithmetic. So, to the mathemati-
cians, anything which obeys simple vec-
tor arithmetic is a vector, arrow-like or
not. In math talk lots of strange things
are vectors, like arrays of numbers and
functions. As special cases of the math-
ematicians’ ‘abstract vectors’, the vec-
tors in this book always have magnitude
and direction.

Every vector in mechanics is well visualized as an arrow. The direction of the
arrow is the direction of the vector. The length of the arrow is proportional to
the magnitude of the vector. The magnitude of

*

A is a positive scalar indicated
by j*Aj. A vector does not lose its identity if it is picked up and moved around
in space (so long as it is not rotated nor stretched). Thus both vectors drawn
in fig. 2.1 are the same vector

*

A.

Vector arithmetic makes sense
We have oversimplified. We said that a vector is something with magnitude
and direction. In fact, by common modern convention, that’s not enough. A
one way street sign, for example, is not considered a vector even though is has
a magnitude (its mass is, say, half a kilogram) and a direction (the direction of
most of the traffic). A thing is only called a vector if, additionally, elementary
vector arithmetic, vector addition in particular, has a sensible meaning 3.

The following sentence summarizes centuries of thought and also moti-
vates this chapter:

The vectors in mechanics have magnitude and direction and elementary
vector arithmetic operations have sensible physical meanings.

This chapter is about vector arithmetic. In this chapter you will learn how to
add and subtract vectors, how to stretch them, how to find their components,
and how to multiply them with each other two different ways. Each of these
operations has use in mechanics.

2.1 Vector notation and vector addition
Facility with vectors has several aspects.

1. You must recognize which quantities are vectors (such as relative posi-
tion) and which are scalars (such as length).

2. You have to use a notation that distinguishes between vectors and
scalars using, for example, *a, or a for acceleration and a for a scalar
with the same magnitude so that jaj D j*aj.

3. You need skills in vector arithmetic, perhaps more than you learned in
your previous math and physics courses.

In this first section (2.1) we start with notation and go on to finding the rel-
ative position vector from a picture, multiplication of a vector by a scalar,
vector addition and vector subtraction.

How to write vectors

A scalar is written as a single English or Greek letter. This book uses slanted
type for scalars (e.g., m for mass) but ordinary printing is fine for hand work
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(e.g., m for mass). A vector is also represented by a single letter of the al-
phabet, either English or Greek, but ornamented to indicate that it is a vector
and not a scalar. The common ornamentations are described below.

Use one of these vector notations in all of your work 1.

*

F Putting a harpoon (or arrow) over the letter F is the suggestive notation
used in in this book for vectors.

F In most texts a bold F represents the vector
*

F . But bold face is incon-
venient for hand written work. The lack of bold face pens and pencils
tempts students to transcribe a bold F as F . But F with no adornment
represents a scalar and not a vector. Beware not to transcribe F as F .

F Underlining or under-squiggling (F
�

) is an easy and unambiguous nota-
tion for hand writing vectors. A recent survey found that 11 out of 17
mechanics professors use this notation. These professors would copy
a

*

F from this book by writing F . The origin of the notation seems to
be from old-fashioned typesetting where an author would indicate that
a letter should be printed in bold by underlining it.

NF It is a stroke simpler to put a bar rather than a harpoon over a symbol. But
the saved effort causes ambiguity because an over-bar is often used to
indicate average. There could be confusion, say, between the velocity
Nv and the average speed Nv.

O{ Over-hat. Putting a hat on top is like an over-arrow or over-bar. In this
book we reserve the hat for unit vectors. For example, we use O{, O|, and
Ok, or Oe1, Oe2, and Oe3 for unit vectors parallel to the x, y, and z axes,
respectively. The same poll of 17 mechanics professors found that 8 of

2.1 The scalars in mechanics
Most of the scalars in this book are listed below. Dimensions (units)
in given in brackets [ ], (M for mass, L for length, T for time, F
for force, andE for energy).

� massm, [M ];

� length or distance `, w , x, r , �, d , or s, [L];

� time t , [T ];

� pressure p, [F=L2� D �M=.L � T 2/];
� angles � ‘theta’, � ‘phi’,  ‘gamma’, and ‘psi’, [dimen-

sionless];

� energy E , kinetic energy EK, potential energy EP,
[E ]D[F �L]D[M �L2=T 2];

� workW , [E ]D[F �L]D[M �L2=T 2];

� tension T , [M �L=T 2] D [F ];

� power P , [E=T ]D[M �L2=T 3];

� the magnitudes of all the vector quantities are also scalars,
for example

– speed j*vj, [L=T ];
– magnitude of acceleration j*aj, [L=T 2];

– magnitude of angular momentum j *H j, [M �
L2=T ];

� the components of vectors, for example

– rx (where*r D rx O{C ry O|), or

– Lx0 (where
*
L D Lx0 O{0 CLy0 O|0);

� coefficient of friction � ‘mu’, or friction angle � ‘phi’;

� coefficient of restitution e;

� mass per unit length, area, or volume �;

� oscillation frequency � or �.

1 Be careful to distinguish vectors
from scalars in all of your written work.
Clear notation helps clear thinking and
will help you solve problems. If you no-
tice that you are not using clear vector
notation, stop, determine which quanti-
ties are vectors and which scalars, and
fix your notation. Rare is the student
who consistently gets correct answers to
exam questions without clear vector no-
tation. And almost as rare is the student
who has clear vector usage and can’t do
problems. For some students, accept-
ing this vector language and syntax is a
bitter pill. Just swallow it. You’ll feel
much better.
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Figure 2.2: Position and force vectors
are drawn with different scales.

them used no special notation for unit vectors and just wrote them like,
e.g., {.

Drawing vectors

In fig. 2.1 on page 39, the magnitude of
*

A was used as the drawing length.
But drawing a vector using its magnitude as length would be awkward if, say,
we were interested in vector

*

B that points Northwest and has a magnitude
of 2meters. To well contain

*

B in a drawing would require a piece of paper
about 2 meters square (each edge the length of a basketball player). This
situation moves from difficult to ridiculous if the magnitude of the vector
of interest is 2 km and it would take half an hour to stroll from tail to tip
dragging a purple crayon. Thus in pictures we merely make scale drawings
of vectors with, say, one centimeter of graph paper representing 1 kilometer
of vector magnitude.

The necessity for using scale drawings to represent vectors is apparent
for a vector whose magnitude is not length. Force is a vector since it has
magnitude and direction. Say

*

Fgr is the 700N force that the ground pushes
up on your chair as you sit reading. We can’t draw a line segment with
length 700N for

*

Fgr because a Newton is a unit of force not length. So a
scale drawing is the only choice.

One often needs to draw vectors with different units on the same picture,
as for showing the position *

r at which a force
*

F is applied (see fig. 2.2). In

2.2 The Vectors in Mechanics
The vector quantities used in mechanics and the notations used in
this book are shown below. The dimensional symbols of each are
shown in brackets [ ].

� position*r or *x, [L];

� velocity*v or P*x or P*r , [L=t ];

� acceleration*a or P*v or R*r , [L=t2];

� angular velocity *! ‘omega’ (or, if aligned with the Ok axis,
P� Ok), [1=t ];

� rate of change of angular velocity *� ‘alpha’ or P*! (or, if
aligned with the Ok axis, R� Ok), [1=t2];

� force
*
F or

*
N , [m �L=t2]D[F ];

� moment or torque
*
M , [m �L2=t2]D[F �L];

� linear momentum
*
L, [m � L=t ] and its rate of change P*

L,
[m �L=t2];

� angular momentum
*
H , [m �L2=t ]; and its rate of change

P*
H , [m �L2=t2].

� unit vectors to help write other vectors [dimensionless]:

– O{, O|, and Ok for cartesian coordinates,

– O{0, O|0, and Ok0 for crooked cartesian coordinates,

– Oer and Oe� for polar coordinates,
– Oet and Oen for path coordinates, and

– O� ‘lambda’ and On as miscellaneous unit vectors.

Ornamentation of vectors Subscripts and superscripts are often
added to indicate the point, points, object, or objects the vectors
are describing. Upper case letters (O, A, B, C,...) are used to de-
note points. Upper case calligraphic (or script if you are writing by
hand) letters (A;B;C:::F :::) are for labeling rigid objects or ref-
erence frames. F is the fixed, Newtonian, or ‘absolute’ reference
frame (think of F as the ground if you are a first time reader). For
example,*rAB or*rB=A is the position of the point B relative to point
A. *!B is the absolute angular velocity of the object called B (*!B
is short hand for *!B=F ). And

*
HA=C is the angular momentum of

objectA relative to point C .

The notation is further complicated when we want to take
derivatives with respect to moving frames, a topic which comes up
later in the book. For completeness here: B P*!D=E is the time deriva-
tive with respect to reference frame B of the angular velocity of ob-
ject D with respect to object (or frame) E . (If this paragraph doesn’t
read like gibberish to you, you have already studied dynamics. Its
here for the experts who are looking back.)
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this case different scale factors are used for the drawing of the vectors that
have different units.

Drawing and measuring are tedious and also not very accurate. And draw-
ing in 3 dimensions is particularly hard (given the short supply of 3D graph
paper nowadays). So the magnitudes and directions of vectors are usually
defined with numbers and units rather than scale drawings. Nonetheless, the
drawing rules and geometric descriptions define all the vector concepts.

Adding vectors
Tip to tail rule. The sum of two vectors

*

A and
*

B is defined by the tip to
tail rule of vector addition shown in fig. 2.3a for the sum

*

C D *

AC *

B. Vector
*

A is drawn. Then vector
*

B is drawn with its tail at the tip (or head) of
*

A.
The sum

*

C is the vector from the tail of
*

A to the tip of
*

B.

Parallelogram rule. The same sum is achieved if
*

B is drawn first, as
shown in fig. 2.3b. Putting both ways of adding

*

A and
*

B on the same pic-
ture draws a parallelogram as shown in fig. 2.3c. Hence the tip to tail rule
of vector addition is also called the parallelogram rule. The parallelogram
construction shows the commutative property of vector addition, namely that
*

A C *

B D *

B C *

A.

3D. Note that you can view fig. 2.3a-c as 3D pictures. In 3D, the parallelo-
gram will be on a plane but that may well be tilted relative to the x; y and z
axes.

Adding many vectors. Three vectors are added by the same tip to tail rule.
The construction shown in fig. 2.3d shows that .

*

AC*

B/C *

D D *

AC.
*

BC *

D/

so that the expression
*

A C *

B C *

D is unambiguous. This is the associative
property of vector addition.

With these two laws we see that the sum
*

AC*

BC*

DC: : : can be permuted
to

*

D C *

A C *

B C : : : or any which way without changing the result. So
vector addition shares the associativity and commutativity of scalar addition
that you are used to e.g., that 3C .7C �/ D .� C 3/C 7.

Concurrent forces. We can reconsider the statement ‘force is a vector’ and
see that it hides one of the basic assumptions in mechanics, namely:

If forces
*

F1 and
*

F2 are applied to a point on a structure they can be
replaced, for all mechanics considerations, with a single force

*

F D
*

F1 C
*

F2 applied to that point

as illustrated in fig. 2.4. The force
*

F is said to be equivalent to the concurrent
(acting at one point) force system consisting of

*

F1 and
*

F2 acting at the same
point.
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Figure 2.3: (a) tip to tail addition
of

*
A C *

B, (b) tip to tail addition
of

*
B C *

A, (c) the parallelogram
interpretation of vector addition which
shows the commutative law of vec-
tor addition:

*
A C *

B D *
B C *

A,
and (d) The associative law of vector
addition: .

*
AC*

B/C*
D D *

AC.*BC*
D/.

This figure also makes sense in
3D. Drawings (a), (b) and (c) are all on
a tilted planes. And the 6 vectors drawn
in (d) lie on the edges of a tetrahedron.
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Figure 2.4: Two forces acting at a point
may be replaced by their sum for all me-
chanics purposes.
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Figure 2.5: a) Relative position of
points A, B, and C; b) Relative position
of points O, A, and B.

Apples and oranges. Note that two vectors with different dimensions can-
not be added. Figure 2.2 on page 42 can no more sensibly be taken to rep-
resent meaningful vector addition than can the scalar sum of a length and a
weight, “2 ftC 3N”, be taken as meaningful.

Subtraction, negation, and the zero vector
Subtraction is most simply defined by inverse addition. Find

*

C � *

A means
find the vector which when added to

*

A gives
*

C . We can draw
*

C , draw
*

A and
then find the vector which, when added tip to tail to

*

A give
*

C . Figure 2.3a
shows that

*

B answers the question. Another interpretation comes from defin-
ing the negative of a vector �*

A as
*

A with the head and tail switched. Again
you can see from fig. 2.3b, by imagining that the head and tail on

*

A were
switched that

*

C C .�*

A/ D *

B. The negative of a vector evidently has the ex-
pected property that

*

AC.�*

A/ D*

0, where
*

0 is the vector with no magnitude
so that

*

C C*

0 D *

C for all vectors
*

C .

Relative position vectors
The concept of relative position permeates most mechanics equations. The
position of point B relative to point A is represented by the vector

*
rB=A (pronounced ‘r of B relative to A’)

drawn from A and to B (as shown in fig. 2.5). An alternate notation for the
relative position vector *rB=A is

*
rB=A �*

rAB (pronounced ‘r A B’ or ‘r A to B’):

You can think of the position of B relative to A as being the position of
B relative to you if you were standing on A. Similarly *

rC=B D *
rBC is the

position of C relative to B.
Figure 2.5a shows that relative positions add by the tip to tail rule. That is,

*
rC=A D*

rB=A C*
rC=B or *

rAC D*
rAB C*

rBC

so vector addition has a sensible meaning for relative position vectors.
Note that the position of B relative to A is the opposite (negative vector)

of the position of A relative to B, so

*
rB=A D �*rA=B and *

rAB D �*rBA:

Position relative to the origin. Often when doing problems we pick a dis-
tinguished point in space, say a prominent point or corner of a machine or
structure, and use it as the origin of a coordinate system O. The position of
point A relative to O is *rA=0 or *rOA but we often adopt the shorthand notation
*
rA (pronounced ‘r A’) leaving the reference point O as implied,
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*
rA means *

rA=0:

Figure 2.5b shows that

*
rB=A D*

rB �*
rA

which rolls off the tongue more easily than*
rB=0�*

rA=0 and makes the concept
of relative position easier to remember. 2

Multiplying by a scalar stretches a vector
Naturally enough 2

*

F means
*

F C *

F (see fig. 2.6) and 127
*

A means
*

A added
to itself 127 times. Similarly

*

A=7 or 1
7

*

A means a vector in the direction of
*

A

that when added to itself 7 times gives
*

A. By combining these two ideas we
can define any rational multiple of

*

A. For example 29
13

*

A means add 29 copies
of the vector that when added 13 times to itself gives

*

A. It is a mathematical
fine point to extend the definition to c

*

A for c that are irrational.
Combining our abilities to negate a vector and multiply it by a positive

scalar, we define �17*

A as 17.�*

A/. In general, for any positive scalar c we
define c

*

A as the vector that is in the same direction as
*

A, or opposite if c is
negative, but whose magnitude is multiplied by jcj. Five times a 5N force
pointed Northeast is a 25N force pointed Northeast. Minus 5 times a 5N
force pointed Northeast is a 25N force pointed SouthWest.

Distributive rule for scalar multiplication. If you imagine stretching a
whole vector addition diagram (e.g., fig. 2.3a on page 43) equally in all di-
rections the distributive rule for scalar multiplication is apparent:

c.
*

A C *

B/ D c
*

A C c
*

B

Unit vectors have magnitude 1
Unit vectors are vectors with a magnitude of one. Unit vectors are useful for
indicating direction. Key examples are the unit vectors pointed in the positive
x; y and z directions O{ (called ‘i hat’ or just ‘i’), O|, and Ok.

An easy way to find a unit vector in the direction of a vector
*

A is to divide
*

A by its magnitude. Thus

O�A �
*

A

j*Aj
is a unit vector in the

*

A direction. We can check that this defines a unit vector
by looking up at the rules for multiplication by a scalar: multiplying

*

A by
the scalar 1=j*Aj gives a new vector with magnitude j*Aj=j*Aj D 1.

2For the first several chapters of this
book (until rotating reference frames)
you can just translate ‘relative to’ to
mean ‘minus’ as in english. ‘How
much money does Rudra have relative
to Andy?’ means what is Rudra’s wealth
minus Andy’s wealth? What is the posi-
tion of B relative to A? It is the position
of B minus the position of A.
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Figure 2.6: Multiplying a vector by a
scalar stretches it.
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Figure 2.7: The force
*
F that points from

A to B can be represented as the prod-
uct of a scalar F and a unit vector O�AB:
*
F D F O�AB.
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Figure 2.8: Three different ways of
drawing a vector (a) Symbolic. The
magnitude and direction of the vector
is given by the symbol

*
F , the drawn

arrow has no quantitative information;
(b) “Scalar times arrow” shows an arrow
with clearly indicated orientation next
to the scalar F or the scalar 100N. The
vector indicated is the scalar multiplied
by a unit vector in the direction drawn;
(c) Combined. The symbol*r is defined
(set equal to) a vector with the magni-
tude and orientation shown.

A vector as a scalar times a unit vector. Often we know that a force
*

F is
a yet unknown scalar F multiplied by a unit vector pointing between known
points A and B. (fig. 2.7). We can then write

*

F as

*

F D F O�AB D F

*
rAB

j*rABj
D F

*
rB �*

rA

j*rB �*
rAj

where we have used O�AB as the unit vector pointing from A to B. Note that
in this usage, one we will use often, the scalar need not be positive. So the
’scalar part’ might be plus or minus the magnitude of the vector.

Three notations for vectors in pictures and diagrams.
Some options for drawing vectors are shown in sample 2.1 on page 52. The
three notations below are the most common.
Symbolic: labeling an arrow with a vector symbol. Indicate a vector, say

a force
*

F , by drawing an arrow and then labeling it with one of the
symbolic notations above as in fig. 2.8a. In this notation, the arrow
is only schematic, the magnitude and direction are determined by the
algebraic symbol

*

F . It is most clear if you draw the arrow roughly in
the vector’s direction and roughly to scale, but

If the symbol and drawing disagree the symbol takes precedence (see
sample 2.1j)

Graphical: “scalar times arrow”, a scalar multiplies a unit vector in the
direction of a drawn arrow (fig. 2.8b). Indicate a vector’s direction by
drawing an arrow. The direction should be made clear with a marked
angle or slope. The length drawn is irrelevant. Write a letter of the
alphabet, say F , or a (possibly dimensional number, say 100N) near
the vector. The vector indicated is a scalar F (or the number) multiply-
ing a unit vector in the direction of the arrow. Often you know that a
force acts along a known line but you don’t know which way. This is
accommodated by allowing the scalar F to be positive or negative (See
examples in sample 2.1.)

Combined: graphical representation used to define a symbolic vector.
The symbolic notation can be used with the graphical notation to de-
fine the vector symbol. In fig. 2.8c *

r is being defined (being set equal)
to the vector with magnitude 3m and direction 30

�
CCW from the Cx

axis.

The cartesian components of a vector
A given vector, say

*

F , can be described as the sum of vectors each of which
is parallel to a coordinate axis. Most often we use Cartesian axes, with the
x, y, and z axes all orthogonal to each other. Thus

*

F D *

Fx C
*

Fy in 2D and
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*

F D *

Fx C
*

Fy C
*

Fz in 3D (see fig. 2.9). Each of these vectors can in turn
be written as the product of a scalar and a unit vector along the positive axes,
e.g.,

*

Fx D Fx O{. So
*

F D *

Fx C
*

Fy D Fx O{C Fy O| (2D)

or
*

F D *

Fx C
*

Fy C
*

Fz D Fx O{C Fy O| C Fz Ok: (3D)

The scalars Fx; Fy , and Fz are called the components, or coordinates, of the
vector with respect to the axes xyz. The components may also be thought of
as the orthogonal projections (the shadows) of the vector onto the coordinate
axes.

Because the list of components is such a handy way to describe a vector
we have a special notation for it. The bracketed expression �

*

F �xyz stands
for the list of components of

*

F presented as a horizontal or vertical array
(depending on context), as shown below.

�
*

F �xyz D �Fx; Fy ; Fz� or �
*

F �xyz D
2
4 Fx

Fy
Fz

3
5 :

If we had an xy coordinate system with x pointing East and y pointing North
we could write the components of a 5N force pointed Northeast as �

*

F �xy D
�.5=

p
2/N; .5=

p
2/N� 3.

Rather than using new letters to repeat the same concept we sometimes
label the coordinate axes x1; x2 and x3 and the unit vectors along them Oe1,
Oe2, and Oe3 (thus freeing our minds from silently pronouncing the extra letters
y,z,j, and k) 4.

Study sample 2.1 on page 52 to master the various graphical and compo-
nent representations.

Manipulating vectors by manipulating components
A vector can be represented by its components (once given a coordinate sys-
tem), so we should be able to translate the rules for manipulating geometric
vectors into rules about manipulating their components. This is important be-
cause in practice, when push comes to shove, most calculations with vectors
are done with components.

Adding and subtracting vectors using components

Because a vector can be broken into a sum of orthogonal vectors, because
addition is associative, and because each orthogonal vector can be written as
a component times a unit vector we get the addition rule:

�
*

A C *

B�xyz D �.Ax C Bx/; .Ay C By/; .Az C Bz/�

3Note that the components of a vector
in some tilted coordinate system x0y0z0
are different from its components in the
coordinate system xyz because the pro-
jections are different.

Even though
*
F D *

F it is not true
that �

*
F �xyz D �

*
F �x0y0z0 (see

fig. 2.32 on page 59).

Understanding the relation between
�
*
F �xyz and �

*
F �x0y0z0 is especially im-

portant in dynamics (see sec. 16.1 on
page 772). Because we often make use
of multiple coordinate systems, when
we define a vector by its components the
coordinate system used must be speci-
fied
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4Note that non-Cartesian coordinates,
most especially polar coordinates, are
often useful in dynamics (e.g., , see
sec. 14.1).

which can be described by the tricky words ‘the components of the sum of
two vectors are given by the sums of the corresponding components.’ Simi-
larly,

�
*

A � *

B�xyz D �.Ax � Bx/; .Ay � By/; .Az � Bz/�:

Multiplying a vector by a scalar using components

The vector
*

A can be decomposed into the sum of three orthogonal vectors.
If

*

A is multiplied by 7 then so must be each of the component vectors. Thus

�c
*

A�xyz D �cAx; cAy ; cAz�:

The cartesian components of a scaled vector are the corresponding scaled
components. For example if c D 3 and �

*

A�xyz D �2; 4;�5� then �c
*

A�xyz D
�6; 12;�15�.

Often the components of vectors are written as columns rather than rows
of numbers. Thus we would write

�
*

A�xyz D
2
4 Ax

Ay
Az

3
5 D �2; 4;�5�0 D

2
4 2

4

�5

3
5 :

The 0 means ‘matrix transpose’, turning the rows into columns and vice versa.
We can add the components of vectors using this notation, so if d D �0:5
and �

*

B�xyz D �100; 200;�300�0 then

�c
*

A C d
*

B�xyz D c�
*

A�xyz C d�
*

B�xyz D
2
4 cAx C dBx

cAy C dBy

cAz C dBz

3
5 D

2
4 �44
�88
135

3
5

Finally we can use matrix notation and the definition of matrix multiplication
to add multiples of vectors2
4 Ax Bx

Ay By

Az Bz

3
5

� �� �
A 3 by 2 matrix

�
c

d

�
�����
B
BM

Is defined to mean

c

2
4 Ax

Ay
Az

3
5Cd

2
4 Bx

By
Bz

3
5 D

2
4 cAx C dBx

cAy C dBy

cAz C dBz

3
5 :

So, for example,

�c
*

A C d
*

B�xyz D
2
4 2 100

4 200

�5 �300

3
5� 3

�0:5
�

D
2
4 3 � 2 C �0:5 � 100

3 � 4 C �0:5 � 200
3 � .�5/ C �0:5 � .�300/

3
5 D

2
4 �44
�88
135

3
5 :

In the language of linear algebra (skip this sentence if you never took such
a course), a matrix multiplied by a column vector is a linear combination of
the matrix columns with weights (coefficients) given by the elements of the
column vector.
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Adding vectors on a computer
Computers deal well with lists of numbers but not generally with units. So
only the numerical part of a calculation shows in the computer work. For
example, when we write on the computer

F = [ 3 5 -7]

we take that to be computerese for �
*

F �xyz D �3N; 5N;�7N�. To do
computer work we have to be clear about what units and what coordinate
system we are using. In particular, at this point in the course, we advise you
to only use one coordinate system and one consistent set of units in any one
problem that uses computer calculations. We can add multiples of vectors on
a computer with commands something like this:

A = [ 2 4 -5]’
B = [ 100 200 -300]’
c = 3
d = -0.5
C = c*A + d*B

or using the matrix notation, like this.

A = [ 2 4 -5]’
B = [ 100 200 -300]’
M = [A B] %M is column A next to column B
c = 3
d = -0.5
v = [c d]’
C = M*v

Or, if you like to just put in the numbers and type as little as possible,

M = [ 2 100
4 200

-5 -300]
C = M * [3 -0.5]’.

Although this last approach is compact, it makes deciphering your work later
more difficult.

Magnitude of a vector using components
The Pythagorean Theorem for right triangles (‘A2CB2 D C 2’) tells us that

j*F j D
q
F 2x C F 2y ; .2D/

j*F j D
q
F 2x C F 2y C F 2z : .3D/ (2.1)

To get the result in 3D the 2D Pythagorean Theorem needs to be applied
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twice successively, first to get the magnitude of the sum
*

Fx C
*

Fy and once
more to add in

*

Fz , which is orthogonal to the sum
*

Fx C
*

Fy (see fig. 2.10).
On a computer one might write something like this

F = [10 -20 30]
answer = sqrt( F(1)ˆ2 + F(2)ˆ2 + F(3)ˆ2 )

However this formula is so commonly needed that many computer languages
will have a command like norm or mag so computer code something like
answer = norm(F) or answer = mag(F) might replace the second
line in the calculation above.

A Given vector can be written as various sums and
products
A vector

*

A has many representations. The equivalence of different repre-
sentations of a vector is partially analogous to the case of a dimensional
scalar which has the same value no matter what units are used (e.g., the mass
m D 4:41 lbm is equal tom D 2 kg). Here are some common representations
of vectors.
Scalar times a unit vector in the vector’s direction.

*

F D F O� means the
scalar F multiplied by the unit vector O�.

Sum of orthogonal component vectors.
*

F D *

Fx C
*

Fy is a sum of two
vectors parallel to the x and y axes, respectively. In three dimensions,
*

F D *

Fx C
*

Fy C
*

Fz .

Components times unit base vectors.
*

F D Fx O{ C Fy O| or
*

F D Fx O{ C
Fy O| C Fz Ok in three dimensions. One way to think of this sum is to
realize that

*

Fx D Fx O{,
*

Fy D Fy O| and
*

Fz D Fz Ok.

Components times rotated unit base vectors.
*

F D F 0
xi0 C F 0

yj0 or
*

F D
F 0
xi0CF 0

yj0CF 0
zk0 in three dimensions. Here the base vectors marked

with primes, i0, j0 and k0, are unit vectors parallel to some mutually
orthogonal x0, y0, and z0 axes. These x0, y0, and z0 axes may be tilted
in relation to the x, y, and z axes. That is, the x0 axis need not be
parallel to the x axis, the y0 not parallel to the y axis, and the z0 axis
not parallel to the z axis.

Components times other unit base vectors. If you use polar or cylindri-
cal coordinates the unit base vectors are Oe� and OeR, so in 2-D ,

*

F D
FR OeRCF� Oe� and in 3-D,

*

F D FR OeRCF� Oe� CFz Ok. If you use ‘path’
coordinates, you will use the path-defined unit vectors Oet , Oen, and Oeb
so in 2-D

*

F D Ft Oet C Fn Oen. In 3-D
*

F D Ft Oet C Fn Oen C Fb Oeb .

A list of components. �
*

F �xy D �Fx; Fy � or �
*

F �xyz D �Fx; Fy ; Fz� in three
dimensions. This form coincides best with the way computers handle
vectors. The row vector �Fx; Fy � coincides with Fx O{ C Fy O| and the
row vector �Fx; Fy ; Fz� coincides with Fx O{C Fy O| C Fz Ok.

In summary:
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*

A D
*

A

D j
*

Aj O�A D A O�A; where O�A k
*

A, A D j
*

Aj and j O�Aj D 1

D
*

Ax C
*

Ay C
*

Az where
*

Ax ;
*

Ay ;
*

Az are parallel to the x; y; z axes

D Ax O{C Ay O| C Az
Ok; where O{; O|; Ok are parallel to the x; y; z axes

D Ax0 O{
0 C Ay0 O|

0 C Az0
Ok0; where O{0; O|0; Ok0 are k to skewed x0; y0; z0 axes

D AR OeR C A� Oe� C Az
Ok; using cylindrical coordinate basis vectors.

�
*

A�xyz D �Ax ; Ay ; Az � �
*

A�xyz stands for the component list in xyz

�
*

A�x0y0z0 D �Ax0 ; Ay0 ; Az0 � �
*

A�x0y0z0 stands for the component list in x0y0z0
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Filename:sfig2-vectors-rep-a

 3
√

2 N
45o

ı̂

ı

′ĵ
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Figure 2.11: Case (a): Correct represen-
tation of

*
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Figure 2.13: Case (c): Correct represen-
tation of
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F .

SAMPLE 2.1 Various ways of representing a vector:

This sample should be mastered before proceeding to other samples.

A vector
*

F D 3NO{ C 3N O| is represented in various ways below, some in-
correct. For each representation, determine whether it is correct or incorrect,
and why. The base vectors used are shown first.
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Figure 2.14:

Solution First note that the unit vectors O{0 and O|0 can be expressed in terms of their compo-
nents along O{ and O| as follows:

O{0 D jO{0j cos 45� O{C jO{0j sin 45� O|
D 1p

2
.O{C O|/: (2.2)

Similarly,

O|0 D �j O|0j cos 45� O{C j O|0j sin 45� O| D 1p
2
.�O{C O|/:

a) Correct: 3
p
2NO{0. From the picture defining O{0, you can see that O{0 is a unit vector with

equal components in the O{ and O| directions; i.e., it is parallel to
*
F . So

*
F is given by its

magnitude
p
.3N/2 C .3N/2 times a unit vector in its direction, in this case O{0. It is the same

vector. Algebraically,

3
p
2NO{0 D 3

p
2N � 1p

2
.O{C O|/ D 3NO{C 3N O| D *

F :

b) Correct: Here two vectors are shown: one with magnitude 3N in the direction of the
horizontal arrow O{, and one with magnitude 3N in the direction of the vertical arrow O|. When
two forces act on an object at a point, their effect is additive. So the net vector is the sum of
the vectors shown. That is, 3NO{C 3N O|. It is the same vector.

c) Correct: Here we have a scalar 3
p
2N next to an arrow. The vector described is the

scalar multiplied by a unit vector in the direction of the arrow. Since the arrow’s direction
is marked as the same direction as O{0, which we already know is parallel to

*
F , this vector

represents the same vector
*
F . Using the standard base vectors we can write,
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3
p
2N.cos 45� O{C sin 45� O|/ D D 3NO{C 3N O| D *

F :

d) Correct: The scalar �3
p
2N is multiplied by a unit vector in the direction indicated,

�O{0. So we get .�3
p
2N/.�O{0/ which is 3

p
2NO{0 as before. It is the same vector.

e) Incorrect: 3
p
2N O|0. The magnitude is right, but the direction is off by 90 degrees. It is

a different vector. Algebraically,

3
p
2N O|0 D 3

p
2N � 1p

2
.�O{C O|/

D �3NO{C 3N O|
¤ *

F :

f) Incorrect: 3NO{� 3N O|. The O{ component of the vector is correct but the O| component is
in the opposite direction. The vector is in the wrong direction by 90 degrees. It is a different
vector.

g) Incorrect: Right direction but the magnitude is off by a factor of
p
2.

h) Incorrect: The magnitude is right. The direction indicated is right. But, the algebraic
symbol 3

p
2NO{ takes precedence and it is in the wrong direction (O{ instead of O{0). It is a

different vector.

i) Correct: A labeled arrow. The arrow is only schematic. The algebraic symbol 3
p
2NO{0

defines the vector. We draw the arrow to remind us that there is a vector to represent. The
tip or tail of the arrow would be drawn at the point of the force application. In this case, the
arrow is drawn in the direction of

*
F , but strictly speaking, it need not.

j) Correct: Like (i) above, the directional and magnitude information are embedded in the
algebraic symbol 3NO{C3N O|. The arrow is there to indicate a vector. In this case, it points in
the wrong direction so is not ideally communicative. In fact, it is confusing and therefore, not
recommended. But it still correctly represents the given vector because the algebraic symbol
takes precedence over the graphical symbol.
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Figure 2.22: Drawing vector*r D 3 ftO{�
2 ft O| using its components.
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Figure 2.23: Drawing vector*r given its
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Figure 2.24: Speed and direction (indi-
cated by the unit vector O�v) from the
given velocity vector *v D 30mphO{ C
40mph O|.

SAMPLE 2.2 Drawing a vector from its components: Draw the vector
*
r D 3 ftO{ � 2 ft O| using its components.

Solution To draw *r using its components, we first draw the axes and measure 3 units (any
units that we choose on the ruler) along the x-axis and 2 units along the negative y-axis. We
mark this point as A (say) on the paper and draw a line from the origin to the point A. We
write the dimensions ‘3 ft’ and ‘2 ft’ on the figure. Finally, we put an arrowhead on this line
pointing towards A.

SAMPLE 2.3 Drawing a vector from its length and direction: A vector *r
is 3:6 ft long and is directed 33:7

�
clockwise (CW) from the positive x-axis.

Draw *
r .

Solution We first draw the x and y axes and then draw *r as a line from the origin at an
angle �33:7� from the x-axis (minus sign means measuring clockwise), measure 3.6 units
(magnitude of*r) along this line and finally put an arrowhead pointing away from the origin.

Comments Note that this is about (at least to 2 digit accuracy) the same vector as in Sam-

ple 2.2. In fact, you can easily verify that rx D r cos � D 3:6 ft � cos.�33:7�/ D 3 ft,

ry D r sin � D 3:6 ft � sin.�33:7�/ D �2 ft.

SAMPLE 2.4 Magnitude and direction of a vector: The velocity of a car
is given as*v D .30O{C40 O|/mph. Find the speed (magnitude of*v) of the car,
its direction as a unit vector, and write the velocity in terms of its magnitude
and the unit vector.
Solution

1. Speed of the car v D j*vj:
*v D 30mphO{C 40mph O|;

v D j*vj D
q
v2x C v2y D

q
.30mph/2 C .40mph/2

D 50mph

2. Direction of*v as a unit vector along*v: The unit vector along a given vector is found
by dividing the given vector with its magnitude. Let O�v be the unit vector along *v.
Then,

O�v D
*v

j*vj D
30mphO{C 40mph O|

50mph
D 0:6O{C 0:8 O|:

3. *v as a product of its magnitude and the unit vector O�v:
*v D j*vj O�v D 50mph.0:6O{C 0:8 O|/

which, of course, is the same vector as given in the problem.

speed v D 50 mph, O�v D 0:6O{C 0:8 O|, *v D 50.0:6O{C 0:8 O|/mph
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SAMPLE 2.5 Adding vectors: Three forces,
*

F1 D 2NO{ C 3N O|; *F2 D
�10N O|, and

*

F3 D 3NO{ C 1N O| � 5N Ok, act on a particle. Find the net
force on the particle.
Solution The net force on the particle is the vector sum of all the forces, i.e.,

*
Fnet D *

F1 C
*
F2 C

*
F3

D .2NO{C 3N O|/C .�10N O|/C .3NO{C 1N O| � 5N Ok/
D 2NO{ C 3N O| C 0 Ok

C 0O{ � 10N O| C 0 Ok
C 3NO{ C 1N O| � 5 Ok

D .2NC 3N/O{C .3N � 10NC 1N/ O| C .�5N/ Ok
D 5NO{ � 6N O| � 5N Ok:

*
Fnet D 5NO{ � 6N O| � 5N Ok

Comments: In general, we do not need to write the summation so elaborately. Once you feel

comfortable with the idea of summing only similar components in a vector sum, you can do

the calculation in two lines.

SAMPLE 2.6 Subtracting vectors: Two forces
*

F1 and
*

F2 act on a body. The
net force on the body is

*

Fnet D 2NO{. If
*

F1 D 10NO{ � 10N O|, find the other
force

*

F2.
Solution

*
Fnet D *

F1 C
*
F2

) *
F2 D *

Fnet �
*
F1

D 2NO{ � .10NO{ � 10N O|/
D �8NO{C 10N O|:

*
F2 D �8NO{C 10N O|

SAMPLE 2.7 Vector sums and their magnitudes: If j*AC2*

Bj D 2j*AC*

Bj,
does it imply that

*

AC2
*

B D 2.
*

AC *

B/? Let
*

A D �16O{C8 O|,
*

B D 15O{ and
*

C D *

A C *

B. Show that if
*

D D *

A C 2
*

B, then j*Dj D 2j*C j but
*

D ¤ 2
*

C ?
Solution

*
C D *

A C *
B D .�16O{C 8 O|/C .15O{/ D �1O{C 8 O|

j*C j D
p
12 C 82 D

p
65:

If
*
B is doubled, then the new vector sum

*
D is

*
D D *

A C 2
*
B D .�16O{C 8 O|/C 2.15O{/ D 14O{C 8 O|

j*Dj D
p
142 C 82 D

p
260 D

p
4 � 65 D 2

p
65 D 2j*C j:

Thus j*Dj D 2j*C j. But 2
*
C D 2.�1O{C 8 O|/ D �2O{C 16 O| ¤ 14O{C 8 O|� �� �

*
D

.

If j*A C 2
*
Bj D 2j*A C *

Bj, it does not imply that
*
A C 2

*
B D 2.

*
A C *

B/
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Figure 2.25: Force vectors in 3D space.
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Figure 2.27: The position vector of the
particle is a vector drawn from the origin
of the coordinate system to the position
of the particle.
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SAMPLE 2.8 Position vector from the origin: In the xyz coordinate sys-
tem, a particle is located at the coordinate (3m, 2m, 1m). Find the position
vector of the particle.

Solution The position vector of the particle at P is a vector drawn from the origin of the
coordinate system to the position P of the particle. See Fig. 2.26. We can write this vector as

*rP D .3m/O{C .2m/ O| C .1m/ Ok
or *rP D .3O{C 2 O| C Ok/m:

*rP D 3mO{C 2m O| C 1m Ok

SAMPLE 2.9 Relative position vector: Let A (2m, 1m, 0) and B (0, 3m,
2m) be two points in the xyz coordinate system. Find the position vector of
point B with respect to point A, i.e., find *

rAB (or *rB=A).

Solution From the geometry of the position vectors shown in Fig. 2.27 and the rules of vector
sums, we can write,

*rB D *rA C*rAB

) *rAB D *rB �*rA D .0O{C 3m O| C 2m Ok/ � .2mO{C 1m O| C 0 Ok/
D �2mO{C 2m O| C 2m Ok:

*rAB �*rB=A D �2mO{C 2m O| C 2m Ok

SAMPLE 2.10 Finding a force vector given its magnitude and line of
action: A string is pulled with a force F D 100N as shown in fig. 2.28.
Write F as a vector.

Solution A vector can be written as the product of a scalar and a unit vector along its direc-
tion. Here, the magnitude of the force is given and we know it acts along AB. Therefore, we
may write

*
F D F O�AB , where O�AB is a unit vector along AB. So now we need to find O�AB .

We can easily find O�AB if we know vector AB. Let us denote vector AB by *rAB (same as
*rB=A ). To find*rAB , we note that (see Fig. 2.29)

*rA C*rAB D*rB

where*rA and*rB are the position vectors of point A and point B respectively. Hence,
*rB=A � *rAB D*rB �*rA

D .0:2mO{C 0:6m O| C 0:2m Ok/ � .0:5mO{C 1:0m Ok/
D �0:3mO{C 0:6m O| � 0:8m Ok:

Therefore,

O�AB D �0:3mO{C 0:6m O| � 0:8m Okp
.�0:3/2 C .0:6/2 C .�0:8/2 m

D �0:29O{C 0:57 O| � 0:77 Ok;

and, finally,

*
F D .

F����
100N/ O�AB D �29NO{C 57N O| � 77N Ok:

*
F D �29NO{C 57N O| � 77N Ok
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SAMPLE 2.11 Adding vectors on computers: The following six forces act
at different points of a structure.

*

F1 D �3N O|; *F2 D 20NO{ � 10N O|; *F3 D
1NO{ C 20N O| � 5N Ok; *F4 D 10NO{; *F5 D 5N.O{ C O| C Ok/; *F6 D �10NO{ �
10N O| C 2N Ok:

1. Write all the force vectors in column form.

2. Find the net force by hand calculation.

3. Write a computer program to sum n vectors, each with three compo-
nents. Use your program to compute the net force.

Solution

1. The 3-D vector
*
F D Fx O{ C Fy O| C Fz

Ok is represented as a column (or a row) as
follows:

�
*
F �xyz D

0
@ Fx
Fy
Fz

1
A

Following this convention, we write the given forces as

�
*
F1�xyz D

0
@ 0

�3N
0

1
A ; �*F2�xyz D

0
@ 20N
�10N
0

1
A ; � � � ; �*F6�xyz D

0
@ �10N
�10N
2N

1
A

2. The net force
*
Fnet D

*
F1 C

*
F2 C

*
F3 C

*
F4 C

*
F5 C

*
F6, or

�
*
Fnet�xyz D

0
@ 0 20 1 10 5 �10
�3 C �10 C 20 C 0 C 5 C �10
0 0 �5 0 5 2

1
A N

D
0
@ 26

2

2

1
A N

3. The steps to do this addition on computers are as follows.

� Enter the vectors as rows or columns:

F1 = [0 -3 0]
F2 = [20 -10 0]
F3 = [1 20 -5]
F4 = [10 0 0]
F5 = [5 5 5]
F6 = [-10 -10 2]

� Sum the vectors, using a summing operation that automatically does element by
element addition of vectors:

Fnet = F1 + F2 + F3 + F4 + F5 + F6

� The computer generated answer is:

Fnet = [26 2 2].

*
Fnet D 26NO{C 2N O| C 2N Ok

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



58 Chapter 2. Vectors: position, force and moment 2.2. The dot product of two vectors
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Figure 2.31: The dot product of
*
A and

*
B is a scalar and so is not easily drawn.
It is given by

*
A � *B D AB cos �AB

which is A times the projection of
*
B in

theA direction and alsoB times the pro-
jection of

*
A in the B direction.

1Make sure you know, almost without
a thought, that cos 0 D 1; cos�=2 D
0; sin 0 D 0, and sin�=2 D 1. Draw
as many triangles and unit circles as it
takes to cement these 4 special cases
into your head.

2.2 The dot product of two vectors
The dot product is used to project a vector in a given direction, to reduce
a vector to components, to reduce vector equations to scalar equations, to
define work and power, and to help solve geometry problems.

The dot product of two vectors
*

A and
*

B is written
*

A � *B (pronounced ‘A
dot B’). The dot product of

*

A and
*

B is the product of the magnitudes of the
two vectors times a number that expresses the degree to which

*

A and
*

B are
parallel: cos �AB , where �AB is the angle between

*

A and
*

B. That is,

*

A � *B defD j*Aj j*Bj cos �AB

which is sometimes written more concisely as
*

A�*B D AB cos � . One special
case occurs when cos �AB D 1,

*

A and
*

B are parallel, and
*

A � *B D AB .
Another is when cos �AB D 0,

*

A and
*

B are perpendicular, and
*

A � *B D 0. 1

The dot product of two vectors is a scalar. So the dot product is sometimes
called the scalar product.

Using the geometric definition of dot product, and the rules for vector
addition we have already discussed, you can convince yourself of (or believe)
the features of the dot products in box 2.2. The identities in box 2.2 lead
to the following equivalent ways of expressing the dot product of

*

A and
*

B

(see box 2.4 on page 63 to see how the component formula follows from the
geometric definition above).

2.3 Basic features of the vector dot product.
Setting “label before “storytitle produces unwanted space
All of the following features of the dot product follow naturally

from the definition
*
A � *B D AB cos �:

Commutative law. Order doesn’t matter with dot products.
AB cos � D BA cos �

) *
A � *B D *

B � *A:

A distributive law. Scalars slide through vector products like
mercury through a chicken. .aA/B cos � D A.aB/ cos �

) .a
*
A/ � *B D *

A � .a*B/ D a.
*
A � *B/:

Another distributive law. Vector dot products distribute like reg-
ular multiplication. the projection of

*
B C *

C onto
*
A is the sum of

the two separate projections, so
*
A � .*B C *

C / D *
A � *B C *

A � *C :

Perpendicular vectors have zero for a dot product. If
*
A?*

B

then the angle between them is �=2. Because AB cos�=2 D 0

) *
A � *B D 0 if

*
A ? *

B:

The dot product of parallel vectors is the product of their magni-
tudes. The angle between parallel vectors is zero andAB cos0 D
AB . In particular,

*
A � *A D A2 or j*Aj D

p
*
A � *A

) *
A � *B D j*Ajj*Bj if

*
A k *

B:

The standard unit base vectors are orthonormal. They are unit
vectors (in this case ‘normal’ means normalized, meaning taken
down to size) and they are perpendicular (ortho) to each other.

O{ � O{ D O| � O| D Ok � Ok D 1 and O{ � O| D O| � Ok D Ok � O{ D 0

Also, the standard tilted base vectors are orthonormal.

O{0�O{0 D O|0� O|0 D Ok0� Ok0 D 1 and O{0� O|0 D O|0� Ok0 D Ok0�O{0 D 0
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*

A � *B D j*Ajj*Bj cos �AB
D AxBx C AyBy C AzBz (component form) (2.3)

D Ax0Bx0 C Ay0By0 C Az0Bz0

D j*Aj � �projection of
*

B in the
*

A direction�

D j*Bj � �projection of
*

A in the
*

B direction�

Mechanics solutions use of all of these relations. The most famous, of course,
is the second, sometimes written as

*

A � *B D A1B1 C A2B2 C A3B3:

Using the dot product to find components
To find the x component of a vector (or vector expression) one can use the
dot product (fig. 2.31),

vx D projection of *v in the O{ direction D*
v � O{: (2.4)

This idea can be used for finding components in any direction.

Tilted base vectors. If one knows the orientation of the tilted unit vectors
O{0; O|0; Ok0 relative to the standard bases O{; O|; Ok then you can find the dot prod-
ucts between the standard base vectors and the tilted base vectors.

In 2D, assume that (fig. 2.32) O{ � O|0 D � sin � and O| � O|0 D cos � . One can
then use the dot product to find the x0y0 components .Ax0 ; Ay0/ from the xy
components .Ax; Ay/. We start with the obvious (and ridiculously useful)
equation

*

A D *

A

and dot both sides with O|0 to get:
*

A � O|0 D *

A � O|0
.Ax0 O{0 C Ay0 O|0/� �� �

*
A

� O|0 D .Ax O{C Ay O|/� �� �
*
A

� O|0

Ax0 O{0 � O|0����
0

CAy0 O|0 � O|0����
1

D Ax O{ � O|0 C Ay O| � O|0

) Ay0 D Ax .O{ � O|0/����
� sin �

CAy . O| � O|0/����
cos �

:
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Figure 2.32: The dot product with unit
vectors gives projection. For example,
vx D*v�O{.
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Similarly, one could find the component Ax0 using a dot product with O{0 as

Ax0 D Ax .O{ � O{0/����
cos �

CAy . O| � O{0/����
sin �

:

This way to find components is useful when a problem uses more than
one base vector system.

Using dot products to get scalar equations

Dot products are the way to get scalar equations from vector equations.

For example the statics vector force balance equation
*

F1 C
*

F2 C
*

F3 D
*

0 (2.5)

can be reduced to two scalar equations by taking the dot product of both sides
with O{ and O|

f(2.5)g � O{ ) F1x C F2x C F3x D 0 (2.6)

f(2.5)g � O| ) F1y C F2y C F3y D 0: (2.7)

This approach is more general than the common one of ‘taking x and y

components’.

Dotting with vectors other than O{, O|, or Ok It is often useful to use dot
products to get scalar equations using unit vectors other than O{, O|, and Ok.

Example: Getting scalar equations without dotting with O{, O|, or Ok.
Given the vector equation

�mg O| CN On D ma O�
where it is known that the unit vector On is perpendicular to the unit vector O�, we can
get a scalar equation and eliminate an unknown at the same time by dotting both
sides with O�, n

.�mg O| CN On/ D .ma O�/
o
� O�

.�mg O| CN On/� O� D .ma O�/� O�
�mg O|� O�CN On� O�����

0

D ma O�� O�����
1

�mg O|� O� D ma ) a D �g= cos �

with O|� O� being the cosine of the angle � between O| and O�.

Using dot products to solve geometry problems
Perpendicular and parallel parts. Given any vector

*

A and a unit vector
O�, vector

*

A can be written as the sum of two parts,
*

A D *

Ak C *

A?
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where
*

Ak (‘A parallel’) is parallel to O� and
*

A? (‘A perp’) is perpendicular
to O� (see fig. 2.33). The part parallel to O� is

*

Ak D .projection of
*

A in O� direction/ O� D .
*

A � O�/ O�:

The perpendicular part of
*

A is just what you get when you subtract out the
parallel part, namely,

*

A? D *

A � *

Ak D *

A � .
*

A � O�/ O�

The claimed properties of the decomposition can now be checked, namely
that

*

A D *

Ak C *

A? (just add the 2 equations above and see), that
*

Ak is in
the direction of O� (its a scalar multiple), and that

*

A? is perpendicular to O�
(
*

A? � O� D 0).
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Example: Closest point.
What point D on line AB is closest to point C? That is, given the positions*rA;

*rB;

and*rC what is*rD? The answer is,

*rD D*rA C*rC=A
k

where*rC=A
k is the part of*rC=A that is parallel to the line segment AB. Thus,

*rD D*rA C .*rC �*rA/ �
*rB �*rA
j*rB �*rAj

:

Example: Graham-Schmidt orthogonalization
A plane is defined in 3D by two vectors

*
A and

*
B that lie in a plane. The goal of

‘Graham-Schmidt orthogonalization’ is to find a pair of orthonormal vectors that
lie in the plane. First find a unit vector in the

*
A direction:

O�A D *
A=j*Aj:

Then find the part
*
B? of

*
B that is orthogonal to O�A:

*
B? D *

B � *
Bk D *

B � .*B � O�A/
O�A:

Finally, normalize:
O�B D

*
B?=j*B?j

From two vectors in a plane,
*
A and

*
B, we have found a pair of vectors ( O�A;

O�B) in
the same plane that are orthonormal (unit vectors that are orthogonal to each other).

Components perpendicular and parallel to a plane. The ideas above also
apply to planes. What parts of a vector

*

C are in (
*

C k) and orthogonal (
*

C?)
to a given plane?

Filename:tfigure-Graham1
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Figure 2.34: For any
*
A and O�,

*
A can be

decomposed into a part parallel to O� and
a part perpendicular to O�.
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2 Beware. It does not make sense to
add a vector and a scalar; 7 C *

A is a
nonsense expression. And you cannot
divide a vector by a vector or a scalar
by a vector; 7=O{ and

*
A=

*
C are nonsense

expressions.

3 Recall that B’ means the transpose
of B, in this case turning the row of
numbers B into a column of numbers.

Method 1. If the plane is defined by two vectors
*

A and
*

B (in the plane)
that are not necessarily orthogonal we first use Graham-Schmidt orthogonal-
ization (sample above) to find orthonormal vectors O�A and O�B . Then we
have that

*

C k D .
*

C � O�A/ O�A C .
*

C � O�B/ O�B and
*

C? D *

C � *

C k

Method 2. If the plane has known normal On then
*

C? D .
*

C � On/ On and
*

C k D *

C � *

C?:

Vector algebra
Vectors are algebraic quantities and manipulated algebraically in equations.
The rules for vector algebra are similar to the rules for ordinary (scalar) al-
gebra. For example, if vector

*

A is the same as vector
*

B,
*

A D *

B, for any
scalar a and any vector

*

C , we then
*

A C *

C D *

B C *

C ;

a
*

A D a
*

B; and
*

A � *C D *

B � *C

because performing the same operation on equal quantities maintains the
equality. The vectors

*

A,
*

B, and
*

C might themselves be expressions in-
volving other vectors.

The equations above show the allowable manipulations of vector equa-
tions: adding a common term to both sides, multiplying both sides by a
common scalar, taking the dot product of both sides with a common vec-
tor. All the distributive, associative, and commutative laws of ordinary addi-
tion and multiplication hold but for when there is no sensible meaning to the
expressions 2.

More about vector algebra and the use of vector algebra to ‘solve trian-
gles’ is discussed in sec. 2.5 starting on page 93. Before that we will enrich
our vector algebra with one more operation in the following section, the cross
product.

Dot products on the computer
Computer use for vector addition was discussed on page 49. Most computer
languages will submit to calculating a dot product in response to commands
something like this:

A = [ 1 2 5 ]
B = [ -2 4 19 ]
D = A(1)*B(1) + A(2)*B(2) + A(3)*B(3).

In pseudo code we could write D = A dot B. Many computer languages
have a shorter way to write the dot product like dot(A,B). In a language
built for linear algebra D = A*B’ 3 will work because the rules of matrix

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 2. Vectors: position, force and moment 2.2. The dot product of two vectors 63

multiplication are then the same as the component formula for the dot prod-
uct.

2.4 Using the geometric definition of the dot product to find
the dot product in terms of components

Vectors are essentially a geometric concept and we have conse-
quently defined the dot product geometrically as

*
A �*B D ABcos� .

Almost 400 years ago René Descartes discovered that you could do
geometry by doing algebra on the coordinates of points.

So we should be able to figure out the dot product of two vec-
tors by knowing their components. The central key to finding this
component formula is the distributive law

*
A � .*B C *

C / D *
A � *B C *

A � *C
which we derived geometrically. If we write

*
A D Ax O{C Ay O| C

Az
Ok and

*
B D Bx O{CBy O|CBz Ok then we just repeatedly use the

distributive law to derive the component formulae, as follows.

*
A � *B D .Ax O{CAy O|CAz Ok/ � .Bx O{CBy O|CBz Ok/

D .Ax O{CAy O|CAz Ok/ �Bx O{ C
.Ax O{CAy O|CAz Ok/ �By O| C
.Ax O{CAy O|CAz Ok/ �Bz Ok

D AxBx O{ � O{CAyBx O| � O{CAzBx Ok � O{ C
AxBy O{ � O|CAyBy O| � O|CAzBy Ok � O| C
AxBz O{ � OkCAyBz O| � OkCAzBz Ok � Ok

D AxBx.1/CAyBx.0/CAzBx.0/ C
AxBy.0/CAyBy.1/CAzBy.0/ C
AxBz.0/CAyBz.0/CAzBz.1/

) *
A � *B D AxBx CAyBy CAzBz (3D).

) *
A � *B D AxBx CAyBy (2D).

If we call our coordinate x1; x2; and x3; and our unit base
vectors Oe1, Oe2, and Oe3 we would have

*
A D A1 Oe1 C A2 Oe2 C

A3 Oe3 and
*
B D B1 Oe1 CB2 Oe2 CB3 Oe3 and the dot product has

the familiar tidy form:

*
A � *B D A1B1 CA2B2 CA3B3 D

3X
iD1

AiBi :

Tilted coordinates: xyz vs x0y 0z0.
The demonstration above could have been carried out using a dif-
ferent orthogonal coordinate system x0y0z0 that was tilted with re-
spect to the xyz system. By identical reasoning we would find that
*
A � *B D Ax0Bx0 C Ay0By0 C Az0Bz0 . Even though all of the
numbers in the list �Ax ;Ay ;Az� might be different from the num-

bers in the list �Ax0 ;Ay0 ;Az0 � and similarly all the list �
*
B�xyz

might be different than the list �
*
B�x0y0z0 , so (remarkably, luckily

and necessarily),

AxBxCAyByCAzBz D Ax0Bx0CAy0By0CAz0Bz0 :

The formula for the dot product is the same in the different coordi-
nate systems. And the value of the dot product is the same in the
different coordinate systems. Yet all the numbers on the two sides of
the formula above are likely different from each other.
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SAMPLE 2.12 Calculating dot products: Find the dot product of the two
vectors *

a D 2O{C 3 O| � 2 Ok and *
r D 5mO{ � 2m O|.

Solution The dot product of the two vectors is
*a �*r D .2O{C 3 O| � 2 Ok/ � .5mO{ � 2m O|/

D .2 � 5m/ O{ � O{����
1

�.2 � 2m/ O{ � O|����
0

C.3 � 5m/ O| � O{����
0

�.3 � 2m/ O| � O|����
1

�.2 � 5m/ Ok � O{����
0

C.2 � 2m/ Ok � O|����
0

D 10m � 6m D 4m:
*a �*r D 4m

Comments: Note that with just a little bit of foresight, we could totally ignore the Ok com-
ponent of *a since *r has no Ok component, i.e., Ok �*r D 0. Also, if we keep in mind that
O{ � O| D O| � O{ D 0, we could compute the above dot product in one line:

*a �*r D .2O{C 3 O|/ � .5mO{ � 2m O|/ D .2 � 5m/ O{ � O{����
1

�.3 � 2m/ O| � O|����
1

D 4m:

SAMPLE 2.13 Component of a vector in a given direction: A force acting
at some point is given as

*

F D 5NO{C 3N O| C 2N Ok.
1. Find the y-component of

*

F .
2. Find the component of

*

F along the vector *r D 3mO{ � 4m O|.
Solution

1. Component along the y-direction: The y-component of
*
F is the scalar quantity multi-

plying the unit vector O|, that is, 3N. Although the y-component of
*
F is obvious here

(and hence the problem is trivial), we can find it in a formal way using the dot product
between

*
F and O|.

Fy D *
F � (a unit vector along y-axis)

D .5NO{C 3N O| C 2N Ok/ � O|
D 5N O{ � O|����

0

C3N O| � O|����
1

C2N Ok � O|����
0

D 3N:

Fy D
*
F � O| D 3N:

2. Component along the*r-direction: The component of
*
F along*r is obtained from the

dot product of
*
F with a unit vector along *r . Therefore, we first need to find a unit

vector O�r along*r and then dot it with
*
F .

O�r D
*r

j*rj D
3mO{ � 4m O|p
32 C 42 m

D 0:6O{ � 0:8 O|

Fr D *
F � O�r

D .5NO{C 3N O| C 2N Ok/ � .0:6O{ � 0:8 O|/
D 3:0NC 2:4N D 5:4N:

Fr D
*
F � O�r D 5:4N
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SAMPLE 2.14 Finding angle between two vectors using dot product:
Find the angle between the vectors *

r1 D 2O{C 3 O| and *
r2 D 2O{ � O|.

Solution From the definition of dot product between two vectors

*r1 �*r2 D j*r1jj*r2j cos �

or cos � D
*r1 �*r2
j*r1jj*r2j

D .2O{C 3 O|/ � .2O{ � O|/
.
p
22 C 32/.

p
22 C 12/

D 4 � 3p
13
p
5
D 0:124

Therefore, � D cos�1.0:124/ D 82:87
�

:

� D 83
�

SAMPLE 2.15 Finding direction cosines from unit vectors: Find the
angles between

*

F D 4NO{C 6N O| C 7N Ok and each of the three axes.
Solution

*
F D F O�
O� D

*
F

F

D 4NO{C 6N O| C 7N Okp
42 C 62 C 72 N

D 0:4O{C 0:6 O| C 0:7 Ok:

Let the angles between O� and the x; y, and z axes be �; � and  respectively. Then

cos � D O{ � O�
jO{jj O�j

D 0:4

j1jj1j D 0:4:

) � D cos�1.0:4/ D 66:4
�

:

Similarly,

cos� D 0:6 or � D 53:1
�

cos D 0:7 or  D 45:6
�

:

� D 66:4
�
; � D 53:1

�
;  D 45:6

�

Comments: The components of a unit vector give the direction cosines with the respective
axes. That is, if the angle between the unit vector and the x; y, and z axes are �; � and  ,
respectively (as above), then

O� D cos �����
�x

O{C cos�����
�y

O| C cos ����
�z

Ok:
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SAMPLE 2.16 Separating a vector equation into scalar equations: As-
sume that after writing the equation

P *

F D m*
a in a particular problem, a

student finds
P *

F D .20N�P1/O{C7N O|�P2 Ok and*
a D 2:4m=s2 O{Ca3 O|.

Separate the scalar equations in the O{; O|; and Ok directions.
Solution From a vector equation, separating the scalar equations is trivial as long as both
sides of a vector equation are in the same basis — individual components on both sides must
equal. That is

P*
F� �� �

.20N � P1/O{C 7N O| � P2 Ok D m

*a� �� �
.2:4m=s2 O{C a3 O|/

) 20N � P1 D m.2:4m=s2/ (O{ component)

7N D ma3 ( O| component)

�P2 D 0: ( Ok component)

These are the three independent scalar equations in the O{, O| and Ok directions.

20N � P1 D m.2:4m=s2/; 7N D ma3; P2 D 0

Comments: The results obtained by equating individual components on both sides of the
vector equation are based on the general technique of taking the dot product of both sides of
an equation with a vector. It gives a scalar equation valid in any direction that one desires.
For the example at hand, the long but easily readable and illustrative calculation is as follows.
Taking the dot product of both sides of

P *
F D m*a equation with O{, we write

O{ �
h
.20N � P1/O{C 7N O| � P2 Ok D m.2:4m=s2 O{C a3 O|/

i
) .20N � P1/� �� �

Fx

O{ � O{����
1

C7N O| � O{����
0

�P � 2 Ok � O{����
0

D m.2:4m=s2� �� �
ax

O{ � O{����
1

Ca3 O| � O{����
0

/

) 20N � P1 D m.2:4m=s2/

i.e., Fx D max

Similarly,

O| �
hX

*
F D m*a

i
) 7N D ma3

Ok �
hX

*
F D m*a

i
) �P2 D 0:
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2.3 Vector cross product
The vector cross product 1 is a second way of multiplying vectors together
(the first was the dot product).

The cross product of vectors
*

A and
*

B D *

A � *

B:

The vector cross product is used to define (and calculate) moment, to solve
geometry problems and to calculate various quantities associated with rota-
tions in dynamics. Most uses of the cross product used in this book are listed
in box 2.5 on page 68.

In this first section we treat the cross product as a mathematical and ge-
ometrical calculation. Deeper understanding will come with applying the
cross product to moments in sec. 2.4. Comfort with the cross product is a
tremendous aid for solving three-dimensional statics problems and for doing
all of dynamics. If this is a new topic for you, don’t gloss over it.

The 2D cross product
Although the cross product is fundamentally a three-dimensional idea, we
start with the two-dimensional version. The 2D cross product is defined as :

*

A � *

B����
‘A cross B’

defD j*Aj j*Bj sin � Ok: (2.8)

where � is the amount that
*

A would need to be rotated counterclockwise to
point in the same direction as

*

B. An equivalent alternative approach is to
define the cross product as

*

A � *

B
defD j*Aj j*Bj sin � On: (2.9)

with � defined to be less than 180
�

and On defined as the unit vector pointing
in the direction of the thumb when the fingers are curled from the direction of
*

A towards the direction of
*

B. For the*
r and

*

F on the right of the teeter totter
this definition forces us to point our thumb into the plane (in the negative
Ok direction). With this definition sin � is always positive and the negative
moments come from On being in the �Ok direction.

Study of fig. 2.38 should convince you that the definition of cross product
in eqn.2.8 obeys these standard algebra rules (for any 3 2D vectors

*

A,
*

B,
and

*

C and any scalar d ):

d.
*

A � *

B/ D .d
*

A/ � *

B D *

A � .d
*

B/
*

A � .
*

B C *

C / D *

A � *

B C *

A � *

C :

A difference between the algebra rules for scalar multiplication and vec-
tor cross product multiplication is that for scalar multiplication AB D BA

whereas for the cross product
*

A � *

B ¤ *

B � *

A (because the definition of �
in eqn. 2.8 and On in 2.9 depends on order). In particular

*

A � *

B D �*

B � *

A.

1Nomenclature. The vector cross
product is sometimes just called ‘the
vector product’. In this book we usually
call it ‘the cross product’.
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Figure 2.39: The cross product of
*
A and

*
B is j*Ajj*Bj sin � Ok. Grouping the sin �
with j*Aj or with j*Bj gives two differ-
ent geometric interpretations of the 2D
cross product. First, you can think of
the magnitude of the cross product as
being the magnitude of

*
A times the pro-

jection of
*
B perpendicular to

*
A. That’s

j*Aj
�
j*Bj sin �

�
. Or, you can think of

it as the magnitude of
*
B times the dis-

tance j*Aj sin � marked in the tip-to-tail
construction in the third picture above.�
j*Aj sin �

�
j*Bj.
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2.5 Uses of the cross product
Here are the key uses of the cross product in this book. A first time
reader is not supposed to understand all of these at the start. These
are here for reference and inspiration.

Geometry
1. 3D Normal to a plane. Find the normal

*
N to a plane con-

taining points A,B and C as
*
N D*rB=A �*rC=A:

2. 3D Unit normal to a plane. Use
*
N above to find the unit

normal to a plane containing points A,B and C as

On D
*
N

j*N j D
*rB=A �*rC=A��*rB=A �*rC=A

��
3. 3D Distance between a point and a plane. Use On above to

find the distance between a point D and the plane containing
points A,B and C as

d D *rD=A � On D *rD=A �
*rB=A �*rC=A��*rB=A �*rC=A

��
Replacing*rD=A with*rD=B or*rD=C works too.

4. 3D Distance between two lines. Find the distance between
the line containing the points A and B and the line containing
the points C and D as

d D ���*rB=A �*rD=C
� �*rC=A

�� = ��*rB=A �*rD=C

�� :
Replacing*rC=A with*rD=A,*rC=B or*rD=B works too.

5. 2D Perpendicular in the xy plane. Find the in-plane nor-
mal*r? to a vector*r D rx O{C ry O| in the xy plane as

*r? D Ok�*r:

(The vector *r? is also rotation of *r counterclockwise by
90�.)

6. 2D unit perpendicular in xy plane. Use *r? to find a unit
vector perpendicular to*r as

On? D
*r?

j*r?j D
Ok�*r��� Ok�*r

��� :
7. 3D distance between point C and a line going through A

and B can with cross product or dot product:

d D
�����*rC=A �

*rB=A��*rB=A

��
����� D

�����*rC=A �
 
*rC=A �

*rB=A��*rB=A

��
!

*rB=A��*rB=A

��
����� :

8. 2D Distance between a point C and line AB in the plane.
Use On to find this distance as

d D �� On �*rC=A

�� D
������
� Ok�*rB=A

�
�*rC=A

j Ok�*rB=Aj

������ :
Replacing*rC=A with*rC=B works too.

9. 3D Volume V of a parallelepiped with sides
*
A,

*
B and

*
C

is
V D

�
*
A � *

B
�
� *C :

Statics
10. Moment of a force. Calculate moment

*
M of a force

*
F at

position*r as
*
M D*r � *

F

.

11. Moment about an axis. Calculate momentM of a force
*
F

at position*r relative to a point on the axis in the direction of
a unit vector O� as

M D
�
*r � *

F
�
� O�:

12. Moment about an axis. Use the result above to calculate
the moment of a force

*
F at position C about a line through

A and B as

M D
�
*rC=A �

*
F
�
�
*rB=A��*rB=A

�� D �
*rC=B �

*
F
�
�
*rB=A��*rB=A

�� :

Kinematics and Dynamics
13. Relative velocity of two points on a rigid object. The ve-

locity of point B relative to point A, where both points are on
the same rigid object with angular velocity *! is

*vB=A D *!�*rB=A:

14. Angular momentum of a particle with velocity*v, massm
and at position*r is

*
H D m*r �*v:

15. Centripetal acceleration of point B relative to point A on
the same rigid object with angular velocity *! is

Centripetal part of*aB=A D *!� �*!�*rB=A
�
:

16. Relative acceleration due to angular acceleration. The
relative acceleration of points A and B on the same rigid ob-
ject with angular acceleration *� is

Contribution of angular acceleration to*aB=A D*��*rB=A:

17. Coriolis acceleration of a particle moving at velocity *vrel
relative to a rotating rigid object is

*aCoriolis D 2*!�*vrel:

n. Variants and extensions of the kinematics and dynamics for-
mulas are given in the tables at the back of the dynamics
book.
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Because the magnitude of the cross product of
*

A and
*

B is the magnitude
of

*

A times the magnitude of the projection of
*

B in the direction perpendic-
ular to

*

A (as shown in the top two illustrations of fig. 2.53) you can think of
the cross product as a measure of how much two vectors are perpendicular to
each other. In particular

if
*

A ? *

B ) j*A � *

Bj D j*Aj j*Bj; and

if
*

A k *

B ) j*A � *

Bj D *

0:

For example, O{ � O| D Ok; O| � O{ D �Ok; O{ � O{ D*

0, and O| � O| D*

0.

Component form for the 2D cross product
Just like the dot product, the cross product can be expressed using compo-
nents. As can be verified by writing

*

A D Ax O{CAy O|, and
*

B D Bx O{CBy O|
and using the distributive rules:

*

A � *

B D .AxBy � BxAy/ Ok: (2.10)

Some people remember this formula by putting the components of
*

A and
*

B into a matrix and calculating the determinant
Ax Ay
Bx By

: If you number

the components of
*

A and
*

B (e.g., �
*

A�x1x2 D �A1; A2�), the cross product is
*

A � *

B D .A1B2 � A2B1/ Oe3, or “first times second minus second times
first.”

Example: Given that
*
A D 1O{C 2 O|

and
*
B D 10O{C 20 O|

then
*
A � *

B D .1 � 20 � 2 � 10/ Ok D 0 Ok D*
0:

For vectors with just a few components it is often most convenient to use the
distributive rule directly.

Example: Given that
*
A D 7O{

and
*
B D 37:6O{C 10 O|

then
*
A � *

B D .7O{/ � .37:6O{C 10 O|/ D .7O{/ � .37:6O{/C .7O{/ � .10 O|/
D*
0C 70 Ok D 70 Ok:

There are many ways of calculating a 2D cross product

You have several options for calculating the 2D cross product. Which you
choose depends on taste and convenience. You can use the geometric defi-
nition directly, the first times the perpendicular part of the second (distance
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Figure 2.40: The cross product of
*
A and

*
B is perpendicular to

*
A and

*
B in the di-

rection given by the right hand rule. The
magnitude of

*
A � *

B is AB sin �AB .
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Figure 2.41: The right hand rule for
determining the direction of the cross
product of two vectors.

*
C D *

A � *
B.

Filename:righthandrule6302

Figure 2.42: Another way to use your
right hand for the ‘right hand’ rule. Set
thumb, pointer and middle finger mutu-
ally orthogonal to each other. Shoot the
gun, that is, lower your thumb and the
direction of thumb cross pointer is the
middle finger. Or, pointer cross middle
finger is thumb.

times perpendicular component of force), the second times the perpendicular
part of the first (lever arm times the force), components, or break each of the
vectors into a sum of vectors and use the distributive rule.

The 3D vector cross product
The cross product of two vectors

*

A and
*

B is written
*

A � *

B and pronounced
‘A cross B.’ In contrast to the dot product, which gives a scalar and measures
how much two vectors are parallel, the cross product is a vector and measures
how much they are perpendicular. The cross product is also called the vector
product.

The cross product is defined by:

*

A � *

B
defD j*Ajj*Bj sin �AB On (2.11)

where j Onj D 1,
On ? *

A,
On ? *

B,
0 � �AB � � , and
On is in the direction given by the right
hand rule, that is, in the direction of the
right thumb when the fingers of the right
hand are pointed in the direction of

*

A and
then wrapped towards the direction of

*

B.
If

*

A and
*

B are perpendicular then �AB is �=2, sin �AB D 1, and the
magnitude of the cross product is AB . If

*

A and
*

B are parallel then �AB is 0,
sin �AB D 0 and the cross product is

*

0 (the zero vector). This is why we say
the cross product is a measure of the degree of orthogonality of two vectors.

Using the definition above you should be able to verify to your own satis-
faction that

*

A � *

B D �*

B � *

A. Applying the definition to the standard base
unit vectors you can see that O{� O| D Ok, O|� Ok D O{, and Ok� O{ D O| (fig. 2.42).

The geometric definition above and the geometric (tip to tale) definition
of vector addition imply that the cross product follows the distributive rule.

*

A �
�
*

B C *

C
�
D *

A � *

B C *

A � *

C :

Applying the distributive rule to the cross products of
*

A D Ax O{CAy O|CAz Ok
and

*

B D Bx O{CBy O|CBz Ok leads to the algebraic formula for the Cartesian
components of the cross product.

*

A � *

B D �AyBz � AzBy �O{ (2.12)

C�AzBx � AxBz� O| (2.13)

C�AxBy � AyBx� Ok (2.14)

(2.15)
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The distributive rule, and how it gives the component formula, is described
in box 2.7 on page 75. There are various mnemonics for remembering the
component formula for cross products. The most common is to calculate a
‘determinant’ of the 3� 3 matrix with one row given by O{; O|; Ok and the other
two rows the components of

*

A and
*

B.

*

A � *

B D det

������
O{ O| Ok
Ax Ay Az
Bx By Bz

������
The following identities and special cases of cross products are worth

knowing well:

� .a
*

A/ � *

B D *

A � .a
*

B/ D a.
*

A � *

B/ (a distributive law)

� *

A � *

B D �*

B � *

A (the cross product is not commutative!)

� *

A � *

B D*

0 if
*

A k *

B (parallel vectors have zero cross product)

� j*A � *

Bj D AB if
*

A ? *

B

� O{� O| D Ok; O|� Ok D O{; Ok�O{ D O| (assuming the x; y; z coordinate
system is right handed — if you use your right hand and point your
fingers along the positive x axis, then curl them towards the positive y
axis, your thumb will point in the same direction as the positive z axis.
)

� O{0 � O|0 D Ok0; O|0 � Ok0 D O{0; Ok0 � O{0 D O|0
(assuming the x0y0z0 coordinate system is right handed.)

� O{ � O{ D O| � O| D Ok � Ok D*

0, O{0 � O{0 D O|0 � O|0 D Ok0 � Ok0 D*

0

The mixed triple product
The ‘mixed triple product’ of

*

A,
*

B, and
*

C is so called because it mixes both
the dot product and cross product in a single expression. The mixed triple
product is also sometimes called the scalar triple product because its value
is a scalar. The mixed triple product is useful for calculating the moment of
a force about an axis and for related dynamics quantities.The mixed triple
product of

*

A,
*

B, and
*

C is defined by and written as

*

A �
�
*

B � *

C
�

and pronounced ‘A dot B cross C.’ The parentheses ./ are sometimes omitted,
i.e.,

*

A � *B � *

C ;

because the wrong grouping .
*

A � *B/�*

C is nonsense (you can’t take the cross
product of a scalar with a vector) . It is apparent that one way of calculating
the mixed triple product is to calculate the cross product of

*

B and
*

C and then
to take the dot product of that result with

*

A. Some people use the notation
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Figure 2.43: Mnemonic device to re-
member the cross product of the stan-
dard base unit vectors.
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A × ⇀ 
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C ⇀ 
B

θ

Figure 2.44: One interpretation of the
mixed triple product of

*
A � *

B � *C is as
the volume (a scalar) of a parallelepiped
with

*
A,

*
B, and

*
C as the three edges em-

anating from one corner. This interpre-
tation only works if

*
A,

*
B, and

*
C are

taken in the appropriate order, otherwise
*
A� *

B � *C is minus the volume which is
calculated.
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2In the language of linear algebra, the
mixed triple product of three vectors is
zero if the vectors are linearly depen-
dent.

�
*

A;
*

B;
*

C
�

for the mixed triple product but it will not occur again in this
book.

The mixed triple product has the same value if one takes the cross prod-
uct of

*

A and
*

B and then the dot product of the result with
*

C . That is
*

A � .*B � *

C / D .
*

A � *

B/ � *C . This identity can be verified using the ge-
ometric description below, or by looking at the (complicated) expression for
the mixed triple product of three general vectors

*

A,
*

B, and
*

C in terms of
their components as calculated the two different ways. One thus obtains the
string of results

*

A � *B � *

C D *

A � *

B � *C D �*

B � *

A � *C D �*

B � *A � *

C D : : :

The minus signs in the above expressions follow from the cross product iden-
tity that

*

A � *

B D �*

B � *

A.
The mixed triple product has various geometric interpretations, one of

them is that
*

A � *B � *

C is (plus or minus) the volume of the parallelepiped,
the crooked shoe box, edged by

*

A,
*

B and
*

C as shown in fig. 2.43.
Another way of calculating the value of the mixed triple product is with

the determinant of a matrix whose rows are the components of the vectors.

*

A � .*B � *

C / D
Ax Ay Az
Bx By Bz
Cx Cy Cz

D
Ax.ByCZ � BzCy/

CAy.BzCx � BxCz/

CAz.BxCy � ByCx/

The mixed triple product of three vectors is zero if 2

� any two of them are parallel, or

� all three of the vectors have one common plane.

A different triple product, sometimes called the vector triple product,
*

A�
.
*

B � *

C /, is discussed later (see box 16.4 on page 797).

Cross products and computers
The components of the cross product can be calculated with computer code
that may look something like this.

A = [ 1 2 5 ]
B = [ -2 4 19 ]
C = [ ( A(2)*B(3) - A(3)*B(2) ) ...

( A(3)*B(1) - A(1)*B(3) ) ...
( A(1)*B(2) - A(2)*B(1) ) ]

giving the result C=[18 -29 8]. Many computer languages have a
shorter way to write the cross product like cross(A,B). The mixed triple
product might be calculated by assembling a 3 � 3 matrix of rows and then
taking a determinant like this:
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A = [ 1 2 5 ]
B = [ -2 4 19 ]
C = [ 32 4 5 ]

matrix = [A ; % Each row under the one above
B ;
C ]

mixedprod = det(matrix)

giving the result mixedprod = 500. A versatile computer language
might allow a command like dot( A, cross(B,C) ) to calculate the
mixed triple product.
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2.6 The cross product of vectors as matrix multiplication
For hand calculations in statics, this box is probably not useful. This
box is for the theoretically inclined, and for people interested in do-
ing complex dynamics calculations on a computer. We assume here
that you know some linear algebra.

The cross product between two vectors *a and
*

b gives a new
vector

*c D*a � *

b

All three of these vectors have components:

�*a�xy D
2
4 ax
ay
az

3
5 ; �

*

b �xy D
2
4 bx
by
bz

3
5

and

�*c�xy D
2
4 cx
cy
cz

3
5 :

The components of*c can be calculated from those of*a and
*

b using
the component rules from this section as2

4 cx
cy
cz

3
5 D

2
4 aybz � azby
azbx � axbz
axby � aybx

3
5 :

Because the cross product*a�*

b is linear in
*

b (meaning*a� .*b1C*

b2/ D*a � *

b1 C
*

b2, etc.) we can represent the cross product as
some matrix times

*

b .
We now define a matrix �A�, that does the job. We associate the

the vector*a with the matrix �A� as follows:

�A� �
2
4 0 �az ay

az 0 �ax
�ay ax 0

3
5 : (2.16)

�A� is an anti-symmetric matrix (also called a skew symmetric ma-
trix), with

�A�0 D ��A� (A transpose is minus A):

The terms of �A� on the diagonal are zero and those off the diagonal
are negative of their corresponding (transposed) terms. The conver-
sion rule (Equation 2.16) that takes a vector and puts its components
in a matrix in the right place we can call �S� thus

�A� D �S.*a/�:

�A� is the anti-symmetric matrix defined in terms of the components
of*a by �S.*a/�.

Just multiplying out the terms we see that

S.*a/� *

b D
2
4 0 �az ay

az 0 �ax
�ay ax 0

3
5

� �� �
�S.*a/�

2
4 bx
by
bz

3
5 (2.17)

D
2
4 aybz � azby
azbx � axbz
axby � aybx

3
5 : (2.18)

So we get our main result:

�*a � *

b �xyz D �S.*a/��
*

b �xyz D �A��
*

b �xyz :

That is, the components of the cross product of*a and
*

b can be found
by multiplying the matrix �A� by the components of

*

b .
Writing the cross product as a matrix multiplication is some-

times useful for dynamics when the first vector*a is *! (see box 15.5
on page 705). The advantage of the matrix representation over the
cross product is that matrix multiplication satisfies the associative
rule

�A�.�B��C �/ D .�A��B�/�C �

whereas the vector cross product does not:
*a � .*b �*c/ ¤ .*a � *

b/�*c:

Computer calculation
One could write a short program (computer function) that does the
conversion from vector *a to matrix �A� D S.*a/ and call it skew.
That is, skew would calculate eqn. (2.16). Using skew we could carry
out a cross product like this (see box 0.1 on page 23)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a = [1 2 3]’
b = [4 5 6]’
A = skew(a)
c = A*b

Define vector*a with components
Define vector

*

b with components
Use the function skew’ to find A
Calculate the cross product
*c D*a � *

b using ordinary matrix
multiplication.

For just one cross product this would be silly. But for a long cal-
culation involving various vectors and matrices it often makes things
simpler.
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2.7 The cross product: from geometry to components
Why is the 3D vector given by the component formula for the
cross product ((2.12) on page 70)

�
*
A � *

B�xyz D
2
4 .AyBz �AzBy/
.AzBx �AxBz/
.AxBy �AyBx/

3
5 (2.19)

the same vector as that given by the geometric definition ((2.11)
on page 70),

*
A � *

B � j*Ajj*Bj sin �AV On?AV �
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That these different-looking formulas should give the same answer
is not obvious. Here we show why. Although the result is often used,
the reasoning is not. But for logical completeness, and to entertain
the curious, we present it here. We assume we know the geometric
definition and want to find the component formula (2.19).

The reasoning has two big steps:

� First we will show that the geometric definitions of the vector
cross product ‘distributes’ over vector addition.

� Then we apply the distributive rule to get our component for-
mula.

A new definition of cross product
Start with

*
A and

*
V :

Filename:tfigure1-cross2e

⇀

A ⇀
V

Now we will show that the geometric formula

*
A � *

B � j*Ajj*Bj sin �AV � On?AV
is equivalent to a sequence of three operations: Project, rotate and
stretch.

1. Project
*
V on to the plane P (normal to

*
A). The projection

of
*
V onto the plane orthogonal to

*
A is

*
V 0.

Filename:tfigure1-cross2d

⇀
V '

⇀

A
⇀
Vθ

The magnitude of
*
V 0 is

j*V 0j D j*V j sin �AV :
*
V 0 is in the plane defined by

*
A and

*
V and also in the plane

orthogonal to
*
A.

2. Then rotate that projection by 90� about
*
A.

Filename:tfigure1-cross2c

⇀
V ''

⇀
V '

⇀

A ⇀
V

Call the result of this rotation
*
V 00. The magnitude is un-

changed by rotation so we still have

j*V 00j D j*V j sin �AV :

Note that
*
V 00 is in the On direction that is perpendicular to

both
*
A (it’s in the plane ? to

*
A) and to

*
V (it’s rotated 90�

from
*
V 0. So

*
V 00 is in the direction of

*
A � *

V .

3. Finally, stretch
*
V 00 by j*Aj.

Filename:tfigure1-cross2b

⇀
V ''

⇀
V '
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V

⇀

A× ⇀
V

This result has magnitude j*Ajj*V j sin �AV which is the mag-
nitude of

*
A � *

V . This vector is in the direction normal to
both

*
A and

*
V given by the right-hand rule, that’s the direc-

tion of
*
A � *

V . Having the same magnitude and direction as
*
A�*

V , it is
*
A�*

V . As infamously reasoned by Joseph Mc-
Carthy, “If it looks like a duck, walks like a duck and quacks
like a duck, its a duck.”

Apply the new definition to
*

B C
*

C

Consider
*
D D *

BC*
C . We are interested in all three cross products:

*
A � *

D,
*
A � *

B, and
*
A � *

C .

Filename:tfigure1-crossc

⇀
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⇀
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First we will check that each of the operations above (project, rotate,
stretch) is distributive.

1. Project. The projection of a sum is the sum of the projec-
tions (

*
D0 D *

B0 C *
C 0);

(continued...)
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2.7 The cross product: from geometry to components
(continued)

Filename:tfigure1-crossb

⇀
B '

⇀

C'
⇀
D'

⇀

A
⇀
B

⇀

C
⇀
D

2. Rotate. The sum of two 90
�

rotated vectors is the rotation
of the sum (

*
D00 D *

B00 C *
C 00);
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3. Stretch. (stretched
*
D00) = (stretched

*
B00) + (stretched

*
C 00),

scalar multiplication is distributive.

Filename:tfigure1-cross
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A× ⇀
B

⇀
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⇀
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⇀
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⇀
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⇀
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⇀
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⇀
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⇀
B

⇀

C
⇀
D

Thus the act of taking the cross product of
*
A with

*
B and adding that

to the cross product of
*
A with

*
C gives the same result as taking the

cross product of
*
A with

*
D � *

B C *
C . That’s the distributive law

for vector cross products over vector addition:

*
A �

�
*
B C *

C
�

D *
A � *

B C *
A � *

C :

The distributive rule also works for a sum of 3 or more vectors (all
of the reasoning above would be the same). And that the distributive
rule works when the sum is on the left (i.e., that .

*
B C *

C / � *
A D

*
B� *

AC *
C � *

A/ also follows by similar very similar reasoning, so
we skip those details. In sum, we know now that .

*
A C *

B C *
C / �

.
*
D C *

E C *
F / D *

A � *
D C *

A � *

E C : : : (9 terms in all).

Applying the distributive rule to the
vectors’ components
A vector is a some of component parts. First note that
*
A D Ax O{CAy O|CAz Ok and

*
B D Bx O{CBy O|CBz Ok

From the distributive rule (demonstrated with the 8 pictures above)
we know that

*
A � *

B D �Ax O{CAy O|CAz Ok�� �Bx O{CBy O|CBz Ok�:
Now we just apply the distributive law, using what we know about
the cross products of O{; O| and Ok with each other (e.g., that O{� O{ D*

0

and that O{� O| D Ok).
First in 2D, to better show the patterns in the algebra:

*
A � *

B D �Ax O{CAy O|�� �Bx O{CBy O|�
D �Ax O{CAy O|��Bx O{C �Ax O{CAy O|��By O|
D AxBx O{� O{CAxBy O{� O|

CAyBx O| � O{CAyBy O| � O|
D AxBx

*
0CAxBy Ok�AyBx OkCAyBy

*
0

So
*
A � *

B D �AxBy �AyBx� Ok (2D)

Now in 3D, applying the distributive rule multiple times,
*
A � *

B D �Ax O{CAy O|CAz Ok�� �Bx O{CBy O|CBz Ok�
D AxBx O{� O{CAxBy O{� O|CAxBz O{� Ok

CAyBx O| � O{CAyBy O| � O|CAyBz O| � Ok
CAzBx Ok� O{CAzBy Ok� O|CAzBz Ok� Ok

D AxBx
*
0CAxBy Ok�AxBz O|

�AyBx OkCAyBy
*
0CAyBz O{

CAzBx O| �AzBy O{CAzBz
*
0

So
*
A � *

B D �AyBz �AzBy �O{ (2.20)

C�AzBx �AxBz� O| (2.21)

C�AxBy �AyBx� Ok (2.22)

from which you can pick out the familiar xyz components of the
cross product. As hoped, we have derived the component formula
for the cross product from it’s geometric definition.

[The other way around. On the other hand, if we are given the
component formula we can (almost) verify that it corresponds to the
geometric definition: Use the component formulas for the magni-
tude, dot product and cross product (2.1,2.3& 2.19) and tediously
evaluate j*A�*

Bj2 and note that it is equal to j*Aj2j*Bj2�j*A �*Bj2:.
Because we already know that j*A � *Bj D j*Ajj*Bj cos � and that
sin2 � D 1� cos2 � this gives j*A� *

Bj D j*Ajj*Bjj sin � j. To show
that

*
A � *

B is orthogonal to
*
A and

*
B use the component formulas

to show that .
*
A � *

B/ � *A D 0 and .
*
A � *

B/ � *B D 0. That the
right hand rule is satisfied is a final tricky point.]
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SAMPLE 2.17 Cross product in 2-D: Two vectors *
a and

*

b of length 10 ft
and 6 ft, respectively, are shown in the figure. The angle between the two
vectors is � D 60�. Find the cross product *a � *

b .
Solution Both vectors *a and

*
b are in the xy plane. Therefore, their cross product will

point in either COk or �Ok direction (normal to the plane formed by *a and
*
b ). To determine

the direction of the normal, we use the right hand rule and curl our fingers from *a towards
*
b , tracing angle � counterclockwise. The thumb then points in the positive Ok direction,
indicating On D Ok. Thus,

*a � *
b D j*ajj*b j sin � On

D .10 ft/ � .6 ft/ � sin 60� Ok

D 60 ft2 �
p
3

2
Ok

D 30
p
3 ft2 Ok:

*a � *
b D 30

p
3 ft2 Ok

SAMPLE 2.18 Computing 2-D cross product in different ways: The two
vectors shown in the figure are *

a D 2O{ � O| and
*

b D 4O{ C 2 O|. The angle
between the two vectors turns out to be � D sin�1.4=5/. Find the cross
product *a � *

b

1. using the angle � , and

2. using the components of the vectors.

Solution

1. Cross product using the angle � :

*a � *
b D j*ajj*b j sin � On

D j2O{ � O|jj4O{C 2 O|j � sin.sin�1 4
5
/ Ok

D .
p
22 C 12/.

p
42 C 22/ � 4

5
Ok

D
p
5 �
p
20 � 4

5
Ok D 10 � 4

5
Ok

D 8 Ok:

2. Cross product using components:

*a � *
b D .2O{ � O|/ � .4O{C 2 O|/

D 2O{ � .4O{C 2 O|/ � O| � .4O{C 2 O|/
D 8 O{ � O{����

*
0

C4 O{ � O|����
Ok

�4 O| � O{����
�Ok

�2 O| � O|����
*
0

D 4 OkC 4 Ok
D 8 Ok:

The answers obtained from the two methods are, of course, the same as they must be.

*a � *
b D 8 Ok
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Figure 2.45:
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Filename:sfig2-vec2-perp2D
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Figure 2.47:

Filename:sfig2-vec2-perp2Da

x

y

A
(−1,1)

B (2,2)

O

d

⇀
r B

α

n̂

C

Figure 2.48:
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Figure 2.49:

SAMPLE 2.19 Find the shortest distance from a point to a line: A straight
line passes through two points, A (-1,1) and B (2,2), in the xy plane. Find
the shortest distance from the origin to the line.
Solution There are various ways we can find the required distance. In 2-D, the following
two methods can be used for quick calculations.
Method-1: The shortest distance d between a point P and a given line AB is obtained by

taking the dot product of a vector from P to any point on the line with a unit normal
to the given line. Thus, d D On �*rA D On �*rB where On is a unit vector normal to*rB=A.
Why?
From geometry we know that the shortest distance from a given point to a given line is
the perpendicular distance from the line to the given point. Thus to find this distance,
we need to draw a perpendicular from the given point to the line of interest. In fig. 2.47,
this distance d is shown as line OC. From the figure, we also see that d D OC D
OB cos�, that is, d is the projection of vector*rB along OC. But OC is normal to AB,
hence, we can find a unit vector On along OC by finding a normal to vector*rB=A. Thus,

d D*rB � On; where On ?*rB=A:

We can use cross product to find On. Since*rB=A is in the xy plane, Ok �*rB=A gives us a
vector perpendicular to AB and in the xy plane. Thus,

On D
Ok �*rB=A

j Ok �*rB=Aj
; and hence, d D*rB �

Ok �*rB=A

j Ok �*rB=Aj
:

From the given coordinates,*rB D 2O{C 2 O| and*rB=A D*rB �*rA D 3O{C O|, we get

On D
Ok � .3O{C O|/
j Ok � .3O{C O|/j

D 3 O| � O{
j3 O| � ui j D � 1p

10
O{C 3p

10
O|

d D *rB � On D .2O{C 2 O|/ �
�
� 1p

10
O{C 3p

10
O|
�
D 4p

10
:

d D 4p
10

You can easily verify that we get the same result even if we use *rA in place of *rB
(or for that matter, any vector from O to a point on line AB). For example, *rA � On D
.�ui C O|/ � .�O{C 3 O|/=

p
10 D 4=

p
10, the same value as obtained above.

Method-2: The shortest distance between a point P and a given line AB can also be found
by taking a cross product of a unit vector O�AB along the line with any vector from P
to a point on the line, e.g., *rB=P. For the given case, where P is the origin, we get,
d D O�AB �*rB. Why?
From fig. 2.48, we see that d � OC D OB sin � where � is the angle between*rB and
*rB=A. Let O�AB be a unit vector along line AB. Then,

O�AB �*rB D jO�ABj����
1

j*rBj sin � On D j*rBj sin � Ok:

Thus, d D OB sin � D j*rBj sin � D jO�AB �*rBj. We can, therefore, compute d easily
by computing the cross product as follows.

d D jO�AB �*rBj D
����. 3O{C O|p

32 C 12
/ � .2O{C 2 O|/

����
D

���� 4p
10
Ok
���� D 4p

10
:

which is the same answer as obtained by Method-1. Once again, you can verify that
O�AB �*rA also gives the same answer.

d D 4=
p
10
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SAMPLE 2.20 Computing cross product in 3-D: Compute *
a � *

b , where
*
a D O{C O| � 2 Ok and

*

b D 3O{C�4 O| C Ok.

Solution The calculation of a cross product between two 3-D vectors can be carried out by
either using a determinant or the distributive rule. Usually, if the vectors involved have just
one or two components, it is easier to use the distributive rule. We show you both methods
here and encourage you to learn both. We are given two vectors:

*a D a1 O{C a2 O| C a3
Ok D O{C O| � 2 Ok;

*
b D b1 O{C b2 O| C b3

Ok D 3O{C�4 O| C Ok:

� Calculation using the determinant formula: In this method, we first write a 3 � 3
matrix whose first row has the basis vectors as its elements, the second row has the
components of the first vector as its elements, and the third row has the components of
the second vector as its elements. Thus,

*a � *
b D

������
O{ O| Ok
a1 a2 a3
b1 b2 b3

������
D O{.a2b3 � a3b2/C O|.a3b1 � a1b3/C Ok.a1b2 � b1a2/
D O{.1 � 8/C O|.�6 � 1/C Ok.�4 � 3/
D �7.O{C O| C Ok/:

� Calculation using the distributive rule: In this method, we carry out the cross prod-
uct by distributing the cross product properly over the three basis vectors. The steps
involved are shown below.

*a � *
b D .a1 O{C a2 O| C a3

Ok/ � .b1 O{C b2 O| C b3
Ok/

D a1 O{ � .b1 O{C b2 O| C b3
Ok/C

a2 O| � .b1 O{C b2 O| C b3
Ok/C

a3
Ok � .b1 O{C b2 O| C b3

Ok/

D a1b1.

0����
O{ � O{ /C a1b2.

Ok����
O{ � O| /C a1b3.

� O|����
O{ � Ok /C

a2b1.

�Ok����
O| � O{ /C a2b2.

0����
O| � O| /C a2b3.

O{����
O| � Ok/C

a3b1.

O|����
Ok � O{ /C a3b2.

�O{����
Ok � O| /C a3b3.

0����
Ok � Ok/

D O{.a2b3 � a3b2/C O|.a3b1 � a1b3/C Ok.a1b2 � b1a2/
D O{.1 � 8/C O|.�6 � 1/C Ok.�4 � 3/
D �7.O{C O| C Ok/

which, of course, is the same result as obtained above using the determinant. Making
a sketch such as Fig. 2.49 is helpful while calculating cross products this way. The
product of any two basis vectors is positive in the direction of the arrow and negative
if carried out backwards, e.g., O{ � O| D Ok but O| � O{ D �Ok.

*a � *
b D �7.O{C O| C Ok/

Filename:ijkcircle

kˆ

ˆ

ˆ

Figure 2.50: The cross product of any
two basis vectors is positive in the di-
rection of the arrow and negative if car-
ried out backwards, e.g. O{ � O| D Ok but
O| � O{ D �Ok.
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SAMPLE 2.21 Finding a vector normal to two given vectors: Find a unit
vector perpendicular to the vectors *

rA D O{ � 2 O| C Ok and *
rb D 3 O| C 2 Ok.

Solution The cross product between two vectors gives a vector perpendicular to the plane
formed by the two vectors. The sense of direction is determined by the right hand rule.

Let
*
N D N O� be the perpendicular vector.

*
N D *rA �*rB

D .O{ � 2 O| C Ok/ � .3 O| C 2 Ok/
D
BBM

This calculation can be done in
either of the two ways shown in
the previous sample.

�7O{ � 2 O| C 3 Ok:

Therefore,

O� D
*
N

N

D �7O{ � 2 O| C 3 Okp
72 C 22 C 32

D �0:89O{ � 0:25 O| C 0:38 Ok

O� D �0:89O{ � 0:25 O| C 0:38 Ok

Check:

� j O�j D .0:89/2 C .0:25/2 C .0:38/2
p
D 1: (it is a unit vector)

� O� �*rA D 1.�0:89/ � 2.�0:25/C 1.0:38/

p
D 0: . O� ?*rA/:

� O� �*rB D 3.�0:25/C 2.0:38/

p
D 0: . O� ?*rB /:

Comments: If O� is perpendicular to*rA and*rB, then so is �O�. The perpendicularity does not
change by changing the sense of direction (from positive to negative) of the vector. In fact, if
O� is perpendicular to a vector*r then any scalar multiple of O�, i.e., � O�, is also perpendicular
to*r . This follows because

� O� �*r D �. O� �*r/ D �.0/ D 0:

The case of �O� is just a particular instance of this rule with � D �1.
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SAMPLE 2.22 Finding a vector normal to a plane: Find a unit vector
normal to the plane ABC shown in the figure.

Solution A vector normal to the plane ABC would be normal to any vector in that plane.
In particular, if we take any two vectors, say *rAB and *rAC, the normal to the plane would
be perpendicular to both*rAB and*rAC. Since the cross product of two vectors gives a vector
perpendicular to both vectors, we can find the desired normal vector by taking the cross
product of*rAB and*rAC. Thus,

*
N D *rAB �*rAC

D .O{ � Ok/ � . O| � Ok/
D O{ � O|����

Ok

� O{ � Ok����
� O|

� Ok � O|����
�O{

C Ok � Ok����
*
0

D O{C O| C Ok

) On D
*
N

j*N j
D 1p

3
.O{C O| C Ok/:

On D 1p
3
.O{C O| C Ok/

Check: Now let us check if On is normal to any vector in the plane ABC. It is fairly easy to
show that On �*rAB D On �*rAC D 0. This is not a surprise because we found On from the cross
product of*rAB and*rAC. Let us check if On is normal to*rBC:

On �*rBC D 1p
3
.O{C O| C Ok/ � .�O{C O|/

D 1p
3
.�O{ � O{C O| � O|/

D 1p
3
.�1C 1/

p
D 0:

Filename:sfig2-vec2-normal
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Figure 2.51:
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SAMPLE 2.23 The shortest distance between two lines: Two lines, AB
and CD, in 3-D space are defined by four specified points, A(0,2 m,1 m),
B(2 m,1 m,3 m), C(-1 m,0,0), and D(2 m,2 m,2 m) as shown in the figure.
Find the shortest distance between the two lines.

Solution The shortest distance between any pair of lines is the length of the line that is
perpendicular to both the lines. We can find the shortest distance in three steps:

1. First find a vector that is perpendicular to both the lines. This is easy. Take two vectors
*r1 and *r2, one along each of the two given lines. Take the cross product of the
two unit vectors and make the resulting vector a unit vector On.

2. Find a vector parallel to On that connects the two lines. This is a little tricky. We don’t
know where to start on any of the two lines. However, we can take any vector from
one line to the other and then, take its component along On.

3. Find the length (magnitude) of the vector just found (in the direction of On). This is
simply the component we find in step (b) devoid of its sign.

Now let us carry out these steps on the given problem.

1. Step-1: Find a unit vector On that is perpendicular to both the lines.

*rAB D 2mO{ � 1m O| C 2m Ok
*rCD D 3mO{C 2m O| C 2m Ok

) *rAB �*rCD D O{ O| Ok
2 �1 2

3 2 2

m2

D O{.�2 � 4/m2 C O|.6 � 4/m2 C Ok.4C 3/m2

D .�6O{C 2 O| C 7 Ok/m2

Therefore,

On D
*rAB �*rCD
j*rAB �*rCDj

D 1p
89
.�6O{C 2 O| C 7 Ok/:

2. Step-2: Find any vector from one line to the other line and find its component along On.

*rAC D �1mO{ � 2m O| � 1m Ok
*rAC � On D �.O{C 2 O| C Ok/m � 1p

89
.�6O{C 2 O| C 7 Ok/

D 1p
89
.6 � 4 � 7/m D � 5p

89
m:

3. Step-3: Find the required distance d by taking the magnitude of the component along
On.

d D j*rAC � Onj D
����� 5p

89
m
���� D 0:53m

d D 0:53m
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SAMPLE 2.24 The mixed triple product: Calculate the mixed triple prod-
uct O� � .*a � *

b/ for O� D 1p
2
.O{C O|/; *

a D 3O{, and
*

b D O{C O| C 3 Ok:
Solution We compute the given mixed triple product in two ways here:

� Method-1: Straight calculation using cross product and dot product.

Let *c D *a � *
b

D .3O{/ � .O{C O| C 3 Ok/
D 3 O{ � O{����

*
0

C3 O{ � O|����
Ok

C9 O{ � Ok����
� O|

D �9 O| C 3 Ok

So, O� � .*a � *
b / D O� �*c

D 1p
2
.O{C O|/ � .�9 O| C 3 Ok/ D � 9p

2
:

� Method-2: Using the determinant formula for mixed product.

O� � .*a � *
b / D �x �y �z

ax ay az
bx by bz

D 1p
2

1p
2

0

3 0 0

1 1 3

D 1p
2
.0 � 0/C 1p

2
.0 � 9/C 0 D � 9p

2
:

O� � .*a � *
b / D � 9p

2
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Filename:tfigure-teeter

(not a free body diagram)

Figure 2.53: On a balanced teeter totter
the bigger person gets the short end of
the stick. A sideways force directed
towards the hinge has no effect on the
balance.

The poet Robert Burns suggested
using a Teeter Totter to weigh hogs like
this: 1) Get a perfectly symmetric plank
and balance it across a saw horse, 2) Put
the hog on one end of the plank, 3) pile
rocks on the other end of the plank until
the plank is again perfectly balanced, 4)
Carefully guess the weight of the rocks.

2.4 Moment and moment about an axis
When you try to move something you can push it and you can turn it. In
mechanics, the measure of your pushing is the net force you apply. The
measure of your turning is the net moment, also sometimes called the net
torque or net couple.

Although concepts involving moment (and rotation) are often harder for
beginners than force (and translation), they were understood first. The an-
cient principle of the lever, which can be viewed as the root of all mechanics,
is the basic idea incorporated by moments.

Ultimately you can take on faith the vector definition of moment (given
opposite the inside cover) and its role in Moment and angular momentum
balance (eqs. II). In this section we will define the moment of a force intu-
itively, geometrically, and finally using vector algebra. We will do this first
in 2 dimensions and then in 3. The main mathematical tool here is the vec-
tor cross product from sec. 2.3. To start with, however, we can more or less
deduce the concept of moment by generalizing from common experience.

Teeter totter mechanics
The two people weighing down on the teeter totter in fig. 2.52 tend to rotate
it about its hinge, the right one clockwise and the left one counterclockwise.
We will now cook up a measure of the tendency of each force to cause rota-
tion about the hinge and call it the moment of the force about the hinge.

As is verified a million times a year by young future engineering students,

� To balance a teeter-totter the smaller person needs to be further from
the hinge.

� If two people are on one side then the teeter totter is balanced by two
similar people an equal distance from the hinge on the other side.

� Two people can balance one similar person by scooting twice as close
to the hinge.

These proportionalities generalize to this:

The tendency of a force to cause teeter totter rotation is proportional
to the size of the force and to its distance from the hinge (for forces
perpendicular to the teeter totter).

Further, if someone standing nearby adds a force that is directed towards
the hinge it causes no tendency to rotate. We can deduce more. Because

� any force can be decomposed into a sum of forces, one perpendicular
to the teeter totter and the other towards the hinge, and because

� we assume that the affect of the sum of these forces is the sum of the
affects of each separately, and because

� the force towards the hinge has no tendency to rotate,
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we can conclude that:

The moment of a force about a hinge is the product of its distance from
the hinge and the component of the force perpendicular to the line from
the hinge to the force.

Here then is the formula for 2D moment about C or moment with respect to
C. 1

M=C D j*rj .j*F j sin �/ D .j*rj sin �/ j*F j: (2.23)

Here, � is the angle between *
r (the position of the point of force application

relative to the hinge) and
*

F (see fig. 2.53). This formula for moment has
all the teeter totter deduced properties. Moment is proportional to r , and
to the part of

*

F that is perpendicular to *
r . The re-grouping as .j*rj sin �/

shows that a force
*

F has the same effect if it is applied at a new location that
is displaced in the direction of

*

F . That is, the force
*

F can slide along its
length without changing its M=C and is equivalent in its effect on the teeter
totter. The quantity j*rj sin � is sometimes called the lever arm of the force.

By common convention we define as positive a moment that causes a
counterclockwise rotation. A moment that causes a clockwise rotation is
negative. If we define � appropriately then eqn. (2.23) obeys this sign con-
vention. We define � as the angle from the positive vector *r to the positive
vector

*

F measured counterclockwise. Point the thumb of your right hand
towards yourself. Point the fingers of your right hand along *

r and curl them
towards the direction of

*

F and see how far you have to rotate them. The force
caused by the person on the left of the teeter totter has � D 90

�
so sin � D 1

and the formula 2.23 gives a positive counterclockwise M . The force of the
person on the right has � D 270

�
(3/4 of a revolution) so sin � D �1 and the

formula 2.23 gives a negative M .
In two dimensions moment is really a scalar concept, it is either positive

or negative. In three dimensions moment is a vector. But even in 2D we find
it easier to keep track of signs if we treat moment as a vector. In the xy plane,
the 2D moment is a vector in the Ok direction (straight out of the plane). So
eqn. 2.23 becomes

*

M=C D j*rj j*F j sin � Ok: (2.24)

If you curl the fingers of your right hand in the direction of rotation caused
by a force your thumb points in the direction of the moment vector.

2D moment by components
We can use the component form of the 2D cross product to find a component
form for the moment

*

M=C of eqn. 2.24. Given
*

F D Fx O{C Fy O| acting at P,
where *

rP=C D rx O{C ry O|, the moment of the force about C is

*

M=C D .rxFy � ryFx// Ok

1The ‘=’ in the subscript of
*
M reads

as ‘relative to’ or ‘about’. For simplicity
we often leave the = out and just write
*
MC.
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or the moment of
*

F about the axis at C is

MC D rxFy � ryFx : (2.25)

We can derive this component formula with the sequence of vector manipu-
lations shown graphically in fig. 2.54.

3D moment about an axis
The concept of moment about an axis is historically, theoretically, and prac-
tically important. Moment about an axis describes the principle of the lever,
which far precedes Newton’s laws. The net moment of a force system about
enough different axes determines everything needed in mechanics about a
force system. And one can sometimes quickly solve a statics or dynamics
problem by considering moment about a judiciously chosen axis.

Lets start by thinking about a teeter totter again. Looking from the side
we thought of a teeter totter as a 2D system. But the teeter totter really lives
in the 3D world (see fig. 2.55). We now re-interpret the 2D moment M as the
moment of the 2D forces about the Ok axis of rotation at the hinge. It is plain
that a force

*

F k pushing a teeter totter parallel to the axle causes no tendency
to rotate. And we already agreed that a radial force

*

F r causes no rotation.
So we see that the moment a force causes about an axis is the distance of the
force from the axis times the part of the force that is neither parallel to the
axis nor directed towards the axis.

Now look at this in the more 3-dimensional context of fig. 2.56. Here
an imagined axis of rotation is defined as the line through C that is in the O�
direction. A force

*

F is applied at P. We can break
*

F into a sum of three
vectors

*

F D *

F k C *

F r C *

F?

where
*

F k is parallel to the axis,
*

F r is directed along the shortest connection
between the axis and P (and is thus perpendicular to the axis) and

*

F? is out
of the plane defined by C, P and O�. By analogy with the teeter totter we see
that

*

F r and
*

F k cause no tendency to rotate about the axis. So only the
*

F?
contributes.

Example: Try this. Stand facing a partially open door with the front of your
body parallel to the plane of the door (a door with no springs is best). Hold the
outer edge of the door with one hand. Press down (F1) and note that the door is not
opened or closed. Push towards the hinge (F2) and note that the door is not opened
or closed. Push and pull away and towards your body (F3) and note how easily
you cause the door to rotate. Thus the only force component that tends to rotate the
door is perpendicular to the plane of the door (which is the plane of the hinge and
line from the hinge to your hand). Now move your hand to the middle of the door,
half the distance from the hinge. Note that it takes more force (F4) to rotate the
door with the same authority (push with your pinky if you have trouble feeling the
difference).

Thus the only potent force for rotation is perpendicular to the plane defined by
the hinge and point of force application. The potency of the force is increased with
distance from the hinge.
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We can also decompose *
r D*

rP=C into two parts, one parallel to the hinge
and one radial, as

*
r D*

rk C*
rr :

Clearly *
rk has no affect on how much rotation

*

F causes about the axis. If
for example the point of force application was moved parallel to the axis a
few centimeters, the tendency to rotate would not be changed. Altogether,
we have that the moment of the force

*

F about the axis O� through C is given
by

M�C D rr F?:

The perpendicular distance from the axis to the point of force application is
j*rr j and

*

F? is the part of the force that causes right-handed rotation about
the axis. A moment about an axis is defined as positive if curling the fingers
of your right hand gives the sense of rotation when your outstretched thumb
is pointing along the axis (as in fig. 2.56). The force of the left person on the
teeter totter causes a positive moment about the Ok axis through the hinge.

So long as you interpret the quantities correctly, the freshman physics line
“Moment is distance (j*rr j) times force (j*F?j)”

perfectly defines moment about an axis.
Three dimensional geometry is difficult, so a formula for moment about

an axis in terms of components would be most useful. The needed formula
depends on the 3D moment vector defined by the 3D cross product which we
introduce now.

The moment vector
We now define the moment of a force

*

F applied at P, relative to point C as

*

MC D*
rP=C �

*

F (2.26)

which we read as ‘M is r cross F.’ The moment vector is hard to intuit. A
look at its components is helpful.

*

MC D .ryFz � rzFy/O{C .rzFx � rxFz/ O| C .rxFy � ryFx/ Ok

You can recognize the z component of the moment vector as the moment
of the force about the Ok axis through C (eqn. 2.25). Similarly the x and y

components of
*

MC are the moments about the O{ and O| axis through C. So at
least the components of

*

MC have intuitive meaning. They are the moments
around the positive x, y, and z axes respectively.

Starting with this moment-about-the-coordinate-axes interpretation of the
moment vector, each of the three components can be deduced graphically by
the moves shown in fig. 2.58. The force is first broken into components.
The components are then moved along their lines of action to the coordinate
planes. From the resulting picture you can see, say, that the moment about
the positive y axis gets a positive contribution from Fx with lever arm rz and
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a negative contribution from Fz with lever arm rx . Thus the y component of
*

M is rzFx � rxFz .

Maximum property. Finally, the moment of a force about C is a vector
whose magnitude is the product of the distance of the force from C and the
magnitude of the force. The direction is the orientation of the axis about
which the force has the greatest moment.

More on moment about an axis
We defined moment about an axis geometrically using fig. 2.56 on page 86
as M O� D rrF?. We can now verify that the mixed triple product gives
the desired result by guessing the formula and seeing that it agrees with the
geometric definition.

M�C D O� � *

M=C (An inspired guess...) (2.27)

We break both *
r and

*

F into sums indicated in the figure, use the distributive
law, and note that the mixed triple product gives zero if any two of the vectors
are parallel. Thus,

O� � *

M=C D O� �*rP=C �
*

F

D O� � .*rr C*
rk/ � .

*

F? C *

F k C *

F r/

D O� �*rr � *

F? C O� �*rr � *

F k C O� �*rr � *

F r : : :

CO� �*rk � *

F? C O� �*rk � *

F k C O� �*rk � *

F r

D rrF? C 0C 0C 0C 0C 0

D rrF?: ( ... and a good guess too.)

We can calculate the cross and dot product in any convenient way, say using
vector components.

Example: Moment about an axis
Given a force,

*
F1 D .5O{ � 3 O| C 4 Ok/N acting at a point P whose position is given

by*rP=O D .3O{C 2 O|� 2 Ok/m, what is the moment about an axis through the origin
O with direction O� D 1p

2
O| C 1p

2
Ok?

M O� D .*rP=O � *
F1/ � O�

D �.3O{C 2 O| � 2 Ok/m � .5O{ � 3 O| C 4 Ok/N� � . 1p
2
O| C 1p

2
Ok/

D � 14p
2

m N:

The power of our abstract reasoning is apparent when we consider calculating
the moment of a force about an axis with two different coordinate systems.
Each of the vectors in eqn. 2.4 will have different components in the different
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systems. Yet the resulting scalar, after all the arithmetic, will be the same no
matter what the coordinate system.

Finally, the moment about an axis gives us an interpretation of the mo-
ment vector. The direction of the moment vector

*

MC is the direction of the
axis through C about which

*

F has the greatest moment. The magnitude of
*

MC is the moment of
*

F about that axis.

Special optional ways to draw moment vectors

None of the special rotation notations below is needed because moment is a
vector like any other. The same is true for the angular velocity vector and the
angular momentum vector in dynamics. None-the-less, sometimes people
like to use a notation that suggests the rotational nature of these quantities.
Arced arrow for 2-D moment and angular velocity. In 2D problems in

the xy plane, the relevant moment, angular velocity, and angular mo-
mentum point straight out or into the plane in the z ( Ok) direction. A way
of drawing this is to use an arced arrow. Wrap the fingers of your right
hand in the direction of the arc and your thumb points in the direction
of the unit vector that the scalar multiplies. The three representations
in fig. 2.59a indicate the same moment vector.

Double headed arrow for 3-D rotations and moments. Two other ways
of indicating rotation are to use double-headed arrows or to use an ar-
row with an arced arrow around it as shown in fig. 2.59b.
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Figure 2.60: Optional drawing methods
for moment vectors. (a) shows an arced
arrow to represent vectors having to do
with rotation in 2 dimensions. Such vec-
tors point directly out of, or into, the
page so are indicated with an arc in the
direction of the rotation. (b) shows a
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SAMPLE 2.25 Moment of a force: A force
*

F D 1NO{C20N O| acts at point
A of an object pinned at O as shown in the figure. The distance OA = 2 m.
Find the moment of the force about the pin at point O.
Solution The given force acts through point A on the body. Therefore, we can compute its
moment about O as follows.

*
MO D *rOA �

*
F

D .�2m � cos 60� O{ � 2m � sin 60� O|/� �� �
*rOA

� .1NO{C 20N O|/� �� �
*
F

D .�1mO{ �
p
3m O|/ � .1NO{C 20N O|/

D �20N�m OkC 1:73N�m Ok
D �18:27N�m Ok:

*
MO D �18:27N�m Ok

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 2. Vectors: position, force and moment 2.4. Moment 91

SAMPLE 2.26 A 2 m�2 m square plate hangs from one of its corners as
shown in the figure. At the diagonally opposite end, a force of 50 N is applied
by pulling on the string AB. Find the moment of the applied force about the
center C of the plate using

1. The component of the force perpendicular to *
rA=C,

2. The lever arm (the perpendicular distance from C to the force vector),
and

3. The vectors
*

F and *
rA=C.

Solution

1. To find the moment point C, we need to find the component of
*
F perpendicular to

CA. From the figure, we see that the desired component is F sin � where � D 45�.
Therefore,

M=C D j*F j sin � j*rA=Cj D 50N � 1p
2
�
p
2m D 50N�m:

The direction of this moment is obtained by curling the fingers of the the right
hand from *rA=C towards

*
F which points into the page, i.e., �Ok direction. Thus,

*
M=C D �50N�m Ok.

*
M=C D �50N�m Ok

2. The lever arm is the perpendicular distance from point C to the line of action of
*
F . This

perpendicular distance is d D j*rA=Cj sin � D
p
2m � .1=

p
2/ D 1m (see fig. 2.62).

Therefore, the moment of
*
F about point C is

*
M=C D Fd.�Ok/

D �.50N/ � .1m/ Ok D �50N�m Ok:
where the direction of the moment is evident from the right hand rule as pointed out
above.

*
M=C D �50N�m Ok

3. The moment
*
MC is calculated from

*
F and *rA=C by carrying out the cross product

*rA=C �
*
F in a straightforward manner. For this calculation, we first need to find the

vectors*rA=C and
*
F :

*rA=C D �CA O| D � `p
2
O| (since OA = 2 CA =

p
2`)

*
F D F.� cos � O{ � sin � O|/ D �F.cos � O{C sin � O|/:

Hence,
*
M=C D *rA=C �

*
F

D � `p
2
O| � ��F.cos � O{C sin � O|/�

D � `p
2
F cos � Ok

D �2mp
2
� 50N � cos 45� Ok D �50N�m Ok:

*
M=C D �50N�m Ok
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SAMPLE 2.27 Moment about an axis: A vertical force of unknown mag-
nitude F acts at point B of a triangular plate ABC shown in the figure. Find
the moment of the force about the edge CA of the plate.
Solution The moment of a force

*
F about an axis x-x is given by

Mxx D O�xx � .*r �
*
F /

where O�xx is a unit vector along the axis x-x,*r is a position vector from any point on the axis
to the applied force. In this problem, the given axis is CA. Therefore, we can take*r to be*rAB
or*rCB. Here,

O�CA D
*rCA
j*rCAj

D 3.�O{C O|/p
9C 9

D � 1p
2
O{C 1p

2
O|:

Now, moment about point A is
*
MA D *rAB �

*
F

D .�2O{ � 3 O|/ � F Ok D 2F O| � 3F O{:
Therefore, the moment about CA is

MCA D O�CA � .*rAB �
*
F / D O�CA �

*
MA

D .� 1p
2
O{C 1p

2
O|/ � .�3F O{C 2F O|/

D .
3p
2
C 2p

2
/F D 5p

2
F:

MCA D 5p
2
F

Comments: Note that the sign of MCA depends on whether we use O�CA or O�AC in our

calculation. Because O�CA D �O�AC, MAC will turn out to be � 5p
2
F . Since moment is

a vector, it has a definite direction. Naturally,
*
MCA D MCA

O�CA D �MCA
O�AC. Thus,

MAC D �MCA.
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2.5 Solving vector equations
Often you know less than you like. So you try to figure out more. One
way to do this is with reasoning. In mechanics you reason with the laws
of mechanics (including geometry and kinematics) to find some things you
want to know from others that you already do know. Because many of the
laws of mechanics (and geometry) are vector equations,

Engineering analysis often involves solving vector equations.

How you calculate with vectors is the same whether the problems are in
geometry, kinematics, statics, dynamics or a combination of these. In this
section we will show a few methods for solving some of the more common
vector equations. In a sense there are no new concepts here; its just a matter
of guiding the rules of vector algebra that you already know.

Vector algebra
We want to manipulate equations that involve vectors (like

*

A;
*

B,
*

C , and
*

0)
and scalars (like a; b; c, and 0). Without knowing anything about mechanics,
or even geometry, you can learn to do correct vector algebra by just follow-
ing the manipulation rules in box 2.8. These are elaborations of elementary
scalar algebra to accommodate vectors and the three new kinds of multipli-
cation (scalar times vector, dot product, and cross product). Just looking
out for the exceptions is enough to make your manipulations correct. That’s
enough to keep the car on the road. And if you just follow the traffic rules
you might by chance get to your goal. But to get to your goal efficiently you
need to steer correctly. For vector algebra this means using the simplification
rules to your advantage.

Example. Say you know
*
A;

*
B;

*
C and

*
D and you know that

a
*
A C b

*
B C c

*
C D *

D

but you don’t know a; b; and c. How could you find a? First dot both sides with
*
B � *

C and then blindly follow the rules:n
a
*
A C b

*
B C c

*
C D *

D
o
�
�
*
B � *

C
�

a
*
A�
�
*
B � *

C
�
C b

*
B�
�
*
B � *

C
�

� �� �
0

Cc *C �
�
*
B � *

C
�

� �� �
0

D *
D�
�
*
B � *

C
�

) a D
*
D�
�
*
B � *

C
�

*
A�
�
*
B � *

C
� : (2.28)

The two zeros followed from the general rules that
*
D � .*V � *

W / D .
*
D � *

V /�*W /

and
*
D � *

D D*
0. 1.

The point of the example above was to show the vector algebra rules at work.
However, to get to the end took the first ‘move’ of dotting the equation with

1 The linear-algebra savvy reader may
recognize the manipulation leading to
eqn. (2.28) as a derivation of Cramer’s
rule for a 3 � 3 matrix whose columns
are the components of the vectors

*
A;

*
B

and
*
C , respectively.

Note, if the vectors
*
A,

*
B, and

*
C are

co-planar then the last line of the calcu-
lation would have

*
A�
�
*
B � *

C
�
D 0 in

the denominator. Bad. If
*
A,

*
B, and

*
C

are coplanar the original problem is ei-
ther nonsense (if

*
D is off that plane) or

has non-unique solutions (if
*
D is on that

plane). So the failure of the derivation
in that case is sensible. See box 2.10 on
page 108 for more discussion of when
equations do and do not have solutions.)
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the appropriate vector. That move could be motivated this way. We are
trying to find a and not b or c. We can get rid of the terms in the equation
that contain b and c if we can dot

*

B and
*

C with a vector perpendicular to
both of them.

*

B � *

C is perpendicular to both
*

B and
*

C so can be used to
kill them off with a dot product. The 0s in the example calculation were thus
expected for geometric reasons.

2.8 The rules of vector algebra.
Without knowing any geometry or mechanics or even anything about
vectors, you can do good vector calculations by just following the
rules in this box. On the other hand, even if you know vector geom-
etry and mechanics you are stuck with these rules.

Vector algebra
In the expressions below a; b and c are any scalars. And

*
A;

*
B and

*
C are any vectors.

You can add vectors
*
AC *

B

And you can multiply them three ways

1. Scalar multiplication: a
*
A.

2. Dot product, inner product or scalar product:
*
A � *B.

3. Cross product or vector product:
*
A � *

B.

And you can combine expressions using usual rules you are used
to in scalar arithmetic (with some exceptions) and the extra vector
simplification rules.

The usual rules.
Vector addition and all three kinds of multiplication (scalar multi-
plication, dot product, cross product) all follow many of the usual
commutative, associative, and distributive laws (usual, meaning that
which you know from regular scalar algebra).

Associative rules. These have to do with how you group terms.

.
*
AC *

B/C *
C D *

AC .*B C *
C /

a.b
*
C / D .ab/

*
C

.a
*
B/� *

C D a.
*
B � *

C /

.a
*
B/� *

C D a.
*
B � *

C /

Commutative rules. These have to do with the order of terms in
a calculation.

*
AC *

B D *
B C *

A

ab
*
C D ba

*
C D *

Cab D *
Cba

*
A � *B D *

B � *A

Distributive rules. These have to do with multiplying individual
terms that are added, rather than their sum.

a.
*
B C *

C / D a
*
B C a*C

*
A � .*B C *

C / D *
A � *B C *

A � *C
*
A � .*B C *

C / D *
A � *

B C *
A � *

C

Extra simplification rules
As you proceed with using the rules above you can simplify using
the following extra vector simplification rules.

� a *
A is a vector,

� *
A�*B is a scalar,

� *
A � *

B is a vector,

� *
A � *

B D �*
B � *

A (so
*
A � *

A D*
0),

� *
A � .*B � *

C / D .
*
A� *

B/�*C ) *
B � .*B � *

C / D 0,

� *
A � .*B � *

C / D .
*
A � *C /*B � .*A � *B/*C , ‘BAC -CAB’

(see box 16.4 on page 797),

Exceptions
In the list of usual rules, above, we did not include all of the rules
from scalar algebra, they don’t all work. So look out for these ex-
ceptions.

� aC *
A is nonsense,

� a=*A is nonsense,

� *
A=

*
B is nonsense (a common beginner’s error),

� a � *A is nonsense (unless you mean by it a
*
A),

� a � *
A is nonsense,

� *
A � *

B ¤ *
B � *

A,

� *
A � .*B � *

C / ¤ .
*
A � *

B/� *
C .

Substitutions
In all of the expressions in this box the scalars and vectors can be
the result of other calculations. For example, all of the expressions
above would be equally valid if every place you see a you substituted
*
A � *B and everyplace you see

*
A you substituted

*
BC *

C or
*
B � *

C .
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A simpler two-dimensional example using a judiciously chosen dot prod-
uct, in the same spirit as the example above, is on page 99.

Count equations and unknowns.
One cannot (usually) find more unknowns than one has scalar equations 2.
Before you do lots of algebra, you should check that you have as many equa-
tions as unknowns. If not, you probably can’t find all the unknowns. How do
you count vector equations and vector unknowns? A two- dimensional vec-
tor is fully described by two numbers. For example, a 2D vector is described
by its x and y components or its magnitude and the angle it makes with the
positive x axis. A three-dimensional vector is described by three numbers.
So a vector equation counts as 2 or 3 equations in 2 or 3 dimensional prob-
lems, respectively. And an unknown vector counts as 2 or 3 unknowns in 2

or 3 dimensions, respectively. If the direction of a vector is known but its
magnitude is not, then the magnitude is the only unknown. Magnitude is a
scalar, so it counts as one unknown.

Example: Counting equations
Say you are doing a 2-D problem where you already know the vector O� D

p
2O{Cp

2 O| and you are given the vector equation

C O� D*a:

You then have two equations (a vector equation in 2-D ) and three unknowns
(the scalar C and the vector *a). There are more unknowns than equations so this
vector equation is not sufficient for finding C and*a.

Most often when you have as many equations as unknowns the equa-
tions have a unique solution. When you have more equations than un-
knowns there is most often no solution to the equations. When you have
more unknowns than equations most often you have a whole family of
solutions.

However these are only guidelines, no matter how many equations and un-
knowns you have, you could have no solutions, many solutions or a unique
solution. The geometric significance of some cases that satisfy and that don’t
satisfy these guidelines is given in box 2.10 on page 108.

Vector triangles
In 2D one often wants to know all three vectors in a vector triangle, the
diagram for expressions like

*

A C *

B D *

C or
*

A � *

C D *

B or
*

A C *

B C *

C D*

0 etc.

Usually at least one vector is given and some information is given about the
others. The situation is much like the geometry problem of drawing a triangle
given various bits of information about the lengths of its sides and its interior

2There are famous counter-examples
where you can solve for more variables
than you have equations. The simplest
example, x2 C y2 D 0, is one equa-
tion which can be solved for both x and
y to get x D 0 and y D 0. Although
such examples seem to be mathematical
trickery they do show up sometimes, but
they are always nonlinear. The simulta-
neous equations in mechanics are most
often linear equations (so you can safely
ignore this margin comment).
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angles. If enough information is given to prove triangle congruence, then
enough information is given to determine all angles and sides. A difference
between vector triangles and proofs of triangle congruence is that triangle
congruence does not depend on the overall orientation, whereas vector trian-
gles need to have the correct orientation. Nonetheless, the tools used to solve
triangles are useful for solving vector equations.

Vector addition
We start with a problem that is in some sense solved at the start. Say

*

A and
*

B are known and you want to find
*

C given that
*

C D *

A C *

B:

2.9 Vector triangles and the laws of sines and cosines
The tip to tail rule of vector addition defines a triangle. Knowing
something about the vectors in this triangle how can we find more?
One approach is to use the laws of sines and cosines.

Filename:tfigure-sincosine

A

a

b

c

B
C

Consider the vector sum
*
AC *

B D *
C represented by the trian-

gle shown with traditionally labeled sides A;B; and C and internal
angles a; b, and c. The sides and angles are related by

sina
A

D sinb
B

D sin c
C

the law of sines, and

(2.29)

C2 D A2 CB2 � 2AB cos c the law of cosines.
(2.30)

Proof of the law of sines The first equality in the law of sines can
be proved by calculating the altitude from c two ways.

Filename:tfigure-sincosine2

On the one hand length P1P2 is given by P1P2 D B sina
and on the other hand by P1P2 D A sinb

so B sina D A sinb ) sina
A

D sinb
B
:

We can do likewise with all three altitudes thus proving the triple
equality.

Proof of the law of cosines. Look at altitude h of the triangle.

Filename:tfigure-sincosine3

A

a

b

c

B
C

d

h

This is the base of two different right triangles. So by the
pythagorean theorem we have on the one hand that

h2 D A2 � d2 and on the other that h2 D C2 � .B C d/2:
Equating these expressions and expanding the square we get

A2 � d2 D C2 � .B2 C d2 � 2dB/
) A2 CB2 C 2dB D C2 (2.31)

But d D �A cos c so

C2 D A2 CB2 � 2AB cos c:

Sometimes the angle we call c is called � .

Applications. These laws are useful when you want to figure out
the shape and size of a triangle when, of the six triangle quantities
(thee sides and three angles), only 3 are given. At least one of these
three has to be a length.

As noted, it is possible to give problems of this type that have
no solutions. And it is possible to give problems that have either 1
or 2 solutions.

In this era where vector algebra is popular as is the representa-
tion of vectors in terms of their components, the laws of sines and
cosines are used little. But sometimes they are the easiest approach.
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The obvious and correct answer is that you find
*

C by vector addition. You
could do this addition graphically by drawing a scale picture, or by adding
corresponding vector components. Suppose now that

*

A and
*

B are given to
you in terms of magnitude and direction and that you are interested in the
direction of

*

C .
Example: adding vectors defined by magnitude and direction
Say direction is indicated by angle measured counterclockwise form the positive x
axis and that A D 5

p
2, �A D �=4, B D 4, and �B D 2�=3. So

*
A D A .cos �A O{C sin �A O|/

D 5
p
2 .cos.�=4/O{C sin.�=4/ O|/ D 5O{C 5 O|

*
B D B .cos �B O{C sin �B O|/

D 4 .cos.2�=3/O{C sin.2�=3/ O|/ D �2O{C 2
p
3 O|

*
C D *

A C *
B D .5O{C 5 O|/C

�
�2O{C 2

p
3 O|
�

D 3O{C .5C 2
p
3/ O|

) �C D tan�1
�
Cy=Cx

� D tan�1
��
5C 2

p
3
�
=3
�
� 1:23 � 70:5

�

and C D
q
32 C .5C 2

p
3/2 � 8:98

To find �C we used the arctan (or tan�1) function which can be off by � 3.To
find the angle of

*

C we had to convert
*

A and
*

B to coordinate form, add
components, and then convert back to find the angle of

*

C . That is, even
though the desired answer is given by a sum, carrying out the sum takes a bit
of effort. An alternative approach avoids some work.

Example: Same as above, different method
Start with picture of the situation, fig. 2.65. By adding angles,

�2 D �=4C �=3 D 7�=12:

From the law of cosines (see box 2.9 on page 96),

C 2 D A2 C B2 � 2AB cos �2

) C D
q
.5
p
2/2 C 42 � 2.5

p
2/ � 4 � cos.7�=12/

� 8:98 (as before)

And from the law of sines (see box 2.9),

sin �1
B

D sin �2
C

) �1 D sin�1
�
B sin �2
C

�
� sin�1

�
4 sin.7�=12/

8:98

�
� :445

) �C D �A C �2 � �=4C :445 � 1:23 (as before).

This second approach is somewhat more direct in some situations.
The determination of a third vector by vector addition is analogous to the

determination of a triangle in geometry by “side-angle-side”.

3The problem is that, measuring an-
gles between 0 and 2� (or equivalently
between �� and �) there are always
two different angles that have the same
tangent. The inverse tangent function
picks one. Some computers or calcula-
tors always pick an angle between 0 and
� and some always pick a value between
��=2 and �=2. Both of these could be
the wrong answer. So you need to check
and possibly add � to your answer, or,
alternatively use one of these two com-
mands: 1) the two-argument inverse tan-
gent (arctan.x; y/) or 2) rectangular-to-
polar coordinate conversion, using the
angle as the desired arctangent.

Filename:tfigure-cosinetriangle
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Figure 2.66: Using trig to solve vector
triangles
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Figure 2.67: An indirect walk from O to
C via D.

Vector subtraction
Say you want to find

*

C given
*

A and
*

B and that
*

A;
*

B and
*

C add to zero. So,
subtracting

*

C from both sides and multiplying through by -1 we get
*

A C *

B C *

C D *

0

) *

C D �*

A � *

B:

The problem has now been reduced to one of addition which can be done by
drawing, components, or trig as shown above.

Find the magnitude of two vectors given their directions
and their sum (2D)
Often one knows that 2 vectors

*

A and
*

B add to a given third vector
*

C . The
directions of

*

A and
*

B are known but not their magnitudes. That is, given
O�A; O�B and

*

C and that

*

A C *

B D *

C

A O�A C B O�B D *

C

(2.32)

you would like to find
*

A and
*

B (which you will know if you find A and B).
Example: A walk
You walked SE (half way between South and East) for a while and NNW (half
way between North and NorthWest, 22:5

�
West of North) for a while and ended up

going a net distance of 200m East.
*
A and

*
B are your displacements on the first

and second parts of your walk.
So, taking xy axes aligned with East and North, the directions are

O�A D
p
2

2
O{ �

p
2

2
O| and O�B D � sin.

�

8
/O{C cos.

�

8
/ O|

and the given sum is
*
C D 200mO{. Still unknown are the distances A and B .

In statics problems of this type or frequent with A and B representing the
unknown magnitudes of forces

*

A and
*

B and O�A and B O�B their known di-
rections. Here are four ways to solve eqn. (2.32) which will be illustrated
with “a walk”.

Method I: Use dot products with O{ and O|

If we take the dot product of both sides of eqn. (2.32) with O{ and then again
with O| we get:

O{ � feqn. (2.32)g ) A�Ax C B�Bx D Cx; and
O| � feqn. (2.32)g ) A�Ay C B�By D Cy (2.33)

where the components of the vectors O�A, O�B , and
*

C are known, or easily
determined, because the vectors are known (however they are represented).
Eqns. 2.33 are two scalar equations in the unknowns A and B . You can solve
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these any way that pleases you. One method would be to write the equations
in matrix form �

�Ax �Bx
�Ay �By

�
�
�
A

B

�
D
�
Cx
Cy

�
(2.34)

Example: Solving “A walk”: method I, simultaneous equations
For the walk example above we would have2

4 p
2=2 � sin.�8 /

�
p
2=2 cos.�8 /

3
5 �

2
4 A

B

3
5 D

2
4 200m

0

3
5

which solves (on a computer or calculator) to A � 483m and B � 370 (with the
total walked distance being about 852m).

Taking dot products of a vector equation with O{ and O| is equivalent to ex-
tracting the x and y components of the equation. But we use the dot product
notation to highlight that you could dot both sides of the vector equation with
any vector that pleases you and you would get a legitimate scalar equation.
Use any other vector that pleases you (not parallel with the first) and you
will get a second independent equation. And the two resulting equations will
have the same solution for A and B as the x and y (or “O{” and “ O|”) equations
above.

Method II: pick a vector for a dot product that gets rid of terms
you don’t know.

Pretend for a paragraph that you only want to find A in eqn. (2.32), for exam-
ple that you only wanted to know the distance walked on the first leg of the
indirect walk in the example above. It would be nice to reduce eqn. (2.32)
to a single scalar equation in the single unknown A. We’d like to get rid of
the term with B , a quantity that we do not know. Suppose we knew a vector
OnB that was perpendicular to O�B . If we dotted both sides of eqn. (2.32) we’d
get:

On � feqn. (2.32)g ) OnB �
�
A O�A C B O�B

�
D OnB �

*

C

) OnB �
�
A O�A

�
C OnB �

�
B O�B

�
D OnB �

*

C

OnB � O�B D 0 )
�
OnB � O�A

�
A D OnB �

*

C

) A D OnB �
*
C

OnB � O�A
:

To make use of this method we have to cook up a vector OnB that is perpen-
dicular to O�B 4.Crossing O�B with Ok serves the purpose:

OnB D Ok � O�B D Ok � ��Bx O{C �By O|
� D ��By O{C �Bx O|:

Without doing the cross product explicitly you can remember that a vector
orthogonal to a 2D vector O�B has the x and y components switched and the
sign of first component then changed. So we get

A D . Ok � O�B/ �
*

C

. Ok � O�B/ � O�A
D �ByCx � �BxCy

�By�Ax � �Bx�Ay

4The vector Ok (the unit vector out of
the page) is perpendicular to O�B but is
unfortunately not suitable because it is
also perpendicular to O�A and

*
C so only

yields the equation 0 C 0 D 0 or the
nonsense that A D 0=0.
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5This solution is identical to the
Cramer’s rule solution of eqn. (2.40) on
page 103. That is, we have used dot
products to derive Cramer’s rule for 2�2
matrices.

6Judicious choice of vectors for dot
products. The basic idea is this: Get rid
of things you don’t know and don’t care
about.
Say a and b are unknown and appear in
your equations in terms like a

*
A and b

*
B.

First take an interest in a. You don’t
know anything about b, and for a mo-
ment you don’t care about it. So get rid
of it. The two ways to get rid of a vec-
tor term you don’t know and don’t care
about are 1) dotting the force-balance
equation with a vector orthogonal to the
vector of disinterest, and 2) using mo-
ment balance about a point or axis about
which the force of disinterest has no mo-
ment. So, for example, dotting an equa-
tion containing a

*
A and b

*
B with a vec-

tor orthogonal to
*
B eliminates the un-

known b from your equation.

Filename:tfigure-2-walkIII
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Figure 2.68: Method III: Find point H
as the intersection of two known lines.

which is a direct formula for the desired answer 5. You could use this for-
mula by substituting in numbers, but that requires memorization or look up.
Rather, if you like this short cut, you should remember the idea and reproduce
the steps with the symbols or numbers in your problem. Summarizing,

To reduce eqn. (2.32) to one scalar equation in the one unknown A, use
a judiciously chosen dot product. For example, get rid of the O�B or

*

B

term by dotting both sides of with Ok � O�B (or, to save the trouble of
finding the unit vector O�B just dot with Ok � *

B). 6.

.
Altogether you can think of this method as something like the “compo-

nent” method. But we are taking components of the vectors in the direction
perpendicular to

*

B. Alternatively you can think of this method as taking the
projection of the vector equation onto a line perpendicular to

*

B.
Similarly dotting both sides of eqn. (2.32) with Ok � O�A gives

B D . Ok � O�A/ �
*

C

. Ok � O�A/ � O�B
:

Example: Solving “A walk”: method II, judicious dot products
You should be able to derive the formulas above as needed. Dotting, for example,
both sides of eqn. (2.32) with Ok� O�B and plugging in the known components yields

A D . Ok � O�B / �
*
C

. Ok � O�B / � O�A
D �ByCx � �BxCy

�By�Ax � �Bx�Ay
D cos.�=8/ � 200m � .� sin.�=8// � 0

cos.�=8/ � .
p
2=2/ � .� sin.�=8// � .�

p
2=2/

� 483m (as before)

Method III, graphical solution

On the vector triangle defined by
*

A C *

B D *

C we call O the tail end of
*

A.
The location of the tip of

*

C at G can be drawn to scale. Then the point H
can be located as at the intersection of two lines: one emanating from O and
in the direction of O�A and one emanating from H and in the direction of O�B .
Once the point H is located, the lengths A and B can be measured.

Example: Solving “A walk”: method III, graphing
Taking 100m as drawn to scale as, say 1 cm, point G is drawn 2 cm to the right
of O. The location of the point H is found as the intersection of two lines: one
emanating from O and pointing 45

�
counterclockwise from the � O| axis, and the

other emanating from G and pointing 22:5
�

counterclockwise from the � O| axis.
The distance from O to H can be measured as about 4:8 cm yielding A � 480m.

This construction can be done with pencil and paper or with a computer draw-
ing program.
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Method IV, trigonometry

The final method, the classical method used predominantly before vector no-
tation was well accepted, is to treat the vector triangle as a triangle with some
known sides and some known angles, and to use the law of sines (discussed
in box 2.9 ).

Because
*

C and the directions of
*

A and
*

B are assumed known, the angles
a (opposite side A) and b (opposite side B) are known. Because the sum of
interior angles in a triangle is � we know the angle c D � � a � b. The law
of sines tells us that

sin a
A

D sin c
C

and
sin b
B

D sin c
C

which we can rewrite as

A D C sin a
sin c

and B D C sin b
sin c

:

Example: Solving “A walk”: method IV, the law of sines
Referring to fig. 2.68 we get

A D C sin a
sin c

D 200m � sin.5�=8/
sin.�=8/

� 483m

and B D C sin b
sin c

D 200m � sin.�=4/
sin.�=8/

� 370m

as we have found three times already.

The determination of two vectors by knowing their directions and their
sum is analogous to determination of a triangle by “angle-side-angle”.

The magnitudes and sum of two vectors are known (2D)
Two vectors

*

A and
*

B in the plane have known magnitudes A and B but
unknown directions O�A and O�B . Their sum

*

C is known. So, measuring
angles counterclockwise relative to the positive x axis, we have:

*

A C *

B D *

C

A O�A C B O�B D *

C

A .cos �A O{C sin �A O|/C B .cos �B O{C sin �B O|/ D *

C (2.35)

where eqn. (2.35) is one 2D vector equation in 2 unknowns: �A and �B .

Method 1: using an appropriate dot product

This problem is really best solved with trig (see below) and getting it right
with component method is a matter of hindsight. Eqn. 2.35 can be rewritten
as

C .cos �C O{C sin �C O|/ � A .cos �A O{C sin �A O|/ D B .cos �B O{C sin �B O|/
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Figure 2.69: Solving “A walk” using the
law of sines.
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Filename:tfigure-cosinestriangle
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Figure 2.70: For use in using the law of
cosines to solve a vector triangle.
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Figure 2.71: Solving a vector triangle
where vectors

*
A and

*
B have known

magnitude but unknown direction.

Taking the dot product of each side with itself gives

C 2 C A2 � 2AC .cos �C cos �A C sin �C sin �A/� �� �
cos.�C��A/

D B2

so

�A D �C � arccos
�
C 2 C A2 � B2

2AC

�
:

Now
*

A is fully determined and
*

B can be found by vector subtraction. Note
that the arccos function is always double valued (the negative of any arccos
is also a legitimate arccos), so that the solution of this problem is not unique.
Also, if the argument of the arccos function is greater than 1 in magnitude,
there is no solution; this happens if any two of A, B , and C is greater than
the third (that is, if the so-called “triangle inequality” is violated) and there
is no way of making a triangle with the given lengths.)

Method II: The law of cosines

Referring to fig. 2.69, we can apply the law of cosines directly to get

B2 D A2 C C 2 � 2AB cos �B (2.36)

which we can solve to get �1 D arccos
�
C 2 C A2 � B2

2AC

�
:(2.37)

Thus the orientation of
*

A is determined in relation to
*

C . This method is a bit
quicker than the component method above because it skips the steps where,
in effect, the component method derives the law of cosines.

Method III: graphical construction

From the tail of
*

C draw a circle with radius A (see fig. 2.70). From the tip of
*

C draw a circle with radius B . For each of the two points of intersection, P1
and P2, a solution has been found. Vector

*

A goes from the tail of
*

C to, say,
P1, and

*

B goes from P1 to the tip of
*

C . An
*

A and
*

B based on P2 is also a
legitimate solution. Each pair is a legitimate solution to the problem. To get
a unique solution set other information would have to be provided.

Determining a vector triangle when one vector is known and only the
magnitudes of the other two are known is analogous to determining a tri-
angle from ”side-side-side” in geometry. It is interesting that this, the most
elementary of all geometric constructions does not have an equally simple
analytic representation.

Find the magnitude of three vectors given their
directions and their sum (3D)
This problem is close in approach to its junior 2D cousin on page 98 and to
the example on page 93. It is the most common of the 3D vector equation
problems. Assume that you know the directions of three vectors

*

A;
*

B and
*

C
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(given, say, as the unit vectors O�A; O�B ; and O�C ), as well as their sum
*

D. So
we have

*

A C *

B C *

C D *

D

A O�A C B O�B C C O�C D *

D

(2.38)

and we want to find A;B; and C from which we can find
*

A;
*

B; and
*

C (e.g.,
*

A D A O�A). We can think of the last of eqn. (2.38) as one 3D vector equation
in three unknowns.

In three dimensions the graphical approach is essentially impossible. And
the trigonometric approach is awkward to say the least, and probably only
generally practical for people with British accents who are long dead. The
general ideas in the first two methods still stand, however. Thus the use of
vector concepts is basically unavoidable in 3D problems.

Method I: dotting with O{; O|; and Ok.

We can dot the left and right sides of eqn. (2.38) with O{ or O| or Ok. This is
equivalent to taking the x; y and z components of the equation. We get then

O{ � feqn. (2.38)g ) A�Ax C B�Bx C C�Cx D Dx;

O| � feqn. (2.38)g ) A�Ay C B�By C C�Cy D Dy ; and
Ok � feqn. (2.38)g ) A�Az C B�Bz C C�Cz D Dz

(2.39)

which can be written in matrix form as2
4 �Ax �Bx �Cx

�Ay �By �Cy
�Az �Bz �Cz

3
5 �

2
4 A

B

C

3
5 D

2
4 Dx

Dy
Dz

3
5 : (2.40)

Unless the matrix is sparse (has a lot of zeros as entries) it is probably best
to solve such a set of equations for A;B and C on a computer or calculator.

Method II: pick a vector for dot product that kills terms you
don’t know.

The philosophy here is the same as for method II in 2D (page 99). Pretend
for a paragraph that you only want to find A in eqn. (2.38). We can kill the
terms involving the unknowns B and C by dotting both sides of the equation
with a vector perpendicular to O�B and O�C . Such a vector is O�B � O�C . Thus

. O�B � O�C / � feqn. (2.32)g
) . O�B � O�C / �

�
A O�A C B O�B C C O�C

�
D . O�B � O�C / �

*

D

) . O�B � O�C / �
�
A O�A

�
C*

0C*

0 D . O�B � O�C / �
*

D

) A D
*

D � . O�B � O�C /
O�A � . O�B � O�C /:

If you use a matrix determinant to evaluate the mixed triple product you
can recognize this formula (like the formula solving the example on 93) as
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7Note that the key to the method was
dotting with a vector in an appropri-
ate direction, the magnitude of the vec-
tor did not matter. So if, for example,
you knew any vector *vB in the direc-
tion of O�B and any vector*vC in the di-
rection of O�C you could dot both sides
of eqn. (2.38) with *vB �*vC to get one
scalar equation for A. This can sim-
plify calculations by avoiding the square
roots (which cancel in the end) that you
calculate to find unit vectors.
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Figure 2.72: Parametric description of a
line using vectors.

Cramer’s rule. By a judicious dot product we have reduced the vector equa-
tion to a scalar equation in one unknown. Similarly we could get one equa-
tion in one unknown for B or for C by doting eqn. (2.38) with O�A � O�C and
O�A � O�B , respectively 7.

Parametric equations for lines and planes
A line in 2D

In geometry a line on a plane is often describe as the set of x and y points
that satisfy an equation like

Ax C By D D or y D mx C b

for given A;B; and D or m and b. However a line is a “one dimensional”
object and it is nice to describe it that way. The parametric form that is often
useful is:

*
r D*

rA C s*v (2.41)

where *
r are the position vectors of set of points on the line, one point for

each value of the scalar parameter s. *
rA is the position vector of one given

reference point on the line and *
v is a vector parallel to the line. In the special

case that *v is a unit vector, s is the distance from the point at *rA to the point
at *r . If the vector *v was the velocity of a point moving on the line then sj*vj
would be the distance of the point from the point at *rA.

Example: Parametric equation of a line
A parametric equation for the line going through the points with position vectors
*rA and*rB is

*r D*rA C s

0
B@*rB �*rA� �� �

*v

1
CA or better *r D*rA C s O�A

where O�A D .*rB �*rA/ = j*rB �*rAj

A line in 3D

In three dimensions a line is often described geometrically as the intersection
of two planes. But a line in three dimensions is still a one dimensional object
so the parametric form eqn. (2.41), applicable in three dimensions as well as
two, is nice.

A plane

A plane in three dimensions can be described as the set of points x,y, and z
that satisfy an equation like:

Ax C By C Cz D D

for a given A,B,C, and D. The parametric description of a plane uses two
parameters s1 and s2 and is

*
r D*

rO C s1
*
v1 C s2

*
v2 (2.42)
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where *
r is a typical point on the plane, *v1 and *

v2 are any two non-parallel
vectors that lie in the plane and s1 and s2 are any two real numbers. Each pair
.s1; s2/ corresponds to one point in the plane and vice versa. The numbers
s1 and s2 can be thought of as in-plane distance coordinates if the vectors *v1
and *

v2 are mutually orthogonal unit vectors.
Example: A plane
A parametric equation for the plane going through the three points with position
vectors*rA,*rB, and*rC is

*r D *rA����
*r0

Cs1 .*rB �*rA/� �� �
*v1

Cs2 .*rC �*rA/� �� �
*v2

You can check that when s1 D s2 D 0 the point on the plane*rA is given. And when
one of the s values is one and the other zero the points*rB and*rC are given.

Vectors, matrices, and linear algebraic equations
Once one has drawn a free body diagram and written the force and moment
balance equations one is left with vector equations to solve for various un-
knowns. The vector equations of mechanics can be reduced to scalar equa-
tions by using dot products. The simplest dot product to use is with the unit
vectors O{, O|, and Ok. This use of dot products is equivalent to taking the x, y,
and z components of the vector equation. The two vector equations

aO{C b O| D .c � 5/O{C .d C 7/ O|
.a � c/O{C .aC b/ O| D .c C b/O{C .2aC c/ O|

with four scalar unknowns a; b; c; and d , can be rewritten as four scalar
equations, two from each two-dimensional vector equation. Taking the dot
product of the first equation with O{ gives a D c � 5. Similarly dotting with O|
gives b D d C 7. Repeating the procedure with the second equation gives 4
scalar equations:

a D c � 5

b D d C 7

a � c D c C b

aC b D 2aC c:

These equations can be re-arranged putting unknowns on the left side and
knowns on the right side:

1a C 0b C �1c C 0d D �5
0a C 1b C 0c C �1d D 7

1a C �1b C �2c C 0d D 0

�1a C 1b C �1c C 0d D 0

These equations can in turn be written in standard matrix form. The standard
matrix form is a short hand notation for writing (linear) equations, such as
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the equations above:2
664

1 0 �1 0

0 1 0 �1
1 �1 �2 0

�1 1 �1 0

3
775

� �� �
�A�

�

2
664

a

b

c

d

3
775

� �� �
�x�

D

2
664
�5
7

0

0

3
775

� �� �
�y�

) �A� � �x� D �y� :

The matrix equation �A� � �x� D �y� is in a form that is easy to input to any
of several programs that solve linear equations. The computer (or a do-able
but probably untrustworthy hand calculation) should return the following so-
lution for �x� (a, b, c, and d ).2

664
a

b

c

d

3
775 D

2
664

�5
�5
0

�12

3
775 :

That is, a D �5, b D �5, c D 0, and d D �12. If you doubt the solution,
check it. To check the answer, plug it back into the original matrix equa-
tion and note the equality (or lack thereof!). In this case, we have done our
calculations correctly and2

664
1 0 �1 0

0 1 0 �1
1 �1 �2 0

�1 1 �1 0

3
775 �

2
664

�5
�5
0

�12

3
775 D

2
664
�5
7

0

0

3
775 :

Going back to the original vector equations we can also check that

�5O{C�5 O| D .0 � 5/O{C .�12C 7/ O|
.�5 � 0/O{C .�5C�5/ O| D .0C�5/O{C .2 � �5C 0/ O|:

Computer solution of simultaneous equations
Depending on your computer package you might solve the equations above
like this

eqset = { a - c = -5
b - d = 7

a - b - 2c = 0
-a + b - c = 0}

Solve eqset for a,b,c,d.

Or, if your computer package is set up especially for linear algebra then you
could write something analogous to this:

M = [ 1 0 -1 0
0 1 0 -1
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1 -1 -2 0
-1 1 -1 0]

w = [-5 7 0 0]’
Solve M*z = w for z

% the elements of z are a,b,c,d

‘Physical’ vectors and row or column vectors
The word ‘vector’ has two related but subtly different meanings. One is a
physical vector like

*

F D Fx O{C Fy O|C Fz Ok, a quantity with magnitude and
direction. The other meaning is a list of numbers like the row vector

�x� D �x1; x2; x3�

or the column vector

�y� D
2
4 y1

y2
y3

3
5 :

Once you have picked a basis, like O{; O|; and Ok, you can represent a physical

vector
*

F as a row vector
�
Fx; Fy ; Fz

�
or a column vector

2
4 Fx

Fy
Fz

3
5. But the

components of a given vector depend on the base coordinate system (or base
vectors) that are used. For clarity it is best to distinguish a physical vector
from a list of components using a notation like the following:

�
*

F �
XYZ

D
2
4 Fx

Fy
Fz

3
5

The square brackets around
*

F indicate that we are looking at its components.
The subscript XYZ identifies what coordinate system or base vectors are
being used. The right side is a list of three numbers (in this case arranged as
a column, the default arrangement in linear algebra).
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2.10 Existence, uniqueness, and geometry
Sometimes there is a unique solution set to a set of simultaneous so-
lutions. Sometimes its impossible to solve a set of vector equations;
no solutions exist. And sometimes there are lots of solutions; solu-
tions exist but are not unique. These cases sometimes have simple
geometric interpretations.

Example 1. Consider a very simple equation

a*v1 D *w

where *v1 and *w are given and you are to find a. The left hand side
is a parametric expression for points on a line through the origin in
the direction*v1.

� if *w is parallel to*v then the equation has exactly one solution
for a;

� if *w is not parallel to*v then there is no possible a that could
make the equation true. The equation has no solutions.

This vector equation is equivalent to 2 scalar equations (3 in 3D) with
one scalar unknown and we expect generally to find no solution. That
is, two random vectors*v1 and *w are unlikely to be parallel either in
2D or 3D.

Example 2. Now consider this 2D vector equation in two un-
known scalars a and b:

a*v1 C b*v2 D *w:

� If *v1 and *v2 are not parallel a*v1 C b*v2 could be, with
appropriate choice of a and b, any 2D vector. There would
be a unique solution for every possible *w.

� But if*v1 and*v2 are parallel then the expression a*v1Cb*v2
describes a line.

– If *w is on this line there are many solutions for a and
b because the two vectors a*v1 and *v2 can be added
various ways that partially cancel.

– If *w is off the line then there are no combinations
of a and b that get vectors off the line, there are no
solutions.

In 2D a test to see if two vectors are parallel is to take their cross
product. So, if

.*v1 �*v2/ � Ok D v1xv2y � v1yv2x D det
�
v1x v2x
v1y v2y

�
D 0

then*v1 and*v2 are parallel and there are either many solutions or no
solutions depending on whether or not *w is also parallel to *v1 and
*v2.

Example 3. Consider the same example as above but now in 3D.

a*v1 C b*v2 D *w:

Now the question is whether the vector *w is in the plane described
parametrically by a*v1 C b*v2. We have more equations than un-
knowns, 3 > 2 so solution should be unlikely. Given 3 random
vectors in 3D *v1, *v2 and *w, it is unlikely that *w would be in the
plane determined by *v1 and *v2. If *w is in that plane, we get again
the three possibilities from the previous example.

Example 4. Finally consider this common equation in 3D.

a*v1 C b*v2 C c*v3 D *w: (2.43)

where *v1, *v2, *v3, and *w are given vectors and a, b and c are un-
knowns.

� If*v1,*v2, and*v3 are not co-planar, then by imagining flying
in through space in each of three directions, you can see that
you can get to any point in space *w by using one and only
one set of multiples a, b and c of the three vectors.

� On the other hand, if *v1, *v2, and *v3 are co-planar, they are
redundant, and

– there can only be a solution if *w is on the plane and,
assuming the three vectors are not also collinear, there
are many solutions. There are various ways for com-
binations of*v1,*v2, and*v3 to cancel each other out.

– if *w is off this plane there are no solutions.

If the vectors *v1, *v2, and *v3 are coplanar then there are either
no solutions for a,b and c or many solutions. We can test for copla-
narity of *v1, *v2, and *v3 with geometric reasoning and cross prod-
ucts. The vector *v1 �*v2 is orthogonal to the plane of *v1 and *v2.
So, if *v3 is in the plane defined by *v1 and *v2 it will be orthogonal
to*v1 �*v2. Thus if

.*v1 �*v2/ �*v3 D 0

the three vectors are co-planar and . This test can also be written as

det

2
4 v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

3
5 D 0

which is what we would expect from considering the matrix form of
eqn. (2.43)2

4 v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

3
5
2
4 a
b
c

3
5 D

2
4 wx
wy
wz

3
5

and checking to see if the 3�3matrix is “singular” (a linear algebra
word meaning that the determinant is zero).

Relation to more general linear algebra. For systems of equa-
tions in 4 or more dimensions we can’t use our geometric intuition
quite so directly. But the cases above are analogous to what one al-
ways finds. The geometric interpretations are helpful for gaining an
intuition, even in higher than 3 dimensions when they don’t strictly
hold. Consider the matrix equation

M � v D b

with the square matrixM and the column vector b given.

� If the columns ofM are not redundant (e.e., they are linearly
independent) then there exists a unique v for any b. This is
like having*v1;

*v2;
*v3 not coplanar in 3D.

� If the columns of M are redundant (e.g., they are linearly
dependent) this is like having coplanar*v1;

*v2;
*v3 and

– if b is in the span of the columns ofM , like *w being
in the plane, there are many solutions, and

– if b is not in the span of the columns of M , like
*
W

being off the plane, there are no solutions.
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SAMPLE 2.28 Plain vanilla vector equation in 2-D: Three forces act on
a particle as shown in the figure. The equilibrium condition of the particle
requires that

*

F1 C
*

F2 C
*

W D *

0. It is given that
*

W D �20N O|. Find the
magnitudes of forces

*

F1 and
*

F2.

Solution We are given a vector equation,
*
F1 C

*
F2 C

*
W D *

0, in which one vector
*
W is

completely known and the directions of the other two vectors are given. We need to find their
magnitudes. Let us write the vectors as

*
F1 D F1

O�1;
*
F2 D F2

O�2;
*
W D �W O|;

where O�1 and O�2 are unit vectors along
*
F1 and

*
F2, respectively (their directions are specified

by the given angles in the figure), and W D 20N as given. We can write the unit vectors in
component form as

O�1 D �1x O{C �1y O| and O�2 D �2x O{C �2y O|:

Now we can write the given vector equation as

F1.�1x O{C �1y O|/C F2.�2x O{C �2y O|/ D W O|: (2.44)

Dotting both sides of eqn. (2.44) with O{ and O| respectively, we get

�1xF1 C �2xF2 D 0 (2.45)

�1yF1 C �2yF2 D W: (2.46)

Here, we have two equations in two unknowns (F1 and F2/. We can solve these equations
for the unknowns. Let us solve these two linear equations by first putting them into a matrix
form and then solving the matrix equation. The matrix equation is"

�1x �2x
�1y �2y

#�
F1
F2

�
D
�

0

W

�
:

Using Cramer’s rule for matrix inversion, we get�
F1
F2

�
D 1

�1x�2y � �2x�1y

"
�2y ��2x

��1y �1x

#�
0

W

�
:

Substituting the numerical values of �1x D � cos 30
� D �

p
3=2; �1y D sin 30

� D 1=2 and

similarly, �2x D 1=
p
2; �2y D 1=

p
2, and W D 20N, we get

�
F1
F2

�
D
�
14:64

17:93

�
N:

F1 D 14:64N; F2 D 17:93N

Check: We can easily check if the values we have got are correct. For example, substituting
the numerical values in eqn. (2.45), we get

14:64N �
 
�
p
3

2

!
C 17:93N � 1p

2

p
D 0:
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Figure 2.75:

SAMPLE 2.29 Solving for a single unknown from a 2-D vector equation:
Consider the same problem as in Sample 2.28. That is, you are given that
*

F1C
*

F2C
*

W D*

0 where
*

W D �20N O| and
*

F1 and
*

F2 act along the directions
shown in the figure. Find the magnitude of

*

F2.

Solution Once again, we write the given vector equation as

F1
O�1 C F2

O�2 D W O|;

where

W D 20N;
O�1 D �1x O{C �1y O|

D �
p
3=2O{C 1=2 O|; and

O�2 D �2x O{C �2y O|
D 1=

p
2.O{C O|/:

We are interested in finding F2 only. So, let us take a dot product of this equation with a
vector that gets rid of the F1 term. Any such vector would have to be perpendicular to O�1.
One such vector is Ok � O�1. Let us call this vector On1, that is,

On1 D Ok � .�1x O{C �1y O|/ D �1x O| � �1y O{:

Now, dotting the given vector equation with On1, we get

F1

0� �� �
. On1 � O�1/CF2. On1 � O�2/ D W. On1 � O|/

) F2 D W
On1 � O|
On1 � O�2

D W
.�1x O| � �1y O{/ � O|

.�1x O| � �1y O{/ � .�2x O{C �2y O|/

D W
�1x

�1x�2y � �1y�2x

D 20N
�
p
3=2

�
p
3=2 � 1=

p
2 � 1=2 � 1=

p
2

D 20N

p
6p

3C 1
D 17:93N

which, of course, is the same value we got in Sample 2.28. Note that here we obtained one
scalar equation in one unknown by dotting the 2-D vector equation with an appropriate vector
to get rid of the other unknown F1.

F2 D 17:93N
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SAMPLE 2.30 Solving a 3-D vector equation on a computer: Four forces,
*

F1;
*

F2;
*

F3 and
*

N are in equilibrium, that is,
*

F1 C
*

F2 CC*

F3 C
*

N D*

0 where
*

N D �100 kN Ok is known and the directions of the other three forces are
known.

*

F1 is directed from (0,0,0) to (1,-1,1),
*

F2 from (0,0,0) to (-1,-1,1),
and

*

F3 from (0,0,0) to (0,1,1). Find the magnitudes of
*

F1;
*

F2; and
*

F3.

Solution Let
*
F1 D F1

O�1;
*
F2 D F2

O�2; and
*
F1 D F3

O�3, where O�1;
O�2 and O�3 are unit vectors

in the directions of
*
F1;

*
F2, and

*
F3, respectively. Then the given vector equation can be written

as
F1
O�1 C F2

O�2 C F3
O�3 D �*

N D �N Ok
where N D �100 kN. Dotting this equation with O{; O| and Ok respectively, and realizing that
O{ � O�1 D �1x ; O| � O�1 D �1y , etc., we get the following three scalar equations.

�1xF1 C �2xF2 C �3xF3 D 0

�1yF1 C �2yF2 C �3xF3 D 0

�1zF1 C �2zF2 C �3zF3 D �N:

Thus we get a system of three linear equations in three unknowns. To solve for the unknowns,
we set up these equations as a matrix equation and then use a computer to solve it. In matrix
form these equations are2

64 �1x �2x �3x
�1y �2y �3y
�1z �2z �3z

3
75
0
@ F1
F2
F3

1
A D

0
@ 0

0

�N

1
A :

To solve this equation on a computer, we need to input the matrix of unit vector components
and the known vector on the right hand side. From the given coordinates for the directions of
forces, we have O�1 D .O{ � O| C Ok/=

p
3, O�2 D .�O{ � O| C Ok/=

p
3, and O�3 D . O| C Ok/=

p
2.

8 We are also given that N D �100 kN. Now, we use the following pseudo-code to find the
solution on a computer.

Let s2 = sqrt(2), s3 = sqrt(3)
A = [ 1/s3 -1/s3 0

-1/s3 -1/s3 1/s2
1/s3 1/s3 1/s2 ]

b = [ 0 0 100]’
solve A*F = b for F

Using this pseudo-code we find the solution to be

F = [ 43.3013
43.3013
70.7107 ]

That is, F1 D F2 D 43:3 kN and F3 D 70:7 kN.

F1 D 43:3 kN; F2 D 43:3 kN; F3 D 70:7 kN

8 These unit vectors are computed by
taking a vector from one end point to the
other end point (as given) and then di-
viding by its magnitude. For example,
we find O�1 by first finding *r1 D .1/O{C
.�1/ O| C .1/ Ok, a vector from (0,0,0) to

(1,-1,1), and then O�1 D
*r1
j*r1j

.
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SAMPLE 2.31 Vector operations on a computer: Consider the problem
of Sample 2.30 again. That is, you are given the vector equation

*

F1 C
*

F2 C
C*

F3 C
*

N D*

0 where
*

N D �100 kN Ok and the directions of
*

F1;
*

F2 and
*

F3 are
given by the unit vectors O�1 D .O{ � O| C Ok/=p3; O�2 D .�O{ � O| C Ok/=p3,
and O�3 D . O| C Ok/=p2, respectively. Find F1.

Solution We can, of course, solve the problem as we did in Sample 2.30 and we get the
answer as a part of the unknown forces we solved for. However, we would like to show here
that we can extract one scalar equation in just one unknown (F3) from the given 3-D vector
equation and solve for the unknown without solving a matrix equation. Although we can
carry out all required calculations by hand, we will show how we can use a computer to do
these operations.

We can write the given vector equation as

F1
O�1 C F2

O�2 C F3
O�3 D �*

N : (2.47)

We want to find F1. Therefore, we should dot this equation with a vector that gets rid of both
F2 and F3, i.e., with a vector which is perpendicular to both

*
F2 and

*
F3. One such vector is

*
F2 �

*
F3 or O�2 � O�3. Let On D O�2 � O�3. Now, dotting both sides of eqn. (2.47) with On, we get

F1.
O�1 � On/C F2.

O�2 � On/C F3.
O�3 � On/ D �*

N � On

Since O�2 � On D 0 and O�3 � On D 0 ( On is normal to both O�2 and O�3), we get

F1.
O�1 � On/ D �*

N � On

) F1 D �*
N � On
O�1 � On

:

Thus we have found the solution. To compute the expression on the right hand side of the
above equation we use the following pseudo-code which assumes that you have written (or
have access to) two functions, dot and cross, that compute the dot and cross product of
two given vectors.

lambda_1 = 1/sqrt(3)*[1 -1 1]’;
lambda_2 = 1/sqrt(3)*[-1 -1 1]’;
lambda_3 = 1/sqrt(2)*[0 1 1]’;

N = [0 0 -100]’;
n = cross(lambda_2, lambda_3);
F1 = - dot(N, n)/dot(lambda_1, n)

By following these steps on a computer, we get the output F1 = 43.3013, that is, F1 D
43:3 kN, which, of course, is the same answer we obtained in Sample 2.30.

F1 D 43:3 kN
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Problems for
Chapter 2
Vector skills for mechanics

2.1 Vector notation and
vector addition
2.1.1 Draw the vector *r D .5m/O{ C
.5m/ O|:

2.1.2 A vector *a is 2 m long and points
northwest at an angle 60

�
from the north.

Draw the vector.

2.1.3 The position vector of a point B mea-
sures 3 m and is directed at 40

�
CCW from

the negative x-axis. Show the position vec-
tor.

2.1.4 Draw a force vector that is given as
*
F D 2NO{C 2N O| C 1Nuk:

2.1.5 Represent the vector*r D 5mO{�2m O|
in three different ways.

2.1.6 Which one of the following repre-
sentations of the same vector

*
F is wrong

and why?

Filename:pfigure2-vec1-2

ı̂

ĵ
2N

3N -3 Nı̂ + 2 Nĵ

√
13 N

√
13 N

a) b)

c) d)

2
3

2
3

Problem 2.1.6

2.1.7 There are exactly two representa-
tions that describe the same vector in the
following pictures. Match the correct pic-
tures into pairs.

Filename:pfigure2-vec1-3

ı̂

ĵ

a) b)

e) f)

c) d)

30o 30o

4N

2N

4N

2
√

3 N
2 N(-ı̂ + √

3ĵ )

3 Nı̂ + 1 Nĵ 3 N( 1
3 ı̂ + ĵ )

Problem 2.1.7

2.1.8 A string connects a particle A at (1m,
2m) to a support B at (3m, 5m). The ten-
sion in the string is 10N. There are other
strings also holding the particle in place.
What is the force of string AB on the par-
ticle?

Filename:pfigure4-1-pp1

A

B

C

g

(3m, 5m)

(1m, 2m)
Problem 2.1.8

2.1.9 A frictionless ramp connects A at
(3m, 5m) to B at (12m, 17m). The ramp
pushes a block with a force of 50N normal
to the ramp surface. Express the force from
the ramp as a vector

*
F (ignore the other

forces that also act on the block holding it
in place).

Filename:pfigure4-1-pp2

μ = 0

B

(3m,5m)

(12m,17m)

A

Problem 2.1.9

2.1.10 Find the sum of forces
*
F1 D 20NO{�

2N O|; *F2 D 30N. 1p
2
O{C 1p

2
O|/; and

*
F3 D

�20N.�O{C
p
3 O|/.

2.1.11 The forces acting on a block of
mass m D 5 kg are shown in the figure,
where F1 D 20N; F2 D 50N, and W D
mg. Find the sum

*
F .D *

F1 C
*
F2 C

*
W /?

Filename:pfigure2-vec1-6

3
4

4
3

⇀
W

⇀
F 1

⇀
F 2

Problem 2.1.11

2.1.12 Given that the sum of four vec-
tors

*
Fi; i D 1 to 4, is zero, where

*
F1 D

20NO{; *F2 D �50N O|; *F3 D 10N.�O{C O|/,
find

*
F4.

2.1.13 Three forces
*
F D 2NO{�5N O|; *R D

10N.cos � O{ C sin � O|/ and
*
W D W N O|

with W > 0, sum up to zero. Determine �
andW and draw the force vector

*
R clearly

showing its direction.

2.1.14 Given that
*
R1 D 1NO{ C

1:5N O| and
*
R2 D 3:2NO{ � 0:4N O|, find

2
*
R1 C 5

*
R2.

2.1.15 Find the magnitudes of the forces
*
F1 D 30NO{ � 40N O| and

*
F2 D 30NO{ C

40N O|. Draw the two forces, representing
them with their magnitudes.

2.1.16 Two forces
*
R D 2N.0:16O{ C

0:80 O|/ and
*
W D �36N O| act on a parti-

cle. Find the magnitude of the net force.
What is the direction of this force?

2.1.17 In the figure shown, F1 D 100N
and F2 D 300N. Find the magnitude and
direction of

*
F2 �

*
F1.

Filename:pfigure2-vec1-17
x

y

F1
F2

30
o

45
o

F 2 F 1

Problem 2.1.17

2.1.18 Two points A and B are located in
the xy plane. The coordinates of A and
B are (4 mm, 8 mm) and (90 mm, 6 mm),
respectively.

1. Draw position vectors*rA and*rB.

2. Find the magnitude of*rA and*rB.

3. How far is A from B?

2.1.19 Three position vectors are shown
in the figure below. Given that *rB=A D
3m.12 O{C

p
3
2 O|/ and*rC=B D 1mO{ � 2m O|,

find*rA=C.

113



114 Chapter 2. Homework problems 2.1 Vector notation and vector addition

Filename:pfigure2-vec1-7
A

B

C

ı̂

ĵ

Problem 2.1.19

2.1.20 In the figure shown below, the posi-
tion vectors are *rAB D 3 ft Ok;*rBC D 2 ft O|,
and *rCD D 2. O| C Ok/ ft. Find the position
vector*rAD.

Filename:pfigure2-vec1-5

A

B C

D

j

k

rAB

⇀
rBC

rCD

ˆ
ˆ

Problem 2.1.20

2.1.21 In the figure shown, a ball is sus-
pended with a 0:8m long cord from a 2m
long hoist OA.

1. Find the position vector *rB of the
ball.

2. Find the distance of the ball from
the origin.

Filename:pfigure2-vec1-20
x

y

45o

0.8 m
2m

O

A

B

Problem 2.1.21

2.1.22 A cube of side 6 in is shown in the
figure.

1. Find the position vector of point F,
*rF, from the vector sum*rF D*rD C
*rC=D C*rF=c:

2. Calculate j*rFj.
3. Find*rG using*rF.

Filename:pfigure2-vec1-23
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z
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E F
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Problem 2.1.22

2.1.23 Find the unit vector O�AB, directed
from point A to point B shown in the fig-
ure.

Filename:pfigure2-vec1-25

x

y

1m

1m

2m

3m

A

B

Problem 2.1.23

2.1.24 Find a unit vector along string BA
and express the position vector of A with
respect to B,*rA=B, in terms of the unit vec-
tor.

Filename:pfigure2-vec1-26

x
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Problem 2.1.24

2.1.25 In the structure shown in the fig-
ure, ` D 2 ft; h D 1:5 ft. The force on
B from the spring is

*
F D k*rAB, where

k D 100 lbf= ft. Find a unit vector O�AB
along AB and calculate the spring force
*
F D F O�AB.

Filename:pfigure2-vec1-27

x

y

h �

B

O

C

A

30o

Problem 2.1.25

2.1.26 Express the vector *rA D 2mO{ �
3m O|C5m Ok in terms of its magnitude and
a unit vector indicating its direction.

2.1.27 Let
*
F D 10 lbfO{ C 30 lbf O| and

*
W D �20 lbf O|. Find a unit vector in the
direction of the net force

*
F C *

W , and ex-
press the the net force in terms of the unit
vector.

2.1.28 Let O�1 D 0:80O{C 0:60 O| and O�2 D
0:5O{C 0:866 O|.

1. Show that O�1 and O�2 are unit vec-
tors.

2. Is the sum of these two unit vectors
also a unit vector? If not, find a unit
vector along the sum of O�1 and O�2.

2.1.29 For the unit vectors O�1 and O�2
shown below, find the scalars � and � such
that � O�2 � 3 O�2 D � O|.

Filename:pfigure2-vec1-11

x

y

60
o

1

1

1

2λ̂

λ̂

Problem 2.1.29

2.1.30 If a mass slides from point A to-
wards point B along a straight path and the
coordinates of points A and B are (0 in,
5 in, 0 in) and (10 in, 0 in, 10 in), respec-
tively, find the unit vector O�AB directed
from A to B along the path.

2.1.31 In the figure shown, T1 D
20
p
2N; T2 D 40N, and W is such that

the sum of the three forces equals zero.
If W is doubled, find � and � such that
�
*
T1; �

*
T2, and 2

*
W still sum up to zero.

Filename:pfigure2-vec1-12

x

y

60o
45o

T1
T2

W
Problem 2.1.31
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2.1.32 In the figure shown, rods AB and
BC are each 4 cm long and lie along y and
x axes, respectively. Rod CD is in the xz
plane and makes an angle � D 30

�
with

the x-axis.
1. Find *rAD in terms of the variable

length `.
2. Find ` and � such that

*rAD D*rAB �*rBC C � Ok:

Filename:pfigure2-vec1-13

y

x

z

4 cm

4 cm

A B

D

C

30
o

Problem 2.1.32

2.1.33 In Problem 2.1.32, find ` such that
the length of the position vector *rAD is
6 cm.

2.1.34 Let two forces
*
P and

*
Q act in the

directions shown in the figure. You are al-
lowed to change the direction of the forces
by changing the angles � and � while keep-
ing the magnitudes fixed. What should be
the values of � and � if the magnitude of
*
P C *

Q is to be maximum?

Filename:pfigure2-vec1-18
x

y

P

Q

θα

Problem 2.1.34

2.1.35 A 1m � 1m square board is sup-
ported by two strings AE and BF. The ten-
sion in the string BF is 20 N. Express this
tension as a vector.

Filename:pfigure2-vec1-21

x

y

E
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2 m2m
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1
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CD
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Problem 2.1.35

2.1.36 The top of an L-shaped bar, shown
in the figure, is to be tied by strings AD and
BD to the points A and B in the yz plane.
Find the length of the strings AD and BD
using vectors*rAD and*rBD.

Filename:pfigure2-vec1-22

30°1.5m

Problem 2.1.36

2.1.37 A circular disk of radius 6 in is
mounted on axle x-x at the end an L-
shaped bar as shown in the figure. The disk
is tipped 45

�
with respect to the horizontal

bar AC. Two points, P and Q, are marked
on the rim of the disk; with CP directly into
the page, and Q at the highest point above
the center C. Taking the base vectors O{; O|,
and Ok as shown in the figure ( O| into the
page), find

1. the relative position vector*rQ=P,

2. the magnitude j*rQ=Pj.

Filename:pfigure2-vec1-24
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Problem 2.1.37

2.1.38 Write the vectors
*
F1 D

30NO{ C 40N O| � 10N Ok; *F2 D �20N O| C
2N Ok; and

*
F3 D �10NO{�100N Ok

as a list of numbers (rows or columns).
Find the sum of the forces using a com-
puter.

2.1.39 Let �
*
F1 C �

*
F2 C 

*
F3 D

*
0, where

*
F1;

*
F2; and

*
F3

are as given in Problem 2.1.38. Solve for
�; �; and  using a computer.

2.1.40 Let *rn D 1m.cos �n O{ C sin �n O|/,
where �n D �0 � n�� . Using a computer
generate the required vectors and find the
sum

44X
nD0

*ri; with �� D 1
�

and �0 D 45
�

:

2.1.41 Find two non-zero and non-parallel
vectors

*
A and

*
B so that j*AC2*Bj = 2j*AC

*
Bj. �

2.2 The dot product of
two vectors
2.2.1 Find the dot product of*a D 2O{C3 O|�
Ok and

*
b D 2O{C O| C 2 Ok.

2.2.2 Find the dot product of
*
F D 0:5NO{C

1:2N O| C 1:5N Ok and O� D �0:8O{C 0:6 O|.

2.2.3 Find the dot product
*
F �*r where

*
F D

.5O{C4 O|/N and*r D .�0:8O{C O|/m . Draw
the two vectors and justify your answer for
the dot product.

2.2.4 Two vectors,*a D �4
p
3O{C 12 O| and

*
b D O{�

p
3 O| are given. Find the dot prod-

uct of the two vectors. How is*a �*b related
to j*ajj*b j in this case?

2.2.5 Find the dot product of two vectors
*
F D 10 lbfO{ � 20 lbf O| and O� D 0:8O{ C
0:6 O|. Sketch

*
F and O� and show what their

dot product represents.

2.2.6 The position vector of a point A is
*rA D 30 cmO{. Find the dot product of *rA
with O� D

p
3
2 O{C 1

2 O|.
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2.2.7 From the figure below, find the com-
ponent of force

*
F in the direction of O�.

Filename:pfigure2-vec1-33
x

y

30o 10o

λ̂
F = 100 N

Problem 2.2.7

2.2.8 Find the angle between
*
F1 D 2NO{C

5N O| and
*
F2 D �2NO{C 6N O|.

2.2.9 Given *! D 2 rad=sO{ C
3 rad=s O|; *

H1 D .20O{C30 O|/ kg m2= s and
*
H2 D .10O{C 15 O|C 6 Ok/ kg m2= s, find (a)
the angle between *! and

*
H1 and (b) the

angle between *! and
*
H2.

2.2.10 The unit normal to a surface is given
as On D 0:74O{ C 0:67 O|. If the weight of a
block on this surface acts in the � O| direc-
tion, find the angle that a 1000 N normal
force makes with the direction of weight
of the block.

2.2.11 Vector algebra. For each equation
below state whether:

1. The equation is nonsense. If so,
why?

2. Is always true. Why? Give an ex-
ample.

3. Is never true. Why? Give an exam-
ple.

4. Is sometimes true. Give examples
both ways.

You may use trivial examples.

a)
*
A C *

B D *
B C *

A

b)
*
A C b D b C *

A

c)
*
A � *B D *

B � *A
d)

*
B=

*
C D B=C

e) b=
*
A D b=A

f)
*
A D .

*
A � *B/*B C .*A � *C /*C C .*A �

*
D/

*
D

2.2.12 Use the dot product to show ‘the
law of cosines’; i. e.,

c2 D a2 C b2 C 2ab cos �:

(Hint: *c =*a+
*
b ; also,*c �*c D*c �*c)

Filename:pfigure-blue-2-1

b
c

a

θ

Problem 2.2.12

2.2.13 Find the direction cosines of
*
F D

3NO{ � 4N O| C 5N Ok.

2.2.14 A force acting on a bead of mass
m is given as

*
F D �20 lbfO{ C 22 lbf O| C

12 lbf Ok. What is the angle between the
force and the z-axis?

2.2.15 (a) Draw the vector *r D 3:5 inO{ C
3:5 in O| � 4:95 in Ok. (b) Find the angle this
vector makes with the z-axis. (c) Find the
angle this vector makes with the x-y plane.

2.2.16 In the figure shown, O� and On are
unit vectors parallel and perpendicular to
the surface AB, respectively. A force

*
W D

�50N O| acts on the block. Find the compo-
nents of

*
W along O� and On.

Filename:pfigure2-vec1-41
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ĵ

30o

A

BO

λ̂

n̂

W

Problem 2.2.16

2.2.17 Express the unit vectors On and O�
in terms of O{ and O| shown in the figure.
What are the x and y components of *r D
3:0 ft On � 1:5 ft O�? �

Filename:efig1-2-27
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y
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ĵ

Problem 2.2.17

2.2.18 From the figure shown, find the
components of vector*rAB (you have to first
find this position vector) along

1. the y-axis, and

2. along O�.

Filename:pfigure2-vec1-42

y

x

z

A
B

3 m
30o

2 m

2 m 1 m

λ̂

Problem 2.2.18

2.2.19 The net force acting on a particle
is

*
F D 2NO{ C 10N O|. Find the compo-

nents of this force in another coordinate
system with basis vectors O{0 D � cos � O{C
sin � O| and O|0 D � sin � O{ � cos � O|. For
� D 30

�
, sketch the vector

*
F and show its

components in the two coordinate systems.

2.2.20 Find the unit vectors OeR and Oe� in
terms of O{ and O| with the geometry shown
in the figure. What are the components of
*
W along OeR and Oe�?

Filename:pfigure2-vec1-44
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ĵ

�

W

Problem 2.2.20

2.2.21 Write the position vector of point P
in terms of O�1 and O�2 and

1. find the y-component of*rP,

2. find the component of*rP along O�1.
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Filename:pfigure2-vec1-45
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Problem 2.2.21

2.2.22 Let
*
F1 D

30NO{ C 40N O| � 10N Ok; *F2 D �20N O| C
2N Ok; and

*
F3 D F3x O{ C F3y O| �

F3z
Ok. If the sum of all these forces must

equal zero, find the required scalar equa-
tions to solve for the components of

*
F3.

2.2.23 A force
*
F is directed from point

A(3,2,0) to point B(0,2,4). If the x-
component of the force is 120 N, find the
y- and z-components of

*
F .

2.2.24 A vector equation for the sum of
forces results into the following equation:

F

2
.O{ �

p
3 O|/C R

5
.3O{C 6 O|/ D 25N O�

where O� D 0:30O{ � 0:954 O|. Find two
scalar equations by dotting both sides of
the equation first with O� and then with a
vector orthogonal to O�.

2.2.25 Write a computer program (or use
a canned program) to find the dot prod-
uct of two 3-D vectors. Test the pro-
gram by computing the dot products O{ �
O{; O{ � O|; and O| � Ok. Now use the
program to find the projections of

*
F D

.2O{ C 2 O| � 3 Ok/N along the line *rAB D

.0:5O{ � 0:2 O| C 0:1 Ok/m.

2.2.26 What is the shortest distance be-
tween the point A and the diagonal BC
of the parallelepiped shown? (Use vector
methods and don’t use cross product.)
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Problem 2.2.26

2.3 Vector Cross Product
2.3.1 Find the cross product of the two
vectors shown in the figures below from
the information given in the figures.
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Problem 2.3.1

2.3.2 Vector algebra. For each equation
below state whether:

1. The equation is nonsense. If so,
why?

2. Is always true. Why? Give an ex-
ample.

3. Is never true. Why? Give an exam-
ple.

4. Is sometimes true. Give examples
both ways.

You may use trivial examples.

a)
*
B � *

C D *
C � *

B

b)
*
B � *

C D *
C � *B

c)
*
C � .*A � *

B/ D *
B � .*C � *

A/

d)
*
A�.*B�*

C / D .
*
A �*C /*B�.*A �*B/*C

2.3.3 What do you get when you cross a
vector and a scalar? �

2.3.4 Carry out the following cross prod-
ucts in different ways and determine which
method takes the least amount of time for
you.

a) *r D 2:0 ftO{C3:0 ft O|�1:5 ft OkI *
F D

�0:3 lbfO{ � 1:0 lbf OkI *r � *
F D�

b) *r D .�O{ C 2:0 O| C 0:4 Ok/mI *
L D

.3:5 O| � 2:0 Ok/ kg m=sI *r �*
L D�

c) *! D .O{ � 1:5 O|/ rad=sI *r D .10O{ �
2 O| C 3 Ok/ inI *! �*r D�

2.3.5 Cross Product program Write a
program that will calculate cross products.
The input to the function should be the
components of the two vectors and the out-
put should be the components of the cross
product. As a model, here is a function
file that calculates dot products in pseudo
code.

%program definition
z(1)=a(1)*b(1);
z(2)=a(2)*b(2);
z(3)=a(3)*b(3);
w=z(1)+z(2)+z(3);

2.3.6 Find a unit vector normal to the sur-
face ABCD shown in the figure.
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Problem 2.3.6

2.3.7 If the magnitude of a force
*
N normal

to the surface ABCD in the figure is 1000
N, write

*
N as a vector. �
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Problem 2.3.7

2.3.8 The equation of a surface is given as
z D 2x�y. Find a unit vector On normal to
the surface.
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2.3.9 In the figure, a triangular plate ACB,
attached to rod AB, rotates about the z-
axis. At the instant shown, the plate makes
an angle of 60

�
with the x-axis. Find and

draw a vector normal to the surface ACB.
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Problem 2.3.9

2.3.10 What is the distance d between the
origin and the line AB shown? (You may
write your solution in terms of

*
A and

*
B

before doing any arithmetic). �
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Problem 2.3.10

2.3.11 What is the perpendicular dis-
tance between point A and line BC shown?
(There are at least 3 ways to do this using
various vector products, how many ways
can you find?)
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Problem 2.3.11

2.3.12 Given a force,
*
F1 D .�3O{ C 2 O| C

5 Ok/N acting at a point P whose position is
given by*rP=O D .4O{ � 2 O| C 7 Ok/m, what
is the moment about an axis through the
originO with direction O� D 2p

5
O|C 1p

5
O|?

2.3.13 A, B , and C are located by position
vectors*rA D .1; 2; 3/,*rB D .4; 5; 6/, and
*rC D .7; 8; 9/:

a) Use the vector dot product to find
the angle BAC (A is at the vertex
of this angle).

b) Use the vector cross product to find
the angle BCA (C is at the vertex
of this angle).

c) Find a unit vector perpendicular to
the plane ABC .

d) How far is the infinite line defined
by AB from the origin? (That is,
how close is the closest point on this
line to the origin?)

e) Is the origin co-planar with the
points A, B , and C ?

2.3.14 Points A, B, and C in the figure de-
fine an infinite plane.

a) Find a unit normal vector to the
plane. �

b) Find the perpendicular distance
from point D to this infinite plane
(not necessarily inside the triangle
ABC). �

c) What are the coordinates of the
point on the plane closest to point
D? �

d) Is this point on or off the triangle
used to define the plane?
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Problem 2.3.14

2.3.15 What point on the line that goes
through the points (1,2,3) and (7,12,15) is
closest to the origin?

2.3.16 A regular tetrahe-
dron is a triangular-based pyramid where
all 6 edges have the same length `. What is
the perpendicular distance between a pair
of non-touching edges? (There are many
ways to solve this problem). �

2.3.17 Why did the chicken cross the road?
�

2.4 Moment and Moment
about an Axis
2.4.1 What is the moment

*
M produced by

a 20 N force F acting in the x direction
with a lever arm of*r D .16mm/ O|?

2.4.2 Find the moment of the force shown
on the rod about point O.

Filename:pfigure2-vec2-2
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Problem 2.4.2

2.4.3 Find the sum of moments of
forces

*
W and

*
T about the origin, given

that W D 100N; T D 120N; ` D
4m; and � D 30�.

Filename:pfigure2-vec2-3
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Problem 2.4.3

2.4.4 Find the moment of the force
a) about point A
b) about point O.

Filename:pfigure2-vec2-4
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Problem 2.4.4

2.4.5 The line of action of a force
*
F D

20N O| � 5N Ok passes through a point A
with coordinates (200 mm, 300 mm, -100
mm). What is the moment

*
M .D *r � *

F /
of the force about the origin?
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2.4.6 Drawing vectors and computing
with vectors. In an xyz coordinate sys-
tem, let point O be the origin. Two other
points are specified: point A has xyz co-
ordinates .0m; 5m; 12m/ and point B has
xyz coordinates .4m; 5m; 12m/.

a) Make a neat sketch of the vectors
OA, OB, and AB.

b) Find a unit vector in the direction of
OA, call it O�OA.

c) Find the force
*
F which is 5N in

size and is in the direction of OA.
d) What is the angle between OA and

OB?
e) What is*rBO � *

F ?

f) What is the moment of
*
F about a

line parallel to the z axis that goes
through point B?

2.4.7 In the figure shown, OA = AB = 2 m.
The force F D 40N acts perpendicular to
the arm AB. Find the moment of

*
F about

O, given that � D 45�. If
*
F always acts

normal to the arm AB, would increasing
� increase the magnitude of the moment?
In particular, what value of � will give the
largest moment?
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Problem 2.4.7

2.4.8 Calculate the moment of the
2 kNpayload on the robot arm about (i)
joint A, and (ii) joint B, if `1 D
0:8m; `2 D 0:4m; and `3 D
0:1m.
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Problem 2.4.8

2.4.9 During a slam-dunk, a basketball
player pulls on the hoop with a 250 lbf at
point C of the ring as shown in the figure.
Find the moment of the force about

a) the point of the ring attachment to
the board (point B), and

b) the root of the pole, point O.
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Problem 2.4.9

2.4.10 During weight training, an ath-
lete pulls a weight of 500 N with his arms
pulling on a handlebar connected to a uni-
versal machine by a cable. Find the mo-
ment of the force about the shoulder joint
O in the configuration shown.
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Problem 2.4.10

2.4.11 Find the sum of moments due to
the two weights of the teeter-totter when
the teeter-totter is tipped at an angle � from
its vertical position. Give your answer in
terms of the variables shown in the figure.

Filename:pfigure2-vec2-9

h

O
B

OA = h
AB = AC = �

W

W

C

A

θ
�

�

α α

Problem 2.4.11

2.4.12 Find the percentage error in com-
puting the moment of

*
W about the pivot

point O as a function of � , if the weight
is assumed to act normal to the arm OA (a
good approximation when � is very small).
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Problem 2.4.12

2.4.13 Vector Calculations and Geom-
etry. The 5N force

*
F1 is along the line

OA. The 7N force
*
F2 is along the line OB.

a) Find a unit vector in the direction
OB. �

b) Find a unit vector in the direction
OA. �

c) Write both
*
F1 and

*
F2 as the prod-

uct of their magnitudes and unit
vectors in their directions. �

d) What is the angle AOB? �

e) What is the component of
*
F1 in the

x-direction? �

f) What is*rDO �
*
F1? (*rDO �*rO=D

is the position of O relative to D.) �

g) What is the moment of
*
F2 about the

axis DC? �

h) Repeat the last problem using ei-
ther a different reference point on
the axis DC or the line of action OB.
Does the solution agree? [Hint: it
should.] �
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Problem 2.4.13

2.4 Solving vector
equations
2.4.1 Consider the vector equation

a
*
A C b

*
B D *

C

with
*
A,

*
B, and

*
C given. For the cases

below find a and b if possible. If there are
multiple solutions give at least 2. If there
are no solutions explain why.
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a)
*
A D O{; *

B D O|;
*
C D 3O{C 4 O|

b)
*
A D O{; *

B D 2O{;
*
C D 3O{

c)
*
A D O|; *

B D 2 O|;
*
C D 3O{

d)
*
A D O{C O|; *

B D �O{C O|;
*
C D 2 O|

e)
*
A D O{C 2 O|; *

B D 2O{C 3 O|;
*
C D 3O{C 4 O|

f)
*
A D � O{C e O|; *

B D
p
2O{C

p
3 O|;

*
C D O{

2.4.2 Consider the vector equation

a
*
A C b

*
B C c

*
C D *

D

with
*
A,

*
B,

*
C and

*
D given. For the cases

below find a if possible, there is no need to
find b and c.

a)
*
A D O{, *C D Ok
*
B D O|,

*
D D 3O{C 4 O| C 19 Ok

b)
*
A D 2O{, *C D 15 O| C 360 Ok
*
B D 3O{C4 O|,

*
D D 2O{C17 O|C37 Ok

c)
*
A D Ok,

*
C D O{C O| C Ok

*
B D O| C Ok,

*
D D O|

d)
*
A D O{C O|C Ok,

*
C D 3O{C 4 O|C 5 Ok

*
B D 2O{C3 O|C4 Ok,

*
D D 4O{C5 O|C

7 Ok
e)

*
A D

p
1O{C

p
2 O| C

p
3 Ok,

*
C D

p
7O{C

p
8 O| C

p
9 Ok,

*
B D

p
4O{C

p
5 O| C

p
6 Ok,

*
D D �O{C � O| C e Ok

2.4.3 In the problems below use matrix al-
gebra on a computer to find a, b and c
uniquely if possible. If not possible explain
why not. You are given that

a
*
A C b

*
B C c

*
C D *

D

and that
a)

*
A D O{, *B D O|,
*
C D Ok,

*
D D �2O{C 5 O| C 10 Ok

b)
*
A D O{C O|,

*
B D �O{C O|,

*
C D Ok,

*
D D 2O{

c)
*
A D O{C O| C Ok,

*
B D 2O{C O| C Ok,

*
C D O{C 2 O| C Ok,

*
D D 2O{C O| C Ok

d)
*
A D 1O{C2 O|C3 Ok,

*
B D 4O{C5 O|C

6 Ok,
*
C D 7O{C 8 O| C 9 Ok,

*
D D 10 Ok

e)
*
A D

p
1O{ C

p
2 O| C

p
3 Ok,

*
B Dp

4O{C
p
5 O| C

p
6 Ok,

*
C D

p
7O{ C

p
8 O| C p

9 Ok,
*
D Dp

10 Ok

2.4.4 The three forces shown in the figure
are in equilibrium, i.e.,

*
T1C

*
T2C

*
F D*

0.
If j*F j D 10N, find tensions T1 and T2
(magnitudes of

*
T1 and

*
T2.
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Problem 2.4.4

2.4.5 Points A, B, and C are located in the
xy plane as shown in the figure. For posi-
tion vectors, we can write,*rBC*rC=B D*rC.
Find j*rBj and j*rC=Bj if*rC D 10m O{.
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2.4.6 Three vectors,
*
A;

*
B, and

*
C , (shown

in the figure) are such that
*
A C *

B C *
C D

*
0. You are given that A D j*Aj D 8 and
C D j*C j D 5. Find � .
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Problem 2.4.6

2.4.7 Let
*
F1 C

*
F2 C

*
F3 D

*
0, where

*
F3 D

10N.O{� O|/, and
*
F1=j

*
F1j D 0:250O{C0:968 O|

and
*
F2=j

*
F2j D �0:425O{�0:905 O|. Find j*F1j

from a single scalar equation.

2.4.8 To evaluate the equation
P *
F D

m*a for some problem, a student writesP *
F D Fx O{ � .Fy � 30N/ O| C 50N Ok

in the xyz coordinate system, but *a D
2:5m=s2 O{0 C 1:8m=s2 O|0 � az Ok0 in a ro-
tated x0y0z0 coordinate system. If O{0 D
cos 60

� O{ C sin 60
� O|; O|0 D � sin 60

� O{ C
cos 60

� O| and Ok0 D Ok, find the scalar equa-
tions for the x0; y0, and z0 directions.

2.4.9 A car travels straight north-east for
a while on a dirt road that leads to a north-
south highway. The car travels on the high-
way due north for a while. When the driver
stops, the GPS system indicates that the car
is 60 miles north and 30 miles east from the
starting point. Find the distance travelled
on the dirt road.

2.4.10 A particle is held at point P with the
help of three strings PA, PB, and PC. Let
the tensions in the three strings be

*
TA;

*
TB ,

and
*
TC , respectively (so that

*
TA acts along

line PA and so on). The equilibrium of the
particle requires that

*
TAC

*
TBC

*
TCC

*
W D

*
0where

*
W D �10N Ok is the weight of the

particle. Find the magnitudes of tensions
in the three strings.
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Problem 2.4.10

2.4.11 You are given that
*
F1 C

*
F2 C

*
F3 D

5 kN O| where
*
F1 D .2O{ � 3 O| C 4 Ok/ kN,

*
F2 D .O{ C 5 Ok/ kN. Find the direction of
*
F3 (An angle measured CCW from the +x
axis to the direction of positive

*
F3.

2.4.12 A plane intersects the x, y, and z
axis at 3,4, and 5 respectively. What point
on the plane is in the direction O{C 2 O|C 3 O|
from the point (10,10,10)? (Find the x, y
and z components of the point.).

These problems concern the solution
of simultaneous equations. These could
come from various vector equations.
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2.4.13 Write the following equations in
matrix form to solve for x, y, and z:

2x � 3y C 5 D 0;

y C 2�z D 21;

1

3
x � 2y C �z � 11 D 0:

2.4.14 Are the following equations linearly
independent?

a) x1 C 2x2 C x3 D 30

b) 3x1 C 6x2 C 9x3 D 4:5

c) 2x1 C 4x2 C 15x3 D 7:5.

2.4.15 Write computer commands (or a
program) to solve for x; y and z from the
following equations with r as an input vari-
able. Your program should display an error
message if, for a particular r , the equations
are not linearly independent.

a) 5x C 2r y C z D 2

b) 3x C 6y C .2r � 1/z D 3

c) 2x C .r � 1/y C 3r z D 5.

Find the solutions for r D 3; 4:99; and 5.

2.4.16 An exam problem in statics has
three unknown forces. A student writes
the following three equations (he knows
that he needs three equations for three un-
knowns!) — one for the force balance
in the x-direction and the other two for
the moment balance about two different
points.

a) F1 � 1
2F2 C 1p

2
F3 D 0

b) 2F1 C 3
2F2 D 0

c) 5
2F2 C

p
2F3 D 0.

Can the student solve for F1; F2, and F3
uniquely from these equations? �

2.4.17 What is the solution to the set of
equations:

x C y C z C w D 0

x � y C z � w D 0

x C y � z � w D 0

x C y C z � w D 2�
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CHAPTER 3
Free-Body Diagrams

A free-body diagram is a sketch of the system to which you will apply the
laws of mechanics. The diagram shows all of the non-negligible external
forces and couples which act on the system. The diagram tells what material
is in the system and also what is known, and what is not known, about the
forces. Mechanics reasoning depends on free body diagrams so we give tips
about how to avoid common mistakes. On a free body diagram systems of
forces are often replaced with ‘equivalent’ forces, a special case of which is
a weight force at the center of gravity.

Contents
3.1 Equivalent force systems . . . . . . . . . . . . . . . . . . . . 125
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In mechanics a system is often called a body and when it is conceptually
isolated it is free, as in free from its surroundings.

A free-body diagram (FBD) is a sketch of an isolated system and the
external forces which act on it.

The laws of mechanics are applied using the forces shown on a free body
diagram and not using any other forces. Thus, as we say again and again,
drawing good free-body diagrams is essential for both statics and dynamics.
The skills for drawing these diagrams are presented in the following sections.

Some basic mechanics assumptions
One way to understand something is to isolate it, see how it behaves on its
own, and see how it responds to various stimuli. Then, when the thing is
not isolated, you still think of it as isolated, but think of the effects of all
its surroundings as stimuli. Reversing the point of view, we can also see
the system’s behavior as causing stimulus to other things around it, which
themselves can be thought of as isolated and stimulating back, and so on.

This reductionist approach is used throughout the physical and social sci-
ences. A tobacco plant is understood in terms of its response to light, heat
flow, the chemical environment, insects, and viruses. The economy of Sin-
gapore is understood in terms of the flow of money and goods in and out of
the country. And social behavior is regarded as being a result of individuals
reacting to the sights, sounds, smells, and touch of other individuals and thus
causing sights, sounds, smell and touch that the others react to in turn, etc. 1

The “free-body” is a closed system. As in elementary thermodynamics we
only consider here so-called closed systems. A (closed) system, in mechan-
ics, is a fixed collection of material. You can draw an imaginary boundary
around a system, then in your mind paint all the atoms inside the boundary
red, and then define the system as being the red atoms, no matter whether
they later cross the original boundary markers or not. Thus mechanics de-
pends on bits of matter as being durable and non-ephemeral. We assume
that 2

1Closed systems in thermodynam-
ics.The isolated system approach to un-
derstanding is made most clear in ther-
modynamics courses. A system, usu-
ally a fluid, is isolated with rigid walls
that allow no heat, motion or material
to pass. Then, bit by bit, as the subject
is developed, the response of the system
to certain interactions across the bound-
aries is allowed. Eventually, enough in-
teractions are understood that the sys-
tem can be viewed as isolated even when
in a useful context. The gas expanding
in a refrigerator follows the same rules
of heat-flow and work as when it was ex-
panded in its ‘isolated’ container.

2 Open Systems. The mechanics
of open systems, where material crosses
the system boundaries, is important in
fluid mechanics. Such open fluid sys-
tems are first seen in some elemen-
tary dynamics problems (like rockets),
where material is allowed to cross the
system boundaries. But the equations
governing these open systems are de-
duced from careful application of the
more fundamental governing mechanics
equations of closed systems. So we have
to master the mechanics of closed sys-
tems first.
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3Why do we awkwardly number the
most basic laws as zero? Because they
are really more of an underlying as-
sumption, a background concept, than a
law. As a law they are a little impre-
cise since force has not yet been defined.
You could take the latter two of these ze-
roth laws as an implicit and partial defi-
nition of force. The phrase “zeroth law”
means “important implicit assumption”.
The third of the zeroth laws is usually
called “Newton’s third law.”

A given bit of matter in a system exists forever, has the same mass
forever, and is always in that system.

Mechanics is based on the notion that any part of a system is itself a
system and that all interactions between systems or subsystems have certain
simple rules, most basically:

Force is the measure of mechanical interaction.

Thus a person can be moved by forces, but not by the sight of a tree falling
towards them or the attractive smell of a flower. These things may cause,
by rules that fall outside of mechanics, forces that move a person. When a
person moves towards a flower or away from a falling tree she is moved by
the force of the ground on her feet not by smell or fear. Finally,

The principle of “action and reaction”: what one system does to an-
other, the other does back to the first.

When a person accelerates away from a falling tree because of the force on
the ground, her feet push equally hard on the ground the other way. Of course
you think of this the other way around. To start running you make a quick
action, pushing on the ground with your feet. The reaction force accelerates
you. But what causes what is not the issue. Rather, if system A is pushed by
B then B is pushed back equally by A. In kindergarten talk, ‘it doesn’t matter
who started it.’

The rules above, which we call the zeroth 3laws of mechanics, imply that
all the mechanical effects of the outside world on a system can be represented
by a sketch of the system with arrows showing the forces of interaction. If we
want to know how the system, in turn, affects some part of its surroundings
we draw the opposite arrows on a sketch of the part.

Every single atomic force? OK, it is not practical to show every force
from every atom that acts on a system. We cluster the forces, add them up
and replace them with a single ‘equivalent’ force. ‘Equivalent forces are
described in the next section. A special case is the billions of gravity forces
acting on all the atoms in a system which we replace with a single force
acting at the center of gravity, described in the second section.

Draw good free body diagrams. The final two sections tell you how to
draw free body diagrams. Draw a good free body diagram and well use the
vector skills of Chapter 2 and you have near guaranteed success at doing
mechanics problems.
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3.1 Equivalent force systems
Most often one does not want to know the complete details of all the forces
acting on a system. When you think of the force of the ground on your bare
foot you do not think of the thousands of little forces at each micro-asperity
or the billions and billions of molecular interactions between the wood (say)
and your skin. Instead you think of some kind of equivalent force. In what
way equivalent? Well, because all that the equations of mechanics know
about forces is their net force and net moment, you have a criterion. You
replace the actual force system with a simpler force system, possibly just a
single well-placed force, that has the same total force and same total moment
with respect to a reference point C.

The replacement of one system with an equivalent system is often used
to help simplify or solve mechanics problems. Further, the concept of equiv-
alent force systems allows us to define a couple, a concept we will use
throughout the book. Here is the definition of the word equivalent 1when
applied to force systems in mechanics.

Two force systems are said to be equivalent if they have the same sum
(the same resultant) and the same net moment about any one point C.

We have already discussed two important cases of equivalent force systems.
On page 43 we stated the mechanics assumption that a set of forces applied
at one point is equivalent to a single resultant force, their sum, applied at that
point. Thus when doing a mechanics analysis you can replace a collection of
forces at a point with their sum. If you think of your whole foot as a ‘point’
this justifies the replacement of the billions of little atomic ground contact
forces with a single force.

On page 85 we discovered that a force applied at a different point is equiv-
alent to the same force applied at a point displaced in the direction of the
force. You can thus harmlessly slide the point of force application along the
line of the force.

More generally, we can compare two sets of forces. The first set consists
of

*

F
.1/
1 ;

*

F
.1/
2 ;

*

F
.1/
3 , etc. applied at positions *

r
.1/

1=C
;*r
.1/

2=C
;*r
.1/

3=C
, etc. In short

hand, these forces are
*

F
.1/
i applied at positions *

r
.1/

i=C
, where each value of i

describes a different force (i D 7 refers to the seventh force in the set). The
second set of forces consists of

*

F
.2/
j applied at positions *

r
.2/

j=C
where each

value of j describes a different force in the second set.
Now we compare the net (resultant) force and net moment of the two sets.

If

*

F
.1/
tot D *

F
.2/
tot and

*

M
.1/
C D *

M
.2/
C (3.1)

1Other phrases used to describe the
same concept include: statically equiv-
alent, mechanically equivalent, and
equipollent.

Filename:tfigure-equivforcepair

x

y ı̂

ĵ
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⇀
FC = 2 Nĵ
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Filename:tfigure2-wheelbearing

Figure 3.2: Frictionless wheel bearing.
All the bearing forces are equivalent to
a single force acting at the center of the
wheel.
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not.

then the two sets are equivalent. Here we have defined the net forces and net
moments by

*

F
.1/

tot D
X

all forces i

*

F
.1/
i ;

*

M
.1/
C D

X
all forces i

*
r
.1/

i=C
� *

F
.1/
i ;

*

F
.2/
tot D

X
all forces j

*

F
.2/
j ; and

*

M
.2/
C D

X
all forces j

*
r
.2/

j=C
� *

F
.2/
j :

If you find the
P

(sum) symbol intimidating see box 3.1 on page 127.
Example:
Consider force system (1) with forces

*
FA and

*
FC and force system (2) with forces

*
F0 and

*
FB as shown in fig. 3.1. Are the systems equivalent? First check the sum of

forces.
*
F
.1/
tot

�D *
F
.2/
totX

*
F
.1/
i

�D
X

*
F
.2/
j

*
FA C

*
FC

�D *
F0 C

*
FB

1NO{C 2N O|
p
D .1NO{C 1N O|/C 1N O|

Then check the sum of moments about C.
*
M

.1/
C

�D *
M

.2/
CX

*r
.1/
i=C

� *
F
.1/
i

�D
X

*r
.2/
j=C

� *
F
.2/
j

*rA=C �
*
FA C*rC=C �

*
FC

�D *r0=C �
*
F0 C*rB=C �

*
FB

.�1mO{C 1m O|/ � 1NO{C*
0 � 2N O| �D .�1mO{/ � .1NO{C 1N O|/C 1m O| � 1N O|
�1m N Ok

p
D �1m N Ok

So the two force systems are indeed equivalent.

What is so special about the point C in the example above? Nothing.

If two force systems are equivalent with respect to some point C, they
are equivalent with respect to any point.

For example, both of the force systems in the example above have the same
moment of 2N m Ok about the point A. See box 3.2 for the proof of the general
case.

Example: Frictionless wheel bearing
If the contact of an axle with a bearing housing is perfectly frictionless then each of
the contact forces has no moment about the center of the wheel (fig. 3.2). Thus the
whole force system is equivalent to a single force at the center of the wheel.

Couples
Consider a pair of equal and opposite forces that are not collinear. Such a pair
is called a couple.The net moment caused by a couple is the size of the force
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times the perpendicular distance between the two lines of action and doesn’t
depend on the reference point. In fact, any force system that has

*

Ftot D
*

0

causes the same moment about all different reference points (as shown at the
end of box 3.2). So, in modern usage, any force system with any number of
forces and with

*

Ftot D
*

0 is called a couple. A couple is described by its net
moment. 2

A couple is any force system that has a total force of
*

0. It is described
by the net moment

*

M that it causes.

We then think of
*

M as representing an equivalent force system that con-
tributes

*

0 to the net force and
*

M to the net moment with respect to every
reference point.

The concept of a couple (also called an applied moment or an applied
torque) is especially useful for representing the net effect of a complicated
collection of forces that causes some turning. The complicated set of elec-
tromagnetic forces turning a motor shaft can be replaced by a couple.

3.1
X

means add
In mechanics we often need to add up lots of things: all the forces
on a body, all the moments they cause, all the mass of a system, etc.
One notation for adding up all 14 forces on some body is

*
Fnet D *

F1 C
*
F2 C

*
F3 C

*
F4 C

*
F5 C

*
F6 C

*
F7

C*
F8 C

*
F9 C

*
F10 C

*
F11 C

*
F12 C

*
F13 C

*
F14:

which is a bit long, so we might abbreviate it as
*
Fnet D *

F1 C
*
F2 C � � � C *

F14:

But this is definition by pattern recognition. A more explicit state-
ment would be

*
Fnet D The sum of all 14 forces

*
Fi where i D 1 : : : 14

which is too space consuming. This kind of summing is so important
that mathematicians use up a whole letter of the greek alphabet as a
short hand for ‘the sum of all’. They use the capital greek ’S’ (for
Sum) called sigma which looks like this:X

:

When you read
P

aloud you don’t say ‘S’ or‘sigma’ but rather ‘the
sum of.’ The

P
(sum) notation may remind you of infinite series,

and convergence thereof. We will rarely be concerned with infi-
nite sums in this book and never with convergence issues. So panic

on those grounds is unjustified. We just want to easily write about
adding things. For example we use the

P
(sum) to write the sum of

14 forces
*
Fi explicitly and concisely as

14X
iD1

*
Fi

and say ‘the sum of F sub i where i goes from one to fourteen’.
Sometimes we don’t know, say, how many forces are being added.
We just want to add all of them so we write (a little informally)X

*
Fi meaning

*
F1 C

*
F2 C etc.;

where the subscript i lets us know that the forces are numbered.

Rather than panic when you see something like
14X
iD1

, just relax

and think: oh, we want to add up a bunch of things all of which look
like the next thing written. In general,X

(thing)i translates to (thing)1 C (thing)2 C (thing)3 C etc.

no matter how intimidating the ‘thing’ is. In time you can skip writ-
ing out the translation and will enjoy the concise notation.

2People who have been in difficult
long term relationships don’t need a me-
chanics text to know that a couple is a
pair of equal and opposite forces that
push each other around.
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Every system of forces is equivalent to a force and a
couple
Given any point C, we can calculate the net moment of a system of forces
relative to C. We then can replace the sum of forces with a single force at
C and the net moment with a couple at C and we have an equivalent force
system.

A force system is equivalent to a force
*

F D *

Ftot acting at C and a
couple M equal to the net moment of the forces about C, i.e.,

*

M D
*

MC.

If instead we want a force system at D we could recalculate the net moment
about D or just use the translation formula (see box 3.2 on page 128).

*

Ftot D *

Ftot; and
*

MD D *

MC C*
rC=D �

*

Ftot:

3.2 Two force systems that are equivalent for one reference
point are equivalent for all reference points.

Consider two sets of forces
*
F
.1/

i
and

*
F
.2/

j
with corresponding

points of application P.1/
i

and P.2/
j

at positions relative to the ori-

gin of *r.1/
i

and *r
.2/

j
. To simplify the discussion let’s define the net

forces of the two systems as
*
F
.1/
tot �

X
*
F
.1/

i
and

*
F
.2/
tot �

X
*
F
.2/

j
;

and the net moments about the origin as
*
M

.1/
0

�
X

*r
.1/

i
� *
F
.1/

i
and

*
M

.2/
0

�
X

*r
.2/

j
� *
F
.2/

j
:

Using point 0 as a reference, the statement that the two systems are
equivalent is then

*
F
.1/
tot D *

F
.2/
tot and

*
M

.1/
0

D *
M

.2/
0

. Now con-
sider point C with position *rC D *rC=0 D �*r0=C. What is the net
moment of force system (1) about point C?

*
M

.1/
C �

X
*r
.1/

i=C �
*
F
.1/

i

D
X�

*r
.1/

i
�*rC

�
� *
F
.1/

i

D
X�

*r
.1/

i
� *
F
.1/

i
�*rC �

*
F
.1/

i

�
D

X
*r
.1/

i
� *
F
.1/

i
�
X

*rC �
*
F
.1/

i

D
X

*r
.1/

i
� *
F
.1/

i
�*rC �

�X
*
F
.1/

i

�
D *

M
.1/
0

�*rC �
*
F
.1/
tot :

D *
M

.1/
0

C*r0=C �
*
F
.1/
tot :

[ Note. The calculation above uses the ‘move’ of factoring a constant
vector out of a sum. This mathematical move will be used again and
again in the development of the theory of mechanics. ] c

Similarly, for force system (2)
*
M

.2/
C D *

M
.2/
0

C*r0=C �
*
F
.2/
tot :

If the two force systems are equivalent for reference point 0 then
*
F
.1/
tot D *

F
.2/
tot and

*
M

.1/
0

D *
M

.2/
0

and the expressions above imply

that
*
M

.1/
C D *

M
.2/
C . Because we specified nothing special about the

point C, the systems are equivalent for any reference point. Thus, to
demonstrate equivalence we need to use a reference point, but once
equivalence is demonstrated we need not name the point since the
equivalence holds for all points.

By the same reasoning we find that once we know the net force
and net moment of a force system (

*
Ftot) relative to some point C (call

it
*
MC), we know the net moment relative to point D as

*
MD D

*
MC C*rC=D �

*
Ftot:

Note that if the net force is
*
0 (and the force system is then called

a couple) that
*
MD D *

MC so the net moment is the same for all
reference points.
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The total force
*

Fnet stays the same and the moment at D is the moment at C
plus the moment caused by

*

Fnet acting at position C relative to D. The net
effect of the forces of the ground on a tree, for example, is of a force and a
couple acting on the base of the tree.

Equivalent does not mean equivalent for all purposes
We have perhaps oversimplified.

Imagine you stayed up late studying and overslept. Your roommate was
not so diligent; woke up on time and went to wake you by gently shaking you.
Having read this chapter so far and no further, and being rather literal, your
roommate gets down on the floor and presses on the linoleum underneath
your bed applying a force that is equivalent to pressing on you. Obviously
this is not equivalent in the ordinary sense of the word. It isn’t even equiv-
alent in all of its mechanics effects. One force moves you even if you don’t
wake up, and the other doesn’t.

Some force systems that are ‘equivalent’ but different do have different
mechanical effects. In what sense are two force systems that have the same
net force and the same net moment really equivalent?

‘Equivalent’ force systems are equivalent in their contributions to the
equations of mechanics (equations 0-II on the inside cover) for any sys-
tem to which they are both applied.

But full mechanical analysis of a situation requires looking at the mechanics
equations of many subsystems. In the mechanics equations for each subsys-
tem, two ‘equivalent’ force systems are equivalent if they are both applied to
that subsystem.

For the analysis of the subsystem that is you sleeping, the force of your
roommate’s hand on the floor isn’t applied to you, so it doesn’t show up in
the mechanics equations for you, and doesn’t have the same effect as a force
on you.

3.3 The tidiest representation of a force system: A “wrench”
Any force system can be represented by an equivalent force and

a couple at any point. But force systems can be reduced to simpler
forms. That this is so is of more theoretical than practical import.
We state the results here without proof.

In 2D one of these two things is true:

� The system is equivalent to a couple, or most often

� There is a line parallel to the force which the system can be
described by an equivalent force with no couple.

In 3D one of these three things is true:

� The system is equivalent to a couple (applied anywhere), or

� The system is equivalent to a force (applied on a given line
parallel to the force), or most often

� There is a line for which the system can be reduced to a force
and a couple where the force, couple, and line are all parallel.
The representation of the system of forces as a force and a
parallel moment is called a wrench.

Filename:tfigure-inbed

Figure 3.4: It feels different if some-
one presses on you or presses on the
floor underneath you with an ‘equiva-
lent’ force. The equivalence of ‘equiv-
alent’ force systems depends on them
both being applied to the same system.
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SAMPLE 3.1 Equivalent force on a particle: Four forces
*

F1 D 2NO{ �
1N O|; *F2 D �5N O|; *F3 D 3NO{C12N O|, and

*

F4 D 1NO{ act on a particle. Find
the equivalent force on the particle.
Solution The equivalent force on the particle is the net force, i.e., the vector sum of all forces
acting on the particle. Thus,

*
Fnet D *

F1 C
*
F2 C

*
F3 C

*
F4

D .2NO{ � 1N O|/C .�5N O|/C .3NO{C 12N O|/C .1NO{/
D 6NO{C 6N O|:

*
Fnet D 6N.O{C O|/

Note that there is no net couple since all the four forces act at the same point. This is always

true for particles. Thus, the equivalent force-couple system for particles consists of only the

net force.

SAMPLE 3.2 Equivalent force with no net moment: In the figure shown,
F1 D 50N; F2 D 10N; F3 D 30N, and � D 60�. Find the equivalent
force-couple system about point D of the structure.
Solution From the given geometry, we see that the three forces

*
F1;

*
F2; and

*
F3 pass

through point D. Thus they are concurrent forces. Since point D is on the line of action of
these forces, we can simply slide the three forces to point D without altering their mechanical
effect on the structure. Then the equivalent force-couple system at point D consists of only the
net force,

*
Fnet, with no couple (the three forces passing through point D produce no moment

about D). This is true for all concurrent forces. Thus,
*
Fnet D *

F1 C
*
F2 C

*
F3

D F1.cos � O{ � sin � O|/ � F2 O| C F3 O{
D .F1 cos � C F3/O{ � .F1 sin � C F2/ O|

D .50N � 1
2
C 30N/O{ � .50N �

p
3

2
C 10N/ O|

D 55NO{ � 53:3N O|;
and

*
MD D *

0:

*
Fnet D 55NO{ � 53:3N O|; *MD D*

0

Graphically, the solution is shown in Fig. 3.7
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SAMPLE 3.3 An equivalent force-couple system: Three forces F1 D
100N; F2 D 50N, and F3 D 30N act on a structure as shown in the fig-
ure where � D 30�; � D 60�; ` D 1m and h D 0:5m. Find the equivalent
force-couple system about point D.
Solution The net force is the sum of all applied forces, i.e.,

*
Fnet D *

F1 C
*
F2 C

*
F3

D F1.� sin� O{ � cos� O|/C F2.cos � O{ � sin � O|/C F3 O|
D .�F1 sin� C F2 cos �/O{C .�F1 cos� � F2 sin � C F3/ O|

D .�100N � 1
2
C 50N � 1

2
/O{C .�100N �

p
3

2
� 50N �

p
3

2
C 30N/ O|

D �25NO{ � 99:9N O|:
Forces

*
F1 and

*
F3 pass through point D. Therefore, they do not produce any moment

about D. So, the net moment about D is the moment caused by force
*
F2:

*
MD D *rC=D �

*
F2

D h O| � F2.cos � O{ � sin � O|/
D �F2h cos � Ok
D �50N � 0:5m

1

2
Ok D �12:5N�m Ok:

The equivalent force-couple system is shown in Fig. 3.9

*
Fnet D �25NO{ � 99:9N O| and

*
MD D �12:5N�m Ok

SAMPLE 3.4 Translating a force-couple system: The net force and couple
acting about point O on the ’L’ shaped bar shown in the figure are 100 N and
20 N�m, respectively. Find the net force and moment about point G.

Solution The net force on a structure is the same about any point since it is just the vector
sum of all the forces acting on the structure and is independent of their point of application.
Therefore,

*
Fnet D

*
F D �100N O|:

The net moment about a point, however, depends on the location of points of application of
the forces with respect to that point. Thus,

*
MG D *

MO C*rO=G �
*
F

D M OkC .�`O{C h O|/ � .�F O|/
D .M C F `/ Ok
D .20N�mC 100N � 1m/ Ok D 120N�m Ok:

*
Fnet D �100N O|; and

*
MG D 120N�m Ok
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Figure 3.12:

SAMPLE 3.5 Checking equivalence of force-couple systems: In the figure
shown below, which of the force-couple systems shown in (b), (c), and (d)
are equivalent to the force system shown in (a)?
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Figure 3.13:

Solution The equivalence of force-couple systems require that (i) the net force be the same,
and (ii) the net moment about any reference point be the same. For the given systems, let us
choose point B as our reference point for comparing their equivalence. For the force system
shown in Fig. 3.13(a), we have,

*
Fnet D *

F1 C
*
F2 D �10N O| � 10N O| D �20N O|

*
MBnet

D *rC=B �
*
F2 D 1mO{ � .�10N O|/ D �10N�m Ok:

Now, we can compare the systems shown in (b), (c), and (d) against the computed equivalent
force-couple system,

*
Fnet and

*
MD.

� Figure (b) shows exactly the system we calculated. Therefore, it represents an equiva-
lent force-couple system.

� Figure (c): Let us calculate the net force and moment about point B for this system.

*
Fnet D *

FC

p
D �20N O|

*
MB D *

MC C*rC=B �
*
FC

D �10N�m OkC 1mO{ � .�20N O|/ D �30N�m Ok ¤ *
MBnet

:

Thus, the given force-couple system in this case is not equivalent to the force system
in (a).

� Figure (d): Again, we compute the net force and the net couple about point B:

*
Fnet D *

FD

p
D �20N O|

*
MB D *rD=B �

*
FD

D 0:5mO{ � .�20N O|/ D �10N�m Ok
p
D *
MBnet

:

Thus, the given force-couple system (with zero couple) at D is equivalent to the force
system in (a).

(b) and (d) are equivalent to (a); (c) is not.
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SAMPLE 3.6 Equivalent force with no couple: For a body, an equivalent
force-couple system at point A consists of a force

*

F D 20NO{C 15N O| and
a couple

*

MA D 10N�m Ok. Find a point on the body such that the equivalent
force-couple system at that point consists of only a force (zero couple).

Solution The net force in the two equivalent force-couple systems has to be the same. There-
fore, for the new system,

*
Fnet D

*
F D 20NO{C 15N O|. Let B be the point at which the equiva-

lent force-couple system consists of only the net force, with zero couple. We need to find the
location of point B. Let A be the origin of a xy coordinate system in which the coordinates
of B are .x; y/. Then, the moment about point B is,

*
MB D *

MA C*rA=B �
*
F

D MA
OkC .�x O{ � y O|/ � .Fx O{C Fy O|/

D MA
OkC .�Fyx C Fxy/

Ok:
Since we require that

*
MB be zero, we must have

Fyx � Fxy D MA

) y D Fy

Fx
x � MA

Fx

D 15N
20N

x � 10N�m
20N

D 0:75x � 0:5m:

This is the equation of a line. Thus, we can select any point on this line and apply the force
*
F D 20NO{C 15N O| with zero couple as an equivalent force-couple system.

Any point on the line y D 0:75x � 0:5m:

Comments: So, how or why does it work? The line we obtained is shown in gray in Fig. 3.14.
Note that this line has the same slope as that of the given force vector (slope D 0:75 D
Fy=Fx) and the offset (MA

Fx
) is such that shifting the force

*
F to this line counter balances

the given couple at A. To see this clearly, let us select three points C, D, and E on the line
as shown in Fig. 3.15. From the equation of the line, we find the coordinates of C(0,-.5m),
D(.24m,.32m) and E(.67m,0). Now imagine moving the force

*
F to C, D, or E. In each case,

it must produce the same moment
*
MA about point A. Let us do a quick check.

� *
F at point C: The moment about point A is due to the horizontal component Fx D
20N, since Fy passes through point A. The moment is Fx � AC D 20N � 0:5m D
10N�m, same as MA. The direction is counterclockwise as required.

� *
F at point D: The moment about point A is j*F j �AD D 25N � 0:4m D 10N�m, same
as MA. The direction is counterclockwise as required.

� *
F at point E: The moment about point A is due to the vertical component Fy , since
Fx passes through point A. The moment is Fy � AE D 15N � 0:67m D 10N�m, same
as MA. The direction here too is counterclockwise as required.

Once we check the calculation for one point on the line, we should not have to do any more
checks since we know that sliding the force along its line of action (line CB) produces no
couple and thus preserves the equivalence.
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Figure 3.17: The center of mass of the
ink making up the letter C is approxi-
mately at the location C shown. The
various notations for center of mass in-
clude: G, COM and cm.

3.2 Center of mass and gravity
For every system and at every instant in time, there is a unique location in
space that is the average position of the system’s mass. This place is called
the center of mass, commonly designated by cm, c.o.m., COM, G, c.g., or
C.

One of the routine but important tasks of many real engineers is to find
the center-of-mass of a complex machine. Just knowing the location of the
center-of-mass of a car, for example, is enough to estimate whether it can
be tipped over by maneuvers on level ground. The center-of-mass of a boat
must be low enough for the boat to be stable. Any propulsive force on a
space craft must be directed towards the center-of-mass in order to not induce
rotations. Tracking the trajectory of the center-of-mass of an exploding plane
can determine whether or not it was hit by a massive object. Any rotating
piece of machinery must have its center-of-mass on the axis of rotation if it
is not to cause much vibration.

Also, many calculations in mechanics are greatly simplified by making
use of a system’s center-of-mass. In particular,

the whole complicated distribution of near-earth gravity forces on a
body is equivalent to a single force at the body’s center-of-mass.

Many of the important quantities in dynamics are similarly simplified using
the center-of-mass.

The center-of-mass of a system is the point at the position *
rcm defined by

*
rcm D

P
*
rimi

mtot
for discrete systems (3.2)

D
R
*
rdm

mtot
for continuous systems

where mtot D
P

mi for discrete systems and mtot D
R
dm for continuous

systems (see boxes 3.1 and 3.4 on pages 127 and 135 for a discussion of theP
and

R
sum notations).

Often it’s good to remember this rearranged definition of center of mass:

mtot
*
rcm D

X
mi

*
ri or mtot

*
rcm D

Z
*
rdm:

That is the center of mass is the position that, when multiplied by the total
mass gives the same result as all the sum of all the mass bits each multiplied
by their positions.

For theoretical purposes we rarely need to evaluate these sums and inte-
grals, and for simple problems there are sometimes shortcuts that reduce the
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calculation to a matter of observation. For complex machines one or both of
the formulas 3.2 must be evaluated in detail 1.

Example: System of two point masses
Intuitively, the center-of-mass of the two masses shown in fig. 3.17 is between the
two masses and closer to the larger one. Referring to equation 3.2,

*rcm D
P

*rimi

mtot

D
*r1m1 C*r2m2

m1 Cm2

D
*r1.m1 Cm2/ �*r1m2 C*r2m2

m1 Cm2

D *r1 C
�

m2

m1 Cm2

�
� �� �
���

the fraction of the distance
that the cm is from*r1 to*r2

.*r2 �*r1/� �� �
BBM

the vector from*r1 to*r2.

:

so that the math agrees with common sense — the center-of-mass is on the line
connecting the masses. If m2 � m1, then the center-of-mass is near m2. If m1 �

3.4 Like
X

, the symbol
Z

also means add

We often add things up in mechanics. For example, the total mass of
some particles is

mtot D m1 Cm2 Cm3 C � � � D
X
mi

or more specifically the mass of 137 particles is, say, mtot D
137X
iD1

mi . And the total mass of a bicycle is:

mbike D
100;000;000;000;000;000;000;000X

iD1

mi

wheremi are the masses of each of the 1023 (or so) atoms of metal,
rubber, plastic, cotton, and paint. But atoms are so small and there
are so many of them. Instead we often think of a bike as built of
macroscopic parts. The total mass of the bike is then the sum of the
masses of the tires, the tubes, the wheel rims, the spokes and nipples,
the ball bearings, the chain pins, and so on. And we would write:

mbike D
2;000X
iD1

mi

where now themi are the masses of the 2,000 or so bike parts. This
sum is more manageable but still too detailed in concept for some
purposes.

An approach that avoids attending to atoms or ball bearings, is
to think of sending the bike to a big shredding machine that cuts it
up into very small bits. Now we write

mbike D
X
mi

where the mi are the masses of the very small bits. We don’t fuss
over whether one bit is a piece of ball bearing or fragment of cotton
from the tire walls. We just chop the bike into bits and add up the
contribution of each bit. If you take the letter S, as in SUM, and
distort it and you get a big old fashioned German ‘S’ used in calculus
as the integral sign

Filename:tablefigure-SisInt

S

So we write

mbike D
Z
dm

to mean the
R
um of all the teeny bits of mass. More formally we

mean the value of that sum in the limit that all the bits are infinitesi-
mal (not minding the technical fine point that its hard to chop atoms
into infinitesimal pieces).

The mass is one of many things we would like to add up, though
many of the others also involve mass. In center-of-mass calculations,
for example, we add up the positions ‘weighted’ by mass.Z

*r dm which means
X

limmi!0

*rimi
:

That is, you take your object of interest and chop it into a billion
pieces and then re-assemble it. For each piece you make the vector
which is the position vector of the piece multiplied by (‘weighted
by’) its mass and then add up the billion vectors. Well really you
chop the thing into a trillion trillion : : : pieces, but a billion gives
the idea.

1This routine work is generally done
with CAD (computer aided design) soft-
ware. But an engineer still needs to
know the basic calculation skills in or-
der to make sense of, and roughly check,
the computer calculations and in order
to think of appropriate design changes.
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Figure 3.18: Center of mass of a system
consisting of two points.

2Note: writing
Rm2
m1
.something/ dm

is nonsense becausem is not a scalar pa-
rameter which labels points in a material
(there is no point at m D 3 kg).
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Figure 3.19: Where is the center-of-
mass of a uniform rod? In the middle,
as you can find calculating a few ways
or by symmetry.

m2, then the center-of-mass is near m1. If m1 D m2 the center-of-mass is right in
the middle at .*r1 C*r2/=2.

Continuous systems

How do we evaluate integrals like
Z
.something/ dm? In center-of-mass

calculations, .something/ is position, but we will evaluate similar integrals
where .something/ is some other scalar or vector function of position. Most
often we label the material by its spatial position, and evaluate dm in terms
of increments of position. For 3D solids dm D �dV where � is density
(mass per unit volume). So

R
.something/dm turns into a standard vol-

ume integral
Z
V

.something/� dV 2.For thin flat things like metal sheets

we often take � to mean mass per unit area A so then dm D �dA andR
.something/dm D R

A.something/� dA. For mass distributed along a line
or curve we take � to be the mass per unit length or arc length s and so
dm D �ds and

R
.something/dm D R

curve.something/� ds.
Example. The center-of-mass of a uniform rod is naturally in the middle, as the
calculations here show (see fig. 3.18a). Assume the rod has length L D 3m and
mass m D 7 kg.

*rcm D
R
*r dm

mtot
D
R L
0 x O{

dm����
�dxR L

0 � dx
D �.x2=2/jL0

�.1/jL1
O{ D �.L2=2/

�L
O{ D .L=2/O{

So *rcm D .L=2/O{, or by dotting with O{ (taking the x component) we get that the
center-of-mass is on the rod a distance d D L=2 D 1:5m from the end.

The center-of-mass calculation is objective. It describes something about the
object that does not depend on the coordinate system. In different coordinate
systems the center-of-mass for the rod above will have different coordinates,
but it will always be at the middle of the rod.

Example. Find the center-of-mass using the coordinate system with s & O� in
fig. 3.18b:

*rcm D
R
*r dm

mtot
D
R L
0 s O� �dsR L
0 � ds

O� D �.s2=2/jL0
�.1/jL0

O� D �.L2=2/

�L
O� D .L=2/ O�;

again showing that the center-of-mass is in the middle.

Note, one can treat the center-of-mass vector calculations as separate scalar
equations, one for each component. For example:

O{ �
�
*
rcm D

R
*
r dm

mtot

�
) rxcm D xcm D

R
x dm

mtot
:

Finally, there is no law that says you have to use the best coordinate system.
One is free to make trouble for oneself and use an inconvenient coordinate
system.
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Example. Use the xy coordinates of fig. 3.18c to find the center-of-mass of the
rod.

xcm D
R
xdm

mtot
D
R `2
�`1

x����
s cos � �dsR L
0 � ds

D
� cos � s

2

2 j
`2
�`1

�.1/j`2�`1
D � cos �

.`2
2
�`2

1
/

2

�.`1 C `2/

D cos �.`2 � `1/
2

Similarly ycm D sin �.`2 � `1/=2 so

*rcm D `2 � `1
2

.cos � O{C sin � O|/

which is at the middle of the rod.

The most commonly needed center-of-mass that can be found analytically
but not directly from symmetry is that of a triangle (see box 3.6 on page 144).
In your calculus text you will find more examples of finding the center-of-
mass using integration.

Center of mass and centroid
For objects with uniform material density we have

*
rcm D

R
*
rdm

mtot
D
R
V
*
r�dVR
V �dV

D �
R
V
*
rdV

�
R
V dV

D
R
V
*
rdV

V

where the last expression is just the formula for geometric centroid. Analo-
gous calculations hold for 2D and 1D geometric objects.

For objects with density that does not vary from point to point, the
geometric centroid and the center-of-mass coincide.

Center of mass and symmetry
The center-of-mass respects any symmetry in the mass distribution of a sys-
tem. If the word ‘middle’ has unambiguous meaning in English then that is
the location of the center-of-mass, as for the rod of fig. 3.18 and the other
examples in fig. 3.22.

Example: Center of mass of a semicircle.
(see fig. 3.20) The center of mass of a semicircular arc of mass m and radius r is

on the y axis at x D 0, by symmetry. The location of yG is found by

yG D
R
y dm

mtot
D 1

m

Z �

0

y����
r sin �

dm����
� ds D 1

m

Z �

0
r sin �

�����
m

�r

ds����
r d�

D r

�

Z �

0
sin � d� D 2

�
r � 0:64 r
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Figure 3.20: The center of mass of a
semicircular arc is about 0:6 r from the
center of the circle.
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Filename:tfigure3-com-tworods
O

cm

⇀
r 1 ⇀

r 2

⇀
r cm

Figure 3.21: Center of mass of two rods

The center of mass of a semicircle is almost 2/3 of the way towards the perimeter
from the center of the circle. You can see that G has to be above the halfway point
by noticing how much more mass is near to y D r (where the circular arc is nearly
horizontal) than to y D 0 (where the circular arc is running away from the x axis).

Systems of systems and composite objects
Another way of interpreting the formula

*
rcm D

*
r1m1 C*

r2m2 C � � �
m1 Cm2 C � � �

is that the m’s are the masses of subsystems, not just points, and that the *
ri

are the positions of the centers of mass of these systems. This subdivision
is justified in box 3.5 on page 140. The center-of-mass of a single complex
shaped object can be found by treating it as an assembly of simpler objects.

Example: Two rods
The center-of-mass of two rods shown in fig. 3.21 can be found as

*rcm D
*r1m1 C*r2m2

m1 Cm2

where*r1 and*r2 are the positions of the centers of mass of each rod and m1 and m2

are the masses.

Example: ‘L’ shaped plate

Filename:tfigure3-com-symm
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Figure 3.22: The center of mass and the geometric centroid share the symmetries of the object.
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Consider the plate with uniform mass per unit area �.

*rG D
*rImI C*rIImII
mI CmII

D .a2 O{C a O|/.2�a2/C .32aO{C a
2 O|/.�a2/

.2�a2/C .�a2/

D 5

6
a.O{C O|/:

Composite objects using subtraction

It is sometimes useful to think of an object as composed of pieces, some of
which have negative mass.

Example: ‘L’ shaped plate, again
Reconsider the plate from the previous example.

*rG D
*rImI C*rIImII
mI CmII

D .aO{C a O|/.�.2a/2/C .32aO{C 3
2a O|/

mII� �� �
.��a2/

.�.2a/2/C .��a2/� �� �
mII

D 5

6
a.O{C O|/:

Center of gravity
The force of gravity on each little bit of an object is gmi where g is the
local gravitational ‘constant’ and mi is the mass of the bit. For objects that
are small compared to the radius of the earth (a reasonable assumption for
all but a few special engineering calculations) the gravity constant is indeed
constant from one point on the object to another (see box A.3 on page A.3
for a discussion of the meaning and history of g.)

Not only that, all the gravity forces point in the same direction, down. For
engineering purposes, the two intersecting lines that go from your two hands
to the center of the earth are parallel.) Lets call this the �Ok direction. So the
net force of gravity on an object is:
*

Fnet D P *

Fi D P
mig.�Ok/ D �mg Ok (discrete systems)

D R
d

*

F D R �g Ok dm� �� �
d
*
F

D �mg Ok (continuous systems)

That’s easy, the billions of gravity forces on an objects microscopic con-
stituents add up to mg pointed down. What about the net moment of the
gravity forces? The answer turns out to be simple. The top line of the calcu-
lation below poses the question, the last line gives the lucky answer. 3
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Figure 3.23: The center-of-mass of the
‘L’ shaped object can be found by think-
ing of it as a rectangle plus a square.
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Figure 3.24: Another way of looking at
the ‘L’ shaped object is as a square mi-
nus a smaller square in its upper right-
hand corner.

3We do the calculation here using theR
notation for sums. But it could be

done just as well using
P

.
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*

MC D
Z

*
r � d

*

F The net moment with respect to C.

D
Z

*
r=C �

�
�g Ok dm

�
A force bit is gravity acting on a mass bit.

D
�Z

*
r=Cdm

�
�
�
�g Ok

�
Distributive law (g & Ok are constants).

D .*rcm=Cm/ �
�
�g Ok

�
Definition of center-of-mass.

D *
rcm=C �

�
�mg Ok

�
Re-arranging terms.

D *
rcm=C �

*

Fnet Express in terms of net gravity force.

Thus the net moment is the same as for the total gravity force acting at the
center-of-mass.

The near-earth gravity forces acting on a system are equivalent to a
single force, mg, acting at the system’s center-of-mass.

3.5 Why can subsystems be treated like particles when finding
the center-of-mass?

Filename:tfigure4-dottysubsys

0
Look at the collection of 47 particles above and then think of it as
a set of three subsystems: I, II, and III with 2, 14, and 31 particles,
respectively. Masses 1 and 2 as subsystem I with center-of-mass *rI
and total mass mI . Similarly, we call subsystem II masses m3 to
m16, and subsystem III , masses m17 to m47. We can calculate
the center-of-mass of the system by treating it as 47 particles, or we
can re-arrange the sum as follows:

*rcm D
*r1m1 C*r2m2 C � � � C*r46m46 C*r47m47

m1 Cm2 C � � � Cm47

D
*
r1m1C

*
r2m2

m1Cm2
.m1 Cm2/

m1 Cm2 C � � � Cm47

C
*
r3m3C���C

*
r16m16

m3C���Cm16
.m3 C � � � Cm16/

m1 Cm2 C � � � Cm47

C
*
r17m17C���

*
r47m47

m17C���Cm47
.m17 C � � � Cm47/

m1 Cm2 C � � � Cm47

D
*rImI C*rIImII C*rIIImIII
mI CmII CmIII

, where

where *rI D
*r1m1 C*r2m2

m1 Cm2

;

mI D m1 Cm2

*rII D etc.

That is, the center of mass of the 47 particles is the same as the center
of mass of three particles, where each of the three particles has the
total mass of its subsystem located at its subsystem’s center of mass.

The reduction of subsystem of particles to one particle is easily
generalized to the integral formulae as well like this.

*rcm D
R
*r dmR
dm

D
R

region 1
*r dmC R

region 2
*r dmC R

region 3
*r dmC � � �R

region 1 dmC R
region 2 dmC R

region 1 dmC � � �

D
*rImI C*rIImII C*rIIImIII C � � �
mI CmII CmIII C � � � :

The general idea of the calculations above is that center-of-mass cal-
culations are basically big sums (addition), and addition is ‘associa-
tive.’
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For the purposes of calculating the net force and moment from near-earth
(constant g) gravity forces, a system can be replaced by a point mass at the
center of gravity. The words ‘center-of-mass’ and ‘center of gravity’ both
describe the same point in space.

Although the result we have just found seems plain enough, here are two
things to ponder about gravity when viewed as an inverse square law (and
thus not constant like we have assumed) that may make the result above
seem less obvious.

� The net gravity force on a sphere is indeed equivalent to the force of a
point mass at the center of the sphere. It took the genius Isaac Newton
3 years to deduce this result and the reasoning involved is too advanced
for this book.

� The net gravity force on systems that are not spheres is generally not
equivalent to a force acting at the center-of-mass (this is important for
the understanding of tides as well as the orientational stability of satel-
lites).

How to find the center-of-mass of a complex system
You find the center-of-mass of a complex system by knowing the masses and
mass centers of its components. You find each of these centers of mass by

� Treating it as a point mass, or

� Treating it as a symmetric body and locating the center-of-mass in the
middle, or

� Using integration, or

� Using the result of an experiment (which we will discuss in statics), or

� Treating the component as a complex system itself and applying this
very recipe.

The recipe is just an application of the basic definition of center-of-mass
(eqn. 3.2) but with our accumulated wisdom that the locations and masses in
that sum can be the centers of mass and total masses of complex subsystems.

One way to arrange one’s data is in a table or spreadsheet, like below.
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Center of mass spreadsheet
Subsys# 1 2 3 4 5 6 7
Subsys 1 x1 y1 z1 m1 m1x1 m1y1 m1z1
Subsys 2 x2 y2 z2 m2 m2x2 m2y2 m2z2

:::
:::

:::
:::

:::
:::

:::
:::

Subsys N xN yN zN mN mNxN mNyN mN zN

Row N C 1 mtot D

=sums
P

mi

P
mixi

P
miyi

P
mizi

divide row N C 1 by mtot xcm D ycm D zcm D

) Result
P

mixi

mtot

P
miyi

mtot

P
mizi

mtot

1. The first four columns are the basic data. They are the x; y, and z

coordinates of the subsystem center-of-mass locations (relative to some
clear reference point), and the masses of the subsystems, one row for
each of the N subsystems.

2. One next calculates three new columns (5,6, and 7) which come from
each coordinate multiplied by its mass. For example the entry in the
6th row and 7th column is the z component of the 6th subsystem’s
center-of-mass multiplied by the mass of the 6th subsystem.

3. Then one sums columns 4 through 7. The sum of column 4 is the total
mass, the sums of columns 5 through 7 are the total mass-weighted
positions.

4. Finally the result, the system center of mass coordinates, are found by
dividing columns 5-7 of row N+1 by column 4 of row N+1.

Of course, there are multiple ways of systematically representing the data.
The spreadsheet-like calculation above is just one organization scheme.

Summary of center-of-mass
All discussions in mechanics make frequent reference to the concept of cen-
ter of mass

mtot
*
rcm D

X
*
rimi for discrete systems or systems of systems

D
Z

*
rdm for continuous systems

where

mtot D
X

mi for discrete systems or systems of systems

D
Z

dm for continuous systems.
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Who cares about the center of mass? We have demonstrated that the gravity
moment is calculated correctly by applying the net gravity force at the center-
of-mass. These other useful facts about center-of-mass will come later in the
book.

For non-point-mass systems, the expressions for gravitational moment,
linear momentum, angular momentum, and energy are all simplified by
using the center-of-mass.

Simple center-of-mass calculations also can serve as a check of a more
complicated analysis. For example, after a computer simulation of a system
with many moving parts is complete, one way of checking the calculation is
to see if the whole system’s center of mass moves as would be expected by
applying the net external force to the system.
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3.6 The COM of a uniform triangle is h=3 up from the base
The center-of-mass of a 2D uniform triangular region is the centroid
of the area.

Filename:tfigure-triangle1

First we consider a right triangle with perpendicular sides b and h

Filename:tfigure-triangle2
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and find the x coordinate of the centroid as

xcmA D
Z
x dA

D
Z h

0

"Z b
h
x

0

x dy

#
dx D

Z h

0

�xy�

�����
yD b

h
x

yD0

dx

xcm

�
bh

2

�
D

Z h

0

x

�
b

h
x

�
dx D b

h

x3

3

����
h

0

D bh2

3

) xcm D 2h

3
, a third of the way to the left of the ver-

tical base on the right. By similar reasoning, but in the y direction,
the centroid is a third of the way up from the base.
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The center-of-mass of an arbitrary triangle can be found by treating
it as the sum of two right triangles

Filename:tfigure-triangle4
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so the centroid is a third of the way up from the base of any triangle.
Finally, the result holds for all three bases. Summarizing, the cen-
troid of a triangle is at the point one third up from each of the bases.
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Non-calculus approach
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M is the midpoint of the line segment BC. Divide triangle ABC into
equal width strips that are parallel to AM. Group these strips into
pairs, each a distance s from AM. Because M is the midpoint of BC,
by proportions each of these strips has the same length `. What is the
distance of the center-of-mass from the line AM? Because the strips
are of equal area and equal distance from AM but on opposite sides,
contributions to the sum come in canceling pairs. So the centroid is
on AM. Likewise for all three sides. So the triangle’s centroid is at
the intersection of the three side bisectors.

Why do the three side bisectors intersect a third of the way up
each base? Look at the 6 triangles formed by the side bisectors.
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The two triangles marked a and a have the same area (call it a)
because they have the same height and bases of equal length (BM and
CM). Likewise for the other side bisectors, so that the pairs marked
b have equal area as do the pairs c. Triangle ABM has the same base
and height and thus the same area as the triangle ACM. So aC bC
b D a C c C c. Thus b D c and similarly a D b: all six little
triangles have equal area. Thus the area of ABC is 3 times the area
of GBC. Because ABC and GBC share the base BC, ABC must have
3 times the height as GBC, and point G is thus a third of the way up
from the base.

Where is the middle of a triangle?
We just showed that the centroid of a triangle is at the point that is at
the intersection of: the three side bisectors; the three area bisectors
(which are the side bisectors); and the three lines one third of the
way up from the three bases.

And if the triangle only had three equal point masses on its ver-
tices the center of mass lands on that same place. Thus the ‘middle’
of a triangle seems pretty well defined. Yet, there is ambiguity. If the
triangle were made of bars along each edge, each with equal cross
sections, the center-of-mass would be in a different location for all
but equilateral triangles. Also, the three angle bisectors of a triangle
do not intersect at the centroid. Unless we define middle to mean
centroid, the “middle” of a triangle is not well defined.
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SAMPLE 3.7 Center of mass in 1-D: Three particles (point masses) of mass
2 kg, 3 kg, and 3 kg, are welded to a straight massless rod as shown in the
figure. Find the location of the center-of-mass of the assembly.
Solution Let us select the first mass,m1 D 2 kg, to be at the origin of our co-ordinate system
with the x-axis along the rod. Since all the three masses lie on the x-axis, the center-of-mass
will also lie on this axis. Let the center-of-mass be located at xcm on the x-axis. Then,

mtotxcm D
3X

iD1
mixi D m1x1 Cm2x2 Cm3x3

D m1.0/Cm2.`/Cm3.2`/

) xcm D m2`Cm32`

m1 Cm2 Cm3

D 3 6kg � 0:2mC 3 6kg � 0:4m
.2C 3C 3/ 6kg

D 1:8m
8

D 0:225m:

xcm D 0:225m

Alternatively, we could find the center-of-mass by first replacing the two 3 kg masses with a
single 6 kg mass located in the middle of the two masses (the center-of-mass of the two equal
masses) and then calculate the value of xcm for a two particle system consisting of the 2 kg
mass and the 6 kg mass (see Fig. 3.26):

xcm D 6 kg � 0:3m
8 kg

D 1:8m
8

D 0:225m:

SAMPLE 3.8 Center of mass in 2-D: Two particles of mass m1 D 1 kg and
m2 D 2 kg are located at coordinates (1m, 2m) and (-2m, 5m), respectively,
in the xy-plane. Find the location of their center-of-mass.
Solution Let*rcm be the position vector of the center-of-mass. Then,

mtot
*rcm D m1

*r1 Cm2
*r2

) *rcm D m1
*r1 Cm2

*r2
mtot

D m1
*r1 Cm2

*r2
m1 Cm2

D 1 6kg.1mO{C 2m O|/C 2 6kg.�2mO{C 5m O|/
3 6kg

D .1m � 4m/O{C .2mC 10m/ O|
3

D �1mO{C 4m O|:

Thus the center-of-mass is located at the coordinates(-1m, 4m).

.xcm; ycm/ D .�1m; 4m/

Geometrically, this is just a 1-D problem like the previous sample. The center-of-mass has

to be located on the straight line joining the two masses. Since the center-of-mass is a point

about which the distribution of mass is balanced, it is easy to see (see Fig. 3.27) that the

center-of-mass must lie one-third way from m2 on the line joining the two masses so that

2 kg � .d=3/ D 1 kg � .2d=3/.
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Filename:sfig2-4-2
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Figure 3.29:

SAMPLE 3.9 Location of the center-of-mass. A structure is made up of
three point masses, m1 D 1 kg; m2 D 2 kg and m3 D 3 kg, connected
rigidly by massless rods. At the moment of interest, the coordinates of the
three masses are (1.25 m, 3 m), (2 m, 2 m), and (0.75 m, 0.5 m), respectively.
At the same instant, the velocities of the three masses are 2m=sO{; 2m=s.O{�
1:5 O|/ and 1m=s O|, respectively. Find the coordinates of the center-of-mass
of the structure.
Solution Just for fun, let us do this problem two ways — first using scalar equations for the
coordinates of the center-of-mass, and second, using vector equations for the position of the
center-of-mass.

1. Scalar calculations: Let .xcm; ycm/ be the coordinates of the mass-center. Then from
the definition of mass-center,

xcm D
P
mixiP
mi

D m1x1 Cm2x2 Cm3x3
m1 Cm2 Cm3

D 1 kg � 1:25mC 2 kg � 2mC 3 kg � 0:75m
1 kgC 2 kgC 3 kg

D 7:5 6kg � m
6 6kg

D 1:25m:

Similarly,

ycm D
P
miyiP
mi

D m1y1 Cm2y2 Cm3y3
m1 Cm2 Cm3

D 1 kg � 3mC 2 kg � 2mC 3 kg � 0:5m
1 kgC 2 kgC 3 kg

D 8:5 6kg � m
6 6kg

D 1:42m:

Thus the center-of-mass is located at the coordinates (1.25 m, 1.42 m).

.1:25m; 1:42m/

2. Vector calculations: Let*rcm be the position vector of the mass-center. Then,

mtot
*rcm D

3X
iD1

mi
*ri D m1

*r1 Cm2
*r2 Cm3

*r3

) *rcm D m1
*r1 Cm2

*r2 Cm3
*r3

m1 Cm2 Cm3

Substituting the values of m1; m2, and m3, and*r1 D 1:25mO{C 3m O|,*r2 D 2mO{C
2m O|, and*r3 D 0:75mO{C 0:5m O|, we get,

*rcm D 1 kg � .1:25O{C 3 O|/mC 2 kg � .2O{C 2 O|/mC 3 kg � .0:75O{C 0:5 O|/m
.1C 2C 3/ kg

D .7:5O{C 8:5 O|/ 6kg � m
6 6kg

D 1:25mO{C 1:42m O|

which, of course, gives the same location of the mass-center as above.

*rcm D 1:25mO{C 1:42m O|
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SAMPLE 3.10 Center of mass of a bent bar: A uniform bar of mass 4 kg
is bent in the shape of an asymmetric ’Z’ as shown in the figure. Locate the
center-of-mass of the bar.

Solution Since the bar is uniform along its length, we can divide it into three straight seg-
ments and use their individual mass-centers (located at the geometric centers of each segment)
to locate the center-of-mass of the entire bar. The mass of each segment is proportional to its
length. Therefore, if we letm2 D m3 D m, thenm1 D 2m; andm1Cm2Cm3 D 4m D 4 kg
which gives m D 1 kg. Now, from Fig. 3.30,

*r1 D `O{C ` O|
*r2 D 2`O{C `

2
O|

*r3 D .2`C `

2
/O{ D 5`

2
O{

So,
*rcm D m1

*r1 Cm2
*r2 Cm3

*r3
mtot

D 2m.`O{C ` O|/Cm.2`O{C `
2 O|/Cm.5`2 O{/

4m

D 6m`.2O{C 2 O| C 2O{C 1
2 O| C 5

2 O{/
46m

D `

8
.13O{C 5 O|/

D 0:5m
8

.13O{C 5 O|/
D 0:812mO{C 0:312m O|:

*rcm D 0:812mO{C 0:312m O|

Geometrically, we could find the center-of-mass by considering two masses at a time, con-
necting them by a line and locating their mass-center on that line, and then repeating the
process as shown in Fig. 3.31.
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The center-of-mass of m2 and m3 (each of mass m) is at the mid-point of the line con-

necting the two masses. Now, we replace these two masses with a single mass 2m at their

mass-center. Next, we connect this mass-center and m1 with a line and find their combined

mass-center at the mid-point of this line. The mass-center just found is the center-of-mass of

the entire bar.
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Figure 3.33:

Filename:sfig2-cm-plate-a

2 m

d

x

y

r
A

O

Figure 3.34:

SAMPLE 3.11 Shift of mass-center due to cut-outs: A 2m � 2m uniform
square plate has mass m D 4 kg. A circular section of radius 250 mm is
cut out from the plate as shown in the figure. Find the center-of-mass of the
plate.

Solution Let us use an xy-coordinate system with its origin at the geometric center of the
plate and the x-axis passing through the center of the cut-out. Since the plate and the cut-out
are symmetric about the x-axis, the new center-of-mass must lie somewhere on the x-axis.
Thus, we only need to find xcm (since ycm D 0). Let m1 be the mass of the plate with
the hole, and m2 be the mass of the circular cut-out. Clearly, m1 C m2 D m D 4 kg. The
center-of-mass of the circular cut-out is at A, the center of the circle. The center-of-mass of
the intact square plate (without the cut-out) must be at O, the middle of the square. Then,

m1xcm Cm2xA D mxO D 0

) xcm D �m2

m1

xA:

Now, since the plate is uniform, the masses m1 and m2 are proportional to the surface areas
of the geometric objects they represent, i.e.,

m2

m1

D �r2

`2 � �r2 D
��

`
r

�2
� �

:

Therefore,

xcm D �m2

m1

d D � ��
`
r

�2
� �

d (3.3)

D � ��
2m
:25m

�2
� �

� 0:5m

D �25:81 � 10�3 m D �25:81mm

Thus the center-of-mass shifts to the left by about 26 mm because of the circular cut-out of
the given size.

xcm D �25:81mm

Comments: The advantage of finding the expression for xcm in terms of r and ` as in

eqn. (3.3) is that you can easily find the center-of-mass of any size circular cut-out located

at any distance d on the x-axis. This is useful in design where you like to select the size or

location of the cut-out to have the center-of-mass at a particular location.
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SAMPLE 3.12 Center of mass of two objects: A square block of side 0:1m
and mass 2 kg sits on the side of a triangular wedge of mass 6 kg as shown in
the figure. Locate the center-of-mass of the combined system.

Solution The center-of-mass of the triangular wedge is located at h=3 above the base and
`=3 to the right of the vertical side. Let m1 be the mass of the wedge and*r1 be the position
vector of its mass-center. Then, referring to Fig. 3.35,

*r1 D
`

3
O{C h

3
O|:

The center-of-mass of the square block is located at its geometric center C2. From geometry,
we can see that the line AE that passes through C2 is horizontal since �OAB D 45� (h D
` D 0:3m ) and �DAE D 45�. Therefore, the coordinates of C2 are ( d=

p
2; h ). Let m2

and*r2 be the mass and the position vector of the mass-center of the block, respectively. Then,

*r2 D
dp
2
O{C h O|:

Now, noting that m1 D 3m2 or m1 D 3m; and m2 D m where m D 2 kg, we find
the center-of-mass of the combined system:

*rcm D m1
*r1 Cm2

*r2
.m1 Cm2/

D
3m. `3 O{C h

3 O|/Cm. dp
2
O{C h O|/

3mCm

D
6m�.`C dp

2
/O{C 2h O|�

46m
D 1

4
.
dp
2
C `/O{C h

2
O|

D 1

4
.
0:1mp
2
C 0:3m/O{C 0:3m

2
O|

D 0:093mO{C 0:150m O|:
*rcm D 0:093mO{C 0:150m O|

Thus, the center-of-mass of the wedge and the block together is slightly closer to the side
OA and higher up from the bottom OB than C1.0:1m; 0:1m/. This is what we should expect
from the placement of the square block.

Note that we could have, again, used a 1-D calculation by placing a point mass 3m at C1
andm at C2, connected the two points by a straight line, and located the center-of-mass C on

that line such that CC2 D 3CC1. You can verify that the distance from C1.0:1m; 0:1m/ to

C.:093m; 0:15m/ is one third the distance from C to C2.:071m; 0:3m/.
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Figure 3.37: A sketch of a bicycle and
a free-body diagram of the braked front
wheel. A sketch of a person and a free-
body diagram of the whole person.

1 Free-body Perkins. In the 1950’s
Cornell professor Harold C. Perkins
was nick named ‘free-body Perkins’.
Perkins would stop students in the hall
and say “You! Come in my office! Draw
a free-body diagram of this!” Students
drew free-body diagrams to please per-
snickety Perkins. And so learned how to
get mechanics problems right.

3.3 Free-body diagrams: interactions,
representing forces and partial FBDs

A free-body diagram is a sketch of the system of interest and the forces that
act on the system. A free-body diagram precisely defines the system to which
you are applying mechanics equations and the forces to be considered. Any
reader of your calculations needs to see your free-body diagrams. To put it
directly, if you want to be right and be seen as right, then 1

Draw a free-body diagram!

The concept of the free-body diagram is simple. In practice, however, draw-
ing useful free-body diagrams takes some thought, even for those practiced
at the art. Some basic tips are described below a few different ways.

How to draw a free-body diagram
We suggest the following procedure for drawing a free-body diagram, as
shown schematically in fig. 3.41

1. Define the system. Define in your own mind to what system, or what
collection of material, you would like to apply the laws of mechanics.
This ‘body’ may be just a part of your overall system of interest. Fig-
ure 3.37 on page 151 shows some possible systems when considering
pliers.

2. Sketch the system. Your sketch may include various cut marks to show
how the ‘body’ is isolated from its environment. Imagine cutting the
system free from its environment with a sharp scalpel or with a chain
saw.

3. Stare at each cut. Look systematically at the picture at the places
that the system interacts with material not shown in the picture, places
where you made ‘cuts’.

4. Fool the body. Use forces and torques to fool the system into thinking
it has not been cut. For example, if the system is being pushed in a
given direction at a given contact point where you have cut the system
free, then show a force in that direction at that point. If a system is
being prevented from rotating by a (cut) rod, then show a torque at that
cut.

5. Replace gravity with a force. To show that you have cut the system
from the earth’s gravity force show the force of gravity on the system’s
center-of-mass or on the centers of mass of its parts.
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What shows on a free-body diagram? What doesn’t?
Here are some more details about the elements of a good free body diagram.
Some of these are stylistic issues, but we think they help with problem solv-
ing.

� The system. A free-body diagram is a picture of the system for which
you would like to apply linear or angular momentum balance (force
and moment balance being special cases) or power balance. It shows
the system isolated (‘free’) from its environment. That is, the free-body
diagram does not show things that are near or touching the system of
interest. See fig. 3.36.

� The word ‘body’ means system. A free-body diagram may show one
or more particles, rigid objects, deformable objects, or parts thereof
such as a machine, a component of a machine, or a part of a component
of a machine. You can draw a free-body diagram of any collection
of material that you can identify. The word body connotes a standard
object in some people’s minds. In the context of free-body diagrams,
‘body’ means system. The body in a free-body diagram may be a
subsystem of the overall system of interest. For a system of n parts
there are 2n� 1 collections of parts. For the pliers of fig. 3.37 there are
4 parts and 15 possible FBDs (6 of which are shown).

� Forces fool the system. The free-body diagram of a system shows
the forces and moments that the surroundings impose on the system.
That is, since the only method of mechanical interaction that Nature
has invented is force (and moment), the free-body diagram shows what
it would take to mechanically fool the system if it were literally cut
free. That is, the motion of the system would be totally unchanged if
it were cut free and the forces shown on the free-body diagram were
applied as a replacement for all external interactions.

� Each force has a source and a target. Every force shown on a FBD
acts on the system (the body) and from another object according to
some rule. For each force you should be able to name the target (the
‘free body’), the source (e.g., a contacting body) and the rule (e.g., laws
of gravity, a spring equation, the force sufficient to prevent interpene-
tration). Subscripts can help, such as FED indicating the force is from
E and on D (See fig. 3.37).

� Place forces at cuts. The forces and moments are located on the free-
body diagram at the points where they are applied. These places are
where you made ‘cuts’ to free the body.

� Motion is caused or prevented by forces. At places where the out-
side environment causes or restricts translation of the isolated system,
a contact force is drawn on the free-body diagram.

� Rotation is caused or prevented by torques. At connections to the
outside world that cause or restrict rotation of the system a contact
torque (or couple or moment) is drawn. Draw this moment outside
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Figure 3.38: Pliers crushing a pen-
cil. Some possible free body diagrams
(FBDs), neglecting gravity. With four
major parts (upper jaw, lower jaw, pin
& pencil) there are 15 possible subsys-
tems: a) Whole system; b) Upper jaw;
c) Pencil; d) Connecting pin; e) Lower
jaw; f) Lower jaw with connecting pin;
and nine others (e.g., pliers without pen-
cil, upper jaw plus pin, both jaws plus
pencil, etc.). For each system the ex-
ternal forces on that system are shown.
g) A partial free body diagram, showing
the force on the pencil and upper jaw.
See fig. 3.42 on page 156 for some bad
FBDs of the same system.
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Figure 3.39: A uniform block of mass
m supported by a hinge with friction in
the presence of gravity. The free-body
diagram on the right is correct, just less
clear than the one on the left.

2In this book, the only body force we
consider is gravity. For near-earth grav-
ity, gravity forces show on the free-body
diagram as a single force at the center
of gravity, or as a collection of forces
at the center of gravity of each of the
system parts. For parts of electric mo-
tors and generators, not covered here in
detail, electrostatic or electro-dynamic
body forces also need to be considered.

3Warning. A common error made by
beginning dynamics students is to put
velocity and/or acceleration arrows on
the free-body diagram.

4 The prescription that you not show
inertial forces is a white lie. Actu-
ally, in the D’Alembert approach to dy-
namics, a legitimate and intuitive ap-
proach for experts, one does show in-
ertial forces on the free-body diagram.
The D’Alembert approach is not fol-
lowed in this book in any theory or
examples because of the frequent sign
errors and mind-confusions it causes
in beginners (translation: “not allowed
in homework or exams”). For those
who are attracted to forbidden fruit, see
box 14.2 on page 665.

the system for viewing clarity. Refer again to fig. 3.38 to see how the
moment on the block due to the friction of the hinge is best shown
outside the block.

� Draw contact forces outside the body. Draw the contact force outside
the sketch of the system for viewing clarity. A block supported by a
hinge with friction in fig. 3.38 illustrates how the reaction force on the
block due to the hinge is best shown outside the block.

� Draw body forces (e.g., gravity forces) inside the body. The free-
body diagram shows the system cut free from the source of any body
forces applied to the system. Body forces are forces that act on the
inside of a body from objects outside the body. It is best to draw the
body forces on the interior of the body, at the center-of-mass if that
correctly represents the net effect of the body forces. Figure 3.38 shows
the cleanest way to represent the gravity force on the uniform block
acting at the center-of-mass. 2

� Internal forces are not drawn. The free-body diagram shows all ex-
ternal forces acting on the system but no internal forces — forces be-
tween objects within the body are not shown. See fig. 3.42 on page 156
for examples of what, despite temptation, not to do.

� No velocity and no acceleration. The free-body diagram shows noth-
ing about the motion 3. It shows: no “centrifugal force”, no “accel-
eration force”, and no “inertial force”. (Of course for statics this is a
non-issue because inertial terms are neglected for all purposes.) Re-
peating

Velocities, accelerations and inertial forces do not show on a free-body
diagram 4 .

How to draw forces on free-body diagrams
How you draw a force on a free-body diagram depends on

� How much you know about the force before your analysis. Do you
know its direction? its magnitude? and

� Your choice of notation (which may vary from vector to vector within
one free-body diagram). See page 46 for a description of the ‘symbolic’
and ‘graphical’ vector notations.

Some of the possibilities are shown in fig. 3.40 when

(a) Any
*

F possible,

(b) the direction of
*

F is known, and

(c) Everything about
*

F is known.

In each case three different notations are shown.
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Simplify using equivalent force systems
The concept of ‘fooling’ a system with forces is somewhat subtle. If the
free-body diagram involves ‘cutting’ a rope what force should one show? A
rope is made of many fibers so cutting the rope means cutting all of the rope
fibers. Should one show hundreds of force vectors, one for each fiber that is
cut? The answer is: yes and no. You would be correct to draw all of these
hundreds of forces at the fiber cuts. But, since the equations that are used
with any free-body diagram involve only the total force and total moment,
you are also allowed to replace these forces with an equivalent force system
(see section 3.1).

Any force system acting on a given free-body diagram can be replaced
by an equivalent force and couple.

In the case of a rope, a single force directed nearly parallel to the rope and
acting at about the center of the rope’s cross section is equivalent to the force
system consisting of all the fiber forces. In the case of an ideal rope, the force
is exactly parallel to the rope and acts exactly at its center.

Similarly the force of the net effect of the distributed ground forces on a
shoe is often represented by a single force at “the center of pressure”.
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Figure 3.40: The various ways of notating a force on a free-body diagram. In column (a) nothing is known and everything is variable.
In column (b) the direction is known and the magnitude isn’t. In column (c) Everything is known. In one free-body diagram different
notations can be used for different forces, as needed or convenient. Other unusual cases can be extrapolated, such as if the magnitude is
known and the direction is unknown.
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Figure 3.41: The process of drawing
a FBD is illustrated by the sequence
shown.

Action and reaction
For some systems you will want to draw free-body diagrams of subsystems.
For example, to study a machine, you may need to draw free-body diagrams
of several of its parts; for a building, you may draw free-body diagrams of
various structural components; and, for a biomechanics analysis, you may
‘cut up’ a human body (with your imagined scalpel). When separating a
system into parts, you must take account of how the subsystems interact.
Call the two touching parts of a machine A and B. We then have that

If A feels force
*

F and couple
*

M from B,
then B feels force �*

F and couple � *

M from A.

To be precise we must make clear that
*

F and �*

F have the same line of
action. 5

The principle of action and reaction doesn’t say anything about what force
or moment acts on one object. It only says that the actor of a force and
moment gets back the opposite force and moment.

It is easy to make mistakes when drawing free-body diagrams involving
action and reaction. Box 3.8 on page 162 shows some correct and incorrect
partial FBD’s of interacting bodies A and B. Use notation consistent with
fig. 3.40 on page 153 for the action and reaction vectors.

Interactions
The way objects interact mechanically is by the transmission of a force or a
set of forces. If you want to show the effect of body B on A, in the most
general case you can expect a force and a moment which are equivalent to
the whole force system, however complex.

That is, the most general interaction of two bodies requires knowing

� Three numbers in two dimensions (two force components and one mo-
ment), and

� Six numbers in three dimensions (three force components and three
moment components)

Most things don’t interact in this most general way so, usually, fewer num-
bers are required.

Some of the common ways in which mechanical things interact, at least
ideally, are described in the following sections. As you read this, refer also
to first three columns of the summary table on page 1039. You should look
frequently at this table until you have absorbed it. You will use the forces
and moments on these connections again and again.

Constrained motion and free motion
One general principle of interaction forces and moments concerns ‘geomet-
ric’ constraints.
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Wherever a motion of A is either caused or prevented by B there is
a corresponding force shown at the interaction point on the free-body
diagram of A.

Similarly

if B causes or prevents rotation there is a moment (or torque or couple)
shown on the free-body diagram of A at the place of interaction.

The converse is also true. Many kinds of mechanical attachment gadgets
are specifically designed to allow motion.

If an attachment allows free motion in some direction, a so called de-
gree of freedom, then the free-body diagram shows no force in that
direction. If the attachment allows free rotation about an axis then the
free-body diagram shows no moment (couple or torque) about that axis.

You can think of each attachment point as having a variety of jobs to do.
For every possible direction of translation and rotation, the attachment has
to either allow free motion or restrict the motion. In every way that motion
is restricted (or caused) by the connection a force or moment is required. In
every way that motion is free there is no force or couple. Motion of body
A is caused and restricted by forces and couples which act on A. Motion is
freely allowed by the absence of such forces and couples.

Here, demonstrating the ideas above, are some of the common connec-
tions.

Cuts at ‘rigid’ connections
Sometimes the body you draw in a free-body diagram is firmly attached to
another. Figure 3.45 shows a cantilever structure on a building. The free-
body diagram of the cantilever has to show all possible force and load com-
ponents. Since we have used vector notation for the force

*

F and the moment
*

MC we can be ambiguous about whether we are doing a two or three dimen-
sional analysis.

Gravity is pointing down, so why do we show a horizontal reaction
force at C? This is a reasonable question because a quick statics analysis
shows that, for a stationary building and cantilever, that

*

FC must be vertical.
There are two reasons to show the horizontal force anyway

1. Mechanics includes both statics and dynamics. In dynamics the forces
on a body do not add to zero. In fact, we forgot to tell you, the building
shown in fig. 3.45 happens to be accelerating rapidly to the right due to
the motions of a violent earthquake occurring at the instant pictured in
the figure.
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Wrong Free Body Diagrams

Wrong Partial Free Body Diagram
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c)

Figure 3.42: The pencil is totally
crushed by the pliers. So it seems nat-
ural to show the crushing force on a
sketch of the pliers crushing the pencil
(a). And one might want to show the big
force on the connecting pin between the
pliers jaws (b). But these sketches
are not Free Body Diagrams.
Free body diagrams only show external
forces on the system. For the systems
shown in the sketches, (a) and (b) above,
the forces on the pencil and on the pin
and between the parts are internal forces
and should not show on a free body di-
agram. Similarly a partial free body di-
agram (c) of part of the upper jaw and
the pencil should not show the action
and reaction pair (they are internal to the
subsystem shown). See fig. 3.37 on page
151 for some good FBDs related to the
pliers.

2. Whether or not there is an earthquake, the attachment of the cantilever
to the building at C in fig. 3.45 is surely intended to be rigid and pre-
vent the cantilever from moving up or down (falling), and from moving
sideways (and drifting into another building) and from rotating about
point C. In most of the building’s life, the horizontal reaction at C is
small. But since the connection at C clearly prevents relative horizon-
tal motion, it is probably best to draw a horizontal reaction force on the
free-body diagram. Then the same free-body diagram is good during
earthquakes and during more boring times.
When you know a force is going to turn out to be zero, as for the side-
ways force in this example if treated as a statics problem, it is a matter
of taste whether or not you show the sideways force on the free-body
diagram (Box 3.7 on page 160 discusses just this issue). Our general
advice is ‘better safe then sorry’; if you don’t know that a force or mo-
ment is going to turn out to be zero, leave it in the free-body diagram.

The situation with rigid connections, like the cantilever above, is shown more
abstractly in both 3D and 2D in fig. 3.43.
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Figure 3.43: A rigid connection shown with partial free-body diagrams in two and three
dimensions. One has a choice between showing the separate force components (top) or using
the vector notation for forces and moments (bottom). The double head on the moment vector
is optional.

Cuts at hinges
A hinge, shown in fig. 3.44, allows rotation and prevents translation. Thus,
the free-body diagram of an object cut at a hinge shows no torque about the
hinge axis but does show the force or its components which prevent transla-
tion.
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Figure 3.44: A hinge with partial free-body diagrams in 2D and 3-D. A hinge joint is also
called a pin joint because it is sometimes built by drilling a hole and inserting a pin.

There is some ambiguity about how to model pin joints (hinges) in
three dimensions. The ambiguity is shown with reference to a hinged door
(fig. 3.46) and discussed in detail below. Clearly, one hinge, if the sole at-
tachment, prevents rotation of the door about the x and y axes shown. So,
it is natural to show a couple (torque or moment) in the x direction, Mx ,
and in the y direction, My . But, the hinge does not provide very stiff resis-
tance to rotations in these directions compared to the resistance of the other
hinge. That is, even if both hinges are modeled as ball-and-socket joints (see
the next sub-section), offering no resistance to rotation, the door still cannot
rotate about the x and y axes.

The stiffer constraint wins. If a connection between objects prevents rela-
tive translation or rotation that is already prevented by another stiffer connec-
tion, then the more compliant connection reaction is often neglected. Even
without rotational constraints, the translational constraints at the hinges A
and B restrict rotation of the door shown in fig. 3.46. Thus each of the two
hinges are probably well modeled — that is, they will lead to reasonably ac-
curate calculations of forces and motions — by ball-and-socket joints at A
and B.

In 2-D a ball-and-socket joint is equivalent to a hinge or pin joint (with
the axis of the hinge orthogonal to the page).

Bearing alignment. If two connections both do the same job, for example
the two door hinges above, they might not do it exactly the same way. And
the incompatibility can be a structural problem. Thus, for example, door

5The principle of action and reac-
tion can be derived from the momen-
tum balance laws by drawing free-body
diagrams of little slivers of material.
Nonetheless, in practice you can think
of the principle of action and reaction as
a basic law of mechanics. Newton did.
The principal of action and reaction is
“Newton’s third law”.
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Figure 3.45: A rigid connection: a
cantilever structure on a building. At
the point C where the cantilever struc-
ture is connected to the building all mo-
tions are restricted so every possible
force needs to be shown on the free-
body diagram cut at C.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



158 Chapter 3. FBDs 3.3. Interactions, forces & partial FBDs

Filename:tfigure2-door

y
x

z

A

B

A

B

Fy

Fz

Fx

My?
Mx?

Figure 3.46: A door held by hinges.
One must decide whether to model
hinges as proper hinges or as ball-and-
socket joints. The partial free-body di-
agram of the door at the lower right ne-
glects the couples at the hinges, effec-
tively idealizing the hinges as ball-and-
socket joints. This idealization is gen-
erally quite accurate since the rotations
that each hinge might resist are already
resisted by their being two connection
points.

hinges need to be well aligned in order that the door opening is free and to
prevent large forces and moments of the hinges fighting each other.

Ball-and-socket joint
Sometimes one wishes to attach two objects in a way that allows no relative
translation but for which all rotation is free. The device that is used for this
purpose is called a ‘ball-and-socket’ joint. It is constructed by rigidly attach-
ing a sphere (the ball) to one of the objects and rigidly attaching a partial
spherical cavity (the socket) to the other object.
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Figure 3.47: A ball-and-socket joint allows all relative rotations and no relative translations
so reaction forces, but not moments, are shown on the partial free-body diagrams. In two
dimensions a ball-and-socket joint is just like a pin joint. The top partial free-body diagrams
show the reaction in component form. The bottom illustrations show the reaction in vector
form.

The human hip joint is a ball-and-socket joint (See fig. 3.46). At the
upper end of the femur bone is the femoral head, a sphere to within a few
thousandths of an inch. The hip bone has a spherical cup that accurately fits
the femoral head. The human hip joint is not so different from engineered
ball and socket joints 6.

Car suspensions are constructed from a three-dimensional truss-like
mechanism. Some of the parts need free relative rotation in three dimensions
and thus use a joint called a ‘ball joint’ or ‘rod end’ that is a ball-and-socket
joint.

Since the ball-and-socket joint allows all rotations, no moment is shown
at a cut ball-and-socket joint. Since a ball-and-socket joint prevents relative
translation in all directions, the possibility of force in any direction is shown.
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String, rope, wires, and light chain
One way to keep a radio tower from falling over is with wire, as shown in
fig. 3.47. If the weight of the wires seems small, and the wind resistance
is negligible, it is common to assume they can only transmit forces along
the line connecting their end points. Moments are not shown because ropes,
strings, and wires are generally assumed to be so compliant in bending that
the bending moments are negligible. For wires

tension is the force pulling away from a free-body diagram cut 7.
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Figure 3.48: A radio tower kept from falling with three wires. A partial free-body diagram
of the tower is drawn two different ways. The upper figure shows three tensions that are
parallel to the three wires. The lower partial free-body diagram is more explicit, showing the
forces to be in the directions of the O�s, unit vectors parallel to the wires.

All this talk about force, what is force?
Force is the measure of mechanical interaction. It is a vector. It obeys the
principle of action and reaction. Using forces on free-body diagrams, with

I. constitutive laws, like F D kx and F D mg (see Pillar 1 on page 26)
and

II. mechanics laws, like
P *

Fi D
*

0 or
*

F D m*
a (see Pillar 3 on page 29)

we make accurate predictions. What is force? Its that quantity, that miracu-
lously, has all these properties. What is force really? Beyond this constella-
tion of relations, force is really . . . never mind, that’s just too deep.

Operationally, you can define force by how you can measure it. A force
on a system can be measured by comparing its effect on the given system to

Filename:hip-artificial

Figure 3.49: The ball part of an artifi-
cial hip joint. (Photo courtesy of Daniel
Rutter, www.dansdata.com).

6True story. The Mann biomechan-
ics lab at MIT put strain gauges in ar-
tificial hip joints, then surgically im-
planted these artificial joints in patients
with bad bones to measure the hip forces
(they measured contact pressure up to
18 Mpa� 2600 lbf= in2). Dicky at the
MIT boat house said he wanted a ball-
and-socket joint for the base of the mast
of the sailboat he was building. “Oh”
said Crispin of the Mann lab, “we have
a hip joint we don’t need”, and gave
Dicky an uninstrumented hip to which
Dicky welded this and that for use in one
of his boat projects.

7Caution: Sometimes string-like
things should not be treated as idealized
strings. For example, Short wires can
be stiff so bending moments may not
be negligible. And the mass of chains
can be significant so that the mass and
weight may not be negligible, the direc-
tion of the tension force in a sagging
chain is not in the direction connecting
the two chain endpoints.
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3.7 How much mechanics reasoning should you use when you
draw a free-body diagram?

Consider the simple symmetric truss with a loadW in the middle, a
pin support at the left and a roller support at the right.
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Here are various options for drawing a free-body-diagram of
this truss.
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W
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(a) The simple prescription is to draw an unknown force every
place a motion is (caused or) prevented and an unknown torque
where rotation is (caused or) prevented, as shown above. In particu-
lar, there is an unknown force restricting both horizontal and vertical
motion at B.

Someone thinking ahead and noting that FBx D 0 might say
that the free-body diagram in (a) is wrong. It is not. In FBD (a) force
FBx is not specified because it is not known from just looking at the
FBD cut at the pin. That FBx D 0 turns out to be zero is consistent
with FBD (a) because FBx D 0 is not specified and thus could have
any value, including zero.

As a rule, we favor FBD (a).
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(b)
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(b) A person who knows some statics will quickly deduce that the
horizontal force at B is zero and thus draw the free-body diagram
in figure (b). This is also correct, although somewhat violating the
philosophy of drawing FBDs and later using mechanics reasoning.
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(c) Thinking ahead even more one could draw the free body di-
agram above. All three free-body diagrams above are correct. In
particular diagram (a) is correct even though FBx turns out to be
zero and (b) is correct even though FB turns out to be equal to FC .
FBD (c) has the most information in it, but also most violates the
problem solving approach: FBD first, mechanics later.
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(d) In contrast, the free-body diagram above explicitly and incor-
rectly assigns a non-zero value to FBx , so it is wrong.

What to do? When in doubt we recommend following the naive
rules yielding FBD (a). Then later use the force and momentum
equations to find out more about the forces, e.g., FBD (c). You might
then never explicitly draw FBD (c), as it will be implicit in your
assignments of values to the forces (e.g., FBx D 0). If you are
confident about the anticipated results, it might be a time saver to
use diagrams analogous to (b) or (c) but

Beware of:

� making assumptions that are not reasonable, rather
than just being more naive and correct, and

� wasting time trying to think ahead when the force and
momentum balance equations will tell all in the end
anyway.

A common error is to sloppily think through the mechanics laws and
then incorrectly eliminate, or over-specify, forces on a FBD.
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� A weight suspended by a string which goes over a pulley and is attached
to the system of interest instead of the force.

� The effect of a calibrated spring on the system, or

� The effect, and would be hard to arrange in practice, of an accelerat-
ing mass connected by pulleys and strings to the system. Of course if
you have some way of moving the force around without changing its
magnitude, you can apply it to a mass and measure the acceleration it
causes.

� Other contraptions that somehow show the effect of the questionable
force on a suspended weight, a stretched spring or an accelerated mass.

Summary of free-body diagrams.
� Draw one or more clear free-body diagrams!

� Forces and moments on the free-body diagram show all mechanical
interactions from outside the body.

� Every point on the boundary of a body has a force in every direction
that motion is either being caused or prevented. Similarly with torques.

� If you do not know the direction of a force, use vector notation to show
that the direction is yet to be determined.

� Leave off the free-body diagram forces that you think are negligible
such as, possibly:

– The force of air on small slowly moving bodies;
– Forces that prevent motion that is already prevented by a much

stiffer means (as for the torques at each of a pair of hinges);
– See the table on page 1039 to see the forces at various connections.
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3.8 Action and reaction on partial FBD’s
Imagine bodies A and B are interacting and that you want to draw
separate free-body diagrams (FBD’s) of each.

Filename:tfigure2-actionreaction-0

A
B

Part of the FBD of each shows the interaction force. The FBD of A
shows the force of B on A and the FBD of B shows the force of A
on B. To illustrate the concept, we show partial FBD’s of bothA and
B using the principle of action and reaction. Items (a - d) are correct
and items (e - g) are wrong. See sample 2.1 on page 52 for related
comments on vector notation.

Correct partial FBD’s

Filename:tfigure2-actionreaction-a

(a)
A

B
⇀
F-

⇀
F

(a) These are good partial FBD’s. the action and re-action vec-
tors (

*
F and �*

F ) are equal in magnitude, opposite in sign, and
applied on the same line of action. Because the symbolic notation
takes precedence (see page 46)the direction and length of the drawn
arrows, although drawn nicely here, are irrelevant.
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(b)
A

B

F

F

(b) These partial FBD’s are also good since the opposite arrows
multiplied by equal magnitude F produce net vectors that are equal
and opposite.

Filename:tfigure2-actionreaction-c

(c)
A

B⇀
F-

⇀
F

(c) The partial FBD’s may look wrong, and they are impractically
misleading and not advised. But technically they are okay because
we take the vector notation to have precedence over the drawing in-
accuracy.
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(d)
A
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F

-F

(d) The partial FBD’s may look wrong but since no vector notation
is used, the forces should be interpreted as in the direction of the
drawn arrows and multiplied by the shown scalars. Since the same
arrow is multiplied by F and �F , the net vectors are actually equal
and opposite.

Wrong partial FBD’s

Filename:tfigure2-actionreaction-e

(e)
A

B
⇀
F
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F

(e) These partial FBD’s are wrong because the vector notation
*
F

takes precedence over the drawn arrows. So the drawing shows the
same force

*
F acting on bothA andB, rather than the opposite force.
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(f)
A

B

F

-F

(f) Because the opposite arrow is multiplied by the negative
scalars, the partial FBD’s here show the same force acting on both
A and B. Treating a double-negative as a negative is a common
mistake.
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(g)
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B

F

F

(g) These partial FBD’s are obviously wrong since they again show
the same force acting onA and B. These FBD’s would represent the
principle of double action which applies to laundry detergents but
not to mechanics.
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SAMPLE 3.13 Stacked blocks at rest on an inclined plane. Blocks A and
B with masses m and M , respectively, rest on a frictionless inclined surface
with the help of force T as shown in Fig. 3.48. There is friction between the
two blocks. Draw free body diagrams of each of the two blocks separately
and a free body diagram of the two blocks as one system.
Solution The three free body diagrams are shown in Fig. 3.52 (a) and (b). Note the action
and reaction pairs between the two blocks; the normal force NA and the friction force Ff
between the two bodies A and B. If we consider the two blocks together as a system, then
the forces NA and Ff do not show on the free body diagram of the system (See Fig. 3.52(b)),
because now they are internal to the system.
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Figure 3.50: Free body diagrams of (a) block A and block B separately and (b) blocks A and
B together.

SAMPLE 3.14 Two blocks slide down a frictional inclined plane. Two
blocks of identical mass but different material properties are connected by a
massless rigid rod. The system slides down an inclined plane which provides
different friction to the two blocks. Draw free body diagrams of the two
blocks separately and of the system (two blocks with the rod).
Solution The Free body diagrams are shown in Fig. 3.52. Note that the friction forces on the
two blocks are different because the coefficients of friction are different for the two blocks.
The normal reaction of the plane, however, is the same for each block (why?).

Filename:sfig2-1-15a

T

f1

f2

N

mg

(a) (b)

mg

N f1

N
mg mg

N

f2

T

A

B A B
ı̂

ĵ
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Figure 3.51: Free body diagrams of (a) the two blocks and the rod as a system and (b) the two
blocks separately.
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Figure 3.52: Two blocks held in place
on an inclined surface
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Figure 3.51: Two blocks slide down a
frictional inclined plane. The blocks are
connected by a light rigid rod.
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Figure 3.54: A cart with pulleys
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θ

Figure 3.57: The unicyclist

SAMPLE 3.15 Massless pulleys. A force F is applied to the pulley arrange-
ment connected to the cart of mass m shown in Fig. 3.56. All the pulleys are
massless and frictionless. The wheels of the cart are also massless but there
is friction between the wheels and the horizontal surface. Draw a free body
diagram of the cart, its wheels, and the two pulleys attached to the cart, all as
one system.

Solution The free body diagram of the cart system is shown in Fig. 3.54. The force in each
part of the string is the same because it is the same string that passes over all the pulleys.
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Figure 3.56: Free-body diagram of the cart.

SAMPLE 3.16 A unicyclist in action. A unicyclist weighing 160 lbs exerts
a force on the front pedal with a vertical component of 30 lbf at the instant
shown in figure 3.57. The rear pedal barely touches the other foot. Assume
the wheel and the frame are massless. Draw free body diagrams of the cyclist
and the cycle. Make other reasonable assumptions if required.

Solution Let us assume, there is friction between the seat and the cyclist and between the
pedal and the cyclist’s foot. Let’s also assume a 2-D analysis. The free body diagrams of the
cyclist and the cycle are shown in Fig. 3.55. We assume no couple interaction at the seat.
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Figure 3.57: Free-body diagram of the cyclist and the cycle.
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3.4 Contact: Sliding, friction, and rolling
The primary mechanical interaction between intermediate-sized objects, say
much smaller than the earth and much larger than an atom, is through contact
1. Contact between two bodies restricts their possible motions and causes

forces on the bodies. Things cause contact forces on each other when and
where they touch. Some contact situations are modeled in standard ways that
we have discussed, including contact at a pin-joint, ball-and-socket, hinge,
weld, and tied string.

Here we consider objects that press against each other in ways not nec-
essarily well-idealized with one of these standard mechanical connections.
More specifically, we need rules for finding the forces during sliding and
rolling contact . There are many candidate descriptions for friction and
rolling. They vary in their conceptual simplicity, their ease of use in ana-
lytical or numerical calculations, and their accuracy and applicability. We
will present the simplest rules, describe some of the short-comings and then
give some guidance towards more sophisticated rules.

Contact laws are all rough approximations
A rule for finding the forces of interaction in terms of the bodies’ positions
and velocities is called, as mentioned in Chapter 1, a constitutive law or
constitutive relation (see particularly page 26). Generally people categorize
contact as being one of the three major types: friction, rolling, or collision 2.
Discussion of collisional free body diagrams is discussed in the chapters on
dynamics.

We must emphasize at the outset:

Constitutive laws for contact are rough approximations. For at least
some of the quantities of interest. theory and practice typically differ
by 5-50%.

Equations for contact are of a lower class than the momentum equations. For
most engineering purposes the momentum balance equations are extremely
accurate, with error of well less than a part per billion. Newton’s law of
gravitational attraction is a similarly accurate law. And the laws of Euclidean
(non-Riemannian) geometry and calculus (the kinds you studied) are also
extremely accurate (See chapter 1.2 page 31). Less accurate are the laws
for springs and dashpots. But still, accuracies of one part per thousand are
possible for measuring spring stiffness and perhaps parts per hundred for
some dashpot constants.

But the laws for the contact interactions of solids are much less accurate.
Not only can’t you know the coefficient of friction between any two pieces
of steel with any certainty, you also can’t even trust the concept of a coef-
ficient of friction to be very accurate. It is easy to forget this inaccuracy in
contact laws because you will see contact-force equations in books. Once we

1 In common engineering, the most-
often encountered non-contact force is
gravity, especially the gravity force from
the earth on terrestrial objects like cars,
buildings, and rain drops.

2 In practice it is not always clear how
to make the distinctions between sliding
and rolling or between sliding and colli-
sion. But at least for a first pass it is a
useful conceptual distinction to think of
sliding, rolling, and collisions as three
different kinds of contact.
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Figure 3.58: Two bodies in contact. The
forces between them satisfy the law of
action and re-action. It is often conve-
nient to decompose the force of interac-
tion into a part F tangent to the surface
of interaction and a part N perpendicu-
lar to the surface of interaction.

see an equation in print, we are too-easily tempted into believing it is ‘true.’
So a common mistake amongst beginning engineers is to use contact consti-
tutive equations with confidence, as if accurate. Rather, all contact simple
equations only a rough approximation at best.

Friction
When two objects are in contact and one is sliding with respect to the other,
we call the force which resists this sliding friction. Frictional contact is usu-
ally assumed to be either ‘lubricated’ or ‘dry.’ When bodies are in lubricated
contact they are not in real contact at all, a thin layer of liquid or gas separates
them. Most of the metal to metal contact in a car engine is so lubricated. The
contact of the car tires with the road is ‘dry’ unless the car is ‘hydroplaning’
on worn-smooth tires on a very wet road. The friction forces in lubricated
contact are very small compared forces of unlubricated contact. There is no
quick way to estimate these small lubricated slip forces. The accurate estima-
tion of lubricated friction forces requires use of lubrication theory, a part of
fluid mechanics. For many purposes lubricated friction forces are neglected.
We now drop discussion of lubricated friction forces because they are often
negligible and because estimating them is a more advanced topic.

Dry friction forces are not small and thus cannot be sensibly neglected
in mechanics problems involving sliding contact. The simplest model for
friction forces is called Coulomb’s law of friction or just Coulomb friction.
But, use of even this law is full of subtleties.

‘Smooth’ and ‘Rough’ are common misnomers for low-friction
and high-friction

As a simplification when we think friction is not important we sometimes
neglect it by setting � D � D 0. In many books this neglect is named
“perfectly smooth”. Smooth surfaces separated by a little fluid (say water
between your feet and the bathroom tile, or oil between pieces of a bear-
ing) do slide easily by each other. And even without a lubricant sometimes
slipping can be reduced by smoothing a surface. But making a surface pro-
gressively smoother does not diminish the friction to zero. Rather, extremely
smooth surfaces sometimes have anomalously high friction (extremely clean
flat surfaces can even bond to each other). In general, there is no reliable
correlation between smoothness and low friction.

Similarly many books use the phrase “perfectly rough” to mean perfectly
high friction (�!1 and � ! 90

�
) and hence that no slip is allowed. This

is misleading twice over. First, as just stated, rougher surfaces do not reliably
have more friction than smooth ones. Second, even when � ! 1 slip can
proceed in some situations (see, for example, box 4.6 on page 218).

We use the phrase frictionless or negligible friction to mean that there
is no tangential force component. We use the phrase no slip to mean that
no tangential motion is allowed and that there is some unknown tangential
force. So
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We do not use the words smooth and rough in this book to indicate low
and high friction.

Coulomb friction
‘Coulomb’s’ law of friction is sometimes attributed to Amonton and some-
times to da Vinci. It summarized by the deceptively simple equation:

F D �N: (3.4)

This equation, like many other simple equations, needs some descriptive
words to be useful. What is the direction of

*

F ? When does this equation
apply, or not?

The direction of the force F on body A is in the opposite direction of the
slip velocity of A relative to B. By the principle of action and reaction we
deduce that the force on body B is in the opposite direction. This force is
also opposite to the relative slip velocity of B relative toA. That is, F resists
relative motion between A and B.

The friction force F is proportional to the normal force N with the pro-
portionality constant �. The constant � is assumed to be independent of
the area of contact between bodies A and B. In the simplest renditions of
Coulomb’s law � is assumed to be independent of slip distance, slip velocity,
time of contact, etc. When contacting bodies are not sliding the meaning of
the friction equation 3.4 changes. Friction still resists slip, it is the presence
of the friction force that prevents slip. But when there is no slip eqn. (3.4)
doesn’t describe the force, but rather an upper limit on the possible size of
the force. That is, the friction force must be less than or equal to �N in
magnitude during non-sliding contact.

jF j � �N (3.5)

All of the discussion above can be summarized with the following equations
for the friction force

The friction force
BBN� �� �

*

Fon A from B D
��

Relative slip velocity.
������

*
vA=B

j*vA=Bj
N during slip

j*Fon A from Bj� �� �
���

The magnitude of the

friction force

� �N����
BBM

An upper bound on the

friction force

during stationary contact
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Figure 3.59: Coulomb friction. The re-
lation between friction force F and rel-
ative slip rate P� is described by the dark
line. Since there is a jump from ��N
to �N in the friction force when the
slip rate goes from negative to positive
the relation is not a proper mathematical
function between F and P�. Instead the
relation is a curve in the F; P� plane.
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Figure 3.60: ObjectA does not slide rel-
ative to the plane B.
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Figure 3.61: Two ways of characterizing
friction: the friction coefficient � and
friction angle �.

For two-dimensional problems where slip can only be in one direction (or the
opposite) this pair of functions describes the dark line in the friction graph of
fig. 3.57 in which P� is the speed of relative slip.

The simplest friction law, the one we use in this book, uses a single con-
stant coefficient of friction �. Almost always :05 � � � 1:2 and more
commonly :2 � � � 1. We do not distinguish the static coefficient �s from
the dynamic coefficient �d or �k . That is � D �s D �k D �d for our
purposes. We promote the use of this simplest law for a few reasons.

� All friction laws used are quite approximate, no matter how complex.
Unless the distinction between static and dynamic coefficients of fric-
tion is essential to the engineering calculation, using �s ¤ �k doesn’t
add to the calculation’s usefulness.

� The concept of a static coefficient of friction that is larger than a dy-
namic coefficient is, it turns out, not well defined if bodies have more
than one point of contact, which they often do have. (See page 1007.)

� Students learning mechanics are often confused about friction. Because
the more complex friction laws are of questionable accuracy and use-
fulness anyway, it seems time is better spent understanding the simplest
friction laws.

See page 1009 for more discussion of the pros and cons of the Coulomb-
friction approximation.

In summary, the simple model of friction we use is:

Friction resists relative slipping motion. During slip the friction force
opposes relative motion and has magnitude F D �N . When there is
no slip the magnitude of the friction force F cannot be determined from
the friction law but it cannot exceed �N , that is F � �N .

Friction angle
Sometimes people describe the friction coefficient with a friction angle �

rather than the coefficient of friction (see fig. 3.59). The friction angle is
the angle between the net interaction force (normal force plus friction force)
and the normal to the sliding surface when slip is occurring. The relation
between the friction coefficient � and the friction angle � is

tan� � �:

The use of � or � to describe friction are equivalent. Which you use is a
matter of taste and convenience. Sometimes analytic formulas in problems
come out simpler looking with one or the other of � and � used to describe
the friction.
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Rolling contact
An idealization for the non-skidding contact of balls, wheels, and the like is
pure rolling.

Objects A and B are in pure rolling contact when their (rela-
tively convex) contacting points have equal velocity. They are not
slipping, separating, or interpenetrating.
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Figure 3.62: Rolling contact: Points of contact on adjoining bodies have the same velocity,
*vA D*vB .

Most often, we are interested in cases where the contacting bodies have
some non-zero relative angular velocity — a ball sitting still on level ground
may be technically in rolling contact, but not interestingly so.

The simplest common example is the rolling of a round wheel on a flat
surface in two dimensions. See fig. 3.61.
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Figure 3.63: Pure rolling of a round wheel on a flat slope in two dimensions.

In practice, there is often confusion about the direction and magnitude of
the force F shown in the free body diagram in fig. 3.61. Here is a recipe:

1.) Draw F as shown in any direction which is tangent to the surface.

2.) Solve the statics or dynamics problem and find the scalar F . (It may
turn out to be a negative, which is fine.)
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3Note that the tangential forces in
fig. 3.63 and fig. 3.4 are not rolling re-
sistance.

3.) Check that rolling is really possible; that is, that slip would not occur.
If the force is greater than the frictional strength, jF j > �N , the as-
sumption of rolling contact is not appropriate. In this case, you must
assume that F D �N or F D ��N and that slip occurs; then, re-solve
the problem.
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Figure 3.64: Rolling ball in 3-D. The force
*
F and moment

*
M are applied loads from, say,

wind, gravity, and any attachments. N is the normal reaction and F1 and F2 are the in
plane components of the frictional reaction. One must check the no-slip condition, �2N 2 �
F 2
1 C F 2

2 .

In three-dimensional rolling contact, we have a free body diagram that
again looks like a free-body diagram for non-slipping frictional contact. Con-
sider, for example, the ball shown in fig. 3.62. For the friction force to be less
than the friction coefficient times the normal force, we have the no slip con-
dition q

F 21 C F 22 � �N or F 21 C F 22 � �2N 2

Rolling is just a special case of frictional contact. It is the case where
bodies contact at a single point (or on a line, as with cylinders) and have
relative rotation yet have no relative velocity at their contacting points.

Rolling resistance
Non-ideal rolling contact includes provision for rolling resistance. This re-
sistance is simply represented by either moving the location of the point of
contact force or by a contact couple. Rolling resistance leads to subtle ques-
tions which we skip here 3.
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Figure 3.65: Partial free body diagrams of wheel in a braking or accelerating car that is
pointed and moving to the right. The force of the ground on the tire is shown. But, for
simplicity, the forces of the axle, gravity, and brakes on the wheel are not shown (that’s why
its a partial FBD). An ideal point-contact wheel is assumed. There is no ‘rolling resistance’
here.
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track of
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Figure 3.66: An ideal wheel is round, massless, rigid, undriven, and rolls on flat rigid ground
with no rolling resistance. Free body diagrams of ideal undriven wheels are shown in two and
three dimensions. The force F shown in the three-dimensional picture is perpendicular to the
path of the wheel. The lateral moment ML keeps the wheel from falling over sideways. (b)
2D free body diagram of a wheel with mass, possibly driven or braked. If the wheel has mass
but is not driven or braked the figure is unchanged but for the moment M being zero.

Ideal wheels
An ideal wheel is an approximation of a real wheel. It is a sensible approx-
imation if the mass of the wheel is negligible, bearing friction is negligible,
and rolling resistance is negligible. Free body diagrams of undriven ideal
wheels in two and three dimensions are shown in fig. 3.64. This idealization
is rationalized in chapter 4 in box 4.6 on page 218. Note that if the wheel is
not massless, the 2-D free body diagram looks more like the one in fig. 3.64b
with Ffriction � �N .

Extended contact
When things touch each other over an extended region, like the block on the
plane of fig. 3.65a, it is not clear what forces to put where on the free body
diagram. On the one hand one imagines reality to be somewhat reflected by
millions of small forces as in fig. 3.65b which may or may not be divided
into normal (ni ) and frictional (fi ) components. But one generally is not
interested in such detail, and even if interested one cannot find it easily.
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Figure 3.67: The contact forces of a
block on a plane can be sensibly mod-
eled in various ways.

4In 3D, contact force distributions
cannot always be replaced with an
equivalent force at an appropriate loca-
tion (see section 3.1). A couple may be
required. Nonetheless, many people of-
ten make the approximation that a con-
tact force distribution can be replaced
by a force at an appropriate location.
For example, this is the “center of pres-
sure” approach used to describe the lo-
cation of an imagined-equivalent ground
force on a robot’s foot. This approxima-
tion neglects any frictional resistance to
twisting about the normal to the contact
plane.

A simple approach is to replace the detailed force distribution with a sin-
gle equivalent force, as shown in fig. 3.65c broken into components. The
location of this force is not relevant for some problems. 4

If one wants to make clear that the contact forces serve to keep the block
from rotating, one may replace the contact force distribution with a pair of
contacts at the corners as in fig. 3.65d.

Collisional free-body diagrams
As noted earlier, there are special conventions for drawing free-body dia-
grams of objects that are in the process of colliding. These we treat in the
relevant dynamics portions of the book.
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SAMPLE 3.17 A mass and a pulley. A block of mass m is held up by
applying a force F through a massless pulley as shown in the figure. Assume
the string to be massless. Draw free-body diagrams of the mass and the
pulley separately and as one system.

Solution The free-body diagrams of the block and the pulley are shown in Fig. 3.67. Since
the string is massless and we assume an ideal massless pulley, the tension in the string is the
same on both sides of the pulley. Therefore, the force applied by the string on the block is
simply F . When the mass and the pulley are considered as one system, the force in the string
on the left side of the pulley doesn’t show because it is internal to the system.
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Figure 3.68: The free-body diagrams of the mass, the pulley, and the mass-pulley system.
Note that for the purpose of drawing the free-body diagram we need not show that we know
that R D 2F . Similarly, we could have chosen to show two different rope tensions on the
sides of the pulley and reasoned that they are equal as is done in the text.
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Figure 3.70:
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Figure 3.71: Free-body diagram of the
block and a diagram of the vector*rAB.

SAMPLE 3.18 Forces in strings. A block of mass m is held in position by
strings AB and AC as shown in Fig. 3.68. Draw a free-body diagram of the
block and write the vector sum of all the forces shown on the diagram. Use
a suitable coordinate system.

Solution To draw a free body diagram of the block, we first free the block. We cut strings
AB and AC very close to point A and show the forces applied by the cut strings on the block.
We also isolate the block from the earth and show the force due to gravity. (See Fig. 3.69.)

To write the vector sum of all the forces, we need to write the forces as vectors. To write
these vectors, we first choose an xy coordinate system with basis vectors O{ and O| as shown in
Fig. 3.69. Then, we express each force as a product of its magnitude and a unit vector in the
direction of the force. So,

*
T1 D T1

O�AB D T1

*rAB
j*rABj

;

where*rAB is a vector from A to B and j*rABj is its magnitude. Neglecting the size of pulleys,
we get, from the given geometry,

*rAB D �2mO{C 2m O|

) O�AB D 2 6m.�O{C O|/p
22 C 22 6m

D 1p
2
.�O{C O|/:

Thus,
*
T1 D T1

1p
2
.�O{C O|/:

Similarly,

*
T2 D T2

1p
5
.O{C 2 O|/

m*g D �mg O|:

Now, we write the sum of all the forces:X
*
F D *

T1 C
*
T2 Cm*g

D
�
� T1p

2
C T2p

5

�
O{C

�
T1p
2
C 2T2p

5
�mg

�
O|:

The O{ and O| components of the net force depend on the values of the scalars (magnitudes) T1,
T2 and mg.

P *
F D

�
� T1p

2
C T2p

5

�
O{C

�
T1p
2
C 2T2p

5
�mg

�
O|

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 3. FBDs 3.4. Contact: Sliding, friction, and rolling 175

SAMPLE 3.19 Two bodies connected by a massless spring. Two carts
A and B are connected by a massless spring. The carts are pulled to the
left with a force F and to the right with a force T as shown in Fig. 3.70.
Assume the wheels of the carts to be massless and frictionless. Draw free
body diagrams of

� cart A,

� cart B , and

� carts A and B together.

Solution The three free body diagrams are shown in Fig. 3.71 (a) and (b). In Fig. 3.71 (a)
the force Fs is applied by the spring on the two carts. Why is this force the same on both
carts? In Fig. 3.71(b) the spring is a part of the system. Therefore, the forces applied by the
spring on the carts and the forces applied by the carts on the spring are internal to the system.
Therefore these forces do not show on the free body diagram.

Note that the normal reaction of the ground can be shown either as separate forces on the
two wheels of each cart or as a resultant reaction.

Filename:sfig2-1-3b
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Figure 3.72: Free body diagrams of (a) cart A and cart B separately and (b) cart A and B
together

Filename:sfig2-1-3a

A B

T

F

Figure 3.73: Two carts connected by a
massless spring

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



176 Chapter 3. FBDs 3.4. Contact: Sliding, friction, and rolling

Filename:sfig2-1-12

F P
A B

a b
c

x

y

Figure 3.74: Two carts connected by
massless pulleys.

Filename:sfig2-1-5

T

pin

A

B

C Dk

2 ft

θ θ

Figure 3.77:

SAMPLE 3.20 Two carts connected by pulleys. The two masses shown in
Fig. 3.76 have frictionless bases and round frictionless pulleys. The inexten-
sible massless cord connecting them is always taut. Mass A is pulled to the
left by force F and mass B is pulled to the right by force P as shown in the
figure. Draw free body diagrams of each mass.
Solution Let the tension in the cord be T . Since the pulleys and the cord are massless, the
tension is the same in each section of the cord. This equality is clearly shown in the Free body
diagrams of the two masses below.

Filename:sfig2-1-12a

F B

mAg

A

NA1
NA2

mBg

NB1
NB2

T

T

T

T

T
P

Figure 3.76: Free body diagrams of the two masses.

Comments: We have shown unequal normal reactions on the wheels of mass B. In fact,
the two reactions would be equal only if the forces applied by the cord on mass B satisfy a
particular condition. Can you see what condition must be satisfy for, say, NA1 D NA2 .

[Hint: think about the moment balance about the center-of-mass A.]

SAMPLE 3.21 Structures with pin connections. A horizontal force T is
applied on the structure shown in the figure. The structure has pin connec-
tions at A and B and a roller support at C. Bars AB and BC are rigid. Draw
free body diagrams of each bar and the structure including the spring.
Solution The free body diagrams are shown in figure 3.75. Note that there are both vertical
and horizontal forces at the pin connections because pins restrict translation in any direction.
At the roller support at point C there is only vertical force from the support (T is an externally
applied force).

Filename:sfig2-1-5a

T
Ax

Ay Ay

Ax

Bx

ByBy

Fs Fs

mg mg

(a)

Cy Cy

mg mg

T

(b)

Figure 3.77: Free body diagrams of (a) the individual bars and (b) the structure as a whole.
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SAMPLE 3.22 The four-bar linkage. The four-bar linkage 5shown in the
figure is pushed to the right with a force F . Pins A, C & D have negligible
friction but joint B is rusty and resists rotation (has non-negligible friction).
Draw free body diagrams of each of the bars separately and of the whole
structure. Use consistent notation for the interaction forces and moments.
Clearly mark the action-reaction pairs. Neglect gravity.
Solution An ideal pin resists any relative translation of the pinned parts by exerting forces
on them. We could draw three separate free-body diagrams of the pin, the first part, and the
second part. Usually, however, we let the pin be a part of one of the objects and just draw two
free body diagrams.

Because rusty joint B resists relative rotation we also show a moment at point B acting
on rods AB and BC.
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x
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Figure 3.78: Style 1, components: Free body diagrams of the structure and the individual
bars. The forces shown in (a) and (b) are the same.

Figure 3.77 shows the forces in terms of their x- and y-components. The directions of
the force components are shown by the arrows and the magnitude is labeled as Ax , Ay , etc.
Here we use the word ‘magnitude’ to mean a scalar, positive or negative. Therefore, a force,
shown as an arrow in the positive x-direction with magnitude Ax , is the same as that shown
as an arrow in the negative x-direction with ‘magnitude’ �Ax . Thus, the free body diagrams
in Fig. 3.77(a) show exactly the same forces as in Fig. 3.77(b).

In Fig. 3.78, we show the forces by an arrow in an arbitrary direction. The corresponding
labels represent their magnitudes. The angles represent the unknown directions of the forces.

Filename:sfig2-2-1

.75m
.4m

A

B
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D
/4

α

π

1m
F

Figure 3.80: A four bar linkage. Force
F is the only load. Pin B has non-
negligible friction, the other pins have
negligible friction.

5Although there are only three bars
here, it is called a four-bar linkage be-
cause the rigid ground connection AD
is also counted as another ”bar” in the
linkage.
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Filename:sfig2-2-1c
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or
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Figure 3.79: Style 2, magnitude times drawn unit vector: The forces in (a) have arcs indicating
angles which would show the directions of the forces. The FBDs in (b) are more informal
and not recommended. Why not? There is no visible notation showing the directions of the
forces.

In Fig. 3.79, we show yet another way of drawing and labeling the free body diagrams,
where the forces are labeled as vectors.
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Figure 3.81: Style 3, vector notation: The label of a forces as vectors indicates both their mag-
nitude and direction. The arrows are arbitrary and merely indicate that a force or a moment
acts at those locations.

Note: Bar CD is a two-force member. We could have used that to simplify all of the free

body diagrams above by showing equal and opposite forces at C and D that were parallel to

the line CD.
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Problems for
Chapter 3
Force Systems and Free body diagrams

3.1 Equivalent force
systems and couples
3.1.1 Find the net force on the particle
shown in the figure.

Filename:pfigure2-3-rp1
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Problem 3.1.1

3.1.2 Replace the forces acting on the par-
ticle of mass m shown in the figure by a
single equivalent force.

Filename:pfigure2-3-rp2
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Problem 3.1.2

3.1.3 Find the net force on the pulley due
to the belt tensions shown in the figure.

Filename:pfigure2-3-rp3

30o

50 N

50 N
ı̂

ĵ

Problem 3.1.3

3.1.4 The net force on A from the two ca-
bles is a force that points down and has
magnitude of 125N. Find the tension in
cable AB. �

Filename:S03quiz1atower

20 m

16 m20 m
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B
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Problem 3.1.4

3.1.5 Replace the forces shown on the
rectangular plate by a single equivalent
force. Where should this equivalent force
act on the plate and why?

Filename:pfigure2-3-rp4
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Problem 3.1.5

3.1.6 Three forces act on a Z-section
ABCDE as shown in the figure. Point C
lies in the middle of the vertical section
BD. Find any equivalent force-couple sys-
tem and describe where to apply it.

Filename:pfigure2-3-rp5
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Problem 3.1.6

3.1.7 Find a force-couple system at D that
is equivalent to the single force at C shown.
�

Filename:S03quiz0a-equiv
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Problem 3.1.7

3.1.8 The three forces acting on the circu-
lar plate shown. They act at the corners
of a square which is concentric with the
plate. Find an equivalent force-couple sys-
tem acting at point C.

Filename:pfigure2-3-rp6
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Problem 3.1.8

3.1.9 The forces and the moment acting
on point C of the frame ABC shown in the
figure are Cx D 48N; Cy D 40N, and
Mc D 20N�m. Find an equivalent force
couple system at point B.

Filename:pfigure2-3-rp7
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Problem 3.1.9

3.1.10 The force system (
*
F1;

*
F2) is equiv-

alent to a force
*
F D 10O{N at the origin

and a couple M Ok. Find M . �

Filename:S03quiz0b-equiv
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Problem 3.1.10

3.1.11 Find an equivalent force-couple
system for the forces acting on the beam
shown in the figure, if the equivalent sys-
tem is to act at

a) point B,

b) point D.
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Filename:pfigure2-3-rp8

C

A B D
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1 kN 2 kN

2 kN

2 m

Problem 3.1.11

3.1.12
*
F1 acts at A and

*
F2 D 7NO{ acts

at an unknown location. Together they
are equivalent to a force

*
FB and moment

*
MB D 48N�m Ok at B. Together they are
also equivalent to a force

*
FC and moment

*
MC D 75N�m Ok at C.

a) Find
*
FC . �

b) Find the line of action of
*
F2. �
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Problem 3.1.12

3.1.13 The figure shows three different
force-couple systems acting on a square
plate. Identify which force-couple systems
are equivalent.

Filename:pfigure2-3-rp9
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Problem 3.1.13

3.1.14 The force and moment acting at
point C of a machine part are shown in
the figure where Mc is not known. It is
found that if the given force-couple system
is replaced by a single horizontal force of
magnitude 10N acting at point A then the

net effect on the machine part is the same.
What is the magnitude of the momentMc?

Filename:pfigure2-3-rp10
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Problem 3.1.14

3.1.15 2D. Assume a force system is equiv-
alent to a force

*
F1 ¤

*
0 and couple

*
M1 D

M1
Ok acting at point*r1.

a) Find some point*r2, and force
*
F2 so

that
*
F2 acting at *r2 is equivalent to

*
F1 and

*
M1 acting at*r1. �

b) Find all possible wrenches (combi-
nations of point location, force and
moment) equivalent to the system
with

*
F1 and

*
M1 acting at the point

with position vector*r1. �

c) Describe the situation in the special
case when

*
F1 D

*
0. �

3.1.16 3D. Assume a force system is equiv-
alent to a force

*
F1 and couple

*
M1 acting at

point with position vector*r1.

a) Find a point P with position vec-
tor *r2, so that an equivalent force
system

*
F2 and

*
M2 acting at P has

*
F2 is parallel to

*
M2. (Finding

such a point, force and moment is
called “reducing the force system to
a wrench”). �

b) Find all possible wrenches (combi-
nations of point location, force and
moment) equivalent to the system
with

*
F1 and

*
M1 acting at*r1. �

Note, one special case with a slightly dif-
ferent result than the other cases is if

*
F1 D

*
0, so it should be treated separately.

3.2 Center of mass and
center of gravity
3.2.1 An otherwise massless structure is
made of four point masses,m, 2m, 3m and
4m, located at coordinates (0, 1 m), (1 m,

1 m), (1 m, �1m), and (0, �1m), respec-
tively. Locate the center of mass of the
structure. �

3.2.2 -3-D: The following data is given for
a structural system modeled with five point
masses in 3-D-space:

mass coordinates (in m)
0:4 kg (1,0,0)
0:4 kg (1,1,0)
0:4 kg (2,1,0)
0:4 kg (2,0,0)
1:0 kg (1.5,1.5,3)

Locate the center of mass of the system.

3.2.3 Write a computer program to find
the center of mass of a point-mass-system.
The input to the program should be a table
(or matrix) containing individual masses
and their coordinates. (It is possible to
write a single program for both 2-D and
3-D cases, write separate programs for the
two cases if that is easier for you.) Check
your program on Problems 3.2.1 and 3.2.2.

3.2.4 A cylinder of mass m2 and radius
R rolls on a flat circular plate of mass
m1 and length `. Let the position of the
cylinder from the left edge of the plate be
x. Find the horizontal position of the cen-
ter of mass of the system as a function of
x and a non-dimensional mass parameter
M D m1=m2.

Filename:pfigure2-5-baranddisk
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Problem 3.2.4

3.2.5 Two masses m1 and m2 are con-
nected by a massless rod AB of length `.
In the position shown, the rod is inclined
to the horizontal axis at an angle � . Find
the position of the center of mass of the
system as a function of angle � and the
other given variables. Check if your an-
swer makes sense by setting appropriate
values for m1 and m2.

Filename:pfigure2-5-dumbbell
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Problem 3.2.5
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3.2.6 Find the center of mass of the follow-
ing composite bars. Each composite shape
is made of two or more uniform bars of
length 0:2m and mass 0:5 kg.

Filename:pfigure3-cm-rp7

(a) (b)

(c)

Problem 3.2.6

3.2.7 A double pendulum consists of two
uniform bars of length ` and mass m each.
The pendulum hangs in the vertical plane
from a hinge at point O. Taking O as the
origin of a xy coordinate system, find the
location of the center of gravity of the pen-
dulum as a function of angles �1 and �2.

Filename:pfigure2-5-dpend
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Problem 3.2.7

3.2.8 Find the center of mass of the follow-
ing two objects [Hint: set up and evaluate
the needed integrals.]

Filename:pfigure3-cm-rp8
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Problem 3.2.8

3.2.9 A semicircular ring of radius R D
1m and massm1 D 0:1 kg rests in the ver-
tical plane. A bead of mass m2 D 0:25 kg
slides on the ring. Find the position of
the center of mass of the ring-bead-system
at an instant when � D 30

�
. How does

the center of mass position change as �
changes?

Filename:pfigure2-5-halfring
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Problem 3.2.9

3.2.10 A uniform circular disk of mass
m and radius R rolls on an inclined rect-
angular plate of mass 3m and dimensions
2R � `. Point A is on the y axis and
point B is on the x axis. Find the coor-
dinates of the center of mass of the system
for m D 1 kg; ` D 1m; z D 0:2m, and
R D 0:1m.

Filename:pfigure2-5-baranddisk2
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Problem 3.2.10

3.2.11 Find the center of mass of the fol-
lowing plates obtained from cutting out a
section from a uniform circular plate of
mass 1 kg (prior to removing the cutout)
and radius 1=4m.

Filename:pfigure3-cm-rp9
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Problem 3.2.11

3.3 Interactions, Partial
FBDs
Preparatory Problems
3.3.1 How does one know what forces and
moments to use in

a) the statics force balance and mo-
ment balance equations? �

b) the dynamics linear momentum bal-
ance and angular momentum bal-
ance equations? �

3.3.2 In a free body diagram of a whole
man standing with his right hand extended
how do you show the force of his right arm
on his body? �

3.3.3 Reproduce the first column of the ta-
ble in fig. 3.40 on page 153 for the force
acting on your right foot from the ground
as you step on a stair.
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3.3.4 Reproduce the second column of the
table in fig. 3.40 on page 153 for a force in
the direction of 3O{C 4 O| but with unknown
magnitude.

3.3.5 Reproduce the third column of the ta-
ble in fig. 3.40 on page 153 for a 50N force
in th direction of the vector 3O{C 4 O|.

More-Involved Problems
3.3.6 Simple massless pulleys. Draw free
body diagrams of

a) mass A with a little bit of rope
b) mass B with a little bit of rope
c) Pulley B with three bits of rope
d) Pulley C with three bits of rope
e) The system consisting of everything

below the ceiling

Filename:pfig3-1-twopulleys
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Problem 3.3.6

3.3.7 For the block and pulley arrange-
ment shown in the figure, assume negligi-
ble friction at the wheels. Draw the free
body diagrams of

a) the upper mass A,
b) the lower mass B, and
c) the pulley C.

Filename:pfig3-1-2blocksandpulley
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Problem 3.3.7

3.3.8 Multiple pulleys. A goods container
of mass m is pulled to the right using a
force

*
F and the pulley arrangement shown

in the figure. Draw the free body diagram
of

a) the massless block B, and

b) the container A along with the two
pulleys attached to it.
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Problem 3.3.8

3.3.9 Pulleys on inclined planes. Draw
the free body diagram of mass m2 and
write the expression for each force vector
acting on the mass.
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Problem 3.3.9

3.3.10 Nested pulleys. In the nested ar-
rangement of pulleys shown in the figure,
assume that all the pulleys are massless.
Draw the free body diagram of

a) mass A,

b) mass E, and

c) pulley D.

Write the expression for the net force on
pulley D.
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Problem 3.3.10

3.3.11 A point mass m at G is attached to
a piston by two inextensible cables. There
is gravity. Draw a free body diagram of
the mass with a little bit of the cables and

write the vector expression for the net force
acting on G.
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Problem 3.3.11

3.3.12 A uniform rod of mass m rests in
the back of a flatbed truck as shown in the
figure. Draw a free-body diagram of the
rod.

Filename:pfig2-2-rp5
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Problem 3.3.12

3.3.13 A spring mounted pinned rod.
The uniform rigid rod shown in the figure
hangs in the vertical plane with the sup-
port of the spring shown. In this position
the spring is stretched by �s from its rest
length.

a) Draw a free body diagram of the
spring.

b) Draw a free body diagram of the
rod.

c) Write an expression for the net
force on the rod.

d) Write the expression for the net mo-
ment on the rod about its center of
mass.

Filename:pfig2-1-rp1
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Problem 3.3.13

3.3.14 Two stacked blocks sliding with-
out friction. Two frictionless blocks sit
stacked on a frictionless surface. A force
F is applied to the top block.
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a) Draw a free body diagrams of each
block separately.

b) Draw a free body diagram of the
two blocks together.

Filename:ch2-3
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Problem 3.3.14

3.3.15 A disk in a frictionless groove. A
disc of mass m sits in a wedge shaped
groove. There is gravity but no friction.

a) Draw a free body diagram of the
disk.

b) Write vector expressions for the re-
action forces from the two walls.

c) Write the expression for the net
force on the disk.

d) What is the net moment on the disk
about its mass center?
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Problem 3.3.15

3.3.16 FBD of an arm throwing a ball.
An arm throws a ball up. A crude model of
an arm is that it is made of four rigid bodies
(shoulder, upper arm, forearm and a hand)
that are connected with hinges. At each
hinge there are muscles that apply torques
between the links. Draw a FBD of

a) the system consisting of the whole
arm (three parts, but not the shoul-
der) and the ball.

b) the ball,
c) the hand, and
d) the fore-arm,
e) the upper arm,
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Problem 3.3.16

3.3.17 A uniform rectangular board of
massm sits on a cart supported by a rod on
one corner and a pin the diagonally oppo-
site corner as shown in the figure. Draw a
free body diagram of the board and write
an appropriate vector expression for the
force exerted by the rod on the board.
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Problem 3.3.17

3.3.18 Cantilevered truss A cantilever
truss, shown in the figure, is made up of
identical horizontal and vertical bars of
length d . A vertical force F is applied at
point A. The truss is pinned to the wall at
joints S and R.

a) Draw a free body diagram of the en-
tire truss.

b) Cut the truss to the right of bar GE
by cutting rods GD, EC and ED,
and draw a free body diagram of
that portion of the truss to the right
of bar GE.

c) Draw a free body diagram of bar IE.
d) Draw a free body diagram of the

joint at I with a small length of the
bars protruding from I.
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Problem 3.3.18

3.3.19 An X structure. Two rods are
pinned together in the middle to form a
structure in the shape of ‘X’ as shown in
the figure. A free body diagram of the joint
J with a little bit of the bars near J is shown.
Draw free body diagrams of each bar and
of the whole structure. �
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Problem 3.3.19

3.3.20 The strings connected to winches at
B, C, and D hold up the mass m D 3 kg at
A. The relevant dimensions are shown in
the figure. There is gravity. Draw a free
body diagram of the mass and express the
string forces as appropriate vectors.
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Problem 3.3.20

3.3.21 Mass on inclined plane. A block
of mass m rests on a frictionless inclined
plane. It is supported by two stretched
springs. The mass is pulled down the plane
by an amount � and released. Draw a FBD
of the mass just after it is released.
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Problem 3.3.21

3.3.22 Hanging a shelf. A shelf with neg-
ligible mass supports a 0:5 kgmass at its
center. The shelf is supported at one corner
with a ball and socket joint and the other
three corners with strings. Draw a FBD of
the shelf.
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3.3.23 Billboard in the back of a truck.
Draw a free body diagram of the billboard
sitting in the back of the truck. There are
ball and socket joints at G and O. IH is a
rod. Write all forces shown on your dia-
gram as appropriate vectors in terms of unit
vectors O{, O| and Ok.
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Problem 3.3.23

3.4 Contact and friction
3.4.1 A block on an inclined plane. A
block of mass m sits on an inclined plane.
The coefficient of friction between the
block and the plane is �. Draw the free
body diagram of the block and write the
expression for the force(s) applied by the
incline on the block in terms of incline an-
gle �.
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Problem 3.4.1

3.4.2 A block of mass m sits on a surface
supported at points A and B . A horizontal
force P acts at point E. There is gravity.
The block is sliding to the right. The co-
efficient of friction between the block and
the ground is �. Draw a free body diagram
of the block.
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Problem 3.4.2

3.4.3 A block sliding on level ground. A
block of mass 10 kg is pulled by an inex-
tensible cable over the pulley.

a) Assuming the block remains on the
floor, draw a free diagram of the
block. (There are various correct
answers depending how you model
the interaction of the bottom of the
block with the ground. See fig. 3.65
on page 172)

b) Draw a free body diagram of the
pulley with a little bit of the cable
extending to both sides.
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3.4.4 A ladder standing still. A ladder of
massm rests against a frictionless wall and
a floor with more than enough friction to
prevent slip. There is gravity.

a) Draw a free body diagram of the
ladder.

b) What is force on the ladder at point
B? Find the direction of this force at
B assuming the coefficient of fric-
tion to be � and the ladder to be in
a state of impending slip. Does the
direction of the net force at B de-
pend on the relative positions of A
and B (again, assuming impending
slip)?
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Problem 3.4.4

3.4.5 For the system shown in the fig-
ure draw free-body diagrams of each mass
separately and of the system of two blocks.

a) Assume there is friction with coef-
ficient �. At the time of interest
block B is sliding to the right and
blockA is sliding to the left relative
to B.

b) Assume there is so much friction
that neither block slides.
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Problem 3.4.5

3.4.6 Two blocks A and B, with mass mA
and mB respectively, are held on an in-
clined plane as shown in the figure. Draw a
free body diagram of block A and find the
net force acting on the block.
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3.4.7 A spool rolling up an inclined
plane. Draw a free body diagram of the
spool shown, including a bit of the rope.
Assume the spool does not slid on the
ramp.
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Problem 3.4.7

3.4.8 A bead riding on a rotating wire.
A bead of mass m is free to slide on a wire
bent in the shape of a parabola. The co-
efficient of friction between the wire and
the bead is �. The wire rotates about the
y-axis. A snapshot during the motion cap-
tures the wire in the xy-plane. At this in-
stant, assume the position of the bead to be
.x; y/.

a) Draw a free body diagram of the
bead.

b) Write the vector expression for the
force on the bead from the wire.
[Hint: you need to find the normal
vector to the wire at the position of
the bead.]
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Problem 3.4.8

3.4.9 A collar sliding up a rotating rod.
A uniform rod OA of negligible mass ro-
tates in the plane about point O. A collar B
of mass m slides on the rod but faces fric-
tion with coefficient � D 0:1. At the in-
stant shown, draw the free body diagram of
the rod and the collar separately evaluating
the force of their interaction as explicitly
as possible. Ignore gravity.
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Problem 3.4.9

3.4.10 A rack and a pinion. In the rack
and pinion arrangement shown in the fig-
ure, the pinion C is welded to the disk
D. The rack is pulled up with a force F .
As a result the pinion rotates clockwise
along with disk D. Assume that the rack
and the pinion mesh perfectly together and
that there is no slip between them. You can
include or ignore gravity.

a) Draw a free body diagram of the
rack.

b) Draw a free body digram of the pin-
ion along with the disk D.
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Problem 3.4.10

3.4.11 Two racks with one pinion A pin-
ion of mass 5 kg and radius 15 cm messes
with two massless racks. The left rack is
pushed up with force F making the pin-
ion rotate clockwise. Assuming no slip-
ping between the meshing teeth, draw the
free body diagrams of each rack and the
pinion separately. Ignore gravity.
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3.4.12 A bicycle with unequal wheels.
For the bicycle shown in the figure, assume
the mass of the bicycle (and possibly the
rider) to be a point mass located at C. A
vertical downward force F is applied on
the front pedal.

a) Draw a free body diagram of the
front wheel.

b) Draw a free body diagram of the
back wheel.

c) Draw a free body diagram of the en-
tire bicycle.

d) What assumptions have you made
in modeling the interaction force of
the ground with the wheels?
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CHAPTER 4
Statics of one object

One object is in equilibrium if the forces and moments balance. For a par-
ticle, force balance tells all. But for an extended object, moment balance is
also essential. There are special shortcuts for an objects that has exactly two
or exactly three forces acting on it. If friction forces are relevant the possi-
bility of motion needs to be taken into account. Many real-world problems
are not statically determinate and thus yield either only partial solutions, or
yield full solutions after you have made extra assumptions.

Contents
4.1 Static equilibrium of a particle . . . . . . . . . . . . . . . . . 188

Box 4.1 Existence and uniqueness . . . . . . . . . . . . . 192
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The goal here is to find unknown aspects of the forces acting on one ob-
ject. The object is typically a part of a machine or structure. Such a part
is also called a ‘body’. By ‘unknown’ we mean ‘unknown at the outset’
or ‘you-need-to-do-mechanics-calculations-to-find’. Most often ‘unknowns’
are tensions in ropes or rods, contact forces where one part presses and rubs
against another, and the force on an object at a point of connection to another
object. We will also find ‘unknown’ forces and moments that one part of an
object applies to another part of the same object. Finally we might also find
the ‘unknown’ direction or point of application of a force that has a priori
known magnitude.

Needed skills

Throughout this and all later chapters you need mastery of the vector and
free body diagram skills and concepts from chapters 2 and 3.

Statics is a subset of dynamics

Statics is the mechanics of things that don’t move. But everything does move,
at least a little. So strictly speaking dynamics is always the applicable sub-
ject. For many practical problems, however, statics is a good approximation
of dynamics, very good. With little loss of accuracy, sometimes very little
loss, and a great saving of effort, usually a great saving, statics can be used
instead of dynamics. Statics is a useful model. Even for a fast moving sys-
tem, say an accelerating car, statics calculations are appropriate for many of
the parts. Although statics is a subset of dynamics (See box 4.2 on page 195)
typical engineers do more statics calculations than dynamics calculations.
Statics is the core of structural and strength analysis. Statics is the central
tool used to predict when a structure or part will or will not break. Finally,
Statics is good preparation for Dynamics 1.

For all of statics, we neglect the role of inertia. We assume forces and
moments balance each other. We assume static equilibrium.

Two dimensional and three dimensional mechanics

The world we live in is three dimensional and the theory of mechanics is
a three dimensional theory. But three dimensions are harder to understand
than two. So most learning and much engineering analysis is done in two
dimensions. You can’t critically judge the degree of simplification this in-
volves until you understand 3D mechanics. But you aren’t ready to learn 3D
mechanics until you understand 2D mechanics. We escape this catch-22 by

1 Ironically, for some people the main
benefit from learning dynamics is the
side effect of better mastery of the
generally-more-useful statics.
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188 Chapter 4. Statics of one object 4.1. Static equilibrium of a particle

2 To be precise, static equilibrium re-
quires that the system and all subsys-
tems, all billion gazillion of them (all the
different ways you could cut a piece out
of your system), satisfy the equilibrium
conditions. However, for simplicity at
this point in the book, we don’t con-
cern ourselves much with subsystems,
just with a single whole object.

1Examples of particles. You might
think of a galaxy as an immense thing,
not just a dot. But its overall motion
through a cluster of galaxies is probably
well-described by thinking of it as a par-
ticle. The galaxy may rotate and distort
in interesting ways, but one can ignore
those rotations and distortions when cal-
culating overall translation. That is, one
might model an immense rotating and
distorting galaxy as a particle.

Similarly for an accelerating car, a block
sliding on a ramp or a machine part,
one may learn enough about the forces
and motion using a particle model. Dis-
tortion and rotation might be there, and
even large, but might not be important
for understanding the overall motion or
force balance.

being casual about the precise meaning of the 2D world view. For now we
think of a cylinders and spheres as circles, of boxes as rectangles, and of cars
as things with two wheels (one in front, one in back).

Static equilibrium in a nutshell
The basic idea for all of statics is this: if the forces on a system (i.e., the
forces showing on a free body diagram of the system) satisfy eqs. (Ic) and
(IIc) (inside cover) the system is said to be in static equilibrium or just in
equilibrium 2.

A system is in static equilibrium if the applied forces and moments add
to zero.

Another way to say this is that

A system in static equilibrium satisfies the linear and angular momen-
tum balance neglecting the inertial (m*

a) terms.

A final alternative description of statics is:

The full collection of forces on a system in static equilibrium are equiv-
alent to (see Section 3.1 on page 125) a zero force and a zero couple.

The statics story is now, in-principle, complete. You have the tools (vec-
tors and free body diagrams) and you know the basic facts (the definition
of statics, above). These are enough. But we’ll guide you through some of
the subtleties, warn you away from common misconceptions, and teach you
some of the tricks of the trade. You will see that the simply-stated laws of
statics (above) allow you to accurately calculate useful things, things that
most people who have not studied statics only vaguely understand.

4.1 Static equilibrium of a particle

What is a particle?

The word particle usually means something small. In mechanics a particle is
an object for which we don’t worry about rotation, or the tendency of forces
to cause rotation. A particle may or may not be small. Besides, smallness is
in the eyes of the beholder. For some purposes a galaxy is well-modeled as
a particle and for others a molecule is too big to be thought of as a particle.
Big or small, the particle model of a system is defined by the lack of attention
paid to the moment balance equations 1. Either moment balance is trivially
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Chapter 4. Statics of one object 4.1. Static equilibrium of a particle 189

satisfied or you can find what you need without worrying about how it is
satisfied 2.

For statics of a particle, force-balance tells all:
X

All forces
on the FBD

*

F D*

0 .Ic/

In two dimensions this equilibrium equation makes up 2 independent
scalar equations (2 components of the net force vector). In 3 dimensions
we get 3 independent scalar equations. So we expect to be able to solve for
2 unknown quantities in 2D particle mechanics, and 3 in 3D.

The statics-of-a-particle recipe

For particle statics we work with a simplified form of the general recipe from
the inside back cover.

1) Draw a free body diagram (FBD) of the part of interest.
Use knowledge of the contact conditions (see Chapter 3) to draw
known and unknown aspects of the forces appropriately (see
fig. 3.40 on page 153);

2) Set the sum of the forces on the FBD to zero:
P *

Fi D
*

0.
(‘Equilibrium’, ‘force balance’, or ‘linear momentum balance in
statics’);

3) Solve the equations for unknowns.
Use vector manipulation skills (Chapter 2) to solve the force bal-
ance equation for unknowns of interest.

Scalar mechanics

In scalar mechanics, as opposed to vector mechanics, people sometimes like
to take the dot product of Eqn. (Ic) with unit vectors O{, O| and Ok and write the
three scalar component equations 3.

X
Fx D 0;

X
Fy D 0; additionally, in 3D

X
Fz D 0:

Although you can do most problems plowing through with the ‘component’
or scalar approach, often there are shortcuts or insights that depend on the
vectorial view.

2Equations are ‘satisfied’ when the
right side is equal to the left. Take that
as a definition or, if it helps you, think
of it as a desire that you would like to
accommodate.

3Actually, people who think in terms
of scalar mechanics do the dot products
implicitly (or unconsciously) and think
of the component equations as funda-
mental.
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Figure 4.1: Equilibrium of a particle in
1D.
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Figure 4.2: Particle held by a string.
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Figure 4.3: Weight hung from two lines
with associated free body diagram.

1D statics of a particle
Let’s call the one dimension of interest the x direction. The key governing
equation is X

Fx D 0:

You could call the special direction y, z, x0 or s if you like and then use, sayP
Fz D 0. The next two simple examples pretty much cover 1D particle

statics.
Example: Balance of two forces
For the particle in fig. 4.1, force balance givesX

*
Fi D

*
0 ) 10NO{ � F O{ D*

0:

Either by equating x components of both sides, or equivalently, by dotting both
sides with O{, we get F D 10N. Or, we could have just jumped to scalar mechanics,X

Fx D 0 ) 10N � F D 0 ) F D 10N:

Most often we have to contend with forces which don’t show up until we
draw a free body diagram.

Example: Force pulling on a string.
For the particle in fig. 4.2 the quantity of interest, the tension in the cable, doesn’t
show in the sketch. We need to draw a free body diagram of the particle which
means cutting the string. This FBD is shown in fig. 4.1, where F D TAB represents
the tension in cable AB. So force balance gives TAB D F D 10N.

2D statics of a particle
The situation is less trivial when we go to 2D.

Example. A 100 pound (445 N) weight hangs from 2 lines in fig. 4.3. We cut the
strings, draw a free body diagram and add the forces to get

X
*
F D*

0 ) 445N.� O|/C FA
.O{C O|/p

2� �� �
*
FA

CFB .�
1

2
O{C

p
3

2
O|/� �� �

*
FB

D*
0:

(4.1)
This can be solved various ways (see below) to get FA D 230:3N and FB D
325:8N.

Although moment balance is technically superfluous in particle mechanics,
when the forces are concurrent moment balance can be used as a shortcut.

How to solve vector statics equations?
Method 1) Pull out both x and y components of the vectors to get 2 equa-

tions in 2 unknowns;X
Fx D 0 ) FA=

p
2 � FB=2 D 0X

Fy D 0 ) FA=
p
2C FB

p
3=2 � 445N D 0:
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Method 2) Equivalently, dot both sides of the equation with O{ and O| to get
2 equations in 2 unknowns;

feqn. (4.1)g � O{ ) 0 D FA=
p
2 � FB=2

feqn. (4.1)g � O{ ) 0 D FA=
p
2C FB

p
3=2 � 445N:

Method 3) dot both sides with a vector orthogonal to rAP to get one equation
in FB , similarly dot with a vector orthogonal to*

rBP to get one equation
in FA.

feqn. (4.1)g � .�O{C O|/ ) 0 D �445N C FB.
1

2
C
p
3

2
/

feqn. (4.1)g � .
p
3O{C O|/ ) 0 D �445N C FA

p
3C 1p
2

4

Method 4) cross both sides with *
rAP to get one equation in FB , similarly

cross with *
rBP to get FA.

*

0 D
�
�`O{=

p
2 � ` O|=

p
2
�
�
 
445 N.� O|/C FA

.O{C O|/p
2

C FB.�
1

2
O{C

p
3

2
O|/
!

) 0 D �445N C FB.
1

2
C
p
3

2
/

*

0 D
�
d O{=2 � d

p
3 O|=2

�
�
 
445 N.� O|/C FA

.O{C O|/p
2

C FB.�
1

2
O{C

p
3

2
O|/
!

) 0 D �445N C FA

p
3C 1p
2

:

See section 2.5 starting on page 93 for more discussion about how to solve
vector equations.

Another approach, mathematically equivalent to method 4 above, is to
use moment balance.

Example: Moment balance
Consider again fig. 4.3. Moment balance about point A gives

X
*
MA D*

0 ) *rP=A�.445N.� O|//C*rP=A�
 
FB .�

1

2
O{C

p
3

2
O|/
!
C*
0 D*

0:

Evaluating the cross products one way or another we again get FB D 325:8N.
Similarly moment balance about B gives FA D 230:3N.

Example: A kite.
A kite flying steadily in a breeze is roughly in static equilibrium. The three forces
acting on it are from the air, pushing the kite downwind and up; from gravity,
pulling the kite down; and from the string pulling the kite upwind and down. The
three forces must add to zero.

A funny thing about kites is that they only stay up because you pull them down.

Whether force or moment balance is used, for concurrent force systems we
only have two independent scalar equilibrium equations in 2D, and three in
3D .

4Note that if *v D aO{ C b O| then *w D
�b O{C a O| is orthogonal to it because*v �
*w D �ab C ba D 0. That is, in the
plane to get a vector perpendicular to *v

interchange the components and negate
one of them (either one).
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4.1 Existence and uniqueness
This is a relatively advanced aside.

The words existence and uniqueness may sound mathematically
abstract and irrelevant to the real world. But if you translate ‘exis-
tence’ to ‘that’s possible’ and and ‘non-existence’ to ‘no way’ you
can see the relevance. Likewise ‘uniqueness’ and ‘non-uniqueness’
translate to ‘there’s just one way to do that’ and ‘there’s lots of ways
to do that’.

In most homework problems there is an answer, and just one
answer: the solution exists and is unique. But in projects and at work
problems are often ill-posed. Non-existence or non-uniqueness may
show up by a structure collapsing or a computer calculation giving
erratic answers or error messages.

Existence. Sometimes equations have no solutions, they do not

exist. For example the set
xC 2y D 7
2xC 4y D 15

has no solutions.

They don’t exist. Why? Because subtracting twice the first equation
from the second gives a contradiction: 0 D 1.

Example: Block on a slippery (frictionless) ramp. Use statics
to find the normal force.
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But the block slides and this is not a statics problem. so there is
no statics solution. Even without intuition, the statics force balance
equations show that there is no value of N that can make the force
vectors add to zero. So no statics solutions exists.

Such contradictions can be more subtle. Section 5.5 has some
examples were even experts can’t intuitively see that there are no
solutions.

Uniqueness. Sometimes statics problems have more than one so-
lution, that is a non-unique solution: the equation x C y D 1
has many solutions including .x; y/ D .1; 0/, .x; y/ D .0; 1/,
.x; y/ D .10;�9/ etc.

Structural mechanics problems often have non-unique solutions.

Example: Particle held by two strings. Find the tension in the
strings to the sides of the point of application of a given load F D
10N.
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Force balance along the strings gives us one equation for the two
unknown tensions.nX

*
Fi D

*
0
o
� O{ ) � T1 CF C T2 D 0

No other force balance or moment balance equation gives more
information. For any given F this equation has many solutions.
The pair (T1; T2) could be (10N; 0) or (0;�10N) (20N; 10N )
(17N; 7N), etc.

Of course if you tie strings together like this and apply a force
there is some actual tension in each string; reality, at any instant in

time, is unique (as far as we know). For example, if you had tied the
strings loosely together the right string gets slack and has T2 D 0
and thus T1 D 10N. But it takes an extra assumption of this nature
to get a unique solution.

And just because you can make an assumption that leads you to
a unique solution doesn’t mean that this corresponds to reality. You
might assume your friend had tied the strings together loosely and
thus calculate T2 D 0 and T1 D 10N. But really she tied them
together tightly so T2 D 30N and T1 D 40N. Here is the same
idea in 2D.

Example: Particle held by three strings.

Filename:tfigure-3strings
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T1
T2

T3Fy

FBD

Assume that Fx and Fy are given. What are the three tensions.
Planar force balance gives two equations for the 3 unknown tensions.
As in the previous example these equations have many solutions.

If you assume a) that one string goes slack and b) that no string
can carry compression, then this problem has a unique answer. But
you would have to know a priori that the strings were initially loose.

The same idea holds for 4 strings holding a particle in 3D. These
string examples have a ‘one parameter family of solutions’; specify-
ing one number (say that the tension in cable 2 is zero) determines
the other tensions. But there can be more non-uniqueness than that
by using more strings and then to get a unique solution you have to
make more assumptions.
Counting equations and unknowns All of the uniqueness issues
above could be detected by counting equations and unknowns. For
the block on the ramp we had two equations for the one unknown
N . Whereas for the string problems we had more unknowns than
equations. In summary,

� If you have more equations than unknowns existence
is likely to be an issue; you probably can’t find any
solutions.

� If you have more unknowns than equations then
uniqueness is likely an issue; any solution you find
is probably non-unique

But, like the block on ramp (2 equations with 2 unknowns) there are
cases for which equation counting does not tell all about existence
and uniqueness: see the lower right corner of the large table in sec-
tion 5.5. Some simple counter examples: x D 3; 2x D 6 has a
unique solution. And you can solve the one equation x2 C y2 D
for 2 unkowns.
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Frictionless contact
As discussed in Chapter 3.1, engineered parts that slide often have bearings
or lubrication to reduce the sliding resistance. To simplify analyses, that re-
maining resistance is often neglected and we model the contact as ‘friction-
less’ (� D 0). This means the interaction force is normal to the contacting
surfaces.

Example: Pull a wagon uphill
See fig. 4.4. From the free body diagram we haveX

*
F D*

0 ) � 1000N O| CN Oe2 C TAB Oe1 D
*
0: (4.2)

where Oe1 D cos.30
�
/O{ C sin.30

�
/ O| and Oe2 D � sin.30

�
/O{ C cos.30

�
/ O|: N

and TAB are unknown forces. Here are two ways to solve for the unknowns.
Method I. Substitute the expressions for Oe1 and Oe2 above into eqn. (4.2), extract x
and y components to get 2 equations in two unknowns which you can solve to get
TAB D 500N and N D 500

p
3N (note the font confusion that the force quantity

N and unit N have different meanings).
Method II. Using well chosen dot products can simplify the algebra. Take the dot
products of both sides of eqn. (4.2) with Oe1 and then with Oe2, to get two scalar
equations. Dotting eqn. (4.2) with Oe1 eliminates terms orthogonal to Oe1, namely
N Oe2. And dotting eqn. (4.2) with Oe2 ‘kills’ the TAB Oe1 term. So the two equations
each have only one unknown. See page 99 for more discussion of this method.

Three dimensional particle mechanics
The basic idea is the same in 3D as in 2D.

Example: One unknown force.
Assume 3 known forces and one unknown force

*
F are acting on a particle (fig. 4.5).

Then from force balance

*
0 D P *

Fi

) *
0 D .36 lbfO{ � 16 lbf O|/C .�52 lbf OkC 5 lbfO{/

C.�42 lbf OkC 20 lbfO{ � 16 lbf O|/C *
F

) *
F D .�61O{C 32 O| C 94 O|/ lbf:

.

The new difficulties in 3D particle mechanics are

� Visualization in 3D. (So practice making and reading 3D drawings.);
and

� The vector force-balance equation is 3D and thus equivalent to 3 scalar
equations. Solving these is at the upper boundary of what most people
can do reliably by hand or even with a non-programmable calculator.
So methods that reduce the complexity of the solution are useful, as
is the ability to set up the resulting equations on a computer or pro-
grammable calculator.
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Figure 4.4: A wagon pulled uphill and
associated free body diagram. Because
we are doing particle mechanics we
combine the two forces on the wheels
into the single resultant N . Further, for
particle mechanics we need not worry
about where that N is applied.
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Figure 4.5: One unknown force
*
F .
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Filename:tfigure-particle-3towers
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Figure 4.6: Mass A suspended by 3
ropes and a free body diagram of the
mass.

Hint: If the direction of a force is given (possibly implicitly) express the
force as a scalar times a unit vector:

*

F D F O�. (See top row, middle
column of fig. 3.40 on page 153.)

Example: Particle held by 3 ropes.
Say m D 100 kg and g D 10N= kg in fig. 4.6. Force balance givesX

*
Fi D

*
0 ) TAB

O�AB C TAC
O�AC C TAD

O�AD �mg Ok D
*
0 (4.3)

which is a 3D vector equation in 3 unknowns (3 scalar equations and 3 unknowns,
good). The O�’s in eqn. (4.6) are known because the position vectors are given in the
picture. For example,

O�AB D
*rAB
j*rABj

D
*rB �*rA
j*rB �*rAj

:

To get to a numerical answer for the the tensions you can use many methods such
as (see Sample 4.5 on page 200)

1. Brute force by hand.
2. Systematically set up matrix equations for solution by some means.
3. Set up and solve equations on a computer.
4. Use an appropriate dot product to extract one equation in one unknown.
5. Use moment about an axis to extract one equation in one unknown.

Filename:tfigure-arecibo

Figure 4.7: “Suspended 450 feet above the reflector is the 900 ton platform. Similar in design
to a bridge, it hangs in midair on eighteen cables, which are strung from three reinforced
concrete towers. One is 365 feet high, and the other two are 265 feet high.” Courtesy of the
NAIC-Arecibo Observatory, a facility of the NSF.
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4.2 The simplification of dynamics to statics

Is statics good enough? The answer below is for your curiosity,
not to help you with homework problems.

Classical mechanics, the equations on the inside cover of this
book, is at least 99.99% accurate for at least 99.99% of mechanical
engineering problems (see page 31 in the preface). Statics is a subset
of classical mechanics. It covers special cases that reasonably apply
to many problems, with some loss of accuracy. For at least 90% of
engineering mechanics calculations statics is at least 90% accurate.

In statics we set the right hand sides of equations I and II (on
inside cover) to zero. We are then thinking that these ‘inertial’ terms
are small enough, compared to other forces, to be neglected. We
replace the linear and angular momentum balance equations with
their simplified statics forms

X
All external

forces

*
F D*

0 and
X

All external
torques

*
MC D

*
0 .Ic; IIc/:

which are sometimes called the force balance and moment balance
and together are called the equilibrium equations. The forces to be
summed (added) are the ones you see on a free body diagram. The
torques that are summed are those due to the same forces (by means
of*ri=C �

*
Fi) and any applied couples.

In dynamics forces ‘balance’ mass times acceleration.
In statics, the forces balance each other.

The approximation, the assumption, the ‘model’, see page 33) in
statics is this: Statics assumes that the forces on an object are much
larger than the net force which accelerates it. That is, in various ways
of thinking:

� The mass times acceleration is small. Small compared to
what? Small compared to the individual forces.

� The forces largely cancel. That is, the sum of the forces is
much smaller than the individual terms.

Catch 22. Usually dynamics is too complicated for the trouble.
So you use statics. But you are insecure and want to know if statics
is accurate enough. To know this you have to do dynamics.

Estimating the errors from neglecting dynamics is a dynam-
ics problem.

For each free body diagram you have to know that

��mtot
*aG

�� D
�������
X

All forces
on the part

*
Fi

������� � Ftypical:

To avoid Catch 22 we usually fake it by checking (usually in our
heads) this rule of thumb.

Statics is probably accurate enough if

mpartapart � mload.g C jaloadj/Cmpartg� �� �
Ftypical

: (4.4)

Given this, the forces are more canceling each other out (balancing
each other) than causing acceleration. So you can use statics to figure
out just how these forces cancel each other.

Statics equations are often accurate-enough for

� Things that a normal person would call “still” such as a build-
ing or bridge on a calm day, and a sleeping person;

� Things that move with little acceleration, such as a tractor
plowing a field or most of the parts in a smooth-flying air-
plane; and

� Parts that mediate the forces needed to accelerate more mas-
sive parts, such as gears in a transmission, the rear wheel of
an accelerating bicycle, the strut in the landing gear of an
airplane, and the individual structural members of a building
swaying in an earthquake.

Example: A bicycle wheel. The forces on a bicycle wheel are on
the order of the weight of a person plus what is need to accelerate
the person up and down small hills ,say about 2mpersong in total. As
the bike rolls up and down small hills the wheel’s acceleration might
also be about g so that jm*awheel � mwheelg . We ask,��mtot

*aG
��� Ftypical ?

) mwheelg � 2mpersong

and indeed mwheel � 2mperson:

For a 50 kg rider on a bike with 1 kg wheels, the error from using
statics instead of dynamics about 4%. The load on the wheel might
be from acceleration of the rider above, but the analysis of the wheel
itself can use statics with good-enough accuracy. Note, a similar
argument also often shows that for structures holding other parts we
can reasonably neglect not just the part’s acceleration, but the weight
of the part too.

What if your statics calculation gives an inaccurate result? If
your statics calculations make a bad prediction one possible source
of errors is your neglect of dynamic terms. But that is not the com-
mon case for things that seem relatively still. Rather,

Most bad statics predictions come from

� Bad estimates of material properties (friction coeffi-
cient, failure strength, etc),

� Wrong dimensions (or angles, etc), or
� Math errors.
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Figure 4.8:
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Figure 4.9: The free body diagram of
the pin at B. Although we can see that
rod AB is in compression, we use ten-
sion as positive and let the solution take
care of the proper sign.

5Note that the tension in rod AB, T1
turns out to be negative, that is, rod AB
is in compression. This is expected since
the other two forces at B, F and T2, are
pushing on rod AB. The equality of F
and T2 is also expected from symmetry.

6How do we find the normal vector
On? Well, we know the direction of

*
T2,

which is O� D � cos � O{ � sin � O|. We
can draw a unit vector On normal to O�
and find its components from geome-
try (see figure below), or we can set
On D Ok � O� which guarantees On to be
normal to O�. In either case we get On D
cos � O{ � sin � O|.
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Figure 4.10: Finding a unit vector On nor-
mal to the direction O� of T2.

SAMPLE 4.1 Equilibrium of a pin. Two rods, AB and BC, are pinned
together at point B and to the ground as shown in the figure. A force F D
100 N is applied at point B. Given that � D 45

�
, find the tension in the two

rods.

Solution The free-body diagram of the pin at B is shown in fig. 4.9 where T1 and T2 are the
tensions in rod AB and BC respectively. The static equilibrium of the pin at B requires thatX

*
F D*

0 ) *
F C *

T1 C
*
T2 D

*
0

or F.sin � O{ � cos � O|/ � T1 O| C T2.� sin � O{ � cos � O|/ D 0: (4.5)

This is one vector equation in 2D in two unknowns T1 and T2. We can solve for the unknowns
in various ways.

Method-1: Separate out scalar equations in x and y directions. The force equilibrium
equation, eqn. (4.5), gives us two independent scalar equations in the x and y di-
rections: X

Fx D 0 ) F sin � � T2 sin � D 0X
Fy D 0 ) �F cos � � T1 � T2 cos � D 0:

Solving these two equations simultaneously, we get

T2 D F D 100N

T1 D �.F C T2/ cos �

D �2F cos � D �141:4N:

T1 D �141:4N; T2 D 100N
5

Method-2: Dot the equation with appropriate vectors. The goal here is to dot the vector
equation with appropriate vectors that give us one scalar equation in one unknown.
Here,

*
T1 acts in the � O| direction; therefore, dotting the equation with O{ gets rid of

*
T1

and results in a scalar equation involving only T2:

[eqn. (4.5)] � O{ ) F sin � � T2 sin � D 0

) T2 D F D 100N:

Similarly, to get rid of
*
T2, dot the equation with a vector On normal to

*
T2, i.e., with

On D cos � O{ � sin � O|: 6

[eqn. (4.5)] � On ) ��T1 O| C F.cos � O{ � sin � O|/ � .cos � O{ � sin � O|/� D 0

) T1 sin � C F.cos2 � C sin2 �/ D 0

) T1 D � F

sin �
D �100N

1=
p
2
D �141:4N

These are the same values of T1 and T2, as they must, obtained by Method-1.

Method-3: Use matrix equation and solve by hand or on a computer. The two scalar
equations obtained from eqn. (4.6) can be written in the matrix form as�

0 sin �
1 cos �

��
T1
T2

�
D
�

F sin �
�F cos �

�
:

Using F D 100N and � D 45� D �=4, and solving the above matrix equation (see
Sample 2.28 on page 109 and Sample 2.30 on page 111), we get�

T1
T2

�
D
� �141:4

100

�
N

which is, of course, the same result as we got above.
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SAMPLE 4.2 A mass held in equilibrium by unequal strings in 2D. A
10 kg block m hangs from strings AB and AC in the vertical plane as shown
in the figure. Find the tension in the strings.

Solution The free body diagram of the block is shown in figure 4.12. The equation of force
balance,

P *
F D*

0, gives

or T1
O�AB C T2

O�AC �mg O| D
*
0; (4.6)

where O�AB and O�BC are unit vectors in the AB and AC directions:

O�AB D
*rAB

j*rAB j
D �2mO{C 2m O|

2
p
2m

D 1p
2
.�O{C O|/

O�AC D
*rAC

j*rAC j
D 1mO{C 2m O|p

5m
D 1p

5
.O{C 2 O|/:

Substituting in eqn. (4.6) and rearranging terms, we have�
� T1p

2
C T2p

5

�
O{C

�
T1p
2
C 2T2p

5
�mg

�
O| D*

0:

Separating x and y components of this equation, we get the scalar equationsX
Fx D 0 ) � T1p

2
C T2p

5
D 0

X
Fy D 0 ) T1p

2
C 2T2p

5
�mg D 0:

Solving these two equations simultaneously we get,

T1 D
p
2

3
mg D 46:24N and T2 D

p
5

3
mg D 73:12N:

T1 D 46:24N; T2 D 73:12N

Note:
Solving for T1 and T2 If you are comfortable with vector algebra, then solving for T1 and

T2 from eqn. (4.6) is quite easy. Let us say, we find two unit vectors OnAB and OnAC
normal to unit vectors O�AB and O�AC , respectively. Then dotting eqn. (4.6) with OnAB
and OnAC , one at a time, we can solve for T1 and T2 in one step:

T2 D
mg O| � OnAB
O�AC � OnAB

; and T1 D
mg O| � OnAC
O�AB � OnAC

:

For computing the values, we need to carry out the dot products. Noting that OnAB D
1p
2
.i C j / and OnAC D 1p

5
.�2O{C O|/ (you can write these vectors by looking at O�AB

and O�AC ), we can carry out the dot product and get the values of T1 and T2.

Matrix equation The two scalar equations obtained from eqn. (4.6) can be written in the
matrix form as " � 1p

2

1p
5

1p
2

2p
5

#�
T1
T2

�
D
�

0

mg

�
:

Using mg D .10 kg/ � .9:81m=s2/ D 98:1N, and solving the above matrix equation
(see Sample 2.28 on page 109 and Sample 2.30 on page 111), we get�

T1
T2

�
D
�
46:24

73:12

�
N

which is, of course, the same result as we got above.
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Figure 4.14: The free body diagram of
the paraglider considering the ropes to
be at different angles with the horizon-
tal.

SAMPLE 4.3 Tensions in a paraglider’s ropes. A paraglider is held by two
ropes that in turn connect to the parachute with many ropes. The angles that
the two ropes make with the horizontal (or vertical) are not necessarily the
same for each rope. Assume that the right rope makes an angle �1 with the
horizontal and the left one makes an angle �2 (in flight, these angles will vary
with time). Also assume that the paraglider is descending at some uniform
velocity. Find the tensions in the two ropes in terms of the weight of the
person and the harness (say, mg), and the angles �1 and �2.

Solution The free-body diagram of the glider is shown in fig. ??. We assume that the
tensions T1, T2, and the weight mg are all in one vertical plane. Since the paraglider has a
uniform velocity (no acceleration), we can use the force balance equation for static equilib-
rium,

P *
F D*

0:
T1
O�1 C T2

O�2 �mg O| D
*
0 (4.7)

where O�1 D cos �1 O{C sin �1 O| and O�2 D � cos �2 O{C sin �2 O| are the unit vectors along the
two ropes, respectively. Thus the vector equation of equilibrium is:

T1.cos �1 O{C sin �1 O|/C T2.� cos �2 O{C sin �2 O|/ �mg O| D
*
0: (4.8)

From this equation, we get two independent scalar equations by separating the x and y com-
ponents: X

Fx D 0 ) T1 cos �1 � T2 cos �2 D 0X
Fy D 0 ) T1 sin �1 C T2 sin �2 �mg D 0:

Solving these two equations simultaneously we get,

T1 D
cos �2

sin.�1 C �2/
mg and T2 D

cos �1
sin.�1 C �2/

mg:

T1 D mg cos �2
sin.�1C�2/ and T2 D mg cos �1

sin.�1C�2/

Another vector methood: We can find T1 and T2 directly from eqn. (4.7) by taking cross
products with O�2 and O�1, respectively:

O�2 � .T1 O�1 C T2
O�2 �mg O|/ D *

0

) T1 . O�2 � O�1/� �� �
� sin.�1C�2/ Ok

�mg . O�2 � O|/� �� �
� cos �2 Ok

D *
0

) T1 D cos �2
sin.�1 C �2/

mg

Similarly, �2�[eqn. (4.7)] gives us

T2 D
cos �1

sin.�1 C �2/
mg:

Thus we get the same results as we got above by solving the two scalar equations simul-

taneously.
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SAMPLE 4.4 A single string holding a mass on a frictionless incline. A
block of mass m rests on a frictionless inclined plane with the help of a string
that connects the mass to a fixed support at A. Find the force in the string.

Solution The free-body diagram of the mass is shown in Fig. 4.16. The string force Fs
and the normal reaction of the plane N are unknown forces. The force balance equation,P *
F D*

0, is
*
Fs C

*
N Cm*g D*

0:

We can express the forces in terms of their components in various ways and then dot the
vector equation with appropriate unit vectors to get two independent scalar equations. For
example, we write the force balance equation using mixed basis vectors Oet and Oen, and O{ and
O|:

Fs Oet CN Oen �mg O| D
*
0: (4.9)

We can now find Fs directly by taking the dot product of the above equation with Oet since the
other unknown N is in the Oen direction and Oen � Oet D 0:

feqn. (4.9)g � Oet ) Fs �mg
sin �� �� �
. O| � Oet / D 0

) Fs D mg sin �:

Fs D mg sin �

� � �

Note: We can also find N from a single equation by taking the dot product of eqn. (4.9) with
On:

feqn. (4.9)g � Oen ) N �mg
cos �� �� �
. O| � Oen/ D 0

) N D mg cos �:

Scalar approach: We resolve all forces into their Oet and Oen components and then sum the
forces. Here, Fs is along the plane and therefore, has no component perpendicular to the
plane. Force N is perpendicular to the plane and therefore, has no component along the
plane. We resolve the weight mg into two components: (1) mg cos � perpendicular to the
plane (along Oen ) and (2) mg sin � along the plane (along Oet ). Now we can sum the forces:X

Ft D 0 ) Fs �mg sin � D 0I
and

X
Fn D 0 ) N �mg cos � D 0

which, of course, is essentially the same as the equations obtained above.
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Figure 4.15: A mass-particle on an in-
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SAMPLE 4.5 A particle in 3D. A particle of mass 1 kg is attached to two
strings tied at points C and D shown in the figure. Another string, AB, at-
tached to the particle, passes over a pulley and is used to hold the particle in
equilibrium under gravity such that it loses contact with the ground at point
A. Find the tension in string AB.

Solution The free-body diagram of the particle is shown in fig. 4.19. Assuming the tensions
in strings AB, AC, and AD to be TAB, TAC, and TAD respectively, we can represent the string
forces acting on the particle as TAB

O�AB, TAC
O�AC, and TAD

O�AD, where the O�’s are the unit
vectors along the strings.

The force balance on the particle gives us

TAB
O�AB C TAC

O�AC C TAD
O�AD �mg Ok D 0: (4.10)

This is the equation we need to solve to find TAB. We show various methods below that you
can use to get TAB.

1. Brute force (by hand).
From the given figure, the unit vectors are:

O�AB D �4O{C 3 O| C 12 Okp
42 C 32 C 122

D � 4

13
O{C 3

13
O| C 12

13
Ok

O�AC D � O|

O�AD D 12O{C 5 Okp
122 C 52

D 12

13
O{C 5

13
Ok:

Substituting these vectors in eqn. (4.10) and equating the x, y and z components of
the equation to zero separately, we get

� 4

13
TAB C

12

13
TAD D 0

3

13
TAB � TAC D 0 (4.11)

12

13
TAB C

5

13
TAD D mg:

We can solve the three equations simultaneously to get

TAB D
39

41
mg; TAC D

9

41
mg; and TAD D 13

41
mg:

Substituting m D 1 kg and g D 9:81m=s2, we get the required values.

TAB D 9:33N; TAC D 2:15N; TAD D 3:11N

2. Systematically set up matrix equations. Eqn. 4.10 can be written in matrix form as

� h
O�AB

i0
xyz

h
O�AC

i0
xyz

h
O�AD

i0
xyz

�
� �� �

3 � 3 matrix

2
4 TAB
TAB
TAB

3
5 D

2
4 0

0

mg

3
5

where
h
O�AB

i0
xyz

is a column of 3 numbers, namely the x; y; and z components of

O�AB; similarly for the other two columns of the 3 � 3 matrix. This matrix equation is
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then ready to hand to a calculator or computer for a matrix solution. Thus, eqn. (4.11)
can be written as,2

4 �4=13 0 12=13

3=13 �1 0

12=13 0 5=13

3
5
0
@ TAB
TAC
TAD

1
A D

0
@ 0

0

mg

1
A :

Using the pseudo code shown on the side 7 we solve the equations on a computer
and get,

T = [9.33 2.15 3.11]
which is the solution that we obtained above by hand calculation.

3. Computer solution. All the math can be handed to a computer by a sequence of
commands like this, working from the knowns to the unknowns (see page 18), all in
consistent units:

% Get all the knowns into the computer
rA = [0 0 0]’ ; rB = [-4 3 12]’
rC = [0 -15 0]’ ; rD = [12 0 5]’
m = 1 ; g = 9.81 ;

% Make relative position vectors
rAB = rB- rA; rAC = rC - rA; rAD = rD - rA

% Make unit vectors
lamdaAB = rAB/magnitude(rAB);
lamdaAC = rAC/magnitude(rAC);
lamdaAD = rAD/magnitude(rAD);

% Set up and solve the matrix equation
M = [lamdaAB lamdaAC lamdaAD] %3x3 matrix
F = [0 0 mg]’ %column vector of known force
solve {M T = F} for T

The column of numbers T will be the tensions in the 3 cables. Using this pseudo-code
on a computer, we get T = [9.33 2.15 3.11] again.

4. Be tricky to get one equation in one unknown. Since we are interested only in TAB,
we can get rid of the terms we don’t know or care about. 8 The vector *rAC �*rAD
is orthogonal to both*rAC and*rAD, so it is orthogonal to O�AC and O�AD. So taking the
dot product of both sides of eqn. (4.10) with*rAC �*rAD, we get

.*rAC �*rAD/ �
n
TAB

O�AB C TAC
O�AC C TAD

O�AD �mg Ok
o
D .*rAC �*rAD/ �

*
0�

.*rAC �*rAD/ � O�AB

�
TAB D mg

�
.*rAC �*rAD/ � Ok

�
TAB D mg.*rAC�*rAD/� Ok

.*rAC�*rAD/� O�AB
:

Since,*rAC �*rAD D .�15 O|/m � .12O{C 5 Ok/m D .180 Ok � 75O{/m2, substituting this
cross product and other known quantities, we get

TAB D mg � 180
180 � 12=13C 75 � 4=13

D 0:95mg

D 9:33N:

TAB D 9:33N

7 Pseudo-code:
Let m=1, 9=9.81
A = [ -4/13 0 12/13

3/13 -1 0
12/13 0 5/13 ]

b = [ 0 0 m*g]’
solve A*T = b for T

8 Another way of doing this is by tak-
ing Moment about an axis. This ap-
proach is similar in spirit to the previ-
ous approach. Instead of the equilibrium
eqn. (4.10) we could have used moments
about axis CD to ‘kill off’ the tensions in
ropes AC and AD (they have no moment
about that axis), like this,X

Maxis CD D 0

*rCD �
n
*rDA �

n
TAB

O�AB �mg Ok
oo
D 0

TAB D
mg*rCD �

�
*rDA � Ok

�
*rCD �

�
*rDA � O�AB

� :
Again we have found one equation for
one unknown, TAB. All the quantities
on the right can be evaluated give TAB.
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4.2 Equilibrium of one object
For particle statics we used that the forces acting on an object in equilibrium
have no net push or pull; the forces add to zero. Now we will use that the
forces have no tendency to cause rotation; the moments add to zero. These
are not two in a long list of facts about equilibrium, but the whole story. As
stated on the inside front cover and this chapter’s introduction (page 188)

An object is in static equilibrium if and only if the force balance and
moment balance equations hold.

X
All external

forces

*

Fi D
*

0

� �� �
force balance

and
X

All external
torques

*

Mi=C D
*

0

� �� �
moment balance

(Ic,IIc)

The total force system acting on the object is then equivalent to a zero
force and zero moment acting at C.

By supplementing the force-balance equation with moment balance we can
determine more about the forces that act on an object.

Rigid-body statics
To start with one often thinks of the object of interest is one piece, for ex-
ample a whole car, a wheel, a person, a limb, a chair or a derrick. We often
think of such an object as rigid, meaning that the object’s shape and size only
change negligibly due to the forces of interest. Thus the phrase rigid-body
mechanics. Actually, however, the equilibrium equations, force and moment
balance, apply just as well things to all things with little acceleration, whether
or not they are stiff and solid. For a first pass at the subject, one thinks of ap-
plying the principles of statics to single rather-solid simply-defined objects.
And such will be our main initial concern in this section. But really the de-
lineation of an ‘object’ is up to you. And in later chapters we apply the same
statics equations to clearly-non-rigid systems like water and rope. For statics
the only concern is the delineation of the system at the instant of interest.

Once you know its shape, whether an object is rigid or not is irrelevant
for statics.
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The reference point C in moment balance.
The moment balance equation is calculated by calculating the moments of
forces relative to a point C using

*

Mi D*
ri=C �

*

Fi :

C is any convenient point, possibly the origin O of your coordinate system.
C is not a special point. As discussed in Section 3.1 if a force system is
equivalent to zero force and zero couple at C it is equivalent to a zero force
and zero couple at any and every point D, E, Q, etc.

Example. As you sit still reading, gravity is pulling you down and forces from the
floor on your feet, the chair on your seat, and the table on your elbows hold you up.
All of these forces add to zero. The net moment of these forces about the front-left
corner of your desk adds to zero. And the net moment of these forces about the
mole near your left elbow is also zero.

The freedom to use any point you like for moment balance provides and oft-
used shortcut.

Number of equations and number of unknowns
In two dimensions the equilibrium equations make up 3 independent scalar
equations. These could be:

� 2 components of force balance and the one non-trivial component of
moment balance ; or

� moment balance about any two points and force balance in any direc-
tion (except in the direction orthogonal to the line connecting the two
moment-balance points).

� moment balance about 3 points (any three points not on a straight line
suffice).

Note that moment balance necessarily is part of the equilibrium equations,
but that force balance can be finessed. With one 2D free body diagram the
equilibrium equations can be solved to find three unknown scalars, for exam-
ple,

� The magnitudes of three forces whose directions are known a priori; or

� One unknown force vector (two components, or angle and magnitude)
and one unknown magnitude; or

� Some other list of three scalars associated with the forces on the free
body diagram. Besides force components and magnitudes these could
include a force angle � , a friction coefficient �, or the location of force
application.

Once you have three independent equations any additional equations you
write, say moment about still another point, contains no new information 1.
In some problems the forces shown on a free body diagram automatically

Filename:tfigure-particleequilib

Figure 4.20: A set of forces acting con-
currently on an object. All force lines of
action intersect at one point.

1 A fourth equilibrium equation may
superficially look different from an
equation already written, but it could be
derived from the other equations.
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Filename:tfigure2-two-force

(a) One might imagine two forces 
     acting on a body in 
     equilibrium 
     like this ...

Q

P B

⇀
F P

⇀
F Q

λ̂Q/P

Q

P

(b)...but force balance requires that
     each force is the negative
     of the other...

B

⇀
F P

⇀
F Q

⇀
F Q

(c)...and moment balance requires
    a common line of action.
    So, if only two forces
    act then the FBD
    must look like
    this. Q

P B

P

λ̂Q/P

F

P
F

=-

Figure 4.21: (a) Two forces acting on a
body B. (b) force balance implies that
the forces are equal in magnitude and
opposite in direction (

*
FP D �*

FQ. (c)
moment balance implies that the forces
are collinear. Body B is a two-force
member; the equilibrium equations im-
ply that the two forces must be equal
in magnitude, opposite in direction, and
collinear. If the free body diagram
shows equal-in-magnitude, opposite-in-
direction and collinear forces then the
equilibrium equations add no new infor-
mation.

satisfy one or more of the equilibrium equations; in making the drawing you
may have implicitly solved some equilibrium equations. The equilibrium
equations then offer less new information, and sometimes none at all (see
2-force bodies below).

In 3 dimensions the equilibrium equations make up 6 independent scalar
equations. Most directly these are 3 components of force and 3 components
of moment. But there are many combinations of equilibrium equations that
yield 6 independent scalar equations.

Special cases: concurrent forces, two-force bodies,
three-force bodies
We now discuss some special loading situations for which there are special
insights or problem-solution tricks. In principle you don’t need to know any
of them because force balance and moment balance spell out the whole statics
story. In practice it is best to know these special cases.

Concurrent forces

In the special case when the lines of actions of all applied forces intersect at
one point, moment balance is trivially satisfied (because none of the forces
has a moment about the intersection point). Such a system of forces is called
concurrent (fig. 4.20) and the particle model is particularly appropriate 2.
In such a case the 2D equilibrium equations only provide two independent
scalar equations and one can only use them to solve for two unknown scalars.
In 3D one gets three independent scalar equations for a concurrent force
system.

One-force body
Lets first treat “one-force” bodies. Consider a finite body with only one force
acting on it. Assume it is in equilibrium. Force balance says that the sum of
forces must be zero. So that force must be zero.

If only one force is acting on a body in equilibrium that force is zero.

That was too easy. But a count to 3 wouldn’t feel complete if it didn’t start
at 1.

Two-force body
When only two forces act on an object the situation is also simplified, though
not so drastically as the case with one force. An object with only two forces
acting on it is called a two-force body or two-force member.
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If a body in static equilibrium is acted on by two forces, then those
forces are equal in magnitude, opposite in direction, and have a com-
mon line of action (the line connecting the two points of application).

This result is shown in fig. 4.21 and explained in box 4.3. If you recognize
a two-force body you can draw it in a free body diagram as in fig. 4.21c and
the equations of force and moment balance provide no new information. The
two-force-body shortcut is especially useful for systems with several parts
some of which are two-force members. Springs, dashpots, struts, and strings
are generally idealized as two-force bodies.

Example: Tower and strut
Consider an accelerating cart (fig. 4.24) holding up massive tower AB which is
pinned at A and braced by the light strut BC . The rod BC qualifies as a two-force
member. The rod AB does not because it has three forces and is also not in static
equilibrium (non-negligible accelerating mass). Thus, the free body diagram of rod
BC shows the two equal and opposite collinear forces at each end parallel to the
rod and the tower AB does not.

Example: Logs as bearings
Consider the ancient egyptian dragging a big stone fig. 4.23. If the stone and ground
are flat and rigid, and the log is round, rigid and much lighter than the stone we are
led to the free body diagram of the log shown. With these assumptions there can’t
be any resistance to rolling. Note that this effectively frictionless rolling occurs
no matter how big the friction coefficient between the contacting surfaces. That the
egyptian got tired comes from logs not being perfectly round, the ground or stone
not being perfectly flat, and, most importantly, the ground, log or stone not being
perfectly rigid. In any case it takes effort to pick up the logs in the back and move
them to the front.

Example: Plyers
The plyers of fig. 3.37a on page 151, when considered as a whole (with the pencil
they are squeezing), are a two-force body. Thus FHE D FEH and these two forces
must act on a common line. Assuming the forces are large enough that gravity can
be neglected, and the motions are slow enough that statics is accurate, the person
has no choice but to apply the forces in this way.

Example: One point of support
If an object with weight is supported at just one point (fig. 4.22), that point must be
directly above or below the center-of-mass. Why? The gravity forces are equivalent
to a single force at the center-of-mass. The body is then a two force body. Since the
direction of the gravity force is down, the support point and center-of-mass must be
above one another.

Similarly,

If a body is suspended from one point, the center of gravity must be
directly above or below that point.

2 If forces are not concurrent the parti-
cle model may still be useful, as demon-
strated in the previous section.

Filename:tfigure-groundbalance

Figure 4.22: An object balancing on
one point of support is a two-force
body so has to have its center-of-mass
over the support point.

Filename:tfigure-pyramid

Figure 4.23: Dragging a heavy stone
on rolling round logs. If there is only
point contact between the logs and the
ground and stone, the each log is a two-
force body. If the logs are also round
there is no resistance to forward motion.
The situation with ball bearings is iden-
tical.
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Filename:tfigure2-cart-two-force

hinges
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FBD's of Rods AB and BC  

B

F A

-F B

F B

F C = -F B

Figure 4.24: A cart is propelled by
forces not showing. We are concerned
about light strut BC and heavy tower
AB. The strut is probably well-modeled
as a two-force body.

Filename:tfigure-bookinbox

mtotg

Figure 4.25: A book is in a box which
hangs from two ropes: a three-force
body.

Three-force body
If a body in equilibrium has only three forces on it, the equilibrium equations
again restrict the forces in a geometrically describable manner. The simpli-
fication is not as great as for two-force bodies but is remarkably useful for
both calculation and intuition. In box 4.4 on page 208 moment balance about
various axes is used to prove that

If exactly three forces act on a body (2D and 3D) the body is in equi-
librium only if

1. the three force vectors are coplanar,
2. and either

a) have lines of action which intersect at a single point (ie, they
are concurrent), or

b) they are parallel.

One could imagine three random forces acting on a body. But, for equi-
librium they must be coplanar and either concurrent or parallel. Unlike the
case for 2-force bodies where the 2-force-body conditions imply the satis-
faction of all equilibrium equations, for 3-force bodies planar concurrency
still leaves two independent equilibrium equations possibly unsatisfied (for
both 2D and 3D). That is, one still needs the equations of force balance in the
plane (or, in the special case of three parallel forces, one scalar force balance
and one moment balance equation ).

Example: Hanging book box
A box with a book inside is hung by two strings so that it is in equilibrium on when
level. The system is a three-force body so the lines of action of the two strings must
intersect on the vertical line that goes through the center-of-mass of the box/book
system.

Example: Which way do the forces go?
The maximum angle between pairs of forces in a 3-force body can be (a) greater
than, (b) equal to, or (c) less than 180

�
(see figure below). In each case we can know

something about the directions of the forces. Call the point of force concurrency D.

(a) Forces spread over more than 180
�
. Force balance perpendicular to the mid-

dle force implies that the outer two forces are both directed from D or both
directed away from D. Force balance in the direction of the middle force
shows that it has to have the opposite sense than the outer forces. If the oth-
ers are pushing in then it is pulling away. If the outer forces are pulling away
than it is pushing in.

(b) Forces spread exactly 180�. Force balance in the direction perpendicular to
line ADC shows that the odd force must be zero. The other forces must
obviously oppose each other.

(c) Forces spread over more than 180�. Force balance perpendicular to the force
at C shows that the other two forces must both pull away towards D or both
push in. Then force balance along C shows that all three forces must have the
same sense. All three forces are pulling away from D or all three are pushing
in.
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Filename:tfigure-3forcethm
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The idealized massless pulley
Both real machines and mechanical models are built of various building
blocks. One of the standards is a pulley. We often draw pulleys schematically
something like in fig. 4.27a which shows that we believe that the tension in
a string, line, cable, or rope that goes around an ideal pulley is the same on
both sides, T1 D T2 D T . An ideal pulley is

(i.) Round,

(ii.) Has frictionless bearings,

(iii.) Has negligible inertia, and

(iv.) Is wrapped with a line which only carries forces along its length.
We now show that these assumptions lead to the result that T1 D T2 D T .
First, look at a free body diagram of the pulley with a little bit of string at both
ends (fig. 4.27b). Since we assume the bearing has no friction, the interaction
between the pulley bearing shaft and the pulley has no component tangent to
the bearing.

4.3 Two-force bodies
Here we derive the ubiquitously-used result that if only two forces
act on a body the two forces must be equal in magnitude, opposite
in direction, and on a common line of action. You can (and will) use
this result even if you do not master the reasoning in this box. But
learning this reasoning may help your intuition.

Consider the free body diagram of a bodyB in fig. 4.21a. Forces
*
FP and

*
FQ are acting on B at points P and Q. Let’s apply the

equilibrium equations. First, we have that the sum of all forces on
the body are zero,X

All external
forces

*
F D *

0

*
FP C *

FQ D *
0 ) *

FP D �*
FQ:

Thus, the two forces must be equal in magnitude and opposite in di-
rection. So, thus far, we can conclude that the forces must be parallel
as shown in fig. 4.21b. But the forces still seem to have a net turn-
ing effect, thus still violating the concept of static equilibrium. The
sum of all external torques on the body about any point are zero. So,

summing moments about point P , we get,X
All external

torques

*
M=P D*

0

*rQ=P � *
FQ D*

0 (
*
FP produces no torque about P )��*rQ=P

�� � O�Q=P � *
FQ

�
D*
0 ( O�Q=P D

*
rQ=P

j*rQ=P j
D �

*
rP=Q

j*rP=Qj
)

So
*
FQ has to be parallel to the line connecting P and Q. Similarly,

taking the sum of moments about pointQ, we get

�O�Q=P � *
FQ D*

0

and
*
FP also must be parallel to the line connecting P and Q. So,

not only are
*
FP and

*
FQ equal and opposite, they are collinear as

well since they are parallel to the axis passing through their points of
action (see fig. 4.21c).

Filename:tfigure2-three-force

2D

3D

Figure 4.26: If exactly 3 forces act on
a body the lines of action of the forces
intersect at a single point and are copla-
nar. The point of intersection does not
have to lie within the body. A special
case is when that point is at infinity and
the three forces are parallel.
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Filename:tfigure3-pulleytheory1
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ĵ

R

R

T

F

T

Round, massless,
frictionless pulley.

T1

T2

Ideal
massless pulley

T1 = T2 = T

O

(a)

(b)

(c)

Figure 4.27: (a) An ideal massless pul-
ley, (b) FBD of idealized massless pul-
ley, detailing the frictionless bearing
forces and showing forces at the cut
strings, (c) final FBD after analysis.

To find the relation between tensions, we apply angular momentum bal-
ance (equation II) about point OnX

*

MO D P*
HO

o
� Ok: (4.12)

Evaluating the left hand side of eqn. 4.12X
*

MO � Ok D R2T2 �R1T1 C bearing friction� �� �
0

D R.T2 � T1/; since R1 D R2 D R:

Because there is no friction, the bearing forces acting perpendicular to the
round bearing shaft have no moment about point O (see also the short exam-
ple on page 126). Because the pulley is round, R1 D R2 D R.

When mass is negligible, dynamics reduces to statics.
Putting these assumptions and results together gives

nX
*

MO D
*

0
o
� Ok

) R.T2 � T1/ D 0

) T1 D T2

Thus, the tensions on the two lines of an ideal massless pulley are equal.

Lopsided pulleys are not often encountered, so it is usually satisfactory
to assume round pulleys. But, in engineering practice, the assumption of
frictionless bearings is often suspect. In dynamics, you may not want to
neglect pulley mass.

Lack of equilibrium as a sign of dynamics
Surprisingly, statics calculations often give useful information about dynam-
ics. If, in a given problem, you find that forces or moments cannot be bal-
anced this is a sign that the related physical system will accelerate in the
direction of imbalance (See the example ‘block on ramp’ on page 215). For
more about nonexistence of a statics solution, see box 4.1 on page 192.

4.4 Three-force bodies
Here is a brief derivation of the result for three force bodies. The
derivation is not needed for problem solving. However understand-
ing the derivation may help build intuition.

Consider a body in static equilibrium with just three forces on it;
*
F1,

*
F2, and

*
F3 acting at *r1, *r2, and *r3. Taking moment balance

about the axis through points at *r2 and *r3 implies that the line of
action of

*
F1 must pass through that axis. Similarly, for equilibrium

to hold, the line of action of
*
F2 must intersect the axis through points

at *r1 and *r3 and the line of action of
*
F3 must intersect the axis

through *r1 and *r2. So, the lines of action of all three forces are
in the plane defined by the three points of action and the lines of
action of

*
F2 and

*
F3 must intersect. Taking moment balance about

this point of intersection implies that
*
F1 has line of action passing

through the same point. A special case is when
*
F1,

*
F2, and

*
F3

are parallel and have a common plane of action (equivalent to the
concurrency point being at infinity).
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Linearity and superposition
For a given geometry the equilibrium equations are linear: If you know a set
of forces that is in equilibrium and you also know a second set of forces that
is in equilibrium, then the sum of the two sets is also in equilibrium.

Example: A bicycle wheel

Filename:tfigure-wheelsuperposition
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Figure 4.28: A bicycle wheel.

The free body diagram of an ideal massless bicycle wheel with a vertical load
is shown in (a) above. The same wheel driven by a chain tension but with no weight
is shown in equilibrium in (b) above. The sum of these two load sets (c) is therefor
in equilibrium.

That you can add solutions of linear equations is called the principle of su-
perposition, also called the principle of superimposition 3. The principle of
superposition provides a useful shortcut for some mechanics problems.

4.5 Moment balance about 3 points is sufficient in 2D
This is a theoretical aside showing that moment balance can totally
replace force balance.

In 2D one can solve any statically determinate problem using
moment balance about any 3 non-collinear points. Force balance
adds no information.

Here we show the math behind this useful trick. The derivation
here is only for logical completeness, it does not help with problem
solving.

Consider two points A and B. Moment balance about these two
points givesX

*ri=A �
*
Fi D

*
0 and

X
*ri=B �

*
Fi D

*
0:

Subtracting one of these equations from the other gives:X
*ri=A �

*
Fi �

X
*ri=B �

*
Fi D

*
0X�

*ri=A �*ri=B
�� *

Fi D
*
0X�

.*ri �*rA/� .*ri �*rB/
�� *

Fi D
*
0X�

*rB �*rA
�� *

Fi D
*
0�

*rB �*rA
��X *

Fi D
*
0

Dotting both sides with a vector Ok normal to the plane we get (re-
calling the mixed triple product identity from page 71 in Section 2.3

that .
*
A � *

B/ � *C D .
*
C � *

A/ � *B) we can re-arrange terms to get�
.*rB �*rA/�

X
*
Fi

�
� Ok D*

0 � Ok� Ok� .*rB �*rA/
�
�
X

*
Fi D 0:

Thus moment balance about the points A and B implies force balance
in the direction Ok� .*rB �*rA/. This is force balance in the direction
normal to the line AB (and in the plane).

Now consider a third point C. By the same reasoning moment
balance about B and C implies force balance in the direction orthog-
onal to BC. So long as BC is not parallel to AB then we have force
balance in two independent directions. SoX

*
Fi D

*
0:

The result only goes sour if the two directions are parallel, which oc-
curs when two of the points A, B, and C are on a line. If A, B, and C
are not on a line, moment balance about them implies force balance.
So use of moment balance replaces the force balance equilibrium
equations.

Moment balance about convenient points A, B, and C can sim-
plify the equilibrium equations if the points are picked so that, by
inspection, some forces have no moment.

3Superimposition. Here’s a bad pun
to help your memory. When talkative
Sam comes over you get bored. When
hungry Sally comes over you reluctantly
go get a snack for her. When Sam and
Sally come over together you get bored
and reluctantly go get a snack. Each one
of them is imposing. When they come
over together their effects add. They are
super imposing.
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SAMPLE 4.6 Find force F for equilibrium of the angle shown in the figure.
The dimensions of the angle are d D 0:3m and a D 0:2m.

Solution The free-body diagram of the angle is shown in Fig. fig. 4.30. Since we are
interested in force F , we can write the scalar moment balance equation (in Ok direction) about
point C (and thus get rid of the other unknown force

*
R):

�Fa � .100N/d D 0

) F D �.100N/
d

a

D �100N � 0:3m
0:2m

D �150N:

*
F D �.150N/O{

SAMPLE 4.7 Consider the angle shown in the figure with the applied forces.
Can the angle be in equilibrium for some value of F ? Explain.

Solution Let us assume that the angle is in equilibrium. Then the forces acting on the angle
must satisfy the force and moment balance equations. Now the force balance in the O| direction
gives

F C .100N/ D 0

) F D �100N:

The moment balance about point A gives

Fd D 0

) F D 0

Thus,
�100N D 0

which is a contradiction. Thus the angle cannot be in equilibrium with the applied forces.
It is easy to see that no matter which way F acts (up or down), it cannot simultaneously

balance the applied force at A and its moment. If F D 100N acts upwards at B, the angle
will accelerate up because it has a net force in the O| direction. If F D 100N acts downwards
at B, the two equal and opposite forces at A and B produce a net moment on the angle and
therefore the angle will start spinning about the Ok direction. In fact, no matter what the value
or direction of F is, as long as it acts at point B, the angle cannot be in equilibrium. This is
because the angle, as given, is a two force body, and for equilibrium, the two applied forces
must be equal, opposite and colinear.

Equilibrium not possible.
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SAMPLE 4.8 A bar as a 2-force body: A 4 ft long horizontal bar AC
supports a load of 60 lbf at one end and is pinned to a wall at the other end.
The bar is also supported by a string BC as shown in the figure. Find the
forces applied by the pin and the string on the bar.
Solution Let us do this problem two ways — using equilibrium equations without much
thought, and using those equations with some insight.

The free-body diagram of the bar is shown in Fig. 4.33. The moment balance about point
A,
P *
MA D 0, gives

*rC=A � T O�C*rC=A � .�P O|/ D *
0

`O{ � T .� cos � O{C sin � O|/� �� �
`T sin � Ok

C `O{ � .�P O|/� �� �
�`P Ok

D *
0

.T ` sin � � P`/ Ok D *
0 (4.13)

) T D P

sin �
D 60 lbf

3=5
D 100 lbf:

The force equilibrium,
P *
F D 0, gives

.Ax � T cos �/O{C .Ay C T sin � � P / O| D *
0 (4.14)

Separating out x and y components of this equation, we get

Ax D T cos � D .100 lbf/ � 4
5

D 80 lbf

Ay D P � T sin � D 0

where the last equation, Ay D P � T sin � D 0 follows from eqn. (4.13). Thus, the force in
the rod is

*
A D .80 lbf/O{, i.e., a purely compressive force, and the tension in the string is 100

lbf.

*
A D .80 lbf/O{; T D 100 lbf

Alternate Solution: From the free-body diagram of the rod (see fig. 4.34), we realize that
the rod is a two-force body, since the forces act at only two points of the body, A and C. The
reaction force at A is a single force

*
A, and the forces at end C, the tension

*
T and the load

*
P ,

sum up to a single net force, say
*
F . So, now using the fact that the rod is a two-force body,

the equilibrium equation requires that
*
F and

*
A be equal, opposite, and colinear (along the

longitudinal axis of the bar). Thus,
*
A D �*

F D �F O{:

Now,
*
F D *

P C *
T

�F O{ D �P O| C T sin � O| � T cos � O{ (4.15)

Separating out x and y components of this equation, we get

�F C T cos � D 0 (4.16)

P � T sin � D 0: (4.17)

Solving these two equations simultaneously, we get T D P= sin � D 100 lbf and F D
T cos � D 80 lbf. The answers, of course, are the same.
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ĵ

d

d

M
R

Figure 4.39:

SAMPLE 4.9 A bottle holder: A clever design of a bottle holder (a plank
with a hole) is shown in the figure. Note that the holder is not fixed to the
support; it stands freely, but only when the bottle is in. Assume that the mass
of the bottle is 1 kg and that the center-of-mass of the bottle is at 3/5th of
its length (h D 35 cm) from the neck support point. The bottle in its rest
position is slightly tipped down (� D 15

�
). Assuming the mass of the stand

to be negligible and ` D 30 cm, find the angle � of the stand so that the bottle
and the stand can stand together as shown.

Solution Let us draw the free-body diagram of the bottle and the stand together as one
system. The forces acting are shown in fig. 4.36. Since the only forces acting on the system
areR andmg, they must be equal, opposite and colinear. Thus the line of action of the weight,
mg, must pass through the center of the stand’s footprint. From the given geometry, then, we
must have,

` cos � D 3h

5
cos�

) � D cos�1
�
3h

5`
cos�

�

D cos�1
�
3 � 35 cm
5 � 30 cm

cos 15
�

�
D 47:5

�

:

� D 47:5
�

Note: The latitude in design of the angle � depends on the width of the base of the stand. The

two forces acting on the system must be colinear and must pass through the base. Therefore,

a wider base (perhaps at the expense of elegance) provides more freedom for the forces to

move sideways, giving a range of � and � for design. (see fig. 4.37.)

SAMPLE 4.10 Reactions at fixed ends. For the bent bar shown in the figure,
find the reaction forces at the fixed end for F D 10 kN.

Solution The free-body diagram of the rod is shown in fig. 4.39. Note that in addition to the
reaction force

*
R, there is a reaction moment

*
M DM Ok acting on the rod because of the fixed

support.
The force balance equation,

P *
F D*

0, gives us

F O{C *
R D *

0

) *
R D �F O{ D �.10 kN/O{:

Now, we can write the moment balance equation about point C,
P *
MC D

*
0, to give

M Ok � Fd Ok D *
0

) M D Fd D 20 kN�m:
*
R D �10 kN O{; *

M D 20 kN�m Ok
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SAMPLE 4.11 Consider the structure (a rocker arm) shown in the figure.
Assume that bar CD can only take axial load (tension or compression). If a
horizontal force, F D 2 kN is applied at point A, what is the tension in rod
CD?

Solution Let T be the tension in the rod (although intuitively you can see that the rod must
be under compression). Then, the free-body diagram of the rocker arm ABC is as shown in
fig. 4.41. We need to find T . We can do so using either moment balance or force balance as
shown below.
Method-1: Using moment balance The easiest way to solve this problem is to apply mo-

ment balance,
P *
MB D

*
0, about point B. Taking moments about this point gets rid of

the unknown reaction force RB and relates T to F directly:

*rA=B �
*
F C*rC=B �

*
T D*

0

We can evaluate the cross products vectorially or use the scalar form of the moment
calculation (force times the lever arm) to give

*rA=B �
*
F D �F ` sin � Ok

*rC=B �
*
T D �T ` cos � Ok:

So, the scalar moment balance equation in the Ok direction is

�F ` sin � � T ` cos � D 0

) T D �F tan �:

Now substituting the given values, F D 2 kN, and � D 30
�
, we get

T D �.2 kN/ � .tan 30
�

/ D �1:15 kN:

Thus the rod is under compression, not tension. It is also clear from the picture that if
we push at A, ABC will try to rotate clockwise about B, thus pushing down on the rod
at C.

T D �1:15 kN

Method-2: Using force balance We can also use the force balance equation,
P *
F D*

0 to
find T . However, force balance will involve two unknown forces T and R. The force
balance gives

*
F C *

T C *
RB D 0

or F O{ � T O| CRB
O� D 0 (4.18)

where O� is a unit vector in the direction of
*
RB and is not known yet. However, we

know that the rocker arm is a three force body, and therefore, all the three forces must
be concurrent (they cannot be parallel here). From geometry it is clear that the lines of
action of all the three forces must pass through point C. This realization immediately
gives us the direction of

*
RB , that is, O� D cos � O{ C sin � O|. So, now we can write

out eqn. (4.18), separate out x and y components and solve the two scalar equations
simultaneously to find both T and RB . But we are not interested in finding RB . So
why not get use an appropriate dot product with eqn. (4.18) to get rid ofRB and get one
scalar equation relating T to F . Let On be normal to O�. Thus, On D � sin � O{C cos � O|.
Now, with On gives

[eqn. (4.18)] � On ) F O{ � On����
� sin �

�T O| � On����
cos �

CRB O� � On����
0

D 0

) �F sin � � T cos � D 0

) T D �F tan � D �1:15 kN

as obtained by moment balance.
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force body and, therefore, the three
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of action intersect at one point, C). Thus
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sin � O|. A unit vector normal to O� is,
therefore, On D � sin � O{ C cos � O| (you
can guess it from geometry or find it
from On D Ok � O�).
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Figure 4.43: Pulling a block on a
frictional ground, with related FBD.
The complicated distribution of normal
forces and friction forces on the block
from the ramp have been replaced with
the equivalent pair N and F . For par-
ticle mechanics we don’t worry about
where N and F are applied.

1If you have studied friction be-
fore, our approximation is that � D
�static D �dynamic adequately cap-
tures the complex and hard to quantify
reality of frictional forces

4.3 Equilibrium with frictional contact
Contacting objects are prevented from passing through each other by press-
ing against each other. Generally there is also some frictional resistance to
relative slip. We have neglected friction so far for simplicity and because the
neglect of friction is a reasonable approximation for some lubricated contact
problems. On the other extreme, in some situations we have assumed that
friction so well resists slip that we assumed ‘no slip’ and that frictional con-
tact acts like a hinge or weld. Either way, with friction negligibly small, or
reliably large, we have not worried about it.

However, for some purposes friction forces are not reasonably neglected
during slip. Or, when there is no slip, sometimes we have to worry about
whether the frictional bond is strong enough to prevent slip.

Although slip means motion and motion sounds like dynamics (con-
tradicting the premise of statics), there are many situations where there is
enough motion for friction to be important but not so much acceleration that
inertial terms (m*

a) are important.
How friction forces are represented on free body diagrams was discussed

in Section 3.3 which you should review before proceeding further here. We
will now consider friction forces in equilibrium conditions.

For simplicity, and because of the relatively high accuracy to complex-
ity ratio, we consider only Coulomb friction with a single coefficient of
friction � 1.

Example: Drag a block with friction.
Consider the block with friction on a slope (fig. 4.43). You want to pull it slowly to
the right with rod AB. Say m D 100 kg, g D 10m=s2, and � D 0:3.
Force balance, using the forces on the free body diagram gives:X

*
Fi D

*
0 ) �mg O| C TAB O{CN O| � F O{ D*

0 (4.19)

This, with the friction relation F D �N , is 3 scalar equations in TAB, F andN with
solution N D mg D 1000N; F D �mg D 300N; and TAB D �mg D 300N.

Example: Drag a block on a ramp with friction.
Consider the block with friction on a slope (fig. 4.44). You want to hold it with

rod AB. Maybe you want to (i) slide it up slowly, or (ii) down slowly or (iii) hold it
still. Say m D 100 kg, g D 10m=s2, � D 45

�
, and � D 0:3.

Force balance, using the forces on the free body diagram, gives:X
*
Fi D

*
0 ) �mg O| C TAB Oe1 CN Oe2 � F Oe1 D

*
0 (4.20)

This, with the friction relation, is 3 scalar equations in TAB, F and N .

Summing forces in the rope direction and normal to the plane we get:

f.Eqn: 4:20/g � Oe1 ) �mg sin � C TAB � F D 0

f.Eqn: 4:20/g � Oe2 ) mg cos � CN D 0 (4.21)
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or, for the quantities given N D .100 kg/.10m=s2/.cos 45
�
/ D 1414N.

We assume that F and N are related by friction described with the standard
Coulomb’s friction model 2:

i) F D �N if the block is sliding up;
ii) F D ��N if the block is sliding down; or

iii) ��N � F � �N if the block is not sliding.

Solving eqn. (4.20) with the friction relations gives 3.

i) TAB D mg .� cos � C sin �/ if the block is sliding up;
ii) TAB D mg .�� cos � C sin �/ if the block is sliding down;

Note that if tan � < � then TAB < 0 and it then takes a push to slide
down; or

iii) mg .�� cos � C sin �/ � TAB � mg .� cos � C sin �/
if the block is not sliding.

If tan � < � then TAB D 0 is amongst the solutions for, so no sliding
and the block can sit still on the slope with no pull on the rope.

Note that the tension TAB scales with mg. So doubling m or g doubles all
the forces in all of these answers, as you might guess from dimensional con-
siderations. The mathematically-abstract-sounding issues of existence and
uniqueness often show up in friction problems. For example, sometimes
there is no statics solution (non-existence).

Example: Block on ramp.
A statics problem without a solution. A block with coefficient of friction � D :5

is in static equilibrium sliding steadily down a 45
�

ramp (fig. 4.45). Not! If there
is constant velocity motion then statics would apply. But the forces in the free
body diagram cannot add to zero (since the resultant of the friction and normal
force is tipped up and to the left and thus cannot be parallel to the vertical gravity
force). The assumptions are not consistent with statics (actually this is a dynamics
problem, the block accelerates down the ramp). If you saw a block just sitting there
on a ramp, then you can be sure that the slope and friction coefficient are not those
given above.

Friction problems might be studied with a particle model, as above, or also
with moment balance.

Example: Dragged block as an extended body.
This is a repeat of the first example on page 214. One might wonder if the dragging
causes an uneven distribution of force up on the block. Does the block dragging
back, for example, cause a bigger pressure on the back? As a simple model assume
all the ground force is at the front and back edge of the block. Force balance gives
basically the same information as for the particle model, namely that:

NC CND D W and FC����
�NC

C FD����
�ND

D TAB ) TAB D �W:

One can find more with moment balance about any point you like, say C, with force
balance givesX

M=C D 0 ) ND D W

2
C �hW

2`
and NC D W

2
� �hW

2`

So there is more pressure on the front than back. This difference goes away if the
either the friction or the height of the string attachment vanish.
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Figure 4.44: Pulling a block up a fric-
tional slope with related FBD. As in the
previous example, the pair N and F

represent the net normal and frictional
force.

2Caution: A common mistake
amongst beginners is to assume the
equation F D �N applies when there
is friction. Rather, if the friction is pre-
venting slip F could be anything so long
as jF j � �N . And if the slip is op-
posite in direction from that implicitly
assumed in the free body diagram then
F D ��N (see case (ii) in the example
above).

3 We could be tricky and get a sin-
gle equation for the scalar TAB by dot-
ting both sides of eqn. (4.20) with a vec-
tor orthogonal to the resultant of N Oe2 �
F Oe1. For the case of uphill sliding such
a vector would be Oe1 C � Oe2.
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Figure 4.46: Dragging a block, taking
account (in a simple way) the distribu-
tion of contact forces from the ground.
Assume slip to the right is occurring.

4 All of the combinatorics in this
recipe follows from the inability of our
mathematics to deal easily with rela-
tions between variables with the step
shape of Coulomb friction (fig. 3.57 on
page 167).

Conditional contact, consistency, and contradictions
There is a natural hope that a subject will reduce to the solution of some well
defined equations. For better and worse, things are not always this simple.
For better because it means that the recipes are still not so well defined that
computers can easily steal the subject of mechanics from people. For worse
because it means you have to think hard to do some mechanics problems.

One source of these difficulties is the conditional nature of the equations
that govern contact. For example:

� The ground pushes up on something to prevent interpenetration if the
pushing is positive, otherwise the ground does not push up.

� The force of friction opposes motion and has magnitude �N if there
is slip, otherwise the force of friction is something less than �N in
magnitude.

� The distance between two points is kept from increasing by the ten-
sion in the string between them if the tension is positive, otherwise the
tension is zero.

These conditions are, implicitly or explicitly, in the equations that govern
these interactions. One does not always know which of the alternative contact
conditions, if either, apply when one starts a problem. Sometimes multiple
possibilities need to be checked 4.

On a FBD at every point of frictional contact

� If the direction of slip or impending slip is known, either
– Draw a normal force N and a friction force F D �N oppos-

ing the relative slip, or
– Draw a single force R at an angle � from the normal of the

contact in the direction which resists slip (with tan� D �)
� If there is no slip, either

– Draw a normal force N and tangential force F or
– Draw a single force vector

*

R with unknown components
� If you don’t know whether of not there is slip, first

– Guess that there is no slip then
– Solve the equilibrium equations, then

� If F � �N : you guessed right and have found a solution
to both the equilibrium and friction equations.

� If F > �N : you guessed wrong and have to guess that
there is slip in one direction (guess which), then
� see if you can solve the equilibrium equations, if not

then
� assume slip in the opposite direction and try to solve the

equilibrium equations, if you can’t then
� the problem has no solution
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Example: Robot hand

Filename:tfigure-erdmannpalms

Roboticist Michael Erdmann has designed a palm manipulator that manipulates
objects without squeezing them. The flat robot palms just move around and the
object consequently slides. Determining whether the object slides on one the other
or possibly on both hands in a given movement is a matter of case study. The com-
puter checks to see if the equilibrium equations can be solved with the assumption
of sticking or slipping at one or the other contact.

Once you find a solution to a problem with friction there remains the possi-
bility of multiple solutions, in this case for different reasons than the usual
static indeterminacy. The following problem shows a case where a statics
problem has multiple solutions due to friction effects.

Example: Rod pushed in a channel.
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A light rod is just long enough to make a 60
�

angle with the walls of a channel. One
channel wall is frictionless and the other has � D 1. What is the force needed to
keep it in equilibrium in the position shown? If we assume it is sliding we get
the first free body diagram. The forces shown can only be in equilibrium if all the
forces are zero. So a solution is that the rod slides in equilibrium with no force. If
we assume that the block is not sliding the friction force on the lower wall can be
at any angle between �45� . Thus we have equilibrium with the second FBD for
arbitrary positive F . This is a second set of solutions. A rod like this is said to
be self locking in that it can hold arbitrary force F without slipping. That we have
found freely slipping solutions with no force and jammed solutions with arbitrary
force corresponds physically to one being able to easily slide a rod like this down a
slot and then have it totally jamb. Some rock-climbing equipment depends on such
self-locking and easy release.
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ĵ

Figure 4.47: A chair with friction at the
feet.

Statically indeterminate problems
When there are two or more points of frictional contact and there is no slip
nor impending slip then static indeterminacy is likely.

Example: Chair with friction
If we assume Coulomb friction at the chair feet we know that

jFAj � �NA and jFB j � �NB
The equilibrium equations tell us (assuming for simplicity thatW acts in the middle
of the chair):

FA C FB D 0;NA D NB D W=2:

Putting these equations together we find that

�W=2 � FA � W=2 and FB D �FA

4.6 Undriven wheels and two force bodies
One often hears whimsical reverence for the “invention of the
wheel.” Now, using elementary mechanics, we can gain some ap-
preciation for this revolutionary way of sliding things.

Without a wheel the force it takes to drag something is about
�W . Since � ranges between about .1 for teflon, to about .6 for
stone on ground, to about 1 for rubber on pavement, you need to pull
with a force that is on the order of a half of the full weight of the
thing you are dragging.

You have seen how rolling on round logs cleverly take advantage
of the properties of two-force bodies (page 205). But that good idea
has the major deficiency of requiring that logs be repeatedly picked
up from behind and placed in front again.

The simplest wheel design uses a dry “journal” bearing consist-
ing of a non-rotating shaft protruding through a near close fitting
hole in the wheel. Here is shown part of a cart rolling to the right
with a wheel rotating steadily clockwise.

Filename:tfigure-primitivewheel

To figure out the forces involved we draw a free body diagram of the
wheel. We neglect the wheels weight because it is generally much
smaller than the forces it mediates. To make the situation clear the
picture shows too-large a bearing hole r .
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The force of the axle on the wheel has a normal component N and
a frictional component F . The force of the ground on the wheel has
a part holding the cart up Fy and a part along the ground Fx which
will surely turn out to be negative for a cart moving to the right. If
we take the wheel dimensions to be known and also the vertical part
of the ground reaction force Fy we have as unknowns N;F; � and
Fx . To find these we could use the friction equation for the sliding
bearing contact

F D �N I
force balance

Fx O{CFy O|CN.� sin � O{� cos � O|/CF.cos � O{� sin � O|/ D*
0;

which could be reduced to 2 scalar equations by taking components
or dot products; and moment balance about C, which we calculate
with forces and perpendicular distances as

F r CFxR D 0:

Of key interest is finding the force resisting motion Fx . With some
mathematical manipulation we could solve the 4 scalar equations
above for any of Fx ;N;F; and � in terms of r;R;Fy , and �.
We follow a more intuitive approach instead.

As modeled, the wheel is a two-force body so the free body di-
agram shows equal and opposite collinear forces at the two contact
points.
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(continued...)
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and no more. That is, all we can tell that both are within the friction limits and that
the horizontal forces cancel each other.

If a free body diagram shows two forces with a common line of action,
like the friction forces FA and FB on the chair above, the laws of statics
might only find their sum, but otherwise can’t untangle them.

Only if there is independent information, as would be the case if we knew
the chair was sliding to the right (which it clearly isn’t in this static example),
could we find the friction forces.

4.6 Undriven wheels and two force bodies (continued)
The friction angle � describes the friction between the axle and
wheel (with tan� D �). The angle � describes the effective fric-
tion of the wheel. This is not the friction angle for sliding between
the wheel and ground which is assumed to be larger (if not, the wheel
would skid and not roll), probably much larger. The specific resis-
tance or the coefficient of rolling resistance or the specific cost of
transport is �eff D tan�. (If there was no wheel, and the cart or
whatever was just dragged, the specific resistance would be the fric-
tion between the cart and ground �eff D �.)

Although we can solve for � in terms of � or � let’s first con-
sider two extreme cases: one is a frictionless bearing and the other is
a bearing with infinite friction coefficient �!1 and �! 90

�

.
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In the case that the wheel bearing has no friction we satisfyingly see
clearly that there is no ground resistance to motion. The case of in-
finite friction is perhaps surprising. Even with infinite friction we
have that

sin� D r

R
:

Thus if the axle has a diameter of 10 cm and the wheel of 1m then
sin� is less than .1 no matter how bad the bearing material. For such
small values we can make the approximation �eff D tan� � sin�
so that the effective coefficient of friction is .1 or less no matter what
the bearing friction.

The genius of the wheel design is that it makes the effective
friction less than r=R no matter how bad the bearing friction.

Going back to the two-force body free body diagram we can see that

)
d����

r sin� D
d� �� �

R sin�

) sin� D r

R
sin�: .�/

From this formula we can extract the limiting cases discussed previ-
ously (� D 0 and � D 90

�

). We can also plug in the small angle
approximations (sin� � tan� and sin� � tan�) if the friction
coefficient is low to get

�eff � �
r

R
:

The effective friction is the bearing friction attenuated by the radius

ratio. Or, we can use the trig identity sin Dp
1C tan�2

�1
to solve

the exact equation (*) for

�eff D �
r

R

 
1p

1C�2.1� r2=R2/

!
;

where the term in parenthesis is always less than one and close to
one if the sliding coefficient in the bearing is low.

Finally we combine the genius of the wheel with the genius of
the rolling log and invent a wheel with rolling logs inside, a ball
bearing wheel.

Filename:tfigure-ballbearing

Each ball is a two force body and thus only transmits radial loads.
It’s as if there were no friction on the bearing and we get a specific
resistance of zero, �eff D 0. Of course real ball bearings are not
perfectly smooth or perfectly rigid, so its good to keep r=R small as
a back up plan even with ball bearings.

By this means some wheels have effective friction coefficients
as low as about .003. The force it takes to drag something on wheels
can be as little as one three hundredth the weight.
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Figure 4.49: Free body diagram of
the block. The friction force

*
Ff may

be known or unknown depending on
whether the block is sliding or not.
Under downhill sliding, Ff D �N ,
whereas for no sliding jFf j � �N .

SAMPLE 4.12 A block on a ramp sliding down or up. Consider a block
of mass m D 10 kg pushed up by the force F on the ramp as shown in the
figure. The coefficient of friction between the ramp and the block is � D 0:7.

1. Let � D 60
�

and � D 0
�
. Assuming that the block slides steadily

downhill, find the tension in the string.

2. Let � D 30
�

and � D 30
�
. If the applied force F D 20N, find the

force of friction on the block.

3. Let � D 60
�

and � D 30
�
. If the applied force F D 10N, find the

force of friction on the block.

4. For � D 30
�

and � D 30
�
, what will be the required tension in the

string to make the block just about slide up the slope? Express your
answer in terms of the weight of the block.

Solution The free-body diagram of the block is shown in fig. 4.49. We have assumed that
the friction force acts upwards along the inclined plane. The direction of the friction force
can be up or down depending on the direction of sliding. We will let the equilibrium equation
tell us which way the friction force acts in a particular case. In fig. 4.49, we also use rotated
unit vectors O{ and O|, parallel and perpendicular to the inclined plane, respectively. This is
just to make calculations easier. We can use these basis vectors in any orientation to suit our
convenience.

The force balance equation for the static equilibrium of the block givesX
*
F D*

0 ) *
F C *

N C *
Ff C *

W D*
0: (4.22)

) F.� cos� O{C sin� O|/CN O| � Ff O{Cmg.sin � O{ � cos � O|/ D*
0

(4.23)

Now depending on what is given and what is unknown, we can manipulate this vector equa-
tion to find what we want.

1. Block sliding down: If the block slides down steadily or very slowly, we can use
the static equilibrium equation written above with

*
Ff D ��N O{ (that is, the friction

force is known. This is the case of sliding friction and the friction force is maximum
possible). Substituting this value of

*
Ff and separating out the O{ and O| components of

eqn. (4.23), we get

�F cos� � �N Cmg sin � D 0 (4.24)

F sin� CN �mg cos � D 0: (4.25)

Adding � times eqn. (4.25) to eqn. (4.24) in order to get rid of N , and rearranging
terms, we get

F.cos� � � sin�/ D mg.sin � � � cos �/

) F D sin � � � cos �
cos� � � sin�

mg: (4.26)

Substituting � D 0
�
; � D 60

�
, and � D 0:7 in eqn. (4.26), we get

F D .sin 60
� � 0:7 � cos 60

�

/mg D 0:52mg: D 51N:

*
F D �.51N/O{

2. Block sliding or not sliding – not known: Now, we are given that F D 20N, � D
30

�
, and � D 30

�
. We do not know if the block is sliding or not. So, let us assume

static equilibrium in the given configuration and solve for the friction force Ff . Then,
we will check if it satisfies friction law for static equilibrium (jFf j � �N ).
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Substituting
*
Ff D �Ff O{ in eqn. (4.23) and separating out the O{ and O| components of

the equation, we get

�F cos� � Ff Cmg sin � D 0

F sin� CN �mg cos � D 0

which are easily solved for F and N to give

Ff D mg sin � � F cos�

N D mg cos � � F sin�:

Substituting the given values of F; � , and �, we get

Ff D 10 kg � 9:81m=s2 � sin 30
� � 20N � cos 30

� D 31:73N

N D 10 kg � 9:81m=s2 � cos 30
� � 20N � sin 30

� D 74:96N:

Now, the maximum possible value of friction force is �N D 0:7 � 74:96N D 52:47N.
Thus, jFf j < �N , and therefore, our assumption of static equilibrium is valid. This
equilibrium requires that Ff D 31:73N.

*
Ff D �.31:73N/O{

3. Block sliding or not sliding – not known, again: In this case, F D 10N, � D 30
�
,

and � D 60
�
. Again, assuming static equilibrium, we do exactly the same calculations

as above (in fact, use the same expressions) and substituting the given values, we get

Ff D 10 kg � 9:81m=s2 � sin 60
� � 10N � cos 30

� D 76:3N

N D 10 kg � 9:81m=s2 � cos 60
� � 10N � sin 30

� D 44N:

Here, jFf j > �N . Clearly, Ff is not less than or equal to �N , and therefore, our
assumption of static equilibrium is not valid. In fact, the given parameters of the
problem will make the block accelerate downhill — a problem of dynamics. However,
the friction force remains constant, at its maximum

*
Ff D �N D 33:88N once the

sliding starts, accelerating or not.

*
Ff D �33:88NO{

4. Block just about to slide upwards: If the block is about to slide upwards, then the
friction force must act downwards as shown in fig. 4.52. We also know the magnitude,
Ff D �N because it is the case of impending slip. Now the force balance equations
in the O{ and O| directions are:

�F cos� C �N Cmg sin � D 0

F sin� CN �mg cos � D 0

Eliminating N from the two equations, we get F in terms of mg and substituting
� D 30

�
, and � D 60

�
, we get the desired value:

F D sin � C � cos �
cos� C � sin�

mg

D 1:216

1:216
mg D mg:

F D mg

Does the answer make sense? Yes, it does. For the given � and �, the string tension
is vertical. If it balances the weight of the block, the normal force goes to zero and so
does the friction force. The block is then ready to slide up if the tension increases by
any tiny amount.

Filename:sfig4-1-friction-c

mg

N

Ff

F
α

ı̂

ĵ

θ

θ

Figure 4.50: Free body diagram of the
block. The friction force
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Ff is not

known because we do not know if the
block is sliding or not.
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block. The friction force
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known again because we do not know
if the block is sliding or not.
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force
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of impending slip,
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SAMPLE 4.13 How much friction does the cylinder need? A cylinder of
mass m sits between an incline and a vertical wall as shown in the figure.
There is no friction between the wall and the cylinder but there is friction
between the incline and the cylinder. Take the coefficient of friction to be �
and the angle of incline with the horizontal to be � . Find the force of friction
on the cylinder from the incline.

Solution The free body diagram of the cylinder is shown in fig. 4.54. We need to find the
force of friction Fs .

Note that the normal reaction of the vertical wall, N , the force of gravity, mg, and the
normal reaction of the incline, R, all pass through the center C of the cylinder. So, if we do
moment balance about point C,

P *
MC D

*
0, none of these forces will appear in the equation

since their moment about C is zero. Therefore, to find Fs , we should use the moment balance
equation about point C. Noting that Fs acts along the inclined plane, its normal distance (lever
arm) from point C is simply r , the radius of the cylinder, we have,X

*
MC D

*
0 ) rFs.�Ok/ D

*
0

) Fs D 0:

Thus the force of friction on the cylinder is zero! Note that Fs is independent of � , the
angle of incline. Thus, irrespective of what the angle of incline is, in the static equilibrium
condition, there is no force of friction on the cylinder.

Fs D 0

Note: The cylinder here is a three force body since there are three forces acting on it —

two contact forces (at A and B) and one gravity force. Therefore, for equilibrium, all the

three forces must intersect at a single point. Now, lines of action of the gravity force and the

normal reaction at B intersect at the center C of the cylinder. Therefore, the line of action

of the contact force at A also must pass through the center. This is clearly not possible if

the contact force is not normal to the incline (see the candidate contact forces marked by the

dashed gray arrows in fig. 4.55. If there is any non-zero friction force at A, the contact force

(the resultant of the normal reaction and the friction force) at A will be tipped away from the

normal, thus making its line of action miss the center of the cylinder and, therefore, violate

equilibrium condition.
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SAMPLE 4.14 Will the ladder slip? A ladder of length ` D 4m rests
against a wall at � D 60�. Assume that there is no friction between the
ladder and the vertical wall but there is friction between the ground and the
ladder with � D 0:5. A person weighing 700N starts to climb up the ladder.

1. Can the person make it to the top safely (without the ladder slipping)?
If not, then find the distance d along the ladder that the person can
climb safely. Ignore the weight of the ladder in comparison to the
weight of the person.

2. Does the “no slip” distance d depend on �? If yes, then find the angle
� which makes it safe for the person to reach the top.

Solution

1. The free-body diagram of the ladder is shown in fig. 4.57. There is only a normal
reaction

*
R= RO{ at A since there is no friction between the wall and the ladder. The

force of friction at B is
*
Fs D �Fs O{ where Fs � �N . To determine how far the person

can climb the ladder without the ladder slipping, we take the critical case of impending
slip. In this case, Fs D �N . Let the person be at point C, a distance d along the ladder
from point B. We need to find d and check if d < ` (cannot make it to point A).
From moment balance about point B,

P *
MB D

*
0, we find

*rA=B �
*
R C*rC=B �

*
W D *

0

�R` sin � OkCWd cos � Ok D *
0

) R D W
d cos �
` sin �

: (4.27)

From force equilibrium, we get

.R � �N/O{C .N �W / O| D*
0: (4.28)

Dotting eqn. (4.28) with O| and O{, respectively, we get

N D W

R D �N D �W:

Substituting this value of R in eqn. (4.27) we get

�W D W
d cos �
` sin �

) d D �` tan � (4.29)

D 0:5 � .4m/ � tan 60� D 3:46m:

Thus, the ladder is about to slip when the person is at d D 3:56m. But, d < `,
therefore, the person cannot make it to the top of the ladder safely.

d D 3:46m

2. The “no slip” distance d depends on the angle � via the relationship in eqn. (4.29).
The person can climb the ladder safely up to the top if

tan � D 1

�
) � D tan�1.��1/ D 63:43�:

Thus, any reasonable angle � � 64� will allow the person to climb up to the top safely.

� � 64�
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Figure 4.57: The free body diagram of
the ladder indicates that it is a three
force body. Since the direction of the
forces acting at points A and C are
known (the normal, horizontal reaction
at A and the vertical gravity force at
C), it is easy to find the direction of the
net ground reaction at B — it must pass
through point D. The ground reaction F
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decomposed into a normal reaction N
and a horizontal reaction (the force of
friction) Fs at B.
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SAMPLE 4.15 Will it tip or will it slide? Whether or not a box of a given
width and height will slide or tip over on an inclined plane depends on the
slope of the plane and the coefficient of friction. For a given slope � , find the
relationship between the coefficient of friction � and the aspect ratio of the
box,  D b=h for impending tipping.

Solution Let us imagine that we put the box on a flat surface and then slowly start tilting
the surface up with respect to the horizontal. At some slope, the box will either tip over or
slide. Just before the instant the box starts to tip over or slide, it is in static equilibrium. The
magnitude of the friction force at the contact points is jF j � �N where N is the magnitude
of the normal force at the contact, and the equality holds only in the case of impending slip.
That is, if the box is about to slip, then F D �N at each contact point.

The free body diagram of the box is shown in fig. 4.59. Let us first write the equations of
static equilibrium assuming there is no impending slip.

The force balance in the O{ and O| directions (see fig. 4.62) gives

FA C FB D mg sin � (4.30)

NA CNB D mg cos �: (4.31)

The moment equilibrium about the center-of-mass,
P *
MC D*

0, in the Ok direction gives

NB � b
2
�NA

b

2
� .FA C FB /

h

2
D 0: (4.32)

Substituting FA C FB D mg sin � from eqn. (4.30) in eqn. (4.32), and solving eqns. (4.31)
and (4.32) simultaneously, we get

NA D 1

2
mg

�
cos � � h

b
sin �

�
; and NB D 1

2
mg

�
cos � C h

b
sin �

�
:

If the box were to tip over (about point B), the support forces at A will go to zero (because of
loss of contact). Thus, for impending tipping,

NA D 0 ) cos � � h

b
sin � D 0 ) tan � D b

h
D :

Thus, the condition for impending tipping is

tan � D : (4.33)

This condition, however, does not guarantee that the box will tip over. In fact, it may start
sliding before it tips over. We need to check if sliding condition is met before eqn. (4.33) is
satisfied. In other words, we need to check the value of friction forces and make sure that
jFA C FB j � �.NA CNB /. Thus, for no slipping,

FA C FB � �.NA CNB / ) mg sin � � �mg cos � ) tan � � �:

Using this condition (with equality) in eqn. (4.33), we get the critical condition for tipping:

 D �:

 D tan � � �

You may know this condition geometrically as the line of action of the weight of the box must

pass through B and beyond for tipping over (see fig. 4.60).
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SAMPLE 4.16 How big does the friction force get? Consider the box on
the inclined plane of Sample 4.15 again. The box has aspect ratio  D b=h.
The coefficient of friction is �. Imagine that the angle � of the inclined plane
can be varied. How does the force of friction on the box vary with �? How
does the maximum value of this force depend on �?

Solution If we imagine the inclined plane to be not inclined (� D 0) but horizontal and the
box to be just sitting there, the force of friction on the box has to be zero. As we tilt the plane
up (� > 0), the friction force starts increasing. It increases up to the point of impending slip
unless the box tips over before that. Assuming that the aspect ratio of the box prevents it from
tipping (see Sample 4.15), we can determine the maximum value up to which the friction
force rises before the box starts slipping.

From Sample 4.15, we know that the total friction force Fs D FA C FB D mg sin � .
Thus the normalized friction force (as a fraction of the weight of the block), Fs=mg is

Fs
mg

D sin �:

Thus the total friction force varies as sine of the ramp angle. Howver, this variation is valid
only upto the maximum value of the friction force (�N ) when the block starts sliding. The
critical angle at which this maximum is attained is �slip D tan�1 � � � (friction angle).
Thus,

Fs
mg

����
max

D sin�:

Figure 4.63 shows how the maximum normalized friction force varies with �. Note that for
lower values of � (which covers most practical values of �), the relationship is almost linear.
Thus, jFs=mgj � � for � � 0:5.

Fs
mg D sin �; Fs

mg

���
max

D sin�

What happens to the friction force after it attains the maximum value Fs D mg sin�?

For a given ramp angle, the friction force remains constant and the box slides.
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SAMPLE 4.17 A spool of mass m D 2 kg rests on an incline as shown in
the figure. The inner radius of the spool is r D 200mm and the outer radius
is R D 500mm. The coefficient of friction between the spool and the incline
is � D 0:4, and the angle of incline � D 60�.

1. Which way does the force of friction act, up or down the incline?

2. What is the required horizontal pull T to balance the spool on the in-
cline?

3. Is the spool about to slip?

Solution

1. The free-body diagram of the spool is shown in fig. 4.65. Note that the spool is a 3-
force body. Therefore, in static equilibrium all the three forces — the force of gravity
mg, the horizontal pull T , and the incline reaction F — must intersect at a point.
Since T and mg intersect at the top of the inner drum (point B), the reaction force

*
F

of the incline must be along the direction AB. Now the incline reaction
*
F is the vector

sum of two forces — the normal (to the incline) reaction N and the friction force Fs
(along the incline). The normal reaction force N passes though the center C of the
spool. Therefore, the force of friction Fs must point up along the incline to make the
resultant

*
F point along AB.

Up the incline

2. We need to find the tension T in the string. From the free body diagram, we see that
the force equilibrium will involve

*
T along with another unknown force

*
F , the reaction

of the incline. On the other hand, if we do moment balance about point A, we can get
rid of

*
F and get one scalar equation involving T and mg, giving T in terms of mg.

So, writing the moment equilibrium equation about point A,X
*
MA D*

0;

we get
*rC=A � .�mg O|/C*rB=A � .T O{/ D

*
0: (4.34)

These cross products can be easily evaluated by using the scalar form of the moment of
a force—the product of force and the lever arm. Thus the moment ofmg ismg �R sin �
and the moment of T is �T � .r CR cos �/ about point A in the Ok direction. Thus the
scalar form of the moment balance equation gives

mgR sin � D T .R cos � C r/

) T D mg
sin �

cos � C r=R

D 2 kg � 9:81m=s2 �
p
3
2

1
2 C :2m

:5m
D 18:88N:

T D 18:88N

Alternatively,
We can also evaluate the net moment on the spool, given by eqn. (4.34), using direct
cross products of vectors in the equation. We can use mixed basis vectors (O{, O|, O�, and
On) as shown in fig. 4.65. Since,

*rC=A D R On and *rB=A D R OnC r O|;
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we have,

*rC=A � .�mg O|/ D �mgR. On � O|/
*rB=A � T O{ D T �R. On � O{/C r. O| � O{/�:

Now, from the geometry of the basis vectors (see fig. 4.65), we have,

On � O| D � sin � Ok and On � O{ D � cos � Ok:

Therefore,

*rC=A � .�mg O|/ D mgR sin � Ok;
and *rB=A � T O{ D �TR cos � Ok � r Ok:

Hence, eqn. (4.34) becomes

mgR sin � Ok � TR cos � Ok � r Ok D*
0:

Dotting both sides of this equation with Ok, we get the scalar equation

mgR sin � D T .R cos � C r/

which is the same equation as obtained above using moment lever arms.

3. To find if the spool is about to slip, we need to find the force of friction jFs j and see if
it satisfies the condition of impending slip: Fs D �N . The force balance on the spool,P *
F D*

0 gives
T O{ �mg O| C Fs

O�CN On D*
0 (4.35)

where O� and On are unit vectors along the incline and normal to the incline, respectively.
Dotting eqn. (4.35) with O� we get

Fs D �T . O{ � O�����
cos �

/Cmg. O| � O�����
sin �

/

D �T cos � Cmg sin �

D �18:88N.1=2/C 19:62N.
p
3=2/

D 7:55N:

Similarly, we compute the normal force N by dotting eqn. (4.35) with On:

N D �T .O{ � On/Cmg. O| � On/
D T sin � Cmg cos �

D 18:88N.
p
3=2/C 19:62N.1=2/

D 26:16N:

Now we find that �N D 0:4.26:16N/ D 10:46N which is greater than Fs D 7:55N.
Thus Fs < �N , and therefore, the spool is not about to slip.

Not about to slip
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Figure 4.66: a) Two people pulling on a
rope that is likely to break in the middle,
b) A free body diagram of the rope.
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Figure 4.67: a) free body diagram of the
right part of the rope, b)the same free
body diagram, with the force distribu-
tion at the cut replaced with an equiva-
lent force couple system, c) further sim-
plified by using the laws of mechanics,
and d) a free body diagram of the left
portion of the rope.

4.4 Internal forces
The vague concept of ‘forces inside’ a structure is in superficial conflict with
the subject of mechanics. Mechanics equations only concern the forces on
an object shown in a free body diagram;‘internal forces’ have no place on a
free body diagram and thus no place in mechanics.

Example: Pulling on the ends of a rope; nothing internal
Consider two people pulling apart the frayed rope of fig. 4.66a. A free body di-

agram of the rope is shown in fig. 4.66b. The laws of mechanics use the external
forces on an isolated system. These are the forces that show on a free body dia-
gram. For the rope these are the forces at the ends. The free body diagram does not
include internal forces. Thus nothing about the ‘internal forces’ at the fraying part
of the rope shows up in the mechanics equations describing the rope.

Mechanics has nothing to say about so called ‘internal forces’ and thus nothing
to say about the rope breaking in the middle. ‘Internal forces’ are meaningless in
mechanics. The section title describes a non-existent subject.

Something’s wrong. The problem is somewhat one of language: ‘internal
forces’ are not really internal and they are not really forces!

‘Internal forces’ represent external forces on a smaller
body
On page 25 we advertised mechanics as being useful for predicting when
things will break. And our intuitions strongly tell us that there is something
about the forces in the rope that make it break. Yet mechanics equations
are based on the forces that show on free body diagrams. And free body
diagrams only show external forces. How can we use mechanics based on
external forces to describe the ‘forces’ inside a body? We use an idea whose
simplicity hides its incredible utility:

You cut the body, and what was inside is now on the outside of a smaller
body.

In the case of the rope, we cut it in the middle. Then we fool the rope into
thinking it wasn’t cut using forces (remember, ‘forces are the measure of
mechanical interaction’), one force, say, at each fiber that is cut. Then we
get the free body diagram of fig. 4.67a. We can simplify this to the free body
diagram of fig. 4.67b because we know that every force system is equivalent
to a force and couple at any point, in this case the middle of the rope. If we
apply the equilibrium conditions to this cut rope we see that

Sum of vertical forces is zero ) Fy D 0

Sum of horizontal forces is zero ) Fx D �T
Sum of moments about the cut is zero ) M D 0:

Thus we get the simpler free body diagram of fig. 4.67c as you probably
already guessed without using the equilibrium equations explicitly.
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Tension
We have just derived the concept of ‘tension in a rope’ also sometimes called
the ‘axial force’. The tension is the pulling force on a free body diagram of
the cut rope. If we had used the same cut for a free body diagram of the left
half of the rope we would see the free body diagram of fig. 4.67d. Either by
the principle of action and reaction, or by the equilibrium equations for the
left half of the rope, you see also a tension T . The force vector is the opposite
of the force vector on the right half of the rope. So it doesn’t make sense to
talk about the tension force vector in the rope since different (opposite) force
vectors manifest themselves on the two sides of the cut (�T O{ on the left end
of the right half and T O{ on the right end of the left half). Instead we talk
about the scalar tension T which expresses the force vector at the cut as

*

F D T O�
where O� is a unit vector pointing out from the free body diagram cut. Because
O� switches direction depending on which half rope you are looking at, the
same scalar T works for both pieces.

The tension in a rope, cable, or bar is the amount of force pulling out on
a free body diagram of the cut rope, cable, or bar. Tension is a scalar.

Internal ‘forces’ are not force vectors
Note our abuse of language: force is a vector, tension is an ‘internal force’
and tension is a scalar. What we call ‘internal forces’ are not really forces.
We can’t talk about the internal force vector at a point in the string because
there are two different vectors for each cut, one for left half of string and one
for the right. An ‘internal force’ isn’t a force vector. Rather it is a quantity
from which we can find a force vector once we have made a cut and picked
which side of the cut we care about. We use this confusing language because
of its firm place in the engineering workplace.

The common phrase internal force means ‘a scalar with dimensions of
force from which you can find the force on one side of a free body
diagram cut’.

1 Summarizing:

� Internal forces are not internal. Rather they describe the forces on the
boundary of a smaller system that has a free body diagram cut that is
inside the system of previous interest.

� Internal forces are not force vectors. Rather they are scalars from which
you can find the force vector acting on one side of a free body diagram
cut.

1Calling tension a scalar is a decep-
tion for pedagogical purposes. The
best representation of ‘internal forces’ is
with tensors which are too mathemati-
cally advanced for this book. But it is
fun to notice that the concept of a ten-
sor, something prominent in Einstein’s
theory of general relativity for example,
has its origin in tension, our object of
study here. Note the non-coincidental
similarity of the words tensor and ten-
sion. What is a tensor? Loosely, a
tensor is a quantity that helps you find
a vector (the force at a cut) once you
are told another vector (the unit vector
pointing outwards from the cut). [Aside
for hyper-experts: The relation between
the tension tensor and tension scalar can
be expressed by the dyadic representa-
tion T D T Oe1 Oe1.]
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Figure 4.68: a) A piece of a structure,
loads not shown; b) a partial free body
diagram of the right part of the bar; c) a
partial free body diagram of the left part
of the bar.

What is the strength of a structural piece?
Getting back to the question of whether or not the rope will break, we can
now characterize the rope by the tension it can carry. A 10kN cable can carry
a tension of 10; 000N all along its length. This means a free body diagram
of the rope, cut anywhere along its length, could show forces up to but not
bigger than 10; 000N. If the rope is frayed it may break at, say, a tension of
2; 000N, meaning a free body diagram with a cut at the fray can only show
forces up to 2; 000N.

Note that tension is not always positive. A negative tension (negative
pulling out from the ends) is also called a positive compression (positive
pushing in at the ends). For ropes we don’t see much negative tension, the
rope bends with just a hint of compression. But for metal and wood bars, and
bones, compression is as important as tension.

Shear force and bending moment
To characterize the strength of more than just 2-force bodies we need to gen-
eralize the concept of tension. The main idea, which was emphasized in
Chapter 3, is this:

You can make a free body diagram cut anywhere on any body no matter
how it is loaded.

As for tension, we define internal forces in terms of the forces (and moments)
that show up on a free body diagram cut. Again we consider things (bars)
that are rather longer than they are wide or thick because

� Long narrow pieces are commonly used in construction of buildings,
machines, plants and animals.

� Internal forces in long narrow things are easier to understand than in
bulkier objects.

For now we limit ourselves to 2D statics. At an arbitrary cut we can find
the force and moment on the remaining piece in the same manner as in Sec-
tion 4.2. And we could look at the x and y components of the force. Fine.
The problem is that the force and moment we find do not just depend on
the cut, but on which body we look at. On the right side of the cut a force
and moment act. On the left side of the cut, the opposite force and moment
act on the other object. Another problem with xy components is that they
don’t necessarily line up with the natural directions for the structural part.
So, for the purposes of thinking about internal forces we break the force into
two components (see fig. 4.68) lined up with the part. And we measure the
internal forces with scalars that are the same for both sides of the cut:

� The tension T is the scalar part of the force directed along the bar
assumed positive when pulling away from the free body diagram cut.
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� The shear force V is the force perpendicular to the bar (tangent to the
free body diagram cut). Our sign convention is that shear is positive if
it tends to rotate the cut object clockwise. An equivalent statement of
the sign convention is that shear is positive if down on cuts at the right
of a bar and positive if up on a cut on the left of bar (and to the right on
top and to the left on the bottom).

Since we are just doing 2D problems now, the moment is always in the out-
of-plane (typically Ok) direction.

� The bending moment M is the scalar part of the bending moment. The
sign convention is that for a smiling beam (fig. 4.69): A clockwise
(�Ok) couple is positive on a left cut and a counterclockwise ( Ok) couple
is positive on a right cut 2.

The tension T , shear V , and bending moment M on fig. 4.68 follows these
sign conventions.
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Example: Internal forces in a bent rod
The internal forces at B can be found by making a free body diagram of a portion
of the structure with a cut at B.

Sum of vertical forces is zero ) V D .100=
p
2/N

Sum of horizontal forces is zero ) T D .100=
p
2/N

Sum of moments about the cut at B is zero ) M D �100
p
2N m:

You may have noticed that we did get ahead of ourselves and use the concept
of tension in a rope or rod as a source of loading with known direction on a
particle and rigid body. We will use the concept of tension extensively in our
analysis of trusses. Calculating how internal forces vary from point to point
in a structure is picked up in Section 7 on page 379.
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M M

Figure 4.69: The smiling beam sign
convention for bending moment. For a
horizontal beam, moments which tend
to make the beam smile (curve up) are
called positive.

2Note that neither V nor T changes if
you rotate your paper until the picture
is upside down. However, the definition
for the sign convention for M has the
disadvantage that the bending moment
does changes sign if you turn your paper
upside down. (This ambiguity can only
be avoided if one picks a favored side or
end of the beam).
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Figure 4.73: Moments of F and T about
point D can be evaluated by multiply-
ing the forces with their respective lever
arms `=4 C ` cos � and `=2 sin 2� , re-
spectively.

SAMPLE 4.18 A structure is made up of two bars – a thick bent bar ABC
and a thin bar CE. Point C is halfway between B and D, ` D 0:8m and
� D 60

�
. Bar ABC is pulled up by a force F D 500N at point A.

1. Find the internal forces in the bar ABC just to the right of point B.

2. Find the force in bar CE at the section s-s shown in the figure.

Solution We cut the bar ABC at point B. The free-body diagram of the left part AB is shown
in fig. 4.71. The internal forces acting at the cut section are tension T , shear force V and the
bending moment M . From force balance of part AB in x and y directions, we have

T D 0; and V D F D 500N:

From the moment balance about point B, we have

M � F `=4 D 0 ) M D F `=4 D 100N�m:

T D 0; V D 500N; M D 100N�m

For finding the tension in rod CE at the given section, we cut the rod at s-s and draw the
free-body diagram of the structure along with the upper part of the rod attached at point C.
The tension in bar CE is T and the reaction of the support at pin D is R. We need to find T .

We can write the moment balance equation about point D,
P *
MD D*

0, so that the un-
known force R (that we are not interested in) disappears from the equation:

*rA=D �
*
F C*rC=D �

*
T D *

0:

The moments of F and T about point D can be easily evaluated using the scalar formula
‘force times the lever arm’ (see fig. 4.73). Thus, the moment balance equation in Ok direction
is:

�F `.1=4C cos �/C T
`

2
sin 2� D 0

) T D 2.1=4C cos �/
sin 2�

F:

Substituting the given values, F D 500N and � D 60
�
, we get

T D 866N:

T D 866N

Note: Evaluation of the moment equation about point D using vectors and cross products is
as follows. Since*rA=D D*rA=B C*rB=D D � `

4 O{C `.� cos � O{C sin � O|/,*rC=D D `
2 .� cos � O{C

sin � O|/, *
F D F O|, and

*
T D T .� cos � O{ � sin � O|/,

*rA=D �
*
F D �F

�
`

4
C ` cos �

�
Ok; and*rC=D �

*
T D T ` cos � sin � Ok:

Therefore, the moment balance equation is

�F `.1=4C cos �/ OkC T
`

2
sin 2� Ok D*

0:
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SAMPLE 4.19 A ladder of length 2d D 4m rests against a wall as shown.
A person of weight W D 700N stands at C. Assume that the ladder does
not slip. Neglecting the weight of the ladder, find the internal forces in the
ladder at sections a-a and b-b, at mid points of AC and AB, respectively.
(See Sample 4.14.)
Solution To find the internal forces at the indicated sections, we need to cut the ladder at
those sections, one at a time, draw the free body diagram of each part and carry out the force
and moment balance equations. A little anticipation shows that we will need the support
reactions at A and B in our calculations. So, let us first determine the support reactions. The
free-body diagram of the ladder is shown in fig. 4.75. The moment balance about point B in
Ok direction gives

�R.2d sin �/CW.d cos �/ D 0 ) R D W

2

cos �
sin �

:

The force balance,
P *
F D*

0, gives

RO{ �W O| C *
F D*

0 ) *
F D �RO{CW O|:

Substituting the given values of �.60
�
/ and W.700N/, we get,

*
R D .202N/O{; and

*
F D .�202O{C 700 O|/N:

Section a-a: Now, we cut the ladder at a-a and draw the free-body diagram of the upper part
of the ladder as shown in fig. 4.76. The force balance for this part gives

T O� � V OnCRO{ D *
0

) T D �R.O{ � O�/ D �R cos �

and V D R.O{ � On/ D R sin �:

Substituting the numerical values of R and � , we get T D �101N and V D 175N. Now, the
moment balance equation about a (the cut) gives

M �R.d=2/ sin � D 0 ) M D .1=2/Rd sin �

which, with numerical values, gives M D 175N�m.

T D �101N; V D 175N; M D 175N�m

Section b-b: Now we consider the internal forces at section b-b. We cut the ladder at the
given section. We can consider the free-body diagram of the upper part or the lower part of
the ladder to find the internal forces. Considering the upper part, (see fig. 4.77) we get, from
force balance,

T O� � V OnCRO{ �W O| D*
0

which, as the analysis above, gives

T D �R.O{ � O�/CW. O| � O�/ D �R cos � CW.� sin �/ D �707N

V D R.O{ � On/ �W. O| � On/ D R sin � �W cos � D �175N:

Similarly, the scalar moment balance equation about point b gives

M �R3d
2

sin � CW
d

2
cos � D 0 ) M D 175N�m:

T D �707N; V D �175N; M D 175N�m
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1For 2D problems we used the phrase
‘moment about a point’ to be short for
‘moment about an axis in the z direc-
tion that passes through the point. In 3D
moment about a point is a 3-component
vector.

2Most elementary text-book problems
are statically determinate. Unfortu-
nately most real-world problems, when
you first model them, are not statically
determinate.

4.5 3D statics of one part
The structures and machines we study are most-often adequately modeled
as 2D. In those cases a 2D analysis gives about the same answer as a 3D
analysis would have given. However, sometimes a 2D model is inadequate,
and a 3D analysis is needed. Here we use 3D statics to find various unknown
aspects of forces acting on one part. By learning the 3D approach you can
get a better sense of when to use a 2D model (which is most of the time for
most engineers).

3D statics is conceptually the same as 2D: draw a free body diagram and
use the force and moment balance equations. However, the geometry can
be more of a challenge, the moment balance equation becomes a full vector
equation (instead of just having one non-zero component it has three) 1, and
the number of scalar equations from one free body diagram increases from
3 to 6. In 3D issues related to static-determinacy arise more often and more
subtly.

The statics-of-a-3D-object recipe

Our recipe here:

1) Draw a free body diagram (FBD) of the part of interest.
Use knowledge of the contact conditions (see Chapter 3) to
draw known and unknown aspects of the forces appropriately
(seefig. 3.40 on page 153) [hint: use of the form F O� is often ap-
propriate];

2) Write equilibrium equations in terms of the forces (and couples)
shown on the FBD;

3) Solve the equilibrium equations for unknowns.

The brute-force approach to statically determinate problems

A problem is statically determinate when all as-yet-unknown forces can be
found using the equilibrium equations. In 3D statics this generally means
that the two vector equilibrium equationsX

*

Fi D
*

0 and
X

*

Mi=C D
*

0

(where C is any one point that you chose) make up 6 independent scalar
equations which you can solve for 6 unknown aspects of the applied forces
(say the magnitudes of 6 forces whose directions are known a priori) 2.
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Alternative equation sets

In 2D single-part statics we noted various alternative to using vector force
balance and moment about one point (see page 203). Similarly, here there
are also an infinite number of true equilibrium equations, for example

�
�P *

Fi

�
� O� D 0 where O� is a vector in any direction you please. ; and

�
�P *

M=C

�
� O� D 0. This is moment balance about an axis through C in

the O� direction.

From these there are various ways to extract 6 independent scalar equations,
including:

� Cartesian components of force balance and moment balance about any
point C:

P
Fx D 0;

P
Fy D 0;

P
Fz D 0;

P
MCx D 0;

P
MCy D

0; and
P

MCz D 0. This always works, although it does not necessar-
ily minimize algebra.

� Force balance in any 3 non-coplanar directions and moment balance
about point C resolved in any three non-coplanar directions.

� Moment balance about 6 independent axes. There seems to be no sim-
ple description of independent axes but for that they give independent
equilibrium equations 3. Practically speaking, six moment-about-an-
axis equations are likely to be independent if not too many axes are
parallel with each other, not too many are coplanar, and not too many
intersect at one point.

In any case force balance contributes at most 3 independent equations and
moment balance can contribute up to 6 (thus rendering force balance a non-
essential tool).

Solving 6 equations in 6 unknowns, or even setting up such for computer
solution, is relatively time consuming and error prone. Thus one looks for
shortcuts when one can, namely:

Useful shortcuts:

� Use moment balance about an axis that intersects, or is parallel
to, as many unknown force lines-of-action as possible (thus those
forces do not show up in that equilibrium equation);

� Use force balance in a direction orthogonal to as many of the un-
known forces as possible (so those forces don’t show up in that
equation).

3 One can test the sufficiency of the
equations by this check: if a force at the
origin and a couple are the only forces
applied to a system, do the equations de-
mand that they must both be zero.
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Special loadings
Two- and three-force bodies

The concepts of two-force (page 204) and three-force (page 206) bodies are
identical in 3D.

� If there are only two forces applied to a body in equilibrium they must
be equal and opposite and acting along the line connecting the points
of application. The full set of six equations tell you no more.

� If there are only three force applied to a body they must all be in the
plane of the points of application and the three forces must have lines of
action that intersect at one point. The three equations of force balance
are an additional restriction on these three forces.

There are other special loadings where the equilibrium equations offer less
than 6 independent equations:

� 2D. If all of the forces have lines of action in one plane then there
are only three independent scalar equations and thus one can solve for
3 unknowns. For example, if all the forces lie in the xy plane then
automatically

P
Fiz D 0,

P
Mix=C D 0, and

P
Miy=C D 0.

� Concurrent forces. If all the lines of action intersect in one point, say
D, then

P *

M=D D
*

0 is automatically satisfied and only the 3 equations
of force balance are independent.

� If all the forces are parallel in, say the Ok direction then force balance
in the O{ and O| directions as well as moment balance about any axis
in the Ok direction are automatically satisfied and there are only three
independent equilibrium equations (say

P
Fz D 0,

P
Mx D 0 andP

My D 0.

What does it mean for a problem to be ‘2D’?

The world we live in is three dimensional, all the objects to which we wish
to study mechanically are three dimensional, and if they are in equilibrium
they satisfy the three-dimensional equilibrium equations. How then can an
engineer justify doing 2D mechanics? There are a variety of overlapping
justifications.

� The 2D equilibrium equations are a subset of the 3D equations. In both
2D and 3D,

P
Fx D 0,

P
Fy D 0, and

P *

M=0 � Ok D 0. So, if when
doing 2D mechanics, one just neglects the z component of any applied
forces and the x and y components of any applied couples, one is do-
ing correct 3D mechanics, just not all of 3D mechanics. If the forces or
conditions of interest to you are contained in the 2D equilibrium equa-
tions then 2D mechanics is really 3D mechanics, ignoring equations
you don’t need.

� If the xy plane is a plane of symmetry for the object and any applied
loading, then the three dimensional equilibrium equations not covered
by the two dimensional equations, are automatically satisfied. For a
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car, say, the assumption of symmetry implies that the forces in the z

direction will automatically add to zero, and the moments about the x
and y axis will automatically be zero.

� If the object is thin and there are constraint forces holding it near the xy
plane, and these constraint forces are not of interest, then 2D statics is
also appropriate. This last case is caricatured by all the poor mechanical
objects you have drawn so. They are conceptually constrained to lie in
your flat paper by invisible slippery glass in front of and behind the
paper.

“Internal forces” in 3D
At a free body diagram cut on a long narrow structural piece in 2D there
showed two force components, tension and shear, and one scalar moment. In
3D such a cut shows a force

*

F and a moment
*

M each with three components.
If one picks a coordinate system with the x axis aligned with the bar at the
cut, the concept of tension remains the same. Tension is the force component
along the bar.

T D Fx D
*

F � O{:
The two other force components, Fx and Fy , are two components of shear.
The net shear force is a vector in the plane orthogonal to O{.

The new concept, often called torsion is the component of
*

M along the
axis:

torsion DMx D
*

M � O{
Torsion is the part of the moment that twists the shaft.

The remaining part of the
*

M , in the yz plane, is the bending moment. It
has two components Mx and My .

The preponderance of statically indeterminate
problems
As noted in box 4.1 on page 192 non-uniqueness of solutions is common in
the real world. Especially in 3D, real world problems are, at first blush, rarely
statically determinate. The statics equations are relevant and provide useful
information, they are just not sufficient for finding all unknowns of interest.
Finding the forces then depends on knowing the deformation properties of
the structures as well as details of their initial state.

Example: Four-leg furniture
Take the table, chair or bed you are now interacting with. It probably has 4 legs.

To keep it simple imagine the legs are on a slippery (negligible-friction) floor and
the table is symmetric (left-right and front-back). What are the forces of the floor
on the legs? The most we can get from the statics equations is that

R1 D R3; R2 D R4; and R1 CR2 D W=2:

If we insist that there is no glue between the floor and table then R1 � 0;R2 �
0;R3 � 0;R4 � 0. But we still can’t find the reactions. Here is the variety of

Filename:tfigure-4legtable
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Figure 4.78: A symmetric 4 leg table on
a flat floor. Statics is insufficient to find
the 4 forces of the ground on the table.
The full weight could be carried by ei-
ther diagonal pair of legs.
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solutions:

R1 D R3 D W=2 and R2 D R4 D 0

or R1 D R3 D 0 and R2 D R4 D W=2

or R1 D R3 D W=4 and R2 D R4 D W=4

or R1 D R3 D C and R2 D R4 D W=2 � C
.with C anything in the interval 0 � C � W=2/:

It takes more than just statics to find the forces. One has to know the exact initial
shape of the table and floor and how the table and floor ‘give’ in response to loads.

The lack of static determinacy of a table is not merely an academic curiosity.
If you measured the forces of the floor on your table legs they could well
differ noticeably from W=4 each. Once friction is taken into account the
situation is near hopeless.

Example: Statically determinate stool
Is it even possible to make a stool in 3 dimensions that is statically determinate?
Here’s one way. Give it three legs. One leg can have a point frictional contact (3
reaction components), one leg can have a wheel (2 reaction components) and one
can be frictionless (like with a castered wheel, 1 reaction component). 3C2C1 D 6.

In general it is hard to hold an object in place in three dimensions in a stat-
ically determinate manner. Here are some other ways (besides the unusual
stool above):

� with six rods that have ball-and-socket joints at both the object-end and
at the ground-end. The rods need to have a variety of orientations and
attachment points (this ideas is used in a ‘Stewart Platform’).

� With one ball-and-socket joint and three rods.

� A 3 leg stool with three wheels (at the contact points one can draw a
line in the direction normal to rolling, the three such lines must not
intersect at a point).

� With one hinge and one two-force-member rod.

� With one axially sliding hinge and two rods.

� With a single welded connection.

Given that many things are held in place in a manner that seems statically
indeterminate what what can one do in practice? A common approach is to
remove reaction components that you think are relatively unimportant. Some
examples:

� A door held by two hinges. That’s 10 reaction components. Usually
one replaces, in the analysis, the hinges with ball-and-socket joints.
That makes 6 unknown reaction components but is still statically inde-
terminate no matter what the loading (the force along the line connect-
ing the joints cannot be decomposed into parts acting at each joint). So
one joint is allowed to slide along the nominal hinge axis.

� 4 leg furniture. Counting friction there are 12 reaction components. If
side loads are not an issue than we can assume-away friction. Thus we
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have only 4 reaction components for 3 equations (see table example
above). We can get a unique solution by assuming the forces share the
symmetry of the table (thus F1 D F2).

Given this complex state of affairs in 3D it is easy to see why engineers often
resort to the more-easily-made determinate 2D world for their models and
analyses.
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4.7 Statically determinate ways to hold an object in 3D
An advanced aside.

It takes some thought to find ways to hold something in place
in 3D that are statically determinate. If you hold it securely enough
so that it can’t move you will often do it in a way that there can be
reaction forces even when there are no loads on the structure. These
‘locked in’ forces are sometimes called ‘pre-stresses’, ‘pre-loads’ or
‘self-stresses’. The values of these locked-in forces will depend on
the construction. You can’t find them from the equations of statics.
Hence the indeterminacy.

Below we show some ways to hold things in a statically deter-
minate way. Static determinacy is great for homework problems.
Whether it is good or bad in structural design is not a simple ques-
tion.

The big tradeoff. Before showing how to achieve determinacy, a
warning.

A statically determinate structure has no redundancy.
A redundant structure can have locked-in forces.

And locked in forces can contribute to structural failure. Two parallel
rods holding something in place can break because they fight each
other, even when there is no external load on the thing.

Counting rules. Counting dominates the discussion. Here’s how
to do that counting. The rule of thumb for determinacy is:

Number of equations� �� �
neq

D number of unknowns� �� �
nunkn

For one object in 3 dimensions we have 6 independent equilibrium
equations, for example 3 components of force balance and 3 com-
ponents of moment balance about a given reference point. Thus
neq D 6. To achieve determinacy we thus want nunkn D 6. That
is, in a free body diagram of the object we also want 6 unknown
reaction components.

Attachment schemes. For each attachment point we can select
an attachment type from the table of common connections on page
1039. Here’s a compact list with the number (#) of unknown reaction
components:

3D Connection # what
weld 6 3 moment and 3 force comps
keyed slot 5 3 moment & 2 force comps
hinge 5 3 moment & 2 force comps
linear bearing 4 2 moment & 2 force comps
ball &socket 3 3 force components
no-slip point contact 3 3 force comps
skate or wheel 2 normal force and side force
sloppy linear bearing 2 2 force components
rod or string 1 tension along 2-force member
frictionless point contact 1 normal force

Mix and match. At least to satisfy the counting rules, you can
hold something in place in a statically determinate manner by select-
ing any number of connections from the table above just make the
number of unknown components add to 6. Here are some options:

Scheme
P D 6

* One weld 6=6
* Hinge+rod 5+1=6
* Ball & socket +

sloppy linear bearing + rod 3+2 + 1 =6
* 6 rods 1+1+1+1+1+1=6
* Ball & socket + 3 rods 3 +1+1+1=6
* No-slip point contact + wheel

+ frictionless point contact 3 + 2+1 =6
* 3 wheels or skates 2+2+2 = 6
* Etc n + m + . . . = 6

Filename:tfigure-statdethold3D

A statically determinate stool has one normal leg (with friction),
one wheel and one frictionless leg (shown as a ball). A box is held
in a statically determinate way with a ball & socket and three bars.

Bad luck. Although the rule

neq D nunkn

is a good starting point, it is not enough. In the bad cases two things
happen together:

1) The object is not held in place (some loads can not be equi-
librated), and

2) The constraints can fight each other.

Then, in the language of linear algebra, the 6�6matrix for the linear
equilibrium equations is singular. So, for some loadings no solution
exists (the object is not held in place), and if a solution exists it is not
unique (the homogeneous equations have non-trivial solutions, there
can be locked-in forces).

Bad examples. Some ways of holding where 6 reaction forces
lead to indeterminacy include:

� A hinge + rod with the rod co-planar with the hinge.

� 6 rods where some 4 or more of them have lines of action
that intersect in one point.

� A ball & socket with 3 rods where one or more of the rods
has a line of action that goes through the ball & socket.

� A ball & socket with two rods that are coplanar with the ball.

� Three wheels on a plane where the normal-lines to the rolling
direction all intersect in a single point (the wheels roll on a
common circle).
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SAMPLE 4.20 3-D moment at the support: A ’T’ shaped cantilever beam
is loaded as shown in the figure. Find all the support reactions at A.

Solution The free-body diagram of the beam is shown in Fig. 4.80. Note that the forces
acting on the beam can produce in-plane as well as out of plane moments. Therefore, we
show the unknown reactions

*
R and

*
MA as general 3-D vectors at A. The moment equilibrium

about point A,
P *
MA D*

0, gives

*
MA C*rC=A � .

*
F1 C

*
F2/C*rD=A �

*
F3 D

*
0:

) *
MA D .*rB=A C*rC=B/ � .

*
F1 C

*
F2/C .*rB=A C*rD=B/ �

*
F3

D .`O{C a O|/ � .�F1 Ok � F2 O{/C .`O{ � a O|/ � F3 O{:

But F3 D �F2 D F (say). Therefore,

D .`O{C a O|/ � .�F1 Ok � F O{/C .`O{ � a O|/ � F O{
D F1` O| � F1aO{ � 2Fa Ok
D 30 lbf � 3 ft O| � 30 lbf � 1 ftO{ � 2.30 lbf � 1 ft/ Ok
D .�30O{C 90 O| � 60 Ok/ lb�ft:

The force equilibrium,
P *
F D*

0, gives

*
R D �*

F1 �
*
F2 �

*
F3

D �*
F1 �

*
F C *

F

D �.�F1 Ok/ D F1
Ok

D 30 lbf Ok:
*
A D 30 lbf Ok; and

*
MA D .�30O{C 90 O| � 60 Ok/ lb�ft
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Figure 4.79:
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Figure 4.80: Free body diagram of the
cantilever.
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Filename:sfig4-3d-plate

E

A

C

F

D

B
x

yz

0.6m

θ

θ
0.

4m

Figure 4.81:
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Figure 4.82:

SAMPLE 4.21 An unsolvable problem? A 0:6m � 0:4m uniform rectan-
gular plate of mass m D 4 kg is held horizontal by two strings BE and CF
and linear hinges at A and D as shown in the figure. The plate is loaded
uniformly with books of total mass 6 kg. If the maximum tension the strings
can take is 100N, how much more load can the plate take?

Solution The free-body diagram of the plate is shown in fig. 4.82. Note that we model
the hinges at A and D with no resistance in the y-direction. Since the plate has uniformly
distributed load (including its own weight), we replace the distributed load with an equivalent
concentrated load

*
W acting vertically through point G.

The various forces acting on the plate are
*
W D �W Ok; *

T1 D T1
O�BE;

*
T2 D T2

O�CF;
*
A D Ax O{C Az

Ok; *
D D Dx O{CDz

Ok:

Here, O�BE D O�CF D � cos � O{C sin � Ok D O�.let/. Now, we apply moment equilibrium about
point A, i.e.,

P *
MA D*

0.

*rB �
*
T1 C*rC �

*
T2 C*rG �

*
W C*rD �

*
D D*

0 (4.36)

where,

*rB �
*
T1 D aO{ � T1 O� D �aT1 sin � O|

*rC �
*
T2 D .aO{C b O|/ � T2 O� D T2b sin � O{ � T2a sin � O| C T2b cos � Ok

*rG �
*
W D 1

2
.aO{C b O|/ � .�W Ok/ D �Wa

2
O{C Wa

2
O|

*rD �
*
D D b O| � .Dx O{CDz

Ok/ D Dzb O{ �Dxb
Ok:

Substituting these products in eqn. (4.36) and dotting with O{; O| and Ok, we get

T2 sin � CDz D W

2
(4.37)

T2 cos � �Dx D 0 (4.38)

.T1 C T2/ sin � D W

2
: (4.39)

The force equilibrium,
P *
F D*

0, gives

*
A C *

D C *
T1 C

*
T2 C

*
W D*

0:

Again, substituting the forces in their component form and dotting with O{ and Ok (there are no
O| components), we get

Ax CDx � .T1 C T2/ cos � D 0

) Ax � T1 cos � D 0 (4.40)

Az CDz C .T1 C T2/ sin � D 0

) Az C T1 sin � D W

2
: (4.41)

These are all the equations that we can get. Now, note that we have five independent equations
(eqns. (4.37) to (4.41)) but six unknowns. Thus we cannot solve for the unknowns uniquely.
This is an indeterminate structure! No matter which point we use for our moment equilibrium
equation, we will always have one more unknown than the number of independent equations.
We can, however, solve the problem with an extra assumption (see comments below) — the
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structure is symmetric about the axis passing through G and parallel to x-axis. From this
symmetry we conclude that T1 D T2. Then, from eqn. (4.40) we have

2T sin � D W

2
) T D W

4 sin �
:

We can now find the maximum load that the plate can take subject to the maximum allowable
tension in the strings.

W D 4T sin �

) Wmax D 4Tmax sin �

D 4.100N/ � 1
2
D 200N:

The total load as given is .6C 4/ kg � 9:81m=s2 D 98:1N � 100N. Thus we can double the
load before the strings reach their break-points. Now the reactions at D and A follow from
eqns. (4.37), (4.38), (4.40), and (4.41).

Dz D Az D
W

2
� T sin � D W

2

Dx D Ax D T cos � D W

4
cot �:

Wmax D 200N

Comments:

1. We got only five independent equations (instead of the usual 6) because the force
equilibrium in the y-direction gives a zero identity (0 = 0). There are no forces in
the y-direction. The structure seems to be unstable in the y-direction — if you push
a little, it will move. Remember, however, that it is so because we chose to model
the hinges at A and D that way keeping in mind the only vertical loading. The actual
hinges used on a bookshelf will not allow movement in the y-direction either. If we
model the hinges as ball and socket joints, we introduce two more unknowns, one at
each joint, and get just one more scalar equation. Thus we are back to square one.
There is no way to determine Ay and Dy from equilibrium equations alone.

2. The assumption of symmetry and the consequent assumption of equality of the two
string tensions is, mathematically, an extra independent equation based on deforma-
tions (strength of materials). At this point, you may not know any strength of material
calculations or deformation theory, but your intuition is likely to lead you to make the
same assumption. Note, however, that this assumption is sensitive to accuracy in fab-
rication of the structure. If the strings were slightly different in length, the angles were
slightly off, or the wall was not perfectly vertical, the symmetry argument would not
hold and the two tensions would not be the same.

Most real problems are like this — indeterminate. Our modelling, which requires insight,

makes them determinate and solvable.
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Problems for
Chapter 4
Statics of one object

4.1 Static equilibrium of
a particle
Preparatory Problems
4.1.1 What is a particle?

4.1.2 What are the equations of equilib-
rium for a particle (also called “equilib-
rium conditions”, “force balance”, or “lin-
ear momentum balance for statics”?

4.1.3 The particle shown in the figure is in
static equilibrium. Find the unknown force
*
F .

Filename:pfig4-1-1

ı̂
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Problem 4.1.3

4.1.4 Four forces act on a block as shown
in the figure and hold it in static equilib-
rium. Assume that the magnitude of force
*
F is known and it is F .

a) Write the scalar equations of equi-
librium in x and y directions.

b) Solve for
*
N and

*
Fr in terms of F ,

mg, and � .

c) What is
*
Fr when � D 90�?
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Problem 4.1.4

4.1.5 A particle of mass m D 2 kg hangs
from strings AB and AC as shown. AB is

horizontal and � D 45
�
. Find the tension

in the two strings.
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Problem 4.1.5

4.1.6 What force should be applied to the
end of the string over the pulley at C so
that the mass at A is at rest in the configu-
ration shown?
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Problem 4.1.6

4.1.7 N small blocks each of massm hang
vertically as shown, connected by N in-
extensible strings. Find the tension Tn in
string n. �

Filename:pfigure2-hanging-masses

x

y

m

m

m

m

m

m
n = 1

n = N - 2

n = N - 1

n = N

n = 2

n = 3

g

Problem 4.1.7

4.1.8 For each situation below, assume
static equilibrium under the applied force
and find the tensions in the two rods.
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⇀ 
F

Problem 4.1.8

4.1.9 A particle of mass m D 5 kg at
the end of a horizontal massless rod CB
of length 1:2m is held in place with the
help of a string AB that makes an angle
� D 45

�
with the vertical in the equilib-

rium position. Find the tension in the bar
CB (it is ok to have negative tension).
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Problem 4.1.9

4.1.10 For each structure shown below,
find the tension in each rod. (Note the ten-
sion can be less than zero.)
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Problem 4.1.10

4.1.11 In the following structures, a pin
connects two thin bars that are very nearly
either horizontal or vertical. Find the ten-
sions in each rod under the applied loads.
(Note the tension is less than zero for some
of the rods.)
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Problem 4.1.11

4.1.12 For each situation shown below,
equilibrium is not possible. Write the vec-
tor equation for force balance and show
that it has no solutions (i.e., leads to an
equation like 7 D 0).
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Problem 4.1.12

4.1.13 Assume no sliding friction (� D 0).
Assume equilibrium. Find all reactions,
tensions, and forces. �
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Problem 4.1.13

4.1.14 In each of the two cases given be-
low, find the tension in the string AB as-
suming the block to be at rest and the ramp
to be frictionless.
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Problem 4.1.14

4.1.15 Find the unknown forces and ten-
sions in each structure shown below.
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Filename:pfigure-particle-5
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Problem 4.1.15

4.1.16 A block of mass m D 5 kg rests
on a frictionless inclined plane as shown in
the figure. Let � D � D 30

�
. Find the

tension in the string.
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Problem 4.1.16

More-Involved Problems
4.1.17 For small � what is the relation be-
tween F and � (and g and `) for a static
pendulum?
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Problem 4.1.17

4.1.18 In the situations shown in the fig-
ures, find the value of � that minimizes F .
What is the corresponding value of F in
each case?
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Problem 4.1.18

4.1.19 An object of weight W D 10N is
held in equilibrium in the vertical plane by
two strings AC and BC. Let � D 30

�
and

0 � � � 90
�
. Find and plot the tension in

the two strings against � and comment on
the variation in the tensions.
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Problem 4.1.19

4.1.20 Find the tensions in the three strings
shown in the figure.
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Problem 4.1.20

4.1.21 Find the tensions in the three strings
shown in the figure. String CD is hori-
zontal and the force at D is 100N straight
down. [Hint: this problem has a trick to it.]
�
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Problem 4.1.21

4.1.22 Show that the particle acted upon
by the given force

*
F D .3O{C 4 O|C 5 Ok/N,

and held by the two bars as shown in the
figure cannot be in equilibrium.
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Problem 4.1.22

4.1.23 In the figure shown, the force
*
F

acts on the particle (weighing 100N) in the
x-z plane. Find F as a function of � for
equilibrium of the particle. For what value
of � , the required force is minimum?
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Problem 4.1.23

4.1.24 For the three cases (a), (b), and (c),
below, find the tension in the string AB.
In all cases the strings hold up the mass
m D 3 kg. You may assume the local grav-
itational constant is g D 10m=s2. In all
cases the winches are pulling in the string
so that the velocity of the mass is a con-
stant 4m=s upwards (in the Ok direction).
[ Note that in problems (b) and (c), in or-
der to pull the mass up at constant rate the
winches must pull in the strings at an un-
steady speed.] �
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Problem 4.1.24

4.1.25 A block of weight W , held by
two strings AC and DC, rests on a slippery
plane AEH. String CD is parallel to EH.
Find the tensions in the two strings and the
reaction of the plane. You may approxi-
mate AC to lie in the plane AEH.
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Problem 4.1.25

4.2 Static equilibrium of
one body
Preparatory Problems
4.2.1 For problems below, assume a 2D
free-body diagram has been drawn where
forces

*
F1;

*
F2; : : : ;

*
F5 are applied at posi-

tions *r1;
*r2; : : : ;

*r5 relative to the origin.
Use this information in the answers below.

a) What is the force balance equation?
b) What is the moment balance equa-

tion about the origin?
c) What are equilibrium conditions?
d) Write equilibrium conditions as

many different ways as you can.
e) How many independent

scalar equations can one write using
various force and moment balance
equations?

f) If force
*
F4 is moved to a new po-

sition along the its direction, which
equilibrium equations are changed
and which are not?

g) If force
*
F4 is displaced sideways rel-

ative to its direction, which equi-
librium equations are changed and
which are not?

4.2.2 What is the meaning of the line of ac-
tion of a force?

4.2.3 If only two forces,
*
F1 and

*
F2, act on a

body at*r1 and*r2, what do the equilibrium
conditions tell you about the two forces?

4.2.4 If only three forces,
*
F1;

*
F2 and

*
F3, act

on a body at*r1;
*r2 and*r3, what do the equi-

librium conditions tell you about the three
forces?

4.2.5 Which of the bars below cannot pos-
sibly be in equilibrium and which ones
can? (Where the center of mass is indi-
cated, assume non-zero weight acting ver-
tically downwards. Assume dimensions as
needed.)

i) Explain in words.

ii) Explain using equations.

Note that scalars (e.g., F , F1, etc.) can be
positive or negative.
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Problem 4.2.5

4.2.6 Which of the objects below cannot
possibly be in equilibrium and which ones
can? (Where the center of mass is indi-
cated, assume non zero weight acting ver-
tically downwards. Assume dimensions as
needed.)

a) Explain in words.

b) Explain using equations.

Note that scalars (e.g., F , F1, etc.) can be
positive or negative unless mentioned oth-
erwise.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



248 Chapter 4. Homework problems 4.2 Static equilibrium of one body
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4.2.7 In the problems shown below, find F
for equilibrium.
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Problem 4.2.7

4.2.8 A straight uniform 2000N beam is
6m long. It rests on a flat stack of boards
with a 2m overhang. How far out the over-
hang can an 800N person walk without the
beam tipping over?
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Problem 4.2.8

4.2.9 The uniform bar AB is 5m long and
weighs 100N. It is pinned at A and sup-
ported by the horizontal cord BC attached
at end B. A 50N weight hangs from end B.

a) Find the tension in cord C.

b) Find the magnitude and direction of
the force exerted on the pin at A by
the bar.
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4.2.10 For static equilibrium of the system
and the configuration shown in the figure,
find the support reaction at end A of the
bar.
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Problem 4.2.10

4.2.11 A 400N child stands on the end
of a uniform 800N diving plank which is
pinned on one end and which also rests on
a log (idealized as frictionless). Find the
force of the log on the plank and of the pin
on the plank.
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4.2.12 A negligible weight 6m rod is
pinned at one end and leans over a friction-
less wall a third of the way up from the bot-
tom. Find the forces of the wall and the pin
on the rod.
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More-Involved Problems
4.2.13 The uniform boom AB is 20 ft long
and weighs 150 lbf. A 1500 lbf weight is
suspended from a point 5 ft from end B.
The boom is pinned at A and supported by
the cable BC attached at end B.

a) Find the tension in the cable.
b) Find the force exerted on the boom

by the pin at A.
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4.2.14 The 30N uniform rectangular plate
is supported by a pin at A and cable BC
attached at corner B. A 65N weight hangs
from corner D.

a) Find the tension in the cable.
b) Find the force exerted on the plate

by the pin at A.

Filename:pfigureSoodak4-13

A

B

C

65N
100cm

D

37o

25cm

25cm

Problem 4.2.14

4.2.15 A uniform door of width 1m and
weight 200N is supported by two hinges a
distance 2m apart.
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a) Find the horizontal component of
the force by the door on the upper
hinge.

b) Find the horizontal component of
the force by the door on the lower
hinge.

c) Can you find the vertical force of
the door on the upper or lower
hinge? If not, what do you know
about these forces?
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Problem 4.2.15

4.2.16 In the mechanism shown, find the
maximum force F that can be applied at A
normal to the link AB such that the magni-
tude of the force in rod CD does not exceed
10 kN.
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Problem 4.2.16

4.2.17 For biomechanics purposes mus-
cles are commonly modeled as massless
cables and joints (elbow, shoulder, hip, an-
kle, etc) as frictionless hinges connecting
rigid bones. You will find that the mus-
cle tension and joint reaction forces are
large compared to the loads being carried.
This is a general feature in biomechanics
because muscles usually have short lever-
arms relative to the bone lengths.

A human forearm weights 14N and
supports a 100N weight. Find the muscle
tension and the force of the upper arm on
the forearm at the elbow.
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Problem 4.2.17

4.2.18 See Problem 4.2.17. An arm
weighs 7 pounds and supports a 12 pound
weight. Find the tension in the deltoid
muscle and the force of the body on the
arm at the shoulder joint.
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Problem 4.2.18

4.2.19 A 240N roller is 1m in diameter.
It is being pulled over a 0:1m curb with a
horizontal rope. The roller does not slide
on the curb.

a) What is the force required to lift the
roller over the curb with the rope at-
tached at the middle?

b) What is the force required if instead
the rope is instead wrapped around
the roller as shown?
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4.2.20 What are the forces on the disk due
to the groove? Define any variables you
need.
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Problem 4.2.20

4.2.21 A solid sphere of mass m D
5 kg and radius R D 250mm rests be-
tween two frictionless inclined planes. Let
� D 60

�
. Find the magnitudes of

normal reactions of the plane as func-
tions of � and plot normalized reactions
(N1=mg and N2=mg for 0 < � � 90

�
).

Comment on the plot.
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4.2.22 Assuming the spool is massless and
that there is no friction at point A, find the
force on the spool at point B in order to
maintain equilibrium. Answer in terms of
some or all of r; R; g; � , and m.
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ĵ

θ

Problem 4.2.22

4.2.23 Find the tension in cord AB.
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4.3 Friction and
equilibrium
Preparatory Problems
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4.3.1 For the block shown in the figure,
what do you know about F if

a) the block is sliding to the right

b) the block is sliding to the left

c) the block is not sliding.
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4.3.2 A block weighing 500 N is dragged
slowly on the ground as shown in the fig-
ure. Find the tension in the string?
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Problem 4.3.2

4.3.3 Find the tension in the cable assum-
ing the car is dragged at constant speed.
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Problem 4.3.3

4.3.4 Consider the tow truck dragging the
car in Problem 4.3.3 again. In order to en-
sure safety, you would like to minimize the
tension in the rope attached to the car. As-
sume that the angle shown at point B is � .

a) What value of � minimizes the ten-
sion in the rope?

b) What is the corresponding value of
T ?

c) What is the force of the ground on
the car?

.

More-Involved Problems

4.3.5 A 30; 000N stone cube one meter on
a side was dragged up a 20� ramp by 100
of a Pharaoh’s slaves by a rope parallel to
the slope. The coefficient of friction was
� D 0:2. Assume all the ground contact is
at the front and back edges of the cube.

a) Find the dragging force.
b) Find the force on the front and back

edges of the cube.
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4.3.6 The 20 lbf uniform rectangular sign
is suspended from the strut ABCD by two
wires. The strut is supported by cable DE
and a pin at A.

a) Find tension DE.
b) Suppose the workers who hung the

sign forgot to pin the strut to the
wall at point A. What is the least
value of � between the strut and
wall for the system to maintain
equilibrium.
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Problem 4.3.6

4.3.7 A horizontal force F is applied to
slide the bead on the rod shown in the fig-
ure. Find the value of F that is required to
initiate sliding. Why is F so big or small?
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Problem 4.3.7

4.3.8 A 130 pound person climbs a 120
pound ladder that is 30 ft long. The ladder
leans against a frictionless wall and makes
an angle of 53� with the ground.

a) Find the force of the ground on the
ladder when the person is one third
of the way up the ladder.

b) When the person gets two thirds of
the way up, the bottom of the ladder
starts to slip. What is � between the
ladder and ground?

Filename:pfigureSoodak4-16

53o

Problem 4.3.8

4.3.9 A uniform 200N, 10m ladder leans
between a frictionless ground and a wall. It
is kept from sliding away from the wall by
a horizontal cable 2m above the ground.
Find

a) The tension in the cable.

b) The force of the ground on the lad-
der.

c) The force of the wall on the ladder.
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Problem 4.3.9

4.3.10 A uniform ladder of length `
and weight W rests against a frictionless
slanted wall. What is the minimum � be-
tween ladder and ground that is needed to
hold the ladder in position?
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4.3.11 A uniform ladder with weight W
and length ` leans against a frictionless
vertical wall and makes an angle � with
the ground. In terms of the given quanti-
ties, find the values of � at the ground for
which the ladder will not slip.
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4.3.12 A uniform ladder with weight W
and length ` leans against a frictional ver-
tical wall and is supported by the frictional
ground. The same coefficient of friction
� applies to the wall and to the ground.
In terms of the given quantities, find the
values of � between the ladder and ground
for which the ladder can be in equilibrium
without slipping. �
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4.3.13 A 2m square 500N 4-leg table is
pushed across a floor by a horizontal force
at its top surface and normal to one edge.
Assume the table is 0:8m high, that its cen-
ter of mass is 0:6m high and that all four
legs slide on the floor with friction coeffi-
cient � D 0:3. Which legs carry the most
load and what is the magnitude of the force
from the ground on one of those legs?
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4.3.14 An 80N chair is pulled steadily
to the right by a rope. The coefficient of
friction between the ground and floor is
� D 0:25.

a) What is the force needed to pull the
chair?

b) What is the highest point on the
chair that the rope can be tied with-
out the chair tipping over?
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4.3.15 A candidate rock-climbing device
consists of a roller (radius 2 cm) friction-
lessly pinned at A to diagonal-member AC.
The length of AC from point A to the wall-
contact point at C is LAC D 15cm. The
climber (m D 60 kg) hangs from a rope
connected to AC by a pin at B. B is on the
line AC and located as shown in the figure.
If needed, assume g D 10N/kg. What is
the minimum coefficient of friction � at C
that is needed to hold up the climber? �
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Problem 4.3.15

4.3.16 A uniform W D 50N block with
width a and height h is held against a wall
with a horizontal force of F acting on the
left side half way up the block. The block
is prevented from sliding down the wall by
friction. There is no glue (no tension be-
tween wall and block).

a) Assuming friction is high enough to
prevent slip, what is the minimum
F to keep the block from tipping
away from the wall?

b) For twice that F what is the mini-
mum friction to keep the block from
sliding down the wall?

c) For a D h and F D 3W the resul-
tant of all the wall normal and con-
tact forces is a single force that acts
on the right side of the block at what
position y above the bottom of the
block?
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Problem 4.3.16

4.3.17 In the figure shown, what is force F
required to push the block along the floor?
This problem has no solution. Explain why
(using free-body diagrams and mechanics
equations).
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Problem 4.3.17

4.3.18 Consider the situation shown
shown in the figure. Give your answers to
the following questions in terms of some
or all of W; �; �; g, and � or �. Assume
all values of � and 0 � � � �=2, 0 � �,
g > 0, W > 0.

a) Assume the block slides seadily up-
hill. Find F. For what values of �; �,
and � does no such F exist (allow
F < 0)?

b) Assume the block slides downhill.
What is F? For what values of �; �,
and � does no such solution exist?

c) assume the block is not sliding.
What are the possible values of F?
For what values of �; �, and � does
such a solution exist?

d) For what values of �; �, and � can
you have the block slide up, slide
down, or lock (that is, no incipient
slip) depending on the value of F ?
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Problem 4.3.18

4.3.19 A car is being towed. Unfortu-
nately all the wheels are locked and skid-
ding with friction coefficient �. The tow
cable AB has a slope of 1=3.

a) In terms of some or all of
e; b; c; d;m; g& �, find the tension
in the tow cable AB. �

b) Instead of an angle with slope 1=3,
what should the cable angle be to
minimize the tension. �
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Problem 4.3.19

4.3.20 A weight M is steadily raised by
pulling with a force F on a rope going
over a negligible-mass pulley on an unlu-
bricated journal bearing (no ball bearings).
For an ideal frictionless pulley F D Mg.
Here, however, we have a friction coef-
ficient between the bearing and its axle
which is � D tan�. [Hint: Finding the
location of the contact point D is part of
the problem.]

a) Find F in terms ofM;g;R; r and�
(or � or sin� or cos� — whichever
is most convenient. For example
cos.tan�1.�// is more simply ex-
pressed as cos�), and

b) Evaluate F in the special case that
M D 100 kg; g D 10m=s2; r D
1 cm; R D 2 cm; and � D

p
3=3

(so � D �=6; sin� D 1=2; cos� Dp
3=2).

c) Referring back to the general case,
for fixed r; R;M , and g what hap-
pens to F as �!1 (does it go to
1)?
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Problem 4.3.20

4.3.21 A reel of mass M and outer radius
R is connected by a horizontal string from
point P across a pulley to a hanging object
of mass m. The inner cylinder of the reel
has radius r D 1

2R. The slope has angle � .
There is no slip between the reel and the
slope. There is gravity.

a) Find the ratio of the masses so that
the system is at rest. �

b) Find the corresponding tension in
the string, in terms of M , g, R, and
� . �

c) Find the corresponding force on the
reel at its point of contact with the
slope, point C , in terms of M , g,
R, and � . �

Harder Draw a careful sketch and find a
point where the lines of action of
the gravity force and string tension
intersect. For the reel to be in static
equilibrium, the line of action of
the reaction force at C must pass
through this point. Using this in-
formation, what must the tangent of
the angle � of the reaction force at
C be, measured with respect to the
normal to the slope? Does this an-
swer agree with that you would ob-
tain from your answer in part(c)? �

d) What is the relationship between
the angle � of the reaction at C ,
measured with respect to the normal
to the ground, and the mass ratio re-
quired for static equilibrium of the
reel? �

e) What is the minimum coefficient of
friction � at C needed to prevent
slip.

Check that for � D 0, your solution gives
m
M

D 0 and
*
FC D Mg O| and for � D �

2 ,
it gives m

M
D 2 and

*
FC DMg.O{C 2 O|/.
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Problem 4.3.21

4.3.22 This problem is similar to prob-
lem 4.3.21. A reel of mass M and outer
radius R is connected by an inextensible
string from point P across a pulley to a
hanging object of massm. The inner cylin-
der of the reel has radius r D 1

2R. The
slope has angle � . There is no slip between
the reel and the slope. There is gravity. In
terms of M , g, R, and � , find:

a) the ratio of the masses so that the
system is at rest, �

b) the corresponding tension in the
string, and �

c) the corresponding force on the reel
at its point of contact with the slope,
point C . �

d) What is the minimum coefficient of
friction � at C needed to prevent
slip.

Check that for � D 0, your solution gives
m
M

D 0 and
*
FC D Mg O| and for � D �

2 ,
it gives m

M
D �2 and

*
FC D Mg.O{ �

2 O|/.The negative mass ratio is impossible
since mass cannot be negative and the neg-
ative normal force is impossible unless the
wall or the reel or both can ‘suck’ or they
can ‘stick’ to each other (that is, provide
some sort of suction, adhesion, or mag-
netic attraction).
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Problem 4.3.22

4.3.23 Assume a massless pulley is round
and has outer radiusR2. It slides on a shaft
that has radiusRi . Assume there is friction
between the shaft and the pulley with coef-
ficient of friction �, and friction angle �
defined by � D tan.�/. Assume the two
ends of the line that are wrapped around
the pulley are parallel.
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a) What is the relation between the
two tensions when the pulley is
turning? You may assume that the
bearing shaft touches the hole in the
pulley at only one point. �.

b) Plug in some reasonable numbers
for Ri ; Ro and � (or �) to see one
reason why wheels (say pulleys) are
such a good idea even when the
bearings are not all that well lubri-
cated. �
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Problem 4.3.23

4.3.24 The so-called pipe-clamp has a
bracket ABC which loosely fits around the
slide-shaft (the‘pipe’). When not clamped
there is no big force at C and the bracket
freely slides on the shaft. However the
bracket frictionally locks once the load F
at C gets large. Neglecting gravity, find the
minimum coefficient of friction � at A and
B for which this clamp holds well (which
it does).
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Problem 4.3.24

4.3.25 Find the minimum coefficient of
friction � needed for a front wheel drive
car to go up hill. Answer in terms of some
or all of a; b; h;m; g and � .

Filename:pfigure-frontwheelup

b
a

h

ı̂

̂
g

θ

Problem 4.3.25

4.3.26 Solve Problem 4.3.25 for a rear
wheel drive car.

4.3.27 Solve Problem 4.3.25 for a four
wheel drive car.

4.4 Internal forces
Preparatory Problems
4.4.1 For the bar shown which ones of the
following statements are true? �

a) The two forces cancel so the tension
is zero.

b) The two forces add so the tension is
200N.

c) The tension is 100NO{.
d) The tension is �100NO{.
e) The tension is 100NO{ on the right

end and �100NO{ on the left end.
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Problem 4.4.1

4.4.2 What letters and case (upper or
lower) are used in this book for tension,
shear force, and bending moment?

4.4.3 Mechanics depends on free body dia-
grams. And free body diagrams only show
the external forces on an object. So how
can mechanical sense be made of the con-
cept of “internal” force?

4.4.4 A string is conceptually cut in half
by making free body diagrams of the left
and right halves of the string. At the cut
on the left half of the string acts the force
50NO{. At the cut on the right half of the
string acts the force �50NO{. With two dif-
ferent forces acting on the two halves how
can one define a single ‘tension’?

4.4.5 Define as precisely as you can:

a) Shear force

b) Bending moment

4.4.6 Find the tension, shear force and
bending moment at C for each of the struc-
tures below. Neglect gravity. Assume di-
mensions as needed.
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Problem 4.4.6

4.4.7 Find the tension, shear force and
bending moment at C for each of the struc-
tures below. There is no gravity. Assume
dimensions if needed.
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Problem 4.4.7

4.4.8 Find the tension, shear and bending
moment at section C for each of the struc-
tures below. And also at D, if marked. As-
sume reasonable dimensions as needed.
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4.4.9 The tension in the bow-saw blade BC
is 250N. Find the tension, shear, and bend-
ing moment at A.
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More-Involved Problems
4.4.10 Find the tension, shear and bending
moment at section C for each of the struc-
tures below. And also at D, if marked. In-
clude gravity, assume all bars are uniform
with density of (100 N=m). Assume rea-
sonable dimensions as needed.
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4.4.11 Find the tension, shear and bending
moment at section C for each of the struc-
tures below. And also at D, if marked. Ne-
glect gravity. Assume reasonable dimen-
sions as needed.
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4.5 Advanced statics
Preparatory Problems
4.5.1 In 2D, the force balance and mo-
ment balance equations for equilibrium of
a body give three independent scalar equa-
tions that can be used to solve for three
unknowns. How many independent scalar
equations can you get from force and mo-
ment balance in 3D? Write down a set of
such equations.

4.5.2 In 3D, how many independent scalar
equations can you write for equilibrium of
a particle?

4.5.3 How is moment balance equation
about an axis different from moment bal-
ance about a point? Illustrate your answer
with an example.

4.5.4 How many independent scalar equa-
tions of equilibrium can you get by writing
moment balance equations about different
lines or axes in 3D?

More-Involved Problems
4.5.5 Assume identical uniform rigid
blocks with weight W D 1N, height h D
1 cm, and length ` D 10 cm are put one on
top of the other. Assume there is no glue
so blocks can only push against each other.

a) For two blocks what is the biggest
overhang a so that the top block
does not tip over?

b) For three blocks what is the biggest
total overhang D 2a (the same
overhang a at each layer) so that the
top block doesn’t tip, nor does the
middle block?
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Problem 4.5.5

4.5.6 See Problem 4.5.5. For n stacked
blocks what is the biggest possible over-
hang (D na) so that there is no tipping
of any part of the pile relative to the rest?
What is the maximum overhang in the limit
n!1? �
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4.5.7 See simpler problems 4.5.5 and
4.5.6. Stacking identical rigid blocks one
on top of each other one wants to get
the biggest overhang possible without the
tower toppling. Each block has, say, W D
1N, height h D 1 cm, and length ` D
10 cm.

a) For three blocks find the biggest a1
and a2 so there is no toppling. [First
put the top block as far to the right
as you can, a1, for no toppling.
Then put that pair as far to the right
as possible for no toppling over the
bottom block.] The total overhang
is a1 C a2.

b) For 4 blocks find the largest possi-
ble overhang a1Ca2Ca3 by plac-
ing the tower of three above as far
to the right as possible relative to
the bottom block. [Note that you
place the center of mass of the top
3 blocks over the right edge of the
fourth bottom block].

c) For n blocks what is the biggest
possible overhang (D a1 C a2 C
a3 C � � � C an�1)?

d) Using blocks with length ` D
10 cm how many blocks n are
needed to get an overhang of 1m?
2m?
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Problem 4.5.7

4.5.8 Uniform plate ADEH with mass m
is connected to the ground with a ball and
socket joint at A. It is also held by three
massless bars (IE, CH and BH) that have
ball and socket joints at each end, one end
at the rigid ground (at I, C and B) and one
end on the plate (at E and H).

In terms of some or all of m; g; and L
find

a) the reaction at A (the force of the
ground on the plate),

b) TIE,
c) TCH,
d) TBH.
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4.5.9 An 80 kg square table has one quar-
ter cut away. The remaining 60 kg are sup-
ported on 3 massless legs on a level floor.
Use g D 10N/kg. What is the load car-
ried by leg AB? (State your assumptions
clearly.) �
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4.5.10 Uniform plate ADEH with mass m
is connected to the ground with a ball and
socket joint at A. It is also held by three
massless bars (CE, CH and BH) that have
ball and socket joints at each end, one end
at the rigid ground (at C and B) and one
end on the plate (at E and H). In terms of
some or all ofm; g; and L find the reaction
at A (the force of the ground on the plate)
and the three bar tensions TIE , TCH and
TBH . �
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Problem 4.5.10

4.5.11 A massless triangular plate rests
against a frictionless wall at point D and
is rigidly attached to a massless rod sup-
ported by two ideal bearings fixed to the
floor. A ball of mass m is fixed to the cen-
troid of the plate. There is gravity and the
system is at rest What is the reaction at
point D on the plate?
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Problem 4.5.11

4.5.12 A uniform equilateral triangular
plate with weight W D 1000N and sides
` D 2m rests against a slippery plane S.
Point C is negligibly above the xy plane.
The bottom edge of the triangle has ball-
and-socket joints at A and B, with the line
AB on the xy plane making an angle of
15

�
with the x direction.

a) Find the reaction at C

b) Find all you can about the reactions
at A and B.
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Problem 4.5.12

4.5.13 A uniform 5 kg shelf is supported
at one corner with a ball and socket joint
and the other three corners with strings. At
the moment of interest the shelf is at rest.
Gravity acts in the�Ok direction. The shelf
is in the xy plane.

a) Draw a FBD of the shelf.

b) Challenge: without doing any cal-
culations on paper can you find one
of the reaction force components or
the tension in any of the cables?
Give yourself a few minutes of star-
ing to try to find this force. If you
can’t, then come back to this ques-
tion after you have done all the cal-
culations.

c) Write down the equation of force
equilibrium.

d) Write down the moment balance
equation using the center of mass as
a reference point.

e) By taking components, turn (b) and
(c) into six scalar equations in six
unknowns.

f) Solve these equations by hand or on
the computer.

g) Instead of using a system of equa-
tions try to find a single equa-
tion which can be solved for TEH .
Solve it and compare to your result
from before. �

h) Challenge: For how many of the re-
actions can you find one equation
which will tell you that particular
reaction without knowing any of the
other reactions? [Hint, try moment
balance about an appropriate axis as
well as force balance in an appro-
priate direction. It is possible to
find five of the six unknown reac-
tion components this way.] Must
these solutions agree with (f)? Do
they?
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Problem 4.5.13

4.5.14 The sign is held up by 6 rods. Find
the tension in bars

a) BH �

b) EB �

c) AE �

d) IA �

e) JD �

f) EC �

[One game you can play is to see how
many of the tensions you can find without
knowing any of the others. Another ap-
proach is to set up and solve 6 equations
in 6 unknowns.]
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Problem 4.5.14

4.5.15 The 100 kg, 2 m square, uniform
sign KHNA is held up by 6 bars.
Structure and geometry clarifications:
The sign is held vertically, 1m in front of,
and orthogonal-to a vertical wall. Each
bar holding the sign has a ball-and-socket
joint both where it attaches to the sign and
where it attaches to the wall. The points
L, M, J, I, K, P and H lie in the same hor-
izontal plane that includes the top edge of
the sign. The points M, O, and C lie on a
vertical line that is coplanar with the sign.
Points B, O, D, A, and N lie in a horizon-
tal plane shared with the bottom ege of the
sign. The center of mass of the sign is at
G. g D 10N/kg.

a) Find the “bar force” in bar AC.
[hint: �Fz D

n
�

*
F
o
� Ok D 0]. �
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b) Find the “bar force” in bar IP.
[hint: �MAK D

n
�

*
M=A

o
� Ok D

0]. �

c) Find the “bar force” in bar KL. �
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Problem 4.5.15

4.5.16 Below is a highly schematic picture
of a tricycle. The wheels are at C, B and
A. The person-trike system has center of
mass at G directly over the rear axle. The
wheels at C and A are good free-turning,
high friction wheels. The wheel at B is in
a small ditch and can’t move. Assume no
slip and that F;m; g;w; `; and h are given.

a) Of the 9 possible reaction compo-
nents at A, B, and C, which do you
know are zero a priori.

b) Find all the reaction components
(the full reaction force) at A.

c) Find the vertical component of the
reaction at C.

d) Find the x and z reaction compo-
nents at B.

e) Find the sum of the y components
of the reactions at B and C.

f) Can you find the y component of
the reaction at C? Why or why not?
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Problem 4.5.16

4.5.17 A 3-wheeled robot with mass m is
parked on a hill with slope � . The ideal
massless robot wheels are free to roll but
not to slip sideways. The robot steering
mechanism has turned the wheels so that
wheels at A and C are free to roll in the
O| direction and the wheel at B is free to
roll in the O{ direction. The center of mass
of the robot at G is h above (normal to
the slope) the trailer bed and symmetrically
above the axle connecting wheels A and B.
The wheels A and B are a distance b apart.
The length of the robot is `.

Find the force vector
*
FA of the ground

on the robot at A in terms of some or all of
m; g; `; �; b; h; O{; O|; and Ok . �
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CHAPTER 5
Trusses and frames

Here we consider collections of parts assembled so as to hold something up
or hold something in place. Emphasis is on trusses, assemblies of bars con-
nected by pins at their ends. Trusses are analyzed by drawing free body dia-
grams of the pins or of bigger parts of the truss (method of sections). Frame-
works built with other than two-force bodies are also analyzed by drawing
free body diagrams of parts. Structures can be rigid or not and redundant or
not, as can be determined by the collection of equilibrium equations.
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5.2 The method of sections . . . . . . . . . . . . . . . . . . . . 277
5.3 Solving trusses on a computer . . . . . . . . . . . . . . . . . 284
5.4 Frames and structures . . . . . . . . . . . . . . . . . . . . . 295

Box 5.1 The ‘method of bars and pins’ for trusses . . . . . 298
5.5 Advanced truss concepts: determinacy . . . . . . . . . . . . 305

Box 5.2 Structural rigidity and geometric congruence . . . 310
Box 5.3 Rigidity, redundancy, linear algebra and maps . . 311

Problems for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 316

258 Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Many structures are built from two or more parts. If the parts are well-
modeled as rigid and the connections between them are also well-modeled
as rigid 1 then the separateness of the parts is not visible to the laws of me-
chanics. The collection is then, effectively, a single object. And the best we
can do with statics is to treat the group as one object. And this has been the
approach of the previous chapter.

Either by accident or design, however, the connections between solid
parts often are not well-modeled as rigid. Rather, the connections are some-
times reasonably approximated as freely allowing some relative motion.

This chapter concerns the analysis of arrays of parts connected by these
means.

� with pin joints. A pin joint allows relative rotation of the parts and
does not transmit moments. Forces are transmitted in all directions.
The pin connection is, by far, the most common model for connections
in structures.

� a round pin in a slot. A pin in slot allows relative rotation of the two
parts and relative motion in one direction. The only force transmitted
is orthogonal to the slot.

� square pin in a slot (or shaft around a rod). This connection allows
sliding in the slot but does not allow rotation. Force orthogonal to the
slot is transmitted as is a moment.

These are the standard non-rigid models for motion-allowing connections
between parts. In 3D the array of standard connections is more complex, as
discussed in Chapter 3.

In the previous chapter we only considered one object, and thus one free
body diagram, at a time. Here we need to consider, all at once, a collection of
objects and the associated collection of free body diagrams. The new skills
that are thus needed are

� Use of the principal of action and reaction in the representation of
forces on the free body diagrams of pairs of interacting objects, and

� The solution of a larger number of simultaneous equilibrium equations.

We start with the analysis of trusses, structures built out of straight bars con-
nected to each other by pins at their ends.

1 Any connection between two parts
that allows no relative motion (neither
displacement nor rotation) is called a
rigid connection. Examples of connec-
tions usually modeled as rigid are welds,
bolted connections (with multiple bolts)
and good glue joints.
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Figure 5.1: a) Two pencils strapped
together with a rubber band are not
sturdy. b) A triangle made of pencils
feels sturdy. c) A square made of 4
pencils easily distorts into a parallelo-
gram. d) A structure made of two tri-
angles feels sturdy (assuming it is kept
flat).

1Some useable supplies are surely on
hand. For sticks you can use pencils,
pens, paper tightly rolled and taped into
tubes, chopsticks, popsicle sticks, big
wooden matches, knitting needles, bar-
becue skewers, plastic drinking straws,
straw from a broom, Tinkertoy rods, ta-
ble knives, or strips cut from cardboard.
Similarly rubber-bands can be replaced
with masking, scotch or duct tape, used
chewing gum, lashings using thread or
string, hot-melt glue, or (for some of the
sticks above) with a paperclip punched
through the sticks and bent to make a
home-made rivet.

5.1 Introduction to trusses and the
method of joints

Trusses are good.
Trusses are useful in engineering practice, they are easy to analyze, and

they provide a good example of more general structural concepts. Your main
goal here is to learn ‘truss analysis’, how to find the tensions in the bars of a
given truss. But first, what is a truss and why are trusses so common?

You can quickly get a tactile sense of the truss concept. Get 9 short sticks
and 9 rubber bands 1. Put them together a few different ways and feel the
resulting rigidity or lack thereof.

a) A ‘V’ deforms. First join two sticks tightly together with a rubber band
so that they cannot easily slide along the connection, as in fig. 5.1a.
Despite the tight joint connection you can feel that the sticks rotate
relative to each other relatively easily; it is easy to open and close the
upside-down V.

b) A triangle is sturdy. Add a third stick to complete the triangle
(fig. 5.1b). The relative rotation of the first two pencils is now almost
totally prohibited. Even though each joint on its own made a relatively
flexible V, together the 3 joints make a very stiff triangle.

c) A square deforms. Now tightly strap four sticks into a square as in
fig. 5.1c, making 4 rubber band joints at the corners. Put the square
down on a table. The sticks don’t stretch or bend visibly, nor do they
slide much along each-other’s lengths, but the connections allow the
sticks to rotate relative to each other so the square easily distorts into a
parallelogram.

d) Two triangles are sturdy. Now add two more sticks to your triangle
to make two triangles (fig. 5.1d). So long as you keep this structure flat
on the table, it is also sturdy.

Because a triangle is fully determined by the lengths of its sides and the V
and quadrilateral are not, the structures made of triangles are much harder to
distort. A triangle is sturdy even without rigid joints. And a V and a square
(and a pentagon, etc) are not. You have just observed the essential inspiration
of a truss:

Triangles make sturdy structures.

Swiss cheese
A different way to discover a truss is by means of subtraction. Imagine your
first initial design for a bridge is to make it from one huge chunk of solid steel.
This would be wildly heavy and expensive. So you could cut holes out of the
chunk here and there, greatly diminishing the weight and amount of material
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used, but not much reducing the strength. Between these holes you would see
other heavy regions of metal from which you might cut more holes leading
to a more savings of weight at not much cost in strength. In fact, the reduced
weight in the middle decreases the load on the outer parts of the structure
possibly making the whole structure stronger rather than weaker 2. Even-
tually you would find yourself with very holy swiss cheese, a structure that
looks something like a collection of bars attached from end to end in vaguely
triangular patterns; like a microscopic picture of spongy bone (fig. 5.2): As
opposed to a solid block, a truss

� Uses less material;

� Puts less gravity load on other parts of the structure;

� Leaves space for other things of interest (e.g., cars, cables, wires, peo-
ple).

Real trusses are usually not made by removing material from a solid but
by joining bars of steel, wood, or bamboo with welds, bolts, rivets, nails,
screws, glue, or lashings. Once you are aware you will notice trusses in
bridges, radio towers, and large-scale construction equipment. Early air-
planes were flying trusses (fig. 5.3). Bamboo trusses have been used as
scaffoldings for millennia. Birds have had bones whose internal structure is
truss-like since they were dinosaurs.

Trusses are practical sturdy light structures.

But trusses are also prominent near the front of elementary mechanics books
because

� They are perhaps the easiest example of a complex mechanical system
that a student can analyze;

� They illustrate a variety of more general structural mechanics issues;

� They help build intuition about structures that are not really trusses
(The engineering mind can see an underlying conceptual truss where
no physical truss exists.).

What is a truss?

A truss is a structure made from long narrow bars connected at their
ends.

The sturdiness of most trusses comes from the inextensibility of the bars, not
the resistance to rotation at the joints (as in the sticks and rubber-band exam-
ples at the start of this section). To make the analysis simpler the (generally
small) resistance to rotation in the joints is totally neglected in truss analysis.
Thus the interaction of the bars with their neighbors is by forces, with no
couples; each bar has one net force acting on each end. So:

2 Advanced aside: There are three
ways that having more material in a
structure can make it weaker: 1) the
extra material adds to the gravitational
load, as for the imagined bridge here,
2) The added material can be wedged
in, causing the structure to fight itself
(so called locked-in or internal stresses),
and 3) material in the wrong place can
cause stress concentrations and thus
weak spots.
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Figure 5.2: The truss inside you. The
structure of spongy bone is vaguely
truss-like. Shown here is human can-
cellous bone from the proximal femur,
with the marrow removed. (courtesy
Rod Lakes).
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Figure 5.3: Chanute Glider, 1897. The
Wright brothers first planes were near
copies of the 4-wing gliders built a
few years earlier by Octave Chanute.
Chanute was a retired bridge designer.
Structurally these early biplanes were
essentially flying bridges. The Wright
bothers were preoccupied with trusses.
Their first inspiration and main airplane
patent was about how to control the dis-
tortion of a truss (‘wing warping’). The
Wrights even thought of the threads in
their wing fabric as bars in a truss. Take
away the outer skin from many small
modern planes and you will also find
trusses. (National Air and Space Mu-
seum Negative 1A-2036084-10697)
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Figure 5.4: Many bridges, especially
old train bridges, are essentially trusses.
Here’s one that is partially obscured by
the truss on a nearby car bridge.
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a joint is acted on by bar tensions and
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page 269 for an analysis of this truss.

An ideal truss is an assembly of two force members.

Or, if you like, an ideal truss is a collection of bars connected at their ends
with frictionless pins. Loads are only applied at the pins. In engineering
analysis, the word ‘truss’ refers to an ideal truss even though the object of
interest might have, say, welded joint connections. Had we assumed the
presence of welding equipment in your study room, the opening paragraph
of this section would have described the welding of metal bars instead of the
attachment of pencils with rubber bands. Even with welded-together steel
you would have found that the triangles would be much more rigid than the
V or square.

Bars, joints, loads, and supports
An ideal truss is a collection of bars connected at frictionless joints at which
are applied loads as shown in fig. 5.5b (the load at a joint can be

*

0 and thus
not show on either the sketch of the truss or the free body diagram of the
truss). A truss is held in place with supports which are idealized in 2D as
either being fixed pins (as for joint E in fig. 5.5a) or as a pin on a roller
(as for joint G in fig. 5.5a). Reaction forces, the forces on the truss at the
supports, show on a FBD of the whole truss (fig. 5.5b) and also on a FBD
of any joint at a support. Each bar is a two-force body (fig. 5.5c), with the
same magnitude of tension pulling away from each end. A joint can be cut
free with a conceptual chain saw, fooling each bar stub with the bar tension,
as in the free body diagram of a joint in fig. 5.5d.

The bar tensions can be negative. A bar with a tension of, say, T D
�5000N is said to be in compression. A tension of�5000N is a compression
of 5000N.

Elementary truss analysis
In elementary truss analysis you are given a truss design to which given loads
are applied. Your goal is to ‘solve the truss’ which means you are to find
the reaction forces and the tensions in the bars (sometimes called the ‘bar
forces’). As an engineer, this allows you to determine the needed strengths
for the bars.

The ‘method of free body diagrams’
Trusses are always analyzed by the same basic method used in all of mechan-
ics, the ‘method of free body diagrams’.

� Free body diagrams are drawn of the whole truss and of various parts
of the truss.

� The equilibrium equations are applied to each free body diagram, and
� The resulting equations are solved for the unknown bar forces and re-

actions.
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The ‘method of free body diagrams’ is classically subdivided into two sub-
methods.

� In the method of joints you draw free body diagrams of every joint and
apply the force balance equations to each free body diagram.

� In the method of sections you draw a free body diagrams of one or more
parts of the structure each of which includes 2 or more joints and apply
force and moment balance to the part or parts.

These two methods can be used separately or in conjunction. In the rest of
this chapter we cover the method of joints, the method of sections, computer
solution using the method of joints, and miscellaneous advanced truss topics.

The elementary truss analysis you are about to learn is straightforward
and fun. You will learn it without difficulty. However, the analysis of trusses
at a more advanced level is mysteriously deep and has occupied great minds
from the mid-nineteenth century (e.g., Maxwell and Cauchy) to the present
(see, e.g., box 5.2 on page 310).

Method of joints
Let’s start with an example.

Example: Derrick arm.
Consider this planar model to the arm of a construction derrick (see fig.5.7). As-
sume F and d are known. This truss has joints A-S (skipping ‘F’ to avoid confu-
sion with the load). As is common in truss analysis, we totally neglect the force of
gravity on the truss elements 3. The goal is to find the tensions in the bars (the
so-called ‘bar forces’).

The method of joints is a subset of the more general method of free body
diagrams. Free body diagrams are drawn of the joints. Here is the method-
of-joints recipe:

� Draw a free body diagram of the whole structure and write 3 in-
dependent equilibrium equations (6 in 3D) and solve for unknown
reactions if you can. This step is technically superfluous, but is
so-often a time-saver that its best to just do it.

� Draw free body diagrams of all n joints, 18 such in the example
above.

� For each joint free body diagram you write the force balance equa-
tions, each of which can be broken down into 2 scalar equations
(3 in 3D).

� Solve the 2n joint equations (3n in 3D) for the unknown bar forces
and reactions. In the example above this is 18 � 2 D 36 equations
for 33 unknown tensions and 3 unknown reactions (which you may
have found from the FBD of the whole structure, but need not
have).

Filename:tfigureHowrah

Figure 5.6: The Howrah bridge. Trusses
are such a good idea that they are
used recursively. The bars in some
large trusses, like this one or the
Eiffel Tower, are themselves made
of trusses (courtesy Bipin Chandra,
www.bipinchandra.co.uk).

3 How to include gravity on the
truss elements: replace the single grav-
ity force at the center of each bar with
a pair of equivalent forces at the ends.
The gravity loads are then only at the
joints, and the truss can still be analyzed
in the standard way as a collection of
two-force members. Trusses are so ef-
ficient, however, that the load they carry
is often much greater than their weight.
So weights of the truss parts are often
neglected when calculating bar forces.
If weight is significant, the method in
this sidenote will accurately calculate
the tensions in the bars, but not the ten-
dency of the bars to bend under their
own weight.
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Figure 5.7: A truss with 33 bars, 18
joints and 3 unknown reaction forces.
The reactions are sometimes written as,
say, RSx instead of FSx .

Solving 36 simultaneous equations is generally only feasible with a com-
puter, which is one way to go about things. However, for simple triangulated
structures, like the one in fig. 5.7, you can find a sequence of joints for which
hand solution is easy. If you solve the equilibrium equations as you go there
are at most two unknown bar forces at each joint. By this means, the joint
force-balance equations can be solved, even for some complex structures,
without computers.

Example: Using the FBD of the whole structure
From the free body diagram of the whole structure (fig. 5.7) we find thatnP *

Fi D
*
0
o
� O| ) RSy D FAynP *

M=S D
*
0
o
� Ok ) RRx D 8FAy � FAx :nP *

M=R D
*
0
o
� Ok ) RSx D �8FAy :

Note, we picked a sign convention for the graphical representation of forces on the
Free Body Diagram (see pages 46 and 153) and let the algebra possibly generate
negative numbers: at S the support pushes on the arm with a force of �8FAy which
is pulling (if FAy > 0)

Note that for tension the order of subscripts is not meaningful. The tension
TBC is the same scalar as the tension TCB . TBC D TCB is the amount of pulling
on joint B and also the amount of pulling on joint C. That the two force vectors
are negatives of each other is accounted for by the definition of tension as pulling.
This unimportance of the order of subscripts is in contrast with the case of position
vectors where*rBC is the position vector from B to C (also called*rC=B). For position
vectors *rBC D *rC=B D �*rB=C D �*rCB. Summarizing, the subscript order has
meaning for*rAB but not for TAB .

FBDs of the joints
In the solve-by-hand method of joints we first find a joint with at most 2 bars
connected. Then we work our way through the structure, one joint at a time,
picking joints with at most 2 unknown bar tensions. For each joint we will
use X

*

Fi D
*

0:

Typically many bars in a truss are parallel to the x or y axis so we often
fall into the routine of immediately reducing the above vector equilibrium
equation to the component equationsX

Fx D 0 and
X

Fy D 0:

For the truss in fig. 5.7

� Joint B has only two bars connected (see fig. 5.8). Force balance using FBD
5.8 tells us at a glance thatX

Fx D 0) TDB D 0 and
X

Fy D 0) TAB D 0

� Now you can draw a free body diagram of joint A where there are only two
unknown tensions (since we just found TAB), namely TAD and TAC. Force
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balance gives two scalar equationsX
Fx D 0 ) FAx � TAC �

p
2TAD=2 D 0X

Fy D 0 ) �FAy C TAB����
0

C
p
2TAD=2 D 0

which you can solve to find TAD D
p
2FAy and TAC D FAx �

p
2FAy .

� Next is joint C. Force balance for joint C will tell you TCD and TCE.
� Then you can work your way through the alphabet of joints. Using the bar

tensions you have already found you can find, one at a time, joints with only
two unknown tensions.

That’s it for the method of joints for simple structures.

Zero force members
Just by looking at joint B and thinking about the free body diagram you could
probably pick out that bars DB and AB must be zero force members. Here
we explain the unnecessary but useful trick of recognizing such zero-force
members even before systematically using the method of joints. Zero-force
members are bars with T D 0, like bars AB, BD and CD in the truss of
Fig. 5.7. The basic idea is this:

If there is any direction for which only one bar contributes a force on a
joint, then that bar is a zero-force member.

In particular:

� At any joint where

– there are no loads, and
– where there are only two unknown non-parallel bar forces, and
– where all known bar-tensions are zero,

then the two new bar tensions are both zero (e.g., joint B in fig. 5.8).

� At any joint where all bars but one are in the same direction as the
applied load (if any), the one bar is a zero-force member (see joints C,
G, H, K, L, O, and P in fig. 5.7).

In the truss of fig. 5.7 bars AB, BD, CD, EG, IH, JK, ML, NO, and PQ are
all zero force members. Sometimes it is useful to keep track of the zero force
members by marking them with a zero (see fig. 5.9).

Zero-force members often have a non-zero purpose

Although with the given loading zero-force members have no tension, they
are often needed because there are small loads not considered in the basic
analysis. These could be from imperfections, or load induced asymmetries
in a structure. This gives the ‘zero-force’ bars a small job to do, a job not
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Figure 5.8: Free body diagram of some
joints from the truss in fig. 5.7. Note
that bars DB, AB and GE are zero-force
members.
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Figure 5.9: A zero force member is
sometimes indicated by writing a zero
on top of the bar.
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Figure 5.10: A tower with many zero
force members. Although they carry no
load they prevent structural collapse. A
common use of zero-force members is
to brace long bars that are in compres-
sion and which would otherwise buckle
(pop out to one side).
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Filename:tfigure-Needle

Figure 5.11: Sometimes trusses are used
only because they look nice. The tenseg-
rity structure ‘Needle Tower’ was de-
signed by artist Kenneth Snelson and
is on display in the Hirshhorn Museum
in Washington, DC. It doesn’t hold up
anything but itself. Here you are look-
ing straight up the middle. (courtesy
Christopher Rywalt)

4 In the language of linear alge-
bra: simple structures yield equilibrium
equations that are naturally in upper tri-
angular form, more complicated struc-
tures do not yield an upper-triangular
form.

5If an Indian says to you ”Go and
count the rivets in the Howrah bridge.”
she means go away and do something
that will take a very long time. The
bridge has many rivets (and bars and
joints).

noticed by the equilibrium equations in elementary truss analysis, but one
that can prevent total structural collapse. Imagine, for example, the tower of
fig. 5.10. In a real tower of that design the zero-force members might carry
very small loads, say 100 or 1000 times smaller than the tensions (or com-
pressions) calculated for the other bars. But if the zero-force members were
removed the tower would collapse. Thus, in practice, you may observe large
heavy structures with some very thin bars. Bars which in simple analyses
carry no loads. But bars which prevent structural collapse

Simple and not-simple trusses
Most elementary texts, like this one, start with structures that yield easily
to the method of joints. These are structures where you can totally solve
the equilibrium equations for the joints one at a time; each new joint only
introduces two new unknown bar-tensions.

For more complex trusses this straightforward approach can fail a few
ways:

� Some structures are not designed in a straightforward triangulated man-
ner and cannot be solved 2 equations at a time. Although the method
of joints may still yield a solution, it may require simultaneous solution
of all of the equilibrium equations 4.

� Many structures cannot be solved (the bar tensions can’t be found) by
using the laws of statics alone. Such are called ‘statically indetermi-
nate’ structures.

For this first truss section we only consider structures that are statically de-
terminate and easily solved. See sec. 5.5 for a detailed discussion of static
determinacy.

Why aren’t trusses everywhere?
Trusses can carry big loads with little use of material and can look nice (See
fig. 5.11).They are used in many structures. Why don’t engineers use trusses
for all structural designs? Here are some reasons to consider not using a
truss:

� Trusses are relatively difficult to build, involving many small parts 5

and thus requiring much time and effort to assemble.

� Trusses can be sensitive to damage when forces are not applied at the
anticipated joints. They are especially sensitive to loads on the middle
of the bars.

� Trusses inevitably depend on the tension strength in some bars. Some
common building materials (e.g., concrete, stone, and clay) crack easily
when pulled.

� Trusses often have little or no redundancy, so failure in one part can
lead to total structural failure.
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� The triangulation that trusses require can use space that is needed for
other purposes (e.g., doorways, rooms).

� Trusses tend to be stiff, and sometimes more flexibility is desirable
(e.g., diving boards, car suspensions).

� In some places some people consider trusses unaesthetic. (e.g., the
Washington Monument is not supposed to look like the Eiffel Tower).

Nonetheless, for situations where you want a stiff, light structure that can
carry known loads at pre-defined points, a truss is often the best design
choice.

Three-dimensional trusses
After you have mastered the elementary 2D truss analysis of the previous
section you might wonder

� Do the ideas generalize to 3D? Yes, with a only minor elaboration.

� Does at least one of the methods presented always work? Yes, if
you just look at the homework problems for elementary truss analysis.
And yes again for many practical structures. But some trusses cannot
be analyzed by the simple methods. In this section we classify trusses
into types. One type, statically determinate trusses, can be analyzed by
simple statics methods, other trusses require study of deformations as
well as statics.

The concepts for 3D trusses are basically the same as for 2D trusses with
these differences;

� In the method of joints each joint is associated with 3 scalar force bal-
ance equations instead of 2;

� In the method of sections, and in the free body diagram of the whole
structure one has 6 scalar equations instead of 3;

� To hold the structure in place takes at least 6 reaction components in-
stead of 3;

� The rule-of-thumb check for static determinacy of a grounded structure
in 3D is bC r D 3j instead of the 2D relation bC r D 2j (See sec. 5.5
for discussion of these formulas);

� The rule of thumb for rigidity for a floating truss in 3D is b C 6 D 3j

instead of the 2D relation b C 3 D 2j .

There are various ways to think about the number six in the counts above.
Assuming the structure is more than a point, six is the number of ways a
rigid structure can move in three dimensional space (three translations and
three rotations), six is the number of equilibrium equations for the whole
structure (one 3D vector moment, and one 3D vector force), and six is the
number of constraints needed to hold a structure in place.

Example: A tripod
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Filename:tfigure-tripod

 

Figure 5.12: A tripod is the simplest
rigid 3D truss.
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Figure 5.13: A tetrahedron is the sim-
plest rigid truss in 3D that does not de-
pend on grounding.

A tripod is the simplest rigid 3D structure. With four joints (j D 4), three bars
(b D 3), and nine unknown reaction components (r D 3�3 D 9), it exactly satisfies
the equation 3j D b C r , a check for determinacy of rigidity of 3D structures.

A tripod is the 3D equivalent of the two-bar truss shown in fig. 5.72a on
page 308.

Example: A tetrahedron
The simplest 3D rigid floating structure is a tetrahedron. With four joints (j D 4)

and six bars (b D 6) it exactly satisfies the equation 3j D b C 6 which is a check
for determinacy of rigidity of floating 3D structures.

A tetrahedron is thus, in some sense the 3D equivalent of a triangle in 2D.

Example: Geodesic domes
Any closed polyhedron, with each face a triangle of rods, is a rigid structure. This
includes a tetrahedron (above), an octahedron, a cube with a diagonal on each face,
an icosahedron, and Buckminster Fuller’s geodesic domes.

Well, so Cauchy thought. It turns out that there are some strange non-convex
polyhedra that are not rigid. But, for practical purposes, if you see triangles all
around the outside of a structure you can assume its rigid.
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SAMPLE 5.1 The truss shown in the figure carries a load F D 10 kN at
joint D. The truss is designed with nine rods, six of which (the inclined ones)
have the same length d D 2m. Rods BC, EC, DE and BD form a square.

1. Find the support reactions at joints A and F.

2. Find the tensions in rods BD and BC.

Solution

1. Support reactions: To find the support reactions at A and F, we draw the free-body
diagram of the entire truss (see fig. 5.15). We are given that d D 2m and that
�ABD D �DEF D �=2. Therefore, ` D

p
2d D 2

p
2m.

The scalar force balance equation in x-direction readily gives RAx D 0. The scalar
moment balance equation about point A gives

2`RF � `F D 0 ) RF D F

2
D 5 kN:

Now, from the scalar force balance in the y-direction, we have

RAy CRF � F D 0 ) RAy D F �RF D 5 kN:

RAx D 0; RAy D 5 kN; RF D 5 kN

2. Tensions in BD and BC: We can find the tensions in rods BC and BD by analysing
the equilibrium of joint B. As you can see, joint B has three unknown forces acting on
it, namely the tensions of rods AB, BC and BD. Since the joint equilibrium equations
(only two scalar equations) can only solve for two unknowns, we need to start at joint
A, determine TAB first and then move on to joint B.
The free-body diagrams of the joints A and B are shown in fig. 5.16. Let us first
consider the equilibrium of joint A. From the scalar force balance equations, we haveX

Fy D 0 ) RAy C TAB sin � D 0

) TAB D �RAy= sin � D �5 kN=.1=
p
2/ D �7 kN:X

Fx D 0 ) TAB cos � C TAD D 0

) TAD D �TAB cos � D �7 kN.1=
p
2/ D 5 kN:

Now, we analyze joint B. From the geometry of forces, it is clear that writing scalar
force balance equations in the x0 and y0 directions will be advantageous. For example,
the force balance in the x0 direction immediately gives TBD D 0. The force balance
in the y0 direction gives

�TAB C TBC D 0 ) TBC D TAB D �7 kN:

TBC D �7 kN; TBD D 0

Note that it is easy to spot bar BD as a zero force member since it is perpendicular to
rods AB and BC.
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SAMPLE 5.2 For the truss tower shown in the figure, assume all horizontal
and vertical rods to be 1 mlong and rods numbered 16 and 18 to be 0.5 mlong.
Given that the horizontal load on the truss F D 500N, find the tension in
rod 15.

Solution To find the tension in rod 15, we can use the equilibrium of either joint G or joint
K. In either case, the free-body diagram will have four unknown bar tensions (for four bars
connected to each of these joints) at the joint. Therefore, we will not be able to solve for
them. So, let us start at joint K and work through joint I to joint J. This sequence gets us only
two unknown forces at each joint.

The free-body diagrams of the three joints are shown in fig. 5.18. Let us first consider the
equilibrium of joint K. A simple inspection (or force balance in the y-direction) shows that
bar 18 is a zero force member. The force balance in the horizontal direction then immediately
gives T19 D F D 500N. Thus,

T19 D 500N and T18 D 0:

Next, we consider the equilibrium of joint I. Since T19 is already known, there are only
two unknown forces, T14 and T17 at this joint. The force balance in the horizontal direction
gives

T19 C T17 cos � D 0

) T17 D � T19
cos �

D � 500N
cos.tan�1.0:5//

D �559N:

Now we proceed to joint J. Note that we used only one scalar equation (force balance in the
x-direction) at joint I, since we do not need T14. Similarly, to find T15, we only need the
force balance in the horizontal direction at joint J:

�T17 cos � � T15 cos � D 0

) T15 D �T17 D 559N:

T15 D 559N

Note: We did not have to find support reactions first in order to proceed to other joints as

in the previous sample. As long as you can find a sequence of joints with just two unknown

forces at each joint, up to the force that you need to determine, you can easily find the force

with hand calculations.
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SAMPLE 5.3 The truss shown in the figure is made up of five horizontal
and six inclined rods. All inclined rods are 1 m long and at right angles to
each other. The truss carries two vertical loads, F1 D 4 kN and F2 D 1 kN
as shown. Find the tensions in rods CE, DE, and DF.

Solution To find tensions in rods CE, DE and DF, we can either use joints C and D, or joints
E and F. However, for either set we need to start from other joints since there are more than
two unknown forces at each joint. Let us start from joint G and work our way through joints
F and E. To start at joint G, however, we first need to determine the support reaction G.

The free-body diagram of the entire truss is shown in fig. 5.20 where we have num-
bered the rods for convenience. The scalar moment balance equation about point A in the
z-direction gives

3`RG � `F1 � 2`F2 D 0 ) RG D F1 C 2F2
3

D 2 kN:

The force balance equations giveX
Fx D 0 ) RAx D 0X
Fy D 0 ) RAy D F1 C F2 �RG D 3 kN:

Now, we are ready to proceed from joint G. The free-body diagrams of joints G, F, and E are
shown in fig. 5.21.

At joint G:X
Fy D 0 ) T11 sin � CRG D 0

) T11 D � RG
sin �

D �
p
2RG D �2:83 kN:X

Fx D 0 ) �T11 cos � � T10 D 0

) T10 D �T11 cos � D 2 kN:

At joint F:X
Fy D 0 ) �T11 sin � � T9 sin � D 0

) T9 D �T11 D 2:83 kNX
Fx D 0 ) .T11 � T9/ cos � � T8 D 0

) T8 D .T11 � T9/ cos � D �4 kN:

At joint E:X
Fy D 0 ) .T7 C T9/ sin � � F2 D 0

) T7 D
F2

sin �
� T9 D �1:41 kN:X

Fx D 0 ) .T9 � T7/ cos � C T10 � T6 D 0

) T6 D .T9 � T7 cos � C T10 D 5 kN:

TCE D 5 kN; TDE D �1:41 kN; TDF D �4 kN;
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SAMPLE 5.4 The truss shown in the figure has four horizontal bays, each
of length 1 m. The top bars make 20� angle with the horizontal. The truss
carries two loads of 40 kN and 20 kN as shown. Find the forces in each bar.
In particular, find the bars that carry the maximum tensile and compressive
forces.

Solution Since we need to find the forces in all the 15 bars, we need to find enough equations
to solve for these 15 forces in addition to 3 unknown reactions Ax ; Ay , and Ix . Thus we have
a total of 18 unknowns. Note that there are 9 joints and therefore, we can generate 18 scalar
equations by writing force equilibrium equations (one vector equation per joint) for each joint.

Number of unknowns: 15 bar forces + 3 reactions D 18

Number of joints: (A, B, C, : : :, and I) D 9

Number of equations: 9 joint � 2 per joint D 18.

So, we go joint by joint, draw the free-body diagram of each joint and write the equilib-
rium equations. After we get all the equations, we can solve them on a computer. All joint
equations are just force equilibrium equations, i.e.,

P *
F D*

0:

� Joint A:

.Ax C T1 C T10 cos�1/O{C .Ay C T11 C T10 sin�1/ O| D
*
0: (5.1)

� Joint B:
.�T1 C T2 C T8 cos�2/O{C .T9 C T8 sin�2/ O| D

*
0: (5.2)

� Joint C:
.�T2 C T3 C T6 cos�3/O{C .T7 C T6 sin�3/ O| D F1 O|: (5.3)

� Joint D:
.T4 � T3/O{C T5 O| D

*
0: (5.4)

� Joint E:
.�T4 � T15 cos �/O{C T15 sin � O| D F2 O|: (5.5)

� Joint F:

.�T6 cos�3C.T15�T14/ cos �/O{C.�T6 sin�3C.T14�T15/ sin ��T5/ O| D
*
0: (5.6)

� Joint G:

.�T8 cos�2C.T14�T13/ cos �/O{C..T13�T14/ sin ��T8 sin�2�T7/ O| D
*
0: (5.7)

� Joint H:

.�T10 cos�1C.T13�T12/ cos �/O{C..T12�T13/ sin ��T10 sin�1�T9/ O| D
*
0: (5.8)

� Joint I:
.Ix C T12 cos �/O{C .�T11 � T12 sin �/ O| D*

0: (5.9)

Dotting each equation from (5.1) to (5.9) with O{ and O|, we get the required 18 equations. We
need to define all the angles that appear in these equations (�1; �2; �3; and � ) before
we are ready to solve the equations on a computer.
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Let ` be the length of each horizontal bar and let DF D h1;CG D h2; and BH D h3.
Then, h1=` D h2=2` D h3=3` D tan � . Therefore,

tan�1 D
h3
`
D 3` tan �

`
) �1 D tan�1.3 tan �/

tan�2 D
h2
`
D 2 tan � ) �2 D tan�1.2 tan �/

tan�3 D
h1
`
D tan � ) �3 D tan�1.tan �/ D �:

Now, we are ready for a computer solution. You can enter the 18 equations in matrix form or
as your favorite software package requires and get the solution by solving for the unknowns.
Here is a pseudocode to set up and solve the matrix equation. Let us order the unknown forces
in the form

x D �T1 T2 : : : T15 Ax Ay Ix �
T

so that x1 to x15 = T1 to T15; x16 D Ax , x17 D Ay , and x18 D Ix .

Entering and solving full matrix equation:

theta = pi/9 % specify theta in radians
alpha1 = atan(3*tan(theta) % calculate alpha1
alpha2 = atan(2*tan(theta)) % calculate alpha2 from arctan
alpha3 = theta % calculate alpha3 from arctan
C = cos(theta), S = sin(theta) % compute all sines and cosines
C1 = cos(alpha1), S1 = sin(alpha1)
C2 = .. ..

F1 = 20; % input given external loads
F2 = 40;

A = [1 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 1 0 0 % enter matrix A row-wise
0 0 0 0 0 0 0 0 0 S1 1 0 0 0 0 0 1 0
.
.
0 0 0 0 0 0 0 0 0 0 -1 -S 0 0 0 0 0 0]

b = [0 0 0 0 0 F1 0 0 0 F2 0 0 0 0 0 0 0 0]’ % enter column vector b

solve A*x = b for x

The solution obtained from the computer is

T1 D �128:22 kN; T2 D �109:9 kN; T3 D �109:9 kN;
T4 D �109:9 kN; T5 D 0; T6 D 0;

T7 D 20 kN; T8 D �22:66 kN; T9 D 13:33 kN;
T10 D �13:33 kN; T11 D �50 kN; T12 D 146:19 kN;
T13 D 136:44 kN; T14 D 116:95 kN; T15 D 116:95 kN;
Ax D 137:37 kN; Ay D 60 kN; Ix D �137:37 kN:
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SAMPLE 5.5 A simple 3-D truss: The 3-D truss shown in the figure has
12 bars and 6 joints. Nine of the 12 bars that are either horizontal or vertical
have length ` D 1m. The truss is supported at A on a ball and socket joint,
at B on a linear roller, and at C on a planar roller (all three supports are on
the ground). The loads on the truss are

*

F1 D �50N Ok; *F2 D �60N Ok , and
*

F3 D 30N O|. Find all support reactions and the tension in bar BC.

Solution The free-body diagram of the entire structure is shown in fig. 5.26. Let the
support reactions at A, B, and C be

*
RA D RAx O{ C RAy O| C RAz

Ok; *
RB D RBx O{ C

RBz
Ok; and

*
RC D RC

Ok. Then the moment balance about point A,
P *
MA D *

0,
gives

*rB=A �
*
RB C*rC=A �

*
RC C*rE=A �

*
F2 C*rF=A �

*
F3 D

*
0: (5.10)

Note that
*
F1 passes through A and, therefore, produces no moment about A. Now we compute

each term in the equation above.

*rB=A �
*
RB D ` O| � .RBx O{CRBz

Ok/ D �RBx ` OkCRBz `O{;
*rC=A �

*
RC D `.cos � O| � sin � O{/ �RC Ok D RC

`
2 O{CRC

p
3`
2 O|

*rE=A �
*
F2 D .` O| C ` Ok/ � .�F2 Ok/ D �F2`O{;

*rF=A �
*
F3 D �`.cos � O| � sin � O{/C ` Ok� � F3 O| D �F3`O{ � F3

p
3`
2
Ok:

Substituting these products in eqn. (5.10), and dotting the resulting equation with
O|; Ok; and O{, respectively, we get

RC D 0

RBx D �
p
3

2
F3 D �15

p
3N

RBz D �1
2
RC C F2 C F3 D 90N:

Thus,
*
B D RBx O{CRBz Ok D �15

p
3NO{C30N Ok and

*
RC D*

0. Now from the force balance,P *
F D*

0, we find
*
RA as

*
RA D �*

RB � *
RC � *

F1 �
*
F2 �

*
F3

D �.�15
p
3NO{C 90N Ok/ � .�50N Ok/ � .�60N Ok/ � .30N O|/

D 15
p
3NO{ � 30N O| C 20N Ok:

To find the force in bar BC, we draw a free-body diagram of joint B (which connects BC)
as shown in fig. 5.27. Now, writing the force balance for the joint in the x-direction, i.e.,
�
P *
F D*

0� � O{, gives

RBx C
*
TBC � O{ D 0

or RBx C TBC sin � D 0

) TBC D �
RBx
sin �

D ��15
p
3Np

3=2
D 30N:

Thus, the force in bar BC is T
BC

D 30N (tensile force).

*
RA D 15

p
3NO{ � 30N O| C 20N Ok; *

RB D �15
p
3NO{C 90N Ok; *

RC D*
0; T

BC
D 30N
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SAMPLE 5.6 A 3-D truss solved on the computer: The 3-D truss shown in
the figure is fabricated with 12 bars. Bars 1–5 are of length ` D 1m, bars 6–9
have length `=

p
2.� 0:71m/, and bars 10–12 are cut to size to fit between

the joints they connect. The truss is supported at A on a ball and socket, at
B on a linear roller, and at C on a planar roller. A load F D 2 kN is applied
at D as shown. Write all equations required to solve for all bar forces and
support reactions and solve the equations using a computer.

Solution There are 12 bars and 6 joints in the given truss. The unknowns are 12 bar forces
and six support reactions (3 at A (RAx ; RAy ; RAz ), 2 at B (RBy ; RBz ), and 1 at E (REz )).
Therefore, we need 18 independent equations to solve for all the unknowns. Since the force
equilibrium at each joint gives one vector equation in 3-D, i.e., three scalar equations, the 6
joints in the truss can generate the required number (6 � 3 D 18) of equations. Therefore,
we go joint by joint, draw the free-body diagram of the joint, write the force equilibrium
equation, and extract the 3 scalar equations from each vector equation. We switch from the
letters to denote the bars in the force vectors to numbers in its scalar representation (T1; T2,
etc.) to facilitate computer solution.

� Joint A:

T1 O{C
T6p
2
.O{C Ok/C T10p

6
.O{C 2 O| C Ok/C T4 O| CRAx O{CRAy O| CRAz

Ok D*
0:

� Joint B:

�T1 O{C
T7p
2
.�O{C Ok/C T2 O| C

T12p
2
.�O{C O|/CRBy O| CRBz

Ok D*
0:

� Joint C:

� T6p
2
.O{C Ok/ � T7p

2
.�O{C Ok/C T5 O| C

T11p
6
.O{C 2 O| � Ok/ D*

0:

� Joint D:

�T2 O| �
T11p
6
.O{C 2 O| � Ok/ � T3 O{C

T9p
2
.�O{C Ok/ � F Ok D*

0:

� Joint E:
�T4 O| C

T12p
2
.O{ � O|/C T3 O{C

T8p
2
.O{C Ok/CREz

Ok D*
0:

� Joint F:

�T5 O| �
T8p
2
.O{C Ok/ � T10p

6
.O{C 2 O| C Ok/ � T9p

2
.�O{C Ok/ D*

0:

Now we can separate out 3 scalar equations from each of the joint vector equations by dotting
them with O{; O|, and Ok.
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Joint [Eqn.] � O{ [Eqn.] � O| [Eqn.] � Ok

A T1 C
1p
2
T6 C

1p
6
T10 CRAx D 0; 2p

6
T10 C T4 CRAy D 0; 1p

2
T6 C

1p
6
T10 CRAz D 0

B �T1 �
1p
2
T7 �

1p
2
T12 D 0; T2 C

1p
2
T12 CRBy

D 0; 1p
2
T7 CRBz

D 0

C � 1p
2
T6 C

1p
2
T7 C

1p
6
T11 D 0; T5 C

2p
6
T11 D 0; 1p

2
T6 C

1p
2
T7 C

1p
6
T11 D 0

D � 1p
6
T11 � T3 �

1p
2
T9 D 0; �T2 �

2p
6
T11 D 0; 1p

6
T11 C

1p
2
T9 D F

E 1p
2
T12 C T3 C

1p
2
T8 D 0; �T4 �

1p
2
T12 D 0; 1p

2
T8 CREz

D 0

F � 1p
2
T8 �

1p
6
T10 C

1p
2
T9 D 0; �T5 �

2p
6
T10 D 0; 1p

2
T8 C

1p
6
T10 C

1p
2
T9 D 0:

Thus, we have 18 required equations for the 18 unknowns. Before we go to the computer,
we need to do just one more little thing. We need to order the unknowns in some way in a
one-dimensional array. So, let

x D �RAx RAy RAz RBx RBy REz T1 : : : T12�:

Thus x1 D RAx ; x2 D RAy ; : : : ; x7 D T1; x8 D T2; : : : ; x18 D T12. Now we are ready
to go to the computer, feed these equations, and get the solution. We enter each equation as
part of a matrix [A] and a vector fbg such that [A]fxg = fbg. Here is the pseudocode:

sq2i = 1/sqrt(2) % define a constant
sq6i = 1/sqrt(6) % define another constant
F = 2 % specify given load
A(1,[1 7 12 16]) = [1 1 sq2i sq6i]
A(2,[2 10 16]) = [1 1 2*sq6i]
.
.
A(18,[14 15 16]) = [sq2i sq2i sq6i]
b(12,1) = F
form A and b setting all other entries to zero
solve A*x = b for x

The solution obtained from the computer is the one-dimensional array x which after decoding
according to our numbering scheme gives the following answer.

RAx D RAy D 0; RAz D �2 kN; RBy D 0; RBz D 2 kN; REz D 2 kN;
T1 D T3 D �2 kN; T2 D T4 D T5 D �4 kN; T6 D 0;

T7 D T8 D �2:83 kN; T9 D 0; T10 D T11 D 4:9 kN; T12 D 5:66 kN;
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5.2 The method of sections
The central concept for mechanics, and thus for truss analysis, is of a free
body diagram. For truss analysis we have already found it fruitful to draw
free body diagrams of the whole structure, of the bars (to see that they are
two-force bodies), and of the individual joints. But you can draw a free
body diagram of any part of a system you are studying. Assuming static
equilibrium, force and moment balance apply to that subsystem.

In the method of sections you find bar tensions by drawing a free body
diagram of a part of the truss that includes more than one joint and less
than the whole structure.

The place where the truss is cut is called the section.

What’s wrong with the method of joints?
The method of joints can solve any solvable truss. So why learn a different
method? There are two basic reasons.

1. Sometimes one only wants to know a little and the method of joints is
cumbersome.

Example: Difficulty in finding just one bar tension.
Say you are interested only in TKM in the truss of fig. 5.7 on page 264. With
the method of joints we could find TKM using the method of joints or by
working through the joints one at time. To get to joint K we would have
to draw free body diagrams of at least 8 other joints first. And for each we
would have to solve two simultaneous equations.

2. Sometimes the method of joints doesn’t best reveal basic structural
ideas.

Example: Difficulty in understanding trends.
Again look at the truss of fig. 5.7. With the method of joints we would
find, after all the algebra, that all the bars on the bottom (AC, CE, EH, HJ,
JL, LN, NP, PR) have compression (negative tension) and that each bar has
more compression than the one to its right. Similarly the top is all tension
with the tension increasing with the bars more to the left. Are these trends
just a consequence of lots of algebra?

The method of sections provides a shortcut, particularly for elementary
textbook-like problems. And the method of sections can explain some struc-
tural trends.

The basic method of sections recipe
Say you are just trying to find one bar tension, for example TKM in the truss
of fig. 5.7. For simplicity we limit our attention to 2D structures.
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� Find a way to cut the structure into two parts, using a section cut
that

– cuts the bar of interest and
– cuts at most 3 bars in total and
– where one of the two parts of the truss have all loads known

because
� all loads are given applied loads, or
� the loads are reactions that have been found using a free

body diagram of the whole structure.
� Write and solve the equations of moment balance for one side of

the structure. This should be 3 equations in 3 unknowns.
– Either use 3 random equations (say force balance and moment

balance), or
– Look for a shortcut. Try to find one equation that contains the

unknown of interest and no other unknowns using
� moment balance about the point of intersection of the lines

of action of the two unknown forces that are not of inter-
est, or

� if the two uninteresting unknown forces are parallel, use
force balance in a direction orthogonal to them.

For a given truss and given bar tension of interest there is no guarantee that
the recipe applies. You can always find a section cut through the bar of
interest, but there may be too-many unknowns in the free body diagrams of
both of the resulting sub-structures.

Because 2D statics of finite objects gives three scalar equations we can
generally find all three unknown bar tensions from a section cut that goes
through 3 bars.

Example: Three bar-forces from one FBD.
Look at the free body diagram from a section cut in fig. 5.30. Moment balance

about point J (about an axis through J in the z direction) gives:nP *
MJ D

*
0
o
� Ok ) TKM D 4FAy :

Using the FBD with this same section cut we can also find:

nP *
MM D*

0
o
� Ok ) TJL D �4FAy C FAx ; andnP *

Fi D
*
0
o
� O| ) FJM D

p
2FAy :

Note that in the free body diagram of fig. 5.30 moment balance about point J elim-
inates TJM and TJL and gives one equation for TKM. And force balance in the O|
direction eliminates TKM and TJL giving one equation for TJM.
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Using sections to gain insight
In the method of joints, as you worked your way along the structure fig. 5.7
from right to left you would have found the tensions getting bigger and bigger
on the top bars and the compressions (negative tensions) getting bigger and
bigger on the bottom bars. With the method of sections you can see that this
comes from the lever arm of the load F being bigger and bigger for longer
and longer sections of truss. The moment caused by the vertical load FAy is
carried by the tension in the top bars and compression in the bottom bars.

A warning
Because of positive experiences with the method of sections for textbook-like
problems and very simple structures, many people are left with the impres-
sion that the method of sections is more powerful than the method of joints.
It isn’t. The method of sections is of less general utility than the method of
joints. And, unlike for the method of joints, there is no simple systematic
way to find all of the bar tensions in all statically-determinate trusses (See
fig. 5.31).
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Figure 5.31: Some statically determi-
nate trusses that do not yield easily to
the method of sections. No section cut
reveals a free body diagram from which
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are joints only where dots are marked
(this mildly unusual truss has no closed
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SAMPLE 5.7 The tower truss shown in the figure is fabricated with 19 rods.
All the horizontal and vertical rods are one meter long. Joint J is halfway
between joints K and H. The horizontal force applied at joint K is 1 kN. Find
the tensions in

1. rod GJ, and

2. rod CE.

Solution To find the tension in rod GJ, numbered 15, let us make a cut through the truss as
shown in fig. 5.33. The section taken here cuts rods 14, 15, and 16. The free-body diagram
has only three unknown tensions acting on the part of the truss under consideration.

From the force balance in the x direction, we see at once,

F � T15 cos � D 0

) T15 D F

cos �

D 1 kN
cos 26:56�

D 1:12 kN:

TGJ � T15 D 1:12 kN

To determine the tension in rod CE, we consider a section that cuts rods CE, CF, and DF.
The free-body diagram of the truss above this section is shown in fig. 5.34. Once again, we
have only three unknown forces on the body under consideration (note that we will have six
unknown forces that include three support reactions if we considered the lower part of the
truss, below the selected section).

To find T6, we write the scalar moment balance equation in the z-direction about point F:

aT6 � 2aF D 0

) T6 D 2F

D 2 kN:

TCE � T6 D 2 kN
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SAMPLE 5.8 A 2-D truss: The box truss shown in the figure is loaded by
three vertical forces acting at joints A, B, and E. All horizontal and vertical
bars in the truss are of length 2m. Find the forces in members AB, AC, and
DC.

Solution First, we need to find the support reactions at points O and F. We do this by draw-
ing the free-body diagram of the whole truss and writing the equilibrium equations for it.
Referring to Fig. 5.36, the force equilibrium,

P *
F D*

0 implies,

Ox O{C .Oy C Fy � P1 � P2 � P3/ O| D
*
0: (5.11)

Dotting eqn. (5.11) with O{ and O|, respectively, we get

Ox D 0

Oy C Fy D P1 C P2 C P3: (5.12)

The moment equilibrium about point O,
*
MO D*

0, gives

.�P1` � P2 2` � P3 3`C Fy 4`/
Ok D*

0 (5.13)

or Fy D
1

4
.P1 C 2P2 C 3P3/: (5.14)

Solving eqns. (5.12) and (5.14), we get

Fy D 45 kN; and Oy D 45kN:

In fact, from the symmetry of the structure and the loads, we could have guessed that the
two vertical reactions must be equal, i.e., Oy D Fy . Then, from eqn. (5.12) it follows that
Oy D Fy D .P1 C P2 C P3/=2 D 45 kN.

Now, we proceed to find the forces in the members AB, AC, and DC. For this purpose,
we make a cut in the truss such that it cuts members AD, AC, and DC, just to the right of
joints A and D. Next, we draw the free-body diagram of the left (or right) portion of the truss
and use the equilibrium equations to find the required forces. Referring to Fig. 5.37, the force
equilibrium requires that

.FAB C FDC C FAC cos �/O{C .Oy � P1 C FAC sin �/ O| D*
0: (5.15)

Dotting eqn. (5.15) with O{ and O|, respectively, we get

FAB C FDC C FAC cos � D 0 (5.16)

Oy � P1 C FAC sin � D 0: (5.17)

So far, we have two equations in three unknowns ( F
AB
; F

DC
; FAC ). We need one

more independent equation to be able to solve for the unknown forces. We now write moment
equilibrium equation about point A, i.e.,

P *
MA D*

0,

.�Oy` � FDC `/
Ok D *

0

) Oy C FDC D 0: (5.18)

We can now solve eqns. (5.16–5.18) any way we like, e.g., using elimination or a computer.
The solution we get (see next page for details) is:

FAC D �25
p
2 kN; FDC D �45 kN; and FAB D 70 kN:

F
AC

D �25
p
2 kN; F

DC
D �45 kN; F

AB
D 70 kN:
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1 Pseudocode:
A = [1 1 cos(pi/4)

0 0 sin(pi/4)
0 1 0]

b = [0 -25 -45]
solve A*x = b for x

Comments:

� Note that the values of F
AC

and F
DC

are negative which means that bars AC
and DC are in compression, not tension, as we initially assumed. Thus the solution
takes care of our incorrect assumptions about the directionality of the forces.

� Short-cuts: In the solution above, we have not used any tricks or any special points
for moment equilibrium. However, with just a little bit of mechanics intuition we can
solve for the required forces in five short steps as shown below.

(i) No external force in O{ direction implies Ox D 0.
(ii) Symmetry about the middle point B implies Oy D Fy . But,

Oy C Fy D
X

Pi D 90 kN ) Oy D Fy D 45 kN:

(iii) .
P *
MA D*

0/ � Ok gives

Oy`C FDC ` D 0 ) FDC D �Oy D �45 kN:

(iv) .
P *
MC D

*
0/ � Ok gives

�Oy 2`C P1`C FAB` D 0 ) FAB D 2Oy � P1 D 70 kN:

(v) .
P *
F D*

0/ � O| gives

Oy � P1 C FAC sin � D 0 ) FAC D .P1 �Oy/= sin � D �25
p
2 kN:

� Solving equations: On the previous page, we found FAB , FDC , and FAC by solv-
ing eqns. (5.15–5.17) simultaneously. Here, we show you two ways to solve those
equations.

1. By elimination: From eqn. (5.17), we have

FAC D Oy � P1
sin �

D 20 kN � 45 kN

1=
p
2

D �25
p
2 kN:

From eqn. (5.18), we get

FDC D �Oy D �45 kN;

and finally, substituting the values found in eqn. (5.15), we get

FAB D �FDC � FAC cos � D 45 kNC 25
p
2 � 1p

2
D 70 kN:

2. On a computer: We can write the three equations in the matrix form:2
4 1 1 cos �
0 0 sin �
0 1 0

3
5

� �� �
A

8<
:

F
AB
F
DC
F
AC

9=
;� �� �

x

D
8<
:

0

P1 �Oy
�Oy

9=
; D

8<
:

0

�25
�45

9=
;� �� �

b

kN:

We can now solve this matrix equation on a computer by keying in matrix A
(with � specified as �=4) and vector b as input and solving for x. 1
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SAMPLE 5.9 Consider the truss shown in the figure. Rods AB, BC, EC,
EF, BD, and DE are each 2 m long, and � ABD D �DEF D �=2. Find the
tensions in rods DE and CD.

Solution We do not need any analysis to find the tension in rod DE. Since DE is normal to
CF, DE has to be a zero force member for equilibrium of joint E. 2 However, let us find out
the same result using the method of sections. Let us take a section just to the left of joint E
that cuts through rods CE, DE and DF. The free-body diagram of the truss to the right of the
section is shown in fig. 5.39.

The scalar moment balance equation,
P
Mz D 0, about point F gives at once,

aT7 D 0 ) T7 D 0:

Thus rod CE is tension free. Now, we make another cut, taking the section shown in fig. 5.40
to determine the tension in rod CD. Since T7 D 0, we can write the scalar moment balance
equation in the z-direction about point A to give

`T5 � `F D 0

) T5 D F D 10 kN:

T7 D 0; T5 D 10 kN
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Figure 5.38:

2 In fact, that both rods BD and DE are
zero force members. Since they carry no
tension, rods AD and DF must also be
zero force members for equilibrium of
joint D
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5.3 Solving trusses on a computer
The method of joints is routine and is easily implemented on a computer one
way or another.

� First, some software packages will accept a collection of algebraic
equations, say the joint equilibrium equations, and solve them as a set
for the unknowns.

� Second, one can take the set of algebraic equations as written by hand,
and organize them into matrix form and solve that form on a computer
as described in Section 2.5 (see page 105).

� Finally, one can treat the whole truss problem as one for which you
want to do all the algebra and solution on the computer.

The first two approaches are general purpose, using the linearity of the equa-
tions and nothing special about trusses. They are as useful for trusses as
for any other situation in which you have several simultaneous equations to
solve.

Here we take the third approach. We will set up and solve the equations
for a truss using no hand-calculations whatsoever. We describe a method
which you can program in whatever your preferred computer package. The
advantages of having a general purpose computer program available include:

� you can quickly solve any truss

� you are less likely to make an error

� if you find an error in data entry, you can quickly correct it without
having to redo all other data entry and calculation

� you can change the truss geometry easily to see the effect on the bar
tensions and reactions

� you can just as easily solve non-simple trusses in which neither the
method of joints nor the method of sections gives you equations that
you can solve one at a time.

The act of understanding and writing such a program should also give you a
better sense of the overall meaning of the method of joints.

The rest of this section is a description of the recipe, a presentation of
the final program (on page 292), and some samples using that program. This
program is just a systematic application of the method of joints.

The data that defines a truss problem
We first show how to define the truss, how it is supported, and the loads on
it, with an organized collection of numbers rather than a picture. For defi-
niteness, refer to the picture in fig. 5.41 which we want to communicate to a
computer.
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Figure 5.41: A truss with 23 bars (numbered with circles around them), 13 joints, 4 loads and
3 reaction components.

First pick an origin, coordinate directions, units to use for length and units
to use for force. First a few numbers that say how many other numbers are
needed.

njoints is the number of joints, often called j . In the example njoints D 13.

nbars is the number of bars (rods), often called b. In the example nbars D 23.

nbcs is the number of reaction components (or boundary conditions), often
called r . nbcs is commonly 3: an x and y component at one joint and
just an x or y component at another, as in the example.

The descriptions of the joints, the bars, the reactions and the loads are held
in 4 matrices 1.

�J � is a matrix defining the joints. Each joint is identified by a number (1 or
2 or . . . ) with each number from 1 to njoints associated with one joint.
It doesn’t matter which joint has which number. Each row of �J � is the
information for one joint. The first entry of a row is the joint number,
and the next two numbers are the coordinates of the joint. If joint 6 is
at x D 8m; y D 10m then the row 6 of �J � would be �6 8 10�. �J � has
njoints rows and 3 columns (fig. 5.42).

�B� is a matrix defining the bars. It has one row for each bar (nbars of
them) and three columns. The bars are identified by numbers 1, 2,
. . . (sometimes circled, to distinguish them from the joint numbering).

1 If you use and are comfortable with
object-oriented programming some of
the data structures below can be written
in a more transparent form using sug-
gestive naming rather than array loca-
tions for the various bits of data.
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Filename:tfigure-trussnumF
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Figure 5.44: The matrix �F � defines the
applied loads, one row for each joint at
which a load is applied.

It doesn’t matter which bar has which number so long as every integer
from 1 to nbars is associated with a bar (see fig. 5.43).
The first row of �B� describes bar 1, the second describes bar 2, etc. The
first element of each row is the bar number. This is also the number of
the row, but it makes your data easier to read. The second two numbers
are the numbers of the joints at the two ends of the bar. So if bar 11
connects base joint 7 with tip joint 6 the 11th row of �B� is �11 7 6�.
It is equivalent and ok to have instead the 11th row of �B� be �11 6 7�;
neither end of a bar is more special than the other. But once you have
set the base and tip they are used to define angles in the calculations
below.

�R� is a matrix of reactions. It has as many rows as there are unknown re-
action components, typically 3. �R� has 4 columns. For easier reading,
the first element of each row is the number of the row. The second ele-
ment is the node at which the reaction applies. The next two numbers
indicate the direction of the force acting on the truss (x and y compo-
nents of a unit vector in the direction of the reaction):

– for a roller at a joint the last two numbers in the row are in the
direction normal to the rollers. For normal support rollers they
would be �0 1�, for rollers against a vertical wall to the right of the
structure they would be ��1 0�. For a roller on a 45� slope the two
components could be �0:707 0:707�

– for a pin joint there are two rows in �R�: one for the x direction
and one for the y.

Often �R� will have exactly 3 rows. For the example matrix �R� would
be

�R� D
2
4 1 2 1 0

2 2 0 1

3 13 1 0

3
5

�F � is a matrix of applied loads. It has a row for each joint at which there
is a non-zero load. It has three columns. The first entry of each row
is the joint to which the load is applied. The next two numbers are
the x and y components of the load applied to that joint. Any units
can be used, they just have to be the same units for all loads. And the
numerical answer for the tensions will be in these same units. If there is
a rightwards load of 100N at joint 4 one line of �F � will read �4 100 0�
(see fig. 5.44).

All the information about a truss that we usually communicate with a
sketch is in the 4 matrices �J �; �B�; �R�, and �F �.

These specify the locations of the joints, which joints the bars are connected
to, the directions and locations of reaction forces and the applied loads.
Given these matrices and nothing else one could draw the truss, supports,
and loading.
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The unknowns
Solving the truss, finding the tensions in the bars and reaction components,
is just a matter of manipulating the numbers in the four data matrices. We
will hold that answer in the list �T �:
�T � is a column vector holding the unknowns. It has as many elements as

there are unknowns (nu � nbars C nbcs). The first nbars elements are
the unknown tensions, the last nbcs elements are the unknown reaction
components.

The problem
Our goal now is to use the data matrices �J �, �B�, �R�, and �F � to find the
unknowns �T �. We know it can be done by hand and, because the equations
are linear, computer solutions should be straightforward.

Setting up the joint equations in matrix form
We now apply the method of joints.

For each joint we draw a free body diagram (in our mind). And we apply
force balance in the x and y directions. Thus we will have 2njoints equations
in terms of our nu � nbars C nbcs unknowns. The strategy is to write all
these equations long hand (in our mind) and then assemble those into matrix
form.

If joint 1 has emanating from it bars 3 and 7 and also has a 25N horizontal
load to the right the first of these 2njoints equations is (see fig. 5.45):

cos �20T20 C cos �21T21 C 25N D 0;

where �20 and �21 are the angles of bars 20& 21, measured CCW from the
plus x direction. We can write this again as

0 � T1 C 0 � T2 C � � � C A1;20 � T20 C A1;21 � T21 D �25N

where the cosines have been rewritten as elements of a matrix. If we assume
that lots of these matrix elements are zero we can rewrite the first equation
once again as

A1;1 � T1 C A1;2 � T2 C A1;3 � T3 C � � � C A1;nu � Tnu D �F11:
using �A� as a matrix with lots of zeros, but sines and cosines of bar angles
where appropriate. Recall that nu is the number of unknown bar tensions and
reaction components and F11 D 25N is the x component of the load applied
to joint 1.

For the second equation we similarly write the equation for force balance
in the y direction for joint 1.

sin �20T20 C sin �21T21 D 0;

which can also be written out with the terms of �A� (see fig. 5.46) as

A21 � T1 C A22 � T2 C A23 � T3 C � � � C A2nu � Tnu D �F12:
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Figure 5.45: Free body diagram of
joint 1 on the truss of fig. 5.41 on
page 285.
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Figure 5.46: The matrix �A� contains all
the coefficients in the linear joint equa-
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The next two equations describe joint 2, etc. Thus the assembly of 2njoints
equations looks like this

A11 � T1 A12 � T2 : : : D �F11
A21 � T1 A22 � T2 : : : D �F12

: : :

: : :

A2njoints 2T1 A2njoints 2T2 : : : D �Fnjoints 2
which we can write more compactly as

�A��T � D �L� (5.19)

where �A� is a matrix with cosines and sines of the bar angles and lots of zeros
(because most bars don’t touch a given joints) and �L� is a list of negative of
the loads applied in the x and y directions at the joints.

The point is, that all the information needed to calculate all the terms in
�A� and �L� are in our four truss-definition matrices �J �, �B�, �R� and �F �.
And eqn. (5.19) for the unknown �T � is exactly of the type that computers
are great at solving.

Some preliminary geometry
The matrix �A� is made up of sines and cosines of bar angles and we have
specified the truss by the x and y positions of the ends of the bars. We first
tell the computer to do some simple trig to find the sines and cosines.
�X� is a list of x coordinates of each bar tip relative to its base. �X� is a

single column with nbars entries. To find the entries of �X� subtract
the base-joint x coordinate from the tip-joint x coordinate. For bar 13
this would be

X(13) = J( B(13,3), 2 ) - J( B(13,2), 2 )

because B(13,3) is the joint at the tip of bar 13 and
B(13,2) is the joint at the base. Thus J(B(13,3),2) and

and J(B(13,2),2) are the x coordinates of the joints at the tip and
base of bar 13. To find all of the elements of �X� you may need to loop
through all the bars or, depending on your package, you may be able to
do the subtraction in one step.

�Y � is a list of base-to-tip y coordinates for the bars defined analogously to
�X� above. Thus

Y(13) = J( B(13,3), 3 ) - J( B(13,2), 3 )

�D� is a list of bar lengths (distances), so

D(13) = ( X(13)ˆ2 + y(13)ˆ2 )ˆ.5

�C � is a list of nbars cosines for the bars, one cosine for each bar. It is
defined as the counter-clockwise angle of the base-to-tip bar relative to
the positive x axis. Thus
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C(13) = X(13)/D(13) % cosine

�S� is a similar list of sines so

S(13) = Y(13)/D(13) % sine

All we need from the above are the �C � and �S� column vectors 2.

Building up �A� from �J �, �B� and �R�
The only difficult work in setting up a statically-determinate truss for com-
puter solution is making up the matrix �A�. First lets set �A� to be a matrix
with 2njoints rows and nu columns and with every entry zero.

A = [0]

We now need to put a bunch of cosines and sines into the right places.

Cycle through the bars and put in cosines and sines of bar angles. If
we look at the whole �A� matrix we see that the information about bar 7, say,
only occurs in column 7 of �A�; column 7 of �A� consists of the terms that
multiply T7. Furthermore, information about bar 7 only shows up in the rows
corresponding to the x and y force balance for the the joints at its two ends;
that’s 4 places in total.

� Bar 7 pulls on its base joint B(7, 2) in the x direction. Because
we write 2 equations for each joint this equation corresponds to row
2*B(7, 2)-1. Thus we can make the assignment

A( (2*B(7, 2)-1), 7 ) = C(7)

� Bar 7 pulls on its base joint in the y direction. This equation corre-
sponds to the next row 2 * B(7, 2) Thus we can make the
assignment

A( (2*B(7, 2) ), 7 ) = S(7)

� Bar 7 pulls in the opposite direction on its tip joint B(7, 3) so

A( 2*B(7, 3) -1, 7 ) = -C(7)

� and

A( 2*B(7, 3) , 7 ) = -S(7)

One needs to cycle through all the bars 3 and make these 4 assignments, 7
was just used as an example. In a package that deals well with matrices all
four assignments associated with one bar could be in a single line of code.

Cycling through the reactions to fill in the right-most columns of �A�.
The unknown reaction components have much the same role as do the bar
tensions. But they act on only one joint. Thus each reaction component only
affects 2 rows of �A�, the x and y components of that joint equation.

For reaction 3, say, the relevant joint is R(3, 2) and thus the relevant
rows are 2*R(3, 2)-1 and 2*R(3, 2) . The relevant column is nbarsC
3.

2The calculation of �X�, �Y � and �D�
are just intermediate steps to simplify
the presentation. If you can tolerate
dense coding and use a package that
deals well with matrices, �C � and �S�

can be generated with as few as 2 dense
lines of code.

3Naive approaches. One could imag-
ine working one row at a time, corre-
sponding to working one joint equation
at a time rather than one bar at a time.
For each joint we then would need to
hunt through the list of bars and see
which are connected to that joint. One
could write a program to do this, its
just more complex than the approach we
present. Alternately, you might imagine
that in our original data set we would
have associated each joint with the bars
that connect to it (rather than the other
way around as we did). This is also le-
gitimate. But, because the number of
connected bars varies from joint to joint
the data structure would be more com-
plex. Finally, because the key informa-
tion is the location of the bar ends, we
could have used those coordinates in our
data array for the bars. But this would
have required our entering the coordi-
nates of each joint over and over, once
for each bar-end connected to that joint.
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� for the x component of reaction 3

A( (2*R(3, 2)-1), (nbars+3) ) = R(3,3)

� for the y component of reaction 3

A((2*R(3, 2) ), (nbars+3) ) = R(3,4)

Most often, for trusses that are rigid even when floating, one only has three
such reaction components to cycle through.

The load vector �L� The load vector is just made up of the forces applied
to the joints. For load 2, for example, applied at joint F(2,1) , the two
relevant rows of �L� are 2*F(2,1) and 2*F(2,1)+1 at which act the x,
and y components of the force F(6,2) and F(6,3), respectively. Thus,
for load 6, we have

L( 2*F(2,1) -1 ) = -F(2,2)
L( 2*F(2,1) ) = -F(2,3)

Recall that the minus sign follows from moving the applied load to the right
side of the equation. This pair of commands needs to be applied to each line
of the �F � matrix.

Solution
We have now constructed all the unknowns in eqn. (5.19)

�A��T � D �L� (5.20)

and can thus hand the problem to the computer for solution

Solve {A T = L} for T

The resulting column vector �T � is a list of bar tensions and reaction compo-
nents.

The complete truss program
The complete truss program, in pseudo-code that you need to convert to your
preferred computer language/package, is shown in fig. 5.41 on page 292.
Some of the loops can be ‘vectorized’ if your package supports such. The
output �T � is a column with the tensions followed by the reaction compo-
nents.

What can go wrong?
Besides the various careless errors you will discover the first 10 or so times
you try to run your code, there are possible deeper problems.
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Because we are not trying to write general purpose super-robust software
we assume the simple check for determinacy (number of unknowns = number
of equations):

nrods C nbcs D 2njoints or b C r D 2j

has been satisfied. Thus �A� will be square. If the truss is determinate
the computer will give you a nice solution. If the truss is not determi-
nate, with �A� square or not, the result of the computer calculation will
depend on the software package, ranging from an error message (e.g.,
“Matrix singular!” or “Divide by zero!”) to the computer’s
making its best guess at what you want (even though the equations may have
no solution, or there may be many solutions to select from). Some computer
packages don’t tell you when they are guessing.

How the pros solve trusses
The algorithm here is one way to set up and solve statically-determinate
mechanics problems on a computer. In detail, however, this recipe is sim-
pler than that commonly used in the finite-element method. Finite-element
programs can also solve statically-indeterminate problems. A statically-
indeterminate truss has tensions which can’t be found from statics alone,
but which can be found if the bar stiffnesses are known. Finite-element pro-
grams don’t assume the bars are rigid. Rather, they take account of the small
deformations of the bars.

A simple finite-element program for statically-indeterminate trusses
would not use the tensions in the bars as unknowns, but rather the displace-
ments of the joints. Such a program would be a little longer than the one
presented here, and also requires introduction of a ‘stiffness matrix’ 4, a
topic a shade too advanced to cover in detail here.

4Stiffness matrix. The stiffness ma-
trix �K� for a truss has 2njoints rows
and columns. It satisfies the equation
��� D �K��L� where �L� is a list of x
and y components of the loads applied
to all the joints and ��� are the x and
y displacements of the joints for those
loads. The matrix �K� can be assembled
if the properties of all the bars are given.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



292 Chapter 5. Trusses and frames 5.3. Solving trusses on a computer

%PSEUDO-CODE TO SOLVE ANY 2D STATICALLY DETERMINATE TRUSS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Assign values to the matrices which define the truss and loading
J = [ 1 . . . ] % specify the joint locations
B = [ 1 . . . ] % specify the joints that the bars connect
R = [ 1 . . ] % specify which nodes connect to the ground and how
F = [ . . . . ] % specify which nodes have what applied loads

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Program TRUSS, input is (J,B,R,F) output is (T)
% Set up
A = a square matrix of zeros with twice as many rows as J
L = a column of zeros with twice as many rows as J
nbars = the number of rows of B
% Fill in the columns of the matrix A associated with bar tensions
Loop for every bar (each row i of B)

base = B(i,2) % joint at one end of a bar
tip = B(i,3) % joint at the other end
X = J( tip, 2 ) - J( base, 2 ) % base to tip x shadow of bar
Y = J( tip, 3 ) - J( base, 3 ) % base to tip y shadow of bar
D = ( Xˆ2 + yˆ2 )ˆ.5 % length of bar
C = X/D % cosine of bar angle
S = Y/D % sine of bar angle
A( (2*base-1), i ) = C % x comp of pull direction on base
A( (2*base ), i ) = S % y comp of pull direction on base
A( (2*tip -1), i ) = -C % x comp of pull direction on tip
A( (2*tip ), i ) = -S % y comp of pull direction on tip

End Loop
% Fill in rightmost columns of A, associated with reaction forces
Loop for every reaction component (each row j of R)

joint = R(j,2) % joint at ground connection
A( (2*joint-1), (nbars+j) ) = R(j,3) % x comp of reaction direction
A( (2*joint ), (nbars+j) ) = R(j,4) % y comp of reaction direction

End Loop
Loop for all joints with loads (each row k of F)

joint = F(k,1) % joint at which load is applied
L( 2*joint -1 ) = - F(k,2) % x component of load
L( 2*joint ) = - F(k,3) % y component of load

End Loop

% Solve the truss (solve the set of simultaneous joint-equilibrium equations)
Solve {AT = L} for T % The whole calculation is done in this one line.

% T is a list of bar tensions
% followed by reaction components

End Program
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 5.47: Pseudo-code for solving any statically determinate truss. This ‘program’ calculates the bar tensions and
reactions in a statically determinate truss. The algorithm is described in detail starting on page 284. This program could be
reduced to 10 lines of code in some common computer languages (with some loss of clarity).
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SAMPLE 5.10 For the truss shown in the figure, the coordinates of the three
joints are: A(0,0), B(2m,2m), and C(4m,0). Find all reactions and bar forces
using computer analysis. Show the input data to the program used and the
matrices [A] and [L] generated by the program.

Solution The free-body diagram of the truss with the unknown reactions serially numbered
is shown in fig. 5.49. We have also numbered the bars and joints for preparing the input
data file as described in the text. Here, we have three bars and three joints, three unknown
reactions, and one externally applied load. Therefore, the input matrices [B] for bar data, [J]
for joint data, [R] for support reaction data, and [F] for applied load data are as follows (see
page 285 for row and column descriptions).

B D
2
4 1 1 2

2 2 3

3 1 3

3
5 ; J D

2
4 1 0:0 0:0

2 2:0 2:0

3 4:0 0:0

3
5 ;

R D
2
4 1 1 1:0 0:0

2 1 0:0 1:0

3 3 0:0 1:0

3
5 ; F D �

2 0:0 �5:0 �
The computer program based on the pseudocode described in the text generates the following
matrices [A] and [L], before solving for the tensions and reactions:

A = [ 0.7071 0 1.0000 1.0000 0 0
0.7071 0 0 0 1.0000 0

-0.7071 0.7071 0 0 0 0
-0.7071 -0.7071 0 0 0 0

0 -0.7071 -1.0000 0 0 0
0 0.7071 0 0 0 1.0000 ]

L = [ 0
0
0
5
0
0 ]

The final step, Solve {A T = F} for T, gives the following output

T = [ -3.5355
-3.5355
2.5000

0
2.5000
2.5000 ]

which means, T1 D T2 D �3:5355N, T3 D 2:5N, R1 D 0, and R2 D R3 D 2:5N.

T1 D T2 D �3:5355N; T3 D 2:5N; R1 D 0;R2 D R3 D 2:5N

Note: If you write a truss code, you can use this sample to check your code.

Filename:sfig5-3-simpletruss
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Figure 5.48:

Filename:sfig5-3-simpletruss-a
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Figure 5.49:
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Filename:sfig5-3-square
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Figure 5.50:
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Figure 5.51: Free-body diagram of the
truss along with bar and joint num-
bers. From the given geometry, �1 D
�=3; �2 D 11�=6 D ��=6, and �3 D
�4 D 7�=4. Assuming the bar length to
be `, we can write the coordinates of all
joints in terms of ` and � ’s. For exam-
ple, x5 D ` cos �1, y5 D `C ` sin �1.

SAMPLE 5.11 The truss shown in the figure has no triangles, yet it is rigid
in the configuration shown as discussed in the text. It is also an example of
a truss where you cannot find a sequence of joints that will let you solve for
the bar forces ‘locally’, that is, without solving all joint equations simulta-
neously. Assume all bars to be 1 m long. Find all reactions and bar forces.
Show the input data to the program used.

Solution The free-body diagram of the truss with the unknown reactions serially numbered
is shown in fig. 5.51. Note that support reactions have been taken as unknown x and y
components of the reaction at each support point. We could have, alternatively, taken the
reaction components to be along and normal to the bars at each support point.

The bars and joints are numbered as shown. Here, we have eight bars and eight joints,
eight unknown reactions, and one externally applied load. Let the length of each bar be ` D
1m. The angle of outer bars with the x-axis are �2 D �=3, �4 D ��=6, �6 D �8 D ��=4.
Therefore, the input matrices [B] (bar data), [J] (joint data), [R] (support reaction data), and
[F] (applied load data) are as follows (see page 285 for row and column descriptions).

B D

2
66666666664

1 1 2

2 2 5

3 2 3

4 3 6

5 3 4

6 4 7

7 1 4

8 1 8

3
77777777775
; J D

2
66666666664

1 0:0 0:0

2 0:0 `

3 ` `

4 ` 0:0

5 ` cos �2 `C ` sin �2
6 `C ` cos �4 `C ` sin �4
7 `C ` cos �6 ` sin �6
8 ` cos �8 ` sin �8

3
77777777775
;

R D

2
66666666664

1 5 1:0 0:0

2 5 0:0 1:0

3 6 1:0 0:0

4 6 0:0 1:0

5 7 1:0 0:0

6 7 0:0 1:0

7 8 1:0 0:0

8 8 0:0 1:0

3
77777777775
; F D �

3 500=
p
2 500=

p
2
�

The computer program based on the pseudocode described in the text gener-
ates the following output, [T], for the tensions and reactions: The final step,
Solve {A T = F} for T, gives the following result for bar tensions and reactions.

T1 D �418:26N; R1 D �241:48N;
T2 D �482:96N; R2 D �418:26N;
T3 D 241:48N; R3 D �112:07N;
T4 D �129:41N; R4 D 64:70N;
T5 D 418:26N; R5 D 418:26N;
T6 D 591:51N; R6 D �418:26N;
T7 D 418:26N; R7 D �418:26N;
T8 D �591:51N; R8 D 418:26N:

Note: It is easy to check thatR1CR3CR5CR7 D �F cos.45
�
/ andR2CR4CR6CR8 D

�F sin.45
�
/ where F D 500N. That is, for the free-body diagram of the truss,

P
Fx D 0

and
P
Fy D 0.
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5.4 Frames and structures
Although trusses are good, they are not good enough for all purposes, nor
necessarily good-enough models of very truss-looking structures. Frames
are structures that are more general than trusses. In a truss every bar is a two-
force body. In general structures one or more components is not a two-force
body. The analysis of non-truss frames is generally less formulaic, and thus
more subtle, than analysis of trusses using the method of joints.

Example: A-frame ladder.
The two-diagonal parts of an A-frame ladder are not two-force bodies and thus the

ladder, triangular as it looks, is not a truss. And truss analysis is not appropriate.

The overall mechanics recipe applies to frames, of course: a) draw free
body diagrams, b) apply the laws of mechanics to each free body diagram,
and c) solve the mechanics equations for unknowns of interest. For trusses,
the free body diagrams of each bar, with the 3 equilibrium equations (6 in
3D) just yield the “two-force” body result that the bar has equal tensions at
the two ends. Because there was no more to learn from the bar free body
diagrams we didn’t even draw them. Instead we used the bar tensions as
forces on free body diagrams of the joints. Its as if the bars were just a
means to mediate action-reaction pairs between joints.

For more general frameworks we we have to pay full respect to the free
body diagrams of all of the parts, not just the pins. At least for all of the parts
that are not two-force bodies. Here is the analysis of frameworks recipe:

� Draw free body diagrams of
– the whole structure; and
– the separate parts of the structure; and
– collections of parts of the structure if such seems likely to be

fruitful;
– Use the principal of action and reaction in the free body dia-

grams so that one action-reaction pair has only one unknown;
� For each free body diagram write equilibrium conditions (force

and moment balance).
� Solve the equilibrium equations for desired unknowns.

For the parts that are not two-force bodies, we will not know the directions
of the interaction forces a priori, that’s why the method of joints is not used
for frames 1. Naturally one can be on the look out for shortcuts:

� for any two force bodies assign an equal valued tension to each end
(thus eliminating any need or use for equilibrium equations for that
object)

� consider each pin as part of one of the bodies to which it is connected
(ie, there is no need to draw a separate FBD of the pin).

Filename:tigure-ladderphoto

Figure 5.52: A ladder is well modeled
as a collection of rigid pieces connected
by pin joints . . .

Filename:tfigure-Aframe

Figure 5.53: ... but A-frame ladder is
not a truss because the bars are not all
two-force members. The piece the per-
son is standing on has forces at more
than two places: the hands, the top
pin, the middle brace, the feet and the
ground. The left diagonal leg also has
three (3 > 2) forces acting on it.

1 Conversely, we could have analyzed
trusses the way we are now going to ana-
lyze frames. This seldom-used approach
to trusses, the ‘method of bars and pins’,
is discussed in box 5.1 on page 298.
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Filename:tfigure-xstructure
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Figure 5.54: A simple frame and a free
body diagram of a joint. Unlike the case
for trusses, free body diagrams of joints
(pins) are nearly useless in the study
of more general frames. There are too
many unknown forces and moments act-
ing at the pin.

� To minimize calculation, look for a subset of the equilibrium equations
that

– contains your unknowns of interest, and
– has as many unknowns as scalar equations, and
– contains as few equations as possible.

Our general goal here is to find the reaction forces, the interaction forces
and the ‘internal’ forces in the components of a statically determinate struc-
ture.

Example: An X structure
Two bars are joined in an ‘X’ by a pin at J. Neither of the bars is a two-force body
so a free body diagram of the ‘joint’ at J, made by cutting and leaving stubs as we
did with trusses, has 12 unknown force and moment components.

Instead of drawing free body diagrams of the connections, our approach here
is to draw free body diagrams of each of the structure or machine’s parts.
Sometimes, as was the case with trusses, it is also useful to draw a free body
diagram of a whole structure or of some multi-piece part of the structure

Static determinacy
A statically determinate structure has

� a solution for all possible applied loads, and

� only one solution, and

� this solution can be found by using equilibrium equations applied to
each of the pieces.

Not all practical structures are statically determinate. Some structures are
rigid but redundant, thus precluding finding all unknowns from statics. Some
structures cannot carry all loads, but can carry the loads of interest (e.g., a
vertical cable that can usefully carry a weight but cannot carry a side load).
None-the-less, for starters here we emphasize determinate structures. The
basic counting formula

number of equations D number of unknowns

is necessary for determinacy but does not guarantee determinacy. For frame-
works in 2D there are three equilibrium equations for each (non-point) ob-
ject. There are two unknown force components for every pin connection,
whether to the ground or to another piece. And there is one unknown force
component for every roller connection whether to the ground or between ob-
jects. Applied forces do not count in this determinacy check, even if they are
unknown.

Example: ’X’ structure counting
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In the ‘X’ structure above we can count as follows.

number of equations �D number of unknowns

(3 eqs per bar) � (2 bars) �D (2 unknown force comps per pin) � (3 pins)

6 eqs
p
D 6 unknown force components

So the ‘X’ structure passes the counting test for static determinacy.

Redundant structures
A redundant structure can carry whatever loads it can carry in more than one
way. If not also indeterminate, a redundant structure has fewer equilibrium
equations than unknown reaction or interaction force components. Finding
all the reaction components is only possible if one models the deformation, a
topic for more advanced structural mechanics. Example: Over-braced ‘X’

The structure is evidently redundant because it has a bar added to a structure
which was already statically determinate. By counting we get

number of equations �D number of unknowns

3 � .number of bars� �� �
3

/
�D 2 � .number of joints� �� �

5

/

9 eqs < 10 unknown force components

thus demonstrating redundancy.
Filename:tfigure-redundantX

Figure 5.55: Overbraced X. A rigid
frame that is not statically determinate.
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5.1 The ‘method of bars and pins’ for trusses
This is an aside for those who wonder why truss analysis seems so
different than frame analysis.

Trusses are simple frameworks. So the methods used for more
general frameworks should work for trusses. They do. The resulting
method, which is essentially never used in such detail, we will call
‘the method of bars and pins’.

In the method of bars and pins you treat a truss like any other
structure. You draw a free body diagram of each part.

One approach: treat the pins as parts. One approach is to draw
free body diagrams of each pin also. You use the principle of action
and reaction to relate the forces on the different bars and pins. Then
you solve the collection of equilibrium equations.

Consider one joint of a truss where three bars meet at a hinge
(pin). Below are free body diagrams of the three bars and of the pin.
Assuming a frictionless round pin at the hinge, all the bar forces on
the pin pass through its center.

Filename:tfigure-barsandpins

Thus, in 2D, you get two equilibrium equations for each pin and
three for each bar. If you apply the three bar equations to a given bar
you find that it obeys the two-force body relations. Namely, the reac-
tions on the two bar ends are equal and opposite and along the con-
necting points. Now application of the pin equilibrium equations is
identical to the joint equations we had previously. Thus, the ‘method
of bars and pins’ reduces to the method of joints in the end.

Approach two: draw FBDs of just the bars. Another approach
is to associate each pin with one of the bars to which it is attached.
Then just think of a truss as bars that are connected with forces and
no moments. Draw free body diagrams of each piece, use the prin-
ciple of action and reaction, and write the equilibrium equations for
each bar. This is the approach that is used in this section for other
structures.

If three bars A, B, and C are connected to a pin, consider the
pin as part of, say, A. Then consider action-reaction pairs between A
and B, and between A and C, but not between B and C. Similarly if
there are four or more bars, consider interactions between each bar
and the one-bar that has the pin.

Filename:tfigure-ABC

Partial Structure

Partial FBD's

A C

B

FB FA

FB FA

Determinate equations. In all cases, if the truss is statically de-
terminate the equilibrium equations generated from the free body
diagrams above will produce a solvable set of linear algebraic equa-
tions. But, in all cases above, these will not be the more minimal set
of equations we generated in the method of joints in the truss analy-
sis. The methods of this box work, they are just harder to implement.
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SAMPLE 5.12 The braced X-frame shown in the figure carries two vertical
loads F1 D 2 kN and F2 D 3 kN. Points G and H are directly above points
A and B respectively. If d D h D 2m, find the tension in the brace CD.

Solution The brace CD is pinned to the X-frame at C and D. The only loads acting on the
brace are at its ends C and D. Therefore, it is a two-force body. Let us assume that the tension
in brace is Cx . We need to find Cx under the given loads.

The free-body diagram of the whole frame is shown in fig. 5.57. Since the frame is
supported by a hinge at A and a roller at B, there are three scalar support reactions acting on
the frame. We can now determine all the three reactions from the static analysis of the frame:X

Fx D 0 ) Ax D 0X
MA D 0 ) Byd � F2d D 0

) By D F2X
Fy D 0 ) Ay D F1 C F2 � By D F1:

Thus all the reactions are known. Now we can analyze either bar AH or bar BG (the analysis
is identical) to determine the tension Cx in the brace. The free-body diagram of bar AH is
shown in fig. 5.58. Since we are only interested in Cx , we can carry out moment balance
about point E (

P
ME D 0) to give

Cx
d

4
� F2

d

2
� Ay

d

2
D 0

) Cx D 2.F2 C Ay/

D 2.F2 C F1/

D 2.3k NC 2 kN/

D 10 kN:

Thus the tension in the brace is twice the total load on the structure.

Tension in brace CD D 10 kN

Filename:sfig5-4frames-1
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Figure 5.56:
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SAMPLE 5.13 The frame shown in the figure is supported by hinges at both
A and B. Bar GE is as long as the base AB and bar BH is pinned to GE at
the mid point H. Brace CD is pinned at D, the mid-point of bar BH, and is
orthogonal to bar BH. The load on the structure, F D 1 kN, is applied at E,
at an angle � D 60�. Given that d D 2m; h D 3m, find the forces on the
inclined bar BH and the support reactions at A and B.
[Note: Usually, determinate framed structures are made up of overhangs and
extensions on a rigid triangle. This structure is an example of a frame that
does not contain any rigid traingle.]

Solution The given structure has hinges at both A and B. Therefore, there are four scalar
support reactions, two each at A and B. So, from the free-body diagram of the whole structure,
we cannot determine all support reactions. In fact, the free-body diagram of each rod will
have more than three unknown forces (you can check this mentally). Thus, we are not likely
to find all unknown forces on a bar without analyzing other bars. Since bar CD is a two-force
member bar, it only contributes one scalar force, the tension in this rod. Now, there are two
unknown scalar forces at each pin joint, A, B, G, and H, and one force at C and D (the same
force). Thus we have nine unknown scalar forces. We have three bars AG, GE, and BH, each
with three independent scalar equations of static equilibrium. Thus we have nine independent
equations in nine unknowns. Therefore, we can solve for all the unknown forces.

Consider the free-body diagram of bar GE. The static equilibrium of this bar requiresX
MH D 0 ) Gy.d=2/ � F sin�.d=2/ D 0

) Gy D F sin�X
Fy D 0 ) �Gy CHy � F sin� D 0

) Hy D F sin� CGy D 2F sin�X
Fx D 0 ) Hx �Gx � F cos� D 0: (5.21)

Thus we have found Gy and Hy but only a relationship between Gx and Hx . Since Gx and
Hx are colinear, we cannot solve for them from the static analysis of bar GE alone. Now, let
us consider bar AG (or bar BH; does not make a difference). The equilibrium analysis of this
bar gives X

Fy D 0 ) Ay CGy CRCD sin � D 0 (5.22)X
MC D 0 ) Axh1 �Gxh2 D 0 (5.23)X
Fx D 0 ) Ax CGx CRCD cos � D 0: (5.24)

Since none of these equations contains only one unknown, we cannot solve for these forces
from the equilibrium equations of bar AG alone. Note that we have written these equations in
terms of h1; h2, and � , thus far, undetermined geometric variables. However, we can easily
find them from the given geometry. Now let us analyze bar BH.X

Fy D 0 ) By �Hy �RCD sin � D 0 (5.25)X
Fx D 0 ) Bx �Hx �RCD cos � D 0 (5.26)X
MD D 0 ) .Hx C Bx/

h

2
C .Hy C By/

d

2
D 0 (5.27)
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So, now we have seven independent equations, eqns. (5.21)–(5.27), in seven unknowns —
Ax ; Ay , Bx ; By , RCD , Gx , and Hx (we have already solved for Gy and Hy ). We can solve
these seven equations on a computer.

Before we go to the computer, let us find the undetermined geometric quantities h1 and
h2. From fig. 5.63, we see that

h1 D h

2
��

h2 D h

2
C�

where � D d 0 sin � , d 0 D 3d=4, and � D tan�1.d=2h/. Now, we are ready to solve the
seven equations on a computer.

% input given quantities
d = 2; h = 3; F = 1; alpha = pi/3;
% Define other used quantities in the equations
Delta = 3*dˆ2/(8*h);
h1 = h/2 - Delta; h2 = h/2 + Delta;
theta = arctan(0.5*d/h);
% Input equations
eqset = { Hx - Gx = F*cos(alpha)

Ay + RCD*sin(theta) = -F*sin(alpha)
Ax*h1 - Gx*h2 = 0
Ax + Gx + RCD*cos(theta) = 0
By - RCD*sin(theta) = 2*F*sin(alpha)
Bx - Hx - RCD*cos(theta) = 0
(Hx+Bx)*h/2 + By*d/2 = -F*d*sin(alpha) }

solve eqset for Ax, Ay, Bx, By, Gx, Hx, and RCD

Including the values of Gy and Hy obtained from the first two equations of equilibrium of
bar GE, we get the following values for all unknown forces from the computer solution.

Ax D �9:93 kN Ay D �10:79 kN
Bx D 10:43 kN By D 11:66 kN
RCD D 31:40 kN
Gx D �19:86 kN Gy D 0:87 kN
Hx D �19:36 kN Hy D 1:73 kN

RCD D 31:4 kN
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Figure 5.64: Free-body diagram of
the whole chair. Note that d1 D
.`1C`2=2/ cos�, d2 D .`2=2/ cos�C
`3 cos �, and d3 D `1 cos� � `4 cos�.

SAMPLE 5.14 An easy-chair uses a curved frame as shown in the small pic-
ture in fig. 5.65. To simplify geometry, we can model the chair with straight
bars as shown in the figure. Of special significance is the small pin at E that
is rigidly attached to bar CDH and slides with negligible friction on bar ABD
(see inset). This pin keeps the chair from collapsing and bears a large load.
Assume the pin is � D 2:5 cm away from joint D towards B along bar ABD.
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Figure 5.65: Dimensions: `1 D 45 cm, `2 D 60 cm, `3 D 30 cm, `4 D 30 cm, `5 D 70 cm,
� D 2:5 cm, � D 15�, � D 45�,  D 25�, and � D 70�. Loads: F1 D 500N and
F2 D 200N. F1 acts in the middle of bar segment BD and F2 acts at G.

Solution Since the chair is supported by a hinge at A and a roller at B, there are three scalar
support reactions. So, we can determine them from the static analysis of the whole chair
frame. The free-body diagram of the chair is shown in fig. 5.64. The moment and force
equilibrium equations giveX

Fx D 0 ) Ax D 0X
MA D 0 ) Cy.d1 C d2/ � F1.d1/ � F2.d3/ D 0

) Cy D
F1d1 C F2d3
d1 C d2X

Fy D 0 ) Ay D F1 C F2 � Cy :

From the given geometry,

d1 D .`1 C `2=2/ cos� D 72:44 cm

d2 D .`2=2/ cos� C `3 cos � D 39:24 cm

d3 D `1 cos� � `4 cos� D 22:25 cm:

Substituting these dimensions above with their numerical values, we get

Cy D 364N; and Ay D 336N:

The support reactions are thus determined. To find the force on the pin E, we can use either
bar ABD or bar CDH. In either case however, we have more unknown force on the bars that
we can determine from the equilibrium equations of that bar alone. So, we will have to use
equilibrium of some other bar as well. Note that bar GH is a two-force body. Therefore,
the tension in this rod can be shown as a single scalar force RGH . Let us now analyze the
equilibrium of bar BGJ since it has only three unknown forces on it (see fig. 5.65). The
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moment and force equilibrium equations giveX
MG D 0 ) F2.`4 cos�/ �RGH .`4 sin. C �// D 0

) RGH D F2.`4 cos�/
`4 sin. C �/

D 183N:X
Fx D 0 ) Bx D RGH cos  D 166NX
Fy D 0 ) By D RGH sin  � F2 D �123N:

Now that we know Ax ; Ay ; Bx and By , we can analyze bar ABD and determine the rest of
the unknown forces on it including the force in the pin E, RE (see the free-body diagram in
fig. 5.66):X

MD D 0 ) �Ay.d4 C d5/ � Byd5 C BxhC F1d6 CRE � D 0

) RE D Ay.d4 C d5/C Byd5 � Bxh � F1d6
�X

Fx D 0 ) Bx CDx CRE sin� D 0

) Dx D �Bx �RE sin�X
Fy D 0 ) Dy D RE cos� � Ay � By :

From geometry,

d4 D `1 cos�

d5 D `2 cos�

d6 D d5=2 D .`2=2/ cos�

h D `2 sin�:

Substituting these variables with their numerical values above, we get

RE D 3953N; Dx D �1189N; and Dy D 4106N:

Ax D 0; Ay D 336N; Cy D 364N; RE D 3953N
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SAMPLE 5.15 Can a stack of three cylinders be in static equilibrium?
Three identical cylinders, each of mass m and radius R, are stacked such that
the top cylinder rests on the lower two cylinders. The two cylinders at the
bottom do not touch each other. Let the coefficient of friction at each contact
surface be �. Find the minimum value of � so that the three cylinders are in
static equilibrium.

Solution Let us assume that the three cylinders are in equilibrium. We can then find the
forces required on each cylinder to maintain the equilibrium. If we can find a plausible value
of the friction coefficient � from the required friction force on any of the cylinders, then we
are done, otherwise our initial assumption of static equilibrium is wrong.

The free body diagrams of the upper cylinder and the lower right cylinder (why the right
cylinder? No particular reason) are shown in fig. 5.68. The contact forces,

*
FE and

*
FD, act

on the upper cylinder at points E and D, respectively. Each contact force is the resultant of a
tangential friction force and a normal force acting at the point of contact. From the free body
diagrams, we see that each cylinder is a three-force-body. Therefore, all the three forces —
the two contact forces and the force of gravity — must be concurrent. This requires that the
two contact forces must intersect on the vertical line passing through the center of the cylinder
(the line of action of the force of gravity). Now, if we consider the free body diagram of the
lower right cylinder, we find that force

*
FD has to pass through point B since the other two

forces intersect at point B. Thus, we know the direction of force
*
FD.

Let � be the angle between the contact force
*
FD and the normal to the cylinder surface at

D. Now, from geometry,�C3DOC�C3ODCOC3D D 180�. But, � D �C3DO D �C3OD.
Therefore,

� D 1

2
.180� � �OC3D/ D 1

2
.�GC3D/

D 1

2
30� D 15�

where �GC3D D 30� follows from the fact that C1C2C3 is an equilateral triangle and C3G
bisects � C1C3C2.

Now, from fig. 5.69, we see that

tan� D Fs
N
:

But, the force of friction Fs � �N . Therefore, it follows that

� � tan� D tan 15� D 0:27:

Thus, the friction coefficient must be at least 0.27 if the three cylinders have to be in static
equilibrium.

� � 0:27
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5.5 Advanced truss concepts:
determinacy

Your first concern when studying trusses is to develop the ability to solve
a truss using free body diagrams and equilibrium equations. You can do
this with the method of joints. For some trusses you can use the method of
sections as a short cut. However, not all trusses give a unique solution. In
algebra there are equations with non-unique solutions (e.g., x C y D 4) and
sets of equations with no solutions (x C y D 4 and 2x C 2y D 9). We have
seen this issue before in the context of static equilibrium of a particle (see
box 4.1 on page 192). With trusses the issues of existence and uniqueness
remain.

Determinate, rigid, and redundant trusses
A truss that yields a solution, and only one solution, to such an analysis for
all possible loadings is called statically determinate or just determinate. The
braced box supported with one pin joint and one pin on rollers (see fig. 5.70a)
is a classic statically determinate truss. A statically determinate truss is rigid
and does not have redundant bars.

You should beware, however, that there are a few other possibilities.
Some trusses are non-rigid, like the one shown in fig. 5.70b, and can not

carry arbitrary loads at the joints.
Example: Joint equations and non-rigid structures
Free body diagrams of joints A and B of fig. 5.70b are shown in fig. 5.71.

jointB W
nP *

Fi D
*
0
o
� O{ ) TAB D F

jointA W
nP *

Fi D
*
0
o
� O{ ) TAB D 0

The contradiction that TAB is both F and 0 implies that the equations of statics have
no solution for a horizontal load at joint B.

A non-rigid truss can carry some loads, and you can find the bar tensions us-
ing the joint equilibrium equations when these loads are applied. For exam-
ple, the structure of fig. 5.70b can carry a vertical load at joint B. Engineers
sometimes choose to design trusses that are not rigid, the simplest example
being a single piece of cable hanging a weight. A more elaborate example is
a suspension bridge which, when analyzed as a truss, is not rigid.

A redundant truss has more bars than needed for rigidity. As you can tell
from inspection or analysis, the braced square of fig. 5.70a is rigid. None
the less engineers will often choose to add extra redundant bracing as in
fig. 5.70c for a variety of reasons.

� Redundancy is a safety feature. If one member brakes the whole struc-
ture holds up.

� Redundancy can increase a structure’s strength.

� Redundancy can allow tensile bracing. In the structure of fig. 5.70a top
load to the left puts bar BC in compression. Thus bar BC can’t be, say,
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Figure 5.71: a) a statically determinate
truss, b) a non-rigid truss, c) a redundant
truss, and d) a non-rigid and redundant
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tions to the equilibrium equations are
in conflict. That the equilibrium equa-
tions can’t be satisfied means the struc-
ture cannot carry the given load. It is not
rigid.
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1Tensegrity structures. Notice that
you could make the diagonals in
fig. 5.70c both sticks and all of the out-
side square from cables and the truss
would still carry all loads. This is
the simplest ‘tensegrity’ structure. In
a tensegrity structure no more than
one bar in compression is connected
to any one joint. (See fig. 5.11 for
a more elegant example.). The label
‘Tensegrity structure’ was coined by the
truss-pre-occupied designer Buckmin-
ster Fuller. Fuller is also responsible
for re-inventing the “geodesic dome” a
type of structure studied previously by
Cauchy.

a cable. But in structure fig. 5.70c both diagonals can be cables and
neither need carry compression for any load 1.

A property of redundant structures is that you can find more than one set
of bar forces that satisfy the equilibrium equations. Even when the loads
are all zero these structures can have non-zero locked in forces (sometimes
called (‘locked in stress’, or ‘self stress’). In the structure of fig. 5.70c, for
example, if one of the diagonals got cool and contracted both it and the oppo-
site diagonal would be put in tension while the outside was in compression.
For structures whose parts are likely to expand or contract, or for which the
foundation may shift, this locked in stress can be a contributor to structural
failure. So redundancy is not all good.

Finally, a structure can be both non-rigid and redundant as shown in
fig. 5.70d. This structure can’t carry all loads, but the loads it can carry it
can carry with various locked in bar forces.

More examples of statically determinate, non-rigid, and redundant truss
are given on pages 313 and 314.

Note, one of the basic assumptions in elementary truss analysis which we
have thus far used without comment is that

motions and deformations of the structure are not taken into account
when applying the equilibrium equations.

If a bar is vertical in the drawing then it is taken as vertical for all joint
equilibrium equations.

Example: Hanging rope
For elementary truss analysis, a hanging rope would be taken as hanging vertically
even if side loads are applied to its end. This obviously ridiculous assumption
manifests itself in truss analysis by the discovery that a hanging rope cannot carry
any sideways loads (if it must stay vertical this is true).

Determining determinacy: counting equations and
unknowns
How can you tell if a truss is statically determinate? The only sure test is
to write all the joint force balance equations and see if they have a unique
solution for all possible joint loads. Because this is an involved linear algebra
calculation (which we skip in this book), it is nice to have shortcuts, even if
not totally reliable. Here are three:

� See, using your intuition, if the structure can deform without any of the
bars changing length. You can see that the structures of fig. 5.70b and
d can distort. If a structure can distort it is not rigid and thus is not
statically determinate.

� See, using your intuition, if there are any redundant bars. A redun-
dant bar is one that prevents a structural deformation that already is
prevented. It is easy to see that the second diagonal in structures of
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fig. 5.70c and d is clearly redundant so these structures are not stati-
cally determinate.

� Count the total number of joint equations, two for each joint. See if this
is equal to the number of unknown bar forces and reactions. If not, the
structure is not statically determinate.

The counting formula in the third criterion above is:

2j D b C r (5.28)

where j is the number of joints, including joints at reaction points, b is the
number of bars, and r is the number of reaction components that shows on a
free body diagram of the whole structure (2 from pin joints, 1 from a pin on
a roller).

If 2j > b C r the structure is necessarily not rigid because then there
are more equations than unknowns 2. For such a structure there are some
loads for which there is no set of bar forces and reactions that can satisfy the
joint equilibrium equations. A structure that is non-redundant and non-rigid
always has 2j > b C r (see fig. 5.70b).

If 2j < b C r the structure is redundant because there are not as many
equations as unknowns; if the equations can be solved there is more than one
combination of forces that solve them. A structure that is rigid and redundant
always has 2j < b C r (see fig. 5.70b).

But the possibility of structures that are both non-rigid and redundant
makes the counting formulas an imperfect way to classify structures 3.Non-
rigid redundant structures can have 2j < bC r , 2j D bC r , or 2j > bC r .
The redundant non-rigid structure in fig. 5.70d has 2j D b C r .

The discussion above can be roughly summarized by this table (refer to
fig. 5.70 for a simple example of each entry and to pages 313 and 314 for
several more examples).

Truss Type Rigid Non-rigid

Non-redundant a) 2j D b C r b) 2j > b C r

(Statically determinate)
2j < b C r ,

Redundant c) 2j < b C r d) 2j D b C r , or
2j > b C r

A basic summary is this:

If

� 2j D b C r and
� you cannot see any ways the structure can distort, and

2A non-rigid truss is sometimes called
‘over-determinate’ because there are
more equations than unknowns. How-
ever, the term ‘over-determinate’ may
incorrectly conjure up the image of there
being too many bars (which we call re-
dundant) rather than too many joints. So
we avoid use of this phrase.

3In the language of mathematics we
would say that satisfaction of the count-
ing equation 2j D b C r is a necessary
condition for static determinacy but it is
not sufficient.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



308 Chapter 5. Trusses and frames 5.5. Advanced truss concepts: determinacy

Filename:tfigure-rigidonground

(a) (b)

(c)

Figure 5.73: a) a determinate two bar
truss connected to the ground, b) the
same truss is not rigid when floating,
which you can tell by seeing that c) it
is not rigid when one bar is fixed to the
ground.

� you cannot see any redundant bars

then the truss is likely statically determinate. But the only way you can
know for sure is through either a detailed study of the joint equilibrium
equations, or familiarity with similar structures.

On the other hand if

� 2j > b C r , or
� 2j < b C r , or
� you can see a way the structure can distort, or
� you can see one or more redundant bars,

then the truss is not statically determinate.

Example: The classic statically determinate structure
A triangulated truss can be drawn as follows:

1. draw one triangle,
2. then another by adding two bars to an edge,
3. then another by adding two bars to an existent edge
4. and so on, but never adding a triangle by adding just one bar, and
5. you hold this structure in place with a pin at one joint and one pin on roller at

another joint
then the structure is statically determinate. Many elementary trusses are of exactly
this type. (Note: if you violate the ‘but’ in the 4th rule you can make a truss that
looks ‘triangulated’ but is redundant, and therefore not statically determinate.)

Floating trusses
Sometimes one wants to know if a structure is rigid and non-redundant when
it is floating unconnected to the ground (but still in 2D, say). For example,
a triangle is rigid when floating and a square is not. The truss of fig. 5.72a
is rigid as connected but not when floating (fig. 5.72b).A way to find out if a
floating structure is rigid is to connect one bar of the truss to the ground by
connecting one end of the bar with a pin and the other with a pin on a roller,
as in fig. 5.72c. All determinations of rigidity for the floating truss are the
same as for a truss grounded this way. The counting formula eqn. 5.28, is
reduced to

2j D b C 3

because this minimal way of holding the structure down uses r D 3 reaction
force components.
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The principle of superposition for trusses
Say you have solved a truss with a certain load and have also solved it with
a different load. Then if both loads were applied the reactions would be the
sums of the previously found reactions and the bar forces would be the sums
of the previously found bar forces.

This useful fact follows from the linearity of the equilibrium equations 4.
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Example: Superposition and a truss
If for the loading (a) you found TAB D 50 lbf and for loading (b) you found TAB D
�140 lbf then for loading (c) TAB D 50 lbf � 140 lbf D �90 lbf

The principle of superposition can only hold if the solution for zero load is
zero tension in all the bars. Any truss that only has bars in tension when there
is no load does not satisfy the principle of superposition.

Example: Spider web
A network of taut strings is a kind of a truss. So a spider web is a kind of a truss.
But a spider web is only a coherent structure if it is kept taut. So there is tension in
the strands even when there is no load (from, say the weight of a spider). Thus the
principle of superposition does not apply. The tension in a given strand is not the
tension due to the spider added to the tension due to an insect.

4A careful derivation would also show
that the linearity depends on the nature
of the foundation. Linearity holds for
pins and pins on rollers, but not for fric-
tional contact.
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5.2 Structural rigidity and geometric congruence
This box is only for the curious. It will not help you solve truss
homework problems.

In high school geometry one learns to prove that two shapes are
congruent (the same shape and size) if they have enough in common.
High school geometry proofs are based on triangles. For example on
proof, called “side-side-side” (SSS), says that if two triangles have
three sides with corresponding lengths then the corresponding angles
are also equal.

Now, here, we claim that structures made of triangles tend to
be rigid. Is there a relation between the central role of triangles in
geometry proofs and their role in structural rigidity? The answer is
yes, but more subtly than you may expect.

Consider one triangle. If the lengths are specified it is like three
sticks connected with rubber bands (page 260). That two different
triangles each with the same 3 side lengths are congruent means
that one triangle whose side-lengths are given has no choice about
its shape. So for one triangle the SSS proof corresponds exactly to
structural rigidity.

More generally, imagine looking at a structure and thinking of
certain aspects of it as fixed and others as not fixed. For example,
think of a collection of bars with the lengths fixed (each bar cannot
stretch or shrink) and the angles between them as not-fixed (the an-
gles are flexible). This would be a model, say, of bars connected with
pin joints. If one could find a geometry proof that these two struc-
tures had identical shapes it would mean that each one of them had
no choice about its shape. So a geometry proof of congruency, based
on the aspects of a structure that are approximately fixed, is a proof
of structural rigidity. This shows that there is a connection between
congruence proofs and structural rigidity.

Here’s the subtlety. Neither congruence proofs nor rigidity actu-
ally depend essentially on triangles. There are congruence proofs for
shapes that do not have any closed triangles, and the related struc-
tures are rigid.

In fact, there is a whole arcane mathematics of rigidity. And the
things mathematicians have learned about rigidity are incredible.

The case of K33

Take 3 points on a plane and mark them with dots. Take 3 more
points on the plane and mark them with little x’s. Connect each dot
with each x. Thats 9 connection lines. In topology-speak they call
this set of dots and lines “K three three” (Konnections between three
dots and three x’s).

Now think of that criss-crossed K33 drawing as a structure
made of sticks connected with hinges at the dots and x’s. Note that,
neglecting where the sticks cross but are not connected, there are no
closed triangles. Yet, incredibly, this structure is always rigid. Well,
almost always. If all 6 points happen to lie on one circle, ellipse,
parabola or hyperbola then the structure is not rigid.

Example: Regular hexagon

If you take a regular hexagon made of sticks
(length ` and hinges and brace it with three cross
bars (each with length 2`) you will see that you
have K33; every-other corner is a dot and the alter-
nate ones are x’s. But the points on a hexagon are
on a circle, so that structure is not rigid.

Example: Triangle with two bars per side
On the other hand, take an equilateral triangle and
cut each side in half so you have six bars around
the outside (each with length `=2). Now brace that
hexagon (that is shaped like a triangle) with the
three triangle altitudes (each with length

p
3`) and

you again have K33. But this time it’s rigid.
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The examples above are used in the text and homework to illus-
trate structures that don’t lend themselves to the simple joint-by-joint
method-of-joints, nor the method of sections. For these trusses the
method of joints leads to a set of equations that need to be solved
simultaneously.

Knn

The mathematical magic goes on. If you take any n dots and any n
x’s and connect each dot to each x with a rigid rod (Knn) you get a
rigid structure. Unless all 2n dots happen to lie on a conic section.

The proofs of such rigidity theorems are way over our heads.
But you can simply check such structures for rigidity with the com-
puter program developed in section 5.3.

Rigidity and congruence?
So yes, geometric congruence and structural rigidity are the same
subject. But that subject does not totally depend on triangles. Trian-
gles just provide the simple examples and what we vaguely think of
as the essence of both subjects.
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5.3 Rigidity, redundancy, linear algebra and maps
This mathematical aside is only for people who have had a course
in linear algebra. For definiteness this discussion is limited to 2D
trusses, but the ideas also apply to 3D trusses.

For beginners trusses fall into two types, those that are uniquely
solvable (statically determinate) and those that are not. Statically
determinate trusses are rigid and non-redundant. However, a truss
could be non-rigid and non-redundant, rigid and redundant, or non-
rigid and redundant. These four possibilities are shown with a simple
example each in fig. 5.70 on page 305, as a simple table on page 307,
and as a big table of examples on pages 313 and 314.

Another approach is the table in fig. 5.73 which we now proceed
to discuss in detail. It is a more abstract mathematical representation
of this same set of possibilities.

� � �

To start with we use the matrix form of the truss joint equations from

page 288. To make contact with linear algebra here we take the un-
knowns as �v� with �v� � �T � being the n unknown tensions and
reaction components. The set of lists of all conceivable tensions and
reaction forces we call the “vector space” V (it is alsoRn).

The m possible loads at the joints are written in the column
vector �w� (called �L�, for loads, in the numeric set up). The set of
all possible loads we call the vector spaceW .

If we use the method of joints we can write two scalar equi-
librium equations for each joint. These are linear algebraic equa-
tions. Thus we can write them in matrix form as (see eqn. (5.19) on
page 288),

�A��v� D �w� (5.29)

The classification of trusses is really a statement about the solutions
of eqn. 5.29. This classification follows, in turn, from the properties
of the matrix �A�.

Another point of view is to think of eqn. 5.29 as a function that
maps one vector space onto another. For any �v� eqn. 5.29 maps
that �v� to some �w�. That is, if one were given all the bar tensions
and reactions one could uniquely determine the applied loads from
eqn. 5.29. This map, from V toW we call T .

� � �

We can now discuss each of the truss categorizations in turn, with

reference to the table at the end of this box.

The first column of the table corresponds to rigid trusses. These
trusses have at least one set of bar forces that can equilibrate any
particular load. This means that for every �w� there is some �v� that
maps to (whose image is) �w�. In these cases the map T is onto.
And the column space of �A� isW . Thus �A� needs to have at least
as many columns as the dimension of W which is the number of
rows of �A�.

On the other hand if the structure is not rigid there are some
loads that cannot be equilibrated by any bar forces. This is the second
column of the table. There is at least some �w� with no pre-image
�v�. Thus the map T is not onto and the column space of �A� is less
than all ofW .

The first row of the table describes trusses which are not-
redundant. Thus, any loads which can be equilibrated can be equi-
librated with a unique set of bar tensions and reactions. Thus the
columns of �A� are linearly independent and the map T is one-to-
one. The matrix �A� must have at least as many rows as columns.

If a truss is redundant, as in the second row of the table, then
there are various ways to equilibrate loads which can be carried.
Points in W in the image of one, and the columns of A are linearly
dependent.

� � �

We can now look at the four entries in the table. The top left case is

the statically determinate case where the structure is rigid and non-
redundant. The map T is one to one and onto, V D W , and the
matrix �A� is square and non-singular.

The bottom left case corresponds to a truss that is rigid and re-
dundant. The map to is onto but not one to one. The columns of
�A� are linearly dependent and it has more columns than rows (it is
wide).

The top right case is not rigid and not redundant. Some
loads cannot be equilibrated and those that can be are equilibrated
uniquely. T is one to one but not onto. The columns of �A� are lin-
early independent but they do not spanW . The matrix �A� has more
rows than columns and is thus tall.

The bottom right case is the most perverse. The structure is not
rigid but is redundant. Not all loads can be equilibrated but those
that can be equilibrated are equilibrated non-uniquely. The matrix
�A� could have any shape but its columns are linearly dependent and
do not spanW . The map T is neither one to one nor onto.
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Filename:tfigure-trussmap

Not redundant
• T is one to one
• columns of A are 
   linearly 
   independent

A is square and invertible

T is one to one and onto

bar & react.
forces   

bar & react.
forces   

bar & react.
forces   

bar & react.
forces   

Loads

A is tall

T is one to one but not onto

Loads

Redundant
• T is not one to one
• columns of A are 
   linearly dependent

A is wide

T is onto but not one to one

Loads

A can be wide, square, or tall

T is neither one to one nor onto

Loads

Not rigid
• T is not onto

                      • col(A) ≠ W

Rigid
• T is onto

                     • col(A) = W

V

V V

V
W

W W

W

Figure 5.74: Rigidity, redundancy and the structural matrices. T is the linear transformation from the bar and reaction forces to the
applied loads, it is represented with the matrix �A�. See box 5.3 on page 311 for a more detailed description.
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Filename:tfigure-trussclass1

c) 
d) 

2D TRUSS
CLASSIFICATION

(page 1)

Rigid
• loads can be equilibriated with bar forces

Not redundant
• Not indeterminate

• If there are bar forces that 

   can equilibriate the loads 

   they are unique

• No locked in stresses

Statically determinate,

rigid and not redundant,

b + r =2 j,
One and only one set of bar 

forces can equilibriate any given load. j=3, b=3, r=3

j=8, b=8, r=8
j=6, b=9, r=3j=9, b=15, r=3

j=3, b=2, r=4

a)                              b)

e) no
joint

Redundant
• indeterminate

• locked in stress possible 

• solutions not unique 

   if they exist

b + r > 2j,       "too few equations",  rigid and redundant,

Every possible load can be equilibrated

but the bar forces are not unique.

j=2, b=1, r=4

j=7, b=12, r=3

l) n)m)

j=4, b=6, r=3

o)

j=4, b=4, r=5

p)

j=3, b=3, r=4

q)

j=4, b=6, r=3

Figure 5.75: Examples of 2D trusses. These two pages concern the 2-fold system for identifying trusses. Trusses can be rigid or not rigid
(the two columns) and they can be redundant or not redundant (the two rows). Elementary truss analysis is only concerned with rigid
and not redundant trusses (statically determinate trusses). Note that the only difference between trusses (b) and (s) is a change of shape
(likewise for the far more subtle examples (e) and (u)). Truss (e) is interesting as a rare example of a determinate truss with no triangles.
Continued on page 314
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Filename:tfigure-trussclass2

Not rigid and redundant

b + r > 2j b + r = 2j

r)

s)

u)  regular hexagonj=8
b=14
r=3

j=5
b=4
r=7

j=4
b=3
r=4

j=4
b=5
r=3

b + r < 2j

w)

x) z)

j=8
b=12
r=3

v)

y)

j=6
b=9
r=3

t)

j=4
b=3
r=5

j=3, b=2, r=4

j=6, b=9, r=3

b + r < 2j , not rigid and not redundant,     "too many equations"
Unique bar forces for some loads,
no solution for other loads.

f)

j) k)

h)

i)

g)

j=8, b=8, r=7

j=3, b=3, r=2

j=3, b=2, r=3
j=6, b=8, r=3

j=4, b=4, r=3

j=2
b=1
r=2

Not rigid

 Not redundant
• Not indeterminate
• If there are bar forces that 
   can equilibriate the loads 
   they are unique
• No locked in stresses

Redundant
• indeterminate
• locked in stress possible 
• solutions not unique 
   if they exist

2D TRUSS
CLASSIFICATION

(page 2)

no
joint

no
joint

Figure 5.76: (Second page of a two page table.)
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SAMPLE 5.16 An indeterminate truss: For the truss shown in the figure,
find all support reactions.

Solution The free-body diagram of the truss is shown in Fig. 5.77. We need to find the
support reactions RAx ; RAy ; RB , and RD .

The x and y components of the force equilibrium,
P *
F D*

0, giveX
Fx D 0 ) RAx CRD D �F3 cos �1 (5.30)X
Fy D 0 ) RAy CRB D F1 C F2 C F3 sin �1: (5.31)

Now we apply moment balance about point A,
P *
MA D *

0. Let A be the origin of our
xy-coordinate system (so that we can write*rD=A D*rD, etc.).

*rD �
*
RD C*rF �

*
F3 C*rG �

*
F1 C*rE �

*
F2 C*rB �

*
RB D 0

where,

*rD �
*
RD D ` O| �RD O{ D �RD` Ok

*rF �
*
F3 D .*rD C*rF=D/ �

*
F3

D �` O| C `.sin �1 O{C cos �1 O|/� � F3.cos �1 O{ � sin �1 O|/
D F3` cos �1 Ok � F3` Ok D �F3`.1C cos �1/ Ok

*rG �
*
F1 D .rGx O{C rGy O|/ � .�F1 O|/ D �rGxF1 Ok

D �F1`.1C sin �1 C cos �2/ Ok
*rE �

*
F2 D �F2.`C ` sin �1 Ok D �F2`.1C sin �1/ Ok

*rB �
*
RB D `O{ �RB O| D RB`

Ok:

Adding them together and dotting with Ok we get

�RD` � F3`.1C cos �1/ � F1`.1C sin �1 C cos �2/ � F2`.1C sin �1/CRB` D 0

) RB �RD D F1.1C sin �1 C cos �2/

C F2.1C sin �1/C F3.1C cos �1/: (5.32)

We have three equations (5.30–5.32) containing four unknowns RAx , RAy , RB , and RD . So,

we cannot solve for the unknowns uniquely. This was expected as the truss is indeterminate.

However, if we assume a value for one of the unknowns, we can solve for the rest in terms

of the assumed one. For example, let RD D �. For simplicity let the right hand sides of

eqns. (5.30, 5.31, and 5.32) be C1, C2, and C3 (computed values), respectively. Then, we

get RAx D C1 � �; RAy D C2 � C3 � �; and RB D C3 C �. The equilibrium

is satisfied for any value of �. Thus there are infinite number of solutions! This is true for

all indeterminate systems. However, when deformations of structures are taken into account

(extra constraint equations), then solutions do turn out to be unique. You will learn about such

things in courses dealing with strength of materials.

Filename:sfig4-truss-over
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Figure 5.77:
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Figure 5.78: The free body diagram of
the structure.
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Problems for
Chapter 5
Trusses

5.1 Method of joints
Preparatory Problems
5.1.1 Define these terms: a) truss, b) ideal
truss, c) bar, d) joint, e) load, f) “bar force”,
g) bar tension, h) bar compression, i) reac-
tion, j) roller support and k) pin support.

5.1.2 Name as many positive attributes of
trusses as you can.

5.1.3 Name as many negative attributes of
trusses as you can.

5.1.4 Which of the structures below are
trusses and which are not? Why not?

Filename:pfigure-whichistruss

F

F

a)
b)

c) d)

Problem 5.1.4

5.1.5 Consider this formula

b C r D 2j

a) What do b, r , and j stand for?

b) What is the use of this formula?

c) What is the source of this formula?

5.1.6 For each of the trusses below: i)
What are b, j , and r? ii) What does the
formula b C r D 2j tell you ?

Filename:pfigure-trussbjr

a) b)

c) d)

e) f)

Problem 5.1.6

5.1.7 For a given truss you are told values
for b, j , and r .

a) When solving the truss how many
unknowns are you trying to solve
for?

b) How
many independent scalar equations
do you have from using the method
of joints on the whole structure?

5.1.8 Find the zero-force members in the
trusses below.

Filename:pfigure-zeroforcetruss

a)

b)

F

F

Problem 5.1.8

5.1.9 What is the tension in bar AC. �

Filename:S03final-truss1

1000N 

4m
 4m

 

A 

B C 
2m 2m

Problem 5.1.9

5.1.10 The only force acting on the
negligible-weight truss ABC is the 173N
force shown. Find the tension in the bar
AB. �

Filename:S03q3a-truss

4m

2mA
B

C

173N

60o

30o

60o

30o

Problem 5.1.10

5.1.11 A billboard is supported by a two
bar truss as shown in the figure. The two
bars have pin joints at A, B, and C. If the
total wind load on the board is estimated
to be 300N, find the forces in bars AB and
BC.

Filename:pfigure4-1-rp11

A C

C
⇀
F

Problem 5.1.11

5.1.12 Find the support reactions for the
two trusses without any (written) calcula-
tions. Should the support reactions be dif-
ferent? Why?

Filename:pfigure4-2-truss5

5kN5kN

Problem 5.1.12

More-Involved Problems
5.1.13 Sketch the truss below. Write a big
clear zero on top of each of the zero-force
members. �
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Filename:S03final-zero

F

A B

C D

H

GE

J

I

Problem 5.1.13

5.1.14 Find the support reactions on the
truss shown in the figure taking F D 5 kN.

Filename:pfigure4-2-truss1

1m 1m 1m 1mF F F

A

H

GF

B C D
E

Problem 5.1.14

5.1.15 Find the support reactions at A and
F for a load F D 3 kN acting at D at
45

�
with respect to CD, if ` D 1m and

� D 60
�
. How will the support reactions

change if bar BF was removed and used to
connect joints A and E instead of B and F?

Filename:pfigure4-2-truss4
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A F
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Problem 5.1.15

5.1.16 How do the support reactions on the
truss shown in the figure change if the load
at point B is replaced by three equal loads,
F=3 each, acting at points D, E, and F?

Filename:pfigure4-2-truss2

D

E

F

C
B

45o
45o

2m 2m

F

30o

A

Problem 5.1.16

5.1.17 The stairstep truss shown in the fig-
ure has 500mm long horizontal and verti-
cal bars. Find the support reactions at A
and E when a load W D 1 kN is applied
at (a) point B, (b) Point C, and (c) point D,
respectively.

Filename:pfigure4-2-truss3

A

G

E

F

B

C

D

W

Problem 5.1.17

5.1.18 In the truss shown in the figure, how
does the force in bar EF change if the di-
agonal bar BF is removed and another bar
AF (shown by dotted line) is introduced in-
stead? You can assume any reasonable di-
mensions for the bars if needed.

Filename:pfigure-zeroforce2

100N

C

DB E

A F

Problem 5.1.18

5.1.19 For the truss shown, find:

a) The reaction at J.
b) The bar force in BC (tension or

compression).
c) The force in bar CG (tension or

compression).

Filename:pfigure-s01-p1-1

L L L

A

B C

H

E G D

100NJ

L

L

Problem 5.1.19

5.1.20 The truss shown in the figure con-
sists of-4 bays of ‘K’ structure. Each bay
has 2 m long horizontal and two 2 m long
vertical bars. Find the tensions in rods DE
and DG.

Filename:pfigure5-1-truss7

C D M

F

B

A N
KHE

I L

G J

2 KN 2 KN 2 KN

Problem 5.1.20

5.1.21 Analyze the truss shown in the fig-
ure and find the forces in all the bars.

Filename:pfigure4-2-truss8

1m 1m 1m 1m

A H
GEC

45o

FB D

2kN 2kN5kN

Problem 5.1.21

5.1.22 Analyze the truss shown in the fig-
ure and find out forces in all bars. Use
symmetry to reduce the number of equa-
tions you need to solve.

Filename:pfigure4-2-truss10
30o

10o

20o

F=20kN

0.5m

F F
F

F
F

1m

1m

Problem 5.1.22
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5.2 Method of sections
Preparatory Problems
5.2.1 What is the method of sections?

5.2.2 When is the method of sections most
useful?

5.2.3 With the free body diagram associ-
ated with one section cut how many bar
tensions can you hope to find?

5.2.4 Given a truss and a particular bar in
that truss

a) Can you always find one section cut
with which you can find the desired
bar tension?

b) If so, how do you find that cut? If
not, why not?

c) Whichever your answer above, give
an example of a bar in a truss that
illustrates your point.

5.2.5 This problem is exactly the same
as Sample 5.2 where it was solved using
method of joints. The truss is made up of
five horizontal and six inclined rods. All
inclined rods are 1 m long and at right an-
gles to each other. The truss carries two
vertical loads, F1 D 4 kN and F2 D 1 kN
as shown. Find the tensions in rods CE,
DE, and DF.

Filename:pfigure5-2-sample3truss

B

A

C

D

E

F

G

F1 F2

Problem 5.2.5

5.2.6 For the truss shown in the figure, find
the tensions in rods BC and FH, assuming
F D 10 kN.

Filename:pfigure5-2-truss1

30°

F
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A
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Problem 5.2.6

5.2.7 A force F D 3 kN acts at 45
�

with
the horizontal at joint D of the truss shown
in the figure. Find the tension in rod BE.

Filename:pfigure5-2-truss4
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Problem 5.2.7

More-Involved Problems
5.2.8 Find the forces in bars FH, FB, and
BC of the truss shown in the figure taking
F D 10 kN. Now pretend that bars FC
and CG are removed and two new bars BH
and HD are put in place. Find the forces in
bars FH, FB, and BC again. Are the forces
different now? Why?

Filename:pfigure4-2-truss6

1m 1m 1m 1mF F F

A

H

GF

B C D
E

Problem 5.2.8

5.2.9 Find the forces in bars BC and BD
in the truss shown in the figure. How does
the force change in each of these bars if the
load is moved to joint B from joint E?

Filename:pfigure4-2-truss7

A

B 50KN

2m2m

2m2m

2m

C D

E
F

Problem 5.2.9

5.2.10 For the truss shown in the
figure, assume that AC=CE=1 m, and
AB=BD=2 m. The rest of the bays are
identical to bay ABDE. For the given
loads, find the tensions in rods GH, GI, and
GJ. [Hint: you can use information about
zero force members.]

Filename:pfigure5-2-trussM

A

DB G J M

N

5 KN 5 KN 5 KN 5 KN

I LFC E H K

Problem 5.2.10

5.2.11 Consider the truss shown in Prob-
lem 5.2.6. Find the tension in rod CH.
[Hint: you may have to use multiple sec-
tions or solve Problem 5.2.6 first.]

5.2.12 The truss shown in the figure con-
sists of 8 ‘N’ bays. In each bay, the verti-
cal rod is 2 m long and the horizontal rod
is 1 m long. For the given loads, find the
tensions in rods HJ, HI, and GH.

Filename:pfigure5-2-trussN

B

A
C E G I K M O

Q

D F H J L N RP

10 KN 10 KN

Problem 5.2.12

5.2.13 A complex symmetric truss span-
ning a length of 16 m is shown in the fig-
ure. The outermost inclined rods make an
angle of 30

�
with the horizontal. Find the

tension in rod BD. [Note: you may have
to use more than one section to get the an-
swer.]

Filename:pfigure5-2-truss6

G H
A

B
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D E

F
I J

5kN 5kN
Problem 5.2.13

5.2.14 The 2D truss shown consists of 12
diagonally braced rectangles (each a high
and b wide). Thus the slope of the diago-
nal elements is a=b. The whole structure
is supported by 4 bars (with lengths c, d ,
and e as marked). The loading is idealized
as 11 identical loads F shown. Give your
answers in terms of some or all of a, b, c,
d , e and F .
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a) On a sketch of the figure be-
low clearly mark all the zero-force
members (put a ‘0’ on the middle
of each bar that has a ‘bar force’ of
zero).

b) Find the ‘bar-force’ in bar EB. �

c) Find the ‘bar-force’ in bar HI. �

d) Find the ‘bar-force’ in bar JK.
[Hint: Use the method of sections
and, to reduce calculations, replace
a group of theF forces with a single
equivalent force.] �

Filename:F02p1p1bridge

H I KJ
a a

12b

d d
M N PL
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A D
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E G ec

b b b b b b b b b b b b

Problem 5.2.14

5.3 Solving trusses on
computers
Preparatory Problems
You should check your mastery of the
method of joints problems before working
on this section. 5.3.1 Define these ma-
trices and column vectors used to define
a truss, the loading on it, the bar tensions
, the reactions, and the coefficients in the
matrix form of the joint equilibrium equa-
tions:

a) �J �

b) �B�

c) �R�

d) �F �

e) �T �

f) �L�

g) �A�

5.3.2 By hand, with no use of a computer,
find all of the matrices and column vectors
above for this truss.

Filename:pfigure-trussnumericsimple
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5m 5m
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1 2
3

1000N

Problem 5.3.2

5.3.3 When does the numerical recipe pre-
sented here succeed and when does it fail?
When it fails, how does it fail?

5.3.4
a) Write a computer program, using

your preferred language or pack-
age, that takes as input the matrices
�J �; �B�; �R�, and �F � and calculates
�T �.

b) Test this program on the truss of
problem 5.3.2.

More-Involved Problems
5.3.5 All of the bars in the symmetric truss
below are either level or at 30

�
from the

horizontal. Find all the bar forces and re-
actions.

Filename:pfigure-simpletruss

A

E

F

B

C

D

100 lbf

Problem 5.3.5

5.3.6 Find the force in each bar of the stair-
case truss shown in the figure by writing
the required number of equilibrium equa-
tions and then solving them on a computer.

Filename:pfigure4-2-truss9

A
G

E

F

B

C

D

150 lb

300 lb

150 lb

1'
1'

Problem 5.3.6

5.3.7 Find the tensions in all the bars, and
all the reactions for these structures.

a) A square supported by four bars.
This is perhaps the simplest rigid
structure that has no triangles.

b) The 9-bar structure shown. This
structure also has no triangles in
that there is no closed circuit that in-
volves only three bars (for example,
from D to A to B to C and back to
D involves 4 bars).

Filename:pfigure-advtruss1
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Problem 5.3.7

5.3.8 Analyse the truss given in Prob-
lem 5.1.20 and solve for all bar tensions
and support reactions.

5.3.9 Solve Problem 5.1.21.

5.3.10 Solve Problem 5.1.22.

5.3.11 Using your program from prob-
lem 5.3.4 solve each of the following prob-
lems:

a) Problem 5.1.10

b) Problem 5.1.11

c) Problem 5.1.13
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d) Problem 5.1.20
e) Problem 5.1.21
f) Problem 5.1.22
g) Problem 5.2.5
h) Problem 5.2.7
i) Problem 5.2.12
j) Problem 5.3.6

5.4 Frames
Preparatory Problems
5.4.1 In what way(s) is/are trusses differ-
ent from more general frames?

5.4.2 Consider a frame made of-3 pieces
connected together. Assume that no free
body diagram cut is within a part.

a) How many different free body dia-
grams can you draw?

b) For each free body diagram how
many independent scalar equations
can be extracted from the equilib-
rium relations?

c) In total, from all the free body
diagrams, how many independent
scalar equations can be extracted
from the various equilibrium condi-
tions.

5.4.3 Consider the two-bar frame shown.
Choose appropriate coordinate axes. Find

a) The reaction at D.
b) The tension in bar DB.
c) The reaction at A.
d) The force of DB on ABC.
e) The moment in ABC

� just (an infinitesimal dis-
tance) to the right of A

� just to the left of B
� just to the right of B
� just to the left of C

Filename:pfigure-simplestframe
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Problem 5.4.3

5.4.4 Two equal length bars are pinned to-
gether at right angles as shown. Find

a) the reactions at B and D
b) the force of BC on AD
c) the moment in BD just above the

hinge

Filename:pfigure-xframe
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Problem 5.4.4

5.4.5 For the structure shown find
a) the tension in the string
b) the reaction at A
c) the moment in ABC just to the right

of B

Filename:pfigure-cantileverpulley
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Problem 5.4.5

More-Involved Problems
5.4.6 An A-frame aluminum ladder con-
sists of two uniform 5m, 150N sections
that are pinned at the top and held from
splitting by a massless strut 1m above
the slippery floor. An 800N person has
climbed halfway up the left side.

a) Find the reactions (the forces of the
ground on the two ladder sections).

b) Find the force of the left section on
the right at the top pin.

c) Find the tension in the connection
strut.

d) Find the moment in the right leg
of the ladder just above the tension
strut.

Filename:pfigureSoodak4-49
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Problem 5.4.6

5.4.7 To make a model of a table stati-
cally determinate we assume that one leg
slides easily on the floor. Assume the other
leg does not slip. Use F D 200N; h D
1m; ` D 2m; and d D :25m. Find

a) the reactions at A and B,
b) the tension in GH,
c) the moment in IHB just below H.

Filename:pfigure-frametable1
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Problem 5.4.7

5.4.8 To make a model of a table statically
determinate we assume that one leg is not
braced. Assume the other leg does not slip.
Use F D 200N; h D 1m; ` D 2m; and
d D :25m. Find

a) the reactions at A and B
b) the tension in GH
c) the moment in IHB just below H
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Problem 5.4.8

5.4.9 For the structure shown find the re-
action at A.

Filename:pfigure-frame-Aish

1000 N

30o

30o

A

B

C

D

E

G

1 m

1 m

1 m

Problem 5.4.9
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5.4.10 The structure consists of two
pieces: bar AB and ‘T’ EBCD. They are
connected to each other with a hinge at
B. They are connected to the ground with
hinges at A and E. The force of gravity is
negligible. Find

a) The reaction at A.
b) The reaction at E.
c) The moment in BCED just to the

left of C.
d) Why are these forces so big or

small? (Your answer should be in
words).

Filename:pfigure-s01-p1-2

4 
in

10 in 10 in

13
 in

3 in

B

A

C D

10 lb 

E

Problem 5.4.10

5.5 Advanced truss
analysis: determinacy,
rigidity, and redundancy
Preparatory Problems
5.5.1 Define these terms

a) statically determinate
b) rigid and non-rigid
c) redundant and non-redundant

5.5.2 For each set of conditions below, find
2 trusses both of which fit the description

a) rigid and non-redundant
b) rigid and redundant
c) not rigid and not redundant
d) not rigid and redundant

5.5.3 In 2D trusses we used the formula
b C r D 2j . With what formula do we
replace this for 3D trusses? Explain why.

5.5.4 For the 3D method of joints, for a
whole truss how many independent scalar
equilibrium equations can one write?

5.5.5 For one section cut in 3D how many
bar tensions can you hope to find?

5.5.6 For a 3D truss that is rigid when not
grounded, how many independent reaction
components do you need to make it a stati-
cally determinate structure for any loading.

More-Involved Problems
5.5.7 For the following structures find at
least 2 different sets of bar forces that can
equilibrate the applied load shown.

a) Two bars in a line with a force in the
same line.

b) A square with two diagonal braces.

Filename:pfigure-advtruss3
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Problem 5.5.7

5.5.8 For the structures and loading shown
show that there is no set of bar forces for
which equilibrium is possible (at least with
the geometry shown). All of these struc-
tures are not rigid, they require either infi-
nite bar forces or some (or a lot of) defor-
mation to withstand the load applied

a) Two bars in a straight line.
b) A square without a diagonal.
c) A regular hexagon with three diam-

eters. [This problem is hard and
might best be answered using linear
algebra methods on the matrix form
of the system of equilibrium equa-
tions.]

Filename:pfigure-advtruss2
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1
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Problem 5.5.8

5.5.9 For each of the structures below and
the shown loading answer these questions:
i) Does a set of equilibrium bar forces and
ground reactions exist? ii) If so, find one
such set. iii) Are the solutions, if they ex-
ist, unique? iv) If not find at least two so-
lutions. v) Is the structure rigid? vi) If not,
how can it deform?

a) One hanging rod

b) A braced pole

c) A tower

d) Two bars holding a vertical load.
Comment in your answers how they
change in the limit � ! 0.

e) A regular hexagon with three diag-
onals (this is a hard problem).

Filename:pfigure-advtruss4
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Problem 5.5.9

5.5.10 Use your program from prob-
lem 5.3.4 to analyze each pair of structures
shown. In each case the output of your
program should be radically different for
the right structure than for the superficially
similar structure on the left. i) Describe
the difference in your computer program
behavior, ii) As well as you can, explain
what it is about the structures that causes
this difference in computer behavior.
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CHAPTER 6
Transmissions and

mechanisms
Some collections of solid parts are assembled so as to cause force or torque
in one place given a different force or torque in another. These include levers,
gear boxes, presses, pliers, clippers, chain drives, and crank-drives. Besides
solid parts connected by pins, a few special-purpose parts are commonly
used, including springs and gears. Tricks for amplifying force are usually
based on principals idealized by pulleys, levers, wedges and toggles. Force-
analysis of transmissions and mechanisms is done by drawing free body di-
agrams of the parts, writing equilibrium equations for these, and solving the
equations for desired unknowns.

Contents
6.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Box 6.1 ‘Zero-length’ springs . . . . . . . . . . . . . . . . 327
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Here we consider collections of parts assembled to transmit motion or force.
We are not going to address the conversion of thermal, chemical (or biologi-
cal) or electrical source to a useful force. Rather we discuss the transmission
of that force. We are concerned with the passive parts of machines, or with
passive machines that have no energy source within them. Most often there
is an input force or torque and a desired output which does the machine’s job.

The categorization of an assembly of parts as a structure or as a machine
is mostly a matter of intent. Is the main job to hold or support something still
(a structure) or to move something. There is no useful intrinsic aspect of an
assembly of parts that well-defines the difference between a structure and a
machine 1. So the statics analysis of mechanisms and transmissions is the
same as for frames. Our concern is as in the rest of statics:

Given some information about the forces on or in a mechanism find out
more about the forces.

The practice of mechanism design is often dominated by kinematic anal-
ysis, the study of the geometry of the interacting motions of the parts as the
mechanism configuration changes. Such is not our concern here. Rather we
focus on the relations between the various forces in a given configuration of
the mechanism 2.

Building blocks
In the same way that machines and buildings are built from bricks, gears,
beams, bolts and other standard pieces, elementary mechanics models of the
world are made from a few elementary building blocks. Conspicuous so far,
roughly categorized, are:

� Special objects:

– Point masses.
– Rigid bodies:

� Two force bodies,
� Three force bodies,
� Pulleys, and
� Wheels.

� Special connections:

– Hinges,
– Welds,
– Sliding contact, and
– Rolling contact.

Products and models Some of these things have dual lives, as products
and as models. On the one hand a mechanical hinge corresponds to a product

1A candidate delineation between ma-
chine and structure might be whether
the assembly allows any motion (mech-
anism) or not (structure). Even that con-
cept is ambiguous. Common machines,
like presses, wrenches and clamps, are
as motion-restricted in their end-use as
many structures. And, conversely, many
structures are adjustable and thus are de-
signed to move.

2The dynamics portion of this book is
largely an introduction to the kinematics
of mechanisms.
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Filename:tfigure-SpringVikingProduct

Figure 6.1: Some commercially avail-
able springs (Viking Products).

you can buy in a hardware store called a hinge. On the other hand a hinge
in mechanics represents a constraint that restricts certain motions and freely
allows others. A hinge in a mechanics model may or may not correspond
to hardware called a hinge. For example, when considering a box balanced
on an edge, we may model the contact as a hinge meaning we would use
the same equations for the forces of contact as we would use for a hinge.
Although you can buy a pulley, you might model a rope sliding around a
post as a rope on a pulley even though there was no literal pulley in sight.

The connection between product and model can even sound contradictory.
Although ‘like a rock’ means ‘solid’ in English, one may model a rock as a
spring (which is done for foundation engineering, understanding waves in
rocks, and understanding the energy of earthquakes). A coil spring may be
modeled as a rigid rod for a simple structure-like study of a machine. And
a hinge might be modeled as a spring if its deformation is important. The
appropriate mechanics model for a thing and its common name don’t always
correspond.

What’s new in this chapter The new content in this chapter is

� Detailed discussion of a few components used in mechanisms and
transmissions that are not used commonly in simple ‘structures’. These
include springs, pulleys, wheels, and gears.

� Introduction to a variety of design tricks to, say, cause a big force when
only a small force is available.

We start the chapter by discussing a few special parts and assemblies of those
parts. Then we consider more general assemblies.

6.1 Springs
A spring is a deformable solid that regains its original shape after being

compressed, extended or otherwise deformed. The word spring has a dual
personality.

1) Spring as product. Springs, in various forms, most characteristically
as helices made of steel wire, can be purchased from hardware stores
and mechanical parts suppliers(fig. 6.1). Springs are used to hold things
in place (in a clothes pin), to store energy (in a clock or wind-up toy),
to reduce contact forces ( bumpers), to isolate something from vibra-
tions (a car suspension), and to modulate the feel for human interaction
(under keyboard keys). You will find springs in most any complicated
machine. Take apart a disposable camera, a laser printer, a gas lawn
mower, a bicycle, a cruise missile, or a washing machine and you will
find springs.

2) Spring as model. On the other hand, springs are used in mechanical
‘models’ of many things that are not, by name, springs (see page 33 for
discussion of ‘models’). For much of this book we approximate solids
as rigid. But sometimes the flexibility or elasticity of an object is an
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important part of its mechanics. The simplest accounting for this is to
think of the object as a spring. So a tire may be modeled as a spring as
might be the near-contact-point material of a bouncing ball, a strut in a
truss, the snapping-back part of the earth’s crust in an earthquake, your
achilles tendon, or the give of soil under a concrete slab. Engineer Tom
McMahon idealized the give of a running track as that of a spring when
he designed the record breaking track used in the Harvard stadium.

For simplicity we only concern ourselves with tension and compression

6.1 ‘Zero-length’ springs

Zero rest-length springs
A special case of linear springs that has remarkable mechanical con-
sequences is a zero-rest-length spring (also called a ‘zero-length’
spring for short) with `0 D 0. These ideas are useful for design,
but not essential for basic understanding of statics.

The defining equations for a zero-rest-length spring, in scalar
and vector form, are

T D k` and
*
FB D k �*rAB:

The tension versus length curve for a zero-length spring is shown in
fig. 6.4b.

At first blush such a spring seems non-physical, meaning that it
seems to represent something which you can’t build. If you take a
coil spring all the metal gets in the way of the spring collapsing to
zero length, when the ends would coincide. In fact, however, there
are many ways to make zero-rest-length springs springs. For exam-
ple, the tension versus length curve of a rubber band (or piece of
surgical tubing) looks something like that shown in fig. 6.4c. Over
some portion of the curve the zero-length spring approximation is
reasonable (a sign of this is that the vibration frequency is almost
independent of stretch for some range of stretch). For other physical
implementations of zero-length springs see box 6.1 on page 327.

The mathematics in many mechanics problems is simpler for
`0 D 0 springs than for `0 ¤ 0 springs.

Rubber bands. As shown in fig. 6.4c straps of rubber behave like
zero-length springs over some of their length. If this is the working
length of your mechanism then the zero-length spring approximation
may be good.

A stretchy conventional spring. Some springs are stretched way
beyond their rest lengths. Thus the approximation that k.`� `0/ D
k`
�
1� `0

`

�
� k` may be reasonable.

A pre-stressed coil spring. Some door springs and many springs
used in desk lamps are made close wound so that each coil of wire
is pressed against the next one. It takes some tension just to start
to stretch such a spring. The tension versus length curve for such
springs can look very much like a zero-length spring once stretch
has started. In fact, in the original elegant 1930’s patent, which
commonly seen present-day parallelogram-mechanism lamps imi-
tate, specifies that the spring should behave as a zero-length spring.

Such a pre-stressed zero-length coil spring was a central part of the
design of the long period seismometer featured on a 1959 Scientific
American cover.
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A spring, string, and pulley. If a spring is connected to a string
that is wrapped around a pulley then the end of the string can feel
like a zero force spring if the attachment point is at the pulley when
the spring is relaxed.
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A string pulled from the side. If a taut string is pulled from the
side it acts like a zero-length spring in the plane orthogonal to the
string.
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A ‘U’ clip. If a springy piece of metal is bent so that its unloaded
shape is a pinched ‘U’ then it acts very much like a zero length
spring. This is perhaps the best example in that it needs no anchor
(unlike the pulley) and can be relaxed to almost zero length (unlike
a pre-stressed coil).

Filename:tfigure-uspring
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Filename:tfigure2-spring
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Figure 6.2: Spring connection. The
tension in a spring is usually assumed to
be proportional to its change in length,
with proportionality constant k: T D
k�`.
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springs here. These are springs which only have axial loads applied and
only at the ends.

If the tension in a spring is a function of its length alone, independent
of its rate of lengthening, the spring is said to be ‘elastic.’ Many materials
are well-modeled as elastic for small-enough deformation. If the tension in
the spring is proportional to its stretch, the spring is said to be ‘linear.’ Most
elastic materials are close to linear in their behavior. Thus the word spring
is often short for linear elastic spring. The stretch of a spring is the amount
by which the spring is longer than when it is relaxed. This relaxed length is
also called the un-stretched length, the rest length, or the reference length. If
the relaxed length (the length at zero tension) is `0, and the present length `,
then the stretch of the spring is

�` D ` � `0 D Increase in length from rest length

An ideal spring is a massless two-force body characterized by its rest
length `0 (also called the relaxed length, or reference length), its spring
constant k, and the defining equation (or constitutive law), Hook’s law:

T D k � .` � `0/ or T D k ��`

where ` is the present length and �` is the increase in length or stretch
(see fig. 6.3).

The spring constant k is also sometimes called the spring rate, the spring
stiffness or the spring proportionality constant.

The ideal spring is called linear because of the formula k�` and not,
say, k.�`/3. The defining spring formula is sometimes, although we don’t
recommend this, memorized as ‘F D kx’

Note: the formula ‘F D kx’ can lead to errors: the direction of the force
is not evident, and some people are unclear about the meaning of x in this
formula. The safest way to avoid sign errors when dealing with springs is to

� Draw a free body diagram of the spring;

� Write the increase in length �` in terms of geometry variables in your
problem (even if you know that this increase is going to be a negative
number);

� Use T D k�` to find the tension in the spring (even if you know the
tension will turn out negative); and then

� Use the principle of action and reaction to find the forces on the objects
to which the spring is connected.
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The main idea is to pick a sign convention (tension and lengthening are pos-
itive) and stick with it, accepting the arithmetic of negative numbers if it
arises. A plot of tension versus length for an ideal spring is shown in fig. 6.4a.

A comment on the notation �` Often in engineering we write
�(something/ to mean the change of ‘something.’ Most often one also
has in mind a small change. In the context of springs, however, �` is al-
lowed to be a rather large change. A useful way to think about springs is that
increments of force are proportional to increments of length change, whether
the force or length is already large or small:

�T D k�` or
dT

d`
D k

Compliance. A spring with a large stiffness is called stiff or hard. The
reciprocal of stiffness 1

k
is called the compliance. A spring with a small

stiffness and large compliance is called compliant or soft and has a lot of
‘give’.

The force vector on one end of a spring. Because the spring force is along
the spring, a known direction, we can write a vector formula for the force on
the B (say) end of the spring as ( see fig. 6.3)

*

FB D k � .j*rABj � `0/� �� �
�`

� *
rAB

j*rABj
�

� �� �
O�AB

: (6.1)

where O�AB is a unit vector along the spring. This explicit formula is useful
for, say, numerical calculations. This formula becomes especially simple if
the rest-length of the spring is zero (`0 D 0) so

*

FB D k*rB=A:

Absurd as this seems, how could a spring have zero rest length, the idea is
useful both as a model and for engineering design (see box 6.1 on page 327.

Assemblies of springs
Here we see how springs are put together with other springs in parallel and
in series. For starters we’ll put together just two springs with rest lengths `01
and `02. The extensions and tensions of the two springs are �`1; �`2; T1;
and T2.

The assembly of springs also acts like a single spring. The central issue
is determination of the properties of the combined spring.

Much of what you need to know about the words ‘in parallel’ and ‘in
series’ follows easily from these phrases:
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Figure 6.4: a) Tension versus length
for an ideal spring, b) for a zero-length
spring, and c) for a strip of rubber.
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Figure 6.5: a) Schematic of parallel
springs, b) genuinely parallel springs,
c) a simple implementation that gives
a reasonable approximation of parallel
springs. The triangle of cables limits the
rotation of the end bars if the triangles
are long.
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Figure 6.6: Free body diagrams of the
components of a parallel spring arrange-
ment.

In parallel, forces and stiffnesses add.
In series, displacements and compliances add.

which we discuss in detail below.

Springs in parallel

Two springs that share the burden of a load and stretch the same amount
are said to be in parallel.

fig. 6.5a shows the standard schematic for springs in parallel. This schematic
is a non-physical cartoon because the applied tension would likely cause the
end-bars to rotate. What is meant by the schematic in fig. 6.5a is the some-
what clumsy constrained mechanism of fig. 6.5b. In engineering practice
one rarely builds such a structure. For the purposes of discussion here, we
assume that any of fig. 6.5abc represent a situation where the springs both
stretch the same amount.

For each spring we have the defining constitutive relation:

T1 D k1�`1 and T2 D k2�`2: (6.2)

Using the free body diagrams in fig. 6.6), force balance for one of the end
supports shows that

T D T1 C T2: (6.3)

This is what is meant by the two springs sharing the load. Springs in parallel
stretch the same amount thus we have the kinematic relation:

�`1 D �`2 D �`: (6.4)

For simplicity we have assumed that the two springs have the same rest
length. Put the two results above together and we have

T D T1 C T2
D k1�`1 C k2�`2
D k1�` C k2�`

D .k1 C k2/� �� �
k

�` .
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Thus the effective spring constant of the pair of springs in parallel is, natu-
rally enough:

k D k1 C k2: (6.5)

The loads carried by the springs are

T1 D
k1

k1 C k2
T and T2 D

k2

k1 C k2
T

which add up to T as they must.
Example: Two springs in parallel.
Take k1 D 99N= cm and k2 D 1N= cm. The effective spring constant of the
parallel combination is:

k D k1 C k2 D 99N= cmC 1N= cm D 100N= cm:

Note that T1=T D :99 so even though the two springs share the load, the stiffer one
carries 99% of it. For practical purposes, or for the design of this system, it would
be reasonable to remove the much less stiff spring.

The reasoning above with two springs in parallel is easy enough to repro-
duce with 3 or more springs. The result is:

ktot D k1 C k2 C k3 C : : : and T1 D T k1=ktot; T2 D T k2=ktot : : :

That is,

� The net spring constant is the sum of the constants of the separate
springs; and

� The load carried by springs is in proportion to their spring constants.

Some comments on parallel springs
Once you understand the basic ideas and calculations for two side-by-side
springs connected to common ends, there are a few things to think about for
context.

The simplest redundant truss For the purposes of drawing pictures (e.g.,
fig. 6.5a) parallel springs are drawn side by side. But in the mechanics anal-
ysis we treated them as if they were on top of each other. A pair of parallel
springs is like a two bar truss where the bars are on top of each other but
connected at their ends. With 2 bars and 2 joints we have 2j < b C 3, and
a redundant truss. In fact this is the simplest redundant truss, as one spring
(read bar) does exactly the same job as the other (carries the same loads, re-
sists the same motions). With statics alone we can not find the tensions in the
springs since the statics equation T1 C T2 D T has non-unique solutions.

Statically indeterminate problems. Calculating the forces in a set of par-
allel springs is solving (using more than just statics, namely the spring con-
stitutive law) the simplest statically-indeterminate problem.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



332 Chapter 6. Transmissions and mechanisms 6.1. Springs

Filename:tfigure-paralleljoke

F

Figure 6.7: Parallel springs are not al-
ways geometrically parallel. The defor-
mation of the structure above into a di-
amond is resisted by the two springs.
They share the load and they have
stretches that are linked by the kine-
matics. Thus these two perpendicular
springs are ‘in parallel.’ (Detailed anal-
ysis of this structure is a little beyond the
coverage here.)
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Figure 6.8: Schematic of springs in se-
ries.

Parallel springs and the three pillars of mechanics The laws of statics
allow multiple solutions to redundant problems. But a bar in a real physi-
cal structure has, at one instant of time, some unique bar tension determined
by the deformations and material properties. This is the first, and perhaps
most conspicuous, occasion in this book that you see a problem where the
three pillars of mechanics (see page 25) are assembled in such clear har-
mony, namely, material properties (eq. 6.2), the laws of mechanics (eq. 6.3),
and the geometry of motion and deformation (eq. 6.4). In strength of ma-
terials calculations, where the distribution of stress is not determinable by
statics alone, this threesome (geometry of deformation, material properties
and statics) clearly come together in almost every calculation.

Parallel springs are not necessarily geometrically parallel n the discus-
sion above ‘in parallel’ corresponded to the springs being geometrically par-
allel. In common mechanics usage the words ‘in parallel’ are more general
and mean that the net load is the sum of the loads carried by the two springs,
and the stretches of the two springs are the same (or in a ratio restricted by
kinematics). You will see cases where ‘in parallel’ springs are not the least
bit parallel (e.g., see fig. 6.7).

Springs in series

Two springs that share a displacement and carry the same load are in
series.

A schematic of two springs in series is shown in fig. 6.8a where the springs
are aligned serially, one after the other. To determine the net stiffness of
this simple spring network we again assemble the three pillars of mechanics,
using the free body diagram of fig. 6.8b.

Constitutive law: T1 D k1.`1 � `10/; T2 D k2.`2 � `20/;

Kinematics: `0 D `10 C `20 ; ` D `1 C `2;

Force Balance: T1 D T; and T2 D T:

(6.6)

(where,e.g., `10 is the rest length of spring 1). We can manipulate these
equations much as we did for the similar equations for springs in parallel.
The manipulation differs in structure the same way the equations do. For
springs in parallel the tensions add and the displacements are equal. For
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springs in series the displacements add and the tensions are equal:

�` D ` � `0
D .`1 C `2/ � .`10 C `20/

D .`1 � `10/ C .`2 � `20/

D �`1 C �`2

D T1
k1

C T2
k2

D T
k1

C T
k2

D
�
1

k1
C 1

k2

�
� �� �

1
k

T .

Thus we get that the net compliance is the sum of the compliances:

1

k
D 1

k1
C 1

k2
or k D 1

1=k1 C 1=k2
D k1k2

k1 C k2
;

which you should compare with the case of springs in parallel (Eqn. 6.5).
The sharing of the net stretch is in proportion to the compliances:

�`1 D
1=k1

1=k1 C 1=k2
�` and �`2 D

1=k2

1=k1 C 1=k2
�`

which add up to �` as they must.
Example: Two springs in series.
Take 1=k1 D 99 cm=N and 1=k2 D 1 cm=N. The effective compliance of the
parallel combination is:

1

k
D 1

k1
C 1

k2
D 99 cm=NC 1 cm=N D 100 cm=N:

Note that �`1=�` D :99 so even though the two springs share the displacement,
the more compliant one has 99% of it. For design purposes, or for modeling this
system, it would be fair to replace the much more stiff spring with a rigid link.

Consequences of series and parallel springs for
modeling
As the previous two examples illustrate, springs can sometimes be replaced
with ‘air’ (nothing) or with rigid links without changing the system or model
behavior much. One way to think about this is that in the limit as k ! 1 a
spring becomes a rigid bar and in the limit k ! 0 a spring becomes air.

These ideas are used by engineers, often intuitively or even subcon-
sciously and with no substantiating calculations, when making a model of
a mechanical system.
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6.2 How stiff a spring is a solid rod
Here we derive the formula for stiffness of a rod:

k D EA=`

This foreshadowing of Strength of Materials concepts is not central
to the study of statics.

Let’s take a reference bar with cross sectional area A0 and rest
length `0 and pull it with tension T and measure the elongation�`0
(figure below). The stiffness of this reference rod is k0 D T0=�`0.
Now put two such rods side by side and you have parallel springs.
You might imagine this sequence: two bars are near each other, then
side by side, then touching each other, then glued together, then
melted together into one rod with twice the cross section. The same
tension in each causes the same elongation, or it takes twice the ten-
sion to cause the same elongation when you have twice the cross
sectional area. Likewise with three side by side bars and so on, so
for bars of equal length

k D A

A0
k0:

On the other hand we could put the reference rods end to end in
series. Then the same tension causes twice the elongation. We could
be three or more rods together in series thus for bars with equal cross
sections:

k D `0
`
k0:

Putting these together we get:

k D
�
A

A0

��
`0
`

�
k0 D

�
k0`0
A0

�
A

`
:

Now presumably if we took a rod with a given material, length, and
cross section the stiffness would be k, no matter what the dimensions
of the reference rod. So

�
k0`0
A0

�
has to be a material constant. It

is called E , the modulus of elasticity or Young’s modulus. For all
steels E � 30 � 106 lbf= in2 � 210 � 109 N=m2 (consistent with
fig. 6.10c). Aluminum has about a third this stiffness. So, a solid bar
is a linear spring, obeying the spring equations:

k D EA

`
or �` D T `

EA
or T D �` EA

`
:
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6.3 Stiffer but weaker
This is an aside for those who wonder how one thing can be both
stiffer and weaker than another.
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The structure on the left is made with identical 4 springs. The struc-
ture on the right is made with 5 of the same springs. All 9 springs
have stiffness k0 and break when the tension in them reaches T0.
We now want to compare the stiffness and strength of the two struc-
tures. Because of the mixture of parallel and series springs, the net
stiffness of the structure in (a) is

knet D k0 and strength D 2T0

because none of the springs reaches its breaking tension until F D
T0.

By doubling up one of the springs in (a) to get (b) we get

knet D 7k0=6 and strength D 21T0=12:

The structure is made 16% stiffer but spring AB now reaches its
breaking point T0 when the applied load is 12.5% smaller.
What’s going on? The second structure is made stiffer by reduc-
ing the deflection of point A. But this causes spring AB to stretch
more and thus carry more of the total load. In some sense, the load
is concentrated in spring AB. This load concentration, where the to-
tal load is unevenly carried, is one reason that stiffness and strength
need to be considered separately. Load concentration (or stress con-
centration) is a major cause of structural failure.

Consider the extreme case: put hundreds of springs in parallel
where the pair of springs is now to the left of A in (b). Effectively
this welds point A to the left wall. In (b) the load is concentrated
in spring AB so (b) is about 50% stiffer than (a) and only has about
75% of (a)’s strength.

In common experience stiffness and strength do correlate.
Something that feels rickety (is very compliant) also tends to fail
with a small load. But this common experience can be misleading:
1) A stiff structure can be weak because of stress concentrations, and
2) Given two materials, one may be both stiffer and weaker than the
other.
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6.4 A puzzle with two springs and three ropes.
This tricky puzzle is an aside.

A weight hangs from 3 strings (BD,BC, and AC) and 2 springs
(AB and CD). Point B is above point C and all ropes are taut.
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When rope BC is cut does the weight go (a) down?, (b) up?, or (c)
stay put? (Three dots represents a time for you to stop and think.)

� � �

Do the experiment. In 15 minutes you can do this experiment with 3
pieces of string, 2 rubber bands and a soda bottle. Hang the partially
filled soda bottle from a door knob (or the top corner of a door, or
a ruler cantilevered over the top of a refrigerator). Adjust the string
lengths and amount of weight so that no strings or rubber bands are
slack and make sure point B is above point C. The two points A can
coincide as can the two points D. You can separate the strings a little
with, say, a small wad of paper so you can see which string is which.
Look at your experimental setup, but don’t pull and poke at it. Try to
predict whether your bottle will go up down or not move when you
cut the middle string.

� � �

Spoiler, Answer:

Ifyoudidtheexperimentyouknowtheanswer,theweight
goesupalittlewhenyoucut.That’swhatreallyhappens.

This puzzle was published as one for which people have bad
intuitions. And that’s true, as you probably just found out. Why the
experiment comes out the way it does? If you got it wrong (like most
people do), can you find the error in your ways?

� � �

Clue: All simple explanations are based on the assumption that the
lengths of the two strings AC and BD are constant at `1.

� � �

Explanation 1: To simplify the reasoning assume that springs AB
and CD are identical and carry the same tension Ts and that the
ropes AC and BD carry the same tension Tr . As usual, start with
free body diagrams (below). With the symmetry we have assumed
diagrams (a) and (c) provide identical information. The three free
body diagrams can be considered before and after the middle string
removal by having Td > 0 or Td D 0, respectively. Vertical force
balance gives (approximating Td as vertical):

TsCTr DW and 2TrCTd DW ) Ts D .WCTd /=2:
Because we approximate AC as rigid with length `1, the downwards
position of the weight is the string length `1 plus the rest length of
the spring `0 plus the stretch of the spring Ts=k:

` D `1 C `0 C Ts=k D `1 C `0 C .W C Td /=.2k/:

In the course of this experiment `1; `0;W and k are constants. So
as the tension Td goes from positive to zero (when the rope BC is
cut) and ` decreases. So the weight goes up.

� � �

Explanation 2: More intuitively, start with the configuration with
the rope already cut and apply a small upwards force at C. It has no
effect on the tension in spring CD thus the weight does not move.
Now apply a small downwards force at B. This does stretch spring
AB and thus lower point B, thus lowering the weight since `1 is
constant. Applying both simultaneously is like attaching the middle
rope. Thus attaching the middle rope lowers the weight so cutting
the middle rope raises the weight.

� � �

Explanation 3: Here is another intuitive approach. Point C can’t
move. Point B moves up and down just as much as the weight does.
Point B is a distance d above point C. Since the rope BC is taut,
releasing it will allow B and C to separate, thus increasing d and
raising the weight.

� � �

A wrong explanation: What about springs in parallel and series?
Here is a quick but wrong explanation for the experimental result,
though it happens to predict the right direction of motion.

“Before rope BC is cut the two springs are more
or less in series because the load is carried from
spring through BC to spring. Afterwards they are
more or less in parallel because they have the same
stretch and share the load. Two springs in parallel
have 4 times the stiffness of the same two springs
in series. So in the parallel arrangement the deflec-
tion is less. So the weight goes up when the springs
switch from series to parallel.”

What is the error in this thinking? The position of the weight
comes from spring deflection added to the position when there is
no weight. For the argument just presented to make sense, the rest-
position of the mass (with gravity switched off) would have to be the
same for the supposed ‘series’ and ‘parallel’ cases, which it is not
(`1 C `0 ¤ `0 C d C `0).
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Another way to see the fallacy of the ‘parallel versus series’
argument is that the incremental stiffness of the system is, assuming
inextensible ropes, infinite. That is, if you add or subtract a small
load to the bottle only moves because of a small stretch of the ropes
(which is neglected in the correct simple explanations above). If the
springs were in series or parallel we would expect an incremental
stiffness that was related to spring stretch not rope stretch.
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Filename:tfigure-parallelconfusion
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Figure 6.9: a) The two springs shown
are in series because the carry the same
load and their displacements add. b)
These two springs are in parallel be-
cause the have a common displacement
and their forces add.
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Figure 6.10: a) a steel rod in tension, b)
tension versus length curve, c) zoom in
on the tension versus length curve.

� If one of several pieces in series is much stiffer than the others it
is often replaced with a rigid link.

� If one of several pieces in parallel is much more compliant than
the others it is often replaced with air (nothing, sailboat fuel).

For example:

� When a coil spring is connected to a linkage, the other pieces in the
linkage, though undoubtedly somewhat compliant, are typically mod-
eled as rigid. They are stiffer than the spring and in series with it.

� A single hinge resists rotation about axes perpendicular to the hinge
axis. But a door connected at two points along its edge is stiffly pre-
vented against such rotations. Thus the hinge stiffness is in parallel
with the greater rotational stiffness of the two connection points and
is thus often neglected (see the discussion and figures in section 3.43
starting on page 156).

� Welded joints in a determinate truss are modeled as frictionless pins.
The rotational stiffness of the welds is ‘in parallel’ with the axial stiff-
ness of the bars. To see this look at two bars welded together at an
angle. Imagine trying to break this weld by pulling the two far bar ends
apart. Now imagine trying to break the weld if the two far ends are
connected to each other with a third bar. The third bar is ‘in parallel’
with the weld material. See the first few sentences of section 5.1 for a
do-it-yourself demonstration of the idea.

� Human bones are often modeled as rigid because, in part, when they
interact with the world they are in series with more compliant flesh.

Note, again, that the mechanics usage of the words ‘in parallel’ and ‘in series’
don’t always correspond to the geometric arrangement. For example the two
springs in fig. 6.9a are in series and the two springs in fig. 6.9b are in parallel.

Strength and stiffness
Most often when you build a structure you want to make it stiff and strong.
The ideas of stiffness and strength are so intimately related that it is some-
times hard to untangle them. For example, you might examine a product in
discount store by putting your hand on it, applying small forces and observ-
ing the motion. Then you might say: “pretty shaky, I don’t think it will hold
up” meaning that the stiffness is low so you think the thing may break if the
loads get high.

Although stiffness and strength are often correlated, they are distinct con-
cepts. Something is stiff if the force to cause a given motion is high. Some-
thing is strong if the force to cause any part of it to break is high. In fact, it is
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possible for a structure to be made weaker by making it stiffer (see box 6.3
on page )

Why aren’t springs in all mechanical models?
All things deform a little under load. Why don’t we take this deformation
into account in all mechanics calculations by, for example, modeling solids
as elastic springs? Because many problems have solutions which would be
little effected by such deformation. In particular, if a problem is statically
determinate then very small deformations only have a very small effect on
the equilibrium equations and calculated forces.

Linear springs are just one way to model ‘give’
If it is important to consider the deformability of an object, the linear spring
model is just one simple model. It happens to be a good model for the small
deformation of many solids. But the linear spring model is defined by the two
words ‘linear’ and ‘elastic’. For some purposes one might want to model the
force due to deformation as being non-linear, like T D k1.�`/C k2.�`/

3.
And one may want to take account of the dissipative or in-elastic nature of
something. The most common example being a linear dashpot T D c P̀.
Various mixtures of non-linearity and inelasticity may be needed to model
the large deformations of a yielding metal, for example.

Solid bars are linear springs
When a structure or machine is built with literal springs (e.g., a wire helix)
it is common to treat the other parts as rigid. But when a structure has no
literal springs the small amount of deformation in rigid looking objects can
be important, especially for determining how loads are shared in redundant
structures.

Let’s consider a 1m (about a yard) steel rod with a 5 cm square (about
.2 in/2) cross section (fig. 6.10a). If we plot the tension versus length we
get a curve like fig. 6.10b. The length just doesn’t visibly change (unless the
tension got so large as to damage the rod, not shown.) But, when you pull on
anything, it does deform at least a little. If we zoom in on the tension versus
length plot we get fig. 6.10c. To change the length by one part in a thousand
(a millimeter, a twenty fifth of an inch) we have to apply a tension of about
500; 000N (about 60 tons). Nonetheless the plot reveals that the solid steel
rod behaves like a (very stiff) linear spring.

Surprisingly perhaps this little bit of compliance is important to struc-
tural engineers. Modeling solid metal rods as linear springs is essential for
finding internal forces in statically indeterminate structures. Because it is
hard to picture steel deforming, your intuition may be helped by exaggerat-
ing the deformation. Think of all solids as being rubber. Or, if you want to
look inside the solid in your mind, think of every solid as if it was a piece
deforming Jello. (Jello is colored sugar water held together, jelled, by long

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



338 Chapter 6. Transmissions and mechanisms 6.1. Springs

6.5 2D geometry of spring stretch
The material here is used in advanced sample 6.5 on page 345 and
some of the later homework problems.

The key result concerns a spring with one end fixed at A and the
other at moving point B. When point B moves from*rB to*rB C�*rB
then the spring length changes from ` to `C�` with

�` � O�AB ��*rB (6.7)

where O�AB D*rAB=j*rABj is a unit vector in the direction AB.
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We use �` and �` interchangeably. Before we derive this result a
few ways, lets discuss its relevance.

Fixed-configuration statics: the usual
approach
The forces and moments on a system in static equilibrium satisfy
force and moment balance. In these equations the force magnitudes
and directions, the moments and the locations of points of applica-
tion of these are those in the equilibrium configuration. The equilib-
rium of the deformed state is expressed in terms of the geometry of
that deformed state. Where the structure was before loading doesn’t
appear in the equilibrium equations.

However, often we know the geometry of a structure before the
loads are applied, not after. To avoid calculation and confusion, we
assume that the deformations cause negligible changes in positions.
This is one reason people mistakenly think of statics as being limited
to rigid bodies. Rather, for bodies that don’t deform much, we can
use the before-load geometry of a structure for reasonably accurate
estimation of the deformed geometry.

Statics, taking account of deflection
In principal, the statics of deformable solids is the same as for rigid
solids. You just need to use the deformed geometry in the statics cal-
culations. Unfortunately, to find that geometry one needs the forces
and their points of application. And one can’t find all the locations
without finding the deformation which depends on the forces, etc.
This dizzying circle is escapable using the ‘three pillars’ (page 25).

Example: A structure made of springs.
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Assume all the lengths and geometry of the two-
bar truss are known when there is no load at C. We
can find all the tensions and deflections as follows
(See page 18 for the general strategy):

1. Assume that the equilibrium loaded location
of C is displaced from the rest location by
�*rC D �xC O{ C �yC O| where �xC and �yC
are unknowns;

2. Calculate the lengths of the springs in terms
of �xC and �yC (this will be a complex ex-
pression with squares and square roots);

3. Find the tensions in the springs in terms of
their new lengths and thus in terms of �xC
and �yC ;

4. Draw a free body diagram of C, using the
spring orientations and tensions you have
found (still in terms of unknowns �xC and
�yC );

5. Write the force balance equations. These are
two equations for two unknowns �xC and
�yC .

6. Solve for �xC and �yC .
7. Use �xC and �yC to find the lengths and

thus the tensions in the springs.

What’s wrong with taking account of the
deflection?
The trap — having to know the deflection to find the tensions but
having to know the tensions to find the deflection — is avoided by
setting up and solving simultaneous non-linear equations.

Although this non-linear-equation approach is correct, given our
spring model, it is generally not used in structural mechanics be-
cause:

� Confusing. The equations are a mess.
� Hard. It is hard to solve non-linear equations, sometimes

even hard on a computer.
� Non-uniqueness. There may be more than one solution. For

example in the math problem above, if F is not too large,
there will be two solutions. One solution with C deflected
up and to the right, and another with C way to the left of the
wall. To get rid of such off-the-wall solutions you need to
either use judgment after you find them, or further specify
your math problem to eliminate them.

(continued...)
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6.5 2D geometry of spring stretch (continued)
� Linear equations are good enough. There are simpler

methods that give approximate solutions that are accurate for
small-enough loads. That is, if the deflection is small com-
pared to the size of the structure then there are linear equa-
tions which reasonably approximate the non-linear equations
above.

Small-deflection theory: the
structural-mechanics approach.
So long as F is not too large, the motion of point C will be small
compared to the lengths of the springs. Especially since, in practice,
those springs are often solid metal rods. The usual small deformation
assumption is that

� The deflection is small enough so that the spring angle
changes have negligible effect on the equilibrium equations,
and

� The deflection is small enough for the approximate formula
for spring length change, eqn. (6.7), to be adequate.

The recipe for finding the deflection of C in the example above
is greatly simplified with these approximations:

1. Assume that the equilibrium loaded location of C is dis-
placed from the rest location by �*rC D �xC O{ C �yC O|
where �xC and �yC are unknowns (unchanged);

2. Calculate the lengths of the springs in terms of �xC and
�yC using eqn. (6.7) (simplified);

3. Find the tensions in the springs in terms of their new lengths
(unchanged) and thus in terms of �xC and �yC (much sim-
pler expressions);

4. Draw a free body diagram of C, using the original unde-
flected geometry (much simplified);

5. Write the force balance equations. These are two equations
for two unknowns �xC and �yC . (These will now be linear
equations instead of a non-linear mess.)

6. Solve for �xC and �yC . (This is now the solution of linear
instead of non-linear equations.)

7. (simplified) Use �xC and �yC to find the lengths and thus
the tensions in the springs. (This now uses eqn. (6.7) instead
of complicated relations with square roots, etc.)

This simplified recipe depends on the simplified formula for the
spring length change eqn. (6.7), derived below four different ways.

Derivations of equation 6.7
Derivation 1 of eqn. (6.7). The law of cosines (page 96) says

.`C �`/2 D `2 C j�*rABj2 C 2`j�*rABj cos �

(� here is negative of that used in the statement of the law of cosines).
Expanding the left side and dropping terms in �`2 and j�*rABj2 on
both sides (assuming �`=`� 1 and j�*rABj=`� 1), and dividing
both sides by ` we get

�` � j�*rABj cos � D O�AB � �*rAB

where the last equality comes from the definition of the dot product
(Section 2.2).

Derivation 2 of eqn. (6.7). Use the Pythagorean theorem to deter-
mine the lengths of*rAB and of*rAB C �*rAB:

` D
q�
x2
AB

C y2
AB

�
`C �` D

r��
xAB C �xAB

�2 C �
yAB C �yAB

�2�

Subtracting the first from the second, dividing both sides by `, and
expanding the contents of the square root we get

�`=` D
q
1C 2 �xAB�xAB C yAB�yAB

�
=`2 C �x2

AB
�x2
AB
=`2�1:

Neglecting �x2
AB

and �y2
AB

(assuming �` � `) and expanding
the square root (

p
1C � � 1C �=2), and multiplying through by

`, we get

�` � .xAB=`/�xAB C .yAB=`/�yAB/
which is eqn. (6.7) because O�AB D .xAB=`/O{C .yAB=`/ O|.

Derivation 3 of eqn. (6.7). Using vector notation throughout:

`2 D *rAB �*rAB

.`C �`/2 D .*rAB C �*rAB/ � .*rAB C �*rAB/

Expanding the second equation, neglecting second order terms and
subtracting the first we get

`�` �*rAB � �*rAB

dividing by ` and noting that O�AB D*rAB=`we again get eqn. (6.7).

Derivation 4 of eqn. (6.7). Finally, and most intuitively, look at
this sketch.
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The line AB and its deflected self are nearly parallel. Thus the
triangle at the end is nearly a right triangle. So, approximately,
�` D j�*rABj cos � which is �*rAB � O�AB , again giving eqn. (6.7).

What the pros do
To find the loads in metal structures the pros treat solid bars as
springs, as per box 6.2 on page 334. Then they use eqn. (6.7) in
the small-deflection theory described above. Generally this is all au-
tomated in computer code called a finite-element program. Such pro-
grams are standard commercial products used by hundreds of thou-
sands of engineers round the world daily.
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1Why aren’t springs in all mechan-
ical models? All things deform a little
under load. Why don’t we take this de-
formation into account in all mechanics
calculations by, for example, modeling
solids as elastic springs? Because many
problems have solutions which would
be little effected by such deformation.
In particular, if a problem is statically
determinate then very small deforma-
tions only have a very small effect on
the equilibrium equations and calculated
forces.

springy gelatin molecules extracted from animal hooves. Vegetarians can use
sea-weed based Agar jell for their deformation fantasies. )

How does a solid bar’s stiffness depend on its shape and composition?In
box 6.2 on page 334 we show that the stiffness of a solid elastic bar is

k D EA

`

where E is a material property called the Young’s modulus. It’s that E is big
that keeps most solids from deforming visibly 1.
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SAMPLE 6.1 Springs in series versus springs in parallel: Two springs
with spring constants k1 D 100N=m and k2 D 150N=m are attached to-
gether as shown in Fig. 6.11. In case (a), a vertical force F D 10N is ap-
plied at point A, and in case (b), the same force is applied at the end point B.
Find the force in each spring for static equilibrium. Also, find the equivalent
stiffness for (a) and (b).
Solution In static equilibrium, let �y be the displacement of the point of application of
the force in each case. We can figure out the forces in the springs by writing force balance
equations in each case.

� Case (a): The free body diagram of point A is shown in Fig. 6.12. As point A
is displaced downwards by �y, spring 1 gets stretched by �y whereas spring 2 gets
compressed by�y. Therefore, the forces applied by the two springs, k1�y and�k2y,
are in the same direction. Then, the force balance in the vertical direction, O| � .P *

F D
*
0/, gives:

F D F1 C F2 D .k1 C k2/�y

) �y D F

k1 C k2
D 10N
.100C 150/N=m

D 0:04m

) F1 D k1�y D 100N=m � 0:04m D 4N

) F2 D k2�y D 150N=m � 0:04m D 6N:

The equivalent stiffness of the system is the stiffness of a single spring that will un-
dergo the same displacement �y under F . From the equilibrium equation above, it is
easy to see that,

ke �
F

�y
D k1 C k2 D 250N=m:

F1 D 4N; F2 D 6N; ke D 250N=m

� Case (b): The free body diagrams of the two springs is shown in Fig. 6.13 along with
that of point B. In this case both springs stretch as point B is displaced downwards.
Let the net stretch in spring 1 be y1 and in spring 2 be y2. y1 and y2 are unknown, of
course, but we know that

y1 C y2 D �y:

Now, using the free body diagram of point B and writing the force balance equation in
the vertical direction, we get F D k2y2, and from the free-body diagram of spring 2,
we get k2y2 D k1y1. Thus the force in each spring is the same and equals the applied
force, i.e.,

F1 D k1y1 D F D 10N and F2 D k2y2 D F D 10N:

The springs in this case are in series. Therefore, their equivalent stiffness, ke , is

ke D
�
1

k1
C 1

k2

��1
D
�

1

100N=m
C 1

150N=m

��1
D 60N=m:

Note that the displacements y1 and y2 are different in this case. They can be easily
found from y1 D F=k1 and y2 D F=k2.

F1 D F2 D 10N; ke D 60N=m

Comments: Although the springs attached to point A do not visually seem to be in parallel,

from mechanics point of view they are parallel. Springs in parallel have the same displace-

ment but different forces. Springs in series have different displacements but the same force.
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SAMPLE 6.2 Stiffness of three springs: For the spring networks shown in
Fig. 6.14(a) and (b), find the equivalent stiffness of the springs in each case,
given that each spring has a stiffness of k D 20N=m.

Solution

1. In Fig. 6.14(a), all springs are in parallel since all of them undergo the same displace-
ment �x in order to balance the applied force F . Each of the two springs on the
left stretches by �x and the spring on the right compresses by �x. Therefore, the
equivalent stiffness of the three springs is

kp D k C k C 2k D 4k D 80 kN=m:

Pictorially,
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kequiv D 80 kN=m

2. In Fig. 6.14(b), the first two springs (on the left) are in parallel but the third spring is
in series with the first two. To see this, imagine that for equilibrium point A moves to
the right by �xA and point B moves to the right by �xB . Then each of the first two
springs has the same stretch�xA while the third spring has a net stretchD �xB��xA.
Therefore, to find the equivalent stiffness, we can first replace the two parallel springs
by a single spring of equivalent stiffness kp D k C k D 2k. Then the springs with
stiffnesses kp are 2k are in series and therefore their equivalent stiffness ks is found
as follows:

1

ks
D 1

kp
C 1

2k
D 1

2k
C 1

2k
D 1

k

) ks D k D 20 kN=m:
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kequiv D 20 kN=m
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SAMPLE 6.3 Stiffness vs strength: Which of the two structures (network
of springs) shown in the figure is stiffer and which one has more strength if
each spring has stiffness k D 10 kN=m and strength T0 D 10 kN.

Solution In structure (a), all the three springs are in parallel. Therefore, the equivalent
stiffness of the three springs is

ka D k C k C k D 3k D 30 kN=m:

For figuring out the strength of the structure, we need to find the force in each spring. From
the free-body diagram in Fig. 6.18 we see that,

k�x C k�x C k�x D F

) �x D F

3k
:

Therefore, the force in each spring is

Fs D k�x D F

3
:

But the maximum force that a spring can take is .Fs/max D T0 D 10 kN. Therefore, the
maximum force that the structure can take ( i.e., the strength of the structure), is

Fmax D 3T0 D 30 kN:

Stiffness D 30 kN=m; Strength = 30 kN

Now we carry out a similar analysis for structure (b). There are four parallel chains in
this structure, each chain containing two springs in series. The stiffness of each chain, kc , is
found from

1

kc
D 1

k
C 1

k
D 2

k

) kc D k

2
D 5 kN=m:

So, the stiffness of the entire structure is

kb D kc C kc C kc C kc D 4kc D 20 kN=m:

From the free-body diagram shown in fig. 6.19, we find the force in each spring to be F/4 .
Therefore, the maximum force that the structure can take is

Fmax D 4T0 D 40 kN:

Stiffness D 20 kN=m; Strength = 40 kN

Thus, structure (a) is stiffer but structure (b) is stronger (higher strength).
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SAMPLE 6.4 Zero length springs are special. A rigid and massless rod
OAB of length 2 m supports a weight W D 100 kg hung from point B. The
rod is pinned at O and supported by a zero length (in relaxed state) spring
attached at mid-point A and point C on the vertical wall. Find the equilibrium
angle � and the force in the spring.

Solution The free-body diagram of the rod is shown in Fig. 6.21 in an assumed equilibrium
state. Let O� D � sin � O{C cos � O| be a unit vector along OB. The spring force can be written
as

*
Fs D k*rC=A (since AC is a zero-length spring, the stretch in the spring is j*rC=Aj). We need

to determine � and Fs .
Let us write moment equilibrium equation about point O, i.e.,

P *
MO D*

0,

*rB=O �
*
W C*rA=O �

*
Fs D

*
0:

Noting that

*rB=O D ` O�; *rA=O D `

2
O�;

*
Fs D k*rC=A D k.*rC �*rA/

D k

�
h O| � `

2
O�
�
;

we get,

` O� � .�W O|/C `

2
O� � k

�
h O| � `

2
O�
�

D *
0

�W `. O� � O|/C kh
`

2
. O� � O|/ D *

0:

Dotting this equation with . O� � O|/, we get,

�W `C kh
`

2
D 0

) kh D 2W:

Thus the result is independent of � ! As long as the spring stiffness k and the height h of point
C are such that their product equals 2W , the system will be in equilibrium at any angle. This,
however, is in general not possible if AC is not a zero-length spring.

Equilibrium is satisfied at any angle if kh D 2W
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SAMPLE 6.5 Deflection of an elastic structure: For the two-spring struc-
ture shown in the figure, find the deflection of point C when

1.
*

F D 1NO{,
2.

*

F D 1N O|,

3.
*

F D 30NO{C 20N O|,
The spring stiffnesses are k1 D 10 kN=m and k2 D 20 kN=m.

Solution Let �*r D �x O{C �y O| be the displacement of point C of the structure due to the
applied load. We can figure out the deflections in each spring as follows. Let O�AC and O�BC
be the unit vectors along AC and BC, respectively (see fig. 6.24). Then, the change in the
length of spring AC due to the (assumed small) displacement of point C is (see page 338 for
a discussion)

�AC D O�AC ��*r (this is the key equation)

D O{ � .�x O{C�y O|/ D �x:

Similarly, the change in the length of spring BC is
�BC D O�BC ��*r

D .cos � O{ � sin � O|/ � .�x O{C�y O|/ D �x cos � ��y sin �:

Now we can find the force in each spring since we know the deflection in each spring.

Force in spring AC D F1 D k1�x (6.8)

Force in spring BC D F2 D k2.�x cos � ��y sin �/: (6.9)

The forces in the springs, however, depend on the applied force, since they must satisfy static
equilibrium. Thus, we can determine the deflection by first finding F1 and F2 in terms of the
applied load and substituting in the equations above to solve for the deflection components.

1. Deflections with unit force in the x-direction:
Let

*
F D fx O{ D 1NO{, (we have adopted a special symbol fx for the unit load). Then,

from the free-body diagram of the springs and the end pin shown in fig. 6.23 and the
force equilibrium (

P *
F D*

0), we have,

fx O{ � F1 O{C F2.� cos � O{C sin � O|/ D*
0:

Dotting this eqn. with O| and O{, respectively, we get,

F2 D 0

F1 D fx D 1N:

Substituting these values of F1 and F2 in eqns. (6.8) and (6.9), and solving for�x and
�y we get, �

�x

�y

�
*
FDfx O{

D
 

1
k1

1
k1

cot �

!
fx : (6.10)

Substituting the given values of �; k1, and fx D 1N, we get

�*r D �x O{C�y O| D .100O{C 173 O|/ � 10�6 m:

�*r D .100O{C 173 O|/ � 10�6 m

2. Deflections with unit force in the y-direction: We carry out a similar analysis for this
case. We again assume the displacement of point C to be �*r D �x O{ C �y O|. Since
the geometry of deformation and the associated results are the same, eqns. (6.8) and
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ĵ

θ

Figure 6.23:

Filename:sfig4-springs-compl-b

  BC

  AC

B

A

Δx

Δy

Δ

C
θ

λ

λ
⇀
r

Figure 6.24:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



346 Chapter 6. Transmissions and mechanisms 6.1. Springs

Filename:sfig4-springs-compl-c

Ck1F1 F1

F2

F2

F

k2

ı̂

ĵ
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(6.9) remain valid. We only need to find the spring forces from the static equilibrium
under the new load. From the free-body diagram in Fig. 6.25 we have,

.�F1 � F2 cos �/O{C .F2 sin � C F / O| D*
0 (6.11)

feqn. (6.11)g � O| ) F2 D � F

sin �
feqn. (6.11)g � O{ ) F1 D �F2 cos � D F cot �:

Substituting these values of F1 and F2 in terms of F D fy in eqns. (6.8) and (6.9),
we get

fy cot � D k1�x ) �x D fy

k1
cot �

� fy

sin �
D k2.�x cos � ��y sin �/

) �y D 1

sin �

�
�x cos � C fy

k2 sin �

�

D fy

�
1

k1
cot2 � C 1

k2
csc2 �

�
:

Thus, �
�x

�y

�
*
FDfy O|

D
 

1
k1

cot �
1
k1

cot2 � C 1
k2

csc2 �

!
fy : (6.12)

Substituting the values of �; k1; k2, and fy D 1N, we get

�*r D �x O{C�y O| D .173O{C 500 O|/ � 10�6 m:

�*r D .173O{C 500 O|/ � 10�6 m

3. Deflection under general load: Since we have already got expressions for deflections
in the x and y-directions under unit loads in the x and y-directions, we can now
combine the results (using superposition, see page 209) to find the deflection under
any general load

*
F D Fx O{C Fy O| as follows.

�*r D
�
�x

�y

�
D Fx �

�
�x

�y

�
*
FD1O{

C Fy �
�
�x

�y

�
*
FD1 O|

D
�

k�11 k�11 cot �
k�11 cot � k�11 cot2 � C k�12 csc2 �

��
Fx
Fy

�
:

Once again, substituting all given values and Fx D 30N and Fy D 20N, we
get

�*r D .6:4O{C 15:2 O|/ � 10�3 m:

�*r D .6:4O{C 15:3 O|/ � 10�3 m

Note: The matrix obtained above for finding the deflection under general load is called the

compliance matrix of the structure. Its inverse is known as the stiffness matrix of the structure

and is used to find forces given deflections.
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6.2 Force amplification devices: Levers,
wedges, toggles, gears, and pulleys

Simple objects can be connected in various arrangements for various pur-
poses. Here we describe 5 machine fragments that can be used to amplify
force. Most machines use these ideas in combination. It might help intu-
itive understanding of machines to recognize one of these methods in use,
although precise categorization of every machine part as one or another of
these devices is not possible.

A lever

One of the simplest machines, long understood longer used by humans, is
a lever (fig. 6.27). Although now we think of statics as a special case of
dynamics, the statics of a lever was well understood 50 generations before
Newton and Euler.

An ideal lever is a rigid body held in place with a frictionless hinge and
with two other applied loads.

The free body diagram fig. 6.27 is the same whether the hinge is at point A,
B or C 1.

Lots of things can be viewed as levers including, for example, a wheel-
barrow, a hammer pulling a nail, a boat oar, one half of a pair of tweezers,
a break lever, a gear, and, most generally, any three-force body. Using the
equilibrium relations on the free body diagram in fig. 6.27 you can find that

FA

a
D FB

b
D FC

c

from which you could find the relation between any pair of the forces. In
practice it is easier to use moment balance about an appropriate point than to
memorize and recall this formula.

An ideal wedge

Wedges are a kind of machine. You see them used in exactly their wedge
configuration, to split and separate things (see fig. 6.28). But screws are also,
effectively wedges, with torque replacing the downwards force. For an ideal
wedge one neglects friction, effectively replacing sliding contact with rolling
contact (see fig. 6.29ab). Although this approximation may not be accurate,
it is helpful for building intuition. Because the key idea depends on force
balance and not moment balance, for the free body diagrams of fig. 6.29c
we have not specified the exact location of the contact forces . Neglecting
gravity,

For block A;
nP *

Fi D
*

0
o
� O| ) �FA C F sin � D 0

For block B;
nP *

Fi D
*

0
o
� O{ ) �FB C F cos � D 0
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Figure 6.26: One half of a pair of pliers
is one of many classic lever examples.
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Figure 6.27: A lever can have the pivot
in various places. The free body dia-
gram looks the same in any case.

1People studied levers before mechan-
ics was a quantitative subject. So
they have a specialized antiquated vo-
cabulary, classifying them according to
which of A, B, or C is the pivot point
and which of the other two forces you
think of as input and which as the out-
put: A ‘class one’ lever has the pivot
in between; a ‘class two’ lever has the
pivot at one end and the input force at
the other; and a ‘class three’ lever has
the pivot at one end and the input force
in the middle.
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Figure 6.28: A hatchet splitting wood
is a classic wedge. In this case it is
used dynamically, with the force com-
ing from the deceleration of mass. But
other more complex wood splitting de-
vices push the wedge in slowly.
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Figure 6.29: a) A wedge, b) treated
as frictionless in the ideal case, c) free
body diagrams (assuming no friction)

eliminating F ) FB D
1

tan �
FA:

Using the small-angle approximation that tan � � � we have that

The force amplification of a wedge is about the reciprocal of the wedge
angle (in radians).

To multiply the force FA by 10 takes a wedge with a taper of � D
tan�1 0:1 � 6

�
. With this taper, an ideal wedge could also be viewed as

a device to attenuate the force FB by a factor of 10, although wedges are
never used for force attenuation in practice, because they easily bind because
of friction. A wedge with friction is considered in 6.12 on page 356.

A toggle

The classic toggle mechanism for amplifying force tends to have a ‘snap-
through’ or bi-stable aspect which is used in the design of some electrical
switches. Hence, perhaps, the two dictionary meanings of the word toggle: 1)
a force amplifying mechanism, 2) a switch between two states (see fig. 6.32).

The simplest version of the toggle mechanism is shown in fig. 6.30. The
force amplification is N=F D 1= tan � .

Usually the toggle concept is not used with a wall but with a pair
of bars (fig. 6.31) Simple truss analysis shows the bar compressions are
�T D N=2 sin � and N D F=2 tan � . The toggle-like force amplification
occurs for tension as well as compression. But, because of the oft-desirable
snap-through and because the amplification increases as the applied force F
moves down, the toggle is most often used in compression.

A toggle as lever and wedge. The distinction between toggles and wedges
and levers is not precise. On the one hand the toggle is a lever where the
lever arm of F is ` cos � and the lever arm of N is ` sin � . On the other hand
the toggle is sort of a rotary wedge with wedge angle � .

Pulleys and Gears
Here we discuss a few more common machine components which are used
to transmit and amplify or attenuate a force or moment.

Gears
One type of transmission is based on gears (fig. 6.34a). If we think of the
input and output as the moments on the two gears, we find from the free
body diagram in fig. 6.34b that

For gear A;
nP *

Mi=A D
*

0
o
� Ok ) �RAF CMA D 0

For gear B;
nP *

Mi=B D
*

0
o
� Ok ) �RBF CMB D 0
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eliminating F ) MB D
RB

RA
MA or MA D

RA

RB
MB

depending on which you want to think of input and which as output. The
force amplification or attenuation ratio is just the radius ratio, just like for a
lever.

Because the spacing of gear teeth for both of a meshed pair of gears is
the same, a gears circumference, and hence its radius is proportional to the
number of teeth. And formulas involving radius ratios can just as well be
expressed in terms of ratios of numbers of teeth. The tooth ratio is not just
used as an approximation to the radius ratio. Averaged over the passage
of several teeth, it is exactly the reciprocal ratio of the turning rates of the
meshed gears.

Two gears pulled out of a bigger transmission are shown in fig. 6.34c.
Gear A has an inner part with radius RAi welded to an outer part with radius
RAo . Gear B also has an inner part welded to an outer part.

Moment balance about A in the first free body diagram in fig. 6.34d
gives that RAiFA D RAoF . You can think of the one gear as a lever (see
fig. 6.33). Moment balance about B in the second free body diagram gives
that RBiF D RBoFB . Combining we get

FB D
RAi
RAo

RBi
RBo

FA or FA D
RAo
RAi

RBo
RBi

FB

depending on which force you want to find in terms of the other. The trans-
mission attenuates the force if you think of FA as the input and amplifies the
force if you think of FB as the input. If the inner gears have one tenth the
radius of the outer gears than the multiplication or attenuation is a factor of
100.

Trains of gears can build up large net gear ratios. The ratio of the fastest
to slowest gear in a common clock or mechanical watch is on the order of
10,000.

In some gear trains, like the example above, large torque amplification
comes from a large ratio of concentrically welded gears. A large amplifica-
tion can also come from differences rather than ratios. The designs based pri-
marily on differences rather than ratios are called ‘differentials’, ‘harmonic
drives’, or ‘planetary gears’.

Example: Planetary gear with a large ratio
fig. 6.37 shows a gear design where the ratio of the input torque on the drive gear,

to the output torque, on the spider can be huge. In particular, for the design shown
the torque ratio is approximately:

Mout

Min

� 2

RD=RR � 1
where RD is the ratio of the inner drive gear to outer drive gear radius and RR is
the ratio of the inner ring gear to outer ring gear radius. Thus if the inner and outer
drive gears have 49 and 50 teeth, respectively, and the inside and outside of the
ring gear have 50 and 51 teeth then the torque multiplication is nearly 5000. (See
homework 6.2.18).
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gives that N D F= tan � so if � is small
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Figure 6.32: Cutaway drawing of a tog-
gle switch and a simplified schematic
of the idea. The lever, spring and
plunger rotate about C. The spring is
prestressed so that the plunger presses
hard against the rocker. The plunger
slides on the rocker (input line) which
is pressed against contact at outputs A
or B. The relevant idea here is that the
force of the plunger on the rocker can
be much bigger than the input force on
the lever (cutaway from NKK Switches
online catalogue).
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Figure 6.33: One gear may be thought
of as a lever.
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teeth, b) Free body diagrams, c) The
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forces from unseen gears, d) the conse-
quent free body diagrams.

Pulleys
We have already studied a pulley as a single object (see page 207. Now we
show, as you probably have learned a few times before in school, how to use
pulleys to amplify or attenuate force. We assume pulleys are round, massless,
and have frictionless bearings.

The key fact for statics analysis is

For an ideal round pulley with negligible mass (or negligible angular
acceleration) the tension on the cable is the same on both sides of the
pulley:

T1 D T2

The classic problem is shown in fig. 6.35a where you would like to use a
pulley to make the task easier. Figures 6.35b-c show three possible uses
of pulleys. If, at a glance, you can’t see that these three designs are quite
different in their effects you should puzzle them out slowly now.

Because the two tension in the rope that wraps around the pulley is the
same on both sides, the central rope has twice the tension. Design (b) gives
no mechanical advantage but does allow one to pull down in order to lift the
weight. Design (c) halves the effort. Design (d), which might look superfi-
cially similar to (c) doubles the required pulling force, requiring 4 times the
force of (c).

By using pulleys in combination one can get various force attenuations
and gains. The 10-pulley design in fig. 6.36 multiplies the force by about
1000.
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lets you pull down instead of up, c) a pulley halves the needed pull, d) a pulley doubles the
needed pull.
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Figure 6.36: Archimedes pulley. A pulley arrangement sometimes commonly attributed to
Archimedes. With 10 pulleys, he could lift a weight ofW with a pull of about T D 2�10W �
W=1000. With 20 pulleys the force amplification is by more than a million. With 67 pulleys
he, assuming he was as strong as the average person, could hoist a rock the size of the moon.

General force amplification concepts
If a mechanism generates a large force ratio (output/input) this usually corre-
sponds to a large ratio in some geometric quantities. For a lever we have the
ratio of two lever arms. For a wedge the small wedge angle, and for a toggle
also a small angle.

More precisely

For a frictionless transmission the ratio of the input force to output force
is the reciprocal of the ratio of input motion to output motion.

For a high-gain lever the handle moves much further than the load. For a
narrow wedge the slip distance is much bigger than the spreading distance.
For a toggle the motion of the compressed end is much smaller than that
of the applied load. That the force amplification is identical to the motion
attenuation follows from energy conservation: the work into the mechanism
is equal to the work out.

So when Archimedes pulls in a kilometer of rope while lifting a rock with
67 pulleys. the moon, only lifts 2�67 km or about one hundred millionth of
a nanometer. Similarly with levers. When Archimedes famously said:

Give me a lever long enough and a fulcrum on which to place it,
and I shall move the world,

he was careful not to say how far he would move it.
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Figure 6.37: A high gain planetary
gear system, so named because the
‘planet’ gears go around the ‘sun’ gear.
Often planetary gears depend on the sun
or the spider or the ring not rotating.
In this design all three rotate. A CCW
torque is applied to the Inner drive gear
which is welded to the outer drive gear.
The outer drive gear turns the ring gear
CW. The inner drive gear turns the con-
nection gear CW which turns the sun
gear CCW. The three planet gears spin
between the inside of the ring gear and
the outside of the sun gear. If the in-
side of the ring gear moves a little faster
down than the outside of the sun gear
moves up, then the spider turns CW with
the center of the planet gears.
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SAMPLE 6.6 A wheeled suitcase of length 60 cm, height 30 cm and ‘weigh-
ing’ 20 kg on the airport check-in counter, has a telescopic handle of length
40 cm. The suitcase is dragged at an angle � D 30�. Assuming good wheels
(negligible friction), find the force applied on the handle in order to wheel
the suitcase steadily. (Take g � 10m=s2).
Solution The free-body diagram of the suitcase is shown in fig. 6.38. The reaction force at
the wheel is almost vertical because of negligible friction. So, we can also assume the force
F applied at the handle to be almost vertical. We assume that the center of mass G is located
at the geometric center of the rectangular suitcase. Now the moment balance equation about
point A,

P
MA D 0, gives

*rG=A � .�mg O|/C*rB=A � F O| D*
0:

Substituting*rG=A D `1
2
O�C h

2 On, *rB=A D .`1 C `2/
O�, and noting that O� � O| D cos � Ok and

On � O| D � sin � Ok, we have

�1
2
mg.`1 cos � � h sin �/ OkC F.`1 C `2/ cos � Ok D 0

) F D 1

2
mg

�
`1

`1 C `2
� h

`1 C `2
tan �

�
:

Substituting `1 D 60 cm; `2 D 40 cm; h D 30 cm; � D 30� and mg D 200N, we get

F D 1

2
� 200N

�
60 cm
100 cm

� 30 cm
100 cm

tan 30�
�
D 42:7N:

F D 42:7N

SAMPLE 6.7 The figure shows a basic toggle mechanism. (a) If the applied
force is P D 20N and the mechanism is in equilibrium at � D 5�, find the
force applied by the spring. (b) If doubling the load P (to P D 40N) causes
a decrease of � by 1� (to � D 4�), does the spring force at C double too?
Solution The free-body diagrams of the pin connecting the two rods and the BC are shown
in fig. 6.40. From the static equilibrium of the pin B, we haveX

Fx D 0 ) T2 cos � � T1 cos � D 0 ) T1 D T2X
Fy D 0 ) �.T1 C T2/ sin � � P D 0 ) T2 D � P

2 sin �
:

which follows from setting T1 C T2 D 2T2 since T1 D T2. Now, we consider the free-body
diagram of rod BC. The force balance equation in the x-direction (

P
Fx D 0) gives

�T2 cos � � F D 0 ) F D �T2 cos � D P cos �
2 sin �

:

Since � is small, we have sin � � � and cos � � 1. Thus F D P=2� where � is in radians.
Substituting P D 20N and � D 5�=180, we get

F D 20N
2�=36

D 115N

which is almost 6 times P .
(b) If P is doubled, we might expect F to double because F � P=2� . But if � also

decreases to � D 4�, repeating the calculation above with P D 40N, and � D 40� we get
F D 286N which is 2.5 times the previous spring force.

For P D 20N; � D 5�; F D 115NI and for P D 40N; � D 4�; F D 286N
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SAMPLE 6.8 A gear train: In the compound gear train shown in the fig-
ure, the various gear radii are: RA D 10 cm; RB D 4 cm; RC D 8 cm and
RD D 5 cm. The input load Fi D 50N. Assuming the gears to be in static
equilibrium find the machine load Fo.

Solution You may be tempted to think that a free-body diagram of the entire gear train will
do since we only need to find Fo. However, it is not so because there are unknown reactions
at the axle of each gear and, therefore, there are too many unknowns. On the other hand, we
can find the load Fo easily if we go gear by gear from the left to the right.

The free-body diagram of gear A is shown in Fig. 6.42. Let F1 be the force at the contact
tooth of gear A that meshes with gear B. From the moment balance about the axle-center O,P *
MO D*

0, we have

*rM � *
Fi C*rN �

*
F1 D *

0

�FiRA OkC F1RA
Ok D *

0

) F1 D Fi :

Similarly, from the free-body diagram of gear B and C (together) we can write the moment
balance equation about the axle-center P as

F1RB
OkC F2RC

Ok D *
0

) F2 D R
B

R
C

F1

D R
B

R
C

Fi :

Finally, from the free-body diagram of the last gear D and the moment equilibrium about its
center R, we get

�F2RD OkC FoRD
Ok D *

0

) Fo D F2

D R
B

R
C

Fi

D 4 cm
8 cm

� 50N D 25N:

Fo D 25N
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SAMPLE 6.9 Find the force F to hold the 100 kg box shown in the figure
in equilibrium. Assume g � 10m=s2.

Solution The free-body diagrams of the two pulleys are shown in fig. 6.45 where the tension
in the rope running over the two pulleys has been assumed as T . For the lower pulley D, the
force balance in the y-direction,

P
Fy D 0, requires

2T �mg D 0 ) T D mg

2
:

The free-body diagram of the upper pulley C contains an unknown reaction force R at the
attachment point C. However, if we write moment balance about point C,

P
MC D 0, this

unknown force contributes nothing. Let the radius of pulley C be r . Thus, the moment balance
equation about C gives

T r � F r D 0

) F D T D mg

2
� 500N:

F � 500N

SAMPLE 6.10 A container box weighing 1 kN is dragged slowly and
steadily along the floor with force F as shown in the figure. The coefficient
of friction between the box and the floor is 0.6. Find the force required to
pull the box and the force amplification obtained by the pulley arrangement.
Solution It is clear from the figure that the same rope passes over the two pulleys used in the
arrangement to pull the box. Let the tension in the rope be T . A partial free-body diagram
(that includes forces acting only in the x-direction) of the box along with the pulley attached
to it is shown in fig. 6.47. The same figure also shows the free-body diagram of pulley A at
the force end. From the force balance equation for the box in the x-direction, we get

f � 3T D 0 ) T D f

3
D �mg

3
:

Now, from the force balance of pulley A in the x-direction, we get

2T � F D 0

) F D 2T D 2�mg

3

D 2 � .0:6/ � .1 kN/
3

D 400N:

Since the force of friction on the box while sliding is f D �mg D 0:6.1 kN/ D 600N and
the force applied at A to overcome this friction is 400N, the force amplification is 1.5. That
is, the pulley arrangement amplifies the input force (400N) 1.5 times at the output end.

F D 400N; Force amplification D 1:5
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SAMPLE 6.11 A differential hoist is used to lift a crate of mass 500 kg.
The hoist pulley uses two discs of radius 30 cm and 25 cm. Find the force
F required to lift the crate steadily. Take g � 10m=s2.

Solution The free-body diagrams of the upper pulley and the lower pulley are shown in
fig. 6.49. Since the lower pulley is slightly smaller than the upper pulley, the chain passing
over the two pulleys is not exactly vertical but makes a small angle with the vertical. Thus
the tension forces shown in the free-body diagrams are slightly off from the vertical direction.
However, since the angle is very small, we can treat T to be essentially vertical.

For the lower pulley, the force balance in the y direction gives

2T �mg D 0

) T D mg

2
:

Now the moment balance about point C,
P
MC D 0, for the upper pulley gives

F ro C T ri � T ro D 0

) F D
�
ro � ri
ro

�
T

D
�
1 � ri

ro

�
mg

2

D
�
1 � 25 cm

30 cm

�
5000N
2

D 417N

Thus the force amplification in this case is about 12 (5000 N/417 N). From the analysis above,
it is also clear that the ratio of the radii of the two disks used in the upper pulley decide this
force amplification. One can get a big force amplification, at least theoretically, by making
ri � ro. In this problem, for example, if ri D 29 cm rather than the given 25 cm, we get
ri=ro � 0:97 giving F � 83N which corresponds to a force amplification of 60.

F D 417N

Filename:sfig6-2-pulleys3

F

Figure 6.49:

Filename:sfig6-2-pulleys3a

F

R

mg

T T

ro ri

x

y

C

Figure 6.50:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



356 Chapter 6. Transmissions and mechanisms 6.2. Force amplification

Filename:sfig6-2-wedge

A

B

FA

FB

θ

Figure 6.51: A wedge with friction �
between the blocks. Treat the walls as
frictionless.

Filename:sfig6-2-wedgefriction

FA

NA

NB

FB
F

F

F

F

FA

NA

NB

FB

θ

a)

b)

φ φ

φ

φ

A

A

B

B

Figure 6.52: Free body diagrams of a
wedge a) assuming A slides down, b) as-
suming A slides up

SAMPLE 6.12 A wedge with friction. Consider the wedge described in the
text (page 347), but now with friction � between the blocks.

Consideration of friction qualitatively changes the behavior of the ma-
chine. For simplicity still take the wall and floor interactions to be friction-
less.

1. What is the relation between FA and FB when block A is sliding down?

2. What is the relation between FA and FB when block A is sliding up?

3. Under what conditions is it impossible for FB to slide block A up, even
when FA is vanishingly small? Such a case is called ‘nonbackdrive-
able’ or ‘self-locking’.

How do your answers simplify for small wedge angle � and small friction
angle � (with tan� D �).

Solution Figure 6.51 shows free body diagrams of wedge blocks. We draw separate free
body diagrams for the case when (a) block A is sliding down and block B to the right, and (b)
block A is sliding up and block B to the left. In both cases the friction resists relative slip and
obeys the sliding friction relation

Ff D tan�����
�

N

where fig. 6.51 shows the resultant contact force (normal component plus frictional compo-
nent) and its angle � to the surface normal.

1. Block A sliding down: Assuming block A is sliding down we get from free body
diagram 6.51a that

For block A;
nP *

Fi D
*
0
o
� O| ) �FA C F sin.� C �/ D 0

For block B;
nP *

Fi D
*
0
o
� O{ ) �FB C F cos.� C �/ D 0:

Eliminating F we get,

FB D 1

tan.� C �/
FA: (6.13)

When A slides down ) FB D 1

tan.� C �/
FA:

If we take a taper of 6
�

and a friction coefficient of � D :3 () � � 17
�
) we get that

FB=FA � 2:5 instead of 10 as we got when neglecting friction. The wedge still serves
as a way to multiply force, but substantially less so than the frictionless idealization
led us to believe.

2. Block A sliding up: Now lets consider the case when force FB is pushing block B to
the left, pinching block A, and forcing it up. The only change in the calculation is the
change in the direction of the friction interaction force. From free body diagram 6.51b

For block A;
nP *

Fi D
*
0
o
� O| ) �FA C F sin.� � �/ D 0

For block B;
nP *

Fi D
*
0
o
� O{ ) �FB C F cos.� � �/ D 0

Eliminating F we get,
FA D tan.� � �/FB : (6.14)

When A slides up ) FB D tan.� C �/FA:

Again using � D 6
�

and � D 17
�

we see that if FB D 100 lbf then FA D tan.�11�/ �
100 lbf � �20 lbf. That is, the 100 pounds doesn’t push block A up at all, but even
with no gravity you need to pull up with a 20 pound force to get it to move.
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If we insist that the downwards force FA is positive or zero, that the pushing force FB
is positive, and that block A is sliding up then there is no solution to the equilibrium
equations whenever � > � . (Actually we didn’t need to do this second calculation at
all. Eqn 1 shows the same paradox when � C � > 90

�
. Trying to squeeze block B to

the right for large � is exactly like trying to squeeze block A up for small � .)

3. Self-locking: This self-locking situation is intuitive. In fact it’s hard to picture the
contrary, that pushing a block like B would lift block A. If you view this wedge mech-
anism as a transmission, it is said to be non-backdrivable whenever � > � . Even
though pushing down on A can ‘drive’ block B to the right, but pushing to the left on
block B cannot ‘back-drive’ block A up. Non-backdrivability is a feature or a defect
depending on context 2.
The borderline case of backdrivability is when � D � and FB D FA= tan 2� . Assum-
ing � is a fairly small angle we get

FB D FA
tan 2�

� FA
2�

� 1

2

FA
tan �

� 1

2
� (the value of FB had there been no friction).

Thus the design guideline:

Non-back-drivable transmissions are generally 50% or less efficient, they trans-
mit 50% or less of the force they would transmit if they were frictionless.

To use a wedge in this backwards way requires very low friction. A rare case where a
narrow wedge is back drivable is with a fresh wet watermelon seed squeezed between
two pinched fingers.

2Standard car transmissions are back-
driven when they are push-started and
when a driver downshifts to slow the car
instead of using the brakes. On the other
hand most electric hand-mixers cannot
be backdriven; you can’t turn the motor
by forcing the beater blade (Unplug be-
fore trying.)
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6.3 Mechanisms
We would now like to analyze things built of pieces that are connected in a
way that amplifies, attenuates or redirects a force or moment.

For completeness, we present the statics recipe for machines, although it
is an exact repeat of the recipe used for frames.

� Draw free body diagrams of
– the whole machine; and
– the separate parts of the machine; and
– collections of parts of the machine if such seems likely to be

fruitful;
– Use the principal of action and reaction in the free body dia-

grams so that there is only one unknown force at a point where
two bodies contact;

� for each free body diagram write equilibrium conditions. These
should yield three independent scalar equations for each non-point
part (in 2D)

� solve some or all of the equilibrium equations for desired un-
knowns

Some useful tricks and shortcuts include:

� for any two force bodies assign an equal valued tension to each end
(thus eliminating any need or use for equilibrium equations for that
object)

� To minimize calculation, look for a subset of the equilibrium equations
that

– contains your unknowns of interest, and
– has as many unknowns as scalar equations, and
– contains as few equations as possible.

Example: Stamp machine
Pulling on the handle (below) causes the stamp arm to press down with a force N
at D. We can find N in terms of Fh by drawing free body diagrams of the handle
and stamp arm, writing three equilibrium equations for each piece and then solving
these 6 equations for the 6 unknowns (Ax , Ay , FC , N , Bx , and By ).
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For this problem, the answer can be found more quickly with a judicious choice of
equilibrium equations.

For the handle;
nP *

M=B D
*
0
o
� Ok ) �hFh C dFc D 0

For the stamp arm;
nP *

M=A D*
0
o
� Ok ) �.d C w/Fc C `N D 0

eliminating Fc ) N D h.d C w/

d`
Fh:

Note that the stamp force N can be made very large by making d small and thus
the handle nearly vertical. Often in structural or machine design one or another
force gets extremely large or small as the design is changed to put pieces in near
alignment.

Example: Improved stamp machine
Figure 6.52 shows a stamp machine with all the same components. The method of
analysis is identical. However the design represents an improvement 2 ways:

� The lever in the stamp arm amplifies rather then attenuates the stamp force.
� In the previous design it gets harder and harder to generate a given stamp

force as the stamped object compresses. In this design the toggle mechanism
associated with the lever arm and sliding pin is in compression. Thus as the
stamping progresses and the handle becomes more vertical the stamping force
increases for a fixed hand-force.

Non-rigid structures are mechanisms
A non-rigid structure cannot carry all loads and, if not also redundant, has
more equilibrium equations than unknown reaction or interaction force com-
ponents. Such a structure is also called a mechanism. The stamp machine
above is a mechanism if there is assumed to be no contact at D. In particular
the equilibrium equations cannot be satisfied unless Fh D 0. Mechanisms
have variable configurations. That is, the constraints still allow relative mo-
tion.
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Figure 6.53: An improved stamp ma-
chine.
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Figure 6.54: Stamp machine with roller.
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Figure 6.55: a) A chain or pulley drive
involving two sprockets or pulleys and
one chain or belt, b) free body diagrams
of each of the sprockets/pulleys.

An attempt to design a rigid structure that turns out to be a mechanism is a
design failure. But for machine design, the mechanism aspect of a structure
is essential. Even though mechanisms are called ‘statically indeterminate’
because they cannot carry all possible loads, the desired forces can often
be determined using statics. For the stamp machine above the equilibrium
equations are made solvable by treating one of the applied forces, say N , as
an unknown, and the other, F in this case, as a known. This is a common
situation in machine design where you want to determine the loads at one
part of a mechanism in terms of loads at another part. For the purposes
of analysis, a trick is to make a mechanism determinate by putting a pin
on rollers connection to ground at the location of any forces with unknown
magnitudes but known directions.

Example: Stamp machine with roller
Putting a roller at D, the location of the unknown stamp force, turns the stamp
machine into a determinate structure.

Pulley and chain drives

Chain and pulley drives are kind of like spread out gears (fig. 6.54). The
rotation of two shafts is coupled not by the contact of gear teeth but by a belt
around a pulley or a chain around a sprocket. For simple analysis one draws
free body diagrams for each sprocket or pulley with a little bit of chain as in
fig. 6.54b. Note that T1 ¤ T2, unlike the case of an ideal undriven pulley.
Applying moment balance we find,

For gear A;
nP *

Mi=A D
*

0
o
� Ok ) �RA.T2 � T1/CMA D 0

For gear B;
nP *

Mi=B D
*

0
o
� Ok ) RB.T1 � T2/ �MB D 0

eliminating .T2 � T1/ ) MB D
RB

RA
MA or MA D

RA

RB
MB

exactly as for a pair of gears. Note that we cannot find T2 or T1 but only their
difference. Typically in design if, say, MA is positive, one would try to keep
T1 as small as possible without the belt slipping or the chain jumping teeth.
If T1 grows then so must T2, to preserve their difference. This increase in
tension increases the loads on the bearings as well as the chain or belt itself.

4-bar linkages

Four bar linkages often, confusingly, have 3 bars, the fourth piece is the
something bigger. A planar mechanism with four pieces connected in a loop
by hinges is a four bar linkage. Four bar linkages are remarkably common.
After a single body connected at a hinge (like a gear or lever) a four bar
linkage is one of the simplest mechanisms that can move in just one way
(have just one degree of freedom).

A reasonable model of seated bicycle pedaling uses a 4-bar linkage
(fig. 6.55a). The whole bicycle frame is one bar, the human thigh is the
second, the calf is the third, and the bicycle crank is the fourth. The four
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hinges are the hip joint, the knee joint, the pedal axle, and the bearing at the
bicycle crank axle. A more sophisticated model of the system would include
the ankle joint and the foot would make up a fifth bar.

A standard door closing mechanism is part of a 4-bar linkage (fig. 6.55b).
The door jamb and door are two bars and the mechanism pieces make up the
other two.

A standard folding ladder design is, until locked open, a 4-bar linkage
(fig. 6.55c).

An abstracted 4-bar linkage with two loads is shown in fig. 6.55d with
free body diagrams in fig. 6.55e. If one of the applied loads is given, then the
other applied load along with interaction and reaction forces make up nine
unknown components (after using the principle of action and reaction). With
three equilibrium equations for each of the three bars, all these unknowns
can be found.

Slider crank

A mechanism closely related to a four bar linkage is a slider crank
(fig. 6.56a). An umbrella is one example (rotated 90

�
in fig. 6.56b). If the

sliding part is replaced by a bar, as in fig. 6.56c, the point C moves in a circle
instead of a straight line. If the height h is very large then the arc traversed
by C is nearly a straight line so the motion of the four-bar linkage is almost
the same as the slider crank. For this reason, slider cranks are sometimes
regarded as a special case of a four-bar linkage in the limit as one of the bars
gets infinitely long.
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Figure 6.56: Four bar linkages. a) A bi-
cycle, thigh, calf, and crank, b) a door
closer, c) a folding ladder, d) a generic
mechanism, e) free body diagrams of
the parts of a generic mechanism.
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6.6 Shears with gears
Many cutters, pliers and shears are essentially two levers pivoting
against each other. For example these shears

Filename:tfigure-FiskarsBefore

consist of two levers, JAQ and KAP, pivoted at A. The hands squeeze
the handles at J and K causing a cutting force on an object between
the blades at P and Q. The force at P, say, is jKAj=jAP j times the
force at K (from moment balance about A using a free body diagram
of KAP). Two possible deficiencies of this bi-lever design are that

� One may want more mechanical advantage but not longer
handles, and

� For a given hand strength (available force at J and K) the
force at the cutting edge gets less and less as the location of
the cut force at P and Q moves farther out on the blade, away
from A.

The Fiskars company, known mostly for scissors using the basic de-
sign above, has some designs that address these deficiencies. The
loppers in problem 6.3.9 use a 3 piece mechanism to address these
issues. Here, even more elaborately, are Fiskars shears using 4 mov-
ing parts.

Filename:tfigure-FiskarsShears

The two identical blades AP and AQ are hinged at A. The two iden-
tical handles JB and and KC are hinged to the blades at B and C.
Each handle also has gear teeth at the end that engage gear teeth on
the opposite blade. Lets take P and Q to be the point of contact of
the object being cut.

Lets try to understand the mechanism without detailed analy-
sis (see homework problem 6.3.10). To start, forget handle KC and
assume that blade BAQ is held firmly by something outside. Blade

CAP is attached at A about which it is free to spin. Handle JB is
attached at B about which it is free to spin. But JB and CAP roll
against each other with engaged gear teeth. So if handle JB rotates
counter-clockwise about B then CAP rotates clockwise about A.

Although the gear teeth are complex looking, there is always an
effective contact point G between handle JB and blade CAP on the
line segment AB. G is effectively a hinge between JB and CAP. You
can think of the handle as a lever with force points at J, B and G.
Thus blade CAP is closed by the force on the gear teeth at G. The
shorter BG the bigger the forces at B and G.

Simultaneously you could think of blade CAP as fixed with
blade BAQ and handle KC hinged to it and geared to each other at G’
(not shown). Thus blade CAP is also closed by an upwards force at
C from handle KC. Similarly blade BAQ is closed by a downwards
force at B from handle JB and a downwards force at G’ from handle
KC.

The effective hinges G and G’ have locations which change as
the blades close. When blades are wide open G and G’ are near
A. When the blades are closed G and G’ have moved to about the
midpoint between B and A and C and A, respectively.

If G was at A then this 4-piece design would be equivalent to a
standard 2-piece cutter. Because BG is shorter than BA this design
gives a bigger downwards force at B.

The shape of the geared curves makes the distance BG decrease,
and the distance AG increase, as the blades close. Thus for given
forces acting at J and Q, as the blades close the force at B increases,
the force at G increases, and the lever-arm AG increases. These three
effects partially compensate for the standard scissors problem, the
decreasing mechanical advantage from the distance AP increasing
as the blades close.

Another way to see the mechanical advantage of this design
compared to the 2-piece design is to see that during a cut the han-
dle angle decrease is greater than the blade angle decrease. Follow-
ing the general rule for mechanisms, a motion attenuation is a force
gain.

Filename:tfigure-FiskarsShears2
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Mechanism details.
The effective hinge point
G, between one handle and
the opposite blade, moves
towards the handle as the
handles and blades close.
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SAMPLE 6.13 A slider crank: A torque M D 20N�m is applied at the
bearing end A of the crank AD of length ` D 0:2m. If the mechanism is in
static equilibrium in the configuration shown, find the load F on the piston.

Solution The free-body diagram of the whole mechanism is shown in Fig. 6.58. From the
moment equilibrium about point A,

P *
MA D*

0, we get

*
M C*rB=A � .

*
B C *

F / D *
0

�M OkC 2` cos � O{ � .By O| � F O{/ D *
0

.�M C 2By` cos �/ Ok D *
0

) By D M

2` cos �
:

The force equilibrium,
P *
F D*

0, gives

.Ax � F /O{C .Ay C By/ O| D 0

Ax D F

Ay D �By
Note that we still need to find F or Ax . So far, we have had only three equations in four
unknowns (Ax ; Ay ; By ; F ). To solve for the unknowns, we need one more equation. We now
consider the free-body diagram of the mechanism without the crank, that is, the connecting
rod DB and the piston BC together. See Fig. 6.59. Unfortunately, we introduce two more
unknowns (the reactions) at D. However, we do not care about them. Therefore, we can write
the moment equilibrium equation about point D,

P *
MD D*

0 and get the required equation
without involving Dx and Dy .

*rB=D � .�F O{C By O|/ D *
0

`.cos � O{ � sin � O|/ � .�F O{C By O|/ D *
0

By` cos � Ok � F ` sin � Ok D *
0:

Dotting the last equation with Ok we get

F D By
cos �
sin �

D M

2` cos �
� cos �

sin �

D M

2` sin �

D 20N�m
2 � 0:2m �

p
3=2

D 57:74N:

F D 57:74N

Note that the force equilibrium carried out above is not really useful since we are not inter-

ested in finding the reactions at A. We did it above to show that just one free-body diagram of

the whole mechanism was not sufficient to find F . On the other hand, writing moment equa-

tions about A for the whole mechanism and about D for the connecting rod plus the piston is

enough to determine F .
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SAMPLE 6.14 A flyball governor: A flyball governor is shown in the figure
with all relevant masses and dimensions. The relaxed length of the spring is
0.15 m and its stiffness is 500 N=m.

1. Find the static equilibrium position of the center collar.

2. Find the force in the strut AB or CD.

3. How does the spring force required to hold the collar depend on �?

Solution Let `0.D 0:15m/ denote the relaxed length of the spring and let ` be the stretched
length in the static equilibrium configuration of the flyball, i.e., the collar is at a distance `
from the fixed support EF. Then the net stretch in the spring is � � �` D `� `0. We need to
determine `, the spring force k�, and its dependence on the angle � of the ball-arm.

The free-body diagram of the collar is shown in fig. 6.61. Note that the struts AB and CD
are two-force bodies (forces act only at the two end points on each strut). Therefore, the force
at each end must act along the strut. From geometry (AB = BE = d ), then, the strut force
F on the collar must act at angle � from the vertical. Now, the force balance in the vertical
direction, i.e., �

P *
F D*

0� � O|, gives

�2F cos � C k� D mg: (6.15)

Thus to find � we need to find F and � . Now we draw the free-body diagram of arm EBG as
shown in fig. 6.62. From the moment balance about point E, we get

*rG=E � .�2mg O|/C*rB=E �
*
F D *

0

2d O� � .�2mg O|/C d O� � F.�sin� O{C cos � O|/ D *
0

�4mgd. O� � O|����
� sin � Ok

/C Fd�� sin �. O� � O{����
cos � Ok

/C cos �. O� � O|����
� sin � Ok

/� D *
0

4mgd sin � OkC Fd.� sin � cos � Ok � cos � sin � Ok/ D *
0

.4mgd sin � � 2Fd sin � cos �/ Ok D *
0:

Dotting this equation with Ok and assuming that � ¤ 0, we get

2F cos � D 4mg: (6.16)

Substituting eqn. (6.16) in eqn. (6.15) we get

k� D mg C 2F cos � D mg C 4mg D 5mg

) � D 5mg

k
D 5 � 2 kg � 9:81m=s2

500N=m
D 0:196m:

1. The equilibrium configuration is specified by the stretched length ` of the spring
(which specifies � ). Thus,

` D `0 C � D 0:15mC 0:196m D 0:346m:

Now, from ` D 2d cos � , we find that � D 30:12�.

2. The force in strut AB (or CD) is

F D 2mg= cos � D 45:36N:

3. The force in the spring k� D 5mg as shown above and thus, it does not depend on � !
In fact, the angle � is determined by the relaxed length of the spring.

(a) ` D 0:346m; (b) F D 45:36N; (c) k� ¤ f .�/
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SAMPLE 6.15 : A motor housing support: A slotted arm mechanism is
used to support a motor housing that has a belt drive as shown in the figure.
The motor housing is bolted to the arm at B and the arm is bolted to a solid
support at A. The two bolts are tightened enough to be modeled as welded
joints (i.e., they can also take some torque). Find the support reactions at A.

Solution Although the mechanism looks complicated, the problem is straightforward. We
cut the bolt at A and draw the free-body diagram of the motor housing plus the slotted arm.
Since the bolt, modeled as a welded joint, can take some torque, the unknowns at A are
*
A.D Ax O{CAy O|/ and

*
MA. The free-body diagram is shown in Fig. 6.64. Note that we have

replaced the tension at the two belt ends by a single equivalent tension 2T acting at the center
of the axle. Now taking moments about point A, we get

*
MA C*rC=A � 2

*
T C*rG=A �m*g D*

0

where

*rC=A � 2
*
T D .`O{C h O|/ � 2T .� cos � O{C sin � O|/

D 2T .` sin � C h cos �/ Ok
*rG=A �m*g D �.`C d/O{C .anything/ O|� � .�mg O|/

D �mg.`C d/ Ok:

Therefore,
*
MA D �*rC=A � 2

*
T �*rG=A �m*g

D �2T .` sin � C h cos �/ OkCmg.`C d/ Ok
D �2.5N/.0:1m � sin 60� C 0:04m � cos 60�/ Ok

C 2 kg � 9:81m=s2 � .0:1C 0:01/m Ok
D 1:092N�m Ok:

The reaction force
*
A can be determined from the force balance,

P *
F D*

0 as follows.

*
A C 2

*
T Cm*g D *

0

) *
A D �2*T �m*g

D �10N.�1
2
O{C

p
3

2
O|/ � .�19:62N O|/

D 5NO{C 10:96N O|:
*
MA D 1:092N�m Ok and

*
A D 5NO{C 10:96N O|
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SAMPLE 6.16 Push-up mechanics: During push-ups, the body including
the legs, usually moves as a single rigid unit; the ankle is almost locked, and
the push-up is powered by the shoulder and the elbow muscles. A simple
model of the body during push-ups is a four-bar linkage ABCDE shown in
the figure. In this model, each link is a rigid rod, joint B is rigid (thus ABC
can be taken as a single rigid rod), joints C, D, and E are hinges, but there is
a motor at D that can supply torque. The weight of the person, W D 150 lbf,
acts through G. Find the torque at D for �1 D 30� and �2 D 45�.

Solution The free-body diagram of part ABC of the mechanism is shown in Fig. 6.66. Writ-
ing moment balance equation about point A,

P *
MA D*

0, we get

*rC �
*
C C*rG �

*
W D*

0:

Let*rC D r
Cx
O{Cr

Cy
O| and *rG D r

Gx
O{Cr

Gy
O| for now (we can figure it out later).

Then, the moment equation becomes

.rCx
O{C rCy

O|/ � .Cx O{C Cy O|/C .rGx
O{C rGy

O|/ � .�W O|/ D*
0

�.CyrCx
� CxrCy / Ok �W rGx Ok D

*
0�

[ ] � Ok ) CyrCx
� CxrCy D W rGx

: (6.17)

We now draw free-body diagrams of the links CD and DE separately (Fig. 6.67) and write the
moment and force balance equations for them.

For link CD, the force equilibrium
P *
F D*

0 gives

.�Cx CDx/O{C .Dy � Cy/ O| D
*
0:

Dotting with O{ and O| gives

Dx D Cx

Dy D Cy
(6.18)

and the moment equilibrium about point D, gives

M Ok � a.cos �2 O{C sin �2 O|/ � .�Cx O{ � Cy O|/ D *
0

M OkC .Cya cos �2 � Cxa sin �2/ Ok D *
0: (6.19)

Similarly, the force equilibrium for link DE requires that

Ex D Dx

Ey D Dy
(6.20)

and the moment equilibrium of link DE about point E gives

�M CDxa sin �1 CDya cos �1 D 0: (6.21)

Now, from eqns. (6.18) and (6.21)

�M C Cxa sin �1 C Cya cos �1 D 0: (6.22)

Adding eqns. (6.19) and (6.22) and solving for Cx we get

Cx D
cos �1 C cos �1
sin �2 � sin �1

Cy :

For simplicity, let

f .�1; �2/ D
cos �1 C cos �1
sin �2 � sin �1
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so that
Cx D f .�1; �2/Cy : (6.23)

Now substituting eqn. (6.23) in (6.17) we get

Cy D
r
Gx

r
Cx

� r
Cy
f
W:

Now substituting Cy and Cx into eqn. (6.22) we get

M D
r
Gx
a.cos �1 C f sin �1/

r
Cx

� r
Cy
f

W

where

rGx
D .`=2/ cos � � h sin �

rCx
D ` cos � � h sin �

rCy
D ` sin � C h cos �:

Now plugging all the given values: W D 160 lbf; �1 D 30�; �2 D 45�; ` D 5 ft; h D
1 ft; a D 1:5 ft, and, from simple geometry, � D 9:49�,

f D 7:60

rCx
D 4:77 ft; rCy D 1:81 ft; rGx D 2:30 ft

) M D �269:12 lb�ft:

M D �269:12 lb�ft
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SAMPLE 6.17 A spring and rod buckling model: A simple model of side-
ways buckling of a flexible (elastic) rod can be constructed with a spring and
a rigid rod as shown in the figure. Assume the rod to be in static equilibrium
at some angle � from the vertical. Find the angle � for a given vertical load
P , spring stiffness k, and bar length `. Assume that the spring is relaxed
when the rod is vertical.

Solution When the rod is displaced from its vertical position, the spring gets compressed or
stretched depending on which side the rod tilts. The spring then exerts a force on the rod in
the opposite direction of the tilt. The free-body diagram of the rod with a counterclockwise
tilt � is shown in Fig. 6.69. From the moment balance

P *
MO D*

0 (about the bottom support
point O of the rod), we have

*rB �
*
P C*rB �

*
Fs D

*
0:

Noting that

*rB D ` O�;
*
P D �P O|;

and
*
Fs D k.*rA �*rB/

D k.` O| � ` O�/;

we get

` O� � .P O|/C ` O� � k`. O| � O�/ D *
0

�P`. O� � O|/C k`2. O� � O|/ D *
0:

Dotting this equation with . O� � O|/ we get

�P`C k`2 D 0

) P D k`:

Thus the equilibrium only requires that P be equal to k` and it is independent of � ! That is,
the system will be in static equilibrium at any � as long as P D k`.

If P D k`, any � is an equilibrium position.
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Problems for
Chapter 6
Machines

6.1 Springs
Preparatory Problems
6.1.1 Find the force F required to push
the massless block by 1 cm to the right if
k D 500N=m. �

Filename:pfig-springs-2p
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Problem 6.1.1

6.1.2 A force F D 20N is applied on the
massless block shown in the figure. Find
the displacement of the block for equilib-
rium if k D 100N=cm. �

Filename:pfig-springs-3p
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Problem 6.1.2

6.1.3 A network of relaxed springs holds
a massless block as shown in the fig-
ure where k1 D 100N=cm and k2 D
400N=cm. If the block is pushed to the
right by 2 cm, find the force F to hold the
block in equilibrium. �
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Problem 6.1.3

6.1.4 A block of mass m D 300 kg hangs
from the ceiling with the help of a network
of springs in series and parallel as shown.
Taking k D 20 kN=m and g D 10m=s2,
find the stretch in the two side (the left and
right) springs. �

Filename:pfig-springs-3p1sv
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Problem 6.1.4

6.1.5 For the arrangement of springs
shown in the figure, k1 D 50N=cm and
k2 D 100N=cm. Find

a) the equivalent spring stiffness of the
arrangement,

b) the displacement of the block if a
force F D 50N acts on the block.

�

Filename:pfig-springs-2p2s
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F
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Problem 6.1.5

6.1.6 Find F in terms of some or all of
k1,`1, k2, `2, `0 and �. Note that F is
generally not zero even if � is zero.

a) Springs in parallel.
b) Springs in series.

Filename:pfigure-spring2
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Problem 6.1.6

More-Involved Problems
6.1.7 A massless block is held in position
by a network of springs shown in the fig-
ure. If the blcok is displaced to the right
by 1 cm from the relaxed position of the
springs, a force of F D 50N is required
to keep the block in equilibrium. Find the
value of k. �

Filename:pfig-springs-3p3s
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Problem 6.1.7

6.1.8 A box weighing 1000 N is hung from
the ceiling using a network of springs, each
with stiffness k D 500N=cm. Find the
stretch in each spring. �

Filename:pfig-springs-3p2sv
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Problem 6.1.8

6.1.9 For the netwrok of springs shown be-
low, find the stiffness and strength of each
netwrok if the stiffness and strength of in-
dividual springs are k D 10 kN=m and
T0 D 2 kN, respectively.

Filename:pfig-springs-strstf
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Problem 6.1.9

6.1.10 Find the stretch in each spring to
hold the pin in equilibrium for F D 10 kN
if the relaxed length (in the horizontal po-
sition) of each spring is `0 D 15 cm and
k D 10 kN=m.

Filename:pfig-springs-angle2p
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Problem 6.1.10

6.1.11 A mass slides with negligible fric-
tion in a rigid horizontal track. It is also
pulled by a zero-rest-length spring (`0 D
0) of stiffness 50 kN=m. Find the horizon-
tal position x of the pin if it is in equilib-
rium with an applied force F D 1000N.

Filename:pfig-springs-angle1h
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Problem 6.1.11
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6.1.12 A zero length spring (relaxed length
`0 D 0) with stiffness k D 5N=m sup-
ports the pendulum shown. Assume g D
10 N=m. Find � for static equilibrium. �

Filename:pfigure2-blue-80-2-a
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Problem 6.1.12

6.1.13 In the figure shown, the two springs
with k1 D 50N=cm and k2 D 100N=cm
are in relaxed position when h D 30 cm
and ` D 40 cm (and, of course, F D 0).
Find the position of the pin on the hori-
zontal track and change in length of each
spring if F D 200N.

Filename:pfig-springs-angle2ph

F

k
k h

�

x
y

Problem 6.1.13

6.1.14 In the mechanism shown, the re-
laxed length of the spring is `=2 and the
length of the bar AB is ` D 2m. For
F D 500N, find the equilibrium angle �
of the rod and the stretch in the spring.

Filename:pfig-springs-inclinedbar
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Problem 6.1.14

6.1.15 The ends of three identical springs
are rooted at the corners of a 10 cm equi-
lateral triangle with base that is in the O{ di-
rection. Find the force

*
F needed to hold

the ends of the springs 5 cm to the right of
the triangle center if

a) `0 D 0, k D 10N= cm?

b) `0 D 10=
p
3 cm, k D 10N= cm?

Filename:pfigure-threesprings
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Problem 6.1.15

6.1.16 The hoop is rigid, round and fric-
tionless and the force is tangent to the
hoop.

a) In terms of some or all of k, `0,r ,
and � , find F .

b) How does the answer above sim-
plify in the special case that `0 D
0? [You can do this by simplifying
the expression above, or by doing
the problem from scratch assuming
`0 D 0. In the latter case, an answer
can be generated quickly if vector
methods are used.]

Filename:pfigure-spring4
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Problem 6.1.16

6.1.17 The square box mechanism shown
consists of three identical bars and two
identical diagonal springs in their relaxed
configuration. Each bar is 0:4m long. A
horizontal force F D 100N acts at C.
Find the change in length of each spring
if k D 10 kN=m. �

Filename:pfig-springs-kinematics1
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Problem 6.1.17

6.1.18 In the mechanism shown, the pin
is held in the center of the square frame
of side 1m with relaxed springs of stiff-
ness k D 5 kN=m in the absence of any
force. Find the change in length of each
spring when an applied horizontal force
F D 50N keeps the pin in equilibrium at a
position slightly to the right of the center.

Filename:pfig-springs-kinematics2
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Problem 6.1.18

6.2 Levers, Wedges,
Toggles, Gears and
Pulleys
6.2.1 A suitcase of length ` D 0:5m is
pulled along steadily with a force F D
100N as shown in the figure.

a) Find the weight W of the suitcase.
b) Find the ground force on the wheel

(both magnitude and direction).
c) What is force amplification if you

consider F as the input and W as
the output.

Filename:pfig6-lever-suitcase
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Problem 6.2.1
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6.2.2 A wheelbarrow containing 100 kg of
this-n-that is wheeled steadily with a force
F as shown in the figure. For the given ge-
ometry and g � 10m=s2, find the required
force F .

Filename:pfig6-lever-wheelbarrow
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Problem 6.2.2

6.2.3 A bottle-opener ABC contains a cut-
out AB of approximate diameter 2 cm that
clamps on the bottle cap. The arm BC is
approximately 15 cm long. If the cap is
opened by applying a vertical force F D
10N at C, find the force on the cap at B.

Filename:pfig6-lever-bottleopener
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Problem 6.2.3

6.2.4 A cut-out view of a garlic press is
shown in the figure. For an input force
Fi D 10 lbf, find the output force Fo at
the site of the press. What is the force am-
plification?

Filename:pfig6-lever-garlicpress
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Problem 6.2.4

6.2.5 A simple wrench is shown in the fig-
ure along with the relevant dimensions. If
the torque required on the approximately
circular bolt of diameter 1 cm is 2N�m and
the coefficient of friction between the bolt
and wrench is � D 0:2, find the input force
Fi .

Filename:pfig6-lever-wrench
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Problem 6.2.5

6.2.6 Assuming all frictionles contacts,
find the force F on the wedge required to
lift the the sphere weighing 500N if the
wedge angle � D 10�.

Filename:pfig6-wedge
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Problem 6.2.6

6.2.7 A cutter, shown in the figure, uses a
toggle mechanism BCD to get a big force
amplification at the cutting edge. A partial
free-body diagram of one of the arms of
the cutter is shown in the figure. Assuming
an input force of Fi D 20N at A, find the
intermediate output force Fo at C when

a) � D 30�,

b) � D 10�.

Filename:pfig6-toggle-cutter
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Problem 6.2.7

6.2.8 A toggle-like mechanism is used
in a folding chair shown in the pictures
here. The metallic link DB gets almost
parallel to the seating plank AC when the
chair is open. Given the dimensions d1 D
30 cm; d2 D 10 cm; � D 2 cm and the
force at A, Fi D 500N, find the force in
the link DB. Why is this force so big or
small? In practice why would you never
see such a large force? �

Filename:pfig6-toggle-chair
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Problem 6.2.8

6.2.9 A gear of radius 250mm is meshed
in with a rack that carries a horizontal load
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F D 50N. Find the torque M on the gear
that is require for equilibrium.

Filename:pfig6-gears1

F = 50 N M

r = 250 mm

Problem 6.2.9

6.2.10 The input gear A of radius rA D
10 cm drives gear B that is one and a half
times bigger than gear A. Gear B, in turn,
drives a rack. If the input torque on gear
A is Mi D 30N�m, find the load F on the
rack.

Filename:pfig6-gears2
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Problem 6.2.10

6.2.11 In the gear arrangement shown,
gears G1 and G2 are welded together. The
output gear G3 is one third the size of gear
G2.

a) Is this gear train for torque amplifi-
cation or for torque reduction?

b) If the input torque Min on gear G1
is 300N�m, find the output torque
Mout.

Filename:pfig6-gears3
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Problem 6.2.11

6.2.12 At the input to a gear box, a 100 lbf
force is applied to gear A. At the output,
the machinery (not shown) applies a force

of FB to the output gear. Assume the sys-
tem of gears is at rest. What is FB?

Filename:pg131-3-a
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Problem 6.2.12

6.2.13 A 100 lbf force is applied to one
rack. At the output, the machinery (not
shown) applies a force of FB to the other
rack. Assume the gear-train is at rest.
What is FB?

Filename:ch4-5-a
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Problem 6.2.13

6.2.14 The gear train and spindle shown
in the figure are used for hoisting heavy
loads. For the dimensions given, if the load
F D 2 kN, find the torque M that the mo-
tor A must apply for equilibrium.

Filename:pfig6-gears4
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Problem 6.2.14

6.2.15 The figure shows a brush gear (also
called a crown wheel) where wheel C of
radius ro, rolls on the surface of wheel
D without slipping. In addition, the posi-
tion r of wheel C from the center of wheel
D can be varied. Let the input torque on
wheel D be Mi .

a) Find the output torqueMo on wheel
C as a function of r .

b) Find the output torque Mo when
r D ro and when r D ro=4.

c) If the output torque were not to ex-
ceed 100 times the input torque,
where will you put safety latches on
the axle of wheel C?
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Problem 6.2.15

6.2.16 For the gear train shown in
the figure, find the torque amplification
Mout=Min.
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Problem 6.2.16

6.2.17 A torque amplifying planetary gear
is shown in the figure where the sun-gear is
free to rotate but the ring-gear is fixed. The
sun-gear drives five planet-gears that drive
the spider-gear through their axles housed
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in bearings in the spider. The radius of the
planet-gears rp D 50mm and the radius of
the sun-gear is twice as big. If the input
torque on the sun-gear is 2000N�m, find
the output torque on the spider.

Filename:pfig6-gears-planetary1
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Problem 6.2.17

6.2.18 Consider the high gear ratio plane-
tary gear discussed on page 349 of the text.
Let rDi

and rDo
be the inner and outer

radii, respectively, of the drive gear, and
rRi and rRo be the inner and outer radii,
respectively, of the ring-gear. Let rs and rp
denote the radii of the sun and the planet-
gear respectively. Show that the ratio of
the output torque Mout on the spider-gear
to the input torque Min on the drive gear is
approximately given by

Mout
Min

� 2

RD
RR

� 1
where RD D rDi

=rDo
and RR D

rRi =rRo .

Filename:pfig6-gears-planetary2
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Problem 6.2.18

6.2.19 A force F D 100N acts at A. The
pulleys are frictionless. Find the force on
the box applied by the pulley. �

Filename:pfig6-pulley-simple
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Problem 6.2.19

6.2.20 A forceF is applied as shown in the
pulley arrangements shown in (a) and (b).
Which arrangement gives a bigger force
amplification on the box?

Filename:pfig6-pulley-friction
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Problem 6.2.20

6.2.21 A weight W is held in place with a
force F D 100N applied through a mass-
less pulley as shown in the figure. The pul-
ley is attached to a rod AB which, in turn,
is held horizontal with the help of a string
CB. Find the tension (or compression) in
rod AB.

Filename:pfigure4-1-rp9
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Problem 6.2.21

6.2.22 Given W and the frictionless pul-
leys shown find the tension T needed to lift
the weight in the situations shown.

Filename:pfigure-simplepulleys
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Problem 6.2.22

6.2.23 In the two cases shown in (a) and
(b), find the maximum force F that can
be applied before the box starts skidding
on the ground. Take m D 50 kg and
g � 10m=s2. Which arrangement re-
quires smaller force an why?

Filename:pfig6-pulley-friction1
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Problem 6.2.23

6.2.24 The pulley arrangement shown in
the figure uses a spring EG of stiffness
k D 200N=cm. If the spring is stretched
by 1:5 cm under the application of force F
for equilibrium, find F .
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Filename:pfig6-pulley-spring
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Problem 6.2.24

6.2.25 Find the force on the mass at A in
terms of F and thus find the force amplifi-
cation provided by the pulley arrangement
used.

Filename:pfig6-pulley-complex
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Problem 6.2.25

6.2.26 In the figure shown, there is no fric-
tion between block A and the vertical wall
but there is friction (� D 0:3) between
block B and the floor. If mB D 30 kg, find
the mass of block A for equilibrium.

Filename:pfig6-pulley-gravity1
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Problem 6.2.26

6.2.27 Find the ratio of the massesm1 and
m2 so that the system is at rest.

Filename:pulley4-c

m1

m2

A

B

30o

60o

g

Problem 6.2.27

6.2.28 If the mass and pulley system
shown in the figure is in equilibrium when
the spring is stretched by 3 cm, find m,
given k D 500N=m and g � 10m=s2.

Filename:pfig6-pulley-gravity3
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Problem 6.2.28

6.3 Machines
6.3.1 A simply supported two bar mech-
anism supports a load of 200N at joint B
with the help of a horizontal force F ap-
plied at joint C. Find F .

Filename:pfigure4-1-rp12
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Problem 6.3.1

6.3.2 Pulling on the handle causes the
stamp arm to press down at D. Neglect
gravity and assume that the hinges at A and
B, as well as the roller at C, are friction-
less. Find the force N that the stamp ma-
chine causes on the support at D in terms
of some or all of Fh; w; d; `; h; and s. �
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Problem 6.3.2

More-Involved Problems
6.3.3 See Problem 4.2.17 on page 249. A
person who weighsW stands on tiptoes on
one foot. Assume the weight of the foot is
negligible.

a) Draw a free-body diagram of the
whole person and find the force of
the ground on the foot front.

b) Draw a free body diagram of the
foot and find the force of the calf on
the foot at the ankle and the tension
in the Achilles Tendon.

Filename:pfigureSoodak4-25
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Problem 6.3.3

6.3.4 See Problem 4.2.17 on page 249. A
person with weight W D 140 lbf has an
upper body with weight 0:7W with center
of mass at C. The back muscles are ideal-
ized as a single muscle with one end (the
muscle origin also at C. Use the idealiza-
tion and geometry shown.

a) Find the back-muscle tension and
the force of the lower body on the
upper body at the hips.

b) Repeat the problem but assume that
the person is lifting a 30 lbf load at
D.

Filename:pfigureSoodak4-26

B C 

D 
Pelvis 

Back 

Muscle 

Spine 

C 

12o30o 

12 ′′ 
10 ′′ 

T 

Problem 6.3.4
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6.3.5 In the flyball governor shown, the
mass of each ball is m D 5 kg, and the
length of each link is ` D 0:25 m. There
are frictionless hinges at points A, B , C ,
D, E, F where the links are connected.
The central collar has mass m=4. As-
suming that the spring of constant k D
500 N/m is uncompressed when � D
� radians, what is the compression of the
spring?
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Problem 6.3.5

6.3.6
a) Find F for equilibrium for the par-

allelogram structure shown assum-
ing the rest length of the spring is
zero.

b) Comment on how your answer
above depends on � .

Filename:pfigure-spring5
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Problem 6.3.6

6.3.7 A common lamp design is shown. In
principle the lamp should be in equilibrium
in all positions. According to the original
patent from the 1930s it can be, even with
no friction in the joints. Unfortunately, the
recent manufacturers of this lamp seem to
have lost the wisdom of the original patent.
Show how to place what springs so this
lamp is in equilibrium for all � < �=2 and
� < �=2. [Hint: use springs with zero rest
length.]

Filename:pfigure-spring6
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Problem 6.3.7: Lamp.

6.3.8 Log carrier. This self-locking
scissors-mechanism gadget is used to pick
up logs and blocks of ice. The 5 cm wide
and 3 cmhigh diamond arrangement of
hinges ABCD makes up a 4-bar linkage.
The grips E and H are 16 cmapart and
9 cm below D. The block weighs 250N.
Neglect the weight of the mechanism.

a) What is the horizontal component
of the force on the block at E?

b) What is the minimum coefficient of
friction � for which this device self
locks?

Filename:pfigure-loghanger
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Problem 6.3.8

6.3.9 Gear teeth on handle JB mesh with
teeth on handle-and-blade KAP at point G
midway between hinges A and B. Assume
that in the configuration of interest J, B and
A are co-linear, that K, A and Q are co-
linear and that the cutting contact points Q
and P are effectively coincident, that angle
JAK = 20

�
, JB D 40 cm, BA D 6 cm,

KA D 46 cm, AP D AQ D 3 cm, and
that the co-linear squeezing forces at J and
K are 100N.

a) Find the cutting force at Q and P.
b) Replace this design with one that

has no tooth engagement at G. But
instead handle JB and blade BAQ
are welded together as one piece.
Assuming the same geometry as be-
fore, what then is the cutting force
at Q and P?

c) Without detailed calculations, ex-
plain the ratio of the two answers
above. �
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Problem 6.3.9

6.3.10 These 4 piece shears use the mech-
anism in problem 6.3.9 twice over. Co-
linear hand forces FJK are applied to han-
dles JB and KC at J and K. Handle JB is
hinged to blade BAQ at B. Handle KC is
hinged to blade CAP at C. The blades are
hinged to each other at A. Handle JB is ef-
fectively hinged to CAP, by means of gear
teeth, at G, a point on the line segment AB.
Similarly KC is effectively hinged to BAQ
at point G’ on the segment AC. The cut
object presses with colinear forces FPQ
on the blades at P and Q. See box 6.6 on
page 362 for more pictures of these shears.

Assume FJK D 100N, JB D KC D
30 cm, AB D AC D 6 cm, AG D AG0 D
3 cm, and AP D AQ D 20 cm. Assume
AB, BJ, AC,and CK all make angles of
�20� with a horizontal line. Assume P
and Q are coincident and on a horizontal
line extending from A.

a) Find FPQ.
b) Replace this design with one where

JB is welded to BAQ at B, KC is
wleded to CAP at C, and there are
no contacting gears. In this same
geometry what is FPQ?
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c) Give a quantitative estimate, but not
a detailed calculation that tells you
the ratio of the forces in the above
two problems? �

Filename:pfigure-mech-Fiskars
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Problem 6.3.10

6.3.11 The garden cutters shown are a
4-bar linkage. Estimate the locations of
points, as needed, using the given dimen-
sions as a scale (the drawn clippers are
shrunk slightly from reality to simplify the
numbers).

a) If the handle is squeezed with a pair
of 50N forces at J and K what is the
cutting force at P and Q? �

b) If the handle is squeezed with a pair
of 50N forces at I and H what is the
cutting force at P and Q? �

c) If this design was changed by elim-
inating link DB and welding handle
JCDI to the blade CAQ, what would
be the answers to the two questions
above. �

d) Describe in words, the reasons for
the similarities and differences be-
tween the answers above. �

Filename:pfigure-FiskarsCutter
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Problem 6.3.11

6.3.12 The pliers shown are made of five
pieces modeled as rigid: HEG and its mir-
ror image, DCE and its mirror image, and
link CC’. You may assume that the goeme-
try is symmetric about a horizontal line
(the top is a mirror image of the bottom).
The load F and dimensions shown are
given. (See also similar problem 6.2.7)

a) Find the force squeezing the piece
at D; �

b) Find the tension in CC’; �

c) What happens to the squeezing
force if d is made smaller, ap-
proaching zero? Why can’t this
work in practice? �
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Problem 6.3.12

6.3.13 For simplicity the vice grips shown
in the photo are approximated as in the
drawing. Round piece AA’ is gripped be-
tween the upper handle/jaw ABEG and the

lower jaw A’BC. The upper handle ABEG
is pinned to the lower jaw A’BC at B. Han-
dle CDH is pinned to the lower jaw at C
and to the bar DE at D. Bar DE is pinned
to the upper handle ABEG at E. The 25 lbf
forces act at G and H as shown. Dimen-
sions are as shown. What is the magnitude
of the force at A? �

Filename:S03q4p8vicedrawing

Problem 6.3.13

6.3.14 Pipe wrench. A wrench is used to
turn a pipe as shown in the figure. Neglect-
ing the weight of the pipe, find

a) the torque of the pipe wrench forces
about the center of the pipe

b) the forces on the pipe at C and D

c) the needed friction coefficient be-
tween the wrench and pipe for the
wrench not to slip.

d) what design change would reduce
this needed coefficient of friction
(what change of dimensions)? �

e) given that the design change above
is possible, why isn’t it used? [hint:
implement the design change and
calculate the forces on the pipe.] �
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Problem 6.3.14

6.3.15 The center of mass of 200 pound
structure AEGBC is at G. It is held by
rollers at A and B as well as with the rope
which starts at E, wraps around the pulley
at C, and ends at D.

a) Find the force of the ground on the
structure at A. �

b) Find the tension in the rope. �
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Problem 6.3.15

6.3.16 Consider a bike on level ground that
is held from falling sideways with forces
that don’t push it forward or back. Assume
that all the bearings are ideal and that the
wheels don’t slip.
Rr D radius of rear wheel,
Rs D radius of rear sprocket,
Rp D crank length from crank-axle to
pedal, and
Rc D radius of chain wheel (front
sprocket).
What backwards force F on the seat is re-
quired to keep the bike from going forward
(i.e., to maintain static equilibrium) if

a) A person sits on the bike and pushes
back on the bottom pedal with a
force Fp? (is F > 0?)

b) A person standing next to the bike
pushes back on the pedal with force
Fp? (is F > 0?)

Your answer should be in terms of some
or all of Rr ; Rs ; Rp ; Rc ; and Fp . Of great
interest is whether F is bigger or less than
zero. So pay close attention to signs.
To solve this problem you have to draw
several free body diagrams: 1) of the
whole bike and rider (if the rider is on the
bike), 2) of the crank-pedal-chain-wheel
system, with a little bit of chain, 3) The
rear wheel and rear sprocket, with a little
bit of chain.
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Problem 6.3.16

6.3.17 The proposed nutcracker design
consists of two moving parts: a lever
hinged to the fixed base at B and a punch
hinged to the fixed base at A. All joints and
slots are assumed to have negligible fric-
tion.
Mechanism and geometry clarifications:
The vertical lever has a pin at C and a hori-
zontal force F applied at D. The punch has
a slot in which the lever pin slides at C. The
slot is parallel to the line AC. The spheri-
cal nut is cracked by being squeezed be-
tween the vertical surface of the punch at
N and the vertical surface attached to the
base. Point N at the left edge of of the nut
is level with the sliding pin at C. The hori-
zontal distance from C to N does not enter
the solution, but assume it is c if you need
it for an intermediate calculation.
Quantities: F D 10 lbf, a D 2 in, b D
10 in.

a) Find the force acting on the nut at
N. A number is desired (i.e., so
many lbf force). [Hint: Only sub-
stitute in numbers when you have a
formula for your answer in terms of
a, b and F .] �

b) The answer to (a) is conspicuous in
its being either much smaller than
F , very similar to F , or much big-
ger than F . Which is it? Explain, in
words, why. The best possible an-
swer will generate an approximate
formula for the force at N using
next-to-no equations. �
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CHAPTER 7
Tension, shear and

bending moment
The ‘internal forces’ tension, shear and bending moment can vary from point
to point in long narrow objects. Here we introduce the notion of graphing
this variation and noting the features of these graphs.
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In Section 4.4 starting on page 228 we defined the notion of ‘internal forces’,
especially tension T , shear V , and bending moment M . A common issue in
structural mechanics is keeping track of how these internal forces, and other
more advance internal force concepts (ie stress) vary from point to point
in a structure. Commonly this understanding comes from ‘finite-element-
method’ programs 1. However, there are a variety of important engineering
problems for which accurate and useful estimation of internal forces can be
found using methods at the level of this book. These are problems where
the structure of interest is long and narrow. For reasons like those discussed
in the introductory paragraphs about trusses (e.g. the discussion of ‘swiss
cheese’ page 260), long narrow objects are surprisingly common in engi-
neered objects as well as in biologically evolved designs. Despite the avail-
ability of computers for analysis of these, the elementary methods we will
introduce here are useful because,

� For simple problems, they are easier than using a computer;

� The methods here help build understanding and intuition;

� The methods here can give formulas from which a design can be con-
trolled more easily than by numerical parameter studies;

� For very narrow objects, the methods here are often more accurate than
the computer solutions;

� To understand the vocabulary used in the output of the computer pro-
grams you need to understand the concepts associated with the methods
here.

As for elementary truss analysis, the methods here are easily learned and
pleasingly useful. For example, the formulas for bending moment in a
simply-supported overhanging beam not only tell you the ‘internal moment’
for a giving loading, but how to space joists in a floor or the wing supports
on a human-powered hydrofoil. And the capstan formula isn’t just a way to
calculate cable tensions. It tells you how to make a simple modification to
many bicycles to improve the performance of their brakes and derailleurs.

7.1 Free body cuts at arbitrary locations
Tension, shear force, and bending moment diagrams
Engineers often want to know how the internal forces vary from point to
point in a structure. If you want to know the internal forces at a variety of

1 Part of the finite element method is
the dividing of an object into a grid; di-
viding the object of interest into ‘finite
elements’. Film and brochure makers
are magnetically attracted to these grids,
like a bee to a flower. So even if you
have never used one of these programs,
you have seen signs of them, grids su-
perposed on objects, in advertising, sci-
ence, and science-fiction videos.
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points you can draw a variety of free body diagrams with cuts at those points
of interest. Another approach, which we present now, is to leave the position
of the free body diagram cut a variable, and then calculate the internal forces
in terms of that variable.

Example: Tension in a two-force body
Recall that in the first example of this section we found T without ever using in-
formation about the location of the free body diagram cut. So the location does not
effect the tension. For a two force body the tension is a constant along the length.

Example: Tension in a rod from its own weight.
The uniform 1 cm2 steel square rod with density � D 7:7 gm= cm3 and length
` D 100m has total weight W D mg D �`Ag (see fig. 7.1). What is the tension a
distance xD from the top? Using the free body diagram with cut at xD we get:nX

*
Fi D

*
0
o
� O{

) T D �Ag.` � xD/

D .7:7 gm= cm3/.1 cm2/.9:8N= kg/.100m � xD/

D 7:7 � 9:8 gm N m
cm kg

�
100 � xD

m
� � 1 kg
1000 gm

�
� �� �

1

�
100 cm
1m

�
� �� �

1

D 7:5
�
100 � xD

m
�

N:

So, at the bottom end at xD D 100m we get T D 0 and at the top end where
xD D 0m we get T D 750N and in the middle at xD D 50m we get T D 375N.

Because the free body diagram cut location is variable, we can plot the inter-
nal forces as a function of position. This is most useful in civil engineering
where an engineer wants to know the internal forces in a horizontal beam car-
rying vertical loads. Common examples include bridge platforms and floor
joists.

Example: Cantilever M and V diagram
A cantilever beam is mounted firmly at one end and has various loads orthogonal to
its length, in this case a downwards load F at the end (fig. 7.2a). By drawing a free
body diagram with a cut at the arbitrary point C (fig. 7.2b) we can find the internal
forces as a function of the position of C.nP *

Fi D
*
0
o
� O| ) V D FnP *

Fi D
*
0
o
� O{ ) T D 0nP *

MC D
*
0
o
� Ok ) M.x/ D F.x � `/:

That the tension is zero in these problems is so well known that the tension is often
not drawn on the free body diagram and not calculated. We can now plot V.x/ and
M.x/ as in figs. 7.2c and 7.2d. In this case the shear force is a constant and the
bending moment varies from its maximum magnitude at the wall (M D �F `) to
0 at the end. It is the big value of jM j at the fixed support that makes cantilever
beams typically break there.

Often one is interested in distributed loads from gravity on the structure itself
or from a distribution (say of people on a floor). The method is the same.

Example: Distributed load
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A cantilever beam has a downwards uniformly distributed load of w per unit length
(fig. 7.4a). Using the free body diagram shown (fig. 7.4b) we can find:nP *

Fi D
*
0
o
� O| ) fV.x/ O| C R

d
*
F
o
� O| D 0

) V.x/ D R `
x w dx

0

D w � .` � x/

nP *
MC D

*
0
o
� Ok )

n
M.x/.�Ok/ C R

*r=C � d
*
F
o
� Ok D 0

) M.x/ D R `
x .x

0 � x/wdx0

D w � .x02=2 � x0x/
���`
x

D .`2=2 � `x/ � .x2=2 � x2/
D �w � .` � x/2=2:

The integrals were used because of their general applicability for distributed loads.
For this problem we could have avoided the integrals by using an equivalent down-
wards force w � .` � x/ applied a distance .` � x/=2 to the right of the cut. Shear
and bending moment diagrams are shown in figs. 7.4a and 7.4b.

As for all problems based on the equilibrium equations and a given geometry,
the principle of superposition applies.

Example: Superposition
Consider a cantilever beam that simultaneously has both of the loads from the pre-
vious two examples. By the principle of superposition:

V D F C w.` � x/
M.x/ D F.x � `/ C �w.` � x/2=2:

The shear force at every point is the sum of the shear forces from the previous
examples. The bending moment at every point is the sum of the bending moments.

If there are concentrated loads in the middle of the region of interest the
calculation gets more elaborate; the concentrated force may or may not show
up on the free body diagram of the cut bar, depending on the location of the
cut.

Example: Simply supported beam with point load in the middle
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A simply supported beam is mounted with pivots at both ends (fig. 7.3a). First
we draw a free body diagram of the whole beam (fig. 7.3a) and then two more,
one with a cut to the left of the applied force and one with a cut to the right of the
applied force (figs. 7.3c and 7.3d). With the free body diagram 7.3c we can find
V.x/ andM.x/ for x < `=2 and with the free body diagram 7.3d we can find V.x/
and M.x/ for x > `=2.nP *

Fi D
*
0
o
� O| ) V D F=2 for x < `=2

D �F=2 for x > `=2nP *
MC D

*
0
o
� Ok ) M.x/ D Fx=2 for x < `=2

D F.` � x/=2 for x > `=2

These relations can be plotted as in figs. 7.3e and 7.3f. Some observations: For
this beam the biggest bending moment is in the middle, the place where simply
supported beams often break. Instead of the free body diagram shown in (c) and
(d) we could have drawn a free body diagrams of the bar to the right of the cut and
would have got the same V.x/ andM.x/. We avoided drawing a free body diagram
cut at the applied load where V.x/ has a discontinuity.

How to find T , V , and M
Here are some guidelines for finding internal forces and drawing shear and
bending moment diagrams.

� Draw a free body diagram of the whole bar.
� Using the free body diagram above find the reaction forces .
� Draw a free body diagram(s) of the cut bar of interest.

– For each region between concentrated loads draw one free body
diagram.
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– Show the piece from the cut to one or the other end (So that all but
the internal forces are known).

– Don’t make cuts at intermediate points of connection or load ap-
plication.

� Use the equilibrium equations to find T , V , or M (Moment balance
about a point at the cut is a good way to find M .)

� Use the results above to plot V.x/ and M.x/ (T .x/ is rarely plotted).

– Use the same x scale for this plot as for the free body diagram of
the whole bar.

– Put the plots directly under the free body diagram of the bar (so
you can most easily relate features of the loads to features of the
V and M diagrams).

Stress is force per unit area
For a given load, if you replace one bar in tension with two bars side by side
you would imagine the tension in each bar would go down by a factor of 2.
Thus the pair of bars should be twice as strong as a single bar. If you glued
these side by side bars together you would again have one bar but it would
be twice as strong as the original bar. Why? Because it has twice the cross
sectional area.

What makes a solid break is the force per unit area carried by the material.
For an applied tension load T , the force per unit area on an interior free body
diagram cut is T=A. Force per unit area normal to an internal free body
diagram cut is called tension stress and denoted � (lower case ‘sigma’, the
Greek letter s).

� D T=A

Example: Stress in a hanging bar
Look at the hanging bar in the example on page 380. We can find the tension stress
in this bar as a function of position along the bar as:

� D T

A
D �gA.` � x/

A
D �g.` � x/:

Note that the stress for this bar doesn’t depend on the cross sectional area. The
bigger the area the bigger the volume and hence the load. But also, the bigger the
area on which to carry it.

For reasons that are beyond this book, the tension stress tends to be uniform
in homogeneous (all one material) bars, no matter what their cross sectional
shape, so that the average tension stress T

A
is actually the tension stress all

across the cross section.
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We can similarly define the average shear stress �ave (‘tau’) on a free body
diagram cut as the average force per unit area tangent to the cut,

�ave D
V

A
:

For reasons you may learn in a strength of materials class, shear stress is
not so uniformly distributed across the cross section. But the average shear
stress �ave does give an indication of the actual shear stress in the bar (e.g.,
for a rectangular elastic bar the peak shear stress is 50% larger than �ave).

The biggest stresses typically come from bending moment. Motivating
formulas for these stresses here is too big a digression. The formulas for
the stresses due to bending moment are a key part of elementary strength
of materials. But just knowing that these stresses tend to be big, gives you
the important notion that bending moment is a common cause of structural
failure.

Internal force summary
‘Internal forces’ are the scalars which describe the force and moment on
potential internal free body diagram cuts. They are found by applying the
equilibrium equations to free body diagrams that have cuts at the points of in-
terest. The internal forces are intimately associated with the internal stresses
(force per unit area) and thus are important for determining the strength of
structures.
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SAMPLE 7.1 Support reactions on a simply supported beam: A uniform
beam of length 3 m is simply supported at A and B as shown in the figure. A
uniformly distributed vertical load q D 100N=m acts over the entire length
of the beam. In addition, a concentrated load P D 150N acts at a distance
d D 1m from the left end. Find the support reactions.
Solution Since the beam is supported at A on a pin joint and at B on a roller, the unknown
reactions are

*
A D Ax O{C Ay O|;

*
B D By O|:

The uniformly distributed load q can be replaced by an equivalent concentrated load W D
q` acting at the center of the beam span. The free-body diagram of the beam, with the
concentrated load replaced by the equivalent concentrated load is shown in Fig. 7.6. The
moment equilibrium about point A,

P *
MA D*

0, gives

.�Pd �W `

2
C By`/

Ok D*
0

) By D P
d

`
C 1

2
W

D 150N � 1
3
C 1

2
� 300N D 200N:

The force equilibrium,
P *
F D*

0, gives

*
A C By O| � P O| �W O| D*

0

) *
A D .�By C P CW / O|

D .�200NC 150NC 300N/ O| D 250N O|:
*
A D 250N O|; *

B D 200N O|

SAMPLE 7.2 Support reactions on a cantilever beam: A 2 kN horizontal
force acts at the tip of an ’L’ shaped cantilever beam as shown in the figure.
Find the support reactions at A.
Solution The free-body diagram of the beam is shown in Fig. 7.8. The reaction force at A is
*
A and the reaction moment is

*
M D M Ok. Writing moment balance equation about point A,P *

MA D*
0, we get

*
M C*rC=A �

*
F D *

0

*
M C .`O{C h O|/ � .�F O{/ D *

0

) *
M D �Fh Ok

D �2 kN � 0:5m Ok
D �1 kN � m Ok:

The force equilibrium,
P *
F D*

0, gives

*
A C *

F D *
0

) *
A D �*

F D �.�2 kN O{/ D 2 kN O{:
*
A D 2 kN O{; *

M D �1 kN � m Ok
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SAMPLE 7.3 Net force of a uniformly distributed system: A uniformly
distributed vertical load of intensity 100 N=macts on a beam of length ` D
2m as shown in the figure.

1. Find the net force acting on the beam.

2. Find an equivalent force-couple system at the mid-point of the beam.

3. Find an equivalent force-couple system at the right end of the beam.

Solution

1. The net force: Since the load is uniformly distributed along the length, we can find
the total or the net load by calculating the load on an infinitesimal segment of length
dx of the beam and then integrating over the entire length of the beam. Let the load
intensity (load per unit length) be q (q D 100N=m, as given). Then the vertical load
on segment dx is (see Fig. 7.10),

d
*
F D q dx.� O|/:

Therefore, the net force is,

*
Fnet D

Z `

0
q dx.� O|/ D q ` O| D �100N=m � 2m O| D �200N O|:

*
Fnet D �200N O|

2. The equivalent system at the mid-point: We have already calculated the net force
that can replace the uniformly distributed load. Now we need to calculate the couple at
the mid-point of the beam to get the equivalent force-couple system. Again, consider
a small segment of the beam of length dx located at distance x from the mid-point
C (see Fig. 7.11). The moment about point C due to the load on dx is .q dx/x.�Ok/.
But, we can find a similar segment on the other side of C with exactly the same length
dx, at exactly the same distance x, that produces a moment of .q dx/x.COk/. The two
contributions cancel each other and we have a net zero moment about C. Now, you
can imagine the whole beam made up of these pairs that contribute equal and opposite
moment about C and thus the net moment about the mid-point is zero. You can also
find the same result by straight integration:

*
MC D

Z C`=2

�`=2
qx dx.�Ok/ D qx2

2

�����
C`=2

�`=2
.�Ok/ D*

0:

*
Fnet D �200N O|, and

*
MC D

*
0

3. The equivalent system at the end: The net force remains the same as above. We
compute the net moment about the end point B, referring to Fig. 7.12, as follows.

*
MB D

Z `

0
.�x O{/ � .�q dx O|/ D �q

Z `

0
x dx Ok

D �q`
2

2
Ok D �100N=m � 4m2

2
Ok D �200N�m Ok:

*
Fnet D �200N O| and

*
MB D �200N�m Ok
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SAMPLE 7.4 For the uniformly loaded, simply supported beam shown in
the figure, find the shear force and the bending moment at the mid-section
c-c of the beam.

Solution To determine the shear force V and the bending momentM at the mid-section c-c,
we cut the beam at c-c and draw its free-body diagram as shown in fig. 7.14. For writing
force and moment balance equations we use the second figure where we have replaced the
distributed load with an equivalent single load F D .q`/=2 acting vertically downward at
distance `=4 from end A.

The force balance,
P *
F D*

0, implies that

Ax O{C Ay O| � V O| � F O| D*
0:

Dotting with O{ and O|, respectively, we get

Ax D 0

V D Ay � F (7.1)

D Ay �
q`

2
: (7.2)

From the moment equilibrium about point A,
P *
MA D*

0, we get

M Ok �
�
q`

2
� `
4

�
Ok � V `

2
Ok D 0

) M D q`2 C 4V `

8
: (7.3)

Thus, to find V andM we need to know the support reaction
*
A. From the free-body diagram

of the beam in fig. 7.15 and the moment equilibrium equation about point B,
P *
MB D

*
0, we

get

*rA=B �
*
A C*rC=B �

*
Q D *

0

.�Ay`C q`
`

2
/ Ok D *

0

) Ay D
q`

2
D 500N:

Thus
*
A D 500N O|. Substituting

*
A in eqns. (7.2) and (7.3), we get

V D 500N � 500N D 0

M D .250N � 4m/2 C 0

8
D 500N�m:

V D 0; M D 500N�m
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SAMPLE 7.5 The cantilever beam AD is loaded as shown in the figure
where W D 200 lbf. Find the shear force and bending moment on a section
just left of point B and another section just right of point B.

Solution To find the desired internal forces, we need to make a cut at a section just to the
left of B and one just to the right of B. We first take the one that is to the right of point B.
The free-body diagram of the right part of the cut beam is shown in fig. 7.17. Note that if
we selected the left part of the beam, we would need to determine support reactions at A.
The uniformly distributed load 2W of the block sitting on the beam can be replaced by an
equivalent concentrated load 2W acting at point E, at distance a=2 from the end D of the
beam.

Let us denote the the shear force by V C and the bending moment by MC at the section
of our interest. Now, from the force equilibrium of the part-beam BD we get

V C O| � 2W O| D *
0

) V C D 2W

D 400 lbf:

The moment equilibrium about point B,
P *
MB D

*
0, gives

�MC Ok � 2W � 3a
2
Ok D *

0

) MC D �3Wa
D �1200 lb�ft:

Now, we determine the internal forces at a section just to the left of point B. Let the shear
and bending moment at this section be V � and M�, respectively, as shown in the free-body
diagram (fig. 7.18). Note that load W acting at B is now included in the free-body diagram
since the beam is now cut just a teeny bit left of this load.

From the force equilibrium of the part-beam, we have

V � O| �W O| � 2W O| D *
0

) V � D 3W

D 600 lbf

and, from moment equilibrium about point B,
P *
MB D

*
0, we get

�M� Ok � 2W � 3a
2
Ok D *

0

) M� D �3Wa
D �1200 lb�ft:

MC DM� D �1200 lb�ft; V C D 400 lbf; V C D 600 lbf

Note that the bending moment remains the same on either side of point B but the shear

force jumps by V C � V � D 200 lbf D W as we go from right to the left. This jump is

expected because a concentrated load W acts at B, in between the two sections we consider.

Concentrated external forces cause a jump in shear, and concentrated external moments cause

a jump in the bending moment.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 7. Tension, shear and bending moment 7.1. Arbitrary cuts 389

SAMPLE 7.6 Tension in a bar: A T-shaped bar is fixed in a wall at one end
and is acted by three forces as shown in the figure. Find the tension in the
rod at

1. section a-a, and

2. section b-b.

Solution

1. Let us cut the bar at section a-a and consider the part of the bar to the right of the
cut-section. The free-body diagram of this part of the bar is shown in fig. 7.20. The
scalar force balance in the horizontal direction gives

�T � F C 2F D 0

) T D F

D 2 kN:

At section a-a:T D 2 kN

2. Now, we cut the bar at section b-b and again consider the section of the bar to the right
of the cut-section. The free-body diagram of this part of the bar is shown in fig. 7.21.
Again, the force balance in the horizontal direction gives

�T C 2F D 0

) T D 2F

D 4 kN:

At section b-b:T D 4 kN
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SAMPLE 7.7 Tension in a tapered bar due to self weight: A tapered
bar of height 1m, base width 10 cm, top width 4 cm and uniform thickness
4 cm hangs upside down from a ceiling. If the density of the material is
7500 kg=m3, find the tension in the rod halfway from the top. You may take
g � 10m=s2.

Solution Let us cut the bar at a section halfway from the top. The free-body diagram of the
bar below the cut is shown in fig. 7.23. From the scalar force balance in the vertical direction,
we have

T D W

where W is the weight of the lower part of bar below the cut section. Now, W D �Atg

where A is the frontal area, t is the thickness, and � D 7500 kg=m3 is the density of the rod
material. We need to compute W .

The width of the bar at the cut section is c D .aC b/=2 where a D 4 cm and b D 10 cm.
The frontal area of the bar-part is A D .aC c/=2 � .h=2/ where h D 1m. Thus,

W D �

�
aC c

2
� h
2

�
tg

D 7500 kg=m3

�
0:04mC 0:07m

2
� 1m
2
� .0:04m/

�
10m=s2

D 82:5N:

Thus, T D 82:5N.

T D 82:5N
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SAMPLE 7.8 A simple frame: A 2 m high and 1.5 m wide rectangular frame
ABCD is loaded with a 1.5 kN horizontal force at B and a 2 kN vertical
force at C. Find the internal forces and moments at the mid-section e-e of the
vertical leg AB.

Solution To find the internal forces and moments, we need to cut the frame at the specified
section e-e and consider the free-body diagram of either AE or EBCD. No matter which of the
two we select, we will need the support reactions at A or D to determine the internal forces.
Therefore, let us first find the support reactions at A and D by considering the free-body
diagram of the whole frame (fig. 7.25). The moment balance about point A,

P *
MA D *

0,
gives

*rB �
*
F1 C*rC �

*
F2 C*rD �

*
D D *

0

h O| � F1 O{C .h O| C `O{/ � .�F2 O|/C `O{ �D O| D *
0

�F1h Ok � F2` OkCD` Ok D *
0

) D D F1
h

`
C F2

D 1:5 kN � 2
1:5

C 2 kN

D 4 kN:

From force equilibrium,
P *
F D*

0, we have

*
A D �*

F1 �
*
F2 �

*
D

D �F1 O{C F2 O| �D O|
D �1:5 kNO{ � 2 kN O|:

Now we draw the free-body diagram of AE to find the shear force V , axial (tensile) force T ,
and the bending moment M at section e-e.

From the force equilibrium of part AE, we get
*
A � V O{C T O| D *

0

.Ax � V /O{C .Ay C T / O| D *
0

) V D Ax D �1:5 kN

T D �Ay D 2 kN:

From the moment equilibrium about point A,
P *
MA D*

0, we have

M OkC h

2
O| � .�V O{/ D *

0

M OkC V
h

2
Ok D *

0

) M D �V h

2

D �.�1:5 kN/ � 2m
2

D 1:5 k N�m:

V D 1:5 kN; T D 2 kN; M D 1:5 k N�m
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SAMPLE 7.9 Shear force and bending moment diagrams: A simply
supported beam of length ` D 2m carries a concentrated vertical load
F D 100N at a distance a from its left end. Find and plot the shear force
and the bending moment along the length of the beam for a D `=4.

Solution We first find the support reactions by considering the free-body diagram of the
whole beam shown in fig. 7.28. By now, we have developed enough intuition to know that
the reaction at A will have no horizontal component since there is no external force in the
horizontal direction. Therefore, we take the reactions at A and B to be only vertical. Now,
from the moment equilibrium about point B,

P *
MB D

*
0, we get

F.` � a/ Ok � Ay` Ok D *
0

) Ay D F.` � a/
`

D F
�
1 � a

`

�
and from the force equilibrium in the vertical direction, .

P *
F D*

0/ � O|, we get

By D F � Ay D F
a

`
:

Now we make a cut at an arbitrary (variable) distance x from A where x < a (see fig. 7.29).
Carrying out the force balance and the moment balance about point A, we get, for 0 � x < a,

V D Ay D F
�
1 � a

`

�
(7.4)

M D Vx D F
�
1 � a

`

�
x (7.5)

Thus V is constant for all x < a but M varies linearly with x.
Now we make a cut at an arbitrary x to the right of load F , i.e., a < x � `. Again, from

the force balance in the vertical direction, we get

V D �F C F
�
1 � a

`

�
D �F a

`
(7.6)

and from the moment balance about point A,

M D FaC Vx

D Fa � F a
`
x

D Fa
�
1 � x

`

�
: (7.7)

Although eqn. (7.5) is strictly valid for x < a and eqn. (7.7) is strictly valid for x > a,
sustituting x D a in these two equations gives the same value for M.D Fa.1 � a=`// as it
must because there is no reason to have a jump in the bending moment at any point along the
length of the beam. The shear force V , however, does jump because of the concentrated load
F at x D a.

Now, we plug in a D `=4 D 0:5m, and F D 100N, in eqns. (7.4)–(7.7) and plot V and
M along the length of the beam by varying x. The plots of V.x/ and M.x/ are shown in
fig. 7.30.
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SAMPLE 7.10 Shear force and bending moment diagrams by superpo-
sition: For the cantilever beam and the loading shown in the figure, draw the
shear force and the bending moment diagrams by

1. considering all the loads together, and

2. considering each load (of one type) at a time and using superposition.

Solution

1. V.x/ andM.x/ with all forces considered together: The horizontal forces acting at the
end of the cantilever are equal and opposite and, therefore, produce a couple. So, we
first replace these forces by an equivalent couple Mapplied D 100N � 1m D 100N�m.
Since we have a cantilever beam, we can consider the right hand side of the beam after
making a cut anywhere for finding V andM without first finding the support reactions.

Let us cut the beam at an arbitrary distance x from the right hand side. The free-body
diagram of the right segment of the beam is shown in fig. 7.32. From the force balance,P *
F D*

0, we find that

�V O| C qx O| D *
0

) V D qx (7.8)

D .50N=m/x:

Thus the shear force varies linearly along the length of the beam with

V.x D 0/ D 0;

and V.x D 3m/ D 150N:

The moment balance about point C,
P *
MC D

*
0, gives

�M Ok � qx � x
2
OkCMapplied

Ok D*
0

where the moment due to the distributed load is most easily computed by considering
an equivalent concentrated load qx acting at x=2 from the end B. Thus,

) M D Mapplied � q
x2

2
(7.9)

D 100N�m � 50N=m � x
2

2
:

(7.10)

Thus, the bending moment varies quadratically with x along the length of the beam.
In particular, the values at the ends are

M.x D 0/ D 100N�m
and M.x D 3m/ D �125N�m:

The shear force and the bending moment diagrams obtained from eqns. (7.8) and (7.9)
are shown in fig. 7.33. Note that M D 0 at x D 2m as given by eqn. (7.9).
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2. V.x/ and M.x/ by superposition: Now we consider the cantilever beam with only
one type of load at a time. That is, we first consider the beam only with the uniformly
distributed load and then only with the end couple. We draw the shear force and the
bending moment diagrams for each case separately and then just add them up. That is
superposition.

So, first let us consider the beam with the uniformly distributed load. The free-body
diagram of a segment CB, obtained by cutting the beam at a distance x from the end
B, is shown in fig. 7.34. Once again, from force balance, we get

V D qx for 0 � x � ` (7.11)

and from the moment balance about point C,
P *
MC D

*
0, we get

M D �qx � x
2
D �q x

2

2
for 0 � x � `: (7.12)

Figure 7.35 shows the plots of V and M obtained from eqns. (7.11) and (7.12), re-
spectively, with the values computed from x D 0 to x D 3m with q D 50N=m as
given.

Now we take the beam with only the end couple and repeat our analysis. A cut section
of the beam is shown in fig. 7.36. In this case, it should be obvious that from force
balance and moment balance about any point, we get

V D 0

and M D Mapplied:

Thus, both the shear force and the bending moment are constant along the length of
the beam as shown in fig. 7.36.
Now superimposing (adding) the shear force diagrams from Figs. 7.35 and 7.36, and
similarly, the bending moment diagrams from Figs. 7.35 and 7.36, we get the same
diagrams as in fig. 7.37.
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7.2 Singularity functions
For loads w.x/ that are not smooth, singularity functions make it easier to
find the shear force V; bending moment M; slope u0 and displacement u.
Problems with multiple supports or multiple concentrate loads are especially
simplified by use of singularity functions.

Context
In general if you know the downwards load per unit length w.x/ on a beam
you can integrate 4 times to find

V.x/ D �
Z

w.x/ dx C C1

EIu00 DM.x/ D
Z

V.x/ dx C C2;

u0 D
Z

u00 dx C C3 and

u D
Z

u0 dx C C4: (7.13)

These apply for any distributed loading w.x/.
But what kind of function w.x/ do you use for a concentrated load P ;

or a reaction force F ; or for a load that is constant in some regions and zero
in others; or when there is an applied couple? What are the functions w.x/
for such loads and how do you integrate them? The answers are: singularity
functions.

Without singularity functions you have to find separate expressions for
V;M;etc. for the regions to the left and to the right of such discontinuities.
And then, as described in most books about beams, you have to pick inte-
gration constants in the two regions so that there is an appropriate jump, or
not of the V , M , u0 or u. Using singularity functions you can skip all this
matching. You just follow the integration rules and the solution is properly
expressed on both sides of the discontinuity. That is, singularity functions
allow you to do ordinary calculus even with functions that are discontinuous.
Sometimes this is called operational calculus.

Delta function and step function
Dirac delta function. The most famous 1 singularity function is called the
Dirac delta function, or the ‘impulse’ function. If it applies at a it is written:

�.x � a/ D ‘delta of x minus a’:

What function is it? In the classical mathematics sense the delta function
�.x � a/ isn’t a function. Mathematicians were upset about this for a while.
There are lots of ways to think about this function (See fig. 7.38). One way
to think of �.x � a/ is as a function of x that is zero except for very close to
x D a. Near x D a it is as tall as it is narrow. So the area underneath is one.
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Figure 7.39: The Dirac delta function
�.x � a/. By definition, the Dirac delta
function is the bracket function with a
superscript -1:

< x � a >�1� �.x � a/.
You can think of �.x�a/ as very tall and
very narrow with a total area underneath
of 1. In the third case above you have a
box with width � and height 1=�.

1Note, the most famous singularity
function, the delta function, isn’t the
most singular one, at least not in the
mathematical sense of the word ‘singu-
lar’.
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Compare these three curves for the
Heaviside step function with the three
ways of thinking about the delta func-
tion.

Actually �.x � a/ is the limit of infinitely tall and infinitely narrow, but the
area underneath is still equal to one.

Concentrated load P . You can replace a downwards force P with a very
large force per unit length w.x/ acting on a small region near x D a but that
has total force P : Z right of a

left of a
w.x/dx D P:

But if the concentrated load is very high in value and very narrow in spatial
extent, its just like the delta function. Thus for a concentrated load P at a
the associated distributed load w is

w.x/ D P�.x � a/:

Heaviside step function. There are two primary ways to think of the Heav-
iside step function:

1. The step function is the integral of the delta function, informally:Z
�.x � a/ dx D H.x � a/

or more formally Z x

�1
�.x0 � a/ dx0 D H.x � a/:

That is, the Heaviside step function is the cumulative area under the
delta function curve.

2. The Heaviside step function is that function of x that is zero to the left
of a and one to the right of a,

H.x � a/ �
(
0 if x < a,
1 if x � a.

This is pictured in the first of fig. 7.39.

Shear V for a concentrated load. If there is various loading on a beam,
part of which is a concentrated load P at a then the whole w.x/ function is
several terms of which we only write out the term of interest here, P�.x�a/.

w.x/ D : : : P �.x � a/ : : : :
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So, integrating,

V.x/ D �
Z

w.x/ dx

D �
Z w.x/� �� �

: : : P �.x � a/� �� �
P times the delta function

: : : dx

D : : : �PH.x � a/� �� �
�P times the step function

: : : :

If there is a concentrated load P at a then the shear force function V.x/ has
a step down of size P at a.

The ramp function. See fig. 7.40. This one is not so famous 2. The ramp
function is .x � a/ to the right of a (for x > a), and zero to the left of a (for
x < a). So we define the ramp function R.x � a/ as

R.x � a/� �� �
Unit ramp function

�< x � a >1�
(
.x � a/ if x � a,
0 if x < a.

The brackets <> mean that you should think of the whole expression as
being zero if x < a. For x > a the brackets are like ordinary parentheses (at
least for n � 0). Its easy to see thatZ

H.x � a/ dx D R.x � a/

or more formally,
Z x

�1
H.x0 � a/ dx0 D R.x � a/

The switched on parabola, etc. We can keep defining new functions this
way with higher and higher powers. These functions are zero for x < a and
then switch on at x D a, e.g.,

< x � a >2�
(
.x � a/2 if x � a,
0 if x < a.

and

< x � a >3�
(
.x � a/3 if x � a,
0 if x < a.

In the same way that the step function integrates to the ramp we haveZ
< x � a >1 dx D< x � a >2 =2; andZ
< x � a >2 dx D< x � a >3 =3:
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2The ramp function is actually the
Macauley ramp function. But Macauley
isn’t as famous as Dirac or Heaviside so
most people just call it the ramp func-
tion.
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Filename:tfig-singularity4
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Figure 7.42: How to represent loads
with singularity functions. From top to
bottom: an applied couple at x D a, a
concentrated load at x D a, a step in the
distributed load at x D a, and a ramp
function starting at x D a. The most
important case is the concentrated load
P .

Moment, slope and deflection due to a concentrated load. A concen-
trated load P at a contributes P�.x � a/ to w.x/. We already integrated to
get shear, now lets keep going,

w.x/ D : : : P �.x � a/C : : :

V D �
Z

w ) V.x/ D � � � � PH.x � a/C : : :

M D
Z

V ) EIu00.x/ DM.x/ D � � � � PR.x � a/C : : :

u0 D
Z

u0 ) EIu0.x/ D � � � � P < x � a >2 =2C : : :

u D
Z

u0 ) EIu.x/ D � � � � P < x � a >3 =6C : : :

(7.14)

Every concentrated load leads to a displacement term that is cubic in x.

More brackets. So that we don’t have to remember all those names (Dirac,
Heaviside and Macauley) nor the names of their functions (�;H;R) we in-
vent a notation that covers all cases, the last of which we already defined.

< x � a >�1 � �.x � a/;

< x � a >0 � H.x � a/; and

< x � a >1 � R.x � a/:

We can now write eqn. (7.14) with this notation.

Given that w.x/ D : : : P < x � a >�1 C : : :

) V.x/ D � � � � P < x � a >�0 C : : :

) M.x/����
EIu00

D � � � � P < x � a >1 C : : :

) EIu0.x/ D � � � � P < x � a >2 =2C : : :

) EIu.x/ D � � � � P < x � a >3 =6C : : : (7.15)

Note, if the superscript n is positive, think of it as an exponent. If the super-
script is negative it is not an exponent. For negative n the exponent is just a
label marking the degree of singularity: -1 is singular, -2 is more so, etc.

Applied couples. If a couple is applied to a beam it is like a two big equal
and opposite forces next to each other. You can think of this as the derivative
of the delta function. For an applied counterclockwise couple M applied at
a we write
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w.x/ DM < x � a >�2

and use the integration rule
R
< x � a >�2 dx D< x � a >�1. Remember,

for negative n you don’t think of the superscript n as a power, but just as a
label.

The general case
Here is the full definition of the singularity functions and the general formu-
las for their integration.

If n < 0 W < x � a >n�

8�<
�:
0 if x < a,
undefined if x D a,
0 if x > a,

If n � 0 W < x � a >n�
(
0 if x < a,
.x � a/n if x � a,

(7.16)

If n � 0 W
Z

< x � a >n dx �< x � a >nC1

If n � 0 W
Z

< x � a >n dx �< x � a >nC1 =.nC 1/ (7.17)
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Figure 7.43: Graphical representation of
the singularity functions < x � a >n

for �2 � n � 3. The most famous
and most used of these, used in many
science and engineering disciplines, are
the Dirac delta function

�.x � a/ D< x � a >�1 and
the Heaviside step function

H.x � a/ D< x � a >0.
The delta function is also sometimes
called the impulse function. The ramp,
quadratic functions and so on are use-
ful for beam problems, but not so use-
ful in the rest of science and engineer-
ing. The derivative of the delta function,
< x � a >�2 is mathematically even
more singular than the delta function. It
has some uses outside of beam deflec-
tion problems, but is much more rarely
seen than the delta function or the Heav-
iside step function.
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Problems for
Chapter 7
Tension, shear, and bending diagrams

7.1 Shear force, bending
moment and tension
diagrams
Preparatory Problems
7.1.1 A cantilever beam AB is loaded as
shown in the figure. Find the support reac-
tions on the beam at the left end A.

Filename:pfigure4-4-beamcl1

2m

1 kN

Α Β

500 N/m

Problem 7.1.1

7.1.2 A simply supported beam AB of
length ` D 6m is partly loaded with a
uniformly distributed load as shown in the
figure. In addition, there is a concentrated
load acting at `=6 from the left end A. Find
the support reactions on the beam.

Filename:pfigure4-4-beamss2

�/6 �/2

Α Β

200 N
20 N/m

Problem 7.1.2

7.1.3 An (inverted) L-shaped frame is
loaded with two equal concentrated forces
of magnitude 50N each as shown in the
figure. Find the support reactions at A.

Filename:pfigure4-4-frame3

CB
2 m

1 m

1 m

A

F

F

F = 5 0 N

Problem 7.1.3

More-Involved Problems

7.1.4 Find the shear force and the bending
moment at the mid section of the simply
supported beam shown in the figure.

Filename:pfigure4-4-beamss4

�/2 �/2

Α Β

50 N/m

Problem 7.1.4

7.1.5 A cantilever beam ABC is loaded
with a linearly variable distributed load
along two thirds of its span. The intensity
of the load at the right end is 600N=m.
Find the shear force and the bending mo-
ment at section B of the beam.

Filename:pfigure4-4-beamcl5

3m
Α Β

600 N/m

C

Problem 7.1.5

7.1.6 Analyze the frame shown in the fig-
ure and find the shear force and the bend-
ing moment at the end of the vertical sec-
tion of the frame.

Filename:pfigure4-4-frame6

CB

45o

1 m

100 N2 m

A

Problem 7.1.6

7.1.7 A force F D 100 lbf is applied to
the bent rod shown. Before doing any cal-
culations, try to figure out the tension at D
in your head.

a) Find the reactions at A and C.
b) Find the tension, shear and bend-

ing moment at the section D. Check
your answer against what you fig-
ured out in your head.

Filename:pfigure-bentrod

A

B
C

D

⇀
F

3 ft 3 ft

3 ft

1 ft

Problem 7.1.7

7.1.8 Draw the shear force and the bending
moment diagram for the cantilever beam
shown in the figure.

Filename:pfigure4-4-beamcl7

1m

1 kN

Α Β

Problem 7.1.8

7.1.9 A simply supported beam AB is
loaded along one thirds of its span from
both ends by a uniformly distributed load
of intensity 2 kN=m. Draw the shear force
and the bending moment diagram of the
beam.

Filename:pfigure4-4-beamss8

�/3 �/3

Α Β

2 kN/m 2 kN/m

Problem 7.1.9

7.1.10 The cantilever beam shown in the
figure is loaded with a concentrated load
and a concentrated moment as shown in the
figure. Draw the shear force and the bend-
ing moment diagram of the beam.

Filename:pfigure4-4-beamcl9

2m

100 N

Α Β

50 N-m

Problem 7.1.10

7.1.11 A cantilever beam AB is loaded
with a triangular shaped distributed load as
shown in the figure. Draw the shear force
and the bending moment diagrams for the
entire beam.

Filename:pfigure4-4-beamcl10

2m
Α Β

100 N/m

Problem 7.1.11

7.1.12 A regulation 16 ft diving board is
supported as shown.

a) Where is the bending moment the
greatest and how big is it there?
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b) Draw a bending moment diagram
for this board.

Filename:pfigure-divingboard

6 ft

300 lbf

10 ft

Problem 7.1.12

7.1.13 The cantilever steel beam is loaded
by its own weight.

a) Find the bending moment and shear
force at the free and at the clamped
end.

b) Draw a shear force diagram

c) Draw a bending moment diagram

d) The tension stress � in the beam at
the top edge where it is biggest is
given by � D 12M=h3 where h D
1 in for this beam. The strength (the
maximum tension stress the mate-
rial can bear) of soft steel is about
�max D 30; 000 lbf= in2. What is
the longest a beam with this cross
section be made and still not fail?

Filename:pfigure-bendingownweight

Cross section:
1 inch square steel,
ρ = 500 lbm/in3

5 ft

1 in

1 in

Problem 7.1.13

7.1.14 A snow loaded bus-stop awning
(shown partially cut away) on the side of
a building is supported by horizontal, can-
tilevered, beams. The loading that is car-
ried by one beam is as shown below.

a) Find the reaction force and couple
at the wall at A (the force and mo-
ment acting on one beam from the
wall). �

b) Draw shear force and bending mo-
ment diagrams for the beam.

Filename:F02final4-awning

Snow

beam Awning

1m
A

1000N/m

Problem 7.1.14

7.1.15 Draw shear and bending moment
diagrams of the beam shown. Clearly la-
bel the values of the heights of the curves
at jumps, kinks and local maxima (if and
where they exist). �

Filename:F01p2-1-beam

x
�

l/2

A
B

C

w

Problem 7.1.15

7.1.16 A frame ABC is much like a can-
tilever beam with a short bent section of
length 0:5m. The frame is loaded as shown
in the figure. Draw the shear force and
the bending moment diagrams of the en-
tire frame indicating how it differs from an
ordinary cantilever beam.

Filename:pfigure4-4-frame11

CB

1 m2 m

A

100 N/m
Problem 7.1.16

7.1.17 A 10 pound ball is suspended
by a long steel wire. The wire has
a density of about 500 lbm= ft3. The
strength of the wire (the maximum force
per unit area it can carry) is about �max D
60; 000 lbf= in2.

a) First, neglecting the weight of the
wire in the calculation of stress,
what is the weight of wire needed
to hold the weight?

b) Taking account the weight of the
wire in the load calculation, what is
the weight of wire needed to hold
the weight? �

Filename:pfigure-hangingrod

10 mi

y

A(y)

10 lbm

Problem 7.1.17
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CHAPTER 8
Hydrostatics

Hydrostatics concerns the equivalent force and moment due to distributed
pressure on a surface from a still fluid. Pressure increases with depth. With
constant pressure the equivalent force has magnitude = pressure times area,
acting at the centroid. For linearly-varying pressure on a rectangular plate
the equivalent force is the average pressure times the area acting 2/3 of the
way down. The net force acting on a totally submerged object in a constant
density fluid is the displaced fluid’s weight acting at the centroid.

Contents
8.1 Fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . 403

Box 8.1 Adding forces to derive Archimedes’ principle . . . 406
Box 8.2 Pressure depends on position but not on orientation 407

Problems for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . 415
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Hydrostatics is primarily concerned with finding the net force and moment
of still fluid on a surface. The surfaces are typically the sides of a pool, dam,
container, or pipe, or the outer surfaces of a floating object such as a boat or
of a submerged object like a toilet bowl float. Finally, one is sometimes con-
cerned with the force on an imagined surface that separates some water of
interest from the other water. Although the hydrostatics of air helps explain
the floating of hot air balloons, dirigibles, and chimney smoke; and the hy-
drostatics of oil is important for hydraulics (hydraulic brakes for example),
often the fluid of concern for engineers is water. So, as in the title of the
chapter (‘hydro’), we often use the word ‘water’ as an informal synonym for
‘fluid.’

Besides the utility of the subject in applications, hydrostatics is also a
good introduction to distributed forces and continuum mechanics.

8.1 Fluid pressure
Besides the basic laws of mechanics that you already know, elementary
hydrostatics is based on the following two constitutive assumptions (see
page 25):

1) The force of water on a surface is perpendicular to the
surface; and

2) The density of water, � (pronounced ‘row’) is a constant
(doesn’t vary with depth or pressure),

Sometimes we use the weight density  D g� (pronounced ‘gammuh equals
gee row’), the weight per unit volume . The first assumption, that all static
water forces are perpendicular to surfaces on which they act, can be restated:

Still water cannot carry any shear stress.

For near-still water this constitutive assumption is abnormally accurate (com-
pared to most constitutive assumptions for materials), approximately as good
as the laws of mechanics.

The assumption of constant density is called incompressibility because it
corresponds to the idea that water does not change its volume (compress)
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404 Chapter 8. Hydrostatics 8.1. Fluid pressure

1That fluid density does depend on
salinity, temperature and pressure is
sometimes important in hydrostatics. In
particular for determining which water
floats on which other water. This is im-
portant in the ecology of lakes, the ef-
fects of the oceans on climate, and in air
for the stability of the atmosphere, and
the mechanics of fireplace chimneys.

Filename:tfigure-deltaA

⇀
ΔF = -p  ̂n      ∆ A n̂

∆ A

surface

Figure 8.1: A bit of area �A on a sur-
face on which pressure p acts. The out-
ward (into the water) normal of the sur-
face is On so the force is�

*
F D �p On�A.
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Figure 8.2: A small prism of water
is isolated from some water in equilib-
rium. The free body diagram does not
show the forces in the z direction. Force
balance applied to this free body dia-
gram shows that px D py D p, pres-
sure is the same in all directions.

much under pressure. This assumption is reasonable for most purposes. At
the bottom of the deepest oceans, for example, the extreme pressure (about
800 atmospheres) causes water to increase its density only about 4% from
that of water at the surface 1

We also assume that the direction and magnitude of the local gravitational
constant is, well, constant. This assumption becomes inaccurate when con-
sidering, say, the hydrostatics of whole oceans (the direction of the gravity
force changes as you go around the word, this helps keep the Australians in
place), or of the upper atmosphere (the magnitude of the gravity decays with
distance from the center of the earth).

Surface area A, outward normal On, pressure p, and
force

*

F

We are going to be generalizing the high-school physics fact

force D pressure � area

to take account that force is a vector, that pressure varies with position, and
that not all surfaces are flat. So we need a clear notation and sign convention.
The area of a surface is A which we can think of as being the sum of the bits
of area �A that compose it:

A D
Z

dA:

Every bit of surface area has an outer normal On that points from the surface
out into the fluid. The (scalar) force per unit area on the surface is called the
pressure p, so that the force on a small bit of surface is

�
*

F D p .�On/ .�A/
pointing into the surface, assuming positive pressure, and with magnitude
proportional to both pressure and area. Thus the total force and moment due
to pressure forces on a surface :

*

F D R
d

*

F D � RA p On dA

*

MC D R
A d

*

M=C D � RA*
r=C � .p On/ dA

(8.1)

Hydrostatics is the evaluation of the (intimidating-at-first-glance) integrals
8.1 and their role in equilibrium equations. In the rest of this section we
consider a variety of important special cases.

Water in equilibrium with itself
Before we worry about how water pushes on other things, let’s first under-
stand what it means for water to be in static equilibrium. These first important
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Chapter 8. Hydrostatics 8.1. Fluid pressure 405

facts about hydrostatics follow from drawing free body diagrams of various
chunks of water and assuming static equilibrium (see box 8.2 on page 407).

1. Pressure is the same in every direction, px D py D p.
2. Pressure doesn’t vary with side to side position, p.x; y; z/ D

p.y/.
3. Pressure varies linearly with depth, p D �gh D h.

The buoyant force of water on water.

In a place under water in a still swimming pool where there is nothing but
water, imagine a chunk of water the shape of a sea monster. Now draw a free
body diagram of that water. Because your sea monster is in equilibrium, force
balance and moment balance must apply. The only forces are the complicated
distribution of pressure forces and the weight of water. The pressure forces
must exactly cancel the weight of the water and, to satisfy moment balance,
must pass through the center-of-mass of the water monster. So, in static
equilibrium:

The pressure forces acting on a surface enclosing a volume of water is
equivalent to the negative weight passing through the center-of-mass of
the water.

The force of water on submerged and floating objects
The net pressure force and moment on a still object surrounded by still water
can be found by a clever argument credited to Archimedes. The pressure at
any one point on the outside of the object does not depend on what’s inside.
The pressure is determined by how far the point of interest is below the sur-
face by eqn. 8.2 2. So if you can find the resultant force on any object that
is the shape of the submerged object, but replacing the submerged object, it
tells you what you want to know.

The clever idea is to replace your object with water. In this new system
the water is in equilibrium, so the pressure forces exactly balance the weight.
We thus obtain Archimedes’ Principle:

The resultant of all pressure forces on a totally submerged object is an
upwards force with the same magnitude as the weight of the displaced
water. The resultant acts at the centroid of the displaced volume:

*

Fbuoyancy D V O| acting at *
r D

R
*
r=0 dV

V
:

Filename:tfigure-waterbox
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Figure 8.3: Free body diagrams of
aligned boxes of water cut out of a big-
ger body of water. a) a horizontally
aligned box, b) a vertically aligned box.
Force balance on applied to these free
body diagrams shows that p D p.y/.

2If there is no column of water from
the point up to the surface it is still true
that the pressure is h, as you can fig-
ure out by tracking the pressure changes
along on a staircase-like path from the
surface to that point.
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8.1 Adding forces to derive Archimedes’ principle
(One can do most hydrostatics calculations, say typical homework
problems, without being able to reproduce the derivations here.)

Archimedes’ principle follows from adding up all the pressure
forces on the outer surfaces of an arbitrarily shaped submerged solid,
say something potato shaped.

First we find the answer by cutting the potato into french fries.
This approach is effectively a derivation of a theorem in vector calcu-
lus. After that, for those who have the appropriate math background,
we quote the vector calculus directly.

First cut the potato into horizontal french-fries (horizontal
prisms) and look at the forces on the end caps (there are no water
forces on the sides since those are inside the potato).

Filename:tfigure-archimedes1

ΔA0h

n̂

The pressure on two ends is the same (because they have the
same water depth). The areas on the two ends are probably different
because your potato is probably not box shaped. But the area is big-
ger at one end if the normal to the surface is more oblique compared
to the axis of the prism. If the cross sectional area of the prism is
�A0 then the area of one of the prism caps is

�A D �A0=. On � O�/
where O� is along the axis of the prism and On is the outer unit normal
to the end cap (Note�A � �A0 because On � O� � 1).

Filename:tfigure-archimedes2

ΔA n̂

λ̂

n̂ . ̂λΔA ΔA
0
=  

So the net force on the cap is �p�A0 On=. On � O�/. The compo-

nent of the force along the prism is
h
�p�A0 On=. On � O�/

i
� O�which is

�p�A0. An identical calculation at the other end of the french fry
gives minus the same answer. So the net force of the water pressure
along the prism is zero for this and every prism and thus the whole
potato. Likewise for prisms with any horizontal orientation. Thus
the net sideways force of water on any submerged object is zero.

To find the net vertical force on the potato we cut it into vertical
french fries. The net forces on the end caps are calculated just as
in the above paragraph but taking account that the pressure on the
bottom of the french fry is bigger than at the top. The sum of the

forces of the top and bottom caps is an upwards force that is

net upwards force on vertical french fry D �p�A0
D .h/�A0
D .h�A0/
D  �V0

where �V0 is the volume of the french fry. Adding up over all the
french fries that make up the potato one gets that the net upwards
force is V The net result, summarized by the figure below, is that
the resultant of the pressure forces on a submerged solid is an up-
wards force whose magnitude is the weight of the displaced water.
The location of the force is the centroid of the displaced volume.
(Note that the centroid of the displaced volume is not necessarily at
the center of mass of the submerged object.)

Filename:tfigure-archimedes3

γV

� � �

A vector calculus derivation
Here is a derivation of Archimedes’ principle, at least the net

force part, using multi-variable integral calculus. Only read on if
you have taken a math class that covers the divergence theorem. The
net pressure force on a submerged object is

*
Fbuoyancy D � RA p On dA

D � RS p On dS
D � RS .H � z/ On dS

D � RV *r ..H � z// dV

D � RV .�Ok/  dV

D R
V  dV Ok

D (weight of displaced water) Ok:

In this derivation we first changed from calling bits of surface area
dAto dS because that is a common notation in calculus books. The
depth from the surface, of a point with vertical component z from
the bottom, is H � z. The

*r symbol indicates the gradient and its
place in this equation is from the divergence theorem:Z

S

.any scalar/ On dS D
Z
V

*r.the same scalar/ dV:

The gradient of .H � z/ is �Ok becauseH and  are constants.
Note, where we write

R
S some books would write

RR
S , and where

we write
R
V some books would write

RRR
V .
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8.2 Pressure doesn’t depend on direction or horizontal
position and increases linearly with depth

We assume that the pressure p does not vary too wildly from point
to point, thus if we look at a small enough region we can think of the
pressure as constant in that region. If we draw a free body diagram
of a little triangular prism of water the net forces on the prism must
add to zero (see fig. 8.2 on page 8.2). For each surface the magnitude
of the force is the pressure times the area of the surface and the di-
rection is minus the outward normal of the surface. We assume, for
the time being, that the pressure is different on the differently ori-
ented surfaces. So, for example, because the area of the left surface
is a cos �w and the pressure on the surface is px , the net force is
a cos �wpx O{. Calculating similarly for the other surfaces:
*
0 D P *

Fi
D .a cos �/w px O{C .a sin �/w py O| � aw p On� �� �

pressure terms

� a2 cos � sin �w
2

�g� �� �
weight

O|

D aw

0
B@cos � px O{C sin � py O| � p .cos � O{C sin � O|� �� �

On

/

� a cos� sin�
2

�g O|

1
CA

If a is arbitrarily small, the weight term drops out compared to the
pressure terms. Dividing through by aw we get

*
0 D cos �px O{C sin � py O| � p .cos � O{C sin �/ O|:

Taking the dot product of both sides of this equation with O{ and O|
gives that

p D px D py :

Since � could be anything, force balance for the free body diagram
of a small prism tells us that for a fluid in static equilibrium

pressure is the same in every direction.

[Other free body diagrams can be used. That pressure has to be
the same in any pair of directions could also be found by drawing a
prism with a cross section which is an isosceles triangle. The prism
is oriented so that two surfaces of the prism have equal area and
have the desired orientations. Force balance along the base of the
triangle gives that the pressures on the equal area surfaces are equal.
The argument that pressure must not depend on direction in 3D is
generally based on equilibrium of a small tetrahedron.]

Pressure doesn’t vary with side to side position Consider the
equilibrium of a horizontally aligned box of water cut out of a bigger
body of water (fig. 8.3a on page 405). The forces on the end caps
at A and B are the only forces along the box. Therefor they must
cancel. Since the areas at the two ends are the same, the pressure
must be also. This box could be anywhere and at any length and any
horizontal orientation. Thus for a fluid in static equilibrium

pressure doesn’t depend on horizontal position.

If we take the O| or y direction to be up (fig. 8.3 on page 405), then
we have

p.x; y; z/ D p.y/:

Pressure increases linearly with depth Consider the vertically
aligned box of fig. 8.3b.nP *

Fi D
*
0
o
� O| ) p.y/a2 � p.y C h/a2� �� �

pressure terms

��ga2h� �� �
weight

D 0

) pbottom � ptop D �gh:

So the pressure increases linearly with depth. If the top of a lake,
say, is at atmospheric pressure pa then we have that

p D pa C �gh D pa C h D pa C .H � y/
where h is the distance down from the surface, H is the depth to
some reference point underwater and y is the distance up from that
reference point (so that h DH � y). Neglecting atmospheric pres-
sure at the top surface we have the useful and easy to remember
formula:

p D h: (8.2)

Because the pressure at equal depths must be equal and because
the pressure at the top surface must be equal to atmospheric pressure,
the top surface must be flat and level. Thus waves and the like are a
definite sign of static disequilibrium as are any bumps on the water
surface even if they don’t seem to move (as for a bump in the water
where a stream goes steadily over a rock).
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Figure 8.4: The resultant force from a
constant pressure p on a flat plate is
*
F D �pA On acting at the centroid of the
plate.

The result can also be found by adding the effects of all the pressure forces
on the outside surface (see box 8.1 on page 406).

For floating objects, the same argument can be carried out, but since the
replaced fluid has to be in equilibrium we cannot replace the whole object
with fluid, but only the part which is below the level of the water surface.

Displaced fluid
Sometimes people discuss Archimedes’ principle in terms of the displaced
fluid. A floating object in equilibrium displaces an amount of fluid with the
same weight as the object; this is also the amount of volume of the floating
object that is below the water level. On the other hand an object that is totally
under water, for whatever reason (it is resting on the bottom, or it is being
held underwater by a string, etc), displaces as much fluid as the space it
occupies. Putting these two ideas together one can remember that

A floating object displaces its weight, a submerged object displaces its
volume.

The force of constant pressure on a totally immersed
object
When there is no gravity, or gravity is neglected, the pressure in a static fluid
is the same everywhere. Exactly the same argument we have just used shows
that the resultant of the pressure forces is zero. We could derive this result
just by setting  D 0 in the formulas above.

The force of constant pressure on a flat surface
The net force of constant pressure on one flat surface (not all the way around a
submerged volume) is the pressure times the area acting normal to the surface
at the centroid of the surface:

*

Fnet D R
A�p On dA

D �pA On:
That this force acts at the centroid can be checked by calculating the moment
of the pressure forces relative to the centroid C,

*

M=C;net D R
A
*
r=C � .�p On dA/

D
�Z
A

*
r=CdA

�
� �� �

0

� .�p On/

D 0 :
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where the zero follows from the position of the center-of-mass relative to the
center-of-mass being zero.

The force of water on a rectangular plate
Consider a rectangular plate with width into the pagew and length `. Assume
the water-side normal to the plate is On and that the top edge of the plate is
horizontal. Take O| to be the up direction with y being distance up from the
bottom and the total depth of the water is H . Thus the area of the plate is
A D `w. If the bottom and top of the plate are at y1 and y2 the net force on
the plate can be found as:

*

Fnet D � RA p On dA
D � RA .H � y/ On dA
D �w R `0 .H � y.s// On ds
D �w R `0  .H � .y1 C On � O| s// On ds
D �w �H` � y1` � On � O| `2=2� On
D �w` .H � .y1 C On � O| `=2// On
D �w` .H � .y1 C .y2 � y1/=2// On
D �w` ..H � y1/=2C .H � y2/=2// On

So

*

Fnet D �w`p1 C p2

2
On:

D �.area/.average pressure/.outwards normal direction/:

The net water force is the same as that of the average pressure acting on the
whole surface. To find where it acts it is easiest to think of the pressure dis-
tribution as the sum of two different pressure distributions. One is a constant
over the plate at the pressure of the top of the plate. The other varies linearly
from zero at the top to .y2 � y1/ at the bottom.

p D .H � y/ D .H � y2/� �� �
���

Constant pressure, the
pressure at the top edge.

C .y2 � y/� �� �
BBM

Varies linearly from 0 at
the top to .y2 � y1/ at
the bottom.

The first corresponds to a force of w`.H � y2/ acting at the middle of the
plate. The second corresponds to a force of w` y2�y1

2
acting a third of the

way up from the bottom of the plate.
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SAMPLE 8.1 A uniform solid cylinder of mass m D 12 kg, diameter d D
0:1m and height h D 2m floats in water (density � D 1000 kg=m3).

1. Assuming the cylinder floats vertically, find the submerged height of
the cylinder.

2. If the cylinder floats longitudinally (its longitudinal axis parallel to the
water surface), what will be the submerged section of the cylinder?

Solution

1. Cylinder floating vertically: Let hs be the submerged height of the cylinder and
r D d=2 be its radius. Then the force of buoyancy FB is equal to the weight of water
replaced by the submerged volume of the cylinder. Thus,

*
FB D

volume����
�r2hs  O|:

From the force balance on the cylinder (see the free-body diagram in fig. 8.7),
*
FB �mg O| D *

0

) .�r2hs �mg/ O| D *
0

) hs D mg

�r2
D m

�r2�

D 12 kg
� � .0:05m/2 � 1000 kg=m3

D 1:53m:

hs D 1:53m

2. Cylinder floating horizontally: No matter how the cylinder floats, the force of buoy-
ancy has to equal the weight of the cylinder. This force is equal to the weight of the
displaced water. Thus, the volume of displaced water has to be the same no matter
what the orientation of the cylinder is with respect to the water surface. Therefore, the
submerged volume of the cylinder while floating longitudinally must equal the volume
submerged while floating vertically. That is (see fig. 8.8),

area of BCD � h D �r2hs ) area of BCD D �r2.hs=h/ D 0:006m2:

Now we can figure out what ds should be so that the submerged area is 76% of the
total cross sectional area. This is an exercise in geometry. Since, area of BCD D
�r2 � area of ABD, area of ABD D �r2 � area of BCD D 0:018m2. But the area
of ABD is the area of the circular sector OBAD (r2� ) minus the area of triangle OBD
(12 � r cos � � 2r sin � ). Thus,

area of ABD � r2� � 1

2
r2 sin 2� D 0:018m2

) � � 1

2
sin 2� � 0:738 D 0:

We need to solve this nonlinear equation. Using trial and error or root finding on a
computer or a graphical method, we find � D 1:126rad D 64:5�. Using this value, we
get, ds D r C r cos � D 0:07m.

ds D 0:07m
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SAMPLE 8.2 The force due to varying hydrostatic pressure: The hydro-
static pressure distribution on the face of a wall submerged in water up to a
height h D 10m is shown in the figure. Find the net force on the wall from
water. Take the length of the wall (into the page) to be 1 m.

Solution Since the pressure varies across the height of the submerged part of the wall, let us
take an infinitesimal strip of height dy along the full length ` of the wall as shown in fig. 8.10.
Since the height of the strip is infinitesimal, we can treat the water pressure on this strip to be
essentially constant and equal to p0

y
h

. Then the force on the strip (of area `dy) due to the
constant water pressure p.y/ D p0y=h is

d
*
F D .p.y/ �

area����
`dy/ O{ D p0

y

h
` dy O{:

The net force due to the pressure distribution on the whole wall can now be found by inte-
grating d

*
F along the wall.

*
F D

Z
d
*
F D

Z h

0
p0
y

h
` dy O{

D
 
p0
`

h

Z h

0
y dy

!
O{ D p0

`

h

h2

2
O{

D 1

2
p0h` O{

D 1

2
� .100 kN

m2
/ � .10m/ � .1m/O{

D .500 kN/ O{:
*
F D 500 kN O{

Alternatively, the net force can be computed by calculating the area of the pressure triangle
and multiplying by the unit length (` D 1m), i.e.,

*
F D

triangle area� �� �
1

2
� h � p0 ` O{

D
�
1

2
� 10m � 100 kN

m2
� 1m

�
O{

D 500 kN O{:
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SAMPLE 8.3 Forces on a submerged sluice gate: A rectangular plate is
used as a gate in a tank to prevent water from draining out. The plate is
hinged at A and rests on a frictionless surface at B. Assume the width of the
plate to be 1 m. The height of the water surface above point A is h. Ignoring
the weight of the plate, find the forces on the hinge at A as a function of h.
In particular, find the vertical pull on the hinge for h D 0 and h D 2m.

Solution Let  D �g be the weight density (weight per unit volume) of water. Then the
pressure due to water at point A is p

A
D h and at point B is p

B
D .h C ` sin �/. The

pressure acts perpendicular to the plate and varies linearly from p
A

at A to p
B

at B. The
free-body diagram of the plate is shown in fig. 8.12. Let O� be a unit vector along BA and On
be a unit vector normal to BA. For computing the reaction forces on the plate at points A and
B, we first replace the distributed pressure on the plate by two equivalent concentrated forces
F1 and F2 by dividing the pressure distribution into a rectangular and a triangular region and
finding their resultants.

F1 D pA` D h`; F2 D .pB � pA/
`

2
D 1

2
`2 sin �:

Now, we carry out moment balance about point A,
P *
MA D*

0, which gives

*rB=A �
*
B C*rD=A �

*
F2 C*rC=A �

*
F1 D *

0

�` O� � Bn On �
2`

3
O� � .�F1 On/ �

`

2
O� � .�F2 On/ D *

0

�Bn` OkC F1
2`

3
OkC F2

`

2
Ok D *

0

) Bn D
2F1
3

C F2
2
D `.

2

3
hC 1

4
` sin �/

and, from force balance,
P *
F D*

0, we get

*
A D �Bn OnC F1 OnC F2 On

D
�
�`.2

3
hC 1

4
` sin �/C h`C 1

2
`2 sin �

�
On

D
�
1

3
h`C 1

2
`2 sin �

�
On D `.

1

3
hC 1

2
` sin �/ On:

The force
*
A computed above is the force exerted by the hinge at A on the plate. Therefore,

the force on the hinge, exerted by the plate, is �*
A as shown in fig. 8.13. From the expression

for this force, we see that it varies linearly with h.

Let the vertical pull on the hinge be Ahingey . Then

Ahingey D �*
A � O| D �`.1

3
hC 1

2
` sin �/

cos �����
On � O| D 1

4
` sin 2� C .

1

3
` cos �/h:

Now, substituting  D 9:81 kN=m3; ` D 2m; � D 30�, the two specified values of h, and
multiplying the result (which is force per unit length) with the width of the plate (1 m) we get,

Ahingey.h D 0/ D 4:25 kN; Ahingey.h D 2m/ D 15:58 kN:

Ahingey jhD0 D 4:25 kN; Ahingey jhD2m D 15:58 kN
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SAMPLE 8.4 Tipping of a dam: The cross section of a concrete dam
is shown in the figure. Take the weight-density .D �g/ of water to be
10 kN=m3 and that of concrete to be 25 kN=m3. For the given design of the
cross-section, find the ratio h=H that is safe enough for the dam to not tip
over (about the downstream edge E).

Solution Let us imagine the critical situation when the dam is just about to tip over about
edge E. In such a situation, the dam bottom would almost lose contact with the ground except
along edge E. In that case, there is no force along the bottom of the dam from the ground
except at E. 3 With this assumption, the free-body diagram of the dam is shown in fig. 8.15.

To compute all the forces acting on the dam, we assume the width w (into the paper) to
be unit (i.e., w D 1m). Let w and c denote the weight-densities of water and concrete,
respectively. Then the resultant force from the water pressure is

F D 1

2
wh � h � w D 1

2
wh

2w:

This is the horizontal force (in the -O{ direction) that acts through the centroid of triangle ABC.
To compute the weight of the dam, we divide the cross-section into two sections — the

rectangular section CDGH and the triangular section DEF. We compute the weight of these
sections separately by computing their respective volumes:

W1 D �H2 � w� �� �
volume

�c D c�H
2w

W2 D 1

2
� 3�H � 3�H tan � � w� �� �

volume

�c D
9

2
c�

2H2w tan �:

Now we apply moment balance about point E,
P *
ME D

*
0, which gives

*rG1
� *
W1 C*rG2

� *
W2 C*rG3

� *
F D *

0

�.3�H C 1

2
�H/W1

Ok � 2

3
.3�H/W2

OkC h

3
F Ok D *

0:

Dotting this equation with Ok, we get

h

3
F D .3�H C 1

2
�H/ � c�H2w C 2

3
.3�H/ � 9

2
c�

2H2w tan �

1

2
w
h3

3
D 9c�

3H3 tan � C 7

2
c�

2H3

)
�
h

H

�3
D c

w
.54�3 tan � C 21�2/

D 2:5.54 � 0:13 �
p
3C 21 � 0:12/ D 0:7588

) h

H
D 0:91:

Thus, for the dam to not tip over, h � 0:91H or 91% of H .

h
H
� 0:91
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3 This assumption is valid only if wa-
ter does not leak through the edge B to
the bottom of the dam. If it does, there
would be some force on the bottom due
to the water pressure. See the follow-
ing sample where we include the water
pressure at the bottom in the analysis.
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SAMPLE 8.5 Dam design: You are to design a dam of rectangular cross
section (b�H ), ensuring that the dam does not tip over even when the water
level h reaches the top of the dam (h D H ). Take the specific weight of
concrete to be 3. Consider the following two scenarios for your design.

1. The downstream bottom edge of the dam is plugged so that there is no
leakage underneath.

2. The downsteram edge is not plugged and the water leaked under the
dam bottom has full pressure across the bottom.

Solution Let c and w denote the weight densities of concrete and water, respectively.
We are given that c=w D 3. Also, let b=H D � so that b D �H . Now we consider
the two scenarios and carry out analysis to find appropriate cross-section of the dam. In the
calculations below, we consider unit length (into the paper) of the dam.

1. No water pressure on the bottom: When there is no water pressure on the bottom of the
dam, then the water pressure acts only on the downstream side of the dam. The free-
body diagram of the dam, considering critical tipping (just about to tip), is shown in
fig. 8.16 in which F is the resultant force of the triangular water pressure distribution.
The known forces acting on the dam areW D c�H

2; and F D .1=2/wh
2.

The moment balance about point A gives

F � h
3

D W � �H
2

1

2
w
h3

3
D c

�2H3

2

) �2 D .1=3/.w=c/.h=H/
3:

Considering the case of critical water level up to the height of the dam, i.e., h=H D 1,
and substituting c=w D 3, we get

�2 D 1=9 ) � D 1=3 D 0:333:

Thus the width of the cross-section needs to be at least one-third of the height. For
example, if the height of the dam is 9m then it needs to be at least 3m wide.

b=H D 0:33

2. Full water pressure on the bottom: In this case, the water pressure on the bottom is
uniformly distributed and its intensity is the same as the lateral pressure at B, i.e.,
p D wh. The free-body diagram diagram is shown in fig. 8.17 where the known
forces are W D c�H

2; F D .1=2/wh
2; and R D w�hH . Again, we

carry out moment balance about point A to get

F � h
3

D .W �R/ � �h
2

wh
3 D 3.c�H

2 � w�hH/�H

�2 D .h=H/3

3.c=w � h=H/ :

Once again, substituting the given values and h=H D 1, we get

�2 D 1=6 ) � D 0:408:

Thus the width in this case needs to be at least 0:41 times the height H , slightly wider
than the previous case.

b=H � 0:41
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Problems for
Chapter 8
Statics

8.1 Net force and
moments in hydrostatics
Preparatory Problems
More-Involved Problems
8.1.1 A balloon with volume V , whose
membrane has negligible mass, holds a gas
with density �2. It is surrounded by a gas
with density �1.

a) In terms of �1, �2, g, and V , find
the tension in the string.

b) By some means look up the density
of Helium and air at atmospheric
temperature and pressure and calcu-
late the volume, in cubic feet and
in cubic meters, of a helium balloon
that could lift 75 kg.
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Problem 8.1.1: Balloon

8.1.2 A spherical body of massm D 10 kg
and radius R D 100mm hangs from a
continuous string as shown in the figure.
The body is partially submerged in wa-
ter and angle � D 45

�
(fixed). If the

force of buoyancy is �Vg where � D
1000 kg=m3 D density of water, V is the
submerged volume of the body, and g is
the usual g; find the tension in the string
as a function of the submerged volume V .
Find the maximum and the minimum ten-
sion corresponding to fully and zero sub-
merged volume of the body respectively.

Filename:pfigure4-1-rp8

T T

m

α α

Problem 8.1.2

8.1.3 A 4-meter-high ‘door’ holds back a
stream ( D 1000N=m3) that is 3m deep
and 12m wide. The door is hinged along its
bottom and is propped up by a thin rod B
that goes from a ball joint at H at (3,12,0)
to a boll joint at the upper left corner B of
the door at (0,0,4). Neglect the mass of the
door. Find the axial-force in the rod BH. �
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Problem 8.1.3

8.1.4 Water is held in a reservoir by a
board with negligible weight that is 5 me-
ters long. It is hinged 1 meter off the bot-
tom at A and kept from leaking by a seal
at B. Assume � D 1000 kg=m3, g D
10N= kg.

a) What is h when the board starts to
pull away from the stop at B? �

b) At that h what is the force of the
hinge on the board? �
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Problem 8.1.4

8.1.5 The side of a pool is made of vertical
boards which are stuck in the ground. As-
suming that the boards, on average, get no
support from their neighbors, and neglect
the weight of the board itself,

a) calculate the force and moment
from the ground on one board (an-
swer in terms of some or all ofw, h,
�, and g.

b) For a one foot board and 8 foot deep
pool, find the size of a force, and its
location, so the force is equivalent
to the water pressure on the board
(answer in lbf).
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Problem 8.1.5

8.1.6 A sluice gate is a dam that can be
opened. Sometimes it is just a board in a
slot that is opened by pulling up the board.
For water with density � and depth h press-
ing against a board with width w pressing
against one face of the slot (the face away
from the water) with coefficient of friction
�

a) find the force F needed to pull up
the board in terms of g; �; h, and w.

b) Find the force assuming g D
10m=s2; h D 1m; w D 1m, � D
0:5 and � D 1000 kg=m3.
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Problem 8.1.6

8.1.7 A concrete (density = �c) wall with
height `, width w and length (into the pa-
per) d rests on a flat rigid floor and serves
as a damn for water with depth h and den-
sity �w . Assume the wall only makes con-
tact at edges A and B.

a) Assume there is a seal at A, so no
water gets under the damn. What is
the coefficient of friction needed to
keep the block from sliding?

415
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b) What is the maximum depth of wa-
ter before the block tips?

c) Assume that there is a seal at B
and that water gets under the block.
What is the coefficient of friction
needed to keep the block from slid-
ing?

d) What is the maximum depth of wa-
ter before the block tips?
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Problem 8.1.7

8.1.8 A door holds back the water at a
lock on a canal. The water surface is at
the top of the door. The rope AB keeps it
from swinging open. The door has hinges
at C and D. The height of the door is h,
the width w. The point B is a distance d
above the top of the door and is set back a
distance L. The weight density of the wa-
ter is  .

a) What is the total force of the water
on the door?

b) What is the tension in the rope AB?
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Problem 8.1.8

8.1.9 This problem somewhat explains the
workings of some toilet valves. Open the
tank of a toilet and look at the rubber piece
at the bottom that sits on the bottom but
then floats after initially lifted by the turn-
ing of the flush lever. The puzzle this prob-
lem solves is this: Why does the valve stick
to the bottom, but then float when lifted.

a) A hollow cylinder with an open bot-
tom (like an upside down but open
can) is filled with air but is un-
der water. What force is required
to hold it under water (in terms of
�; r; h; and g? �

b) The same can is on the bottom of
a tank of water and its edges are
sealed. The bottom is open to at-
mospheric air. How much force is
needed to hold the can down now
(so there is no force from the bot-
tom of the tank onto the edges of the
cylinder)? �
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Problem 8.1.9

� � �

Some puzzles. The following puzzles are

sometimes presented as brain teasers. You
should be able to reason the answers care-
fully and irrefutably. 8.1.10 A person is in
a boat in a pool with surface area A. She is
holding a ball with volume V and mass m
in a still pool. The ball is then thrown into
the pool, no water is splashed out and the
pool comes to rest again.

a) Assuming the ball floats, by how
much does the pool level go up or
down?

b) Assuming the ball sinks to the bot-
tom by how much does the pool
level go up or down?
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Problem 8.1.10

8.1.11 A steel boat with mass m and den-
sity �s is floating in a pool of water with
density �w and cross sectional area A. By
how much does the pool level go up or
down when the boat sinks to the bottom?
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Problem 8.1.11

8.1.12 Two cups of water are balanced.
You then gently stick your finger into one
of them. Does this upset the balance? This
experiment can be set up with two cups and
a hexagonal-cross-section pencil. The cups
need not be identical, they just need to be
balanced at the start.
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Problem 8.1.12

8.1.13 A tray of water is suspended and
level.

a) A hand is gently placed in the tray
but does not touch the edges or bot-
tom. Is the level of the tray upset.

b) Challenge: Assuming the tray is
massless with width w and water
depth h, how high must be the hinge
so the equilibrium is stable. That is,
imagine the tray is rotated slightly
about the hinge, the water pressure
should cause a torque which tends
to restore the vertical orientation
shown.
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Problem 8.1.13
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8.1.14 Challenge: This challenge problem
is closely related to the challenge problem
above, but is much more famous. It seems
to have been first solved by Leonard Euler
and Pierre Bouguer in about 1735. This so-
lution seems to be the first mechanics prob-
lem in which the significance of the area
moment of inertia was appreciated [this is
a hint].

For simplicity assume that a boat is
shaped like a box with width h and and
length into the paper of b. Assume that
the boat floats with its bottom a depth d
under water. Now rotate the boat about an
axis at the surface of the water and along
its length (into the paper). Imagine that gi-
ant hands hold the boat in this position. In
this rotated position the effect of the water
pressure on the boat is a buoyant force and
moment. This is equivalent to a force that
is displaced slightly sideways.

Your goal is to find the height of the
point that the line of action of this force
intersects a mast of the boat. For small an-
gles of boat tip the location is independent
of the amount of tip.

This point is called the metacenter of
the hull, and its distance up from the cen-
troid of the boat’s submerged volume is the
hull’s metacentric height. The condition
of boat stability is that the metacenter be
above the center of mass of the boat (thus
the moment of the buoyant forces about the
center of mass will tend to restore the boat
to level).

Euler and Bouguer did the calculation
you are asked to do here after, e.g., , the
launching of the ‘great’ Swedish ship Vasa,
which capsized in the harbor on day 1.
This was unfortunate for Sweden at the
time, but fortunate now, because the brand-
new 375 year old ship is a see-worthy
tourist attraction in Stockholm.
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Problem 8.1.14: Ship stability.
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CHAPTER 9
Dynamics in 1D

The scalar equation F D ma introduces the concepts of motion and time
derivatives to mechanics. In particular the equations of dynamics are seen
to reduce to ordinary differential equations, the simplest of which have mem-
orable analytic solutions. The harder differential equations need be solved
on a computer. We explore various concepts and applications involving mo-
mentum, power, work, kinetic and potential energies, oscillations, collisions
and multi-particle systems.
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We now progress from statics to dynamics. As the names imply, statics gen-
erally concerns things that don’t move, or at least don’t accelerate much,
whereas dynamics concerns things whose motion is of central interest. In
statics we neglected inertial (terms involving acceleration of mass). So, in
statics the linear and angular momentum balance equations were reduced to
force and moment balance. In dynamics the inertial terms in the momen-
tum balance equations are important. In statics all the forces and moments
cancel each other. In dynamics the forces and moments add up to cause the
acceleration of mass.

Once you have mastered free-body diagrams and statics, the hard part of
dynamics is learning how to keep track of motion. Keeping track of motion,
without worrying forces, is called kinematics. Kinematics is geometry in
motion. The study of kinematics together with forces is dynamics, in the
mechanics sense of the word 1. Dynamics is called kinetics. We will develop
our understanding of dynamics (kinetics) by considering progressively more
complex kinematics.

This first dynamics chapter is limited to the unconstrained dynamics of
one or more particles moving in one spatial dimension (1D). Each particle
moves along a straight line (and not on a planar or spatial curve) and all
forces are along that line. What is a particle?

A particle is a system idealized as being totally characterized by its
position (as a function of time) and its (fixed) mass (read more on
page 188).

Unconstrained motion. Finally, in this chapter we only consider cases
where the applied forces are either given as a function of time or can be de-
termined from the positions and velocities of the particles. The time-varying
thrust from an engine might be thought of as a force given as a function of
time. Gravity and springs cause forces which are functions of position. And
the drag on a particle as it moves through air or water can be modeled as a
force depending on velocity. We postpone until the next chapter are forces
caused by geometric constraints, for example the forces between particles
connected by strings or rods. Such constraint forces need to be solved-for
using dynamics. In contrast, the forces in this chapter can be found a priori
from position, velocity or time.

1Outside of mechanics the word dy-
namics means the study of anything
which changes in time. For example,
“relationship dynamics” concerns how
people’s interpersonal feelings change
over time, and the “dynamics of the
market place” concerns fluctuations of
prices due to supply, demand and so on.
Electro-dynamics is the study of how
voltage varies in time and dynamics
of the hormonal system concerns how
hormone levels go up and down.

Systems with this more general
dynamics are sometimes called
“dynamical systems”. The classic
dynamical systems equation is

d

dt
z D f .z/

where z is a list of numbers describing
the state of the system and f .z/ is the
set of rules that dictate how the system
changes due to its present state. One
sub-class of dynamical systems are the
mechanical systems in this book where

*
F D m*a

is often eventually written in the form
Pz D f .z/, as you will see.
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Figure 9.1: One-dimensional position,
velocity, and acceleration. Positive val-
ues for x; Px and Rx describe positions, ve-
locities and accelerations in the in the
positive x direction.
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Figure 9.2: Graphs of x.t/ and v.t/ D
dx
dt

versus time. The slope of the posi-
tion curve dx=dt at t� is v.t�/. And the
slope of the velocity curve dv=dt at t�
is a.t�/.

Kinematics, acceleration and calculus. The main new concept here,
which stays with us until the end of the book, is that things change with
time. We keep track of that change using calculus. In particular, the equation
F D ma is a differential equation because

a � d2

dt2
x D Rx :

Any equation that has terms which are derivatives of functions is a differ-
ential equation. Because acceleration a is defined in terms of derivatives any
equation involving a is a differential equation.

The organization of this chapter

The first three sections are a review and deepening of material from freshman
physics: F D ma, energy methods, and the harmonic oscillator. The last
three sections concern multi-particle systems, collisions and collections of
masses connected with springs and dashpots.

Before going on please get a better lay of the land by reading the introduc-
tion to mechanics in Chapter 1 and looking over the summary of mechanics
on the inside cover.

9.1 Force and motion in 1D
Now we focus on a special problems in which one particle moves on a
straight line. With motion in only one direction, the kinematics is simple.
It’s essentially a rehash of freshman calculus. Even in 1D, vectors can be
useful because of their help with signs. But vectors are not really needed and
we will not be zealous in their use (in this one chapter).

Position, velocity, and acceleration in one dimension
We can call the direction of motion the O{ direction and the position of the
particle, the distance of a particle in the CO{ direction from a reference point,
x (see fig. 9.1). The particle might have some spacial extent, so to be precise
we can define x as the x coordinate of the particle’s center-of-mass. We can
write the position *

r , velocity *
v and acceleration *

a as

position *
r D x O{ D x O{;

velocity *
v D v O{ Ddx

dt
O{ D Px O{;

and acceleration *
a D aO{ Ddv

dt
O{ D d2x

dt2
O{ D Rx O{:

(9.1)

Figure 9.2 shows example graphs of x.t/ and v.t/ versus time.
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Signs. Vectors help with signs. When not using vectors we will take v and
a to be positive if they have the same direction as increasing x (or y or what-
ever coordinate describes position). Even though we pedantically declare
that ‘velocity is a vector’ and ‘acceleration is a vector’, we will loosely use
the words ‘velocity’ and ‘acceleration’ to stand for scalars using these sign
conventions.

Example: Position, velocity, and acceleration in one dimension
If position is given as

x.t/ D 3e4t= s m
then v.t/ D dx=dt D 12e4t= s m=s
and a.t/ D dv=dt D 48e4t= s m=s2.

So at, say, time t D 2 s the acceleration is

ajtD2 s D 48e4�2 s= s.m=s2/ D 48 � e8 m=s2 � 1:43 � 105 m=s2:

Fussing with units. In this example above we used 1/s as part of the argu-
ment of the exponential function. Thus when the exponential e4t= s is differ-
entiated with respect to time t the 1/s is grouped with the 4 as the coefficient
of t in the exponentia. So the factor 4/s comes out front according to the
chain rule of differentiation. Treating units as quantities, manipulated like all
others makes the answer come out with the right units also. Note in the last
line that the units canceling when the dimensional quantity (2 s) is substituted
in for the variable t . For more on units see appendix A.

1D kinematics, calculus. One-dimensional kinematics problems can in-
clude almost all of the skills in elementary calculus. In kinematics you are
often given position, velocity or acceleration as function of time and you
have to differentiate or integrate to find one of the other quantities. For ex-
ample, if you are given the velocity v.t/ as a function of time and are asked
to find the acceleration a.t/, you have to differentiate. If instead you were
asked to find the position x.t/, you would calculate an integral (see fig. 9.3).
Using the fundamental theorem of calculus, we get the integral versions of
the relations between position, velocity, and acceleration (see fig. 9.3).

x.t/ D x0 C
Z t

to

v.�/ d� with x0 D x.t0/; and

v.t/ D v0 C
Z t

to

a.�/ d� with v0 D v.t0/:

With more indefinite notation, these equations can also be written as:

x D R
v dt

v D R
a dt:

If acceleration is given as a function of time, then position is found by inte-
grating twice.
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Figure 9.3: One-dimensional kinemat-
ics of a particle: (a) is a graph of the
acceleration of a particle a.t/; (b) is a
graph of the particle velocity v.t/ and
the integral of a.t/ from t0 D 0 to t�,
the shaded area under the acceleration
curve; (c) is the position of the particle
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to t�, the shaded area under the velocity
curve.
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1 To cover the range of calculus prob-
lems you need to be a very good rider,
however, and be able to ride frontwards,
backwards, at zero speed and infinitely
fast.
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Figure 9.4: Velocity (speed) vs time for
a 1000 s bike trip. The rider increases
speed to exponentially approach 4 m/s.

1D kinematics, bicycles and calculus. To put it another way, almost
every calculus question could be phrased as a question about a bicycle
speedometer 1. With a bicycle speedometer (which includes a distance-
measuring odometer) you can read your speed and distance travelled as func-
tions of time. And given one of those two functions you could find the other
using calculus. Acceleration is also of interest, but few bicycle speedometers
also measure acceleration.

Differential equations

A differential equation is an equation that involves derivatives. Thus the
equation relating position to velocity is

dx

dt
D v or, more explicitly

dx.t/

dt
D v.t/;

is a differential equation. An ordinary differential equation (ODE) is an
equation that contains some terms that are ordinary derivatives (as opposed
to partial derivatives and partial differential equations which we don’t use in
this book).

Example: Calculating a derivative solves an ODE
Given that the height of an elevator as a function of time on its 5 seconds long 3
meter trip from the first to second floor is

y.t/ D .3m/

�
1 � cos

�
�t
5 s
��

2

we can solve the differential equation v D dy
dt

by differentiating to get

v D dy

dt
D d

dt

"
.3m/

�
1 � cos

�
�t
5 s
��

2

#
D 3�

10
sin
�
�t

5 s

�
m=s

Note: this would be a harsh elevator because of the jump in the acceleration (not
calculated above) at the start and stop.

A little less trivial is the case when you want to find a function when you are
given the derivative.

Example: Integration solves a simple ODE
Assume that you start at home (x D 0) and, over about 30 seconds, you accelerate
towards a steady-state speed of 4m=s according to (see fig. 9.4)

v.t/ D 4.1 � e�t=.30 s//m=s:

Your ride lasts 1000 seconds. We can find how far you go by solving

Px D v.t/ with the initial condition x.0/ D 0:
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This is simply solved by integration. Say, after 1000 seconds

x.t D 1000 s/ D R 1000 s
0 v.t/ dt D R 1000 s

0 4.1 � e�t=.30 s//.m=s/ dt

D
�
4t C .120 s/e�t=.30 s/

����1000 s

0
m=s

D
�
.4 � 1000 sC .120 s/e�100=3/ � .0C .120 s/e0/

�
m=s

D
�
4000 � 120C 120e�100=3/

�
m

� 3880m (to within an angstrom or so)

This is only 120m less than if the whole trip was travelled at a steady 4m=s (then
x D 4m=s � 1000 s D 4000m).

Unlike the integral above, many integrals cannot be evaluated by hand (ana-
lytically).

Example: An ODE that leads to an intractable integral
Assume now that

v.t/ D 4t

t C e�t=.30 s/ s
m:

Again we have a bike trip where you start at zero speed and approach a steady speed
of 4m=s. So your position as a function of time should be similar. Following the
last example, we have

Px D v.t/ with the initial condition x.0/ D 0

with the given v.t/. The integral for position is then

x.t D 1000 s/ D R 1000 s
0 v.t/ dt D R 1000 s

0
4t

tCe�t=.30 s/ s
m dt

D : : :

(9.2)

which is the kind of thing you have nightmares about seeing on an exam. You
couldn’t solve this integral if your life depended on it. No one could. There is no
formula for x.t/ that solves the differential equation, unless you regard eqn. (9.2)
as a formula. In days of old they would say ‘the problem has been reduced to
quadrature’ meaning that the remaining work was evaluating an integral 2, even if
they didn’t know how to evaluate it exactly.

Just because a differential equation can’t be solved analytically with pencil
and paper doesn’t mean it can’t be solved numerically. Most often the setup
for numerical solution is not that difficult. Note that for numerical solution
you either need dimensionless calculations, or at least need all variables to
be in consistent units.

Example: Numerical solution of ODE
One of many ways to evaluate the integral of the above example numerically is by
the following pseudo code.

ODE = { xdot = 4 t / (t+eˆ(-t/30)) }
IC = { x(0) = 0 }
solve ODE with IC and evaluate at t=1000

2Literally quadrature means finding a
square (a ‘quad’) with area equal to the
area under a given curve. The phrase
‘reduced to quadrature’ is used more
generally to mean integration, even if
the integration is of several variables.
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3Numerical error vs real difference.
When you notice such small differences
(12m out of 4000m) based on com-
puter calculation you need to question
whether the difference is something real
in the problem or, rather, is due to nu-
merical errors. Two ways to check are
with so-called convergence tests and by
using your canned package’s error es-
timate. We checked that the numerical
integration is accurate to about 10�3m,
less than the 1m resolution that we
printed (no need to type lots of dig-
its with little information). Thus the
� 12m difference between the constant
v solution and the solution where v ap-
proaches a constant, is a real difference.
The startup is genuinely quicker in the
second example (12 m behind constant
v versus 120 m behind constant v), and
not a numerical artifact.
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Figure 9.5: Three possible free body di-
agrams for 1D particle motion. It is as-
sumed that

*
F represents the sum of all

forces acting on the particle. Note, even
though the inertial term ma is of special
interest, it does not show on the FBD.
See the free body diagram Chapter 3 for
the prescription about this. See box 14.2
on page 665 for a further warning about
d’Alembert ‘forces’.

4Angular momentum? We skip
thinking about angular momentum bal-
ance in this section. Why? If we pick an
origin on the line of travel, all terms on
both sides of all angular momentum bal-
ance equations are zero, and the equa-
tion 0 D 0 tells us nothing new.

The result is x � 3988m which is also, as expected because of the similarity
with the previous example, only slightly shy of the steady-speed approximation of
4000m. 3

More differential equations.
As mentioned, because dynamics equations contain derivatives they are all
differential equations. A catalogue of the simplest differential equations and
their solutions is given in box C.1 on page 1016.

The equations of dynamics
We want to understand kinetics (mechanics, dynamics), not just kinematics.
The subject of mechanics is held up by the three pillars of material properties,
geometry, and ‘Newton’s laws’ (see page 26). Here we begin to flesh out the
‘Newton’s laws’ pillar beyond statics (the first 8 chapters of this book), using
kinematics (we just started with that above) to the the third pillar, dynamics.

Linear momentum balance

For a particle moving in the x direction the velocity and acceleration are
*
v D v O{ and *

a D aO{. Thus the linear momentum and its rate of change are
*

L �P
mi

*
vi D m*

v D mv O{; and
P*
L �P

mi
*
ai D m*

a D maO{:

Using any of the free body diagrams in fig. 9.5, where
*

F D F O{, the equa-
tion of linear momentum balance, 4 eqn. I from the front inside cover, or
equation 11.1 reduces to:

F O{ D maO{ (9.3)

which in scalar form is the central subject of this section.

F D ma

In scalar form, F is the net force to the right and a is the acceleration to
the right. For the equation F D ma to have content each of the terms must
have some meaning in other contexts. And, at least intuitively, each does (see
box 9.1 on page 429).

Force. The force F could come from a spring, or a fluid or from your hand
pushing the thing to the right or left, or any combination of these things. The
most general case we want to consider here is that the force is determined by
the position and velocity of the particle as well as the present time. Thus

F D f .x; v; t/: (9.4)
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What do we mean ‘determined by’? We mean that we have an independent
way of knowing the force from its position, velocity and time, even without
thinking yet about the linear momentum balance equation F D ma. Special
cases would be, say,

F D f .t/ D F0 sin.�t/ an oscillating load,
F D mg the force of earth’s gravity, x pointing down
F D f .v/ D �cv a linear viscous drag,
F D f .x/ D �kx a linear spring, and
F D f .x; v; t/ D �kx � cv C F0 sin.�t/ a combination of forces.

All elementary 1D particle mechanics problems can be reduced to the solu-
tion of this pair of coupled first order differential equations,

dv
dt

D f .x; v; t/=m� �� �
a.t/

.a/

dx
dt

D v.t/ .b/

(9.5)

where the function f .x; v; t/ is given and x.t/ and v.t/ are to be found.

Know a solution when you see one. How can you tell if candidate func-
tions solve a differential equation? First you can tell that the initial condi-
tions are satisfied by evaluating the expressions at t D 0. To check that the
differential equations are satisfied, you plug the candidate solutions into the
equation and see that an identity results. Differential equations are satisfied
when the unknown functions therein are replaced with specific functions that
make the equations correct.

Viscous drag. If the only applied force is a viscous drag, F D �cv (see
fig. 9.6), then linear momentum balance (F D ma) would be �cv D ma

and Eqns. 9.5 are
dv
dt

D �cv=m

dx
dt

D v

where c and m are constants and x.t/ and v.t/ are yet to be determined
functions of time. Because the force only slows the particle there is be no
motion unless the particle has some initial velocity. In general, you need to
specify the initial position and velocity to find a solution. So we complete
the problem statement with the initial conditions

Example: Slowing with viscous drag
Find x.t/ given that

x.0/ D x0 and v.0/ D v0
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Figure 9.6: Three acceptable free body
diagrams showing the viscous drag on a
particle moving to the right at speed v.
The second FBD depends on being told
on the side, say here, that F D �cv.
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where x0 and v0 are given constants. Before worrying about how to solve such
equations, you should know how to recognize a solution. The following two func-
tions, assume for now that they fell from the sky, solve the differential equations.

v.t/ D v0e
�ct=m; and

x.t/ D x0 Cmv0.1 � e�ct=m/=c

Plugging this presumed solution for v.t/ into Pv D �cv=m gives, and this is what
we want, 0 D 0. And similarly, when the presumed solution for x.t/ is plugged in
to Px D v you also get the ‘satisfying’ result that 0 D 0.

Replacing the unknown functions v.t/ and x.t/ with the given formulas
gives an identity. Thus the given formulas satisfy (or solve) the differential
equations. Just like the case of integration (or equivalently the solution for
x of the ODE Px D v.t/), one often cannot find formulas for the solutions of
differential equations.

Example: A dynamics problem with no pencil and paper solution
Consider the following case which models a particle in a sinusoidal force field with
a second applied force that oscillates in time. Using the dimensional constants
c; d; F0; �, and m,

dv
dt

D .c sin.x=d/C F0 sin.�t// =m

dx
dt

D v

with initial conditions x.0/ D 0 and v.0/ D 0.

There is no known formula for x.t/ that solves this ODE.

Just writing the ordinary differential equations and initial conditions is anal-
ogous to setting up an integral in freshman calculus. The solution is reduced
to quadrature. Because numerical solution of sets of ordinary differential
equations is a standard part of all modern computation packages you are in
some sense done when you get this far. A computer can finish up for you.

Some special cases in 1D mechanics
There are various special cases of eqn. (9.5) which have simple solutions.

Example: The simplest dynamics problem.
1D, particle, no force. Formally working out the details,

F D ma with F D 0 ) 0 D ma

definition of a ) Pv D 0

integrating ) v D v0 (= any constant)

integrating again ) x D x0 C v0t

In a sense we have thus derived Newton’s first law, ‘an object in motion tends to
stay in motion unless acted upon by a force’.
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Constant force. Another simple case is constant force F which leads to
constant acceleration a D F=m. Using calculus you should know well by
now, you get the following formulas:

a D const ) x D x0 C v0t C at2=2

a D const ) v D v0 C at

a D const ) v D �
q
v20 C 2ax:

These are much seen in high school physics because, by permuting what is
given and what is unknown, one can make up 100 homework problems that
can be solved with these formulas and without calculus.

Force given as a function of time. Say F is given as F D F.t/. This
general case shows up when some kind of motor force is controlled by a
human or computer to vary in time is some predetermined manner.

F D ma with F D F.t/ ) F.t/ D ma

definition of a ) Pv D F.t/=m

integrating ) v D v0 C 1
m

R t
0 F.�/ d�

And we have to integrate once again to get position.
Example: Ramping up the acceleration at the start
If you get a car going by gradually depressing the ‘accelerator’ so that its accelera-
tion increases linearly with time, we have

a D ct (take t D 0 at the start)

) v.t/ D R t
0 ad� C v0 D R t

0 c�d� D ct2=2

(since v0 D 0)

) x.t/ D R t
0 vd� C x0 D R t

0 .c�
2=2/d� D ct3=6

(since x0 D 0).

The distance the car travels is proportional to the cube of the time that has passed
from dead stop.

The overall subject of ‘vibrations’ is in some sense about what happens when
something is shaken. We can think of ‘shaking’ as applying a force which
varies sinusoidally in time.

Example: Force varies sinusoidally in time.
Assume a 1 kg mass starts from rest and has a force of F D 2 cos.2�t= s/N ap-
plied. That’s a force that oscillates once per second with an amplitude of 2 N. What
is the position at t D 10 s?
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F D ma with F D F.t/ ) 2 cos.2�t= s/N D m Pv

integrating ) v D v0 C
1
m

R t
0 2 cos.2�t= s/N d�

using freshman calculus ) v D v0 C
1
�m

sin.2�t= s/N s

IC: v.0/ D 0) v0 D 0 ) v D 1
�m

sin.2�t= s/N s

integrate again, using Px D v ) x D x0 �
1

2�2m
cos.2�t= s/N s2

IC: x.0/ D 0) x0 D
1

2�2m
) x D 1

2�2m
.1 � cos.2�t= s// N s2

Now we can substitute in m D 1 kg and t D 10 s to get x D 0:0m. The algebraic
cancellation of units came about naturally from substituting in the definition of a
Newton 1N D 1 kg m= s2. We carried the units through even though the final
answer was 0.

Force depends on velocity. This case is encountered when, say, an object
moves through a fluid and other forces, say gravity, are negligible. Here we
have

F D ma ) F.v/ D m Pv:
This is solved by multiplying both sides by dt and dividing both sides by
F.v/ and integrating to getZ

dt D m

Z
dv

F.v/
) t D m

Z v

v0

dv0

F.v0/

If we want to know position vs time we have to integrate once again.
Example: The slowing of a bullet.
The main force on a bullet after it leaves the gun and before it hits its mark is from
air drag. This drag is roughly proportional to the speed squared, thus

F D ma ) � cv2 D m Pv ) � c
Z
dt D m

Z v

v0

dv0

v02
:

Carrying out the integrals (
R
dt D t and

R
v�2 dv D �v�1) we get

ct D m

�
1

v
� 1

v0

�
) v D v0

cv0t=mC 1

To get position we would integrate again to get:

x D
Z t

0
v.t 0/ dt 0 D

Z t

0

v0
cv0t

0=mC 1
dt 0 D .m=c/ ln.1C cv0t=m/

Interestingly, according to this equation (which becomes less and less accurate as
the bullet slows and gravity and eventually viscous forces become important) the
bullet goes an infinite distance before stopping.

Force varies with position. This case, where F D F.x/ will be treated in
some detail in the next section on energy.
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The simplest ODEs
The simplest and most common ODEs in dynamics, and i the rest of science
and engineering, are
Linear: e.g., no functions squared.

First or second order: Have only first or second derivatives, respectively,
and

Constant coefficient: All multiples of the derivatives are constants, not
functions of time.

The most essential of these are

Px D 0; Px D C; Rx D 0; Rx D C; Px D Cx; Px D �Cx; Rx D Cx & Rx D �Cx:

These are discussed in appendix C.1 on page 1016.

What do the terms in F D ma mean?
Some say ‘F D ma is the definition of force’. This is a legitimate point of
view. But, if we care about force for other reasons, which we do, it is not
useful. For the equation F D ma to be useful we need to be able to think
about F , m and a independently from each other.

Mass, m. Now that we know about atoms (these centuries) and what they
are made of (these decades) we can approximately (with about one percent
accuracy) define the mass of a system by (in principle) by counting up the
total number of protons and neutrons and multiplying by 1:67 � 10�27 kg.
That is, mass is a measure of the extent of matter. Given that we think of
mass as the amount of matter, we could more accurately and more easily use
a reference volume of a pure chemical substance as a reference. This way,
with a good balance and some trouble, we could get an accuracy of parts per
million. Officially,

mass is measured in comparison to a fancy piece of metal

locked in a box in some basement in some government building. That cali-
brated kilogram is accurate to about a part in 20,000,000 (See Appendix A
starting on page 994). We can find the mass of a more complicated thing
using that reference mass and a (very good) balance.

Acceleration, a. Because this is a course in mechanics and not in philos-
ophy of science, we will just accept the concepts of space (x) and time (t )
as given and measurable (using rulers and timers). So acceleration is opera-
tionally well defined as
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a D d2x=dt2

with no use of F D ma. We have presupposed that we measure position rel-
ative to a Newtonian reference system. This definition is sensible to at least
to about one part per billion for most engineering purposes (see page 31).

Force, F . Here is where people argue. It’s easiest define force using the
deformation of solids. When one thing pushes on another, think of your little
finger as caught in between. How much your finger is squeezed, as measured
by how loud you yell, is a measure of force. More technically, we could look
at the small amounts of deformation occurring where the bodies contact, and
use the deformation as a measure of force. Or, more practically, we could
interpose a calibrated material and measure its deformation. Such a chunk of
material with deformation-measuring electronics is called a load cell. Load
cells are sold by the millions (say, in bathroom scales). A load cell uses
nothing about F D ma to operate accurately.

One reason it is nice to think of force as having a life away from F D ma

is that the whole coherent and useful subject of statics, useful for designing
bridges and airplane landing gear, has little or no use for F D ma. Alterna-
tively, still without thinking about F D ma, one could define force in terms
of the net effect of earth’s gravitational pull on a calibrated mass at some
officially-ordained location like Potsdam.

However you like to define force, the great result is that with any one of
several possible independent definitions, things mostly work out. Miracu-
lously, the same concept of force F works no matter which of these three
you take as defining:

F D mg; (9.6)

F D kx; or (9.7)

F D ma: (9.8)

Pick your favorite as fundamental and use the others with confidence.

Units of force. Most beginners prefer that forces be measured in Newtons.
One Newton is 1 kg m=s2. But people living in the SI world tend instead
to use the kgf, also called a kilogram force or kp or kilopond. One kgf is
the weight of a kilogram. It’a about 9.8 N. In the English system the force
most analogous to the Newton is called the Poundal, it’s 1 lbm ft=s2 and is
little used. More commonly used is the pound force, lbf. It’s the weight of
a pound mass and is about 32.2 Poundals. Read more about units of force in
box A.3 on page 1004.
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SAMPLE 9.1 Time derivatives: The position of a particle varies with time
as *
r.t/ D .C1t C C2t

2/O{, where C1 D 4m=s and C2 D 2m=s2.
1. Find the velocity and acceleration of the particle as functions of time.

2. Sketch the position, velocity, and acceleration of the particle against
time from t D 0 to t D 5 s.

3. Find the position, velocity, and acceleration of the particle at t D 2 s.

Solution

1. We are given the position of the particle as a function of time. We need to find the
velocity (time derivative of position) and the acceleration (time derivative of velocity).

*r D .C1t C C2t
2/O{ D .4m=s t C 2m=s2 t2/O{ (9.9)

*v � d*r

dt
D d

dt
.C1t C C2t

2/O{
D .C1 C 2C2t /O{ D .4m=sC 4m=s2 t /O{ (9.10)

*a � d*v

dt
D d

dt
.C1 C 2C2t /O{

D 2C2 O{ D .4m=s2/O{ (9.11)

*v D .4m=sC 4m=s2 t /O{; *a D .4m=s2/O{:
Thus, we find that the velocity is a linear function of time and the acceleration is time-
independent (a constant).
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Figure 9.7:

2. We plot eqns. (9.9, 9.10, and 9.11) against time by taking 100 points between t D 0

and t D 5 s, and evaluating*r;*v and*a at those points. The plots are shown in fig. 9.7.

3. We can find the position, velocity, and acceleration at t D 2 s by evaluating their
expressions at the given time instant:

*rjtD2 s D �.4m=s/ � .2 s/C .2m=s2/ � .2 s/2�O{
D .16m/O{

*vjtD2 s D �.4m=s/C .2m=s2/ � .2 s/�O{
D .8m=s/O{

*ajtD2 s D .2m=s2/O{ D*a.for all t/

At t D 2 s; *r D .16m/O{; *v D .8m=s/O{; *a D .2m=s2/O{:
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SAMPLE 9.2 Math review: Solving simple differential equations. For
the following differential equations, find the solution for the given initial
conditions.

1. dv
dt
D a; v.t D 0/ D v0; where a is a constant.

2. d2x
dt2

D a; x.t D 0/ D x0; Px.t D 0/ D Px0; where a is a constant.

Solution

1.

dv

dt
D a ) dv D a dt

or
Z
dv D

Z
a dt D a

Z
dt

or v D at C C; where C is a constant of integration

Now, substituting the initial condition into the solution,

v.t D 0/ � v0 D a � 0C C ) C D v0:

Therefore,
v D at C v0:

v D v0 C at

Alternatively, we can use definite integrals:Z v

v0

dv D
Z t

0
a dt ) v � v0 D at ) v D v0 C at:

2. This is a second order differential equation in x. We can solve this equation by first
writing it as a first order differential equation in v � dx=dt , solving for v by integra-
tion, and then solving again for x in the same manner.

d2x

dt2
D a or

dv

dt
D a

or
Z
dv D

Z
a dt

) v � Px D at C C1 (9.12)

but, v � dx

dt
; )

Z
dx D

Z
at dt C

Z
C1 dt

or x D 1

2
at2 C C1t C C2; (9.13)

where C1 and C2 are constants of integration. Substituting the initial condition for Px
in Eqn. (9.12), we get

Px.t D 0/ D Px0 D a � 0C C1 ) C1 D Px0:

Similarly, substituting the initial condition for x in Eqn. (9.13), we get

x.t D 0/ D x0 D
1

2
a � 0C Px0 � 0C C2 ) C2 D x0:

Therefore,

x.t/ D x0 C Px0t C
1

2
at2:

x.t/ D x0 C Px0t C 1
2at

2
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SAMPLE 9.3 Constant speed motion: A ship cruises at a constant speed
of 15 knots (15 nautical miles per hour) due Northeast. It passes a lighthouse
at 8:30 am. The next lighthouse is approximately 35 nautical miles straight
ahead. At what time does the ship pass the next lighthouse?

Solution We are given the distance s and the speed of travel v. We need to find how long it
takes to travel the given distance.

s D vt

) t D s

v
D 35nautical miles
15(nuatical miles)/hour

D 2:33 hrs:

Now, the time at t D 0 is 8:30 am. Therefore, the time after 2.33 hrs (2 hours 20 minutes)
will be 10:50 am.

10 W 50 am

SAMPLE 9.4 Constant velocity motion: A particle travels with constant
velocity*

v D 5m=sO{. The initial position of the particle is*r0 D 2mO{C3m O|.
Find the position of the particle at t D 3 s.

Solution Here, we are given the velocity, i.e., the time derivative of position:

*v � d*r

dt
D v0 O{; where v0 D 5m=s.

We need to find*r at t D 3 s, given that*r at t D 0 is*r0.

d*r D v0 O{dt

)
Z *r.t/

*r0

d*r D
Z t

0
v0 O{dt D v0 O{

Z t

0
dt

*r.t/ �*r0 D v0 O{t
*r.t/ D *r0 C v0t O{

*r.3 s/ D .2mO{C 3m O|/C .5m=s/ � .3 s/O{
D 17mO{C 3m O|:

*r D 17mO{C 3m O|

Comments: We could solve this problem more compactly by working with scalars or com-

ponents. It is given that the velocity is constant and is only in the x-direction. Therefore,

the y-component of particle position will remain the same, i.e., ry D r0y D 3m, and

rx D r0xCvx t D 2mC .5m=s/ � .3 s/ D 17m. Thus,*r.3 s/ D rx O{Cry O| D 17mO{C3m O|.

Filename:sfig5-1-new1

x

v

y

3m

2m 15m

r (t=0) r (t=3s)

Figure 9.8:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



434 Chapter 9. Dynamics in 1D 9.1. Force and motion in 1D
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SAMPLE 9.5 Constant acceleration: A 0:5 kg mass starts from rest and
attains a speed of 20m=sO{ in 4 s. Assuming that the mass accelerates at a
constant rate, find the force acting on the mass.
Solution Here, we are given the initial velocity *v.0/ D *

0 and the final velocity *v after
t D 4 s. We have to find the force acting on the mass. The net force on a particle is given by
*
F D m*a. Thus, we need to find the acceleration*a of the mass to calculate the force acting
on it. Now, the velocity of a particle under constant acceleration is given by

*v.t/ D*v0 C*at:

Therefore, we can find the acceleration*a as

*a D
*v.t/ �*v.0/

t

D 20m=sO{ �*
0

4 s
D 5m=s2 O{:

The force on the particle is
*
F D m*a D .0:5 kg/ � .5m=s2 O{/ D 2:5NO{:

*
F D 2:5NO{

SAMPLE 9.6 Time of travel for a given distance: A ball of mass 200
gm falls freely under gravity from a height of 50 m. Find the time taken
to fall through a distance of 30 m, given that the acceleration due to gravity
g D 10m=s2.

Solution The entire motion is in one dimension — the vertical direction. We can, therefore,
use scalar equations for distance, velocity, and acceleration. Let y denote the distance trav-
elled by the ball. Let us measure y vertically downwards, starting from the height at which
the ball starts falling (see fig. 9.9). Under constant acceleration g, we can write the distance
travelled as

y.t/ D y0 C v0t C
1

2
gt2:

Note that at t D 0, y0 D 0 and v0 D 0. We are given that at some instant t (that we need to
find) y D 30m. Thus,

y D 1

2
gt2

t D
s
2y

g
D
s
2 � 30m
10m=s2

D 2:45 s:

t D 2:45 s
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SAMPLE 9.7 Time varying acceleration: A force F.t/ D F0 sin�t acts on
an initially still cart of mass m in a particular direction. Find the speed and
the distance travelled by the cart as functions of time. Plot the acceleration,
the speed and the displacement of the cart against time for 0 � t � � s,
assuming � D 1= s. What are the speed and the displacement of the cart at
t D � s if F0 D 1N and m D 1 kg?
Solution We are given the applied force and the mass of the cart. Therefore, we know the
acceleration (a D F=m). Thus,

a � dv

dt
D F0

m
sin�t

) dv D a0 sin�tdt

where a0 D F0=m. Hence,Z v.t/

0
dv D

Z t

0
a0 sin��d�

) v.t/ D �a0
�
.cos�t � 1/

D a0
�
.1 � cos�t/:

Since the speed v D dx
dt

, we have,

dx D a0
�
.1 � cos�t/dtZ x.t/

0
dx D

Z t

0

a0
�
.1 � cos��/d�

) x.t/ D a0
�

�
t � 1

�
sin�t

�
:

v.t/ D F0=m

�
.1 � cos�t/; x.t/ D F0=m

�

�
t � 1

�
sin�t

�
Substituting a0 D F0=m D 1N=1 kg D 1m=s2, � D 1= s and t D � s in the expressions
for v and x above, we find the speed and the displacement (distance travelled by the cart) at
t D � seconds as follows.

v.t D � s/ D 1m=s2

1= s
.1 � cos�/

D 2m=s;

x.t D � s/ D 1m=s
�
� s � 1

1= s
sin.

1

s
� � s/

�
D � m:

At t D � s; v D 2m=s; x D � m

The graph of a.t/; v.t/, and x.t/ are shown in fig. 9.10 for 0 � t � � s assuming the given

values of m; �, and F0. Note the behavior of v.t/ and x.t/ close to t D 0. Since the cart

starts from rest, the speed builds up slowly, and the displacement builds up even more slowly

because the speed is very low in the beginning.
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SAMPLE 9.8 Numerical integration of ODE’s:
1. Write the second order linear nonhomogeneous differential equation,

Rx C c Px C kx D a0 sin!t , as a set of first order equations that can be
used for numerical integration.

2. Write the second order nonlinear homogeneous differential equation,
Rx C c Px2 C kx3 D 0, as a set of first order equations that can be used
for numerical integration.

3. Solve the nonlinear equation given in (b) by numerical integration tak-
ing c D 0:05; k D 1; x.0/ D 0, and Px.0/ D 0:1. Compare this
solution with that of the linear equation in (a) by setting a0 D 0 and
taking other values to be the same as for (b).

Solution

1.

If we let Px D y;

then Py D Rx D �c Px � kx C a0 sin!t

D �cy � kx C a0 sin!t

or
� Px

Py
�
D
�

0 1

�k �c
��

x

y

�
C
�

0

a0 sin!t

�
: (9.14)

Equation (9.14) is written in matrix form to show that it is a set of linear first-order
ODE’s. In this case linearity means that the dependent variables only appear linearly,
not as powers etc.

2.

If Px D y

then Py D Rx D c Px2 � kx3 D �cy2 � kx3

or
� Px

Py
�

D
�

y

�cy2 � kx3
�
: (9.15)

Equation (9.15) is a set of nonlinear first order ODE’s. It cannot be arranged as
Eqn. 9.14 because of the nonlinearity in x and y. It is, however, in an appropriate
form for numerical integration.

3. Now we solve the set of first order equations obtained in (b) using a numerical ODE
solver with the following pseudocode.

ODEs = {xdot = y, ydot = -c yˆ2 - k xˆ3}
IC = {x(0) = 0, y(0) = 0.1}
Set k=1, c=0.05
Solve ODEs with IC for t=0 to t=200
Plot x(t) and y(t)

The plot obtained from numerical integration using a Runge-Kutta based integrator is
shown in fig. 9.11. A similar program used for the equation in (a) with a0 D 0 gives
the plot shown in fig. 9.12. The two plots show how a simple nonlinearity changes the
response drastically.
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9.2 Energy methods in 1D
Energy is an important concept in science and engineering. Energy is also a
kind of currency in human trade. Energy is also a concept that is somewhat
bigger than can be defined inside classical mechanics, when we look at, say,
the chemical energy cost of various mechanical tasks.

For a student learning mechanics, energy is first a method, or trick, for
solving some simple problems of the type assigned in elementary courses
like this one. As problems become more difficult (have more degrees of free-
dom or include, say, more-than-just-constant friction) energy becomes less
useful as a problem solving technique. However, in more advanced mechan-
ics, energy gets a central role again: energy is the central concept in some
advanced ways to write equations of motion and for some methods of under-
standing stability.

Power, work, kinetic energy and potential energy
Before we get to the facts and theorems, we start with some definitions. Here
are four words. We will use these definitions, or generalizations of them,
throughout dynamics.
Power. The power of a force F is its product with the velocity v of the point

on which it is acting,

Power D P D Fv:

This is the 1D version of the more general P D *

F �*v which we will
use once we go on to 2D and 3D dynamics. In full generality, power is
a scalar (not a vector). The common units for power are watts (1W D
N m= s D J= s), kilowatts (1KW D 103 W), lbf ft= s (no special name)
and horsepower (1 hp � 550 lbf ft= s � 745:7 � 746 1 watts).

Example:
A 5N force acting on a particle moving 3m=s has a power of
P D Fv D .5N/.3m=s/ D 15N m= s D 15W � 0:02 hp.

Work. The work W of a force is most easily defined incrementally (�W )
for small motions �x of a particle; motions so small that variations in
force can be neglected and the force viewed as constant,

increment of work D �W D F�x:

This is a special 1D reduction of the more general �W D *

F � �*
r .

Even in 2D and 3D work is a scalar. Often we want to know the work
for larger (non-infinitesimal) displacements. We do this by adding up
the increments. Using sloppy calculus (implicitly taking the limit of a
Riemann sum):

W D
X

�W D
Z

dW D
Z

F dx;which we can write more definitely as

1
In fourteen hundred and ninety-two,
Columbus sailed the ocean blue,
And that’s twice the watts

in a horsepower too.

746

�2
1492
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Work D W D
Z x

x0

F.x0/ dx0:

which is the 1D version of the more general W D R *

F � d*r . Common
units of work are Joules (1 J D 1N m D 1 kg m2= s2), foot-pounds
(D 1 ft lbf) and kilo-watt hours (D 3:6 � 106 J).

Example:
The force F D F0 sin.cx/ pushes a mass from x0 D 0m to x1 D � m
where F0 D 7N and c D 1=m. Then

W D
Z x1

x0

F dx D
Z � m

0
F0 sin.cx/ dx D �.F0=c/ cos.cx/j� m

0 D 14N

Kinetic energy. The kinetic energy quantifies the motion a little differently
than momentum does. In kinetic energy high speed gets extra credit
(v2 instead of just v). Further, for kinetic energy we don’t worry about
which way a particle moves. The kinetic energy EK of a particle in 1D
is

kinetic energy D EK D
1

2
mv2

In two and three dimensions the formula above applies for one particle
(taking v D j*vj). For a collection of particles EK is defined as a sum of
EK for each particle separately. In full generality work is a scalar. The
units of work (force�distance) and of kinetic energy (mass�speed2)
are the same (mass�distance2= time2) and so are the common mea-
sures, namely Joules, foot-pounds and kilo-watt hours.

Example:
A 3 kg mass moving at a speed of 4m=s has a kinetic energy of
EK D mv2=2 D .3 kg/.4m=s/2=2 D 24 kg m2= s2 D 24 J.

Potential energy. This is the most abstract of the definitions. The potential
energy EP associated with a force F is defined as that function of x
with these properties

EP.x/ D �
Z x

x0

F.x0/ dx0 and F.x/ D � d

dx
EP.x/

which people write more indefinitely as EP D � R F dx and F D
�EP

0. In two and three dimensions the concept of potential energy is
more subtle still, being defined by a path integral which may or may
not be sensible. But it is still a scalar.

Example:
The force F D c=x2 is associated with the potential energy
EP D � R F dx D c=x C C0.
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The datum for potential energy. Potential energy always has an un-
determined, and generally irrelevant, integration constant. The inte-
gration constant is irrelevant because usually we care about changes
in energy. So in the example above we could set C0 D 0 and write
EP D � R F dx D c=x. In general we define the datum for potential
energy as that position where we set the potential energy to zero.

� For near-earth gravity the datum is usually set at the height of the
ground (so that EP D mgh), a launch point, or of a conspicuous
physical point (say the hinge of a pendulum).

� For inverse-square gravity the datum is usually set at r D 1 so
that formulas are most simple.

� For springs that datum is usually set at the position where the
spring is ‘relaxed’ (un-stretched and at its rest-length), again sim-
plifying the terms in energy equations.

Potential energy is a shortcut for calculating work. From the defi-
nition of potential energy we can calculate work of a force in moving a
particle from one place to another as:

work D
Z x2

x1

F.x0/ dx0 D � �EP2 �EP1
�
:

Of course you need to know, or find, EP.x/ first in order to use this
shortcut.

Example:
The work of F D c=x2 in moving a mass from x1 to x2 is

work D
Z x2

x1

F.x0/ dx0 D � �EP2 �EP1
� D c=x1 � c=x2

Where we used that EP D c=x has the needed property that F D � d

dx
EP.

Why all this new language? All of the words above are defined in terms
of position, velocity and force. So anything we say about power, work and
kinetic and potential energies we could say already using x, v and F . More
particularly, we already have two ways of quantifying the motion of a parti-
cle, v and L D mv. Why do we need a third, EK D mv2=2? The answer is
this, to simplify the solution of some problems. Various facts and theorems
are simpler if commonly appearing groups of terms are given names. And
all of the definitions above are common groups. Then, luckily, some of them
turn out to be more general than just 1D particle mechanics.

The new vocabulary makes thinking easier. Various so-called ‘one degree
of freedom’ problems can be solved by noting that energy is conserved. And
features of solutions of more-complex problems can be extracted or checked
by making sure that energy balance comes out right.
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Power and work
The simplest relation between the quantities we have defined above is that
between Power and work:

W D
Z

F dx D
Z

Fv
dx

v
D
Z

Fv dt

or more definitely

W D
Z x1

x0

F dx D
Z t1

t0

Fv dt D
Z t1

t0

P dt

Example: Integrate power to get work.
If the power of a force acting on a particle is P D P0.ct

2/ where P0 D 10W and
c D 3= s2 then over 3 seconds the work done by the force is:

W D
Z t1

t0

P dt D
Z t1

t0

P0.ct
2/ dt D P0ct

3=3
���t1
t0
D .10W/.3= s2/t3=3

���3 s

0

D 270W s D 270 J

Power and rate-of-change of kinetic energy

On the inside cover the third basic law of mechanics is energy balance. En-
ergy balance takes a number of different forms, depending on context. The
power balance equation from the front cover and simplified for a particle is

P D PEK;

where, recall, P D Fv is the power of the applied force F . The derivation
of this result from F D ma for a particle is simple enough, and is good to
know. First note the following result from using the chain of differentiation:

d

dt

�
v2
� D 2v

dv

dt
D 2v Pv D 2va:

When we need to call on this simple kinematics (calculus) result it usually
comes to us the other way around. So what you should remember is this
formula, one of the basic tricks of the trade:

va D d

dt

�
v2

2

�
:
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Multiplying both sides by m and substituting in F D ma we get our 1D
power balance equation:

Fv D d

dt

�
mv2

2

�
:

The power of a given force depends on the speed of the object to which it
is applied. When a finite non-zero force is applied to a stationary object the
power of the force is zero and so is the rate of change of kinetic energy. If
the object accelerates, its speed is increasing, but when the speed is zero,
PEK D 0.

Example:
A constant force F is applied to an initially stationary mass m starting at t D 0.
Then v D F t=m, EK D mv2=2 D F 2t2=.2m/ and P D Fv D F 2t=m. Note
that PEK D P and both are zero at t D 0.

Work is change of kinetic energy
Integrating the power balance equation in time we getZ

P dt D
Z

PEK dt D �EK (9.16)

More definitely, and also using the work integral, we have that the work of
the net force on a particle is the change of its kinetic energy:

Z t2

t1

Fv����
P

dt D
Z x2

x1

F dx D EK2 �EK1

Once we remember that

work is change in kinetic energy,

we can use it without deriving it every time from F D ma or from more
general energy balance equations.

Example:
A force applied to a particle m varies sinusoidally with position according to F D
F0 cos.cx/. At x D 0 the particle has speed v D v0. Then

W D �EK )
Z x

0
F.x0/ dx0 D �

�
mv2=2

�
) F0 sin.cx/=c D mv2=2 �mv20=2

so v D m

q
v20 C 2F0 sin.cx/=.mc/

The above example illustrates three points you should remember:
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2Be forewarned, generally we cannot
think of energy conservation as neces-
sarily applicable nor, if applicable, as
derivable from the equations of mechan-
ics.

Filename:tfigure1-falling-ball

mgh

ı̂

ĵ

Figure 9.13: Free body diagram of a
falling ball, assuming gravity is the only
significant external force acting on the
ball.

� The work-energy equations always leave the sign of the velocity un-
known. You can see this because the derivation involves v2. You can
also see it in formulas you get for velocity. They involve a square root,
and thus, implicitly a �. Whether one, the other or both roots are rele-
vant depends on reasoning that lies outside the energy equation itself.

� The work-energy equations can generate formulas that, in certain sit-
uations, are nonsense: If the initial speed v0 is not high enough the
particle will not get very far. In particular if v20 < 2F0=.mc/ the inside
of the square root will be negative for some x and the “answer” will be
imaginary. These are values of x that the particle will never reach.

� Here we have apparently solved for something about the motion of a
particle. And we have, partially. But to find the x.t/ we would have to
integrate again. And that next integral is hard. That is, energy balance
lets us solve for some aspects of the motion, namely speed vs position,
without ever needing to know in detail how position varies with time.

Conservation of energy

Many people leave high-school physics loving conservation of energy. It
makes certain special homework problems easy. In the real world the prin-
ciple is also useful for building intuition, and sometimes also for problem
solving. In 1D particle mechanics energy conservation is a theorem 2.

Recall that if a particle is acted on by a force that varies with position,
F D F.x/, then we can define a potential energy EP D � R F dx and that
the work done by the force when the particle moves from x1 to x2 is

�.EP2 �EP1/ D ��EP:

That is, the decrease in EP is the amount of work that the force does. Or, in
other words, EP represents a potential to do work. Because work causes an
increase in kinetic energy, EP is called the potential energy of the force field.
Now we can compare this result with the work-energy equation 9.16 to find
that

��EP D �EK ) 0 D �.EP CEK/� �� �
ET

:

The total energy ET doesn’t change (�ET D 0) and thus is a constant. In
other words,

as a particle moves in the presence of a force field with a
potential energy, the total energy ET D EKCEP is constant.

This fact goes by the name of conservation of energy.
Example: Falling ball
Consider the ball in the free body diagram 9.13. If we define gravitational potential
energy as minus the work gravity does on a ball while it is lifted from the ground,
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then

EP D �
Z y

0
.�mg/ dy0 D mgy D mgh:

For vertical motion
EK D 1

2
m Py2:

So conservation of energy says that in free fall:

Constant D EP CEK D mgy Cm Py2=2

which you could also derive directly from m Ry D �mg.

Using conservation of energy to find equations of motion. On the one
hand conservation of energy sometimes gives us a (partial) solution to a me-
chanics problem. On the other, we can use conservation of energy to find
the “equations of motion”. The basic strategy is to take the derivative of the
conservation of energy equation.

Example: Falling ball eqns. from energy.
ET D constant ) 0 D d

dt
ET

D d
dt
.EP CEK/

D d
dt
.mgy Cm Py2=2/

D .mg Py Cm Py Ry/
) m Ry D �mg:

We had to assume (and this is just a technical point) that Py ¤ 0 in one of the
cancellations. We have used energy balance to derive linear-momentum balance.

One can also find equations of motion starting with power balance.

P D PEK

as derived here in detail here for the case of gravity acting on a particle.

P D d
dt
.EK/ (Power balance)

*

F �*v D d
dt
.EK/ (Power of external force)

.�mg O|/ � . Py O|/ D d
dt

�
1
2
mv2

�
(expanding terms)

�mg Py D 1
2
m d
dt

� Py2� (evaluate dot product, substitute for v)

�mg Py D 1
2
m.2 Py � Ry/ (the chain rule)

Ry D �g (cancel terms, switch sides),
(9.17)

The potential energy of a spring is k.�`/2=2. Besides near-earth gravity,
which we already covered (EP D mgh), the main elementary use of potential
energy is for the stretch of a linear spring. Integrating dW D Fdx for
a linear spring with force on an object F D �kx, where x is the spring
stretch, from the rest length, we get

EP D �
Z x

0

F.x0/ dx0 D �
Z x

0

�kx0 dx0 D 1

2
kx2: (9.18)
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In the above example we measured x from the rest position of one end of the
spring. But often the natural x coordinate will not be so nicely set up. It is
safer to remember the spring’s potential energy in terms of its stretch:

EP D
k �`2

2
; (9.19)

where we measure �` D ` � `0 where `0 is the spring’s rest length (`0 D
length when the tension is zero).

Thus for a spring and mass oscillator, the subject of the next section,
conservation of energy tells us that mv2=2C kx2=2 D constant .

Is energy balance a principle or a calculation trick?
For one dimensional particle motion, momentum balance, power balance,
and energy balance can each be derived from either of the others. If we take
F D ma as primary, energy calculations are just a convenience of notation
or, in the case of the work-energy relation, a useful calculation technique
(trick).

Historically, conservation of energy was first noted in particle mechanics
problems. But because the position-dependent forces of springs and gravity
seemed so fundamental, that they had a description as the derivative of a po-
tential gave the energy relations the smell of something more fundamental.
And so it has turned out that energy is an important topic for chemistry, ther-
modynamics, electrodynamics and sub-atomic physics. Its not just an anal-
ogy, its the same energy. Thus energy is the primary currency of exchange
between, say, the superficially disparate chemical and mechanical systems.

The exchange of energy between these forms, in the context of parti-
cle mechanical models, can give the sense that we are doing the same 1D
momentum based mechanics calculations when actually we are using more
general energy balance equations, equations that cannot be derived from
F D ma.

Terrestrial locomotion: Trains, cars, bicycles and
animals
A free body diagram of an accelerating car, treated as a 1D particle system,
is shown in fig. 9.5 on page 424. The point represents the car, the force is the
propulsion force from the wheel-ground interaction, and for now, we have
neglected air friction. Without worrying about details we could say then that
the power of the propulsion force is equal to the rate of change of kinetic
energy.

Example: Accelerating car
An aggressive 1 ton car can accelerate with a D 0:5g while going 60mph. Neglect-
ing friction and air resistance, the power of the propulsion force is
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P D Fv D mav D .1 ton/.0:5g/.60mi= hr/

D .1 ton/.0:5g/.60mi= hr/
�
2000 lbm

ton

�
� �� �

1

�
5280 ft

mi

�
� �� �

1

�
1 hr
3600 s

�
� �� �

1

�
1 lbf

g � lbm

�
� �� �

1

�
1 hp

550 ft � lbf= s

�
� �� �

1

D .0:5 � 60 � 2000 � 5280/=.3600 � 500/ hp � 160 hp

Note the judicious multiple multiplication by 1 so that all units cancel but for horse-
power; ton cancels ton, hr cancels hr, g cancels g and so on. The car engine needs
to supply this 160 hp plus any internal transmission dissipation. And more still to
cover the tire drag and air drag etc.

Such calculations are deceptively simple. Some apparent paradoxes:

� The propulsive force on the car comes from the interaction of the
ground with the car. Are we saying that the (dead-as-a-doormat)
ground supplies a power of, say, 160 hp to an accelerating car?

� The point of application of the force on the car is at the bottom of the
tire. That point has no velocity. So the actual power of the ground force
on the car (tire) is zero. How is that reconciled with, say, the 160 hp
that we get from particle mechanics.

These are legitimate concerns which are discussed further in box 9.1 on
page 448. The bottom line is that the calculation turns out, perhaps by the
demands of dimensional consistency, to be useful and correct.

Drag power. The drag force of air on moving things has an effect on the
energy balance. Air drag is important for cars, bicycles and animals that are
moving quickly (say, running people). The air drag is proportional to

Fd D
1

2
�CdAv

2

What are the proportionalities in the drag formula?

� The cross-sectional area (the area visible from directly in front) A. The
bigger the area the more air has to be pushed out of the way. For a car
A � 2m2

� The density of air �. The more mass has to be pushed out of the way,
the bigger the force. For rough calculations one can remember that the
density of air is about one thousandth that of water �air � 1 kg=m3.
But the density varies in human environments from about 1:1 kg=m3

in high-altitude (low pressure), high-temperature (gas expands when
hot), humid (water vapor is lighter than air) environments up to about
1:4 kg=m3 in low-lying cold dry places.

� The relative speed squared v2. The faster you are moving the more
air per unit time you must displace, and each bit of air gets displaced
with a bigger speed. Typical highway speeds are about v D 30m= s
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(� 67mph) and a typical human walking speed is about v D 1m=s
(about 10% over � 2mph).

� A shape coefficient, sometimes called a drag coefficient C or Cd . Dif-
ferent shapes of the same size, can displace the air more or less as the
vehicle passes through. Streamlined shapes have small Cd

� One half (1=2). Convention has a factor of 1/2. This simplifies the
power interpretation.

The drag power is

P D Fdv D
1

2
�CAv3

which is a key result: increasing the speed 1% increases the power demand
by 3% and doubling the speed multiplies the power demand by a factor of 8.
This huge dependence of power on speed motivates smug energy-conservers
to drive annoyingly slowly on highways.

Another way of writing the drag equation is

P D Cd � . The relative kinetic energy swept by the vehicle per unit time/

How’s that? The volume “swept” by the vehicle per unit time is its area times
speed vA. The air mass swept per unit time is thus �vA. The kinetic energy
of the air, measured as moving relative to the vehicle, is v2=2 per unit mass.
Putting this together we get the swept kinetic energy of the air per unit time
is �Av3=2.

How big is the drag coefficient Cd? When in doubt take dimensionless
constants as 1 and you are usually not too far off. At one extreme, a flat plate
has Cd � 1:25 and good airfoils have Cd � 0:05. People, animals, and
bicyclists all have Cd close to 1.

Drag on cars. For the worst cars Cd is actually almost 1. For typical cars
on the street Cd � 0:35. For the best high-efficiency cars on the market
in 2007, Cd � 0:25. Real marketed cars may one day get drag as low as
Cd � 0:2. And concept cars that are shaped like trout can have drag as low
as Cd � 0:1.

The drag power of a 2m2 car going 30m=s (� 67mph D 108 km= hr ) is about

Pdrag D 1

2
C�Av3 � 1

2
� 0:35 � .1 kg=m3/ � .2m2/ � .30m=s/3

D 9450 kg m2= s3 D 9:45KW � 13 hp

That is, comparing with the example above, a car that needs 160 hp extra to make
a zippy pass needs only 13 hp to move steadily along at a typical highway speed.
For the units conversion we used 1N D 1 kg m= s2, 1 J D 1N m, 1W D 1 J= s, and
1KW � 1:34 hp.

Caveat on the drag “law”. While there is some physics in the reason-
ing behind the drag law Fd D �CAv2=2 the emphasis should be on the
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word “some”, the whole chaotic nature of turbulent flow is not captured. The
quadratic drag law is an empirical fit. For a given shape the Cd actually
depends on the surface texture. And for a given shape and texture the Cd
depends on v, the v2 doesn’t capture all of the velocity dependence. None-
the-less, the drag law is a reasonable approximation for most engineering
purposes where drag is important.

Summary
There are two basic types of energy problems

� Problems where force or acceleration is given as a function of position
(a D a.x/ or F D F.x/) and energy methods are basically a trick for
finding v.x/.

� Problems where work, energy or power is of interest for its own sake
because of, say, interest in engine power, dissipated energy, etc.

Of course the two problem types can also overlap.
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9.1 Energetics of locomotion: using particle equations for
non-particle systems

On page 445 we showed a naive locomotion power example in which
we used

P D F v

where v was the car velocity,F the thrust on the car, andP was ‘the
power’ of the locomotion force. We pointed out two issues.

� How does it make sense for the passive ground, the source of
the propulsive force, to supply power?

� The point of application of the ground force on the car is at
the bottom of a wheel, a point that is not moving (v D 0).
So how can F v be other than zero?

The basic issue is that a car is not a particle, it has many moving parts
and also some chemistry, so particle equations need to be interpreted
with some care.

Particle equations are exact for
non-particle systems
The most general form for linear momentum balance, as applied to
a complicated system moving and deforming in complicated ways,
reduces to equation

*
F D m*a. That is, so long as we interpret

*
F to

be the total force on the system,*a to be the acceleration of the center
of mass, andm to be the total mass of the system.

The power and energy equations in this chapter have been based
on

*
F D m*a (or their 1D scalar version F D ma) so apply to any

system. But the terms P and EK have meanings that go beyond
particle mechanics. So while it is correct that (we derived it from
F D ma),

F v D d

dt

�
1

2
mv2

�

for non-particle systems it is not correct that F v is the ac-
tual power of the force applied nor thatmv2=2 is the kinetic
energy of the system.

To understand the situation depends on understanding multi-body
systems where we will see that the power of a force is

*
F �*vP where

*vP is the velocity of the material point to which the force is applied;
and the kinetic energy is larger than 1

2
mv2 because of motion rel-

ative to the average motion. Remember to reconsider these issues
when you know more.

More general energy balance
equations
Without worrying about what we can derive from what, there is no
doubt that for any closed system we can write the energy balance

equation from the front inside cover of the book, the first law of
thermodynamics, as:

PQCP D PEK C PEP C PEint:

About the ever-shifting sign conventions, here we use PQ as the heat
flow in to the system, P is the power of external forces on the sys-
tem, PEK and PEP are the rate of increase of the kinetic and potential
energies of the system, and PEint is the rate of increase of internal
energy. We can consider an accelerating car using this energy equa-
tion. For simplicity assume that no external forces do work on the
car (the ground certainly does no work, and let’s neglect air friction
for now). We can also look at a car on level ground so there are no
changes in gravitational potential energy. Finally, even though a car
has many moving parts, the bulk of the material goes at the speed
of a typical point on the body of the car. Thus the particle formula
for kinetic energy is reasonably accurate. Putting this altogether we
have

PQC P����
0

D d

dt

�
1

2
mv2

�
C EP����

0

C PEint

) d

dt

�
1

2
mv2

�
D � PEint C PQ

The rate of loss of chemical potential energy � PEint less the heat
flow out � PQ is what we call the power of the engine. Say chemical
energy is being lost (used up) at a rate of � PEint PD40KW. Say the
heat flow out the exhaust is � PQ D 30KW. Then, with that 40KW
of fuel use and that 25% efficient engine, we would have

d

dt

�
1

2
mv2

�
D � PEintC PQ D 40KW�30KW D 10KW � 13 hp:

But even this is not quite right because it does not take account the
flow of gases in and out of the car. Things can be messy if you look
carefully.

What’s the bottom line? In the end, with some sloppiness of
thought but not much inaccuracy, we are not far off thinking that
the change of kinetic energy of the car has to come from some place.
And that place is the work of the engine as supplied by the decrease
in chemical potential energy of the fuel. When we write P D PEK
for a car, the P in that equation is the force applied to the car times
the velocity of the car. But that P is not the power supplied by the
outside agents on the car (e.g., the passive ground). Rather it is the
power of forces inside the car. Never mind that we’re modeling a
car as a particle with no internal structure, at least for momentum-
balance purposes.

This whole situation can only be properly clarified when we
look at the power of internal and external forces in multi-body sys-
tems.
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SAMPLE 9.9 Which is the best bicycle helmet? Assume a bicyclist moves
with speed 25mph when her head hits a brick wall. Assume her head is rigid
and that it has constant deceleration as it travels through the 2 inches of the
bicycle helmet. What is the deceleration? What force is required? (Neglect
force from the neck on the head.)

Filename:sfig3-2-ouchie

v = v0 v = 0

d = 2 in
x

Figure 9.14:

Solution
Solution 1 – Kinematics method 1: We are given the initial speed of V0, a final speed of 0,
and a constant acceleration a (which is negative) over a given distance of travel d . If we call
tc the time when the helmet is fully crushed,

v.t/ D v0 C
Z tc

0
a.t 0/dt 0 D v0 C atc

0 D v.tc/ D v0 C atc ) tc D �v0=a (9.20)

x.t/ D x0 C
Z tc

0
v.t 0/dt 0 D 0C

Z tc

0
.v0 C at/dt

d D x.tc/ D 0C v0tc C at2c =2

d D v0

��v0
a

�
C a

�v0
a

�2
=2 ) d D �v20

2a
.using (9.20)/

) a D �v20
2d

D �.25mph/2

2 � .2 in/

D �252
4

� mi2

hr2 � in
�
�
5280 ft

mi

�2
� �� �

1

�
�
1 hr
3600 s

�2
� �� �

1

�
�
12 in

ft

�
� �� �

1

�
�

1g

32:2 ft=s2

�
� �� �

1

D �25
4

� 5280
2

36002
� 12 � 1

32:2
g

a D �125g

To stop from 25mph in 2 inches requires an acceleration that is 125 times that of gravity.
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Figure 9.15: F is the force of the helmet
on the moving head.
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Solution 2 – Kinematics method 2:

dv

dt
D a ) dv D adt

) vdv D avdt ) vdv D a
dx

dt
dt

) vdv D adx

)
Z
vdv D

Z
adx

) �
v2

2
D ax (since a D constant)

) 0 � v20
2

D ad ) a D �v20
2d

(as before)

Solution 3 – Quote formulas:

“v D
p
2ad”

) a D v2

2d
which is right if you know how to interpret it!

Solution 4 – Work-Energy:
Constant acceleration ) constant force

Work in D �EK

�Fd D 0 � mv20
2

) F D mv20
2d

But
*
F D m*a ) �F O{ D maO{) a D �F

m

So a D �v20
2d

(again)

Assuming a head mass of 8 lbm, the force on the head during impact is

jF j D mv20
2d

D ma D 8 lbm � 125g:

jF j D 1000 lbf

During a collision in which an 8 lbm head decelerates from 25mph to 0 in 2 inches, the
force applied to the head is 1000 lbf.

Note 1: The way to minimize the peak acceleration when stopping from a given speed
over a given distance is to have constant acceleration. The ‘best’ possible helmet,
the one we assumed, causes constant deceleration. There is no helmet of any
possible material with 2 in thickness that could make the deceleration for this
collision less than 125g or the peak force less than 1000 lbf.

Note 2: Collisions with head decelerations of 250g or greater are often fatal. Even 125g
usually causes brain injury. So, the best possible helmet does not insure against
injury for fast riders hitting solid objects.

Note 3: Epidemiological evidence suggests that, on average, chances of serious brain
injury are decreased by about a factor of 5 by wearing a helmet.
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SAMPLE 9.10 Dissipated energy in viscous drag: A ball of mass m D
1 kg is dropped from rest from a height h D 100m under gravity. The air
resistance on the ball is modeled as viscous drag Fs D cv where v is the
speed of the ball and c D 0:25 kg= s is the drag coefficient. Find the energy
dissipated in overcoming the air resistance during the entire flight of the ball.

Solution There are various ways in which we could calculate the energy dissipated in viscous
drag. The most straightforward way is to compute the work done by the drag force on the
body,

R
Fsdx during the entire flight. This calculation will be very easy if we knew the

drag force as a function of position, that is, if we have Fs.x/. Unfortunately, we have Fs �
Fs.v/ D cv and we do not know v as a function of position. However, we can find the speed
v as a function of time by solving the equation of motion F D ma and determine the speed
just before the ball hits the ground. Now, we can find the energy of the ball in two positions
— just when it starts falling and just before it hits the ground. The difference between the
two energies is what is lost or dissipated in the overcoming the air resistance. Let ‘A’ denote
position-1 from where the ball is dropped, i.e., yA D h, and ‘B’ denote position-2, a hair
above the ground, i.e., yB D 0. Taking the ground as the datum for potential energy, we have,

EA D .EK CEP/A D 1

2
m

0����
v2A Cmg

h����
yA

D mgh

EB D .EK CEP/B D 1

2
m

�����
v2B Cmg

0����
yB

D 1

2
mv2B :

Therefore, the energy dissipated in air resistance is

Edrag D �E D EA �EB D mgh � 1

2
mv2B (9.21)

Now, we just need to find vB . From the free-body diagram shown in fig. 9.17, we have,

m

Pv����
Ry D �mg � cv

or
dv

dt
D �g � c

m
v

)
Z v.t/

0

dv

Qcv C g
D �

Z t

0
d�

where Qc D c
m . Thus,

1

Qc ln. Qcv C g/

����v.t/
0

D �t

) ln
Qcv.t/C g

g
D �Qct

) v.t/ D g

Qc .e
�Qct � 1/: (9.22)

So, we have solved for v.t/. Unfortunately, we cannot find vB from this expression because
we do not know what t when the ball reaches the ground. Thus we need to first find tB and

Filename:sfig9-2-fallingball
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Figure 9.17: Free body diagram of the
falling ball. Note that the drag force
Fs D cv is shown acting downwards.
This is because we have assumed v to
be positive upwards and the drag force
always acts in the opposite direction of
the velocity.
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3A transcendental equation in t is one
where t appears both as an argument of
a trigonometric or exponential function
and elsewhere. Such equations can al-
most never be solved by hand in closed
form.
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�
for determin-

ing tf when y D 0. This is the same
as solving eqn. (9.23) for tf .

then substitute it in eqn. (9.22) to find vB . From eqn. (9.22), we have,

dy

dt
D g

Qc .e
�Qct � 1/

)
Z 0

h
dy D g

Qc
Z tB

0
.e�Qct � 1/dt

) � h D g

Qc

 
e�Qct

�Qc � t
!�����

tf

0

D g

Qc

 
�e

�Qctf
Qc � tf C 1

Qc

!

or
Qch
g

D 1

Qc .e
�Qctf � 1/C tf : (9.23)

This turns out to be a transcendental equation 3with no simple solution for tf . We can,
however, solve it numerically (either using a computer program, or by trial and error). For the
given values of m, c, and h, we solve eqn. (9.23) by trial and error (to locate zero crossing),
and find that tf D 5:5495 s (see fig. 9.18). Substituting t D tf in eqn. (9.22), we get

vB D mg

c
.e�

c
m tf � 1/

D 1 kg � 9:81m=s2

0:25 kg= s
.e
� 0:25 kg= s

1 kg �5:5495 s � 1/
D �29:44m=s:

Note that v comes out to be negative, which is expected because we assumed v to be posi-
tive upwards. The velocity is clearly directed downwards once the ball starts falling. Now,
substituting the values of m, g, h, and vB in eqn. (9.21), we get

Edrag D mgh � 1

2
mv2B

D 1 kg � 9:81m=s2 � 100m � 1

2
� 1 kg � .29:44m=s/2

D 547:64N�m

Thus more than half of the initial energy is dissipated in air friction. If there was no viscous
drag on the ball, its speed just before hitting the ground would be

vB D
p
2gh D 44:29m=s:

Edrag D 547:64N�m
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SAMPLE 9.11 How much time does it take for a car of mass 800 kg to
go from 0 mph to 60 mph, if we assume that the engine delivers a constant
power P of 40 horsepower during this period. (1 horsepower = 745.7 W)

Solution

P D PW � dW

dt
dW D Pdt

W12 D
Z t1

t0

Pdt D P.t1 � t0/ D P�t

�t D W12

P
:

Now, from IIIa in the inside front cover,

W12 D .EK/2 � .EK/1

D 1

2
m.v22 � v21/

D 800 kg�.60mph/2 � 0�
2

D 1

2
� 800 kg

 
60

mi
hr
� 1:61 � 10

3 m
1mi

� 1 hr
3600 s

!2

D 288:01 � 103 kg � m � m=s2

D 288 KJoule:

Therefore,

�t D 288 � 103 J
40 � 745:7 W

D 9:66 s:

Thus it takes about 10 s to accelerate from a standstill to 60 mph.

�t D 9:66 s

Note 1: This model gives a roughly realistic answer but it is not a realistic model, at least
at the start, at time t0. In the model here, the acceleration is infinite at the start
(the power jumps from zero to a finite value at the start, when the velocity is
zero), something the finite-friction tires would not allow.

Note 2: We have been a little sloppy in quoting the energy equation. Since there are
no external forces doing work on the car, somewhat more properly we should
perhaps have written

0 D PEK C PEint C PEP

and set �. PEint C PEP/ D ‘the engine power’ where the engine power is from
the decrease in gasoline potential energy .� PEP is positive/ less the increase in
‘heat’ . PEint/ from engine inefficiencies.
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SAMPLE 9.12 Energy of a mass-spring system. A mass m D 2 kg is
attached to a spring with spring constant k D 2 kN=m. The relaxed (un-
stretched) length of the spring is ` D 40 cm. The mass is pulled up and
released from rest at position A shown in Fig. 9.19. The mass falls by a dis-
tance h D 10 cm before reaching position B, which is the relaxed position of
the spring. Find the speed at point B.

Solution The total energy of the mass-spring system at any instant or position consists of
the energy stored in the spring and the sum of potential and kinetic energies of the mass. For
potential energy of the mass, we need to select a datum where the potential energy is zero.
We can select any horizontal plane to be the datum. Let the ground support level of the spring
be the datum. Then, at position A,

Energy in the spring D 1

2
k (stretch)2 D 1

2
kh2 (see eqn. (9.19), page 444)

Energy of the mass D EK CEP D
1

2
m v2A����

0

Cmg.`C h/ D mg.`C h/:

Therefore, the total energy at position A

EA D 1

2
kh2 Cmg.`C h/:

Let the speed of the mass at position B be vB . When the mass is at B, the spring is relaxed,
i.e., there is no stretch in the spring. Therefore, at position B,

Energy in the spring D 1

2
k (stretch)2 D 0

Energy of the mass D EK CEP D
1

2
mv2B Cmg`;

and the total energy

EB D 1

2
mv2B Cmg`:

Because the net change in the total energy of the system from position A to position B is

0 D �E

D EA �EB D 1

2
kh2 Cmg.`C h/ � 1

2
mv2B �mg`

D 1

2
.kh2 �mv2B /Cmgh

) v2B D kh2=mC 2gh

) jvB j D
�
kh2=mC 2gh

�1=2
D

�
.2000N=m � .0:1m/2=2 kg/C 2 � 9:81m=s2 � 0:1m

�1=2
D 3:46m=s:

jvB j D 3:46m=s

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 9. Dynamics in 1D 9.3. A mass and spring: the harmonic oscillator 455

9.3 A mass and spring: the harmonic
oscillator

A mass and spring moving in one dimension have the following governing
differential equation and solution

m Rx C kx D 0 ) x D C cos
�p

.k=m/t � �
�
:

The rest of this section is a discussion of, and elaboration of, this fact.
Any system with mass and elasticity can oscillate. Because lots of ma-

terials are elastic in normal conditions and all real things have mass, most
things will oscillate if provoked.

The simplest, and also the most important, example is the spring-mass
system of fig. 9.20. When the mass is on the right (x > 0) it accelerates to
the left; when it is on the left (x < 0) it accelerates to the right. So it goes
back and forth. As a general rule,

Oscillations (vibrations) happen when a ‘restoring’ force pulls some-
thing back towards a rest position from both sides.

Vibrations occur in the strings of cellos and sitars; the air columns in
clarinets, trumpets and organ pipes and the wood blocks in a marimba. A
system vibrating like this, whether literally a spring and mass or something
more subtle, is called a ‘harmonic oscillator’. More specifically,

a harmonic oscillator has persistent (non-decaying) oscillations which
are sinusoidal in time (e.g., x D sin t ).

With varying degrees of approximation, car suspensions, buildings re-
sponding to earthquakes, earthquake faults themselves, quartz timing crys-
tals and vibrating machines of all kinds are also modeled as mass-spring har-
monic oscillators. The subject ‘vibration theory’ is based on the harmonic
oscillator.

The unforced oscillation of a spring and mass is the basic model for all
vibrating systems.

Even structures which you think of as rigid (for example, when doing
statics) will vibrate if encouraged to do so by the shaking of an unbalanced
motor, the rumbling of a truck, a party upstairs, or the ground motion of
an earthquake. And the vibrations of one thing can excite oscillations of
another. This mutual excitement of fluids and solids can cause music, as in
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Figure 9.20: A spring mass system. For
simplicity in 1D we only show forces
along the motion. Although it would be
more complete to show gravity and sup-
port forces, it would add clutter.
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Figure 9.21: Oscillations.
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1Caution: If you make a sign er-
ror you might get Rx � .k=m/x D 0 or
Rx D .k=m/x. That not-so-innocent er-
ror changes the equation solutions from
oscillations to exponential blow up. See
appendix C.1 on page 1016.

Filename:tfig-blowinggrass0949

Figure 9.22: Blowing grass. If you
squeeze a blade of grass between your
parallel thumbs and then blow in the slot
between the left and right thumb joints,
at the grass, you can make a squeal
sound that is similar (kind of) to that of
a clarinet. This can be done with a strip
of paper between the lips too. These
are self-excited oscillations. The elastic
restoring force is related to the tension
in the grass which you can control by
straightening and bending your thumbs.
With practice you can adjust the pitch.
Music, kind of. Photo by Katja Ojala.

the vibrations in a clarinet reed (fig. 9.22), or trouble. The Tacoma Narrows
bridge infamously collapsed because of the mutual excitement of the air and
bridge.

All music, even if electrically powered, is mechanical vibrations (at least
of the air in your ear), and so are all annoying sounds. Vibrations are the
main function of a vibrating massager, and the main defect of a squeaking
hinge. Mechanical vibrations in pendula or quartz crystals are used to mea-
sure time, but vibrations can cause a machine to go out of control (e.g., bi-
cycle shimmy), or a bridge to collapse. So the generation of good vibrations
and the inhibition of bad vibrations is an important application of dynamics.

The harmonic oscillator
The mother of all vibrating machines is the simple harmonic oscillator of
fig. 9.20. The mass slides on a frictionless surface. The spring is relaxed at
x D 0. The spring is thus stretched from `0 to `0C�`, a stretch of �` D x.
A free body diagram of the mass, cut ‘free’ from the spring in its extended
state, is shown in the lower part of fig. 9.20. Linear momentum balance in
the x direction (the balance of forces) gives:X

Fx D PLx
�kx D m Rx:

Rearranging, we get one of the most famous and useful differential equations
of all time 1:

Rx C k

m
x D 0: (9.24)

The harmonic oscillator ODE. This ubiquitous is a 2nd order linear
constant-coefficient homogeneous ordinary differential equation. Basically
you can read this as that it is a ‘simple simple simple simple simple’ dif-
ferential equation. It’s 2nd order rather than, say 9th order. It’s linear as
opposed to non-linear. It’s constant coefficient as opposed to having crazy
functions of time where the constant k=m now sits. It’s homogeneous (zero
on the right hand side) instead of having crazy functions of time on the right
hand side. And it involves ordinary rather than partial derivatives.

Ordinary ‘d ’, rather
than partial @ deriva-
tives

B
BN
d2

dt2
x

Linear: x always ap-
pears alone, never as,
say x2 or sin x
�
�C
���

Constant coefficient,
not, say, sin t or t2 here

�2x D 0

BBM

Homogeneous means
zero on the right hand
side

: (9.25)
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We have used �2 instead of k=m because Eqn. (9.25) shows up all over
the place, both in and out of dynamics. Thus x doesn’t necessarily represent
displacement. In an electronics, for example, x might represent a voltage and
the term corresponding to k=m might be 1=LC , where C is a capacitance
andL an inductance. But even in dynamics eqn. (9.25) applies to other things
besides a single spring and mass. For example, x might represent rotation of
a pendulum.

Why �2 instead of just �? Two reasons:
1. It shows that �2 is positive,

2. In the solution we need the square root of this coefficient, so it is con-
venient to start with

p
�2 D �.

For the spring-block system, �2 is k=m and in other problems �2 is a com-
bination of other physical quantities.

Why � instead of another letter? In a large book we can’t avoid all no-
tational conflicts, there are more quantities of interest than there are letters.
The other common choices, p and !, are more problematic, however 2,

Solution of the harmonic oscillator differential equation
We need to find a solution to the differential equation 9.25. A solution is a
function x.t/ whose second derivative is the negative of the original function
multiplied by the constant �2. Although math classes may spend some time
on finding the solution to such equations (see 9.3 on page 466, for starters
is ok to remember the solution like this: when the mass is on the left it
accelerates right when it’s on the right it accelerates left. So it goes back and
forth, so it seems like a sine wave. And it is. Until you know this (which
should be soon) you can look it up in appendix C.1 on page 1016.

The general solution is.

x.t/ D A cos.� t/ C B sin.� t/;
or x.t/ D C1 cos.� t/ C C2 sin.� t/: (9.26)

This sum of two sine waves 3 is a solution of differential equation 9.25 for
any values of the constants A (or C1) and B (or C2).

Checking the solution in detail
What does it mean to say “u D C1 sin.� t/C C2 cos.� t/ satisfies the equa-
tion: Ru D ��2u?” You satisfy a differential equation by feeding it a function

2Notation: p, ! or �. Many books
use p2 or !2 in the place we have put
�2. But using ! (‘omega’) can lead to
confusion because we will later use !
for angular velocity. If one is studying
vibrations of a rotating shaft then there
would be two very different !’s in
the problem. One, the coefficient of a
differential equation and, the other, the
angular velocity.

To add to the confusion, simple har-
monic oscillations and circular motion
have a deep connection, so the coin-
cidence of notation is not accidental.
Deep connection or not, the ! in the
harmonic oscillator equation is not the
same thing as the ! describing angular
motion of a physical object. We avoid
this confusion by using � instead of !
here. (Also note that this � is unrelated
to the magnitude of the unit vector O�).

3A graph of the cosine function is also
a sine wave.
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Figure 9.23: Position versus time for
an undamped, unforced harmonic os-
cillator. x is the position of the mass, t
is time.

4A plausibility argument for unique-
ness goes like this. If you release a mass
from a given position x0 at a given speed
v0 it will move in a definite way and no
other way. This is a special case of what
is called “determinism”. But all solu-
tions have some position and speed at
t D 0 and we can find a C1 and C2 in
eqn. (9.26) to match each such. Thus we
have found the motion for every possi-
ble situation, and there can be no others.

that fully eliminates. If you plug a candidate solution into a differential equa-
tion and get 0 D 0 you have satisfied (solved) the equation.

Whether or not you learn to derive this solution, you should remember it
and be able to check it.

To check if a function is a solution, plug it into the differential equation
and see if the right side is equal to the left, like this.

Example: Detailed check of solution

d2

dt2
u

Is this true for the given u.t/?

BBN D ��2u

d2

dt2

u.t/� �� �
�C1 sin.� t/C C2 cos.� t/� �D ��2

u.t/� �� �
�C1 sin.� t/C C2 cos.� t/�

d

dt

�
d

dt
�C1 sin.� t/C C2 cos.� t/�

�
�D ��2�C1 sin.� t/C C2 cos.� t/�

d

dt
�C1� cos.� t/ � C2� sin.� t/� �D ��2�C1 sin.� t/C C2 cos.� t/�

Ru� �� �
�C1�2 sin.�t/ � C2�2 cos.� t/ �D

B
BM

The equation Ru D ��2u does hold with the given u.t/.
Right and left sides match. This shows at a glance in the
next line.

��2
u.t/� �� �

�C1 sin.� t/C C2 cos.� t/�

0
:)
D 0 (Satisfied.)

Whatever the constants C1 and C2, the proposed solution eqn. (9.26) satisfies
the differential equation eqn. (9.25).

Uniqueness. Maybe there are other solutions to this differential equation
than eqn. (9.26)? There are not, as the mathematics-for-its-own-sake inclined
student can learn to prove elsewhere. 4 The only possible motion of a spring
and mass is a sinusoidal oscillation.

Angular frequency, period, and frequency

There are three common ways to measure the ‘speed’ of oscillation: angular
frequency, period, and frequency. The simplest of these is angular frequency
� D

p
.k=m/, sometimes called circular frequency.

The period T is the amount of time that it takes to complete one oscilla-
tion. One oscillation of both the sine function and the cosine function occurs
when the argument of the function advances by 2� , that is when

�T D 2�; so T D 2�

�
D 2�p

.k=m/
;

Some people memorize these formulas in high school.
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The frequency f , without the modifiers ‘angular’ or ‘circular’, is usually
taken to mean the reciprocal of the period

f D 1

T
D �

2�
D
p
.k=m/

2�
:

Typically, frequency f is measured in cycles per second or Hertz and the
angular frequency � in radians per second. A computer or watch quartz
timing crystal has mechanical vibrations at a frequency of millions of cycles
per second, some molecules about a million times faster than that. On the
other extreme, the free vibrations of the whole earth have frequencies of
thousandths of a cycle per second (i.e. thousands of seconds per cycle). The
slowest vibration mode of the earth has a period of about 54 minutes 5. An
oscillation is called ‘fast’ if its frequency or angular frequency is high and it
is called ‘slow’ if the period is long.

Amplitude. The amplitude of the sine wave that results from the addition
of the sine function and the cosine function is given by the square root of
the sum of the squares of the two amplitudes. That is, the amplitude of the
resulting sine wave is

p
A2 C B2. Another way of describing this sum is

through the trigonometric identity:

A cos.� t/C B sin.� t/ D R cos.� t � �/; (9.27)

where R D
p
A2 C B2 and tan� D B=A (see box 9.2 on page 460).

Note that an oscillating particle could have a high velocity even if the
vibrations are ‘slow’, so long as the amplitude is high enough. And it could
have a small velocity even if the oscillations are ‘fast’, if the amplitude is low
enough. In common usage ‘speed’ of oscillations has to do with frequency,
not particle velocity.

Initial conditions determine the constants A and B
The constants A and B in equation 9.26 could have any value. Or, equiv-
alently, the amplitude R and phase � in equation 9.27 could be anything.
These are determined by the way motion is started, the initial conditions.
The following two special initial conditions are worth getting a feel for.

Release from rest. The simplest motion is release from rest, meaning the
initial velocity of the mass is zero. We find the motion from the general
solution

x.t/ D A cos.
p
.k=m/ t/C B sin.

p
.k=m/ t/:

At t D 0, this general solution has to agree with the initial condition that
x.0/ D x0 and the initial velocity is v.0/ D v0 D 0. In this case

x.0/ D x0 and v.0/ D 0 ) A D x0 and B D 0:

5Why does the earth oscillate? First
because it can. It has both mass and
an ‘elastic restoring force’ The elastic
restoring force comes from a combina-
tion two things: 1) the elasticity of rock
and 2) the self-gravitation of the earth
trying to bundle itself into a ball. What
gets the earth started oscillating? Mostly
big earthquakes.
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6It is tempting, but wrong, to evaluate
x.t/ at t D 0 and then differentiate to
get v.0/. Why wrong? Because x.0/
is just a number, differentiating it would
always give zero, even when the initial
velocity is not zero.
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Figure 9.25: The position of a mass as
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Example: Release from rest
The mass in fig. 9.20 is 0:5 kg, the spring constant is k D 50N=m, and the initial
displacement is 1 cm, then

x.0/ D A cos.0/����
1

CB sin.0/����
0

D A ) A D 1 cm:

The initial velocity must also match, so

v.t/ D Px.t/ D �A
p
.k=m/ sin.

p
.k=m/ t/C B

p
.k=m/ cos.

p
.k=m/ t/:

Evalutating at t D 0 and matching with the initial condition v0 D 0 6

v.0/ D �A
p
.k=m/ sin.0/����

0

CB
p
.k=m/ cos.0/����

1

D B
p
.k=m/ ) B D 0:

Substituting in k D 50N=m and m D 0:5 kg, we get

x.t/ D 1 � cos

0
BBBB@
vuuuut
�
0:5 kg
50N=m

�
� �� �
0:01 s�1

t

1
CCCCA cm D 1 cos.0:1t= s/ cm

which is plotted in fig. 9.24.

9.2 A cos.�t/C B sin.�t/ D R cos.�t � �/
derivation and visualization

Here we show that a cosine function and a sine function add to a
new sine wave. By sine wave we mean a function whose shape is the
same as the sine function, though it may be displaced along the time
axis. For example cos t and cos.t � const/ are both sine waves.

The trig identity approach. The quickest approach is to start
with the function f .t/ D R cos.�t � �/ and use the trig identity
for cosines angle addition:

cos.� � �/ D cos � cos� C sin � sin�:

Thus:

R cos.�t � �/ D R cos�t cos� CR sin�t� sin�

D A sin�t CB cos�t:

We can run the reasoning from right to left and set A D R cos�
and B D R sin� and then solve for R and � in terms of A and
B . Thus demonstrating the title of this box. If you have trouble
remembering the trig identity, you can derive it using the picture to
the right. Trigonometry is the one subject in which circular reasoning
is good.

The geometric approach. Consider the line segment A spin-
ning in circles about the origin at rate�; that is, the angle the segment
makes with the positive x axis is �t . The projection of that segment
onto the x axis isA cos.�t/, a sine wave. Now consider the segment
labeled B in the figure, glued at a right angle to A. The length of
its projection on the x-axis is B sin.�t/. So, the sum of these two
projections is A cos.�t/CB sin.�t/. The two segments A and B
make up a right triangle with diagonalR Dp

A2 CB2.

The projection or ‘shadow’ of R on the x axis is the same as
the sum of the shadows of A and B . The angle it makes with the

x axis is �t � � where one can see from the triangle drawn that
� D arctan .B=A/. So, by adding the shadow lengths, we see

A cos.�t/CB sin.�t/ D
p
A2 CB2 cos.�t � �/ :

The function f .t/ D R cos.�t � �/ is a sine wave. In particular it
is the cosine function with a maximum at �t � �.
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Chapter 9. Dynamics in 1D 9.3. A mass and spring: the harmonic oscillator 461

Initially at motion. The case where the initial position is zero but there is
some initial velocity is similar. How could this happen? Say we start paying
attention just after a still mass has been hit by a hammer.

Example:
Again use m D 0:5 kg andk D 50N=m. But now use x.0/ D 0 and v.0/ D
10 cm=s. Following the same procedure we get

x.t/ D B sin.
p
.k=m/ t/

with B
p
.k=m/ D 10 cm=s ) B D 1 cm.

The motion, x.t/ D .1 cm/ � sin
�
0:1t

s

�
, is shown in fig. 9.25.

Energy
The harmonic oscillator conserves energy, as one can check with either an-
alytical or numerical solutions. Conversely, we could start with the idea of
energy conservation to find the governing differential equations.

Conservation of energy

The harmonic oscillator is friction free. So the total mechanical energy,
the sum of the kinetic energy EK D 1

2
mv2 and the potential energy (from

eqn. (9.19)) EP D 1
2
k.�L/2, is constant in time.

ET D EK CEP D constant:

Energy oscillations.

As the mass moves, energy is exchanged back and forth between kinetic and
potential energies. At the extremes in the displacement, where the spring is
most stretched, the potential energy is at a maximum and the kinetic energy is
zero. When the mass passes through the center position the spring is relaxed,
the potential energy is at a minimum (zero) and the mass is at its peak speed,
and the kinetic energy is at its peak.

Motion details. Let’s assume the block in fig. 9.26 is released from rest
at x D xA > 0. The mass begins to move to the left and the spring does
positive work on the mass since the motion and the force are in the same
direction. After the block passes through the rest point x D O , it does
work on the spring until it comes to rest at its left extreme. The spring then
commences to do work on the block again as the block gains kinetic energy
in its rightward motion. The block then passes through the rest position and
does work on the spring until its kinetic energy is all used up and it is back
in its rest position.

Note that the potential and kinetic energy each have a two local maxima
and minima for each oscillation of the mass, thus their plots are sine-waves
with twice the frequency of the basic oscillation.
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Example: Check.
Using the special case where the motion starts from rest (i.e., x.t/ D
A cos.

p
k=m t/), we can check that the total energy really is constant.

ET D EP CEK

D 1

2
kx2 C 1

2
mv2

D 1

2
k.A cos.

p
k=mt/� �� �

x

/2 C 1

2
m.A

p
k=m sin.

p
k=mt/� �� �

v

/2

D 1

2
kA2 fcos2.

p
k=mt/C sin2.

p
k=mt/g� �� �

1

D 1

2
kA2 D initial energy in spring

which does not change with time.

Using energy to derive the oscillator equation

Conversely we can start with energy balance and derive the equations of
motion. Starting from ET D constant, we get

0 D d

dt
ET D d

dt
.EP CEK/

D d

dt
.
1

2
kx2 C 1

2
mv2/

D kx Px����
v

Cmv Pv����
a

D kx6 v Cm6 v a����
Rx

0 D kx Cm Rx

which is the harmonic oscillator equation. A technical defect of this deriva-
tion is that it does not apply at the instants when v D 0 (that is, 0 � x D 0 � y
does not imply that x D y). Thus, technically, from this derivation we only
know the differential equation holds for those times when v ¤ 0. Nonethe-
less, it gives the right equation for all times.

Similarly, power balance also leads to the harmonic oscillator equation.
Referring to the FBD in fig. 9.20, the equation of power balance for the block
during its motion after release is:

P����
�
��

Power in

D PEK����
BBM

Rate of change of kinetic
energy

*

Fspring �*vA D d

dt
.
1

2
mv2A/

�kxA O{ � PxA O{ D d

dt
.
1

2
m Px2A/

�kxA PxA D m PxA RxA :

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 9. Dynamics in 1D 9.3. A mass and spring: the harmonic oscillator 463

Dividing both sides by PxA (assuming it is not zero), we again get our friend,

�kxA D m RxA or m RxA C kxA D 0:

Dealing with offsets
Consider a mass hanging from a spring, as in fig. 9.27. If we assume statics
we can find the equilibrium stretch of the spring as mg=k. For dynamics we
can keep track of the position of a hanging mass at least 3 ways.

y D distance down from the ceiling;

z D y � `0 D distance the spring is stretched, or

x D z �mg=k D y � `0 �mg=k D distance below static equilib

At the equilibrium position y D `0 Cmg=k; z D mg=k and x D 0. For x,
y and z we can define velocity v and acceleration a as (down is positive)

v D Py D Pz D Px and a D Ry D Rz D Rx:
Using the free body diagram shown we can write

P
Fi D ma for each of

these cases as

m Ry D �k�`Cmg ) m Ry D �k.y � `0����
�`

/ Cmg

m Rz D �k�`Cmg ) m Rz D �k z����
�`

Cmg

m Ry D �k�`Cmg ) m Rx D �k.x Cmg=k� �� �
�`

/ Cmg; (9.28)

where in each of the three cases we had to solve for �` in terms of x,y and
z respectively.

m Ry C ky D k`0 Cmg

m Rz C kz D k`0

m Rx C kx D 0: (9.29)

All three equations 9.29 must describe the same motion. But they are three
different differential equations with three different solutions. From a course
in differential equations you know you can write the solutions as

General solution D general homogeneous solutionC any particular solution

y.t/ D A cos
p
.k=m/t C B sin

p
.k=m/t� �� �

yh

C `0 Cmg=k� �� �
yp

z.t/ D A cos
p
.k=m/t C B sin

p
.k=m/t� �� �

zh

C `0����
zp

x.t/ D A cos
p
.k=m/t C B sin

p
.k=m/t� �� �

xh

(9.30)
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That is, x has simple sinusoidal motions but y and z have sine waves plus a
constant. This gives us two basic choices for finding the motion:

1. Try to simplify the ODE by picking the coordinate that makes the math
the easiest (in this casex), or

2. Pick any convenient coordinate and use the math of homogeneous and
particular solutions to find the motions.

See more discussion of constant forcing in section 10.2 on page 515.

Numerical solution
Most numerical differential equation solvers depend on writing the equations
in first order form. We do this by defining v D Px. Thus

m Rx C kx D 0 ) m Pv C x D 0:

Combining the definition of v with the differential equation we get the set of
two coupled first order equations

Px D v

Pv D � k

m
x (9.31)

We can think of this as
Pz D f .z/

where z is the list of two numbers z.1/ D x and z.2/ D v so

d

dt

�
z1
z2

�
D
�

z2
� k
m
z1

�
:

which is a form easy to use with any numerical ODE solver.

Energy check. Note that there is no mention of energy in setting up the
numerical solution. Yet we claim that the solution conserves energy. What
does this mean?

After we find the numerical solution we have numerical values for x at a
sequence of times and for v at a sequence of times. We can use these lists to
calculate

ET D kx2=2Cmv2=2:

at all of these times. The claim is that this list of numbers is a list of the
same number, again and again. That is, a property of the solution is that it
‘conserves’ energy, meaning that it finds that the total energy is a constant.

This observation is hugely useful in numerical calculations. Why? Be-
cause we know a priori that energy should be conserved. If the numerical
solution does not give this constancy of energy it tells us we have made a
mistake. How constant? Of course there are numerical errors, so we expect
the energy to only be constant to the same accuracy as the numerical solution
(typical errors are one part per thousand or less).
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If it’s wrong then it’s wrong. Isn’t the energy check merely saying: ‘If
the solution gives the wrong answer we know that the solution is wrong.’?
Actually, it’s a bit more than that because the idea of energy conservation
transcends the details of the actual motion. In this case, for example, we
can check energy conservation without ever knowing that the position and
velocity oscillate exactly as sine waves. In more complicated problems we
might never know formulas for the motions. Yet we might know we have
energy conservation. So, even not knowing anything about the solution in
detail, we can use energy conservation to check the numerical solution. So, if
the numerical solution doesn’t conserve energy, we know that nothing about
the numerical solution can be trusted.
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9.3 Finding solutions to the harmonic oscillator equation
In the same way that you know , say, that a2 C b2 D c2 for a right
triangle, you should know that

RxC �2x D 0 ) a sine wave:

Knowing these does not depend on knowing how to derive them.
But should you be both insecure and math-inclined here are some
derivations of the latter.

Note that the methods below still involve guesses of sorts. That
is how it is for differential equations, most of them no-one can solve.
And the ones that people can solve they solve by guessing.

Method I: separation of variables
Start with

RxC �2x D 0 (9.32)

and multiply both sides by Px (that is, guess that this is a good thing
to try) to get

Px RxC �2x Px D 0:

Notice that

d

dt

Px2
2
D Px Rx and

d

dt

x2

2
D x Px

so
d

dt

n
m Px2 C kx2

o
D 0:

The expression in braces is thus a constant, call it C2 to show that
it is positive,

Px2=�2 C x2 D C2:

We could also have jumped to this result by conservation of energy

EK CEP D ET

) m
Px2
2
C k x

2

2
D ET

) Px2=�2 C x2 D 2ET=k D C2:

Now we separate variables to write

dx=
p
C2 � x2 D �dt:

Then integrate. How? Either substitute x D C sin � , or guess the
solution, or look up the integral on your symbolic calculator, a sym-
bolic math program or the internet. The result is

cos�1.x=C/ D �t � c2
so x D C cos.�t � c2/

where C and c2 are arbitrary constants. That’s one form of the gen-
eral solution of the harmonic oscillator equation. You can plug it
back into eqn. (9.25) and see that you get satisfaction, that is 0 D 0,
for all values of C; c2 and t . The other standard form

x D A cos�t CB sin�t

follows from the reasoning in box 9.2 on page 460. This is a solution
for any value of the constants A and B .

Method II: complex variables
For all linear constant-coefficient homogeneous ordinary differential
equations, including eqn. (9.32), a great guess, just one term, is that

x.t/ D e�t :

Plugging this guess into and cancelling the common non-zero factor
e�t from each term gives

�2 C �2 D 0:

So the guess implies that

� D �
p
��2:

That’s the square root of a negative number. So

� D ��i where i Dp�1:
Our guess has given us two complex solutions:

x1.t/ D e{�t and x1.t/ D e�{�t :

You can check that both of these satisfy eqn. (9.32). We can multiply
both solutions by arbitrary constants and add them and check that we
still have a solution, namely the two term complex solution

x.t/ D Ce{�t CDe{�t :
We then use the Euler formula (The‘most remarkable ... astounding
... jewel’ - Richard Feynman) that relates exponentials to sine waves

ei�t D cos�t C i sin�t:

We get a solution with 4 terms: Further, C and D can be complex
so C D C1 CC2i andD DD1 CD2i so

x.t/ D .C1 C iC2/�cos. �t/C i sin. �t/� (9.33)

C .D1 C iD2/�cos.��t/C i sin.��t/�: (9.34)

valid for any values of the constantsC1; C2;D1 andD2. Multiply-
ing this out we get, from our simple one-term guess that x D e�t ,
8 additive terms. By using the simplifying rules that sin��t D
� sin�t and cos��t D cos�t these collapse to four terms. Down
here in the simple real world we only care about the real part of this
solution (or we simply pick C1 D D1 and C2 D D2 to cancel the
imaginary terms). We are then left with the two terms

x.t/ D .C1 CD1� �� �
A

/ cos�t C .�C2 �D2� �� �
B

/ sin�t:

which, after defining the new constants A D C1 CD1 and B D
�C2 �D2, is our general (real) solution to the harmonic oscillator
equation. Using box 9.2 on page 460 we can write this as one sine
wave,

x.t/ D C cos.�t � �/:

We are stuck with � but C and � D c2 are arbitrary constants. One
simple guess has given us1 ! 2 ! 4 ! 8 ! 4 ! 2 ! 1
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SAMPLE 9.13 A block of mass m D 20 kg is attached to two identical
springs each with spring constant k D 1 kN/m. The block slides on a hori-
zontal surface without any friction.

1. Find the equation of motion of the block.

2. What is the oscillation frequency of the block?

3. How much time does the block take to go back and forth 10 times?

Solution

1. The free body diagram of the block is shown in Figure 9.29. The linear momentum
balance,

P *
F D m*a, for the block gives

�2kx O{C .N �mg/ O| D m*a

Dotting both sides with O{ we have,

�2kx D max D m Rx (9.35)

or m Rx C 2kx D 0 (9.36)

or Rx C 2k

m
x D 0: (9.37)

Rx C 2k
m x D 0

2. Comparing Eqn. (9.37) with the standard harmonic oscillator equation, Rx C �2x D 0,
where � is the oscillation frequency, we get

�2 D 2k

m

) � D
r
2k

m

D
s
2�.1 kN/m/
20 kg

D 10 rad=s:

� D 10 rad=s

3. Time period of oscillation T D 2�
�
D 2�

10 rad=s D �
5 s. Since the time period represents

the time the mass takes to go back and forth just once, the time it takes to go back and
forth 10 times (i.e., to complete 10 cycles of motion) is

t D 10T D 10��
5

s D 2� s:

t D 2� s
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SAMPLE 9.14 Simple harmonic motion of a buoy. A cylinder of cross
sectional area A and mass M is in static equilibrium inside a fluid of specific
weight  when Lo length of the cylinder is submerged in the fluid. From this
position, the cylinder is pushed down vertically by a small amount x and let
go. Assume that the only forces acting on the cylinder are gravity and the
buoyant force and assume that the buoy’s motion is purely vertical. Derive
the equation of motion of the cylinder using Linear Momentum Balance.
What is the period of oscillation of the cylinder?
Solution The free body diagram of the cylinder is shown in Fig. 9.31 where FB represents
the buoyant force (see the hydrostatics chapter starting on 402). Before the cylinder is pushed
down by x, the linear momentum balance of the cylinder gives

FB �Mg DM a����
0

D 0 ) FB DMg

Now FB = (volume of the displaced fluid)� (its specific weight) D ALo . Thus,

ALo DMg: (9.38)

Now, when the cylinder is pushed down by an amount x,

F 0
B D new buoyant force D .Lo C x/A:

Therefore, from LMB we get

F 0
B �Mg D �M Rx

or .Lo C x/A �Mg D �M Rx

or M Rx C Ax D
D0 from (9.38).� �� �
�ALo CMg

or M Rx C Ax D 0

or Rx C A

M
x D 0:

Rx C A
M
x D 0

Comparing this equation with the standard simple harmonic equation (e.g., eqn.(g), in the box
on ODE’s on page 1016).

The circular frequency � D
r
A

M
;

Therefore, the period of oscillation T D 2�

�
D 2�

s
M

A
.

T D 2�
q

M
A

Comments: This calculation inaccurately uses fluid statics to calculate the dynamics of a

buoy; the pressure used in this calculation assumes fluid statics when actually the fluid is

moving. One common partial correction is to use ‘added mass’ to account for fluid that

moves more-or-less with the cylinder. The added mass is usually something like one-half the

mass of the displaced fluid, that is one half the mass of the bouy. Another missing effect is

the fluid damping. This would be added as a drag force proportional to the velocity or the

velocity squared.
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SAMPLE 9.15 A spring-mass system executes simple harmonic motion:
x.t/ D A cos.�t � �/. The system starts with initial conditions x.0/ D
25mm and Px.0/ D 160mm= s and oscillates at the rate of 2 cycles/sec.

1. Find the time period of oscillation and the oscillation frequency �.

2. Find the amplitude of oscillation A and the phase angle �.

3. Find the displacement, velocity, and acceleration of the mass at t D
1:5 s.

4. Find the maximum speed and acceleration of the system.

5. Draw an accurate plot of displacement vs: time of the system and label
all relevant quantities. What does � signify in this plot?

Solution

1. We are given f D 2 Hz. Therefore, the time period of oscillation is

T D 1

f
D 1

2 Hz
D 0:5 s;

and the oscillation frequency � D 2�f D 4� rad=s:

T D 0:5 s; � D 4� rad=s:

2. The displacement x.t/ of the mass is given by

x.t/ D A cos.�t � �/:

Therefore the velocity (actually the speed) is

Px.t/ D �A� sin.�t � �/

At t D 0, we have

x.0/ D A cos.��/ D A cos� (9.39)

Px.0/ D �A� sin.��/ D A� sin� (9.40)

By squaring Eqn (9.39) and adding it to the square of [Eqn (9.40) divided by �], we
get

A2 cos2 � C A2�2 sin2 �
�2

D A2 D x2.0/C Px2.0/
�2

) A D
s
.25mm/2 C .160mm= s/2

.4� rad=s/2

D 28:06mm:

Substituting the value of A in Eqn (9.39), we get

� D cos�1 x.0/
A

D cos�1 25mm
28:06mm

D 0:471 rad � 27
�

:

A D 28:06mm: � D 0:471 rad:
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7 We can find the displacement and
velocity at t D 1:5 s without any dif-
ferentiation. Note that the system com-
pletes 2 cycles in 1 second, implying
that it will complete 3 cycles in 1.5 sec-
onds. Therefore, at t D 1:5 s, it has the
same displacement and velocity as it had
at t D 0 s.

3. The displacement, velocity, and acceleration of the mass at any time t can now be
calculated as follows

x.t/ D A cos.�t � �/
) x.1:5 s/ D 28:06mm� cos.6� � 0:471/

D 25mm:

Px.t/ D �A� sin.�t � �/
) Px.1:5 s/ D 28:06mm�.4� rad=s/� sin.6� � 0:471/

D 160mm= s:

Rx.t/ D �A�2 cos.�t � �/
) Rx.1:5 s/ D 28:06mm�.4� rad=s/2� cos.6� � 0:471/

D �3:95 � 103 mm= s2

D �3:95m= s2:

7

x.1:5 s/ D 25mm: Px.1:5 s/ D 160mm= s: Rx.1:5 s/ D �3:93m= s2:

4. Maximum speed:

j Pxmaxj D A� D .28:06mm/�.4� rad=s/ D 0:35m=s:

Maximum acceleration:

j Rxmaxj D A�2 D .28:06mm/�.4� rad=s/2 D 4:43m=s2:

j Pxmaxj D 0:35m=s; j Rxmaxj D 4:43m=s2:

5. The plot of x.t/ versus t is shown in Fig. 9.33. The phase angle � represents the shift
in cos.�t/ to the right by an amount �

�
.
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9.4 Coupled motions in 1D
Thinking of a car, a plane, a person on a bicycle or a satellite as a single parti-
cle is often edifying, and sufficient for many engineering purposes. However,
the one-particle model is also often inadequate. That the parts of a machine
or structure move relative to each other is obviously sometimes important;
many important engineering systems have parts that move independently.

Here we begin the study of independent, but coupled, motions of parts.
The independent motions are coupled in that the motion of each part may
effects the motion of the others.

Example: Car suspension.
A model of a car suspension treats the wheel as one particle and the car as another.
The wheel is coupled to the ground by a tire and to the car by the suspension. In a
first analysis the only motion to consider would be vertical for both the wheel and
the car. Think of the ground as moving up and down and ‘forcing’ the motion of
the car and wheel system.

Still using one-dimensional mechanics, we consider systems that can be
modeled as two or more particles. Such one-dimensional coupled motion
analysis is common in engineering practice in situations where there are con-
nected parts that all move in about the same direction, but the parts do not
move the same amount or necessarily at the same time. Many of the ideas
generalize to systems where parts, each with one degree of freedom, are cou-
pled together. Many generalizations apply even if each degree of freedom is
quite different from the others. These generalizations to more general cou-
pled motions come later in the book.

The primary goal in this section is to develop two skills:

� To write correct equations of motion for a line of particles connected to
each other with springs and dashpots, and

� To simulate the motions of such systems on a computer.

� (the third of the two things, really implicit in the first two) To use the
simulation results to find errors in the equations.

The concept of ‘normal modes’ is postponed to Section 10.3 The simplest
way of dealing with the coupled motion of two or more particles is

� to write
*

F D m*
a for each particle and then

� to use the forces on the free body diagrams to evaluate the forces.

Because the most common models for the interaction forces are springs and
dashpots (see chapter 3), one needs to account for the relative positions and
velocities of the particles.

Relative motion in one dimension

If the position of A is *rA, and B’s position is *rB, then B’s position relative to
A is

*
rB=A D*

rB �*
rA:
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Relative velocity and acceleration are similarly defined by subtraction, or by
differentiating the above expression, as

*
vB=A D*

vB �*
vA and *

aB=A D*
aB �*

aA:

In one dimension, the relative position diagram of fig. 2.5 on page 44 be-
comes fig. 9.35. *r D x O{, *v D v O{, and *

a D aO{. So, we can write,

xB=A � xB � xA;

vB=A � vB � vA D
d

dt
xB=A; and

aB=A � aB � aA D
d

dt
vB=A D

d2

dt2
xB=A:

An alternative notation, discussed in Chapter 2, is xAB where the directed
line AB is equivalent to the position of B relative to A:

xAB D xB=A

Example: Two masses connected by a spring.
Consider the two masses on a frictionless support (fig. 9.36). Assume the spring
is un-stretched when x1 D x2 D 0. After drawing free body diagrams of the two
masses we can write

*
F D m*a for each mass:

mass 1:
*
F1 D m*a1 ) T O{ D m1 Rx1 O{

mass 2:
*
F2 D m*a2 ) � T O{ D m2 Rx2 O{

(9.41)

The stretch of the spring is
�` D x2 � x1

so T D k�` D k.x2 � x1/: (9.42)

Combining (9.41) and (9.42) we get

Rx1 =
�

1
m1

�
k.x2 � x1/

Rx2 =
�

1
m2

�
.�k.x2 � x1//

(9.43)

Note: Take care with signs when setting up this type of problem. You should check,
for example, that if x2 > x1, mass 1 accelerates to the right ( Rx1 > 0) and
mass 2 accelerates to the left( Rx2 < 0). It is easy to make sign errors. You’ve
been warned!

The differential equations that result from writing
*

F D m*
a for the separate

particles are coupled second-order equations. The equations are ‘coupled’
in that the equation for m1, say, includes the position x2 or velocity v2 of
mass 2. Such systems of second order coupled equations are often solved on
a computer by writing them as a system of first-order equations. You have
two first-order equations for each of the second order equations because of
the addition of equations like, for example, Px17 D v17.
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Example: Writing second-order ODEs as first-order ODEs.
Refer again to fig. 9.36 If we define v1 D Px1 and v2 D Px2 we can rewrite equa-
tion 9.43 as

Px1 D v1

Pv1 D
�
1

m1

�
k.x2 � x1/

Px2 D v2

Pv2 D
�
1

m2

�
.�k/ .x2 � x1/

or, defining z1 D x1; z2 D v1; z3 D x2; z4 D v2, we get

Pz1 = z2

Pz2 = �
�

k
m1

�
z1 C

�
k
m1

�
z3

Pz3 = z4

Pz4 = k
m2
z1 � k

m2
z3 .

Most numerical solutions depend on specifying numerical values for the var-
ious constants and initial conditions.

Example: computer solution
If we take, in consistent units, m1 D 1; k D 1;m2 D 1; x1.0/ D 0; x2.0/ D
0; v1.0/ D 1, and v2.0/ D 0, we can set up a well defined computer problem
(please see the preface for a discussion of the computer notation). This problem
corresponds to finding the motion just after the left mass was hit on the left side
with a hammer.:

ODEs = {z1dot = z2
z2dot = -z1 + z3
z3dot = z4
z4dot = z1 - z3}

ICs = {z1(0) =0, z2(0)=1, z3(0)=0, z4(0)=0}
solve ODEs with ICs from t=0 to t=10
plot z1 vs t.

This yields the plot shown in fig. 9.37.

The same methods work for problems involving connections with dashpots.
Example: Multi-DOF system with a dashpot.
Consider mB in fig. 9.38. Using the free body diagram shown linear momentum

balance gives X
*
Fi D m*aBn

.�Tk4 � Tk2 C Tc1 C Tk3/O{ D maB O{g�	 � O{ ) � Tk4����
k4xB

� Tk2����
k2.xB�xA/

C Tc1����
c1. PxD� PxB /

C Tk3/����
k3.xD�xB /

D m aB����
RxB

k2xA � .k2 C k4 C k3/xB C k3xD � c1 PxB C c1 PxD D m RxB

Similar equations could be written for masses A and C. Some things to note

� We assumed zeros for the displacements so that the system is in static equi-
librium if xA D xB D xD D 0.
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� We have taken the sign convention that tension is positive for all springs and
dashpots.

� All of the spring coefficients of xB have a minus sign in front. That is because
all springs, whether to the right or the left of mass B, provide a restoring force
if mass B is displaced.

� All of the spring coefficients of xA and xD make a positive contribution be-
cause motion to the right of mass A or mass D causes a force to the right on
mass B.

As for the example above, for any system of masses, linear springs and linear
dashpots the set of momentum balance equations can be written in the form

�M � Rx C �C � Px C �K�x D 0 (9.44)

where x is a list of positions of the masses. The mass matrix �M � is diagonal
because each equation corresponds to F D ma for one mass. The damping
and stiffness matrices �C � and �K� are symmetric because, as Jim Marley
said, ‘every reaction has a reaction’; if motion of mass 7 causes a stretch on
the spring between it and mass 19 then motion of mass 19 causes a stretch
on the same spring, similarly affecting mass 7. So row 17 column 9 has the
same entry as row 9 column 17. As noted in the example below, the diagonal
elements of �M �, �C � and �K� are positive (or zero).

Example: Matrix form
When the three momentum balance equations for fig. 9.38 are written, one for each
mass, they can be assembled in matrix form as

2
6664

mA 0 0

0 mB 0

0 0 mC

3
7775

� �� �
�M�

2
6664

RxA

RxB

RxD

3
7775

� �� �
Rx

C

2
6664

0 0 0

0 c1 �c1

0 �c1 c1

3
7775

� �� �
�C �

2
6664

PxA

PxB

PxD

3
7775

� �� �
Px

C

2
6664

.k1 C k2/ �k2 0

�k2 .k2 C k4 C k3/ �k3

0 �k3 k3

3
7775

� �� �
�K�

2
6664

xA

xB

xD

3
7775

� �� �
x

D

2
6664

0

0

0

3
7775

� �� �
0

:

The equation for mB worked out at the start of this example corresponds to the
second row of these matrices.

This form is convenient for numerical solution if it is written as

Px D v

Pv D ��M ��1
�
�C �vC �K�x

�
For the three mass example this would represent 6 first-order differential
equations.

Center of mass
For both theoretical and practical reasons it is often useful to pay attention
to the motion of the average position of mass in the system. This average
position is called the center-of-mass. For a collection of particles in one
dimension the center-of-mass is

xCM D
P

ximi

mtot
; (9.45)
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where mtot D
P

mi is the total mass of the system. The velocity and accel-
eration of the center-of-mass are found by differentiation to be

vCM D
P

vimi

mtot
and aCM D

P
aimi

mtot
: (9.46)

If we imagine a system of interconnected masses and add the
*

F D m*
a

equations from all the separate masses we can get on the left hand side only
the forces from the outside; the interaction forces cancel because they come
in equal and opposite (action and reaction) pairs. So we get:X

Fexternal D
X

aimi D mtotaCM: (9.47)

So the center-of-mass of a system (a system that may be deforming wildly)
obeys the same simple governing equation as a single particle. Although our
demonstration here was for particles in one dimension. The result holds for
any bodies of any type in 1,2, or 3 dimensions.
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SAMPLE 9.16 For the given quantities and initial conditions, find x1.t/ and
x2.t/. Assume the spring is unstretched when x1 D x2.

m1 D 1 kg; m2 D 2 kg; k D 3N=m; c D 5N=.m=s/
x1.0/ D 1m; Px1.0/ D 0; x2.0/ D 2m; Px2.0/ D 0:

Solution The free body diagrams of all components of the given system are shown below.
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The spring and dashpot laws give

T1 D c Px1 T2 D k.x2 � x1/: (9.48)

The linear momentum balance for the two masses givesP *
F D m*a

mass 1: �T1 O{C T2 O{ D m1 Rx1 O{ (9.49)

mass 2: �T2 O{ D m2 Rx2 O{:

Applying the constitutive laws (9.48) to the momentum balance equations (9.49) gives

Rx1 D �k.x2 � x1/ � c Px1�=m1

Rx2 D ��k.x2 � x1/�=m2:

Defining z1 D x1; z2 D Px1; z3 D x2; z4 D Px2 gives

Pz1 D z2

Pz2 D �k.z3 � z1/ � cz2�=m1

Pz3 D z4

Pz4 D ��k.z3 � z1/�=m2:

The initial conditions are

z1.0/ D 1m; z2.0/ D 0; z3.0/ D 2m; z4.0/ D 0:

We are now set for numerical solution. Solving these equations numerically, we plot x1.t/

and x2.t/ as shown in fig. 9.40. From the solution, it is clear that both the masses settle

down to the equilibrium position x1 D x2 D 1m after the oscillations die down. In this

position, the spring exerts no force as it is unstretched. Also note that the two masses move in

the opposite direction immediately after set into motion as they must because of the opposite

accelerations.
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SAMPLE 9.17 Flight of a toy hopper. A hopper model 1 is made of
two masses m1 D 0:4 kg and m2 D 1 kg, and a spring with stiffness k D
100N=m as shown in fig. 9.41. The unstretched length of the spring is `0 D
1m. The model is released from rest from the configuration shown in the
figure with y1 D 25:5m and y2 D 24m.

1. Find and plot y1.t/ and y2.t/ for t D 0 to 2 s.

2. Plot the motion of m1 and m2 with respect to the center-of-mass of the
hopper during the same time interval.

3. Plot the motion of the center-of-mass of the hopper from the solution
obtained for y1.t/ and y2.t/ and compare it with analytical values ob-
tained by integrating the center-of-mass motion directly.

Solution The free-body diagrams of the two masses are shown in fig. 9.42. From the linear
momentum balance in the y direction, we can write the equations of motion at once.

m1 Ry1 D �k.y1 � y2 � `0/ �m1g

) Ry1 D � k

m1

.y1 � y2/C
k`0
m1

� g (9.50)

m2 Ry2 D k.y1 � y2 � `0/ �m2g

) Ry2 D k

m2

.y1 � y2/ �
k`0
m2

� g: (9.51)

1. The equations of motion obtained above are coupled linear differential equations of
second order. We can solve for y1.t/ and y2.t/ by numerical integration of these
equations. As we have shown in previous examples, we first need to set up these
equations as a set of first order equations.
Letting Py1 D v1 and Py2 D v2, we get

Py1 D v1

Pv1 D � k

m1

.y1 � y2/C
k`0
m1

� g
Py2 D v2

Pv2 D k

m2

.y1 � y2/ �
k`0
m2

� g:

Now we solve this set of equations numerically using some ODE solver and the fol-
lowing pseudocode.

ODEs = {y1dot = v1,
v1dot = -k/m1*(y1-y2-l0) - g,
y2dot = v2,
v1dot = k/m1*(y1-y2-l0) - g}

IC = {y1(0)=25.5, v1(0)=0, y2(0)=24, v2(0)=0}
Set k=100, m1=0.4, m2=1, l0=1
Solve ODEs with IC for t=0 to t=2
Plot y1(t) and y2(t)

The solution obtained thus is shown in fig. 9.43.
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1 You can think of it as a model of
a hopping robot or a hopping animal
where the foot mass is modeled withm2

and the body mass with m1. The spring
models the elasticity of the system. If
you restrict this model to one dimen-
sional vertical motion under gravity, it
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tial height. The number of hops depends
on the intial conditions. Theoretically, it
can hop forever with suitable initial con-
ditions.
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2. We can find the motion ofm1 andm2 with respect to the center-of-mass by subtraction
the motion of the center-of-mass, ycm from y1 and y2. Since,

ycm D m1y1 Cm2y2
m1 Cm2

(9.52)

we get,

y1=cm D y1 � ycm D m2

m1 Cm2

.y1 � y2/

y2=cm D y2 � ycm D � m1

m1 Cm2

.y1 � y2/:

The relative motions thus obtained are shown in fig. 9.44. We note that the motions of
m1 and m2, as seen by an observer sitting at the center-of-mass, are simple harmonic
oscillations.

3. We can find the center-of-mass motion ycm.t/ from y1 and y2 by using eqn. (9.52).
The solution obtained thus is shown as a solid line in fig. 9.46. We can also solve for
the center-of-mass motion analytically by first writing the equation of motion of the
center-of-mass and then integrating it analytically.
The free-body diagram of the hopper as a single system is shown in fig. 9.45. The
linear momentum balance for the system in the vertical direction gives

.m1 Cm2/ Rycm D �m1g �m2g

) Rycm D �g:

We recognize this equation as the equation of motion of a freely falling body under
gravity. We can integrate this equation twice to get

ycm.t/ D ycm.0/C Pycm.0/t �
1

2
gt2:

Noting that ycm.0/ D 24:43m (from eqn. (9.52)), and Pycm.0/ D 0 (the system is
released from rest), we get

ycm.t/ D 24:43m � 1

2
� 9:81m=s2 � t2:

The values obtained for the center-of-mass position from the above expression are
shown in fig. 9.46 by small circles.
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SAMPLE 9.18 Conservation of linear momentum. Mr. P with massmp D
200 lbm is standing on a cart with frictionless and massless wheels. The cart
weighs half as much as Mr. P. Standing at one end of the cart, Mr. P spots an
interesting object at the other end of the cart. Mr. P decides to walk to the
other end of the cart to pick up the object. How far does he find himself from
the object after he reaches the end of the cart?
Solution From your own experience in small boats perhaps, you know that when Mr. P walks
to the left the cart moves to the right. Here, we want to find how far the cart moves.

Consider the cart and Mr. P together to be the system of interest. The free-body diagram
of the system is shown in Fig. 9.48(a).
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Figure 9.48: (a) Free-body diagram of Mr. P-and-the-cart system. (b) The cart has moved to
the right by distance x when Mr. P reaches the other end.

From the diagram it is clear that there are no external forces in the x-direction. Therefore,

PLx D
X

Fx D 0 ) Lx D constant

that is, the linear momentum of the system in the x-direction is ‘conserved’. But the initial
linear momentum of the system is zero. Therefore,

Lx D mtot .vcm/x D 0 all the time ) .vcm/x D 0 all the time.

Because the horizontal velocity of the center-of-mass is always zero, the center-of-mass does
not change its horizontal position. Now let xcm and x0cm be the x-coordinates of the center-
of-mass of the system at the beginning and at the end, respectively. Then,

x0cm D xcm:

Now, from the given dimensions and the stipulated position at the end in Fig. 9.48(b),

xcm D mcxG Cmpxp

mc Cmp
and x0cm D mc.xG C x/Cmpx

mc Cmp
:

Equating the two distances we get,

mcxG Cmpxp D mc.xG C x/Cmpx

D mcxG C x.mc Cmp/

) x D mpxp

mc Cmp

D 200 lbm � 10 ft
300 lbm

D 6
2

3
ft:

6:67 ft

[Note: if Mr. P and the cart have the same mass, the cart moves to the right the same distance

Mr. P moves to the left.]
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Figure 9.49: Mr. P spots an interesting
object.
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The collision forces are
assumed to be much bigger
than all other forces on the
FBD during the collision.

Fcollision

Figure 9.50: Here cars are shown col-
liding. A free body diagram of the right
car shows the collision force and should
not show other forces which are negligi-
bly small. Here they are shown as neg-
ligibly small forces to give the idea that
they may be much smaller than the col-
lision force. The wheel reaction forces
are neglected because of the spring com-
pliance of the suspension and tires.

9.5 Collisions in 1D
Sometimes things interact in a sudden manner, like two cars in a head-on
crash or a dropped cell-phone hitting the floor. Some sudden interactions
are intentional, for example in sports the banging of racquets, bats, clubs,
sticks, hands and legs with balls, pucks and bodies. And in machines there
are sometimes intentionally sudden interactions like the clicking of a ratchet
and the flip of an electric light switch. More esoteric ‘sudden’ interactions
include those between subatomic particles in an accelerator and near passes
of satellites with planets.

When two solids bump into each other a nearly discontinuous change in
their velocities and/or angular velocities is needed to keep the bodies from
interpenetrating. This sudden change in velocity demands large interaction.
In the case of subatomic particles near nuclei and satellites near planets there
might be no contact, but none-the-less there are large forces when the interac-
tion distances get small. Estimating the effects of these large yet short-lived
forces is the central problem in collision mechanics.

Two objects are said to collide when some interaction force or moment
between them becomes so large that other forces acting on the bodies become
negligible. For example, in a car collision the force of interaction at the
bumpers may be many times the weight of the car or the reaction forces
acting on the wheels. And so short acting that, although velocities change,
positions change negligibly during the collision.

Collisional free body diagrams The analysis of collisions is a little dif-
ferent than the analysis of smooth motions, but still depends on free body
diagrams (See fig. 9.49). Knowing which forces to include and which to
ignore in a collisional free-body-diagram is a subtle issue. Some rules of
thumb:

� ignore forces from gravity, springs, and at places where contact is bro-
ken in the collision, and

� include forces at places where new contact is made, or where contact is
maintained.

The elementary analysis of rigid body collisions is based on these ideas:

I. Collision forces are big, so non-collisional forces are neglected in
collisional free body diagrams.

II. Collision forces are of short duration, so the position and orienta-
tion of the colliding bodies do not change during the collision.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 9. Dynamics in 1D 9.5. Collisions in 1D 481

What happens during a collision
During a collision between what would generally be called “rigid” bodies
things get wild. There are huge contact forces and stresses in the regions
near the nominally 1 contacting points, there could be plastic deformation,
fracture, and frictional slip. Elastic waves may travel all over the body, reflect
and scatter this way and that. Altogether the contact interaction during the
collision is the result of very complex deformations (see fig. 9.50).

Deformations (the lack of rigidity) give rise to the forces between collid-
ing bodies. So what could the phrase “rigid-object collisions” mean? It is
an oxymoron. Trying to understand the collision forces in detail, and how
they are related to deformations, is way beyond this book. Actually, there
is no unified theory of collisions so you can’t read about it in any book.
Loosely one might imagine that during part of the collision material is being
squeezed, this is called the compression phase and later on it expands back
in a restitution phase. But the realities of collisions are not necessarily so
simple; the forces and deformations can vary in complex ways.

Soon after the collision, however, the vibrations often die out, each object
may have negligible permanent change in shape, and the object returns to
motions that are well described by rigid-object kinematics. To find out the
net effect of the collision forces we use this one key idea:

III. The laws of mechanics apply during collisions even though rigid-
object kinematics does not.

While the motions during a collision may be wildly complex, the general
linear and angular momentum balance laws are still applicable. Rather than
applying these laws to understand the details during a collision, we use them
to summarize the overall result of the collision.

That is, in rigid-object collision analysis we do not pay attention to how
the forces vary in time, or to the detailed trajectories, velocities or accel-
erations of any material points. Rather, we focus on the net change in the
velocities of the colliding bodies that the collision forces cause. Thus, in-
stead of using the differential-equation form of the linear momentum bal-
ance, angular-momentum balance and energy equations (Ia, IIa, and IIIa from
the inside front cover) we use the time integrated forms (Ib, IIb, and IIIb).
All that we note about a collisional force is its net impulse

*

Pcoll D
Z

collision time

*

Fcoll dt

in terms of which we have, for one object experiencing this impulse at point
C

*

Pcoll D �
*

L; (9.53)
*
rC=0 �

*

Pcoll D �
*

H=O; and (9.54)

Collisional dissipation D �EK: (9.55)

Filename:tfigure-collisiongeneral

FBD
(no force)

FBD
(no force)

FBD

"-"

"+"

before

during

after

collision
impulsive
force

Figure 9.51: Just before a collision is
called “-”, and just after is called “+”.
The only forces that show on a colli-
sional free body diagram are those that
are large and part of the impact. Either
a force or an impulse may be shown.
This figure exaggerates the difference
between the before (-) and after (+)
states. In analysis we assume that there
is no change in the body’s position or
orientation from just before to just af-
ter the collision. The only net changes
caused by the collision are the body’s
velocity and rotation rate.

1 Nominally means “in name”. That
is, what one calls “contacting points”
are not points at all, but regions of com-
plex interaction.
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Figure 9.52: Before the collisions the
masses have velocities to the right of v�1
and v�2 . After the collision the velocities
are vC1 and vC2 . During the collision the
impulse P acts to the right on mass 2
and to the left on mass 1.

Most often the first two of these, the impulse-momentum equations are used
to find the motion after collision. The energy equation is just a check to make
sure that the collisional dissipation is positive (otherwise the collision would
be an energy source).

Extra assumptions are needed
The momentum balance equations, with the assumptions already discussed,
are never enough in themselves to determine the outcome of a collision. The
extra assumptions come in various forms. To minimize the algebra we dis-
cuss the issues first with one-dimensional collisions.

One dimensional collisions
Here we only consider collisions in the context of one-dimensional mechan-
ics: all motion is constrained to one direction of motion by forces which we
ignore. Only momentum and forces in, say, the O{ direction are included.

Example: 1-D collisions
Consider two masses which collide along their common line of motion. All veloc-
ities and momenta are positive if to the right and P is the impulse on mass 2 from
mass 1. The relevant impulse-momentum relations are

For mass 1 �P D m1.v
C
1 � v�1 /;

For mass 2 P D m2.v
C
2 � v�2 /; and

For the system 0 D .m1v
C
1 Cm2v

C
2 / � .m1v

�
1 Cm2v

�
2 /:

The third equation comes from a free body diagram of the system (ie, conservation
of momentum) or by adding the first two equations. In any case, given the masses
and initial velocities we have only two independent equations and we have three
unknowns: vC1 ; v

C
2 and P . Momentum balance is not enough to determine the

outcome of a collision.

To “close” (make solvable) the set of equations one needs to make extra
assumptions.

Sticking collisions

The simplest assumption is that the masses stick together after the collision
so

vC1 D vC2 :

Such a collision is sometimes called a perfectly plastic, a perfectly inelastic,
or a dead collision. Algebraic manipulations of the momentum equations
and the “sticking” constitutive law give

vC1 D vC2 D .m1v
�
1 Cm2v

�
2 /=mtot .where mtot D m1 Cm2/ and

P D .v�1 � v�2 /mcoll .where mcoll D
m1m2

m1 Cm2
/:

The collisional mass or contact mass mcoll
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mcoll D m1m2

m1 Cm2
D 1

1
m1

C 1
m2

is not the mass of anything. It is just a quantity that shows up repeatedly in
collision calculations and theory. It is the reciprocal of the sum of the re-
ciprocals of the two masses. If one mass is much bigger than the other, the
contact mass is mcoll � the smaller of the two masses. It is the proportional-
ity constant relating the interaction force and the relative acceleration of the
particles during the collision

mcoll.a2 � a1/ D F (with F being the force of body 1 on body 2)

and is thus related to the effective mass of box 13.1 on page 625.

More general 1-D collisions

The momentum equations can be re-arranged to better get at the essence of
the situation which is that

� In the collision the system’s center-of-mass velocity is unchanged, and

� The effect of the collision is to change the difference between the two
mass velocities.

So we define the center-of-mass velocity vcm and the velocity difference vrel
as

vcm � .m1v1 Cm2v2/=mtot and vrel � v2 � v1:

Note that before a collision the masses are approaching each other so v�1 >

v�2 and v�rel < 0. A little more algebra shows that for any P ,

vC2 D vcm C
m1

m1 Cm2
vCrel;

vC1 D vcm �
m2

m1 Cm2
vCrel; and

P D .vCrel � v�rel/mcoll

That is, P acts on vrel as if vrel were the velocity of an object with mass mcoll.
If P D 0 the equations above are a long winded way of saying that nothing
happened, vC1 D v�1 and vC2 D v�2 , and the masses pass right through each
other.

If P D �v�relmcoll there is a sticking collision.

Elastic collisions

Application of the above formulas will show that if

P D �2v�relmcoll
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Figure 9.53: The rate of approach of
two about-to-collide points is va � vb .
The rate of separation after collision is
v0
b
�v0a. The simplest collision law says

v0
b
� v0a D e.va � vb/, where e is the

coefficient of restitution.
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2 A common mistake is to take e as a
material property. It is not. e generally
depends on the shapes and sizes of the
contacting objects also (see box 9.4 on
page 485).

3What did Newton say about col-
lisions? Newton swung spheres at the
ends of string, banged them into each
other, and measured their bounce. He
took account of air friction. At the point
of this quote he has already discussed
momentum conservation. Here is his
statement of, and justification for, what
we now call “Newton’s law of colli-
sions” (eqn. (9.56)):

“In bodies imperfectly elastic the
velocity of the return is to be diminished
together with the elastic force; because
that force (except when the parts of bod-
ies are bruised by their impact, or suffer
some such extension as happens under
the strokes of a hammer) is (as far as I
can perceive) certain and determined,
and makes bodies to return one from the
other with a relative velocity, which is
in a given ratio to that relative velocity
with which they met. This I tried in balls
of wool, made up tightly, and strongly
compressed. For, first, by letting go the
pendula’s bodies, and measuring their
reflection, I determined the quantity of
their elastic force; and then, according
to this force, estimated the reflections
that ought to happen in other cases
of impact. And with this computation
other experiments made afterwards did
accordingly agree; the balls always
receding one from the other with a rel-
ative velocity, which was to the relative
velocity to which they met, as about 5
to 9. Balls of steel returned with almost
the same velocity; those of cork with a
velocity something less; but in balls of
glass the proportion was as about 15
to 16. ” (Newton’s Principia Motte’s
translation revised, by Florian Cajori,
Univ. of CA press, page 25, 1947)

then the kinetic energy of the system after the collision is the same as the
kinetic energy before. That is

EK
C D EK

�

m1v
C
1

2 Cm2v
C
2

2

2
D m1v

�
1
2 Cm2v

�
2
2

2
:

Also, vCrel D �v�rel, the relative velocity maintains its magnitude and reverses
its sign.

The coefficient of restitution

We have that as P ranges from �v�relmcoll to �2v�relmcoll, the collision ranges
from sticking to an energy conserving reversal of relative velocities. The
coefficient of restitution e is introduced as a way of interpolating between
these cases. The most commonly used collision law can be summarized with
this simple equation,

The speed with which col-
liding points are separat-
ing after the collision.

BBN� �� �
.v0b � v0a/ D e����

BBM

The coefficient of restitu-
tion, assumed to be a con-
stant for given materials.

The speed at which collid-
ing points are approach-
ing before collision.
��� �� �

.va � vb/; (9.56)

Or, more simply expressed, the collision law can be defined by either of the
following two equations

vCrel D �ev�rel or

P D �.1C e/v�relmcoll:

If e D 0 we have a sticking collision. If e D 1 we have an energy conserving
elastic collision. If e is between 0 and 1 the collision is somewhere between
as dead and as alive as can be 2. which can be summarized as, the rate of
separation is proportional to the rate of approach. The coefficient e is called
Newton’s (see box 9.5) or Poisson’s coefficient of restitution. Somewhat of a
miracle is that a given pair of objects seems to have a coefficient of restitution
that is roughly independent of the velocities. This is the result of a conspiracy
by all kinds of deformation mechanisms that we don’t really understand. But
that e is a constant for a given pair of bodies is only an approximation that
has roughly the same status (accuracy) as, say, the friction coefficient. Much
lower status than the momentum balance equations.
3
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9.4 The axial collision of elastic rods: the unusual
disappearance of vibrations

This box is an aside for the curious. No key skills are covered.
One can try to understand the stresses and deformations during

a collision. This generally leads to the solution of partial differential
equations. But those equations depend on material behavior that is
usually not well modeled. So even carefully generated numerical
solutions may be far from reality.

To get a sense of the complexity we consider an ideal simple
system, one that was somewhat controversial amongst the great 19th
century scientists Cauchy, Poisson and Saint-Venant (so said E.J.
Routh in 1905).

Two identical linear elastic rods. One uniform linear elastic rod
with length ` is stationary. An identical rod approaches it with speed
v from the left.
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The system has no damping so matter how the rods shake and vi-
brate, their elastic potential energy plus kinetic energy is constant.

Using the wave equation (see last paragraph) we can find the
motions illustrated iabove. The pictures exaggerate the compression
in the bar (For most materials the compression wouldn’t be visible).

First, the undeformed left rods make contact, and a compres-
sional sound wave starts spreading to the left and right. Between the
wave fronts, in both rods, the material is compressed material mov-
ing at speed v=2 to the right. To the right of the right wave front the
material is still. To the left of the left-moving wave front the material
continues to move at v. When the wave fronts meet, the ends of their
respective bars, the bars are compressed and all material is going to
the right at v=2. Then both wave-fronts reflect off the ends of the
bars and head back towards the contact point. To the left of the now
right-moving wave front (on the left bar) the material is stationary
and uncompressed. To the right of the left-moving wave front (on
the right bar) the material is uncompressed but moving to the right at
speed v . Finally, the waves meet in the center and the bars separate.
The right bar is now uniformly moving to the right at speed v and
the left bar is stationary.

The result of this collision is that all of the momentum of the left
bar is transferred to the right bar. The separation velocity is equal in
magnitude to the approach velocity. The coefficient of restitution e is
1, and the kinetic energy of the system is the same after the collision
as it was before.

Note that the collision itself was quick. The wave-fronts move
at the speed of sound, typically about 1000 m=s for metals. So for 1
meter metal rods the collision takes a few thousandths of a second.
But during that few thousandths of a second, the initial energy was
partitioned into elastic strain energy and kinetic energy in different
time-changing regions of the bar.

Despite all the complicated details, we predict a totally ‘elastic’
collision. This may seem natural for collisions of elastic objects.

An elastic rod hits a rigid wall If you drop a 3 foot wooden dowel
straight down on a thick concrete or stone floor it bounces quite well.
Why? A wave analysis like that described above shows that a wave
traveling from the first contact at the floor travels up the top and
reflecting back to the bottom, leaving the rod moving uniformly up
after the collisions just as fast as it was moving down before. Of
course a wooden dowel is not perfectly described by the simple wave
theory. And the ground is not perfectly rigid. So a real dowel’s
collision is not perfectly elastic.

But again we find that if we assume an elastic material that we
predict an elastic collision. Maybe no surprise. But the previous
two examples are completely misleading! These are maybe the only
examples where a detailed elastic theory predicts an elastic collision.
More commonly it’s more like the next example.

Rods of different length If the rods have length `1 and `2 > `1
then the collision works out differently.
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When the reflection from the left end of the left rod comes back to
the contact point, the rods separate. The left rod is stationary but
the right rod has waves moving up and back. The average speed of
the right rod is .`1=`2/v so the effective coefficient of restitution
is e D `1=`2 < 1. Later, after the vibrations have died out, the
energy of the system will be less than initially. Or, even if the waves
don’t die out, the kinetic energy that can be accounted for in rigid-
body mechanics is lost to remnant vibrations. Thus a totally elastic
system leads to inelastic collisions. It is wrong to think that the resti-
tution constant e depends on material; it also depends on the shapes
and sizes of the objects. The amount of vibrational energy left after
separation depends on shape and size.

For experts only: the wave equation In one-dimensional linear
elasticity the displacement u to the right, of a point at location x on
one or the other rod follows this partial differential equation:

@2u

@t2
D E

�

@2u

@x2
:

That is, the collision mechanics in detail is the finding of u.x; t/
that solves the wave equation above with the given initial conditions
(one bar is moving the other isn’t) and the boundary conditions (the
ends of the bars have no stresses but when where they are in contact
where they can have equal compressive stresses). The solution is
most easily found by constructing right and left going waves that
add to meet the initial conditions and boundary conditions (Routh).
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Figure 9.54:

SAMPLE 9.19 Collision without energy loss: A block of mass m1 D
2 kg moves with speed v1 D 0:5m=s along the x-axis on a frictionless level
ground behind another block of mass m2 D 10 kg moving at a speed v2 D
0:2m=s in the same direction. The first block collides with the second block.
Given that there is no loss of energy in this collision, find the speeds of the
two blocks immediately after the collision.

Solution We are given the speeds of two blocks (of known masses) just before the collision.
It is also given that there is no loss of energy in the collision. We have to find the speed of the
two masses immediately after collision.

We know that the linear momentum of the system consisting of the two blocks is con-
served during the collision. Thus, if v�1 and v�2 are the speeds of the two masses just before
the collision and vC1 and vC2 are their respective speeds immediately after the collision, then
we have

m1v
C
1 Cm2v

C
2 D m1v

�
1 Cm2v

�
2 (9.57)

Since there is no loss of energy in the collision, the energy of the system is conserved. Thus,
E� D EC, or

1

2
m1.v

C
1 /

2 C 1

2
m2.v

C
2 /

2 D 1

2
m1.v

�
1 /

2 C 1

2
m2.v

�
2 /

2: (9.58)

Thus, we have two equations (eqn. (9.57) and eqn. (9.58)) in two unknowns, vC1 and vC2 , and
hence we can solve for them. It is now only a question in algebra. From eqn. (9.58), we have

m1

h
.vC1 /

2 � .v�1 /2
i

D m2

h
.v�2 /

2 � .vC2 /2
i

) m1.v
C
1 C v�1 /.v

C
1 � v�1 / D m2.v

�
2 C vC2 /.v

�
2 � vC2 / (9.59)

But, from eqn. (9.57), m1.v
C
1 � v�1 / D m2.v

�
2 � vC2 /. Hence,eqn. (9.59) simplifies to

vC1 C v�1 D vC2 C v�2
) vC1 � vC2 D v�2 � v�1 : (9.60)

Multiplying the above equation by m1 and subtracting from eqn. (9.57), we get

.m1 Cm2/v
C
2 D 2m1v

�
1 C v�2 .m2 �m1/

) vC2 D 2m1

m1 Cm2

v�1 C
m2 �m1

m1 Cm2

v�2 :

Now substituting the given values, m1 D 2 kg; m2 D 10 kg; v�1 D 0:5m=s and v�2 D
0:2m=s above, we get vC2 D 0:3m=s. Further, substituting the values of vC2 in eqn. (9.60),
we get vC1 D 0, i.e., the first mass comes to a halt!

vC1 D 0 and vC2 D 0:3m=s

Comments: : Note that rather than using energy conservation equation directly as we did

above, we could have used the given energy information t o set e D 1 (perfectly elastic

collision) in eqn. (9.56) to get vC2 � vC1 D �v�2 C v�1 (rather than deriving it as we did

above). We can then solve this equation along with eqn. (9.57) to solve for vC1 and vC2 .
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SAMPLE 9.20 Estimating peak force in a collision: A metal ball of mass
m D 0:5 kg strikes a stationary surface S1 with velocity *

v D 10m=sO{ and
rebounds with velocity*

v D �9m=sO{. In a different experiment the same ball
strikes another stationary surface S2 with the same initial velocity and has the
same rebound velocity. The contact time during the two experiments were
different: 0:1 s and 0:001 s respectively. Assuming that the collisional force
between the ball and the two surfaces can be modeled as F.t/ D F0

2
.1 C

cos 2�t
T
/ (see fig. 9.54) where �T=2 � t � T=2 and T is the contact time,

find the peak force F0 in each case.
Solution Let the collisional impulse acting on the ball be

*
P (see fig. 9.55) given by

*
P D

Z T=2

�T=2
*
F .t/dt:

From impulse-momentum relationship, we have
*
P D �

*
L D m�*v:

Since in the case of each surface, �*v is the same (*vC �*v� D �19m=sO{), the change
in linear momentum �L D m�*v is also the same. Hence, the impulse acting on the ball in
each case has to be the same. Now, let

*
P1 and

*
P2 be the impulses acting on the ball during

the collision with surface S1 and S2 respectively. Then,

*
P1 D �

Z T1=2

T1=2

*
F1.t/dt O{

D �
Z T1=2

�T1=2
.F0/1
2

�
1C cos

2�t

T1

�
dt O{

D � .F0/1T1
2

O{
Similarly,

*
P2 D � .F0/2T2

2
O{:

Now, setting
*
P1 D �L, we get

� .F0/1T1
2

O{ D �m�v O{

) .F0/1 D 2m�v

T1

D 2 � 0:5 kg � 19m=s
0:1 s

D 190N:

Similarly,

.F0/2 D 2m�v

T2

D 2 � 0:5 kg � 19m=s
0:001 s

D 19000N:

Clearly, the peak force is inversely proportional to the collision time. In fact, it is easy to
see that for the given model of the impulsive force, the peak force F0 D 2m�v

T
. Thus if the

change in momentum is constant, then the peak force varies as 1=T .

.F0/1 D 190N and .F0/2 D 19000N
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Figure 9.58: Collision of the basketball
with the ground.
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SAMPLE 9.21 A two-ball multiple collision experiment: A tennis ball
of approximate mass m1 D 60 gm and a basketball of approximate mass
m2 D 600 gm are used in a fun collision experiment. The two balls are held
in air, one on top of the other with a tiny gap between them, at a height h
from the ground as shown in the figure. The two balls are released simulta-
neously from rest. The coefficient of restitution between the tennis ball and
the basketball is e1 D 0:6 and that between the basketball and the floor is
e2 D 0:9. Assume that the collision between the two balls takes place im-
mediately after the basketball rebounds from the floor. Find the height of the
tennis ball flight in terms of h as a result of the collision.
Solution We need to track two separate collisions here — one between the basketball and
the floor, and second, between the tennis ball and the basketball. We can find the relevant
vertical velocities before and after the collisions to determine the velocity of the tennis ball’s
flight which we can use to find the height of the flight. We will assume upward velocities to
be positive.
Collision-1: Just before the basketball hits the floor, let its vertical velocity be v�2 and let
the tennis ball’s speed at the same instant be v�1 . Since both balls undergo free fall from
height h before attaining these speeds, we have v�1 D v�2 D �

p
2gh. Now let vC2 be the

speed of the basketball immediately after the collision with the ground (see fig. 9.57). Then,
vC2 D �e2v�2 D e2

p
2gh.

Collision-2: We assume that the second collision, the collision between the tennis ball and
the basketball, takes place immediately after the first collision. Hence, the velocity of the
tennis ball just before the collision with the basketball can be assumed to be v�1 D �

p
2gh.

The second collision is shown in fig. 9.58. The after impact velocities of the two balls are vC1
and vCC

2 . Now, from collision law, we have

vC1 � vCC
2 D �e1.v�1 � vC2 / D �e1.�

p
2gh � e2

p
2gh/ D

p
2ghe1.1C e2/: (9.61)

The conservation of linear momentum for the two-ball system gives

m1v
C
1 Cm2v

CC
2 D m1v

�
1 Cm2v

C
2 /

) vC1 C m2

m1

vCC
2 D v�1 C

m2

m1

vC2

Taking M D m2=m1, and substituting the values of v�1 and vC2 , we get
vC1 CMvCC

2 D
p
2gh.Me2 � 1/: (9.62)

Now solving eqn. (9.61) and eqn. (9.62) simultaneously, we get

vC1 D
p
2gh

1CM
�M.e1 C e2 C e1e2/ � 1� :

This is the velocity with which the tennis ball takes off on its vertical flight. Let the height of
this flight be hf . Then, from constant acceleration motion formula, we get .vC1 /

2 D 2ghf ,
or hf D .vC1 /

2=2g. Thus, from the derived expression for vC1 above, we get

hf D h

.1CM/2
�M.e1 C e2 C e1e2/ � 1�2 :

Substituting M D m2=m1 D 10, e1 D 0:6, and e2 D 0:9 above, we get hf D 3:11h. Thus
the tennis ball flies off to three times its original height.

hf D 3:11h

Note: From the expression obtained for vC1 , we see that if M is very large then vC1 Dp
2gh.e1 C e2 C e1e2/ and hf D .e1 C e2 C e1e2/

2h.
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Problems for
Chapter 9
Unconstrained 1D dynamics

9.1 Force and motion in
1D
Preparatory Problems
9.1.1 Give three examples of real life ob-
jects where you might use the idealization,
for dynamic calculations, that the object is
a particle in unconstrained 1D motion. �

9.1.2 A car is going downhill on a constant
slope straight road. for finding out the car’s
speed at the end of the road you model it
as a particle. For specifying initial veloc-
ity, which point on the car would you con-
sider? �

9.1.3 The acceleration of a particle is given
as a function of time, a.t/. Is this informa-
tion sufficient to find the speed of the par-
ticle at the end of, say, T seconds? �

9.1.4 If a particle has constant accelera-
tion, its linear momentum (a) remains con-
stant, (b) changes linearly with time, or (c)
changes quadratically with time. Which
one is true? �

9.1.5 In a motorcycle race on a straight
track, the speed v� of a motorcyclist at the
d=200 m mark is recorded. Given that the
rider started from rest, find the initial accel-
eration of the motorcycle. Assume the ac-
celeration (a) is constant or (b) (challenge)
decreases linearly with time to zero at the
end. �

9.1.6 The force acting on a particle with
mass m is a given function of time. If you
plot the force vs time and find the area un-
der the graph, from that area can you deter-
mine (a) the net displacement of the parti-
cle?, (b) the average velocity of the parti-
cle?, or (c) the change in linear momentum
of the particle? �

9.1.7 If the linear momentum of a body re-
mains constant in time, it must have (pick
one): (a) a constant force acting on it, (b)
no net force acting on it, or (c) a sinusoidal
force acting on it. �

9.1.8 The distance between two points in a
bicycle race is 10 km. How many minutes
does a bicyclist take to cover this distance
if he/she maintains a constant speed of 15
mph. �

9.1.9 A 5 kN constant force acts on a 1 kg
object for 5 seconds that was initially at
rest. Find the speed of the object at the end
of (a) 5 seconds, and (b) 10 seconds.

9.1.10 Given that Px D k1 C k2t; k1 D
1 ft=s; k2 D 1 ft=s2; and x.0/ D 1 ft;
what is the displacement at the end of 10
seconds?

9.1.11 Find x.3 s/ given that

Px D x=.1 s/ and x.0 s/ D 1m

or, expressed slightly differently,

Px D cx and x.0 s/ D x0;

where c D 1 s�1 and x0 D 1m. Make a
sketch of x versus t . �

9.1.12 A ball of mass m is dropped from
rest at a height h above the ground. Find
the position and velocity as a function of
time (as well as m and g, if needed). Ne-
glect air friction. When does the ball hit
the ground? What is the velocity of the ball
just before it hits?

9.1.13 The speed of a particle varies si-
nusoidally as v D A sin�ct �, where A D
0:5m=s and c D 3 rad=s. Let the initial
position of the particle be x.0/ D 0. Find
the position of the particle at t D �=2 s.

9.1.14 The speed of a particle is directly
proportional to its position and is given as
Px D x= s. If the initial position, x.0/ D
1m, how far would the particle be from the
origin in 5 seconds?

More-Involved Problems
9.1.15 Consider a force F.t/ acting on
a cart over a 3 second span. In case (a),
the force acts in two impulses of one sec-
ond duration each as shown in fig. 9.1.15.
In case (b), the force acts continuously for
two seconds and then is zero for the last
second. Given that the mass of the cart is
10 kg, v.0/ D 0, and F0 D 10N, for each
force profile,

a) Find the speed of the cart at the end
of 3 seconds, and

b) Find the distance travelled by the
cart in 3 seconds.

Comment on your answers for the two
cases. �
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Problem 9.1.15

9.1.16 A car of mass m is accelerated by
applying a triangular force profile shown
in fig. 9.1.16(a). Find the speed of the car
at t D T seconds. If the same speed is
to be achieved at t D T seconds with a
sinusoidal force profile, F.t/ D Fs sin �t

T
,

find the required force magnitude Fs . Is
the peak higher or lower? Why? �
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Problem 9.1.16

9.1.17 A particle of massm D 1 kg is acted
upon by a short duration force given by

F.t/ D
(
F0t=s 0 � t � 1 s
F0.2 � t=s/ 1 s < t � 2 s
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490 Chapter 9. Homework problems 9.1 Force and motion in 1D

where F0 D 5N. If the particle starts from
rest, find the speed of the particle as a func-
tion time. Sketch the given force profile
as a function of time and draw the corre-
sponding speed v.t/ as a function of time.
What is the speed of the particle at t D 2 s?

9.1.18 A ball of mass m is dropped ver-
tically from rest at a height h above the
ground. Air resistance causes a drag force
on the ball directly proportional to the
speed v of the ball, Fd D bv. Find the
velocity and position of the ball as a func-
tion of time. Find the velocity as a func-
tion of position. Gravity is non-negligible,
of course.

9.1.19 A sinusoidal force acts on a 1 kg
mass as shown in the figure and graph be-
low. The mass is initially still; i. e.,

x.0/ D v.0/ D 0

.

a) What is the velocity of the mass af-
ter 2� seconds?

b) What is the position of the mass af-
ter 2� seconds?

c) Plot position x versus time t for the
motion.
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Problem 9.1.19

9.1.20 A motorcycle accelerates from
0mph to 60mph in 5 seconds. Find the av-
erage acceleration in m=s2. How does this
acceleration compare with g, the acceler-
ation of an object falling near the earth’s
surface?

9.1.21 A car moves on a straight road with
an initial velocity v0 D 30m=s. Let its
position at t D 0 be x D 0 . For the first
5 s it has no acceleration, and thereafter it
brakes with a retarding force that gives it
a constant acceleration ax D �10m=s2.
Calculate the velocity and the x-coordinate
of the car when t = 8 s and when t = 12 s,
and find the distance travelled by the car
from start until it comes to a final stop.

9.1.22 A grain of sugar falling through
honey has a negative acceleration propor-
tional to the difference between its veloc-
ity and its ‘terminal’ velocity, which is a
known constant vt . Write this sentence as
a differential equation, defining any con-
stants you need. Solve the equation assum-
ing some given initial velocity v0.

9.1.23 The mass-dashpot system shown
below is released from rest at x D 0. De-
termine an equation of motion for the par-
ticle of mass m that involves only Px and
x (a first-order ordinary differential equa-
tion). The dashpot opposes the motion of
massmwith a force F D c Px where c is the
damping coefficient of the dashpot. (You
can think of the dashpot as a model for lin-
ear friction.)
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Problem 9.1.23

9.1.24 Due to gravity, a particle falls in air
with a drag force proportional to the speed
squared.

1. Write
X

*
F D m*a in terms of vari-

ables you clearly define,

2. find a constant speed motion that
satisfies your differential equation,

3. pick numerical values for your con-
stants and for the initial height. As-
sume the initial speed is zero

a) set up the equation for numer-
ical solution,

b) solve the equation on the
computer,

c) make a plot with your com-
puter solution and show how
that plot supports your an-
swer to (2).

9.1.25 In quadratic drag problems, the dec-
celeration is proportional to the square of
velocity, i.e., a D dv

dt
D �kv2. As-

sume that a particle with initial velocity
v.0/ D v0 experiences quadratic drag.

a) How long does it take for the par-
ticle to reduce its speed to half of
its initial speed (i.e., find t such that
v.t/ D 1

2v0 )?
b) Find the position of the particle as

a function of velocity. How far does
the particle move from its initial po-
sition when its velocity drops to half
its initial value?

9.1.26 A bullet penetrating flesh slows ap-
proximately as it would if penetrating wa-
ter. The drag on the bullet is about FD D
c�wv

2A=2 where �w is the density of wa-
ter, v is the instantaneous speed of the bul-
let, A is the cross sectional area of the bul-
let, and c is a drag coefficient which is
about c � 1. Assume that the bullet has
mass m D �lAL where �l is the density
of lead, A is the cross sectional area of
the bullet and L is the length of the bul-
let (approximated as cylindrical). Assume
m D 2 grams, entering velocity v0 D
400m=s, �l=�w D 11:3, and bullet diam-
eter d D 5:7mm.

a) Plot the bullet position vs time.
b) Assume the bullet has effectively

stopped when its speed has dropped
to 5m=s, what is its total penetra-
tion distance?

c) According to the equations implied
above, what is the penetration dis-
tance in the limit t !1?

d) How would you change the model
to make it more reasonable in its
predictions for long time?

9.1.27 A force pulls a particle of mass m
towards the origin according to the law (as-
sume same equation works for x > 0; x <
0)

F D Ax C Bx2 C C Px
Assume Px.0/ D 0.
Using numerical solution, find values of
A;B;C;m; and x0 so that
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1. the mass never crosses the origin,

2. the mass crosses the origin once,

3. the mass crosses the origin many
times.

[Hint: Vary one parameter at a time and
choose a different set of parameter values
for each case.]

9.2 Energy methods in 1D
Preparatory Problems
9.2.1 A mass m is at position x moving at
velocity v and being acted upon by force
F . For each of the quantities below:

i give the symbol used for the quan-
tity

ii describe the quantity in words

iii give a formula to evaluate the quan-
tity in terms of some or all of
m; x; v and F and any other vari-
ables you may need.

iv Give the standard units for the
quantity in the SI system.

v Give the standard units for the
quantity in the English system.

a) Power

b) Kinetic energy

c) Work

d) Potential energy

9.2.2 Write an equation relating the two
words in each of these pairs. If any con-
ditions or descriptions of the situation are
needed, give them. If you know more than
one equation (or form for a given equa-
tion), give all that you know. All should
be given in the context of this section: 1D
motion.

a) work and power

b) work and kinetic energy

c) power and kinetic energy

d) work and potential energy

e) potential energy and kinetic energy

9.2.3 A force F D F0 sin.ct/ acts on a
particle with mass m D 3 kg which has
position x D 3m, velocity v D 5m=s at
t D 2 s. F0 D 4N and c D 2= s. At
t D 2 s evaluate (give numbers and units):

a) a,

b) EK,

c) P ,

d) PEK,

e) the rate at which the force is doing
work.

9.2.4 A force only depends on position ac-
cording to F D C0 C C1x where C0 and
C1 are constants. What is the work done
by this force when the point to which it is
applied moves from x1 to x2? Answer in
terms of some or all of C0; C1; x1 and x2.

9.2.5 Find the potential EP associated with
each of these force fields.

a) F D 0.

b) F D F0 (=constant).

c) F D kx.

d) F D A sin.x=x0/.

e) F D c=x2.

9.2.6 Consider a spring-mass system with
m D 2 kg and k D 5N=m. The mass is
pulled to the right a distance x D x0 D
0:5m from the unstretched position and re-
leased from rest. No external forces act on
the mass.

a) What are the initial potential and ki-
netic energy of the system?

b) What is the potential and kinetic
energy of the system as the mass
passes through the static equilib-
rium (unstretched spring) position?

c) What is the speed of the mass when
it passes through the static equilib-
rium position?
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Problem 9.2.6

9.2.7 A massm is held in place by a spring
whose restoring force is T .x/ D kx. De-
rive the equation of motion of the system
(that is, find the acceleration a in terms of
x).

9.2.8 The peak propulsion force on a 4-
wheel-drive car is about �mg where � �
1 for rubber on road (a bit more for fancy
racing tires). Assume a car starts from
rest at position zero. Answer the follow-
ing questions with symbols and with num-
bers (using � D 1, m D 1000 kg, and
g D 10m=s2).

a) What is the minimum distance re-
quired to reach v1 D 60mph?

b) What is the extra distance required
to get from v1 D 60mph up to
v2 D 70mph?

c) What is the peak power used by
the engine in getting up to v1 D
60mph (assuming no dissipation
and no air friction)?

9.2.9 A car (mass m D 1000 kg) travel-
ing at speed v0 D 30m=s crashes into
a brick wall and comes to a stop as the
front end of the car compresses a distance
d D 1m. Answer with symbols and num-
bers. Assume constant deceleration during
the crash. Neglect the mass of crushing re-
gion of the car.

a) What is the total energy dissipated
in the crash?

b) What is the force of the car on the
wall?

c) What is the force of the wall on the
car?

d) What is the deceleration of the
car passengers (assuming they are
strapped in and move with the bulk
of the car). Answer in g’s?

e) Assuming an mp D 50 kg person,
what is the force of the seat belts on
the person (answer in body weight).

f) If a parent was holding a 15 kg child
on his lap, what force would he
need to hold on to the child through
the crash (answer in N and in num-
ber of child body weights).

More-Involved Problems
9.2.10 A kid (m D 90 lbm) stands on a
h D 10 ft wall and jumps down, acceler-
ating with g D 32 ft=s2. Upon hitting the
ground with straight legs, she bends them
so her body slows to a stop over a distance
d D 1 ft. Neglect the mass of her legs. As-
sume constant deceleration as she brakes
the fall.
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a) What is the total distance her body
falls? �

b) What is the potential energy lost?

c) How much work must be absorbed
by her legs?

d) What is the force of her legs on her
body? Answer in symbols, numbers
and numbers of body weight (i.e.,
find F=mg).

9.2.11 In traditional archery, when pulling
an arrow back the force starts from 0 and
increases approximately linearly up to the
peak ‘draw force’ Fdraw . The draw force
varies from about Fdraw D 25 lbf for
a bow made for a small person to about
Fdraw D 75 lbf for a bow made for a big
strong person. The distance the arrow is
pulled back, the draw length `draw , varies
from about `draw D 2 ft for a small adult
to about 30 inch for a big adult. An ar-
row has mass of about 300 grain (1 grain
� 64:8milli gm, so an arrow has mass of
about 19:44 � 20 gm � 3=4 ounce). Give
all answers in symbols and numbers.

a) What is the range of speeds you can
expect an arrow to fly?

b) What is the range of heights an ar-
row might go if shot straight up (it’s
a bad approximation, but for this
problem neglect air friction)?

9.2.12 A big person (m D 100 kg) jumps
on a trampoline which we model as a lin-
ear spring with stiffness k. You know that
the trampoline deflects d0 D 20 cm under
the stationary weightmg of the person (use
g D 10m=s2). Assume there is no dissipa-
tion and the person is jumping repeatedly a
height h D 1m above the unloaded surface
of the trampoline. Give all answers with
symbols and numbers.

a) What is the stiffness k of the spring
(answer in terms of some or all of
m; g and d0).

b) What is the maximum deflection of
the trampoline during these jumps?

c) What is the peak force of the tram-
poline on the jumper? (answer in
symbols, Newtons, and numbers of
body weights).

9.2.13 For the car of problem 9.2.8 what is
the average power required to reach speed
v1? There are two plausible ways to calcu-
late this power:

NP1 D
Z x

0
P.x0/ dx0=x and

NP2 D
Z t

0
P.t 0/ dt 0=t :

Use both. Do the two methods give the
same answer? If so, why, and will the an-
swers be the same for all problems? If not,
why not, in what cases will the answers
agree, and, when they differ, which one is
right?

9.2.14 For problem 9.2.9 which answers
would change, and in which way, if the
deceleration was not exactly constant dur-
ing the crash? That is, for which quantities
would be bigger, which smaller, which the
same, for which would the answer depend
on the nature of the non-constant accelera-
tion?

9.2.15 The earth’s gravitational pull on a

mass m is F D �mgR2

r2
, where mg is the

pull at the surface of the earth and R is
the radius of the earth. Assume a ballis-
tic rocket is shot straight up with a launch
velocity of v0 (measured in a ‘fixed’ not-
rotating-with-the-earth frame). Assume
the rocket goes in a straight radial line as
the earth turns underneath it (relative to the
surface of the earth this rocket would be
launched somewhat to the West to cancel
the earths rotation). Assume the period of
active thrust is negligibly short (hence the
word ballistic: “relating to or characteristic
of the motion of objects moving under their
own momentum and the force of gravity”).

a) Solve for v as a function of r (and
some or all of m; g;R and v0).

b) Find the maximum height the
rocket reaches.

c) Find the ‘escape velocity’ vescape ,
the minimum launch speed needed
for the rocket to never return.

d) On one graph plot height (r or r �
R) vs t for a v0 just below vescape
and for v0 just greater than vescape .
If you use numerical methods to
make this plot use g D 10m=s2,
R D 6400 km, and m D 1 kg.
Make sure your axes are such that
you can see a clear qualitative dif-
ference between the two cases.

9.2.16 The power available to a very strong
accelerating cyclist over short periods of
time (up to, say, about 1 minute) is about
1 horsepower. Assume a rider starts from
rest and uses this constant power. Assume
a mass (bike + rider) of 150 lbm, a realis-
tic drag force of :006 lbf=. ft= s/2v2. Ne-
glect other drag forces.

a) What is the peak (steady state)
speed of the cyclist?

b) Using analytic or numerical meth-
ods make an accurate plot of speed
vs. time.

c) What is the acceleration as t ! 1
in this solution?

d) What is the acceleration as t ! 0
in your solution?

e) How would you improve the model
to fix the problem with the answer
above?

9.3 Simple Harmonic
Oscillator
Preparatory Problems
9.3.1 The basic model.

a) Draw a spring (k) mass (m) system
in a configuration where the spring
is stretched.

b) On the drawing indicate the variable
x.

c) Draw a free body diagram of the
mass.

d) Write the equation of linear mo-
mentum balance for the mass.

e) Rearrange the
momentum balance equation to get
the harmonic-oscillator equation in
standard form.

f) Write the general solution to the
harmonic oscillator equation in two
different ways (one as a sum of a
sine and cosine function and one as
a phase shifted sine or cosine func-
tion).

g) What is the natural frequency of this
system?

h) What is the period?

i) What is the frequency (or circular
frequency)?

j) Find the solution for the special
case that the mass is released from
rest at x.0/ D x0.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.
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� give the analytic expression.
� plot the position vs time for at

least one whole cycle of mo-
tion.

� with the same time scale, plot
velocity vs time (what is the
peak velocity).

� with the same time scale, plot
both the potential and kinetic
energies vs time.

k) Find the solution for the special
case that the mass is launched at v0
from the rest position (just the ana-
lytic form, no need to repeat all the
parts just above).

9.3.2 Does the function x D C1e
�t C

C2e
��t satisfy the harmonic oscillator

equation Rx C �2x D 0 for any, possibly
special, values of C1 and C2? Show that it
does or does not.

9.3.3 Given that Rx D �cx, with c D 1= s2,
x.0/ D 1m, and Px.0/ D 0 find:

a) x.� s/ D?
b) Px.� s/ D?

9.3.4 Given that Rx C �2x D C0, x.0/ D
x0, and Px.0/ D 0, find the value of x at
t D �=� s.

More-Involved Problems
9.3.5 A spring and mass system is shown
in the figure.

a) First, as a review, let k1, k2, and k3
equal zero and k4 be nonzero. What
is the natural frequency of this sys-
tem?

b) Now, let all the springs have non-
zero stiffness. What is the stiff-
ness of a single spring equivalent to
the combination of k1; k2; k3; k4?
What is the frequency of oscillation
of mass M ?
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Problem 9.3.5

9.3.6 Mass m hangs from a spring with
constant k and which has the length l0
when it is relaxed (i.e., when no mass is
attached). It only moves vertically.

a) Draw a Free Body Diagram of the
mass.

b) Write the equation of linear mo-
mentum balance. �

c) Reduce this equation to a standard
differential equation in x, the posi-
tion x of the mass. �

d) Verify that one solution is that x.t/
is constant at x D l0 Cmg=k.

e) What is the meaning of that solu-
tion? (That is, describe in words
what is going on.) �

f) Define a new variable Ox D x�.l0C
mg=k/. Substitute x D Ox C .l0 C
mg=k/ into your differential equa-
tion and note that the equation is
simpler in terms of the variable Ox.
�

g) Assume that the mass is released
from an an initial position of x D
D. What is the motion of the mass?
�

h) What is the period of oscillation of
this oscillating mass? �

i) Why might this solution not make
physical sense for a long, soft
spring if the initial stretch is large.
In other words, what is wrong with
this solution if D > `0 C 2mg=k?
�
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Problem 9.3.6

9.3.7 One egg-drop contestant used a
structure which held the egg (mass m) at
the center with rubber bands. Consider the
2D model shown. The springs are linear
with spring constants k. After falling a
height h the frame hits the ground on a
flat edge. Assume small motions (deflec-
tion � side-length) and that the springs do
not buckle.

a) what is the vibration frequency after
impact?

b) What is the maximum vertical de-
flection of the egg (relative to its
equilibrium position)?
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Problem 9.3.7

9.3.8 A person jumps on a trampoline.
The trampoline is modeled as having an
effective vertical undamped linear spring
with stiffness k D 200 lbf= ft. The person
is modeled as a rigid mass m D 150 lbm.
g D 32:2 ft=s2.

a) What is the period of motion if the
person’s motion is so small that her
feet never leave the trampoline? �

b) What is the maximum amplitude of
motion (amplitude of the sine wave)
for which her feet never leave the
trampoline? �

c) (harder) If she repeatedly jumps so
that her feet clear the trampoline by
a height h D 5 ft, what is the pe-
riod of this motion (note, the con-
tact time is not exactly half of a vi-
bration period)? [Hint, a neat graph
of height vs time will help.] �

Filename:pfigure3-trampoline

Problem 9.3.8: A person jumps on a tram-
poline.

9.4 Coupled motion in 1D
The primary emphasis of this section is set-
ting up correct differential equations (with-
out sign errors) and solving these equations
on the computer.
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Preparatory Problems
9.4.1 Write the following set of coupled
second order ODE’s as a system of first or-
der ODE’s.

Rx1 D k2.x2 � x1/ � k1x1
Rx2 D k3x2 � k2.x2 � x1/

9.4.2 The solution of a set of a second or-
der differential equations is:

�.t/ D A sin!t C B cos!t C ��

P�.t/ D A! cos!t � B! sin!t;

where A and B are constants to be deter-
mined from initial conditions and �� is a
known constant. Assume A and B are the
only unknowns.

a) Write the equations in matrix form
which you would need to solve in
order to find A and B in terms of
�.0/ and P�.0/.

b) Solve the equations in symbols.

c) Solve for the numerical constants
A and B using the matrix form, if
�.0/ D 0; P�.0/ D 0:5; ! D
0:5 rad=s and �� D 0:2.

9.4.3 A set of first order linear differential
equations is given:

Px1 D x2

Px2 C kx1 C cx2 D 0:

Write these equations in the form P*x D
�A�*x, where *x D

�
x1
x2

�
.

9.4.4 Write the following pair of coupled
ODE’s as a set of first order ODE’s.

Rx1 C x1 D Px2 sin t
Rx2 C x2 D Px1 cos t

9.4.5 The following set of differential
equations can be written in first order form,
and in particular, in matrix form P*x D
�A�*x C*c. In general equations of motion
are not so simple, but linear cases like this

are prevalent in the analytic study of dy-
namical systems.

Px1 D x3

Px2 D x4

Px3 C 5
2x1 � 4
2x2 D 2
2v�1
Px4 � 4
2x1 C 5
2x2 D �
2v�1

9.4.6 Write each of the following equations
as a system of first order ODE’s.

a) R� C �2� D cos t;

b) Rx C 2p Px C kx D 0;

c) Rx C 2c Px C k sin x D 0:

9.4.7 A train moves at a constant absolute
velocity v O{. A passenger, idealized as a
point mass, walks at an absolute absolute
velocity uO{, where u > v. What is the ve-
locity of the passenger relative to the train?

9.4.8 Two equal masses, each denoted by
the letter m, are on an air track. One mass
is connected by a spring to the end of the
track. The other mass is connected by a
spring to the first mass. The two spring
constants are equal and represented by the
letter k. In the rest configuration (springs
are relaxed) the masses are a distance `
apart. Motion of the two masses x1 and x2
is measured relative to this configuration.

a) Write the potential energy of the
system for arbitrary displacements
x1 and x2 at some time t .

b) Write the kinetic energy of the sys-
tem at the same time t in terms of
Px1, Px2, m, and k.

c) Write the total energy of the system.

d) Draw a free body diagram for each
mass.

e) Write the equation of linear mo-
mentum balance for each mass.
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Problem 9.4.8

9.4.9 For the three-mass system shown,
draw a free body diagram of each mass.
Write the spring forces in terms of the dis-
placements x1, x2, and x3.
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Problem 9.4.9

9.4.10 The springs shown are relaxed
when xA D xB D xD D 0. In terms
of some or all of mA, mB , mD , xA, xB ,
xD , PxA; PxB ; PxC ; and k1, k2, k3, k4 and
c1, find the acceleration of block B. �
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Problem 9.4.10

9.4.11 A system of three masses, four
springs, and one damper are connected as
shown. Assume that all the springs are re-
laxed when xA D xB D xD D 0. Given
k1, k2, k3, k4, c1, mA, mB , mD , xA, xB ,
xD , PxA, PxB , and PxD , find the acceleration
of mass B,*aB D RxB O{. �
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Problem 9.4.11

More-Involved Problems
9.4.12 A massless spring with constant k
is held compressed a distance � from its re-
laxed length by a thread connecting blocks
A and B which are still on a frictionless ta-
ble. The blocks have massmA andmB , re-
spectively. The thread is suddenly but gen-
tly cut, the blocks fly apart and the spring
falls to the ground. Find the speed of block
A as it slides away. �
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9.4.13 In the system below the masses are
in equilibrium with the springs when x1 D
x2 D 0.

a) First do problem 9.4.8.
b) Pick parameter values and initial

conditions of your choice and sim-
ulate a motion of this system. Make
a plot of the motion of, say, one of
the masses vs time,

c) Explain how your plot does or does
not make sense in terms of your
understanding of this system. Is
the initial motion in the right direc-
tion? Are the solutions periodic?
Bounded? etc.
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9.4.14 Two masses are connected to fixed
supports and each other with the three
springs and dashpot shown. The force F
acts on mass 2. The displacements x1 and
x2 are defined so that x1 D x2 D 0 when
the springs are unstretched. The ground is
frictionless. The governing equations for
the system shown can be written in first
order form if we define v1 � Px1 and
v2 � Px2.

a) Write the governing equations in a
neat first order form. Your equa-
tions should be in terms of any or all
of the constants m1, m2, k1, k2,k3,
C , the constant force F , and t . Get-
ting the signs right is important.

b) Write computer commands to find
and plot v1.t/ for 10 units of time.
Make up appropriate initial condi-
tions.

c) For constants and initial conditions
of your choosing, plot x1 vs t for
enough time so that decaying erratic
oscillations can be observed.
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Problem 9.4.14

9.4.15 The three beads of masses m,
2m, and m connected by massless lin-
ear springs of constant k slide freely on a
straight rod. Let xi denote the displace-
ment of the i th bead from its equilibrium
position at rest.

a) Write expressions for the total ki-
netic and potential energies.

b) Write an expression for the total lin-
ear momentum.

c) Draw free body diagrams for the
beads and use Newton’s second law
to derive the equations for motion
for the system.

d) Verify that total energy and linear
momentum are both conserved.

e) Show that the center of mass must
either remain at rest or move at con-
stant velocity.

f) What can you say about vibratory
(sinusoidal) motions of the system?
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Problem 9.4.15

9.4.16 Two blocks with masses M and m
are connected by a spring with constant k
and free length `0 that can sustain com-
pression. MassM is resting on the ground
at the start. There is gravity. The up-
wards vertical displacement of mass m is
x, which is zero when the spring is at its
rest length and M is on the ground.

a) For what value of x is the system in
static equilibrium?

b) Find a differential equation govern-
ing the motion of the m assuming
M remains on the ground.

c) Draw a free body diagram of M .
d) For what value of x is M on the

verge of lifting off the ground.
e) Defining y as the height of the

lower mass, write two coupled dif-
ferential equations for the motion of
m and M if both masses are in the
air.

f) Find the value of x < 0 so that if
the system is started from rest with
that x and y D 0 that the ground re-
action force onM just goes to zero.

g) Starting here, this problem is more
of a project than a typical home-
work problem. Assume x.t D 0) is
less than the value computed above.
Write a computer program that inte-
grates the equations of motion until
M lifts off and then switches to in-
tegrating the equations for the two
masses in the air.

h) modify your program so that if M
hits the ground again, it sticks un-
til the ground reaction force goes to
zero again.

i) By playing around, this way or that,
see if you can find a special value
for x.t D 0/ so that the bounc-
ing continues indefinitely. (This is a
perhaps surprising result, that a sys-
tem with plastic collisions can con-
tinue to bounce indefinitely.)
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Problem 9.4.16

9.5 1D Collisions
Preparatory Problems
9.5.1 Before a collision two particles,
mA D 1 kg and mB D 2 kg, have veloci-
ties of v�

A
D 10m=s and v�

B
D 5m=s. Af-

ter the collision the velocity of A is vC
A
D

6m=s.

a) What is the momentum of A before
the collision?

b) What is the momentum of B before
the collision?

c) What is the system momentum be-
fore the collision?

d) What is the momentum of A after
the collision?

e) What is the system momentum after
the collision?

f) What is the momentum of B after
the collision?

g) What is the impulse that A applies
to B during the collision?

h) What is the impulse that B applies
to A during the collision?

i) What is the kinetic energy of the
system before the collision?

j) What is the kinetic energy of the
system after the collision?

k) What is the coefficient of restitu-
tion?
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9.5.2 A ball is dropped from a height of
h0 D 10m onto a hard stationary surface.
After the first bounce, it reaches a height
of h1 D 6:4m. What is the coefficient
of restitution between the ball and ground?
What is the height of the second bounce,
h2?
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Problem 9.5.2

9.5.3 A 20 gram, 500 m=s bullet embeds
in an initially-stationary 50 kg rigid block.
What is the coefficient of restitution? What
is the velocity of the block after this colli-
sion? �

9.5.4 A ball of mass m is dropped verti-
cally from a height h. The only force act-
ing on the ball in its flight is gravity. The
ball strikes the ground with speed v� and
after collision it rebounds vertically with
reduced speed vC directly proportional to
the incoming speed, vC D ev�, where
0 < e < 1. What is the maximum height
the ball reaches after one bounce, in terms
of h, e, and g. �

9.5.5 Set up the following equations in
matrix form and solve for vA and vB , if
v0 D 2:6m=s; e D 0:8; mA D 2 kg, and
mB D 500g:

mAv0 D mAvA CmBvB

�ev0 D vA � vB :

More-Involved Problems
9.5.6 Before a collision two particles,
mA D 7 kg and mB D 9 kg, have veloc-
ities of v�

A
D 6m=s and v�

B
D 2m=s. The

coefficient of restitution is e D :5. Find
the impulse of mass A on mass B and the
velocities of the two masses after the colli-
sion.

9.5.7 Two frictionless masses mA D 2 kg
and mass mB D 5 kg travel on straight
collinear paths with speeds VA D 5m=s
and VB D 1m=s, respectively. The masses
collide since VA > VB . Find the amount of
energy lost in the collision. The coefficient
of restitution is e D 0:5.
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Problem 9.5.7

9.5.8 A ball of mass m is dropped from
height h onto the solid hard ground where
its coefficient of restitution is e < 1. The
gravitational constant is g.

a) How many times does the ball
bounce before it comes to a stop?

b) How long does it take from first re-
lease until it comes to a stop?

c) What is the total distance the ball
travels before coming to a stop (add
up and down distances)?

9.5.9 A bullet of mass m with initial
speed v0 is fired in the horizontal direction
through block A of mass mA and becomes
embedded in block B of mass mB . Each
block is suspended by thin wires. The bul-
let causes A and B to start moving with
speed of vA and vB respectively. Deter-
mine

a) the initial speed v0 of the bullet in
terms of vA and vB , �

b) the velocity of the bullet as it travels
from block A to block B,and �

c) the energy loss due to friction as the
bullet (1) moves through block A
and (2) penetrates block B. �
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9.5.10 A basketball with mass mb is
dropped from height h onto the hard solid
ground on which it has coefficient of resti-
tution eb . Just on top of the basketball,
falling with it and then bouncing against
it after the basketball hits the ground, is a
small rubber ball with mass mr that has a
coefficient of restitution er with the bas-
ketball.

a) In terms of some or all of mb , mr ,
h, g, eb and er how high does the
rubber ball bounce (measure height
relative to the collision point)?

b) Assuming the coefficients of resti-
tution are less than or equal to
one, for given h, what mass and
restitution parameters maximize the
height of the bounce of the rubber
ball and what is that height?

9.5.11 Show that it is necessary that jej �
1 for the net kinetic energy (sum of the two
kinetic energies of the colliding particles)
to not increase.

9.5.12 According to the problem above,
unless energy is created in the collision (as
in an explosion), �1 � e � 1. Show that,
for given masses and given initial veloci-
ties, that the loss of system kinetic energy
is maximized by e D 0.
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CHAPTER 10
Vibrations

The ideal harmonic oscillator (previous chapter) oscillates with simple si-
nusoidal motion forever. In the real world there is friction so oscillations
decay more or less quickly, there are forces that cause the oscillations, and
there are multiple parts that move multiple ways. Understanding something
about these realities is the topic of this chapter. Some key words are damping,
resonance, frequency response and normal modes.
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10.2 Forcing & resonance . . . . . . . . . . . . . . . . . . . . . . 514

Box 10.1 A Loudspeaker cone is a forced oscillator. . . . . 519
Box 10.2 Solution of the forced oscillator equation . . . . . 523

10.3 Normal modes . . . . . . . . . . . . . . . . . . . . . . . . . 531
Problems for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . 539
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This chapter is a brief introduction to the topic of vibrations. We already
know about the harmonic oscillator, and that is core idea. But here we want
to take account of three main ideas, with one section per idea.

1. Damping.There is friction, so oscillatory motion decays in time. This
is simple enough conceptually, but the mathematical descriptions are
more complicated than for the harmonic oscillator, involving a mix of
exponential and sine functions.

2. Forcing. Things get pushed around, or ‘forced’. What is the relation
between how much you push on something and how much it shakes.
The key ideas here are resonance and frequency response.

3. Normal modes. Most real machines and structures have various mov-
ing parts. How do things move with various parts? For simplicity here
we stick to the cases with no friction. The key idea is that one can think
of the general motions as made up of (as a superposition of) simple
harmonic motions. These are called normal modes.

10.1 Damped vibrations
In the real world, macroscopic oscillators that are not pumped have motions
that decay in time due to dissipation. Our goal is to understand what happens
to a harmonic oscillator when we add friction. In particular we are interested
in the simplest kind of friction caused by an ideal linear dashpot. What we
will find is exponentially decaying solutions that may, or may not have, an
oscillatory nature depending on the amount of friction.

Damping
Dashpots are used to absorb energy. One is shown schematically in fig. 10.2.
Often springs and dashpots are light in comparison to the machinery to which
they are attached so their mass and weight are neglected. They are usually
attached with pin joints, ball and socket joints, or other kinds of flexible
connections so only forces are transmitted. Because they only have forces at
their ends they are ‘two-force’ bodies so (see section 4.2) the forces at their
ends are equal, opposite, and along the line of connection. The most familiar
examples are the shock absorbers of a car or the damper for screen doors.
The symbol for a dashpot shown in fig. 10.2.
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Figure 10.2: A dashpot. A dashpot
(or damper) is shown here connecting
two parts of a mechanism. The ten-
sion in the dashpot is proportional to the
rate at which it lengthens. The symbol
shown represents any device which re-
sists the relative motion of its endpoints.
The schematic is supposed to suggest a
plunger in a cylinder. For the plunger to
move, fluid must leak around the cylin-
der. This leakage happens for either di-
rection of motion. Thus the damper re-
sists relative motion in either direction;
i. e., for P̀ > 0 and P̀ < 0.
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Figure 10.3: The effect of varying the
damping with a fixed mass and spring.
In all the plots the mass is released from
rest at x D x0. In the case of under-
damping, oscillations persist for a long
time, forever if there is no damping. In
the case of over-damping, the dashpot
doesn’t relax for a long time; it stays
locked up forever in the limit of c !1.
The fastest relaxation occurs for critical
damping.
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Figure 10.1: A mass spring dashpot system, or damped harmonic oscillator. Also shown is a
free body diagram of the mass.

The dashpot provides resistance to motion by drawing air or oil in and
out of the cylinder through a small opening. Due to the viscosity of the air
or oil, a pressure drop is created across the opening that is related to the
speed of the fluid flowing through. Ideally, this viscous resistance produces
linear damping, meaning that the force is exactly proportional to the velocity.
The relation is assumed to hold for negative lengthening as well. So the
compression (negative tension) is also proportional to the rate at which the
dashpot shortens (negative lengthens).

The tension in the dashpot is usually assumed to be proportional to the
rate at which it lengthens, although this approximation is not especially ac-
curate for most dampers one can buy. In a physical dashpot nonlinearities,
from the fluid flow and from friction between the piston and the cylinder, are
often significant. Also, dashpots that use air as a working fluid may have
compressibility that introduces extra springiness to the system.

The defining equation for an ideal linear dashpot is:

T D C P̀

where C is the dashpot constant.

Damped oscillations
We now add a dashpot in parallel with the spring of a mass-spring system
creates a mass-spring-dashpot system, or damped harmonic oscillator. The
system is shown in fig. 10.1. Also in fig. 10.1 is a free body diagram of the
mass. It has two forces acting on it, neglecting gravity:

Fs D kx is the spring force, assuming a linear spring, and

Fd D c dx=dt D c Px is the dashpot force assuming a linear dashpot.

The system is a one degree of freedom system because a single coordinate x
is sufficient to describe the complete motion of the system. The equation of
motion for this system is

m Rx D �Fd � Fs where Rx D d2x=dt2: (10.1)
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Assuming a linear spring and a linear dashpot this expression becomes

m Rx C c Px C kx D 0: (10.2)

We have taken care with the signs of the various terms. Make sure you can
confidently derive equation 10.2 without introducing sign errors. The analyt-
ical solution of the damped-oscillator equation is in box 10.1. Some qualita-
tive features of the damped solutions are shown in fig. 10.2

For given k and m we can think of the damping c as adjustable. A system
which has small damping (small c) is under-damped and does not come to
equilibrium quickly because oscillations last for a long time. A system which
has a lot of damping (big c) is over-damped does not come to equilibrium
quickly because the dashpot doesn’t leak fast enough. A system which is in
between, critically-damped comes to equilibrium most quickly. The purpose
of damping is often to purge motion after a disturbance. If the only design
variable available for adjustment is the damping, then the quickest purge is
accomplished with critical damping, c D

p
.4km/. In practice, any damping

value close to critical is often used, more or less depending on whether a little
oscillation is tolerable or not 1.

Summary of equations for the unforced harmonic
oscillator
� Rx C k

m
x D 0, mass-spring equation

� Rx C �2x D 0, harmonic oscillator equation
� x.t/ D A cos.�t/C B sin.�t/, general solution to harmonic oscillator

equation
� x.t/ D R cos.�t � �/, amplitude-phase version of solution to har-

monic oscillator solution, R D
p
A2 C B2; � D tan�1.B

A
/ (See box

on page 460).
� RxC c

m
PxC k

m
x D 0, mass-spring-dashpot equation (see equations 10.3-

10.6 for solutions)

Solution of the damped-oscillator equations
Here are some mathematical details you can use for reference. These details
are of much lower status than those in box C.1 on page 1016. Only some
vibrations experts remember the formulas below in detail.

Even if we make the common assumptions that m; c; and k are all posi-
tive, the whole nature of the solution of (10.2) depends on the values of those
constants. The three types of solutions are categorized as follows:

� Under-damped: c2 < 4mk. In this case the damping is small and oscil-
lations persist forever, though their amplitude diminishes exponentially
in time. The general solution for this case is:

x.t/ D e.�
c
2m
/t �A cos.�d t /C B sin.�d t /�; (10.3)

1Stereotypically, the suspension of
an overloaded old-fashioned luxury car
is underdamped, imagine it bouncing
along after a bump. And the suspension
of a tight sports car is underdamped.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



502 Chapter 10. Vibrations 10.1. Damped vibrations

Filename:tfigure12-decrement

t

x(t)

xn

xn+1

T

Figure 10.4: Measuring damping using
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where �d is the damped natural frequency and is given by

�d D
r

k

m
�
� c

2m

�2
: (10.4)

� Critically damped: c2 D 4mk. In this case the damping is at a critical
level that separates the cases of under-damped oscillations from the
simply decaying motion of the over-damped case. The general solution
is:

x.t/ D Ae.�
c
2m
/t C Bte.�

c
2m
/t : (10.5)

� Over-damped: c2 > 4mk. Here there are no oscillations, just a simple
return to equilibrium with at most one crossing through the equilibrium
position on the way to equilibrium. The general solution in the over-
damped case is:

x.t/ D Ae

�
� c
2m

C
q
. c
2m
/2� k

m

�
t

C Be

�
� c
2m

�
q
. c
2m
/2� k

m

�
t
: (10.6)

Measurement of damping. In the under-damped case, the damping con-
stant c can be found by measuring the rate of decay of unforced oscillations
using the ‘logarithmic decrement’. The logarithmic decrement is the natural
logarithm of the ratio of the amplitude of any two successive peaks. The
larger the damping, the greater the rate of decay and the bigger the decre-
ment:

logarithmic decrement � D D ln.
xn

xnC1
/ (10.7)

where xn and xnC1 are the heights of two successive peaks in the figure
below (also seen on the 2nd and 3rd figures in fig. 10.2 on page 500). Because
of the exponential envelope (bounding curve), xn D .const:/e�. c

2m
/tn and

xnC1 D .const:/e�. c
2m
/tnCT .

D D ln�.e�.
c
2m
/tn/=.e�.

c
2m
/tnCT /�

Simplifying this expression, we get that

D D cT

2m

where T is the period of oscillation. Thus, measuring the logarithmic decre-
ment D and the period of oscillation T determines c as

c D 2mD

T
:
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Solution using complex variables. To find the solutions above it is easi-
est to use complex variables. Consider this general constant coefficient 2nd
order linear equation:

A Rx C B Px C Cx D 0: (10.8)

We want to find the most general function x.t/ that satisfies this equation.
We do this by making the guess that

x.t/ D e�t :

Plugging this guess into eqn. (10.8) and cancelling the common non-zero
factor e�t from each term gives

A�2 C B� C C D 0:

For simplicity let’s assume this quadratic has two independent roots �1 and
�2,

�1;2 D
�B �

p
B2 � 4AC

2A
:

For each root we have a solution to eqn. (10.8). And the solutions can be
multiplied by a constant. And the solutions can be added. Thus the general
solution to eqn. (10.8) is:

x.t/ D C1e
�1t C C2e

�2t : (10.9)

This seems easy enough. But the �’s might be complex. And the C ’s too.
To get a real solution we have to take the real part using the Euler equation
ei�t D cos i�t C sin i�t ). By this means, with lots of algebra, we could see
that the solution 10.6 actually includes the solutions 10.3 and 10.5 as special
cases. This algebra is carried out for the simplest case, no damping, in box
9.3 on page 466.

Numerical solution to the damped oscillator equations
As for the numerical solution of the harmonic oscillator we define v D Px.
Thus

m Rx C c Px C kx D 0 ) m Pv C v C x D 0:

Combining the definition of v with the differential equation we get the set of
two coupled first order equations

Px D v

Pv D � k

m
x � c

m
v (10.10)

We can think of this as
Pz D f .z/

where z is the list of two numbers z.1/ D x and z.2/ D v so

d

dt

�
z1
z2

�
D
�

z2
� k
m
z1 � c

m
z2

�
:

which is standard form for numerical integration.
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Energy? Note that for the damped oscillator we cannot use energy con-
servation to check the solution because energy is constantly lost. We could,
however, make a plot of the total energy and make sure that it is an ever
decreasing (monotonically decreasing) function of time.
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SAMPLE 10.1 Springs in series versus springs in parallel: Two massless
springs with spring constants k1 and k2 are attached to mass A in parallel
(although they look superficially as if they are in series) as shown in Fig. 10.4.
An identical pair of springs is attached to mass B in series. Taking mA D
mB D m, find and compare the natural frequencies of the two systems.
Ignore gravity.

Solution Let us pull each mass downwards by a small vertical distance y and then release.
Measuring y to be positive downwards, we can derive the equations of motion for each mass
by writing the balance of linear momentum for each as follows.

� Mass A: The free body diagram of mass A is shown in Fig. 10.5. As the mass is
displaced downwards by y, spring 1 gets stretched by y whereas spring 2 gets com-
pressed by y. Therefore, the forces applied by the two springs, k1y and k2y, are in
the same direction. The linear momentum balance of mass A in the vertical direction
gives: X

F D may

or � k1y � k2y D m Ry

or Ry C
�
k1 C k2
m

�
y D 0:

Let the natural frequency of this system be !p . Comparing with the standard simple
harmonic equation Rx C �2x D 0 (see box C.1 on page 1016), we get the natural
frequency (�) of the system:

!p D
r
k1 C k2
m

(10.11)

!p D
q

k1Ck2
m

� Mass B: The free body diagram of mass B and the two springs is shown in Fig. 10.6.
In this case both springs stretch as the mass is displaced downwards. Let the net stretch
in spring 1 be y1 and in spring 2 be y2. y1 and y2 are unknown, of course, but we
know that

y1 C y2 D y (10.12)

Now, using the free body diagram of spring 2 and then writing linear momentum bal-
ance we get,

k2y2 � k1y1 D m����
0

a D 0

y1 D k2
k1
y2 (10.13)

Solving (10.12) and (10.13) we get

y2 D
k1

k1 C k2
y:
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Now, linear momentum balance of mass B in the vertical direction gives:

�k2y2 D may D m Ry

or m Ry C k2

y2� �� �
k1

k1 C k2
y D 0

or Ry C k1k2
m.k1 C k2/

y D 0: (10.14)

Let the natural frequency of this system be denoted by !s . Then, comparing with the
standard simple harmonic equation as in the previous case, we get

!s D
s

k1k2
m.k1 C k2/

: (10.15)

!s D
r

k1k2
m.k1Ck2/

From (10.11) and (10.15)
!p

!s
D k1 C k2p

k1k2
:

Let k1 D k2 D k: Then, !p=!s D 2, i.e., the natural frequency of the system with
two identical springs in parallel is twice as much as that of the system with the same
springs in series. Intuitively, the restoring force applied by two springs in parallel will
be more than the force applied by identical springs in series. In one case the restoring
forces add and in the other they don’t. Therefore, we do expect mass A to oscillate
at a faster rate (higher natural frequency) than mass B. The ratio of the two natural
frequencies, !p=!s as a function of k1=k2 is plotted in fig. 10.7. As we can see, !p is
always higher than !s for all k1=k2 ratios and its minimum value is twice that of !s
when k1 D k2.
Comments:

1. Although the springs attached to mass A do not visually seem to be in parallel,
from mechanics point of view they are parallel (see fig. 10.8). You can easily
check this result by putting the two springs visually in parallel and then deriving
the equation of mass A. You will get the same equations. For springs in parallel,
each spring has the same displacement but different forces. For springs in series,
each has different displacements (if k1 ¤ k2) but the same force.

2. When many springs are connected to a mass in series or in parallel, sometimes
we talk about their effective spring constant, i.e., the spring constant of a single
imaginary spring which could be used to replace all the springs attached in par-
allel or in series. Let the effective spring constant for springs in parallel and in
series be represented by kpe and kse respectively. By comparing eqns. (10.11)
and (10.15) with the expression for natural frequency of a simple spring mass
system, we see that

kpe D k1 C k2 and
1

kse
D 1

k1
C 1

k2
:

These expressions can be easily extended for any arbitrary number of springs,
say, N springs:

kpe D k1 C k2 C : : :C kN and
1

kse
D 1

k1
C 1

k2
C : : :C 1

kN
:
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SAMPLE 10.2 Figure 10.9 shows two responses obtained from experiments
on two spring-mass systems. For each system

1. Find the natural frequency.

2. Find the initial conditions.
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Solution

1. Natural frequency: By definition, the natural frequency f is the number of cycles
the system completes in one second. From the given responses we see that:

Case(i): the system completes 1
2 a cycle in 1 s.

) f D 1

2
Hz:

Case(ii): the system completes 1 cycle in 1 s.

) f D 1 Hz:

It is usually hard to measure the fraction of cycle occurring in a short time. It is easier
to first find the time period, i.e., the time taken to complete 1 cycle. 2 Then the
natural frequency can be found by the formula f D 1

T
. From the given responses, we

find the time period by estimating the time between two successive peaks (or troughs):
From Figure 10.9 we find that for

Case (i):

f D 1

T
D 1

2 s
D 1

2
Hz;

Case (ii):

f D 1

T
D 1

1 s
D 1 Hz

case (i) f D 1
2 Hz: case (ii) f D 1 Hz:

2. Initial conditions: Now we are to find the displacement and velocity at t D 0 s for
each case. Displacement is easy because we are given the displacement plot, so we
just read the value at t D 0 from the plots:

Case (i):
x.0/ D 0:

Case (ii):
x.0/ D 1 cm:

2 To estimate the frequency of some
repeated motion in an experiment, it is
best to measure the time for a large num-
ber of cycles, say 5, 10 or 20, and then
divide that time by the total number of
cycles to get an average value for the
time period of oscillation.
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The velocity (actually the speed) is the time-derivative of the displacement. Therefore,
we get the initial velocity from the slope of the displacement curve at t D 0.

Case (i):

Px.0/ D dx

dt
.t D 0/ D � cm

1 s
D 3:14 cm= s:

Case (ii):

Px.0/ D dx

dt
.t D 0/ D 6� cm

1 s
D 18:85 cm= s:

Thus the initial conditions are

Case (i): x.0/ D 0 Px.0/ D 3:14 cm= s
Case (ii): x.0/ D 1 cm Px.0/ D 18:85 cm= s

Comments: Estimating the speed from the initial slope of the displacement curve at
t D 0 is not a very good method because it is hard to draw an accurate tangent to the
curve at t D 0. A slightly different line but still seemingly tangential to the curve at
t D 0 can lead to significant error in the estimated value. A better method, perhaps, is
to use the known values of displacement at different points and use the energy method
to calculate the initial speed. We show sample calculations for the first system:

Case(i): We know that x.0/ D 0. Therefore the entire energy at t D 0 is the ki-
netic energy D 1

2mv
2
0 . At t D 0:5 s we note that the displacement is maximum, i.e.,

the speed is zero. Therefore, the entire energy is potential energy D 1
2kx

2, where
x D x.t D 0:5 s/ D 1 cm.

Now, from the conservation of energy:

1

2
mv20 D 1

2
k.xtD0:5 s/

2

) v0 D
r
k

m
� .xtD0:5 s/

D
r
k

m����
�

� .1 cm/

D 2�f �.1 cm/

D 2� �1
2

Hz�1 cm

D 3:14 cm= s:

Similar calculations can be done for the second system.
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SAMPLE 10.3 A block of mass 10 kg is attached to a spring and a dashpot
as shown in Figure 10.10. The spring constant k D 1000N=m and a damp-
ing rate c D 50N� s=m. When the block is at a distance d0 from the left wall
the spring is relaxed. The block is pulled to the right by 0:5m and released.
Assuming no initial velocity, find

1. the equation of motion of the block.

2. the position of the block at t D 2 s.

Solution

1. Let x be the position of the block, measured positive to the right of the static equi-
librium position, at some time t . Let Px be the corresponding speed. The free body
diagram of the block at the instant t is shown in Figure 10.11.
Since the motion is only horizontal, we can write the linear momentum balance in the
x-direction (

P
Fx D max):

�kx � c Px� �� �P
Fx

D m Rx����
ax

or Rx C c

m
Px C k

m
x D 0 (10.16)

which is the desired equation of motion of the block.

Rx C c
m Px C k

mx D 0:

2. To find the position and velocity of the block at any time t we need to solve
Eqn (10.16). Since the solution depends on the relative values of m, k, and c, we
first compute c2 and compare with the critical value 4mk.

c2 D 2500.N� s=m/2

and 4mk D 4�10 kg�1000N=m D 4000.N� s=m/2:

) c2 < 4mk:

Therefore, the system is underdamped and we may write the general solution as (see
box 10.1 on page 501)

x.t/ D e�
c
2m t �A cos�D t C B sin�D t � (10.17)

where

�D D
r
k

m
�
� c

2m

�2
D 9:682 rad=s:

Substituting the initial conditions x.0/ D 0:5m and Px.0/ D 0 m=s in Eqn (10.17) (we
need to differentiate Eqn (10.17) first to substitute Px.0/), we get

x.0/ D 0:5m D A:

Px.0/ D 0 D � c

2m
� AC �D �B

) B D Ac

2m�D
D .0:5m/�.50N� s=m/
2�.10 kg/�.9:682 rad=s/

D 0:13m:

Thus, the solution is

x.t/ D e.�2:5
1
s /t �0:50 cos.9:68 rad=s t /C 0:13 sin.9:68 rad=s t /� m:

Substituting t D 2 s in the above expression we get x.2 s/ D 0:003m:

x.2 s/ D 0:003m:

Filename:sfig10-2-1

ck

x(t)d0

m

Figure 10.11: Spring-mass dashpot.

Filename:sfig10-2-1a

mkx cẋ
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SAMPLE 10.4 A structure, modeled as a single degree of freedom sys-
tem, exhibits characteristics of an underdamped system under free oscil-
lations. The response of the structure to some initial condition is de-
termined to be x.t/ D Ae���t sin.�Dt / where A D 0:3m, � �
damping ratio D 0:02, � � undamped circular frequency D 1 rad=s, and
�D � damped circular frequency D �

p
1 � �2 � �.

1. Find an expression for the ratio of energies of the system at the .nC1/th
displacement peak and the nth displacement peak.

2. What percent of energy available at the first peak is lost after 5 cycles?

Solution

1. We are given that
x.t/ D Ae���t sin.�D t /:

The structure attains its first displacement peak when sin�D t is maximum, i.e.,

�D t D
�

2
) t D �

2�D
:

At this instant,

x.t/ D Ae
����� �

2�D

D Ae
��
2 � �p

1��2

D .0:3m/ � e�0:0314
D 0:29m:

Let xn and xnC1 be the values of the displacement at the nth and the .nC 1/th peak,
respectively. Since xn and xnC1 are peak displacements, the respective velocities are
zero at these points. Therefore, the energy of the system at these peaks is given by the
potential energy stored in the spring. That is

En D
1

2
kx2n and EnC1 D

1

2
kx2nC1: (10.18)

Let tn be the time at which the nth peak displacement xn is attained, i.e.,

xn D Ae���tn (10.19)

Since xnC1 is the next peak displacement, it must occur at t D tn C TD where TD is
the time period of damped oscillations. Thus

xnC1 D Ae���.tnCTD/ (10.20)

From Eqns (10.18), (10.19), and (10.20)

EnC1
En

D
1
2k.Ae

���.tnCTD /2
1
2k.Ae

���tn/2

D e�2��TD :

EnC1
En

D e�2��TD :
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2. Noting that TD D 2�
�D

and �D D �
p
1 � �2, we get

EnC1 D En e
�2�6�� 2�

6�p1��2

D e
�4� �p

1��2 � e�4��

) EnC1 D e�4�� En:

Applying this equation recursively for n D n � 1; n � 2; : : : ; 1; 0;, we get

En D e�4�� �En�1
D e�4�� �.e�4�� �En�2/
D .e�4�� /3�En�3
:::

D .e�4�� /n�E0:

Now we use this equation to find the percentage of energy of the first peak (n D 0)
lost after 5 cycles (n D 5):

�E5 D E0 �E5
E0

� 100

D
�
1 � e�4�� � 5

�
� 100

D 71:5%:

�E5 D 71:5%:
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3 Theoretically, all of these values
should be the same, but it is rarely the
case in practice. When xn’s are mea-
sured from an experimental setup, the
values of D may vary even more.

SAMPLE 10.5 A SDOF spring-mass model from given data: The fol-
lowing table is obtained for successive peaks of displacement from the sim-
ulation of free vibration of a mechanical system. Make a single degree of
freedom mass-spring-dashpot model of the system choosing appropriate val-
ues for mass, spring stiffness, and damping rate.
Data:

peak no. n 0 1 2 3 4 5 6

time ( s) 0.0000 0.6279 1.2558 1.8837 2.5116 3.1395 3.7674

peak x ( m) 0.5006 0.4697 0.4411 0.4143 0.3892 0.3659 0.3443
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Figure 10.13: Oscillation data from the simulation of a mechanical system

Solution Since the data provided is for successive peak displacements, the time between any
two successive peaks represents the period of oscillations. It is also clear that the system is
underdamped because the successive peaks are decreasing. We can use the logarithmic decre-
ment method to determine the damping in the system.

First, we find the time period TD from which we can determine the damped circular
frequency �D . From the given data we find that

t2 � t1 D t3 � t2 D t4 � t3 D � � � D 0:6279 s

Therefore,

TD D 0:6279 s:

) �D D 2�

TD
D 10 rad=s: (10.21)

Now we make a table for the logarithmic decrement of the peak displacements:

peak disp. xn .m/ 0.5006 0.4697 0.4411 0.4143 0.3892 0.3659 0.3443

xn
xnC1

1.0658 1.0648 1.0647 1.0645 1,0637 1.0627

ln
�

xn
xnC1

�
0.0637 0.0628 0.0627 0.0624 0.0618 0.0608

Thus, we get several values of the logarithmic decrement D D ln
�

xn
xnC1

�
3

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 10. Vibrations 10.1. Damped vibrations 513

We take the average value of D:

D D ND D 0:0624: (10.22)

Let the equivalent single degree of freedom model have massm, spring stiffness k, and damp-
ing rate c. Then

�D D �

q
1 � �2 � � D

r
k

m
:

Thus, from Eqn (10.21),
k

m
D �2 D 100. rad=s/2; (10.23)

and, since D D cTD
2m , from Eqn (10.22) we get

c D 2mD

TD

D 2m.0:0624/

0:6279 s

D .0:1988
1

s
/m: (10.24)

Equations (10.23) and (10.24) have three unknowns: k, m, and c. We cannot determine all
three uniquely from the given information. So, let us pick an arbitrary mass m D 5 kg. Then

k D .100
1

s2
/�.5 kg/

D 500N=m;

and

c D .0:1988
1

s
/�.5 kg/

D 0:99N� s=m:

m D 5 kg;
k D 500N=m;
c D 0:99N� s=m:

Of course, we could choose many other sets of values for m; k, and c which would match

the given response. In practice, there is usually a little more information available about the

system, such as the mass of the system. In that case, we can determine k and c uniquely from

the given response.
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Filename:tfigure12-MSDforced

k

c

m

x(t)

F(t)

F(t)

Fs = kx

Fd = c(dx/dt)
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10.2 Forcing and resonance
If the world of oscillators was as we have described them so far, especially
in Section 9.3, there wouldn’t be much to talk about. The undamped oscil-
lators (of which there are none) would be oscillating away and the damped
oscillators (all the real ones) would be damped out to no motion. The reason
vibrations exist is because they are somehow excited. This excitement is also
called forcing whether or not it is due to a literal mechanical force.

The most important idea of this section is the following

If you shake something at about the same frequency at which it natu-
rally oscillates you will eventually get large motions.

The rest of the section is largely a fleshing out of this idea.
The simplest example of a ‘forced’ harmonic oscillator is the mass-

spring-dashpot system with an additional mechanical force applied to the
mass. See fig. 10.13. Most of this section will be a study of this system.
The governing equation for a forced damped oscillator can be derived from
the free body diagram as follows, where vector notation helps keep the signs
right:

X
*

Fi D m*
a

�Fs O{ � Fd O{C F.t/O{ D maO{
f .�kx � c Px C F.t// O{ D m Rx O{ g

fg � O{ ) � kx � c Px C F.t/ D m Rx
which is often re-arranged as

m Rx C c Px C kx D F.t/: (10.25)

When F.t/ D 0, there is no forcing and the governing equation reduces to
that of the un-forced damped harmonic oscillator, eqn. (10.2).

Equivalent ways to force an oscillator
There are many ways to “force” a system that all lead to the same forced-
oscillator equation.

1. With a literal force as in fig. 10.13, shown again in fig. 10.14a.

2. By shaking the support, as in fig. 10.14b.

3. By displacing one end of the spring, but not the dashpot as in
fig. 10.14c.

4. By displacing one end of the dashpot, but not the spring as in
fig. 10.14d.
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5. By displacing a second mass attached to the first with a motor that
controls relative position, as in fig. 10.14e.

That these four systems all lead to the same governing equation follows from
drawing free body diagrams, applying momentum balance, and collecting
terms to match the form eqn. (10.25). Note that the meaning of some of the
terms in the forced-oscillation equation is different for each system.

Types of forcing
In general this or that machine or structure could be forced in any number
of complicated ways. But there are two special forcings of most common
engineering interest:

� F.t/ D F0 (Constant force), and

� F.t/ D F cos�t (sinusoidal forcing). 1

Constant force idealizes situations where the force doesn’t vary much as due
say, to gravity, a steady wind, or sliding dry friction. Sinusoidally varying
forces are used to approximate oscillating forces as caused, say, by a vibrat-
ing support or earthquakes. Forces that are not sinusoidal can be thought
of as sums of sine waves thus, in some sense, by knowing how a structure
responds to sinusoidal forcing, at various frequencies, you know how it re-
sponds to all possible forcings 2. Lets look at each of these two cases in
detail.

Forcing with a constant force
The case of constant forcing is both common and easy to analyze, so easy
that it is often ignored (see fig. 9.27 on page 463). If F.t/ D F0 D constant,
then the general solution of eqnrefforcedODE for x.t/ is the same as the
unforced case but with a constant added. The constant is F0=k. The usual
way of accommodating this case is to describe a new equilibrium point at
x D F0=k and to pick a new deflection variable that is zero at that point. If
we pick a new variable z defined as z D x � F0=k, then substituting into
eqn. (10.25) we get

m Rz C c Pz C kz D 0; (10.26)

which is the unforced oscillator equation. That is, constant forcing reduces
to the case of no forcing if one merely changes what one calls zero to be the
place where the mass is in equilibrium, taking account of the spring stretch
(or compression) caused by the constant applied force. Thus the solution of
the forced equation for x is equivalent to the unforced solution for z:

z.t/ D x.t/ � F0=k D e.�
c
2m
/t .A cos.�dt /C B sin.�dt // (10.27)

where �d D
q�

c
2m

�2 � k=m, as explained in box 10.1 on page 501.
An alternative approach is to use superposition. Here we say x.t/ D

xh.t/ C xp.t/ where xh.t/ satisfies m Rx C c Px C kx D 0 and xp.t/ is any
solution xp of m Rx C c Px C kx D F0. Any solution you like is called a
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Figure 10.15: In all cases shown above
the same forced oscillator eqn. (10.25)
applies. In (a) a literal force is applied.
In all the other cases the “forcing” is by
a motor that moves something back and
forth a distance �. In (b) the support
moves. In (c) and (d) just the spring or
just the dashpot end is displaced. In (e)
an extra mass is moved relative to the
main mass.

1Note again that we use � (lambda)
here instead of the more commonly used
! (omega) because we want to avoid
confusion with the magnitude of angu-
lar velocity ! D j*!j which itself could
have oscillatory motion. It would be
confusing (and bad math) to write ! D
A sin!t with ! having two different
meanings in the same equation.
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2The best approximation of a function
as a sum of sine waves is a Fourier se-
ries, a topic you learn in math, advanced
physics or linear systems courses.
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“particular” solution. One easy solution is xp D F0=k. So the net solution
is xp D F0=k plus a solution xh to the ‘homogeneous’ equation 10.26.

x.t/ D e.�
c
2m
/t .A cos.�dt /C B sin.�dt //� �� �

xh

C F0=k����
xp1

(10.28)

Example: Hanging mass.
The mass hanging from the support shown in fig. 10.15 obeys the equation

m Rx C c Px C kx D k`0 Cmg� �� �
F0

One particular solution xp , the easiest one, has the mass hanging still. In this
solution, the mass position is the un-stretched length `0 of the spring plus the stretch
of the spring due to gravity,�x D mg=k. Because the mass is still in this solution,
the dashpot constant c doesn’t appear. So

xp D `0 Cmg=k:

The homogeneous solution xh is given by (10.27) and the general motion is the
sum

x.t/ D xp C xh

D .`0 Cmg=k/C e�
ct
2m .C cos.�dt /CD sin.�dt //

where C and D are constants determined by the initial conditions. For any initial
condition and corresponding values ofA andB , the motion eventually decays to the
stationary particular solution with the mass hanging still (because the exponentials
go to zero as t !1).

Forcing with a sinusoidally varying force
The motion resulting from sinusoidal forcing is of central interest in vibration
analysis. In this case we imagine that F.t/ D F cospt where F is the
amplitude of forcing and p is the angular frequency of the forcing. Note, we
could just as well use F.t/ D F sinpt for the forcing, sin and cos are both
sinusoidal forcings.

The general solution of equation 10.25 is given by the sum of two parts.
One is the general solution of equation 10.2, xh.t/, and the other is any so-
lution of equation 10.25, xp.t/. The solution xh.t/ of the damped oscillator
equation 10.2 is called the ‘homogeneous’ or ‘complementary’ solution. Any
solution xp.t/ of the forced oscillator equation 10.25 is called a ‘particular’
solution.

We already know the solution xh.t/ of the undamped governing differen-
tial equation 10.2. This solution is equation 10.3, 10.5, or 10.6, depending on
the values of the mass, spring and damping constants. So the new problem
is to find any solution to the forced equation 10.25. The easiest way to solve
this (or any other) differential equation is to make a fortuitous guess (you
may learn other methods in your math classes). In this case with

F.t/ D F cos.pt/
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we make the guess that

xp.t/ D A cos.pt/C B sin.pt/: (10.29)

Basically this guess says “If you shake something with a sine wave it will
probably move as a sine wave. But who knows the amplitude or phase?”
Plugging this guess into the forced oscillator equation (10.25) we find values
for A and B in box 10.2 on page 523.

Alternatively, a sum of sine waves can be written as a cosine wave (or
sine wave) that has been shifted in phase as (see box 9.2 on page 460)

xp.t/ D A0 cos.pt � �/;

The value of forced amplitude is simply A0 D A2 C B2 and is also given in
terms of m; c; k; p and F in box 10.2. The forced amplitude A0 is the central
subject of this section. It answers the question ‘How big are the oscillations
when you shake something.?’ Because the formula for A0 is admittedly a
mess, the answer is often given in a plot 3. The general solution, therefore,
is

x.t/ D xh.t/C xp.t/: (10.30)

The homogeneous solution xh.t/, the motion of the unforced system, is just
decaying oscillations and is usually not of primary interest in vibrating sys-
tems. The particular solution xp.t/ is steady oscillations. These oscillations
are of central interest. In particular most often in engineering one wants these
oscillations to be big or small.

Example: MEMs devices.
One general type of “Micro Electronic Machine” consists of, basically, a vi-
brating beam. A beam with an effective mass 50� gm and effective stiffness of
k D 500N=m D 5�N=�m has

�n D
r
k

m
D
s

5N=m
50 � 10�9 kg

D

vuut 500N
m

�
1 kg m=s2

1N

�
50 � 10�6 kg

D
p
1010 s�1 D 105= s

which corresponds to a frequency of �n=2� � 15:7k hz. That is, such a MEMs
device would be a good receiver (or ‘resonator’) for 15:7k hz ultra-sonic vibrations.
In this case resonance is useful to make the sensor sensitive.

The size of the oscillations scales with the size of the forcing F (this pro-
portionality is known as ‘linearity’) and also depends on all the parameters
m; c; k and p.

Frequency response and resonance
One way to show a structure’s sensitivity to oscillatory loads is by a frequency
response curve fig. 10.16. One curve shows the amplitude of vibrations
vs the forcing frequency. The main idea of this section, resonance, shows
as a peak in the frequency-response curve near the natural frequency �n Dp
k=m.
Recall that the natural frequency �n is the unforced frequency of un-

damped oscillation. The damped natural frequency �d, the frequency of

3Another more important reason that
a plot is used is that often in a physical
system one can measure the vibrations
while never knowing a detailed accu-
rate set of differential equations which
would describe the system accurately.
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Figure 10.17: Amplitude of oscillation
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ings. Each curve shows the gain G vs
the forcing frequency for a fixed damp-
ing. Note that when the damping is
small (c � 1) and the forcing is close to
the natural frequency of vibration p �
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plitude of the response. The smaller the
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peak. For very high damping the peak is
at a slightly lower frequency. The mass-
spring-dashpot system shown was used
to generate the plots using the formulas
from box 10.2 on page 523.
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4Golden Gate bridge cables. On a
walk a few years ago one of us noted
that the vertical cables on the Golden
Gate bridge could be induced to oscil-
late quite visibly if pushed by a per-
son at the right frequency (about 0.5
hz). One cable, maybe 100 tons of steel,
was nicely going back and forth about
a half a meter. A police car pulled up
an stopped. Through the megaphone the
officer authoritatively and sternly threat-
ened “If you break it you have to pay for
it.”
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resonant frequencies. The upper
dashed plot shows the ratio of damped to
natural frequency vs forcing frequency
ratio � . The solid curve shows how
the resonant frequency varies from the
natural frequency as a function of fre-
quency ratio. The lower plot shows how
the amplification G D A0=.F=k/ is
nearly the same at the natural, damped
and resonant frequencies. That the peak
in the c D 0:6kg=s curve of fig. 10.16 is
slightly to the left of p D �n D

p
k=m

shows as �res=�n being slightly below 1
for � � 0:3. For low damping an en-
gineer can treat the natural, damped and
resonant frequencies as equal. Similarly
the amplification when forced at the nat-
ural frequency is very close to the ampli-
fication when forcing is at the damped or
at the resonant frequency.

decaying oscillations with damping present, is slightly slower (see, e.g.,
eqn. (10.3) on page 501.). The resonant frequency �res, the frequency of
forcing for which the amplitude of motion is maximum (eqn. (10.2) on page
523), is slightly lower still. But, especially when the damping is low, there is
only a small difference between the natural frequency, the damped frequency
and the resonant frequency. So, in common language and engineering prac-
tice they are usually treated as one and the same.

In summary, the frequency response curve has a peak with forcing near to,
but not exactly at, the natural frequency of unforced and undamped motion.
But most engineers can reasonably assume, even though its not exactly true,
that resonance occurs when the forcing frequency is the natural vibration
frequency.

Resonance is good and bad
Sometimes an engineer studies vibrations with the hope of minimizing them,
sometimes with the hope of maximizing them. Resonance is sometimes the
problem and sometimes the solution.

Resonant vibrations are usually undesirable in machinery or cars. The vi-
brations can lead to large stresses, undesirable motions, or unpleasant sounds.
A building resonating to earthquake vibrations may be more likely to fall
down.

On the other hand, nuclear Magnetic Resonance imaging is used for med-
ical diagnosis. In the old days, the resonant excitation of a clock pendulum
was used to keep time. The resonance of quartz crystals is used to time most
watches now-a-days. Self excited resonance is what makes musical instru-
ments have such clear pitches. And resonant vibrations are used to give a
larger signal in micro-mechanical sensors. In the electrical domain, radio
tuners depend on resonance to pick out just one radio band.

Other systems
Most machines and structures are not exactly a point mass moving in one
direction and constrained by a single spring and single dashpot. On the other
hand, almost all machines have mass, elastic give, and some dissipation when
they move. So most machines have natural oscillations after they are banged
or disturbed somehow. And so most structures and machines can be shaken
to large motions if the appropriate (or inappropriate, depending on your aims)
frequency of force is applied 4.

So the concepts introduced here for a single mass-spring-dashpot system
apply to much more complex machines and structures. In particular, have
natural vibration frequencies and they shake a lot (resonate) if forced at near
those frequencies.

Experimental measurement

Because no real thing of interest is exactly a single mass-spring-dashpot the
ideas of vibrations analysis are often not expressed in terms of (m; c and k).
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Rather, the more broad ideas of natural frequency, frequency response, and
resonance are considered on their own. Using either a large-scale computer
model (say a ‘finite-element’ model) or measurement of the physical system
itself, one can draw a frequency-response curve like fig. 10.16 on page 517.

Here’s how. First you apply a sinusoidal force to the structure at the point
of interes, say F D F cos.pt/. Then you measure the motion of a part of
the structure of interest. You might instead measure a strain or rotation, but
for definiteness let’s assume you measure the displacement of some point on
the structure �.

If the structure is linear and has some damping, the eventual motion of
the structure will eventually be a sinusoidal oscillation. In particular, you
will measure that

� D A0 � cos.pt � �/: (10.32)

If you had applied half as big a force, you would have measured half the
displacement, still assuming the structure is linear, so the ratio of the dis-
placement to the force A0=F is independent of the size of the force F . Let’s
define:

G D A0

F

That is, the amplification gain G is the ratio of the amplitude of the displace-
ment sine wave to the amplitude of the forcing sine wave. Plotting p on the
x axis and G on the y axis, this experiment gives one point on the frequency

10.1 A Loudspeaker cone is a forced oscillator.
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Cross-sectional view of a speaker.
A speaker, similar to the ones used in many home and auto

speaker systems, is one of many devices which may be conveniently
modeled as a one-degree-of-freedom mass-spring-dashpot system.
A typical speaker has a paper or plastic cone, supported at the edges
by a roll of plastic foam (the surround), and guided at the center
by a cloth bellows (the spider). It has a large magnet structure, and
(not visible from outside) a coil of wire attached to the point of the
cone, which can slide up and down inside the magnet. (The device
described above is, strictly speaking, the speaker driver. A com-
plete speaker system includes an enclosure, one or more drivers, and
various electronic components.) When you turn on your stereo, the
amplifier forces a current through the coil in time with the music,
causing the coil to alternately attract and repel the magnet. This
rapid oscillation of attraction and repulsion results in the vibration

of the cone which you hear as sound.
In the speaker, the primary mass is comprised of the coil and

cone, though the air near the cone also contributes as ‘added mass.’
The ‘spring’ and ‘dashpot’ effects in the system are due to the foam
and cloth supporting the cone, and perhaps to various magnetic ef-
fects. Speaker system design is greatly complicated by the fact that
the air surrounding the speaker must also be taken into account.
Changing the shape of the speaker enclosure can change the effec-
tive values of all three mass-spring-dashpot parameters. (You may
be able to observe this dependence by cupping your hands over a
speaker (gently, without touching the moving parts), and observing
amplitude or tone changes.) Nevertheless, knowledge of the basic
characteristics of a speaker (e.g., resonance frequency), is invaluable
in speaker system design.

Our approximate equation of motion for the speaker is identi-
cal to that of the ideal mass-spring-dashpot above, even though the
forcing is from an electromagnetic force, rather a than a direct me-
chanical force:

m RxC c PxC kx D F.t/ with F.t/ D �i.t/ (10.31)

where i.t/ is the electrical current flow through the coil in amps,
and � is the electro-mechanical coupling coefficient, in force per
unit current.
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Figure 10.19: Transient response. (a)
shows a suddenly applied force F0. The
response (b) to this force is a motion that
starts at the initial position x0 (x0 > 0

in this illustration) and then oscillates
about the new equilibrium F0=k. The
motion is identical to unforced motion,
but offset. Thus it can be used to evalu-
ate the rate of decay of oscillation and
the damped period of oscillation. (c)
A sinusoidal forcing causes. (d) the re-
sponse if the mass is released at x D x0
and suddenly both a constant force F
and a sinusoidal force F sinpt are ap-
plied. The motion eventually settles into
a sinusoidal oscillation at the forcing
frequency (which is a little longer period
than the damped oscillation in this illus-
tration) with amplitude A0.

response curve. Repeating for a range of forcing frequencies one can plot up
the frequency response G D G.p/.

Example: Shake table for earthquake response.
One way to get a frequency response curve for a building is to put a scale model
on a “shake table”. The base is then moved sinusoidally through a range of fre-
quencies and the motion of the model is observed. This way one can find peaks
in the frequency-response curve. These are frequencies that, to the extent they are
prevalent in a feared earthquake, are likely to cause damage.

Transient response
As discussed, the full solution of eqn. (10.25) with forcing F.t/ D F0 C
F cospt is the sum of three terms

x.t/ D xh C xp1 C xp2

The first of these has decaying oscillations, the second is a constant, and
the third has steady oscillations. When added up the motion can look quite
complicated, as seen in fig. 10.18. The main point is that after some ini-
tial complicated transient the motion eventually decays to steady oscillations
(xp2.t/ D A0.cospt � �/) plus an offset (xp1 D F=k).

The vocabulary of forced oscillations
Forced oscillations are so important and common that there is a specialized
vocabulary for many of the terms and collections of commonly appearing
terms. Here is a list, starting with the terms you know well.

m D the mass of the particle that is oscillating. For more complicated
systems the mass m may represent an “effective” or “equivalent” mass.

c D the damping coefficient. c is used to describe the viscous drag, the
resistance to motion Fd D �c Px.

k D the spring constant. k describes the elastic restoring “spring” force
Fs D �kx.

F D the forcing amplitude for a sinusoidally varying applied force
F.t/ D F sinpt or F.t/ D F cospt or F.t/ D A sinpt C B cospt
with F �

p
A2 C B2.

p D the forcing frequency. Some books will use the symbol ! for the
forcing frequency.

The rest of the quantities below are completely determined by the quantities
above (m; c; k; F and p).
�n �

p
k=m is the natural frequency. This is the frequency of oscillation

if there is neither forcing nor damping. In that case x.t/ D A cos�ntC
B sin�nt . Many books use !n for the natural frequency.

ccrit D 2�
p
km is the critical damping coefficient. The relation of the ac-

tual damping c to the critical damping ccrit tells you whether a system is
over-damped ( c > ccrit ) decay to equilibrium, when unforced,
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that is exponential) or under-damped ( c < ccrit ) decay to equi-
librium, when unforced, that is oscillatory). See Fig. 10.2 on page 500.
Sometimes ccrit is more simply written as cc or ccr .

� � c=ccrit is the damping ratio. The single number � (‘ksee’) tells you if
a system is over damped (� > 1) or underdamped (� < 1).

r � p=�n D p=
p
k=m is the frequency ratio . If r > 1 then the forcing is

faster than the frequency of natural unforced vibrations. If r < 1 then
the forcing is slower than the natural vibrations.

A0 D the response amplitude . When a steady oscillatory force is applied
the motion is eventually oscillatory. The amplitude of the motions is
A0, as in x D A0cos.pt � �/ with

A0 D .F=k/=

q
.2�r/2 C .1 � r2/2//:

G � A0=.F=k/ is the gain or amplification. G is the ratio of the eventual
amplitude of the oscillator to the response that would occur if the same
force was applied at zero frequency. It is the response amplitude scaled
by the displacement that would occur if the same force was applied to
a spring.

�res D �n

p
1 � 2�2 is the resonant frequency. �res (also called �r or !r )

is the frequency such that if p D �res the amplification gain G is max-
imum. The resonant frequency is the frequency at which you force a
system to get the biggest motions. The resonant frequency �res is rather
close to the natural frequency �n in systems with small damping ratios.
And these are also the systems that are prone to resonant vibrations.

�d is the damped natural frequency . If an underdamped system is re-
leased from rest it oscillates as the motions decay. The frequency of
these oscillations is

�d D �n

q
1 � �2:

The frequency �d of damped oscillations is a shade slower than the fre-
quency �n of oscillation of the same system with no damping. When
damping is small the natural frequency �n, the damped frequency
�d and the resonant frequency �r are all close to each other (See
fig. 10.16a).

Gn; Gres & Gd are the amplification gains (see G above) when forcing is at
the natural, the resonant and the damped natural frequency respectively
(p D �n; �res & �d, see above). Gres is the biggest of these by defini-
tion. But it is not actually much bigger than Gn or Gd . These gains can
be calculated using the formulas for G and A0 above. They are plotted
on fig. 10.16b.

D is the logarithmic decrement. D measures the rate of decay of unforced
(F D 0) oscillations. The experimental definition, derivable from a
graph of the motion, is

D D ln.
xn

xnC1
/:
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In terms of m, c and k the logarithmic decrement is D D cT
2m

D 2�� ,
as derived on page 501. If there is little damping, c is small (� � 1)
and D � .xn � xnC1/=xn is the fractional decrease in amplitude per
oscillation. If D D :1 then each oscillation is about 10% smaller in
amplitude than the previous one.

Q is the quality factor. For the mass-spring-dashpot system it is another
way of describing the rate of decay of unforced oscillations.

Q � 2�.energy of oscillator/=.energy lost per cycle/

D 2�x2n=.x
2
n � x2nC1/

� �=D D 1=.2�/ (for small damping)

The � in the definition of Q makes it so there is no � in the formula
for the quality factor Q in terms of the damping ratio �. Note that,
so long as damping is small, �;D and Q can each be found approxi-
mately from the other. A system with low damping (� � 1) has high
quality (Q � 1) and slowly decaying oscillations and hence a small
logarithmic decrement (D � 1).
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10.2 Solution of the forced oscillator equation
The main equation for understanding forced oscillations is:

m RxC c PxC kx D F0 CF cospt:

Because the equation is linear we look for a solution which is the
sum of three terms

x.t/ D xh C xp1 C xp2
where xh is the homogeneous solution from Eqns 10.3 - 10.6 on
page 501, depending on whether the system is underdamped (os-
cillatory decay), critically damped or over damped (non-oscillatory
exponential decay). xp1 is a particular solution for the constant forc-
ingF0. xp1.t/ was found in eqn. (10.28) on page 516 to be, simply,
xp1 D F0=k.

The last part of the solution, finding an xp2 for the forcing term
F cospt is found by guessing

xp2 D A cospt CB sinpt:

When this guess is plugged into the equation

m RxC c PxC kx D F cospt

every term is either a multiple of sinpt or cospt . Thus we get

fA collection of constantsg cosptCfAnother collectiong sinpt D 0

The only way a sum of a sine wave and cosine wave can be zero for
all time is for both coefficients to be zero. Setting the two collections
of constants above both to zero gives two simultaneous equations for
the unknowns A and B in terms of m;c; k and p. These can be
solved to give

A D
.F=k/

�
1� p2

.k=m/

�
�
c2

km

� �
p2

k=m

�
C
�
1� p2

.k=m/

�2 ;
and B D .F=k/.cp=k/�

c2

km

� �
p2

k=m

�
C
�
1� p2

.k=m/

�2 :

So we have found the particular solution for forcing with F.t/ D
F cospt , using A and B above, as

xp2 D A cospt CB sinpt: (10.33)

An alternative form for the solution is

xp2.t/ D A0 cos.pt � �/; (10.34)

for which we can find the constants A0 and � using the trig identity
cos.���/ D cos � cos�Csin � sin� described in box 9.2 on page
460. Applying this identity to the solution above we find the object
of central interest, the forced amplitude

A0 D
q
.A2 CB2/ D F=kr�

c2

km

� �
p2

k=m

�
C
�
1� p2

.k=m/

�2
(10.35)

and also the phase angle

� D tan�1
�
B

A

�
D tan�1

0
@ cp=k�
1� p2

.k=m/

�
1
A : (10.36)

All of the expressions above can be somewhat simplified if write
them in terms of the frequency ratio r D p=�n D p=

p
k=m

and damping ratio � D c=ccrit D c=2
p
km (The frequency ra-

tio, damping ratio and some more specialized vibration words are
defined on page 520.). Using these dimensionless quantities, the val-
ues of the constants in the solution xp2.t/, namely eqn. (10.33) or
eqn. (10.34), are:

A D .F=k/.1� r2/
4�2r2 C �

1� r2�2 ;
B D .F=k/ .2�r/

4�2r2 C �
1� r2�2 ;

A0 D
q
.A2 CB2/ D F=kq

.2�r/2 C �
1� r2�2 ;

and

� D tan�1
�
B

A

�
D tan�1

�
2�r

1� r2
�
:

These constants are for the particular forced solution xp2.t/ of
eqn. (10.33) or eqn. (10.34). Again, most important in all of this is
the amplitudeA0 of the forced response. As you can see, the bottom
of the fraction forA0 gets quite small for small damping (� � 1) if
the frequency ratio r is close to 1. That is,

the amplitude is big if the forcing is close to the natural fre-
quency.

Resonant frequency
In detail, the frequency at which the vibration amplitude A0 is
maximum is not exactly the unforced undamped natural frequency
�n D

p
k=m. The resonant frequency �res is found by maximizing

A0 with respect to r D �=�n. Setting dA0=dr D 0 and solving
for r we find

rres D
q
1� 2�2 ) �res D �n

q
1� 2�2 (10.37)

The ratio of �res=�n is plotted on fig. 10.16 on page 517. Also plot-
ted is the ratio of A0 at resonance to A0 if forcing is at the natural
frequency. The morals are that a) for small damping the natural fre-
quency and resonant frequency are very close, and b) for all damp-
ings, there is little error in calculating the amplitude of the maximum
vibration response by approximating resonance as being at the natu-
ral frequency. Even when resonance is barely a viable concept, for
systems that are critically damped, the error is only 40%.

Similarly one might think the damped natural frequency

�d D �n

q
1� �2

would be a better approximation to the resonant frequency. Actually,
its about half way between the natural and resonant frequencies, as
can be seen also on fig. 10.16.
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SAMPLE 10.6 The mass-spring-dashpot system shown in the figure consists
of a mass m D 2 kg, a spring with stiffness k D 3200N=m and a dashpot
with damping coefficient c D 10 kg= s.

1. Is the system underdamped, critically damped or overdamped?

2. Find the damped natural frequency of the system.

3. What is the resonant frequency of the system.

Solution

1. The question about underdamped, critically damped, or overdamped can be answered
conveniently by computing the damping ratio �. For an underdamped system, � < 1,
for a crtically damped system, � D 1, and for an overdamped system � > 1. So, let us
compute � . We know that

� D c

cc
D c

2
p
km

:

Thus, for the given system,

� D 10 kg= s

2
p
3200N=m � 2 kg

D 10 kg= s
160 kg= s

D 0:062:

Since � < 1, the system is underdamped.

Underdamped (� D 0:062)

2. The damped natural frequency, �d , is given by

�d D �n

q
1 � �2

where �n D
p
k=m is the natural frequency of the system. Substituting the known

values, we get

�d D
s
3200N=m
2 kg

q
1 � .0:062/2 D 39:92 rad=s

which is almost the same as the natural frequency �n D 40 rad=s.

�d D 39:92 rad=s

3. The resonant frequency of the system, �r , is given by

�r D �n

q
1 � 2�2:

Substituting the known values of �n and �, we get

�r D 39:85 rad=s

which is the smallest among the three characteristic frequencies of the system — natu-
ral frequency, damped natural frequency, and the resonant frequency. For small values
of �, however, the three frequencies are practically indistiguishable as is the case here.

�r D 39:85 rad=s
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SAMPLE 10.7 Response to a constant force: A constant force F D 50N
acts on a mass-spring system as shown in the figure. Let m D 5 kg and
k D 10 kN=m.

1. Write the equation of motion of the system.

2. If the system starts from the initial displacement x0 D 0:01m with zero
velocity, find the displacement of the mass as a function of time.

3. Plot the response (displacement) of the system against time and de-
scribe how it is different from the unforced response of the system.

Solution

1. The free-body diagram of the mass is shown in fig. 10.21 at a displacement x (as-
sumed positive to the right). Applying linear momentum balance in the x-direction,
i.e., .

P *
F D m*a/ � O{, we get

F � kx D m Rx
) m Rx C kx D F (10.38)

which is the equation of motion of the system.

2. The equation of motion has a non-zero right hand side. Thus, it is a nonhomogeneous
differential equation. A general solution of this equation is made up of two parts — the
homogeneous solution xh which is the solution of the unforced system (eqn. (10.38)
with F D 0), and a particular solution xp that satisfies the nonhomogeneous equation.
Thus,

x.t/ D xh.t/C xp.t/: (10.39)

Now, let us find xh.t/ and xp.t/.

Homogeneous solution: xh.t/ has to satisfy the homogeneous equation

m Rx C kx D 0:

Let � D
p
k=m. Then, from the solution of unforced harmonic oscillator, we

know that
xh.t/ D A sin.�t/C B cos.�t/

where A and B are constants to be determined later from initial conditions.
Particular solution: xp must satisfy eqn. (10.38). Since the nonhomogeneous part

of the equation is a constant (F ), we guess that xp must be a constant too (of the
same form as F ). Let xp D C . Now we substitute xp D C in eqn. (10.38) and
solve the resulting equation to determine C :

m RC����
0

CkC D F ) C D F=k or xp D F=k:

Substituting xh and xp in eqn. (10.39), we get

x.t/ D A sin.�t/C B cos.�t/C F=k: (10.40)

Now we use the given initial conditions to determine A and B .

x.t D 0/ D B C F=k D x0 .given/ ) B D x0 � F=k
Px.t/ D A� cos.�t/ � B� sin.�t/

) Px.t D 0/ D A D 0 .given/ ) A D 0:

Thus,

x.t/ D .x0 � F=k/ cos.�t/C F=k; (10.41)

and Px.t/ D ��.x0 � F=k/ sin.�t/: (10.42)
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3. Let us plug the given numerical values, k D 10 kN=m; m D 5 kg, (which gives � Dp
k=m D 44:72 rad=s ), F D 50N and x0 D 0:01m in eqn. (10.41) and (10.42). The

displacement and the velocity are now given as

x.t/ D .0:005m/ cos.44:72 rad=s � t /C 0:005m;

and Px.t/ D �.0:22m=s/ sin.44:72 rad=s � t /:

This response is plotted in fig. 10.22 against time. Note that the oscillations of the
mass are about a non-zero mean value, xeq D 0:005m. A little thought should reveal
that this is what we should expect. When a mass hangs from a spring under gravity,
the spring elongates a little, by mg=k to be precise, to balance the mass. Thus, the
new static equilibrium position is not at the relaxed length `0 of the spring but at
`0 C mg=k. Any oscillations of the mass will be about this new equilibrium. The
velocity, however, has a zero mean value which is what we expect from eqn. (10.42).
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Figure 10.23: Displacement of the mass as a function of time. Note that the mass
oscillates about a nonzero value of x.

This problem is exactly like a mass hanging from a spring under gravity, a constant
force, but just rotated by 90�. The new static equilibrium is at xeq D F=k and any
oscillations of the mass have to be around this new equilibrium.
We can rewrite the response of the system by measuring the displacement of the mass
from the new equilibrium. Let Qx D x � F=k. Then, eqn. (10.41) becomes

Qx D Qx0 cos.�t/

where Qx0 D x0 � F=k is the initial displacement. Clearly, this is the response of
an unforced harmonic oscillator. Thus the effect of a constant force on a spring-mass
system is just a shift in its static equilibrium position.
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SAMPLE 10.8 A single degree of freedom damped oscillator has unknown
mass, spring stiffness and damping coefficient. In order to find these quanti-
ties, the oscillator is subjected to a constant force F0 D 100N and its tran-
sient response is recorded. The response is shown in fig. 10.23. The two
peaks marked in the response plot correspond to (t; x) = (0.2107 s, 0.01345
m) and (0.3525 s, 0.0117 m) respectively. Find the system parameters m, k,
and c.

Solution Let the mass, stiffness, and damping coefficient of the system be m, k, and c,
respectively. Then the equation of motion of the system, subjected to a constant force F0 is,

m Rx C c Px C kx D F0

where x.t/ is the displacement at some instant t. From the solution of this equation, we know
that the steady state solution (after the transient oscillations die) is merely a shift in the static
equilibrium position, given by F0=k. From the given response, we see that

F0
k
D 0:01m ) k D F0

0:01m
D 100N
0:01m

D 10 kN=m:

Thus we have found one of the parameters, k. Now we need to find m and c.
Since two successive peaks are given in the transient response, we can use the logrithmic

decrement to determine the damping ratio � from the relationship

� D 1

2�
ln
�
xn
xnC1

�
:

From the given data, xn D 0:01345m and xnC1 D 0:0117m. Therefore, 5

� D 1

2�
ln
�
0:01345m
0:0117m

�
D 0:022:

Since � D c=cc D c=.2
p
km/, we have

c D 2�
p
km D 0:044

p
km (10.43)

This is just one equation in two unknowns, m and c (we already know k). So, we need
another equation. From the peak to peak distance (in time), we can find the damped time
period. That is Td D T2 � T1 D 0:3525 s � 0:2107 s D 0:1418 s. But, Td D 2�=�d , and
�d D �n

p
1 � �2. Therefore,

�2n �
k

m
D �2

d

1 � �2 D
4�2

T 2
d
.1 � �2/

) m D kT 2
d
.1 � �2/
4�2

D 10000N=m � .0:1418 s/2.1 � 0:0222/
4�2

D 5:09 kg:

Now substituting the value of m and k in eqn. (10.43), we get

c D 0:044
p
10000N=m � 5:09 kg D 9:92 kg= s:

m D 5:09 kg; k D 10 kN=m; and c D 9:92 kg= s:
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Figure 10.24:

5The calculation here is illustrative. In
practice, you should not use just two
data points for computing damping from
the logarithmic decrement method. In
general, we use several data points and
determine the damping from taking an
average of the decrements. See Sam-
ple 10.5 on page 512.
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SAMPLE 10.9 Damping and forced response: When a single-degree-of-
freedom damped oscillator (mass-spring-dashpot system) is subjected to a
periodic forcing F.t/ D F0 sin.pt/, then the response of the system is given
by

x.t/ D X cos.pt � �/

where X D F0=kp
.2�r/2C.1�r2/2 ; � D tan�1 2�r

1�r2 ; r D
p
�
; � D

p
k=m and �

is the damping ratio.
1. For r � 1, i.e., the forcing frequency p much smaller than the natural

frequency �, how does the damping ratio � affect the response ampli-
tude X and the phase �?

2. For r � 1, i.e., the forcing frequency p much larger than the natural
frequency �, how does the damping ratio � affect the response ampli-
tude X and the phase �?

Solution

1. If the frequency ratio r � 1, then r2 will be even smaller; so we can ignore r2 terms
with respect to 1 in the expressions for X and �. Thus, for r � 1,

X D F0=kp
.2�r/2 C .1 � r2/2

� F0=k

1
D F0

k

� D tan�1.2�r/ � tan�1 0 D 0

that is, the response amplitude does not vary with the damping ratio �, and the phase
also remains constant at zero. As an example, we use the full expressions for X and �
for plotting them against � for r D 0:01 in fig. 10.24

For r � 1;X � F0=k; and � � 0

2. If r � 1, then the denominator in the expression for X , 4�2r2 C .1 � r2/2 � r4

(because we can ignore all other terms with respect to r4. Similarly, we can ignore 1
with respect to r2 in the expression for �. Thus, for r � 1,

X D F0=kp
.2�r/2 C .1 � r2/2

� F0=k

r2
D 0

� D tan�1 2�r�r2 � tan�1 2��r � tan�1.�0/ D �:

Once again, we see that the response amplitude and phase do not vary with �. This
is also evident from fig. 10.25 where we plot X and � using their full expressions for
r D 10. The slight variation in � around � goes away as we take higher values of r .

For r � 1;X � 0; and � � �

Thus, we see that the damping in a system does not affect the response of the system much if

the forcing frequency is far away from the natural frequency.
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SAMPLE 10.10 A MEMS (microelectromechanical system) cantilever res-
onator (shown in the figure) is modeled as a single degree of freedom oscil-
lator (SDOF) oscillator. Using load deflection measurements, the stiffness of
the beam (equivalent to the spring stiffness) is found to be 90N=m. The beam
is excited using electrical actuation and its resonant frequency is determined
under two different conditions: (i) the beam vibrating in vacuum where the
viscous damping is negligible, and (ii) the beam vibrating in ambient condi-
tions where the airflow around it causes viscous damping. If the two frequen-
cies are found to be 30 kHz and 28.4 kHz, respectively, find the equivalent
mass m and the damping ratio for the SDOF model. If the beam is subjected
to a periodic actuation at the free end by a force F.t/ D F sin.2�f t/ where
F D 50�N and f D 25 kHz, find the steady state displacement amplitude
and the phase of the free end of the resonator.

Solution First we need to findm and c for the equivalent mass-spring-dashpot model. In the
first case, where the resonant frequency is found in vacuum, we neglect damping, i.e., c D 0.
Therefore, the given frequency is the natural frequency. However, it is fn, not the circular
natural frequency �n. Now, �n D 2�fn, hencer

k

m
D 2�fn ) m D k

4�2f 2
n

D 90N=m
4�2.30000 s�1/2

D 2:533 � 10�9 kg:

We now use the damped natural frequency to find the damping ratio �. Since, we are given
fd D 28:4 kHz, and we know that �d D �n

p
.1 � �2/, we have

2�fd D 2�fn

q
1 � �2

� D
s
1 �

�
fd
fn

�2
D
s
1 �

�
28:4 kHz
30 kHz

�2
D 0:32:

Now, we know the values of all system parameters for our SDOF model of the MEMS res-
onator —m, k and � (can find c if required from �, k andm). For the given sinusoidal forcing,
the equation of motion of the SDOF oscillator is:

m Rx C c Px C kx D F sin.2�f t/:

We can write the steady state solution as the particular solution x.t/ D A0 sin.pt ��/ where
p D 2�f , and the displacement amplitude A0 and the phase � are given by the following
expressions:

A0 D
F=kp

.2�r/2 C .1 � r2/2
; and � D tan�1

�
2�r

1 � r2
�
:

Since, r D p
�n

D 2�f
2�fn

D 25
30 D 0:833, we have,

A0 D .50�6 N/=.90N=m/p
.2 � 0:32 � 0:833/2 C .1 � 0:8332/2

D 9:04 � 10�7 m D 0:904�m:

Similarly, we find the phase as,

� D tan�1 2 � 0:32 � 0:833
1 � 0:8332

D 1:05 rad:

m D 2:533 � 10�9 kg; � D 0:32; A0 D 0:904�m; and � D 1:05 rad

Filename:MEMS-cantilever

Figure 10.27: A MEMS cantilever res-
onator: Such resonators are typically sil-
icon cantilever beams fabricated using
micromachining process. These beams
have geometric dimensions in microme-
ters and can be as small as a couple of
micrometers long and a few nanometers
in width and thickness.
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SAMPLE 10.11 Energetics of resonance: Consider the response of a
damped harmonic oscillator to a periodic forcing. Find the work done on
the system by the periodic force during a single cycle of the force and show
how this work varies with the forcing frequency and the damping ratio.

Solution Let us consider the damped harmonic oscillator shown in fig. 10.27 with
F.t/ D F sin.pt/. The equation of motion of the system is m Rx C c Px C kx D
F sin.pt/ and the response of the system may be expressed as X sin.pt � �/ where X D
.F=k/=

p
.2�r/2 C .1 � r2/2 and � D tan�1.2�r=.1�r2//; with r D p=�n; �n D

p
k=m

and � D c=.2
p
km/.

We can compute the work done by the applied force on the system in one cycle by evalu-
ating the integral

W D
Z

onecycle
F.t/ dx

But, x D X sin.pt � �/ ) dx D Xp cos.pt � �/dt . Therefore,

W D
Z 2�=p

0
F sin.pt/ �Xp cos.pt � �/ dt

D FXp

Z 2�=p

0
sin.pt/ cos.pt � �/ dt

D FXp

Z 2�=p

0
sin.pt/ .cos.pt/ cos� C sin.pt/ sin�/ dt

D FXp

"
cos� � 1

2

Z 2�=p

0
sin.2pt/ dt C sin� � 1

2

Z 2�=p

0
.1 � cos.2pt// dt

#

D FXp

2

"
cos�

�
� cos.2pt/

2p

�����2�=p
0

C sin�
�
t � sin.2pt/

2p

�����2�=p
0

#

D FXp

2

�
cos�
2p

.�1C 1/C 2�

p
sin� C 0

�

D FXp

2
� 2�
p

sin�

D F�X sin�

Although the expression obtained above for W looks simple, we must substitute for X and �
to see the dependence of W on the damping ratio � and the frequency ratio r .

W D .F�/ � .F=k/p
.2�r/2 C .1 � r2/2

� 2�rp
.2�r/2 C .1 � r2/2

D .2�F 2�r/=k

.2�r/2 C .1 � r2/2 (10.44)

Unfortunately, this expression is too complicated to see the dependence of W on � and r .
However, we know that for small r.� 1/, � � 0 and for large r.� 1/, � � � , implying
that W is almost zero in both these cases. On the other hand, for r close to one, that is, close
to resonance, � � �=2 ) sin� � 1, but the response amplitude X is large (for small �),
which makes W to be big near the resonance. Figure 10.28 shows a plot of W against r ,
using eqn. (10.44), for different values of �. It is clear from the plot that the work done on
the system in a single cycle is much larger close to the resonance for lightly damped systems.
This explains why the response amplitude keeps on growing near resonance.

W D �FX sin�
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10.3 Normal modes
To read this section you need to know the linear algebra concepts of eigenval-
ues and eigenvectors. Systems with many moving parts often move in com-
plicated ways. Consider the two mass system shown in fig. 10.29. By draw-
ing free body diagrams and writing linear momentum balance for the two
masses we can write the equations of motion in matrix form (see eqn. (9.44))
as

�M � Rx C �K�x D 0

where

�M � D
�
m 0

0 m

�
and �K� D

� �2k k

k �2k
�
:

Example: Complicated motion.
If we put the initial condition

x0 D
2
4 1

0

3
5 and v0 D

2
4 0

0

3
5 ;

we get the motion shown in fig. 10.30a. Both masses move in a complicated way
and not synchronously with each other.

On the other hand, all such systems, if started in just the right way, will move
in a simple way.

Example: Simple motion: a normal mode.
If we put the initial condition

x0 D
2
4 1

1

3
5 and v0 D

2
4 0

0

3
5 :

we get the motion shown in fig. 10.30b. Both masses move in a simple sine wave,
synchronously and in phase with each other.

That this system has this simple motion is intuitively apparent. If both of the
equal masses are displaced equal amounts both have the same restoring force. So
both move equal amounts in the ensuing motion. And nothing disturbs this symme-
try as time progresses. In fact the frequency of vibration is exactly that of a single
spring and mass (with the same k and m).

A given system can have more than one such simple motion.
Example: Another normal mode.
If we put the initial condition

x0 D
2
4 1

�1

3
5 and v0 D

2
4 0

0

3
5 :

we get the motion shown in fig. 10.30c. Both masses move in a simple sine wave,
synchronously and exactly out of phase with each other. Being exactly out of phase
is actually a form of being exactly in phase, but with a negative amplitude.

This motion is also intuitive. Each mass has restoring force of 3k�x. One k
from a spring at the end and 2k because each mass experiences a spring with half
the length (and thus twice the stiffness) in the middle (because the middle of the
middle spring doesn’t move in this symmetric motion).
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Figure 10.30: A two mass system. We
define x1 and x2 so that the system is in
equilibrium when x1 D x2 D 0.
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a) x1 D 1; x2 D 0,
b) x1 D 1; x2 D 1, and
c) x1 D 1; x2 D �1.
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The system above is about the simplest for demonstration of normal mode
vibrations. But more complicated elastic systems always have such simple
normal mode vibrations.

All elastic systems with mass have normal mode vibrations in which all
masses

� have simple harmonic motion
� with the same frequency as all the other masses, and
� exactly in (or out) of phase with all of the other masses

Thus the first and second normal modes from fig. 10.30b,c can be written as�
x1.t/

x2.t/

�
D
�

cos�1t
cos�1t

�
� �� �

First normal mode

and
�
x1.t/

x2.t/

�
D
�

cos�2t
� cos�2t

�
� �� �

Second normal mode

where, by the physical reasoning in the examples we know that �1 D
p
k=m

and �2 D
p
3k=m. We could equally well have used the sine function in-

stead of cosine.

Superposition of normal modes

Note that the governing equation (eqn. (10.3)) is ‘linear’ in that the sum of
any two solutions is a solution. If we add the two solutions from fig. 10.30b,c
we have a solution. And if we divide that sum by two we get a solution. And
not just any solution, but the solution in fig. 10.30a. The top curve is the sum
of the bottom two divided by two (The curves for x1.t/ and x2.t/ need to be
added separately).

For more complicated systems it is not so easy to guess the normal modes.
Most any initial condition will result in a complicated motion. Nonetheless
the concept of normal modes applies to any system governed by the system
of equations (eqn. (10.3)):

�M � Rx C �K�x D 0:

Any collection of springs and masses connected any which way has normal
mode vibrations. And because elastic solids are the continuum equivalent of
a collection of springs and masses, the concept applies to all elastic struc-
tures. Here are the basic facts

� An elastic system with n degrees of freedom has n independent normal
modes.

� In each normal mode i all the points move with the same angular fre-
quency �i and exactly in phase.

� Any motion of the system is a superposition of normal modes (a sum
of motions each of which is a normal mode).
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Example: Musical instruments
The pitch of a bell is determined by that normal mode of the bell that has the low-
est natural frequency. Similarly for violin and piano strings, marimba keys, kettle
drums and the air-column in a tuba.

A recipe for finding the normal modes of more complex systems is given in
box 10.3 on page 533.

Normal modes and single-degree-of-freedom systems
Any complex elastic system has simple normal mode motions. And all mo-
tions of the system can be represented as a superposition of normal modes.
Hence sometimes we can think of every system as if it is a single degree
of freedom system. For example, if a complex elastic system is forced, it
will resonate if the frequency of forcing matches any of its normal mode (or
natural) frequencies.

The math of, and how to find, normal modes
Consider a collection of n masses connected by springs whose motions are
governed by eqn. (10.3)

�M � Rx C �K�x D 0;

where the positions of the masses are x D x.t/ D �x1.t/; x2.t/; :::; xn.t/�
0.

The matrices �M � and �K� have to do with the masses and the network of
springs, respectively. At this point in the book the examples are masses in a
line, but the concepts are more general.

How to find a solution. The approach used by the professionals is to guess
that there are “normal mode” solutions and then see if they are. A normal
mode solution, with all masses moving sinusoidally and synchronously, is

x D

2
64 V1 cos�t

V2 cos�t
:::

3
75 D V cos�t:

Upper case bold V (to distinguish it from lower case velocity) is a list of
constants �V1; V2; :::�0. We could have used sin just as well as cos for our
guess. Now we plug our guess into the governing equations to see if it is a

good guess:

�M � Rx C �K�x D 0

�M �
d2

dt2
fV cos�tg C �K� fV cos�tg D 0

��2�M �V cos�t C �K�V cos�t D 0���2�M �V C �K�V
	

cos�t D 0:
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534 Chapter 10. Vibrations 10.3. Normal modes

This equation has to hold true for all t therefore the constant column vector
inside the brackets

�	
must be zero:

��2�M �V C �K�V D 0���2�M �C �K�
�
V D 0

The matrix �M � is usually invertible. If �M � is diagonal its inverse is �M �

with each element replaced by its reciprocal. Assuming �M ��1 exists we can
multiply through by �M ��1 to get:

�M ��1�K�V D �2V ;

where we used that �M ��1�M � D �1� = the identity matrix, and that �1�V D
V . Defining the product �B� D �M ��1�K� and substituting we get the classic
eigenvalue problem:

�B�V D �2V : (10.45)

There is a lot to know about eqn. (10.45). Its a famous equation. Equa-

tion (10.45) says that V is a vector that, when multiplied by �B� gives itself
back again, multiplied by a constant. For the special vector V , being multi-
plied by the matrix �B� is equivalent to being multiplied by the scalar �2.

Given �B� there are generally n linear independent eigen vectors
V 1;V 2; :::V n with associated eigen values �21; �

2
2; :::; �

2
n. Note, �B� is gen-

erally not symmetric.

In the case of our vibration problem the eigen vectors are called modes or
eigen modes or mode shapes or normal modes.

Recipe for finding normal modes

Given the matrices �M � and �K� proceed as follows.

� Calculate �B� D �M ��1K
� Use a math computer program to find the eigenvalues and eigenvectors

of �B�, call these V i and �2i . Usually this is a single command, like:

eig(B)

� For each i between 1 and n write each normal mode as x.t/ D
V cos .�i t / or as x.t/ D V sin .�i t /

For example, if

�M � D
�
m 0

0 m

�
and �K� D

� �2k k

k �2k
�
:

then, for any values of k and m, the computer will return for the eigen values
and eigenvectors of �B� D �M ��1�K�:

V 1 D
�
1

1

�
with �21 D k=m and V 2 D

�
1

�1
�

with �22 D 3k=m
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Why are they called ‘normal’ modes?: Another recipe

The math here is relatively advanced, so trust or skip it if you don’t have
the needed linear algebra background. In math speak ‘normal’ sometimes
means orthogonal. Here is the sense that ‘normal’ modes are orthogonal to
each other. First, the matrix �M � is generally both symmetric, non-singular

and even positive definite, so �M �

� Has a symmetric inverse �M ��1 with

�M ��1�M � D �M ��M��1 D �1� D �identity matrix�;

� Has a unique positive definite square root
p
�M � withp

�M �
p
�M � D �M �;

� Has a unique inverse square root �M ��1=2 with

�M ��1=2�M ��M��1=2 D �1�:

First we use �M ��1=2 to change coordinates from x to y as

x D �M ��1=2y or y D �M �1=2x:

Now we substitute this into the basic vibration equation (�M � RxC �K�x D 0)
and pre-multiply the whole equation by �M ��1=2 to get

�M ��1=2�M ��M��1=2� �� �
�1�

Ry C �M ��1=2�K��M ��1=2� �� �
�A�

y D 0

) Ry C �A�y D 0:

Now we look for solutions for y exactly as we did for x before. But, as
opposed to �B�, �A� is symmetric. So �A� has n linear independent and mutu-
ally orthogonal eigen vectors W 1;W 2; :::W n with associated eigen values
�21; �

2
2; :::; �

2
n. These Wi give the Vi by Vi D �M ��1=2Wi . The �i are the

same.

These coordinate-changed Wi D �M �1=2Vi are ‘normal’ (mutually or-
thogonal) but the more physical Vi are not, even though the Vi are called
‘normal’ modes. Or you can say that the Vi are mutually orthogonal with
respect to the weighting �M �, e.g., V

0

2 �M �V5 D 0:
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Figure 10.32: A MEMS vibratory gyro-
scope: (a) a micrograph of the two-mass
structure. Each inertial mass (the plates
with holes) is approximately 1mm �
1mm�15�m. The beams that hang the
two masses act as springs. The comb
drives on the left and right side of the
two masses are used to drive the two
masses to oscillate in the x-direction at
their resonant frequencies. (b) a two de-
gree of freedom spring-mass model of
the driven gyroscope structure (without
any damping).
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Figure 10.33: Partial free body diagram
of the two masses. Only relevant forces
(in the x-direction) are shown in the di-
agram.

SAMPLE 10.12 A two mass vibratory MEMS gyroscope: A vibratory
MEMS (microelectromechanical system) gyroscope employs two big plates
as inertial masses, suspended by thin beams or ‘springs’ as shown in the fig-
ure. The two masses are made to vibrate (by electrical actuation) out of phase
in the x-direction. Any rotation about the y-direction causes the masses to
vibrate out of plane due to ‘Coriolis acceleration’ (you will learn about that
in later chapters). We will restrict our attention to the planar motion of the
gyroscope. A two degree of freedom spring-mass model is shown in the
figure where m D 34:5 � 10�9 kg, k1 D 25N=m, and k2 D 3N=m.

1. Write the equations of motion for the two masses.

2. For the out of phase motion of the two masses, assume that x1.t/ D
�x2.t/ D x0 sin�nt . Determine the natural frequency �n correspond-
ing to this mode of vibration.

Solution

1. The free body diagram of each mass is shown in shown in fig. 10.32. Assuming both
x1 and x2 to be positive to in the x-direction, and x2 > x1 at the instant shown in the
figure, we can write the equations of motion using the balance of linear momentum as

Mass A: m Rx1 D k2.x2 � x1/ � 2k1x1
D �.2k1 C k2/x1 C k2x2

Mass B: m Rx2 D �k2.x2 � x1/ � 2k1x2
D k2x1 � .2k1 C k2/x2:

These two equations can be also written in a convenient matrix form as� Rx1
Rx2

�
D 1

m

� �.2k1 C k2/ k2
k2 �.2k1 C k2/

��
x1
x2

�
: (10.46)

m Rx1 D �.2k1 C k2/x1 C k2x2; m Rx2 D k2x1 � .2k1 C k2/x2

2. The out of phase normal mode of vibration of the two masses is such that x1.t/ D
x0 sin�nt and x2 D �x0 sin�nt , i.e., the two masses have out of phase displacements
(x1 D �x2). If we substitute these values of the displacements, we see that both
equations turn out to be the same and they give,

��2nx0 sin�nt D
1

m
.�2k1 � k2 � k2/x0 sin�nt

from which it follows that,

�n D
r
2.k1 C k2/

m
:

Substituting the given values of m, k1, and k2, we get,

�n D
s
2.25C 3/N=m
34:5 � 10�9 kg

D 40:29 � 103 rad=s:

Thus the natural frequency corresponding to the out of phase vibration mode is 40:29�
103 rad=s which corresponds to fn D �n=2� D 6:4 kHz.

fn D 6:4kHz
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SAMPLE 10.13 Normal modes from eigen analysis: Consider the two-
mass MEMS gyroscope of Sample 10.12 again. Using the equations of mo-
tion derived in Sample 10.12,

1. Find the natural frequencies and the corresponding normal modes of
vibration of the system.

2. Using initial conditions based on the normal modes, solve the equa-
tions of motion numerically and plot x1.t/ and x2.t/ together for each
normal mode. From the plots, show that the time period of oscillation
conforms to the natural frequencies found above.

Solution

1. The equations of motion for the two degree of freedom model were obtained in
eqn. (10.46) and are reproduced here:� Rx1

Rx2

�
D 1

m

� �.2k1 C k2/ k2
k2 �.2k1 C k2/

��
x1
x2

�
: (10.47)

Let us assume a normal mode of vibration in the form�
x1.t/

x2.t/

�
D
�
v1
v2

�
sin�nt

where �n is the natural frequency of the system. Substituting this assumed motion in
eqn. (10.47) and getting rid of sin�nt from both sides, we get,

��2n
�
v1
v2

�
D 1

m

� �.2k1 C k2/ k2
k2 �.2k1 C k2/

��
v1
v2

�
:

Rearranging this equation a little bit, we can write it as [A] V = � V, the standard
eigenvalue problem, where �.D �2n/ is the eigenvalue of the matrix [A] and V is the
corresponding eigenvector. Here,

A D
�
.2k1 C k2/=m �k2=m

�k2=m .2k1 C k2/=m

�
:

Now, we can go to a computer and find the eigenvalues and eigenvectors of [A]:

m = 34.5*10ˆ(-9), k1 = 25, k2 = 3
A = [(2*k1+k2)/m -k2/m;

-k2/m (2*k1+k2)/m]
lambda = eigenvalues(A)
v = eigenvectors(A)

By carrying out this computation, using appropriate commands in a computational
package, we find the following two eigenvalues and the corresponding two eigenvec-
tors:

�.1/ D 1:449 � 109; V.1/ D
�
1

1

�
I

and �.2/ D 1:623 � 109; V.2/ D
�

1

�1
�
:

Now, since we know that � D �2n, we can find the natural frequencies of our system
by taking the square root of the eigenvalues just found. Thus,

�
.1/
n D 3:807 � 104 rad=s ) f

.1/
n D �

.1/
n =2� D 6:06 kHz;

and �
.2/
n D 4:029 � 104 rad=s ) f

.2/
n D �

.2/
n =2� D 6:41 kHz:
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Figure 10.34: The two degree of free-
dom model of a two-mass MEMS vi-
bratory gyroscope. Here, m D 34:5 �
109 kg or 34:5�g, k1 D 25N=m, and
k2 D 3N=m.
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Figure 10.35: Motions of mass A and
mass B, x1.t/ and x2.t/ in the first nor-
mal mode. Note that both masses move
together (in phase) and oscillate with the
same frequency, �.1/n . In this mode, the
middle spring, k2 plays no role as it re-
mains unstretched at all times x2.t/ �
x1.t/ D 0 for all t .
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Figure 10.36: Motions of mass A and
mass B, x1.t/ and x2.t/ in the sec-
ond normal mode. In this mode, each
mass moves opposite to the other (out of
phase) but both oscillate with the same
frequency, �.2/n .

The corresponding normal modes or mode shapes are given by V.1/ and V.2/ . Please
note that the components of an eigenvector are determined relative to each other, that
is, the absolute numerical values are not unique, and any multiple of an eigenvector
is also an eigenvector. For example, you could find V.1/ D �

p
2

p
2�T , or V.1/ D

�1=
p
2 1=

p
2�T .

�
.1/
n D 3:807 � 104 rad=s; V.1/ D �1 1�T

�
.2/
n D 4:029 � 104 rad=s; V.2/ D �1 � 1�T

2. The normal modes thus found indicate that as long as we set the initial conditions for
the two masses in the same proportion as one of the mode shapes (eigenvectors), the
two masses will vibrate synchronously with the same frequency (corresponding to the
chosen mode shape). So, we now simulate the motion of the two masses by solving
the equations of motion numerically, using appropriate initial conditions.
We first write the equations of motion as a set of first order equations:

Px1 D u1

Pu1 D � .2k1 C k2/

m
x1 C

k2
m
x2

Px2 D u2

Pu2 D k2
m
x2 �

.2k1 C k2/

m
x2:

For the first mode, we set the initial conditions x1.0/ D x2.0/ D 1�m corresponding
to the first eigenvector V.1/ D �1 1�T . Now, we are ready to solve the equations
numerically.

ODEs = {x1dot = u1,
u1dot = -(2*k1+k2)/m * x1 + k2/m * x2,
x2dot = u2,
u2dot = k2/m * x1 - (2*k1+k2)/m * x2}

ICs = {x1(0)=1E-6, u1(0)=0, x2(0)=1E-6, u2(0)=0}
Set m = 34.5E-9, k1 = 25, k2 = 3,
Solve ODEs with ICs for t=0 to t=0.6E-3
Plot x1(t) and x2(t)

Note that we are solving the equations for only 0.6 milliseconds, that is, less than a
millisecond. This is because we already know that the frequency is very high, roughly
about 6 kHz, which means we can get six oscillations in one millisecond. The plot of
x1.t/ and x2.t/ are shown in fig. 10.34. From this plot, we find that the time period
of one oscillation is approximately 1:64 � 10�4 seconds, which gives a frequency of
�n D 2�=T D 3:8 � 104 rad=s.
Similarly, using the initial conditions x1.0/ D 1�m, and x2.0/ D �1�m (correspond-
ing to the second eigenvector V.2/, we get the plot shown in fig. 10.35. From this plot,
we find that the time period of one oscillation is approximately 1:57 � 10�4 seconds,
which gives a frequency of �n D 2�=T D 4 � 104 rad=s. Thus, the results of the
numerical solution match the results obtained from the eigenvalue analysis.
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Problems for
Chapter 10
1D Vibrations

10.1 Free Vibration of a
SDOF System
Preparatory Problems
10.1.1 A mass m is connected to a spring
k and released from rest with the spring
stretched a distance d from its static equi-
librium position. It then oscillates back
and forth repeatedly crossing the equilib-
rium. How much time passes from release
until the mass moves through the equilib-
rium position for the second time? Neglect
gravity and friction. Answer in terms of
some or all of m, k, and d . �

10.1.2 A spring k with rest length `0 is at-
tached to a mass m which slides friction-
lessly on a horizontal ground as shown.
At time t D 0 the mass is released from
rest with the spring stretched a distance d .
Measure the mass position x relative to the
wall.

a) What is the acceleration of the mass
just after release?

b) Find a differential equation which
describes the horizontal motion x of
the mass.

c) What is the position of the mass at
an arbitrary time t?

d) What is the speed of the mass when
it passes through x D `0 (the posi-
tion where the spring is relaxed)?

Filename:s97f1

m

d�0

Problem 10.1.2

10.1.3 Reconsider the spring-mass system
from problem 10.1.2.

a) Find the potential and kinetic en-
ergy of the spring mass system as
functions of time.

b) Assigning numerical values to the
various variables, use a computer to
make a plot of the potential and ki-
netic energy as a function of time
for several periods of oscillation.
Are the potential and kinetic energy
ever equal at the same time? If so,
at what position x.t/?

c) Make a plot of kinetic energy versus
potential energy. What is the phase
relationship between the kinetic and
potential energy?

10.1.4 For the three spring-mass systems
shown in the figure, find the equation of
motion of the mass in each case. All
springs are massless and are shown in their
relaxed states. Ignore gravity. (In problem
(c) assume vertical motion.) �
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Problem 10.1.4

10.1.5 A mass-spring oscillator hangs ver-
tically under gravity. The mass rests in
static equilibrium by stretching the spring
by an amount ystatic D 0:025m. Take your
favorite value of g and find the natural fre-
quency of the oscillator. How much time
does the oscillator take to complete one os-
cillation?
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Problem 10.1.5

10.1.6 A mass moves on a frictionless sur-
face. It is connected to a dashpot with
damping coefficient b to its right and a
spring with constant k and rest length `

to its left. At the instant of interest, the
mass is moving to the right and the spring
is stretched a distance x from its position
where the spring is unstretched. There is
gravity.

a) Draw a free body diagram of the
mass at the instant of interest.

b) Derive the equation of motion of the
mass. �

.
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Problem 10.1.6

10.1.7 A mass-spring-dashpot system has
m D 1 kg, k D 10 kN=m, and c D 5 kg= s.
Find the natural frequency, damping ra-
tio, and the damped frequency of the sys-
tem. Specify whether the system is under-
damped, critically damped or overdamped.

10.1.8 The natural frequency, �n, of a
SDOF system is 150 rad=s. Find the min-
imum damping (�) that the system must
have for the resonant frequency to occur
below 100 rad=s?

More-Involved Problems
10.1.9 The equation of motion of an
unforced mass-spring-dashpot system is,
m Rx C c Px C kx D 0, as discussed in the
text. For a system with m D 0:4 kg; c D
10 kg= s, and k D 5N=m,

a) Find whether the system is under-
damped, critically damped, or over-
damped.

b) Sketch a typical solution of the sys-
tem.

c) Make an accurate plot of the re-
sponse of the system (displacement
vs time) for the initial conditions
x.0/ D 0:1m and Px.0/ D 0.

.

10.1.10 You are given to design a SDOF
damped oscillator that should show no os-
cillations at all when disturbed from the
equilibrium (i.e., , it should return to equi-
librium without overshooting on the other
side). You are given a spring with stiffness
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k D 500N=m, a hydraulic damper with
c D 10 kg= s, and you have a choice of
masses from m D 1 kg to m D 10 kg in
the increments of half kg. Find the appro-
priate mass.

10.1.11 Two SDOF oscillators with the
same k and m but different c’s are hung
from the ceiling as shown in the figure.
The one on the left is pulled down 2 cm
and let go. The other is pulled down by 0.2
cm and let go. Which oscillator undergoes
more number of oscillations before reach-
ing the steady state. Find the steady state
displacement of each mass.
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Problem 10.1.11

10.1.12 Experiments conducted on free os-
cillations of a damped oscillator reveal that
the amplitude of oscillations drops to 25%
of its peak value in just 3 periods of oscil-
lations. The period os oscillation is mea-
sured to be 0:6 s and the mass of the sys-
tem is known to be 1:2 kg. Find the damp-
ing coefficient and the spring stiffness of
the system.

10.1.13 You are required to design a
mass-spring-dashpot system that, if dis-
turbed, returns to its equilibrium position
the quickest. You are given a mass, m D
1 kg, and a damper with c D 10 kg= s.
What should be the stiffness of the spring?
Your solution needs to include your defini-
tion of “‘quickest”.

10.2 Forced Vibration
and resonance
Preparatory Problems

10.2.1 Given that R� C k2� D � sin!t ,
�.0/ D 0, and P�.0/ D P�0, find �.t/ .

10.2.2 Three SDOF systems, each with the
same mass but different stiffnesses, k1 D
k, k2 D 2k, and k3 D 4k, and different
damping, c1 D c, c2 D 2c, and c3 D c=2,
are subjected to the same periodic forc-
ing, F D F0 sinpt where p is less than
the resonant frequency of each of the sys-
tems. Sketch approximately the response
of each of the three oscillators assuming all
of them to be underdamped. Clearly mark
the transient and steady state part of the re-
sponse, and indicate the relative values of
the response amplitudes.

10.2.3 A 3 kg mass is suspended by a
spring (k D 10N=m) and forced by a 5N
sinusoidally oscillating force with a pe-
riod of 1 s. What is the amplitude of the
steady-state oscillations (ignore the “ho-
mogeneous” solution)

More-Involved Problems
10.2.4 A machine that can be modeled
as a SDOF system is put under vibration
test for estimating the system parameters
m, k, and c. First, a transient test is con-
ducted by disturbing the machine from its
equilibrium and letting its settle down to
equilibrium again. The transient response
is recorded as a displacement versus time
plot and is shown in fig. 10.2.4(a). Next,
a sinusoidal forcing is of amplitude F0
and angular frequency p is applied on the
machine and its steady state response is
recoded along with the forcing function.
This response is shown in fig. 10.2.4(b).

a) Mark the relevant points on the
transient response plot and explain,
with equations, which systems pa-
rameters can be determined using
what information from this plot.

b) On the steady state plot, mark the
phase difference between the re-
sponse and the forcing function.
From the given phase, can you find
out whether p > �n or p < �n?

c) From the phase difference of the
steady state response and the in-
formation obtained from the tran-
sient response, can you determine
the frequency ratio r? Explain with
appropriate equations.

d) From the amplitude of the steady
state response, and the rest of the in-
formation obtained above, find the
rest of the system parameters.
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Problem 10.2.4

10.2.5 A machine produces a steady-state
vibration due to a forcing function de-
scribed by Q.t/ D Q0 sin!t , where
Q0 D 5000N . The machine rests on a
circular concrete foundation. The foun-
dation rests on an isotropic, elastic half-
space. The equivalent spring constant of
the half-space is k D 2; 000; 000N�m and
has a damping ratio d D c=cc D 0:125.
The machine operates at a frequency of
! D 4 Hz.

1. What is the natural frequency of the
system?

2. If the system were undamped, what
would the steady-state displace-
ment be?

3. What is the steady-state displace-
ment given that d D 0:125?

4. How much additional thickness
of concrete should be added to
the footing to reduce the damped
steady-state amplitude by 50%?
(The diameter must be held con-
stant.)
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10.2.6 The transient response of an oscil-
latory system shows exponential decay of
the peak displacements at each cycle. The
second peak is found to be twice as big as
the fifth peak. Find the damping ratio xi
for the system. How many cycles does it
take for the peak displacement to drop be-
low 5% of the first peak displacement?

10.2.7 A 50 kg engine is mounted on
springs with an equivalent single spring
stiffness of 1200 N=m. Using various
means, enough damping needs to be pro-
vided so that any unwanted vibration dies
quickly. Assume that this objective is met
by dissipating 80% of the available energy
in a single cycle of vibration. Find the
damping coefficient of the system.

10.2.8 Consider the system shown in the
figure. You are given that m D 10 kg,
k D 50N=m, and c D 5 kg= s. A pe-
riodic force F D F0 cospt acts on the
system as shown where F0 D 25N and
p D 2:5 rad=s.

a) Find the resonant frequency of the
system.

b) Find the steady state response of
the system, specifying the ampli-
tude and phase of the motion.

c) What is the displacement amplifica-
tion (G D A=.F0=k//?

d) Find the work done by the force on
the system in one cycle.

e) Find the energy lost to the damper
in one cycle.

f) Find the quality factor, Q, of the
system using the energy calcula-
tions.

Filename:pfig9-6-damped-forced

k

k

c
m F

Problem 10.2.8

10.2.9 A MEMS cantilever beam resonator
is used for mass measurement of biolog-
ical molecules by comparing the shift in
the resonant frequency of the beam after
the test molecule is attached to the free end
of the beam. In a SDOF model of the res-
onator, it is equivalent to finding the differ-
ence in the resonant frequency of the sys-
tem with mass m and mC�m. If the ’ef-
fective mass’ of the beam (mass to be used

in the SDOF model) is 2:05 � 10�15 kg,
the stiffness is 0:625N=m, and the Q of
the resonator is 900, find the shift in the
resonant peak in Hz when a biological
molecule of mass 1:36 � 10�21 kg is at-
tached to end of the beam (equivalently to
the mass m).

10.2.10 A damped mass-spring system is
subjected to a constant load F0 D 50N
by ramping the load to the constant level
in (a) t1 D 2 s and (b) t2 D 10 s. If the
mass of the system m D 1 kg, the natural
frequency �n D 62 rad=s, and the damping
ratio � D 0:2, find the difference in the set-
tling time of the system to the steady state
between the two given cases.
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Problem 10.2.10

10.2.11 An accelerometer is a sensor that
is used to measure acceleration of a body.
It can be modeled as a single degree of
freedom spring-mass-dashpot system that
is attached to a body frame as shown in
the figure. Assume that the body under-
goes vertical motion denoted by y.t/ and,
as a result, the mass of the accelerometer
undergoes vertical motion z.t/ relative to
the frame. From a measurement of z.t/ we
want to know if we can determine the ac-
celeration Ry of the frame. Neglect gravity.

a) What is the absolute or inertial ac-
celeration of the mass in terms of
z.t/ and y.t/ and their derivatives?

b) Write the equation of motion of the
mass in terms of z and y.

c) Assume that y.t/ D y0 sinpt .
What is the magnitude of accelera-
tion of the frame (that is, the peak
acceleration of this sine wave)?

d) Find the steady state response z.t/
of the accelerometer when y.t/ D
y0 sinpt (a big mess). Plot the am-
plitude of the response vs the am-
plitude of the frame acceleration as
the frequency p is varied.

e) One would like a signal (z) that is
proportional to acceleration Ry inde-
pendent of the frequency of shak-
ing. Show that this requires that the
frequency of frame motion p must
be much smaller than the natural
frequency �n.

f) What is the amplitude of the re-
sponse (the magnitude of z) of the
accelerometer when p � �n?
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Problem 10.2.11: A single degree of free-
dom spring-mass model of an accelerome-
ter.

10.2.12 Consider the accelerometer de-
scribed in Problem 10.2.11. Assume that
the frame undergoes a sinusoidal motion
given by y.t/ D y0 sinpt .

a) Find the response z.t/ of the ac-
celerometer.

b) Given that m D 0:5 kg, k D
5 kN/m, and c D 10 kg/s, find
the maximum acceleration that the
accelerometer can sense, assuming
the accelerometer to work in the fre-
quency range much below its nat-
ural frequency (i.e., p=�n � 1).
Express your answer in terms of
the gravitational acceleration g (it
is customary to talk about acceler-
ation of various things in terms of
‘so many g’s’).

10.3 Normal Modes
10.3.1 A two degree of freedom mass-
spring system, made up of two unequal
masses m1 and m2 and three springs with
unequal stiffnesses k1, k2 and k3, is shown
in the figure. All three springs are relaxed
in the configuration shown. Neglect fric-
tion.

a) Derive the equations of motion for
the two masses.

b) Does each mass undergo simple
harmonic motion? �
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Problem 10.3.1
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10.3.2 Normal Modes. Three equal
springs (k) hold two equal masses (m) in
place. There is no friction. x1 and x2 are
the displacements of the masses from their
equilibrium positions.

a) How many independent normal
modes of vibration are there for this
system? �

b) Assume the system is in a normal
mode of vibration and it is observed
that x1 D A sin.ct/ C B cos.ct/
where A, B , and c are constants.
What is x2.t/? (The answer is not
unique. You may express your an-
swer in terms of any of A, B , c, m
and k. ) �

c) Find all of the frequencies of
normal-mode-vibration for this sys-
tem in terms of m and k. �
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Problem 10.3.2

10.3.3 x1.t/ and x2.t/ are measured po-
sitions on two points of a vibrating struc-
ture. x1.t/ is shown. Some candidates
for x2.t/ are shown. Which of the x2.t/
could possibly be associated with a normal
mode vibration of the structure? Answer
“could” or “could not” next to each choice
and briefly explain your answer (If a curve
looks like it is meant to be a sine/cosine
curve, it is.)
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Problem 10.3.3

More-Involved Problems
10.3.4 Two masses are connected to fixed
supports and each other with the two
springs and dashpot shown. The displace-
ments x1 and x2 are defined so that x1 D
x2 D 0 when both springs are unstretched.

For the special case that C D 0 and
F0 D 0 clearly define two different set of

initial conditions that lead to normal mode
vibrations of this system.
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Problem 10.3.4

10.3.5 As in problem 9.4.11, a system of
three masses, four springs, and one damper
are connected as shown. Assume that all
the springs are relaxed when xA D xB D
xD D 0.

a) In the special case when k1 D
k2 D k3 D k4 D k, c1 D 0, and
mA D mB D mD D m, find a nor-
mal mode of vibration. Define it in
any clear way and explain or show
why it is a normal mode in any clear
way. �

b) In the same special case as in (a)
above, find another normal mode of
vibration. �
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10.3.6 As in problem 9.4.10, a system of
three masses, four springs, and one damper
are connected as shown. In the special case
when c1 D 0, find the normal modes of
vibration.
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Problem 10.3.6

10.3.7 Normal modes. All three masses
have m D 1 kg and all 6 springs are k D
1N=m. The system is at rest when x1 D
x2 D x3 D 0.

a) Find as many different initial con-
ditions as you can for which nor-
mal mode vibrations result. In
each case, find the associated nat-
ural frequency. (we will call two
initial conditions �v� and �w� differ-
ent if there is no constant c so that
�v1 v2 v3� D c�w1 w2 w3�. As-
sume the initial velocities are zero.)

b) For the initial condition
�x0� D � 0:1m 0 0 �,

� Px0� D � 0 2m=s 0 �
what is the initial (immediately af-
ter the start) acceleration of mass 2?
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10.3.8 For the three-mass system shown,
assume x1 D x2 D x3 D 0 when all
the springs are fully relaxed. One of the
normal modes is described with the initial
condition .x10; x2; x3/ D .1; 0;�1/.

a) What is the angular frequency !
for this mode? Answer in terms of
L;m; k, and g. (Hint: Note that
in this mode of vibration the middle
mass does not move.) �

b) Make a neat plot of x2 versus x1
for one cycle of vibration with this
mode.
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CHAPTER 11
Particle dynamics in

space (unconstrained)
This chapter is about the vector equation

*

F D m*
a for one particle. Concepts

and applications include ballistics and planetary motion. The differential
equations of motion are set up in cartesian coordinates and integrated either
numerically, or for special simple cases, by hand. Constraints, forces from
ropes, rods, chains, floors, rails and guides that can only be found once one
knows the acceleration, are not considered.
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The previous chapter was about particles that move in a straight line.
Now we will consider particles that move in more complicated ways. More
specifically, in this chapter we will consider the curving motion of a single
particle using cartesian coordinates. We will be able to calculate the path of
a hit baseball (perhaps taking account of air friction), a satellite, or a bungee
jumper.

The key tool is, in Newton’s words,
“Any change of motion is proportional to the force that acts, and
it is made in the direction of the straight line in which that force
is acting.”

Realizing that the quantification of motion is the product of mass and
velocity, and that the rate of change of velocity is acceleration, in modern
language we could rephrase Newton’s as:

‘the net force on a particle is its mass times its acceleration.’
Informally we think ‘force causes motion in the direction of the force’. Then,
thinking more carefully we fill in the details that in this context ‘motion’
means acceleration and that the amount of force needed for a given acceler-
ation is also proportional to the mass.

You can also think of
*

F D m*
a as a special case of the more general

principle of linear momentum balance (LMB) for a system, where the system
of interest is just a single particle. If we start with the general form of LMB
given in the front cover, and discussed in general terms in chapter 1, we get:X

*

Fi D P*
L Linear momentum balance for any system

D
X

mi
*
ai for a system of particles

D m*
a for one particle

If we define
*

F to be the net force on the particle (
*

F DP *

Fi) then linear mo-
mentum balance becomes ‘Newton’s second law’,

*

F D m*
a: (11.1)

Does force cause acceleration or is it the other way around? Whether
force causes acceleration or acceleration necessitates force, the issue of
causality, is a philosophical question of no import. All that shows up in
the math, and in any problem solution, is that when there is a net force there
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Figure 11.1: Some small blobs of wa-
ter fly in nearly (neglecting air friction)
parabolic arcs. This fountain is in the
Detroit airport.
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Figure 11.2: Small streams start to show
the arcs in a still photo.
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Figure 11.3: A full parabola shows.
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Figure 11.4: The water runs in contin-
uous streams. Some fancy valve work
(under the visible part of the fountain)
is required to get such a laminar stream
that holds together for the whole flight.
This water draws its own graph of the
trajectory of its particles. You can do
the same kind of thing with a squirt gun
next to a blackboard.
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546 Chapter 11. Particles in space Particles in space

is acceleration of mass, and when there is acceleration of mass there is a net
force. When a car crashes into a pole there is a big force and a big deceler-
ation of the car. You could think of the force on the bumper as causing the
car to slow down rapidly. Or you could think of the rapid car deceleration
as necessitating a force. It is only a matter of personal taste because in both
cases the same eqn. (11.1) applies. Equations don’t have a ‘cause’ side and a
‘result’ side (If A D B does A cause B or does B cause A?).

Acceleration is the second derivative of position

What is acceleration? If *
r.t/ is the position of a particle relative to some

origin, the particle’s acceleration is

*
a � R*r:

As for scalars, one or two dots over a vector is a short hand notation for the
first or second time derivative. In the next section we’ll explain how to take
the derivative of a vector. As explained in box 11.1 the vector differentiation
has to be done using an appropriate coordinate system.

11.1 Newton’s laws are accurate in a Newtonian reference
frame

Acceleration is calculated from position using a particular coordinate
system. For our purposes here, a coordinate system is also a refer-
ence frame. The calculation of acceleration of a particle depends on
how the coordinate system itself is moving. So the simple equation

*
F D m*a

has as many different interpretations as there are differently moving
coordinate systems (and there are an infinite number of those). In
each different coordinate system, the coordinates of a given parti-
cle are different from the coordinates in another system. And the
calculated accelerations are also different. Sir Isaac Newton was sit-
ting on earth contemplating position relative to the ground at his feet
when he noticed that his second law accurately described things like
falling apples. So the equation

*
F D m*a is valid using coordinate

systems that are fixed to the earth. Well, not quite. Isaac noticed
that the motion of the planets around the sun only followed his law
if the acceleration was calculated using a coordinate system that was
still relative to ‘the fixed stars.’ With a fixed-star coordinate sys-
tem you calculate slightly (about 0.25% ) different accelerations for
things like falling apples than you do using a coordinate system that
is stuck to the earth. And nowadays when astrophysicists try to fig-
ure out how the laws of mechanics explain the shapes of spiral galax-
ies, they realize that none of the so-called ‘fixed stars’ are so totally
fixed. They need even more care to pick a coordinate system where
eqn. (11.1) is accurate.

Despite all this confusion, it is generally agreed that no matter
where you are there exists some coordinate system for which New-
ton’s laws are incredibly accurate.

Further, once you know one ‘good’ coordinate system you know
many others. Any system which translates (has no relative rotation)
with constant velocity relative to a ’good’ system is also a ‘good’
system. Why? Because the difference between the accelerations
measured in the two frames is the relative acceleration of the frames,
which is zero. Mechanics is the same on a constant velocity train or
plane as on a stationary plane or train. Any reference frame in which
Newton’s laws are accurate is called a N ewtonian reference frame.
Sometimes people also call such a frame a F ixed frame, as in ‘fixed
to the earth’ or ‘fixed to the stars’. But a Newtonian frame could also
be ‘fixed’ to a constant velocity train or plane.

For most engineering purposes a coordinate system attached to
the ground under your feet is a good approximation to aN ewtonian
frame. Fortunately. Or else apples would fall differently. Imag-
ine Newton’s apple having fallen on some crazy curved path leaving
Newton confounded and the subject of mechanics still a mystery.
The fall of apples, both in Newton’s day and now, is well predicted
using Newton’s laws and treating the ground as aN ewtonian frame.
However, if you are interested in trajectory control of satellites, you
need to use something more like the ‘fixed stars’ as your (even more
accurate) Newtonian reference frame in order to make accurate pre-
dictions using Newton’s laws.
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11.1 Dynamics of a particle in space
Time derivative of a vector: position, velocity and
acceleration
From here to the end of the book most of our calculations will involve vector-
valued functions of time. For example, the vectors linear momentum

*

L and
angular momentum

*

H have a central place in mechanics. Evaluating them
depends, in turn, on understanding the relation between position *

r , and its
rate of change, called velocity *

v. We also need to know the relation between
velocity *

v and its rate of change, the acceleration *
a.

What do we mean by the rate of change of a vector? The rate of change
of any quantity, including a vector, is the ratio of the change of that quantity
to the amount of time that passes, for very small amounts of time. 1

rate of change of any .thing/ � amount thing changes
amount of time for that change

The notation for the rate of change of a vector *r is

d*r

dt
:

Or, in the short hand ‘dot’ notation invented by Newton for just this purpose,
*
v D P*r . The definition of the derivative d

*
r
dt

or P*r is the same as for anything
else,

d*r

dt
D lim
�t!0

�*
r

�t
D lim
�t!0

*
r.t C�t/ �*

r.t/

�t

where the top of the fraction is the change in *
r and the bottom is the change

in t . Underlying most dynamics calculations are derivatives of *
r.t/. But

we also sometimes need to take derivatives of linear momentum
*

L, angular
momentum

*

H and some other quantities (e.g., the angular velocity *
! of a

rigid object). But all of these quantities somehow depend on the derivatives
of *r.t/.

Cartesian coordinates
A simple way to think about vector derivatives is with cartesian coordinates.
A moving point has a location *

r , relative to the origin of a ‘good’ (i.e.,
N ewtonian) reference frame as shown in fig. 11.5, which can be written as:

*
r D rx O{C ry O| C rz Ok or *

r D x O{C y O| C z Ok:

So velocity is the derivative of *
r . Since the base vectors O{, O|, and Ok are

constant, differentiation to get velocity and acceleration is simple:

*
v D Px O{C Py O| C Pz Ok and *

a D Rx O{C Ry O| C Rz Ok:

The idea is illustrated in fig. 11.6. Let’s take
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Figure 11.5: The path of a particle and
its position at one time projected onto
Cartesian coordinates. The path, or tra-
jectory, of the particle is the sequence of
locations of the tip of the*r vector, if the
vector is drawn with its tail at the origin.

1As you should remember from Cal-
culus, these words really describe the
average rate of change over the time in-
terval. Only in the mathematical limit,
as the time interval approaches zero, is
the ratio of “amount of change over the
time interval” not just approximately,
but exactly, the instantaneous rate of
change.
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Figure 11.6: Change of position in �t
broken into components in 2-D . �*r is
*r.t C �t/ �*r.t/. �*r has components
�rx and �ry . So �*r D �rx O{C�ry O|.
In the limit as �t goes to zero, P*r is the
ratio of �*r to �t .
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Figure 11.7: A particle moving on a
curve. (a) shows the position vector is
an arrow from the origin to the point on
the curve. On the position curve the par-
ticle is shown at two times: t and tC�t .
The velocity at time t is roughly paral-
lel to the difference between these two
positions. The velocity is then shown at
these two times in (b). The acceleration
is roughly parallel to the difference be-
tween these two velocities. In (c) the ac-
celeration is drawn on the path roughly
parallel to the difference in velocities.

*
r D rx O{C ry O| or *

r.t/ D rx.t/O{C ry.t/ O|:
We can apply the definition of derivative and find

P*r.t/ D lim
�t!0

*
r.t C�t/ �*

r.t/

�t

D

*
r.tC�t/� �� ��

rx.t C�t/O{C ry.t C�t/ O|��
*
r.t/� �� ��

rx.t/O{C ry.t/ O|
�

�t

D rx.t C�t/ � rx.t/

�t
O{C ry.t C�t/ � ry.t/

�t
O|

D Prx.t/O{C Pry.t/ O|
thus showing the palatable result that

the components of the velocity vector are the time derivatives of the
components of the position vector.

(Beware. Later in the book we will use base vectors that change in time,
such as polar coordinate base vectors, path basis vectors, or basis vectors
attached to a rotating frame. For these vectors the components of the vector’s
derivative will not be the derivatives of its components. See box 11.2.)

Figure 11.7 shows a particle P’s path, its position at a sequence of times.
The position vector*rP=O is the arrow from the origin to a point on the curve,
a different point on the curve at each instant of time. The velocity *

v at time t
is the rate of change of position at that time, *v � P*r .

Example: Given position as a function of time, find the velocity.
Given that the position of a point is:

*r.t/ D C1 cos.! t/O{C C2 sin.! t/ O|
with C1; C2 and ! given constants what is the velocity (a vector) at a given time t?

First we note that the components of*r.t/ have been given implicitly as

rx.t/ D C1 cos.! t/ and ry.t/ D C2 sin.! t/:

Then we find the velocity by differentiating each of the components with respect to
time and re-assembling as a vector to get

*v.t/ D P*r D �C1! sin.! t/O{C C2! cos.! t/ O|
Now we evaluate this expression with the given values of C1; C2; ! and t .

Are position, velocity and acceleration all parallel? Sometimes this is
a right intuition. For example, after some time has passed the change in
position is exactly the average velocity. And the change in velocity is exactly
the average acceleration. So in the long run, if something accelerates in
some more-or-less constant direction then the position will change in that
same direction. But actually, at any instant in time, position, velocity and
acceleration are basically unrelated.
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Example: Position, velocity and acceleration can be mutually orthogonal.
Here is a motion where, at least at one instant in time, the position, velocity, and
acceleration are mutually orthogonal as in fig. 11.8. For example, look at the path
in fig. 11.9. At the point where the path intersects the y axis the position relative
to the origin is in the O| direction, the velocity is tangent to the path in the O{ direction
and the acceleration is at least partially up, in the Ok direction. Working this out with
equations, if we take the position as a function of time to be

*r.t/ D A O| � Bt O{C Ct2 Ok
we can calculate the velocity and acceleration by differentiation as

*v D d*r

dt
D �B O{C 2C t Ok; *a D d*v

dt
D 2C Ok:

So, at t D 0,

*r D A O|; *v D �B O{; and *a D 2C Ok:
The dot products between*r ,*v and*a are: *r �*v D 0, *v �*a D 0, and*r �*a D 0, so
these vectors are mutually orthogonal at the instant marked. (Aside: Why is there
a �B in this example? Answer: no reason, we could have used CB just as well.)

In constant rate circular motion position (relative to the circle’s center) and
velocity remain perpendicular for all time, and so do velocity and accelera-
tion. However, the directions of position, velocity and acceleration are not
arbitrary. For example, there is no motion where position, velocity and ac-
celeration are exactly mutually orthogonal for an extended time. Imagine a
slender circular cone. If position is measured relative to the apex of the cone
then constant-rate circular motion about the base of the cone almost has posi-
tion, velocity and acceleration mutually orthogonal for all time. But position
and acceleration are only exactly orthogonal in the limit as the cone becomes
infinitely slender.

The product rule of differentiation
We know three ways to multiply vectors: multiplying a vector by a scalar,
taking the dot product of two vectors, and taking the cross product of two
vectors (please review Chapter 2). Because all of these quantities might be
functions of time we need to know how to differentiate products. It’s sim-
ple. All three kinds of vector multiplication obey ‘the product rule’ that you
learned in freshmen calculus.

d

dt
.a

*

A/ D Pa *

A C a
P*
A

d

dt
.
*

A � *B/ D P*
A � *B C *

A � P*B
d

dt
.
*

A � *

B/ D P*
A � *

B C *

A � P*
B:

The proofs of these identities is the same as the proof used for scalar multi-
plication, it follows from the definition of derivative (above) and the elimi-
nation of terms with �2 as negligible compared to terms with just � in the
limit �! 0.
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Figure 11.8: It is possible for position,
velocity and acceleration to be mutually
orthogonal.
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mutually orthogonal: Position is in the
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tion and (if the particle moves at con-
stant speed), the acceleration is in the Ok
direction.
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1 Eventually you may gain the math
skills to shortcut this brute-force numer-
ical approach, at least for some sim-
ple problems. But for most problems,
even math geniuses use the numerical
approach here.

Example: Derivative of a vector of constant length.
Assume a vector

*
C has constant length so

j*C j D constant and j*C j2 D constant

so, differentiating and using the product rule, working from left to right:

d

dt
j*C j2 D d

dt
.
*
C �*C / D *

C � P*C C P*
C �*C D 2

*
C � P*C D 0:

Because
*
C � P*C D 0 we then know that

*
C ? P*

C . That is, for any vector
*
C that has

constant length, its rate of change is perpendicular to itself. This is a useful fact to
remember about time-varying constant-magnitude vectors, especially time-varying
unit vectors.

To make this more intuitive, imagine a dog on a taut fixed-length leash anchored
to the ground. The length of the leash is the magnitude j*C j of the position vector
*
C , from ground-to-neck, and is constant. So our result is obvious, the neck can

only move with a velocity P*
C that is tangent to the circle that the neck moves on

because the tangent of a circle is orthogonal to the radius.
In 3D, space-dogs on taut leashes can only move tangent to the sphere they are

stuck on j*C j D constant ) *
C � P*C D 0 ) *

C ? P*
C . And, intuitively

again, all tangents to the surface of a sphere are orthogonal to the radius of the
sphere at that point.

Dynamics in space
Isaac Newton wondered how the planets move around the sun. By applying
his equation

*

F D m*
a, his law of gravitation, his calculus, and his inimitable

geometric reasoning, he learned a lot about the moon and the planets. After
you learn the material in this section you will know enough to reproduce
many of Newton’s calculations. You won’t need to be a Newton-like genius
to solve Newton’s differential equations. You can solve them on a computer.
And you can use the same computer approach to find motions that Newton
could never find, say the trajectory of projectile with a realistic model of air
friction. In this chapter, the the basic recipe is this: 1

Write
*

F D m*
a and solve the equations.

In some sense it’s that simple.

A sure-fire recipe. Here’s how to find the motion of a particle:
1. Draw a free body diagram of the particle,

2. Find the forces on the particle in terms of its position, velocity and
time. External forces (external forces might come, for example, from a
spring, dashpot, gravity, or air friction),

3. Write the linear momentum balance equation for the particle (transla-
tion: write

*

F D m*
a).

4. Break the vector equation into components to make 2 or 3 2nd order
scalar ODEs, in 2 or 3 dimensions, respectively.
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5. Write the 2 or 3 2nd order ODEs in first order form. You now have 4
or 6 first order ordinary differential equations (for a 2 or 3 dimensional
problem, respectively).

6. Write these first order equations in standard form, with all the time
derivatives on the left hand side.

7. Feed these equations to the computer, substituting values for the vari-
ous parameters and appropriate initial conditions.

8. Plot some aspect(s) of the solution and

a) Use the solution to help you find errors in your formulation, and
b) Interpret the solution so that it makes sense to you and increases

your understanding of the system of study.

Instantaneous dynamics. Some problems are even easier, problems of the
instantaneous dynamics type. They use the equations of dynamics but do not
track the motion over time.

Example: Knowing the forces find the acceleration.
Say you know the forces on a particle at some instant in time, say

*
F1 and

*
F2, and

you just want to know the acceleration at that instant. The answer is given directly
by linear momentum balance as

X
*
Fi D m*a ) *a D

*
F1 C

*
F2

m

Sometimes this ‘instantaneous’ dynamics, with the motion given and the
forces to be determined, is called ‘inverse dynamics’. The inside back cover
of the book compares the solution methods for instantaneous dynamics to
those where differential equations need be solved.

Analytic solution. Some problems involving motion are simple and you
can determine almost all you want to know with pencil and paper. You can
bypass the whole computer recipe above.

Example: Parabolic trajectory of a projectile
If we assume a constant gravitational field, neglect air drag, and take the y direction
as up the only force acting on a projectile is

*
F � mg O|. Thus the “equations of

motion” (linear momentum balance) are

�mg O| D m*a:

Taking the dot product of this equation with O{ and O| (equivalent to taking the x and
y components) we get the following two differential equations,

Rx D 0 and Ry D �g

which are decoupled and have the general solution

*r D .AC Bt/O{C .C CDt � gt2=2/ O|

which is a parametric description of all possible trajectories. By making plots or by
using simple algebra you could convince yourself that these trajectories are parabo-
las for all possible A;B;C; and D. That is, neglecting air drag, the predicted
trajectory of a thrown ball is a parabola.
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Some other special problems turn out to be easy, although you might not
recognize such problems at first glance.

Example: Mass tethered by a zero-length spring
Imagine a massless spring whose un-stretched length is zero (See page 327 in sec-
tion 6.1 for a discussion of zero length springs). Assume one end is connected to a
pivot at the origin and the other to a particle. Neglect gravity and air drag. The force
on the mass is thus proportional to its distance from the pivot and the spring con-
stant and pointed towards the origin:

*
F D �k*r . Thus linear momentum balance

yields
�k*r D m*a:

Breaking into components we get

Rx D .�k=m/x and Ry D .�k=m/y:

Thus the motion can be thought of as two independent harmonic oscillators, one in
the x direction and one in the y direction. The general solution is

*r D
 
A cos

r
k

m
t C B sin

r
k

m
t

!
O{C

 
C cos

r
k

m
t CD sin

r
k

m
t

!
O|

which is always an ellipse (special cases of which are a circle and a straight line).

Even with gravity and springs together some (only some) problems are easy.

Example: Mass hanging from a zero-length spring
If gravity in the � O| direction is included in the above problem the solution is only
changed by the addition of a constant to be:

*rwith gravity D*rprevious example � .mg=k/ O|

Analytic methods sometimes just can’t do the job. Some problems are
hard and can’t be solved without a computer.

Example: Trajectory with quadratic air drag.
For motions of things you can see with your bare eyes moving in air, the drag force
is roughly proportional to the speed squared and opposes the motion. Thus the total
force on a particle is

*
F D �mg O| � Cv2.*v=v/, where *v=v is a unit vector in the

direction of motion. So linear momentum balance gives

�mg O| � Cv*v D m*a:

If we dot this equation with O{ and O| we get

Rx D �.C=m/
�q

Px2 C Py2
�
Px and Ry D �.C=m/

�q
Px2 C Py2

�
Py � g:

These are two coupled second order equations that are probably not solvable with
pencil and paper. But they are easily put in the form of a set of four first order
equations for direct numerical solution.

On the edge. Some problems are within the reach of advanced analytic
methods, but might be easier to solve with a computer.
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Example: Path of the earth around the sun.
Assume the sun is big and unmovable with massM and the earth has massm. Take
the origin to be at the sun. The force on the earth is

*
F D �.mMG=r2/.*r=r/

where*r=r is a unit vector pointing from the sun to the earth. So linear momentum
balance gives

�mMG*r

r3
D m*a:

This equation can be solved with pencil and paper, Newton did it but many of us find
it too tricky. On the other hand the equations of motion for planetary trajectories
are easily broken into components and then into a set of 4 ODEs which can be
easily solved on the computer. Either by pencil and paper, or by investigation of
numerical solutions, you will find that all solutions are conic sections (straight lines,
parabolas, hyperbolas, and ellipses). The special case of circular motion is not far
from what the earth does around the sun, what the moon does around the earth, and
what most artificial satellites do around the earth.

Summary
If, given the time, the particle’s position and the particles velocity, you know
the force on a particle, then you know

*

F .t;*r;*v/ 2. That means you can
write

*

F D m*
a as

*
a D *

F .t;*r;*v/=m

where
*

F is known. This can, in turn, be written as two vector first order
equations

P*r D *
v (11.2)

P*v D *

F .t;*r;*v/=m:

which are equivalent, written out long hand, to the 6 first order equations

Px D vx (11.3)

Py D vy

Pz D vz

Pvx D Fx.t; x; y; z; vx; vy ; vz/=m

Pvy D Fy.t; x; y; z; vx; vy ; vz/=m

Pvz D Fz.t; x; y; z; vx; vy ; vz/=m:

Given the position and velocity at some starting time, these equations can be
integrated, sometimes by hand but generally on the computer, to give position
and velocity as a function of time.

Example: Simple ballistics.
This is an example that can be solved with pencil and paper. A computer is not

needed. It is the classic from high school and freshman physics. A particle has
only one force on it, gravity. A free body diagram is shown in fig. 11.10. Linear
momentum balance gives

*
F D m*a

�mg O| D m*a
*a D �g O|

2 Typically you would know this be-
cause an applied force would vary in
time in a known way (the dependence on
t ), gravity and spring forces would vary
with position in a known way (depen-
dence on r), and you would know forces
due to various friction (dependence on
*v).
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Figure 11.10: Free body diagram of a
particle in flight, neglecting air friction.
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So

Px D vx

Py D vy

Pvx D 0

Pvy D �g

Integrating the last two of these equations and plugging the result into the first two
we get:

*v D v0x O{C .v0y � gt/ O|
*r D .x0 C v0x t /O{C .y0 C v0y t � gt2=2/ O|

This solution is plotted various ways in fig. 11.22 on page 563.

More complicated examples are given in the samples on the following pages.

11.2 The rate of change of a vector depends on reference
frame

The time derivative of a vector can be found by differentiating each
of its components. This calculation depended on having a reference
frame, an imaginary piece of big graph paper, and a corresponding
set of base (or basis) vectors, say O{, O| and Ok. But there can be more
than one piece of imaginary graph paper. You could be holding one,
Jo another, and Tanya a third. Each could be moving their graph
paper around and on each paper the same given vector would change
in a different way.

As noted earlier, but for the special case of one frame moving
at constant velocity (without rotation) with respect to another, the
rate of change of a given vector is different if calculated in different
reference frames.

For mechanics we have to differentiate vectors with respect
to a Newtonian frame.

Because most often we use the “fixed” ground under us as a
practical approximation of a Newtonian frame, we label a Newtonian
frame with a curly script F , for fixed. So, when being fussy about
notation we will sometimes write

FP*rB=O D The velocity of point B as calculated in frame F .

Non-Newtonian frames
Even though the laws of mechanics are not valid in non-Newtonian
frames, non-Newtonian frames are useful help with the understand-
ing of the motion of and forces on systems composed of objects
with complex relative motion. So eventually we need to understand
frames that accelerate and rotate with respect to each other and with
reference to Newtonian frames. Such non-Newtonian frames will be
discussed in later chapters.
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SAMPLE 11.1 Velocity and acceleration from derivative of position: The
position vector of a particle is given as a functions time:

*
r.t/ D .C1 C C2t C C3t

2/O{C C4t O|

where C1 D 1m; C2 D 3m=s; C3 D 1m=s2; and C4 D 2m=s.
1. Find the position, velocity, and acceleration of the particle at t D 2 s.

2. Find the change in the position of the particle between t D 2 s and
t D 3 s.

Solution We are given,

*r D .C1 C C2t C C3t
2/O{C C4t O|:

Therefore,

*v � P*r D d*r

dt
D .C2 C 2C3t /O{C C4 O|

*a � R*r D d2*r

dt2
D 2C3 O{:

1. Substituting the given values of the constants and t D 2 s in the equations above we
get,

*r.t D 2 s/ D .1mC 3
m
s
� 2 sC 1

m
s2
� 4 s2/O{C .2

m
s
� 2 s/ O|

D 11mO{C 4m O|
*v.t D 2 s/ D .3

m
s
C 2 � 1 m

s2
� 2 s/O{C .2

m
s
/ O|

D 7m=sO{C 2m=s O|
*a.t D 2 s/ D .2 � 1 m

s2
/O{ D 2m=s2 O{:

*r D .11O{C 4 O|/m; *v D .7O{C 2 O|/m=s; *a D 2m=s2 O{
2. The change in the position of the particle between the two time instants is,

�*r D *r.t D 3 s/ �*r.t D 2 s/:

We already have*r at t D 2 s. We need to calculate*r at t D 3 s.

*r.t D 3 s/ D .1mC 3
m
s
� 3 sC 1

m
s2
� 9 s2/O{C .2

m
s
� 3 s/ O|

D 19mO{C 6m O|:
Therefore,

�*r D .19mO{C 6m O|/ � .11mO{C 4m O|/
D 8mO{C 2m O|:

�*r D 8mO{C 2m O|
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SAMPLE 11.2 Velocity and acceleration from position on a helix. Given
that the position of a particle is

*
r D A cos.�t/O{C B sin.�t/ O| C Ct Ok;

where A;B;C; and � are constants, find
1. the velocity as a function of time,

2. the acceleration as a function of time,

3. a condition under which the acceleration vector is normal to the veloc-
ity vector.

Solution

1. The velocity:

*v D d*r

dt

D d

dt
�A cos.�t/O{C B sin.�t/ O| C Ct Ok�

D �A� sin.�t/O{C B� cos.�t/ O| C C Ok:

*v = �A� sin.�t/O{C B� cos.�t/ O| C C Ok
2. The acceleration:

*a D d*v

dt

D d

dt
��A� sin.�t/O{C B� cos.�t/ O|

D �A�2 cos.�t/O{ � B�2 sin.�t/ O|
*a D �A�2 cos.�t/O{ � B�2 sin.�t/ O|

3. The velocity vector and the acceleration vector will be orthogonal to each other if
*v �*a D 0. Taking the dot product of the two vectors, we find,

*v �*a D .�A� sin.�t/O{C B� cos.�t/ O| C C Ok/ � .�A�2 cos.�t/O{ � B�2 sin.�t/ O|/
D A2�3 sin.�t/ cos.�t/ � B2�3 sin.�t/ cos.�t/

D .A2 � B2/�3 sin.�t/ cos.�t/:

Now, this dot product must be zero for all t if*a is normal to*v. This is indeed the case
if A D B . Thus, the condition for orthogonality o*v and*a is A D B .

A D B ) *v �*a D 0

Note: The path is an elliptical helix with axis in the z direction. The z-component of velocity

is constant so the acceleration is entirely in the xy plane. In fact, the acceleration vector

points from the particle towards the axis of the helix.
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SAMPLE 11.3 Position from velocity. Assume the expression for velocity
*
v of a particle is given: *

v D v0 O{ � gt O|. Find the expressions for the x and
y coordinates of the particle at a general time t , if the initial coordinates at
t D 0 are (x0; y0). Plot the path of the particle taking x0 D 0, y0 D 80m,
v0 D 2m=s, g D 10m=s2, and t D 1 : : : 4 s.

Solution The position vector of the particle at any time t is

*r.t/ D x.t/O{C y.t/ O|:
We are given that

*r.t D 0/ D x0 O{C y0 O|:
Now

*v � d*r

dt
D v0 O{ � gt O|

or dx O{C dy O| D .v0 O{ � gt O|/ dt:
Integrating both sides of the equation with appropriate limits, we getZ x O{Cy O|

x0 O{Cy0 O|
.dx O{C dy O|/ D

Z t

0
.v0 O{ � gt O|/dtZ x

x0

dx O{C
Z y

y0

dy O| D v0 O{
Z t

0
dt � g O|

Z t

0
tdt

.x � x0/O{C .y � y0/ O| D v0t O{ �
1

2
gt2 O|

x O{C y O| D .x0 C v0t /O{C .y0 �
1

2
gt2/ O|:

Therefore,
*r.t/ D .x0 C v0t /O{C .y0 �

1

2
gt2/ O|

and the (x; y) coordinates are

x.t/ D x0 C v0t

y.t/ D y0 �
1

2
gt2:

.x0 C v0t; y0 � 1
2gt

2/

Plugging in x0 D 0, y0 D 80m, v0 D 2m=s, g D 10m=s2, and taking 20 points between
t D 0 to t D 4, we compute the values of x and y and plot them to get the path of the particle.
The plot is shown in fig. 11.14 with a few intermediate positions marked on the path.

Comments: From the x and y coordinates, it is possible to get the equation of the path of the
particle by eliminating the time from the two equations. From the expression for x.t/, we get
t D .x � x0/=v0. Substituting this expression for t in the equation for y.t/, we get,

y � y0 D
g

2v20
.x � x0/2

which is the equation of the path. From this equation it should be clear that the path is
parabolic. It is easier to see this if you shift the origin to (x0; y0) and use the new coordinates
Ox D x � x0 and Oy D y � y0. Then, in terms of the new coordinates, the path becomes,

Oy D g

2v20
Ox2:
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SAMPLE 11.4 Acceleration of a point mass in 3-D. A ball of mass m D
13 kg is being pulled by three strings as shown in Fig. 11.15. The tension in
each string is T D 13N. Find the acceleration of the ball.

Solution The forces acting on the body are shown in the free-body diagram in Fig.11.16.
From geometry:

O� D
*rAB

j*rAB j
D �4O{C 3 O| C 12 Okp

42 C 32 C 122

D �4O{C 3 O| C 12 Ok
13

:

The balance of linear momentum for the ball givesX
*
F D m*a (11.4)

where X
*
F D T O{ � T O| C T O� �mg Ok

D T

 
O{ � O| C �4O{C 3 O| C 12 Ok

13

!
�mg Ok

D T

13
.9O{C 10 O| C 12 Ok/ �mg Ok:

Substituting
P *
F in eqn. (11.4):

*a D T

13m
.9O{C 10 O| C 12 Ok/ � g Ok:

Now plugging in the given values: T D 13N; m D 13 kg; and g D 10m=s2, we get

*a D 613N
613 � 13 kg

.9O{ � 10 O| C 12 Ok/ � 10m=s2 Ok

D .0:69O{ � 0:77 O| � 9:08 Ok/m=s2:

*a D .0:69O{ � 0:77 O| � 9:08 Ok/m=s2
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SAMPLE 11.5 Projectile motion with air drag. A projectile is fired into
the air at an initial angle �0 and with initial speed v0. The air resistance to
the motion is proportional to the square of the speed of the projectile. Take
the constant of proportionality to be k. Find the equations of motion of the
projectile in the horizontal and vertical directions assuming the air resistance
to be in the opposite direction of the velocity.

Solution The free body diagram of the projectile is shown in the figure at some constant t
during motion. At the instant shown, let the velocity of the projectile be*v D v Oet where

Oet D*v=j*vj D .vx=j*vj/O{C .vy=j*vj/ O|:

Then the force due to air resistance is
*
R D �kv2 Oet :

Now applying the linear momentum balance on the projectile, we get
*
R Cm*g D m*a

or � kv2 Oet �mg O| D m

*a� �� �
. Rx O{C Ry O|/ : (11.5)

Noting that v D j*vj D j Px O{C Py O|j D
p
Px2 C Py2, and dotting both sides of eqn. (11.5) with O{

and O| we get

�k. Px2 C Py2/�. Oet �O{/ D m Rx
�k. Px2 C Py2/�. Oet � O|/ �mg D m Ry:

Rearranging terms and carrying out the dot products, we get

Rx D � k
m
. Px2 C Py2/.vx=j*vj/

Ry D �g � k

m
. Px2 C Py2/.vy=j*vj/:

Substituting these expressions in to the equations for Rx and Ry we get

Rx D � k
m Px

p
Px2 C Py2; Ry D � k

m Py
p
Px2 C Py2 � g

For initial conditions we could use

x0 D 0; y0 D 0 and Px0 D vx0 D v0 cos �0; and Py0 D vy0 D v0 sin �0:

Note that � changes with time. We can express � in terms of Px and Py. We can calculate the
slope of the trajectory from

tan � D Py
Px :
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Figure 11.19: Free-body diagram of the
bag and the geometry of its motion.

SAMPLE 11.6 Trajectory of a food-bag. In a flood hit area relief supplies
are dropped in a 20 kg bag from a helicopter. The helicopter is flying parallel
to the ground at 200 km=h and is 80m above the ground when the package is
dropped. How much horizontal distance does the bag travel before it hits the
ground? Take the value of g, the gravitational acceleration, to be 10m=s2.
Ignore air drag.

Solution You must have solved such problems in elementary physics courses. Usually, in
all projectile motion problems the equations of motion are written separately in the x and y
directions, realizing that there is no force in the x direction, and then the equations are solved.
Here we show you how to write and keep the equations in vector form all the way through.

The free-body diagram of the bag during its free flight is shown in Fig. 11.19. The only
force acting on the bag is its weight. Therefore, from the linear momentum balance for the
bag we get

m*a D �mg O|:
Let us choose the origin of our coordinate system on the ground exactly below the point at
which the bag is dropped from the helicopter. Then, the initial position of the bag *r.0/ D
h O| D 80m O|. The fact that the bag is dropped from a helicopter flying horizontally gives us
the initial velocity of the bag:

*v.0/ � P*r.0/ D vx O{ D 200 km=hO{:

So now we have a 2nd order differential equation (from linear momentum balance ):

R*r D �g O|

with two initial conditions:

*r.0/ D h O| and P*r.0/ D vx O{

which we can solve to get the position vector of the bag at any time. Since the basis vec-
tors O{ and O| do not change with time, solving the differential equation is a matter of simple
integration:

R*r � d P*r
dt

D �g O|Z
d P*r D � O|

Z
g dt

or P*r D �gt O| C*c1 (11.6)

and integrating once again, we get

*r D
Z
.�gt O| C*c1/ dt

D �1
2
gt2 O| C*c1t C*c2 (11.7)

where *c1 and *c2 are constants of integration and are vector quantities. Now substituting the
initial conditions in eqn. (11.6) and eqn. (11.7) we get

P*r.0/ D vx O{ D*c1; and
*r.0/ D h O| D*c2:

Therefore, the solution is

*r.t/ D �1
2
gt2 O| C vx t O{C h O|

D vx t O{C .h � 1

2
gt2/ O|:
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So how do we find the horizontal distance traveled by the bag from our solution? The distance
we are interested in is the x-component of*r , i.e., vx t . But we do not know t . However, when
the bag hits the ground, its position vector has no y-component, i.e., we can write*r D d O{C0 O|
where d is the distance we are interested in. Now equating the components of *r with the
obtained solution, we get

d D vx t and 0 D h � 1

2
gt2:

Solving for t from the second equation and substituting in the first equation we get

d D vx

s
2h

g
D 200 km

3600 s
�
s
2 � 80m
10m=s2

D 2

9
km � 222m:

d D 222m

Comments: Here we have tried to show you that solving for position from the given accel-
eration in vector form is not really any different than solving in scalar form provided the unit
vectors involved are fixed in time. As long as the right hand side of the differential equation
is integrable, the solution can be obtained. If the method shown above seems too “mathy” or
intimidating to you then follow the usual scalar way of doing this problem.

The scalar method:
From the linear momentum balance,�mg O| D m*a, writing the acceleration as*a D ax O{Cay O|
and equating the x and y components from both sides, we get

ax D 0 and ay D �g:

Now using the formula for distance under uniform acceleration from Chapter 3, x D x0 C
v0t C 1

2at
2, in both x and y directions, we get

d D
0����
x0 Cvx t C

1

2

0����
ax t2

D vx t

0 D
h����
y0 C

0����
vy t C 1

2

�g����
ay t2

D h � 1

2
gt2

) t D
s
2h

g
:

Substituting for t in the equation for d we get

d D vx

s
2h

g
D 200 km

3600 s
�
s
2 � 80m
10m=s2

D 2

9
km � 222m:

as above.
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3 To be precise, if the launch speed is
much faster than the ‘terminal velocity’
of the falling ball.
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SAMPLE 11.7 Cartoon mechanics: The cannon. It is sometimes claimed
that students have trouble with dynamics because they built their intuition by
watching cartoons. This claim could be rebutted on many grounds.

1) Students don’t have trouble with dynamics! They love the subject.

2) Nowadays many cartoons are made using ‘correct’ mechanics, and

3) the cartoons are sometimes more accurate than the pedagogues anyway.

Problem: What is the path of a cannon ball? In the cartoon world the cannon
ball goes in a straight line out the cannon then comes to a stop and then starts
falling. Of course a good physicist knows the path is a parabola. Or is it?

Solution The drag force on a cannon ball moving through air is approximately proportional
to the speed squared and resists motion. Gravity is approximately constant. Then

*
Fdrag D cv2 � (unit vector opposing motion)

D cv2 �
��*v
j*vj

�
D �cj*vj*v
D �c

q
Px2 C Py2 . Px O{C Py O|/

So the linear momentum balance gives

P *
F D P*

Ln
�mg O| � c

p
Px2 C Py2. Px O{C Py O|/ D m. Rx O{C Ry O|/

o

fg � O{ ) Rx D
�
�c
q
Px2 C Py2 Px=m

�

fg � O| ) Ry D �c
q
Px2 C Py2 Py=m � g

Solving these equations numerically with reasonable values 3of Px0; Py0; m and c gives

which is closer to a cartoon’s triangle than to a naive physicist’s parabola.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 11. Particles in space 11.2. Momentum and energy 563

11.2 Linear momentum, angular
momentum, work and energy

If you know a particle’s starting position and velocity, and you know the
force on it as it moves, then you can use

*

F D m*
a to predict its path. That is

the central idea of the previous section. We had no need for ideas related to
momentum, angular momentum, work and energy. For one particle the one
equation

*

F D m*
a tells the whole story. So, before we go on to discuss them

further, let us be clear:

The concepts of linear and angular momentum, work and energy are
not needed to study particle mechanics.

*

F D m*
a is enough.

So, why do we bother to devote a section to these topics? Because

� These concepts will sometimes be needed when we discuss more com-
plex systems;

� These concepts sometimes provide a shorter route for answering some
dynamics questions;

� The simplest place to introduce the concepts is in the context of one
particle;

� The concepts give a way to check the consistency of solutions of
*

F D
m*
a; and

� The concepts can be an aid to physical intuition.

For more complex systems, principles of momentum and energy transcend
*

F D m*
a and can generally not be derived from

*

F D m*
a. But for a sin-

gle particle, all of these are derived concepts, as worked out in box 11.4 on
page 571. Note that

All of the facts and theorems below apply to any motion of a particle
that is consistent with

*

F D m*
a.

Example: Simple ballistics solution.
Consider a ball thrown up at 45�:

*
F D �mg O|,*r.0/ D*

0 and*v.0/ D v0 O{C v0 O|.
We claimed (page 553) that a solution is

*r D v0t O{C .v0t � gt2=2/ O| and *v D v0 O{C .v0 � gt/ O|:

This solution is plotted various ways in fig. 11.22. These functions of time are
consistent with the initial conditions. Further they are consistent with the governing
equations, the so called ‘equations of motion’, P*v D *

F =m and P*r D *v. All of the
momentum and energy principles below must therefore apply.

Some of the ideas apply even if
*

F ¤ m*
a. For example, the work of a force

is defined for imagined motions that might never occur.
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Figure 11.22: (a) A simple ballistics
problem. (b) The well known parabolic
trajectory. (c) The velocity trajectory,
called a hodograph, shows the sequence
of positions of the tip of the velocity
vector. The velocity starts with vx D vy
and then vy decreases. (d) Plot of x and
y components vs time. The y compo-
nent has a parabolic shape similar to the
particle trajectory because x is propor-
tional to t in this problem. (e) The ve-
locity components versus time. Note,
(b) is a ‘cross plot’ of the two plots in
(d), and (c) is a cross plot of (e).
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Linear momentum
Linear momentum for a particle is defined as

*

L D m*
v. The particle

momentum-balance theorems (facts) are

*

F D d

dt

*

L and
Z t2

t1

*

F dt� �� �
Linear impulse

D *

L2 �
*

L1

These are so trivially related to
*

F D m*
a that it is hard to see any content

in them. And, indeed, if we were only studying the mechanics of single
particles we probably would not have introduced the concept of linear mo-
mentum. Nonetheless, the general result does apply:

The net force
*

F on a particle is the rate of change of its linear momen-

tum, P*L.

A special important case is when there is no force and linear momentum
is conserved (doesn’t change). For a single particle momentum conservation
means constant velocity motion.

Example: Linear momentum check
For the simple ballistics solution above we evaluate the left side of the momentum
balance equation Z t

0

*
F dt 0 D �mgt O|:

Then evaluate the right side:

�
*
L D *

L2 �
*
L1 D �m.v0 O{C .v0 � gt/ O|/� � �m.v0 O{C v0 O|/� D �mgt O|

and check for equality: �mgt O| D �mgt O|. This force and momentum is plotted
in fig. 11.23. The solution is consistent with linear momentum balance. Note that
in this example there is no change in the component of linear momentum in the O{
direction; there is no force in the x direction so Lx is conserved.

Angular momentum
In dynamics angular momentum is one of the most important ideas, impor-
tant theoretically and for solving problems. For one particle

Angular momentum relative to point C is
*

H=C D*
r=C � .m*

v/,

where *
r=C is the position of the particle relative to fixed point C and *

v is
the velocity of the particle. Angular momentum can be calculated relative to
any point C. Which point you pick affects the value of the angular momen-
tum. Sometimes

*

H=C it is written without the “/” as
*

HC. The key angular
momentum theorems (facts) are:
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*
r=C �

*

F� �� �
*
MC

D P*
H=C and

Z t2

t1

*
r=C �

*

F dt� �� �
Angular impulse

D .
*

H=C/2
� .

*

H=C/1
:

The torque
*

MC of all the external forces acting on a particle about point

C is the rate of change of its angular momentum P*
H=C about point C.

The intuitive notion is that angular momentum represents how much a parti-
cle is ‘going around’ point C. A particle gets more credit for going faster, for
being more massive, and for being farther away 1.

If the force on the particle is zero or passes through the point C, the torque
(moment) of the force is zero and its angular momentum is conserved.

Example: Angular momentum check.
Using the same ballistics example we check the solution for consistency with an-
gular momentum balance. For no good reason lets use the origin for the angular
momentum reference point. We could use any point. Again we compare the left
and right sides and check for equality.Z t

0

*r=0 �
*
F dt� �� �

Left side

D
Z t

0

�
v0t

0 O{C .v0 � gt 02=2/ O|
�
� .�mg O|/ dt 0

D
Z t

0
�v0mgt 0 Ok dt 0 D �v0mg Okt2=2

*
H=02 �

*
H=01� �� �

Right side

D *r.t/ � .m*v.t// � *r.0/ � .m*v.0//

D m
�
v0t O{C .v0t � gt2=2/ O|

�
� .v0 O{C .v0 � gt/ O|/ �m

�
*
0 �*v.0/

�
D

�
v0t � gt2 � v0t C gt2=2

�
mv0

Ok D �v0mgt2 Ok=2:
This torque and angular momentum are plotted in fig. 11.24. The ‘left side’ agrees
with the ‘right side’ and angular momentum balance is satisfied, as it must be. In 2D
problems like this there is only one non-trivial component to angular momentum,
that in the out-of-plane (z) direction. In this case the angular momentum Hz is not
conserved because the gravity force does have a torque about the z axis.

Power balance
The power P of a force

*

F on a particle with velocity *
v is P D *

F �*v. The
kinetic energy of a particle is EK D mv2=2. The power balance equations
are

P D PEK and
Z t2

t1

P dt D EK2 �EK1:

The power P of all the external forces acting on a particle is the rate
of change of its kinetic energy PEK. Or, integrating in time, the power
added up over time is the net change in kinetic energy.

1Angular momentum contradicts
common intuition. The notion that an-
gular momentum is bigger if a given
mass is further away is counterintuitive
to most of us. Imagine a one kilogram
is going around your head once per sec-
ond at a distance of a meter. Now imag-
ine a second equal mass going around
at a radius of 10 meters and only go-
ing around once every 100 seconds. The
first mass whirls around your head 100
times for each slow orbit of the second
mass. Even though the second mass cer-
tainly doesn’t make its rotation feel so
present its angular momentum is as big.
Intuitive or not, this is how angular mo-
mentum is defined. Its a useful concept
so its worth adjusting your intuition to
match it.
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ergy are plotted vs time for the ballis-
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The situation is similar to that for 1D motion (section 9.2).

Power and work
The integral of power with respect to time can be replaced with a path integral
for the work of a force. The key idea is in the differential expressions for an
increment of work:

dW D Pdt D *

F �*vdt D *

F � d
*
r

dt
dt D *

F � d*r:
So

W12 D W12

Power integrated in time D Sum of work incrementsZ t2

t1

Pdt D
Z 2

1

dW

Z t2

t1

*

F �*v dt D
Z *
r2

*
r1

*

F � d*r (11.8)

Thus the power balance equation, integrated in time is equivalent to the
“work energy” equation:

Work on particle D Change in its kinetic energy

W12 D �EK (11.9)

D EK2 �EK1

Example: Energy check.
We can check the simple ballistics solution for consistency with energy balance.
First lets compare the work to the change of kinetic energy.Z t

0

*
F �*v dt� �� �
Work

D
Z t

0
.�mg O|/ � �v0 O{C .v0 � gt 0/ O|

�
dt 0

D
Z t

0
�mg.v0 � gt 0/ dt 0 D �mgv0t Cmg2t2=2

EK2 �EK1� �� �
Change in kinetic energy

D m.j*vj2 � j*v0j2/=2

D m
�
.v20 C .v0 � gt/2 � 2v20

�
=2 D �mgv0t Cmg2t2=2� �� �

agrees

This power and kinetic energy are plotted in fig. 11.25. In this check we have not
taken advantage of the fact that this particular force is conservative.
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The work of a force
*

F : W12

Previously in Physics, and more recently in one dimensional dynamics here,
you learned that

Work is force times distance.
This is actually a special case of the formula

P D *

F �*v:

How is that? If
*

F is constant and parallel to the displacement �*
x, then

W12 D
Z

PW dt D
Z

Pdt D
Z

*

F � *
v dt����
d
*
x

D
Z

*

F � d*
x D *

F �
Z

d*
x

D *

F ��*
x D F�x D Force � distance:

In 2 and 3 dimensions there are subtleties involved with the concept of
work because of its dependence on which path in space the force works on.
These ‘path dependence’ subtleties are often covered in some detail in cal-
culus courses in the sections on vector calculus, path integrals, gradient and
curl. We discuss the relevant highlights below.

Potential energy of a force
Some forces (read force fields

*

F D *

F .*r/) have the property that the work
they do is independent of the path followed by the material point as the force
acts. If the work of a force is path independent in this way (see box 11.3 on
page 569, then a potential energy can be defined so that the work done by the
force is the decrease in the Potential Energy

��EP D W12 D EP1 �EP2

The common examples are listed below:

� linear spring: EP D .1=2/k.stretch/2.

� gravity near earth’s surface: EP D mgh

� gravity between spheres or points: EP D �MmG=r

� constant force
*

F acting on a point: EP D �*

F �*r
In all cases a constant could be added to the potential energy and it would
still be a legitimate potential energy for the force.

In the cases of the spring and gravity between spheres, the change in
potential energy is the net work done by the spring or gravity on the pair of
objects between which the force acts. If both ends of a spring are moving,
the net work of the spring on the two objects to which it is connected is the
decrease in potential energy of the spring.
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There is a possible source of confusion in our using the same symbol EP
to represent the potential work of an external force and for internal poten-
tial energy. In practice, however, they are used identically, so we use the
same symbol for both. The potential energy in a stretched spring is the same
whether it is the cause of force on a system or it is internal to the system.

Example: Checking conservation of energy
Because the gravity force is conservative we can also check our simple ballistics
solution for consistency with conservation of energy. Taking the potential energy
asEP D mgh D mgy we find, as expected, that the solution does have the property
that

Etot1
�D Etot2

EK1 CEP1
�D EK2 CEP2

mv20 C 0
�D

�
v20 C .v0 � gt/2

�
m=2Cmg

y� �� �
.v0t � gt2=2/

mv20

p
D mv20 (Checks)

Using momentum and energy as a check of a numerical
solution
You obtain a numerical solution to

*

F D m*
a by setting up the set of first

order differential equations 11.2 on page 553. In turn, these can be written in
explicit scalar form as eqn. (11.3).

While you solve these equations you can add further first order equations
that you can use in your energy and momentum checks. These evaluate the
integrals for linear impulse, angular impulse and work.

d

dt
(linear impulse) D *

F ;

d

dt
(angular impulse) D *

r=C �
*

F ; and

PW D *

F �*v:

The first two equations are short hand for 2 (or 3) first order scalar equations
for motion in 2 (or 3) spatial dimensions. If these are added to the system of
ordinary differential equations that you solve, they can be used to check the
solution.

Summary on using energy and momentum to check a
solution
Because the momentum and energy facts and theorems apply to any motion
consistent with

*

F D m*
a they can be used as a consistency check on any

solutions you find to the differential equations of motion (
*

F D m*
a).

Here is the general situation. You are given
*

F .t;*r;*v/. You are given
initial conditions *

r0 and *
v0 at, say, t D 0. Using computer integration or
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pencil and paper methods, you solve the differential equation *
a D *

F =m to
get*r.t/ and*

v.t/. Now your solution can be checked for consistency with the
energy and momentum theorems. In particular, your solution, if it is correct,
must satisfy

� Linear momentum balance:
R t
0

*

F dt D *

L2 �
*

L1;

� Angular momentum balance:
R t
0
*
r � *

F dt D *

H2 �
*

H1;

� Work-energy:
R t
0

*

F �*v dt D EK2 �EK1.

These have been used in the simple ballistics example above. That linear
momentum balance, angular momentum balance and energy balance, all are
consistent to an assumed solution lends credence to its correctness. For sim-
ple problems with such simple analytical solutions, using this consistency is
not the most efficient way of checking a candidate solution’s veracity. We
would be better off just plugging the proposed solution back into the dif-
ferential equation to see if it was satisfied. But in more complex problems
and in numerical solutions, checks like those here are sometimes simpler to
make. Some more comments about these checks:

� The angular momentum check can be used relative to any fixed point
you choose. If you can find a point where, say, the applied force has no
moment, then the change of angular momentum should be zero about
that point.

� If the applied force is conservative, the work integral can be replaced
by the change in potential energy and the work-energy check is a check
of the conservation of energy.

� If you try to make the checks with pencil and paper the checks can
sometimes be harder to implement than it was to find the original solu-
tion.

11.3 Conservative forces and non-conservative forces
Imagine that the force

*
F on a particle is known to depend on the

position *r of a particle as it moves. This dependence of
*
F on *r is

called a force field:
*
F D *

F .*r/:

As the particle moves from one point*r1 to another*r2 we can evaluate
the work of this force field as

W12 D
Z t2

t1

P dt D
Z t2

t1

*
F �*vdt D

Z *
r2

*
r1

*
F .*r/ � d*r:

But what if the particle moves between the same two points but along
a different path, is the work W12 the same? If that is true then the
work going from*r1 to*r2 and back would be zero. Which means the
work of the force when the particle moves on any closed path would
be zero. Here is an example of a force field

*
F .*r/ in the xy plane

where the work in going on a closed path, from*r1 to*r1, from home
to home, is not zero:

*
F D C� Ok�*r� D C��y O{C x O|�

where C is a constant. This force pushes the particle around in cir-
cles. So, if the particle moves on the circular path

*r D r0�cos � O{C sin � O|� .0 � � � 2�/
then the work is the force magnitude times the arc-length (the force
is parallel to the velocity for this path) and so,Z �2

�1

*
F � d*r D 2�Cr0 ¤ 0:

This force field gives non-zero work for some closed paths, thus is
path dependent for open paths and therefor is non-conservative. How
can you tell if a force field is conservative or not. This, you learn
in vector calculus, holds if the curl of

*
F is zero, Er � *

F D *
0,

everywhere.
Forces from any combination of springs and gravity are always

conservative.
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� These checks are often very useful, and this is perhaps an understate-
ment, for checking the validity of numerical solutions of dynamics
equations. Basically you shouldn’t trust yours or any body else’s code
unless such checks have been made. It is hard to write correct code
without making such checks. And such checks are a strong sign of
code reliability because an error in computer code will usually lead to
an error in momentum balance, angular momentum balance or energy
balance.
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11.4 Derivation of momentum, angular momentum and
energy theorems for a point mass

For a point-mass particle the principles of linear momentum, angular
momentum and energy are theorems that can be derived simply from

*
F D m*a

as follows.

Linear momentum
Define linear momentum as

*
L D m*v then differentiating we have

the equation
*
F D m*a. It is not so much a derivation but a restate-

ment to write:
*
F D P*

L:

Integrating both sides in time we getZ t2

t1

*
F dt� �� �

impulse

D *
L2 �

*
L1� �� �

change of momentum

:

This is the principle of impulse and momentum.

Angular momentum
Start with

*
F D m*a and take the cross product of both sides with

the position relative to a fixed point C and you get

*r=C � *
F D*r=C � .m*a/ :

Now if we define
*
H
=C D*r=C � .m*v/ we can differentiate to find

that, writing out all details,

P*
H
=C D d

dt

�
*r=C � .m*v/

�
D d

dt

��
*r �*rC

��m*v
�

D m
� P*r � P*rC

�
�*vCm �*r �*rC

�� P*v
D m

�
*v �*

0
�
�*vCm �*r �*rC

�� P*v
D m*v �*v����

*
0

Cm �*r �*rC
�� P*v

D m*r=C � .m P*v/
D *r=C � .m*a/

Putting these together we have

*r=C � *
F D P*

H
=C:

Integrating both sides with respect to time we get that the net angular
impulse is the change in angular momentum.Z t2

t1

*r=C � *
F dt D .

*
H
=C/2

� . *H
=C/1

:

Power and kinetic energy
The power equation is found with a shade more difficulty. We take
the equation

*
F D m*a and dot both sides with the velocity *v of the

particle:
*
F �*v D m*a �*v: (11.10)

Evaluating*v �*a is most easily done with the benefit of hindsight. So
we cheat and look at the time derivative of the speed squared:

d

dt

�
1

2
v2
�

D 1

2

d

dt
.*v �*v/

D 1

2

� P*v �*vC*v � P*v
�

D *v � P*v
D *v �*a

Applying this result to eqn. (11.10) we get

*
F �*v����
P

D d

dt

�
1

2
mv2

�
� �� �

EK

;

the energy (or power balance) equation for a particle.
Integrating in time we getZ t2

t1

*
F �*vdt� �� �

Work

D EK2 �EK1� �� �
Change in kinetic energy

;

Power and work and energy
Because

*
F �*vdt D *

F � d*r the time integral of power can be
replaced with a path integral, the standard work integral:

Z t2

t1

*
F �*vdt D

Z *
r2

*
r1

*
F � d*r:

If
*
F is a conservative force field, meaning a function of position,

thenEP.
*r/ exists, so that

�ErEP D
*
F then

Z *
r2

*
r1

*
F � d*r D EP.

*r2/�EP.
*r1/

and the work-energy equation becomes

E2 D E1

WhereE D EK CEP is defined as the total energy.
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Figure 11.26:

SAMPLE 11.8 Basic calculations: Find
*

L;
P*
L;

*

H=C;
P*
H=C; EK ;

PEK for a
given particle P with mass mP D 1 kg, given position, velocity, acceleration,
and a point C. Specifically, we are given*

rP D .O{C O|COk/m,*vP D 3m=s.O{C
O|/, *aP D 2m=s2.O{ � O| � Ok/, and *

rC D .2O{C Ok/m.
Solution Since*rP D .O{C O| C Ok/m and*rC D .2O{C Ok/m,

*rP=C D*rP �*rC D .�O{C O|/m:

So we have the motion quantities
*
L D m*vP

D .1 kg/��.3m=s/.O{C O|/�
D 3.O{C O|/ kg�m

s
D 3N� s.O{C O|/

P*
L D m*aP

D .1 kg/�.2m=s2/.O{ � O| � Ok/�
D 2.O{ � O| � Ok/ kg�m

s2

D 2N.O{ � O| � Ok/

*
H=C D *rP=C �m*vP

D �.�O{C O|/m� � �.1 kg/3m=s.O{C O|/�
D �.6 kg�m2= s/ Ok (11.11)

P*
H=C D *rP=C �m*a

D �.�O{C O|/m� � �.1 kg/2m=s2.O{ � O| � Ok/�
D �.2 kg�m2= s2/.O{C O|/

EK D 1

2
mj*vP j2

D 1

2
.1 kg/.3

p
2m=s/2

D 9
kg�m2

s2
D 9N�m

PEK D d

dt
.
m

2
*vP �*vP /

D m

2
�*vP � P*vP C P*vP �*vP �

D m*vP �*aP
D 1 kg�.3m=s/.O{C O|/���.2m=s2/.O{ � O| � Ok/�
D 0:

Note: d
dt
.12v

2/ ¤ j*vjj*aj:
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SAMPLE 11.9 Direct application of the formulas: A 2 kg block is moving
with a velocity *

v.t/ D u0e
�ct O{ C v0 O|, where u0 D 5m=s, v0 D 10m=s,

and c D 0:5= s. Consider the time interval between t1 D 1 s to t2 D 3 s.
1. Find the net change in the linear momentum of the block, �

*

L D
*

L.t2/ �
*

L.t1/.

2. Find the force
*

F .t/ on the block and compute the impulse
R t2
t1

*

F dt and

show that it is the same as �
*

L computed above.

3. Find the change in kinetic energy from direct computation of energy
and compare with work done by computing

R t2
t1
Pdt .

Solution

1. For the given block we have,
*
L D m*v D m.u0e

�ct O{C v0 O|/. Therefore,

�L D *
L.t2/ �

*
L.t1/ D mu0

�
e�ct2 � e�ct1� O{:

Substituting the given values, m D 2 kg, u0 D 5m=s, v0 D 10m=s, c D 0:5= s,
t1 D 1 s, and t2 D 3 s we get

�
*
L D 2 kg � 5m=s.e�0:5= s�3 s � e�0:5= s�1 s/O{ D �.3:83 kg � m=s/O{:

�
*
L D �.3:83 kg � m=s/O{

2. To calculate the impulse,
R *
F dt , we need to find the force first. Since

*
F D m*a D m P*v,

we get

*
F .t/ D m

d

dt
.u0e

�ct O{C v0 O|/ D �mcu0e�ct O{:
Hence, the impulse isZ t2

t1

*
F dt D �

Z t2

t1

mcu0e
�ctdt O{ D mu0.e

�ct2 � e�ct1/

D 2 kg � 5m=s.e�0:5= s�3 s � e�0:5= s�1 s/O{
D �3:83 kg � m=sO{

which is, expectedly, the same answer as obtained above for �L.

3. To find the kinetic energy, we need the speed of the particle, v D j*vj D
q
v2x C v2y .

Now, the change in kinetic energy is

�EK D EK2 �EK1 D
1

2
m
�
v22 � v21

�
D 1

2
m
�
u20e

�2ct2 C v20 � u20e�2ct1 � v20
�

D 1

2
mu20

�
e�2ct2 � e�2ct1

�
D �7:95N�m:

Now, we can compare this value by computing the work done
R
Pdt , since �EK DR

Pdt . To compute the power P D *
F �*v, we need to find the dot product between

the force and the velocity. Since
*
F D �mcu0e�ct O{, and*v D u0e

�ct O{C v0 O|, we get,
*
F �*v D �mcu20e�2ct . Therefore, the work done is,

W D
Z t2

t1

Pdt D
Z t2

t1

�mcu20e�2ctdt

D �mcu20.e�2ct2 � e�2ct1/ D �7:95N�m:

�EK D �7:95N�m; W D �7:95N�m
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SAMPLE 11.10 Angular momentum: direct application of the formula.
The position of a particle of mass m D 0:5 kg is *

r.t/ D ` sin.�t/O{ C h O|;
where � D �=2 rad=s; h D 2m; ` D 2m, and *

r is measured from the origin.
1. Find the net change in linear momentum �

*

L of the particle between
t D 1 s and t D 3 s.

2. Find the net change in angular momentum �
*

H=O of the particle about
the origin between t D 1 s and t D 3 s.

3. Find the angular impulse
R 3 s
1 s Mdt about the origin and compare the

result with �
*

H=O found above.

Solution

1. Linear momentum: Let the two instants of interest be t1.D 1 s/ and t2.D 3 s/. The
net change in linear momentum, �

*
L D *

L2 �
*
L1 D m.*v2 �*v1/. Since*v D P*r DD

` � cos.�t/O{, we get

�
*
L D m.*v2 �*v1/ D m ` �.cos�t2 � cos�t1/O{

D .0:5 kg/.2m/
��
2

rad=s
��

cos
�

2
� cos

3�

2

�
O{

D *
0:

The answer makes sense because both*v1 D
*
0 and*v2 D

*
0. In fact, finding the velocity

at t1 D 1 s and t2 D 3 s would have made the calculation much simpler.

�
*
L D*

0

2. Angular momentum: The net change in angular momentum between t1 and t2 is,

�
*
H=O D .

*
H=O/2 � .

*
H=O/1 D*r=O �m *v2����

*
0

�*r=O �m *v1����
*
0

D*
0:

�
*
H=O D*

0

Note that it so happens that velocities at the two instants are zero and hence, both
.
*
H=O/1 and .

*
H=O/2 are zero, making �

*
H=O also zero. It is, however, possible that

we could get �
*
H=O to be zero even if the .

*
H=O/1 and .

*
H=O/2 were non-zero (when

they are equal).

3. Moment impulse: Now, let us find the impulse due to the moment,
R
Mdt between

the two given time instants and see if that matches with the net zero change in angular
momentum. We first need to compute the moment

*
MO D*r=O �

*
F D*r=O �m*a:

*
M=o.t/ D*r=O �m*a D .` sin.�t/O{C h O|/ �m.�` �2 sin�t O{/ D m`h�2 sin�t Ok:

Therefore, the impulse due to this moment isZ t2

t1

*
M=Odt D

Z 3 s

1 s
.m ` h�2 sin�t Ok/dt D m`h�2 Ok

Z 3 s

1 s
sin.�t/dt

D m`h�2 Ok
�
� cos�t

�

�3 s

1 s
D m`h� Ok

�
cos

3�

2
� cos

�

2

�
D *

0

as expected. It can also be seen from a plot of j *M=Oj vs t , as shown in fig. 11.30,
that the net area under the moment between t1 and t2 is zero, giving a zero moment
impulse.
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11.3 Central-force motion and celestial
mechanics

One of Isaac Newton’s greatest achievements was the explanation of Kepler’s
laws of planetary motion. Kepler, using the meticulous observations of Tycho
Brahe characterized the orbits of the planets about the sun with his 3 famous
laws:

� Each planet travels on an ellipse with the sun at one focus.

� Each planet goes faster when it is close to the sun and slower when it
is further. It speeds and slows so that the line segment connecting the
planet to the sun sweeps out area at a constant rate.

� Planets that are further from the sun take longer to go around. More
exactly, the periods are proportional to the lengths of the ellipses to the
3/2 power.

Newton, using his equation
*

F D m*
a and his law of universal gravitational

attraction, was able to formulate a differential equation governing planetary
motion. He was also able to solve this equation and found that it exactly
predicts all three of Kepler’s laws.

The Newtonian description of planetary motion is the most historically
significant example of central-force motion where,

� the only force acting on a particle is directed towards the origin of
a given coordinate system, and

� the magnitude of the force depends only on distance between at-
tracting points.

If we define the position of the particle as *
r with magnitude r , linear mo-

mentum balance for central-force motion isX
*

Fi D P*
L

) *

F D m*
a

) F.r/

��*r
r

�
D m R*r (11.12)

where �*r=r is a unit vector pointed toward the origin and F.r/ is the mag-
nitude of the origin-attracting force.

For the rest of this section we consider some of the consequences of
eqn. (11.12). We start with the most historically important example.

Motion of the earth around a fixed sun
For simplicity let’s assume that the sun does not move and that the motion of
the earth lies in a plane. Newton’s law of gravitation says that the attractive
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Figure 11.31: The earth moving around
a fixed sun. The attraction force

*
F

is directed “centrally” towards the sun
and has magnitude proportional to both
masses and inversely proportional to the
distance squared.
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1 Soon after Newton, Cavendish
found G in his lab by delicately mea-
suring the small attractive force between
two balls. The gravitational attraction
between two 1 kg balls a meter apart is
about a ten-millionth of a billionth of a
Newton (a Newton is about a fifth of a
pound).

2 Note that G appears in the product
Gms . Newton didn’t know the value of
big G, but he could do a lot of figur-
ing without it. All he needed was the
product Gms which he could find from
the period and radius of the earth’s or-
bit. The entanglement of G with the
mass of the sun is why some people
call Cavendish’s measurement of big G,
“weighing the sun”. From Newton’s cal-
culation of Gms and Cavendish’s mea-
surement of G you can find ms . Natu-
rally, the real history is a bit more com-
plicated; Cavendish called his experi-
ment ‘weighing the earth’.

force of the sun on the earth is proportional to the masses of the sun and earth
and inversely proportional to the distance between them squared (fig. 11.31).
Thus we have 1

F D Gmems

r2

where me and ms are the masses of the earth and sun, r is the distance
between the earth and sun. ‘Big G’ is a universal constant G � 6:67 �
10�11 N m2= kg2. What is the vector-valued force on the earth? It is its
magnitude times a unit vector in the appropriate direction.

*

F D
�
Gmems

r2

���*r
j*rj
�

) *

F D �Gmems
� *
r

r3

�

) *

F D �Gmems
�

x O{C y O|
.x2 C y2/3=2

�
(11.13)

where we have used that *r D x O{ C y O|, r D j*rj D
p
x2 C y2, and *

a D
Rx O{C Ry O|. Now we can write the linear momentum balance equation for the
earth in great detail.

*

F D m*
a

) �Gmems

�
x O{C y O|

.x2 C y2/3=2

�
D me . Rx O{C Ry O|/ (11.14)

Taking the dot product of equation 11.14 with O{ and O| (i.e., taking x and y

components) gives two scalar second order ordinary differential equations:

Rx D �Gmsx
.x2 C y2/3=2

and Ry D �Gmsy
.x2 C y2/3=2

: (11.15)

This pair of coupled second order differential equations describes the motion
of the earth. 2 Pencil and paper solution is possible, Newton did it, but is a
little too hard for this book. So we resort to computer solution. To set this
up we put equations eqn. (11.15) in the form of a set of coupled first order
ordinary differential equations. If we define z1 D x, z2 D Px, z3 D y, and
z4 D Py. We can now write equations 11.15 as

Pz1 D z2

Pz2 D �Gmsz1=.z21 C z23/
3=2

Pz3 D z4

Pz4 D �Gmsz3=.z21 C z23/
3=2: (11.16)

To actually solve these numerically we need a value for Gms and initial
conditions. The solutions of these equations on the computer are all, within
numerical error, consistent with Kepler’s laws.

Without a full solution, there are some things we can figure out relatively
easily.
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Circular orbits
We generally think of the motions of the planets as being roughly circular
orbits. In fact, for any attractive central force one of the possible motions is
a circular orbit. Rather than trying to derive this, let’s assume a circular so-
lution and see if it solves the equations of motion. A constant speed circular
orbit with angular frequency ! and radius ro obeys the parametric equation

*
r D ro .cos.!t/O{C sin.!t/ O|/

differentiating twice ) R*r D �!2ro .cos.!t/O{C sin.!t/ O|/
D �!2*r: (11.17)

Comparing eqn. (11.17) with eqn. (11.12) we see we have an identity (a
solution to the equation) if

!2 D F.r/

mr
:

In the case of gravitational attraction where m D me we have F.r/ D
Gmsme=r

2 so we get circular motion with

!2 D Gms

r3
) T D 2�

s
1

Gms
r
3
2 (11.18)

because angular frequency is inversely proportional to the period (! D
2�=T ). We have, for the special case of circular orbits, derived Kepler’s
third law. The orbital period is proportional to the orbital size to the 3/2
power.

Conservation of energy
Any force of the form

*

F D �F.r/
*
r

r

is conservative and is associated with a potential energy given by the indefi-
nite integral

EP D
Z r

�1
F.r/dr:

For the case of gravitational attraction, the potential energy is

EP D
�Gmsme

r

where we could add an arbitrary constant. Thus, one of the features of plan-
etary motion is that for a given orbit the energy is constant in time:

Constant D EK CEP

D 1

2
mv2 C �Gmsme

r

D 1

2
m. Px2 C Py2/C �Gmsmep

x2 C y2
: (11.19)

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



578 Chapter 11. Particles in space 11.3. Central-force motion and celestial mechanics

If that constant is bigger than zero then the orbit has enough energy to have
positive kinetic energy even when infinitely far from the sun. Such orbits
are said to have more than “escape velocity” and they do indeed have open
hyperbola-shaped orbits, and only pass close to the sun at most once.

Motion of rockets and artificial satellites
Rockets and the like move around the earth much like planets, comets and
asteroids move around the sun. All of the equations for planetary motion
apply. But you need to substitute the mass of the earth for me and the mass
of the satellite for ms . Thus we can write the governing equation eqn. (11.14)
as

�GMm

�
x O{C y O|

.x2 C y2/3=2

�
D m. Rx O{C Ry O|/ (11.20)

where now M is the mass of the earth and m is the mass of the satellite. At
the surface of the earth r D R, the earth’s radius, and GM=R2 D g so we
can rewrite the governing equation for rockets and the like as

�gR2
�

x O{C y O|
.x2 C y2/3=2

�
D . Rx O{C Ry O|/ : (11.21)

Another central-force example: force proportional to
radius
A less famous, but also useful, example of central force is where the attrac-
tion force is proportional to the radius. In this case the governing equations
are:

*

F D m*
a

�k*r D m R*r
�k.x O{C y O|/ D m. Rx O{C Ry O|/ : (11.22)

Dotting both sides with O{ and O| we get two uncoupled linear homogeneous
constant coefficient differential equations:

Rx C k

m
x D 0 and Ry C k

m
y D 0:

These you recognize as the harmonic oscillator equations so we can pick off
the general solutions immediately as:

x D A cos.�t/C B sin.�t/ and y D C cos.�t/CD sin.�t/ (11.23)

where A;B;C; and D are arbitrary constants which are determined by initial
conditions. For all A;B;C; and D eqn. (11.23) describes an ellipse (or a
special case of an ellipse, like a circle or a straight line). In the case of
planetary motion we also had ellipses. In this case, however, the center of
attraction is at the center of the ellipse and not at one of the foci.
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Conservation of angular momentum and Kepler’s
second law
If we take the linear momentum balance equation eqn. (11.12) and take the
cross product of both sides with *

r we get the following.
*

F D m*
a

) F.r/

��*r
r

�
D m R*r

) *
r �

�
F.r/

��*r
r

��
D *

r �
�
m R*r
�

) *

0 D d

dt

�
m*
r � P*r

�
.because P*r � P*r D*

0/

) constant D m*
r � P*r: (11.24)

But this last quantity is exactly the rate at which area is swept out by a mov-
ing particle. Thus Kepler’s third law has been derived for all central-force
motions (not just inverse square attractions). The last quantity is also the an-
gular momentum of the particle. Thus for a particle in central force motion
we have derived conservation of angular momentum from

*

F D m*
a.
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SAMPLE 11.11 Circular orbits of planets: Refer to eqn. (11.15) in the text
that governs the motion of planets around a fixed sun.

1. Let x D A cos.�t/ and y D A sin.�t/. Show that x and y satisfy the
equations of planetary motion and that they describe a circular orbit.

2. Show that the solution assumed above satisfies Kepler’s third law by
showing that the orbital period T D 2�=� is proportional to the 3/2
power of the size of the orbit (which can be characterized by its radius).

Solution

1. The governing equation of planetary motion can be written as

Rx
x
D �Gms

.x2 C y2/3=2
D Ry

y

) Rxy � Ryx D 0 (11.25)

Now,

x D A cos.�t/ ) Rx D ��2A cos.�t/

y D A sin.�t/ ) Ry D ��2A sin.�t/

Substituting these values in eqn. (11.25), we get

��2A2 cos.�t/ � sin.�t/C �2A sin.�t/ � cos.�t/
p
D 0

Thus the assumed form of x and y satisfy the governing equations of planetary motion,
i.e., x.t/ D A cos.�t/ and y.t/ D A sin.�t/ form a solution of planetary motion. Now,
it is easy to show that

x2 C y2 D A2 cos2.�t/C A2 sin2.�t/ D A2;

i.e., x and y satisfy the equation of a circle with radius A. Thus, the assumed solution
gives a circular orbit.

2. Substituting x D A cos.�t/ in eqn. (11.15), and noting that square of the radius of the
orbit is r2 D x2 C y2 D A2, we get

��2A cos.�t/ D �Gms

A cos.�t/
r3

) �2 D Gms

A3

or
�
2�

T

�2
D Gms

A3

) T 2 D 4�2

Gms

A3

or T D KA3=2

where K D 2�=
p
Gms is a constant. Thus the orbital period T is proportional to the

3/2 power of the radius, or the size, of the circular orbit.
Of, course, the same holds true for elliptic orbits too, but it is harder to show that
analytically using cartesian coordinates, x and y.
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SAMPLE 11.12 Numerical computation of satellite orbits: The following
data is known for an earth satellite: mass = 2000 kg, the distance to the closest
point, the perigee, on its orbit from the earth’s surface = 1100 km, and its
velocity at perigee, which is purely tangential, is 9500 m/s. The radius of
the earth is 6400 km and the acceleration due to gravity g D 9:81m=s2.

1. Solve the equations of motion of the satellite numerically with the given
data and show that the orbit of the satellite is elliptical. Find the apogee
of the orbit and the speed of the satellite at the apogee.

2. From the data at apogee and perigee show that the angular momentum
and the energy of the satellite are conserved.

3. Find the orbital period of the satellite and show that it satisfies Kepler’s
third law (in equality form).

Solution

1. The equations of motion of a satellite around a fixed earth are

Rx D �gR2x
.x2 C y2/3=2

and Ry D �gR2y
.x2 C y2/3=2

:

where g is the acceleration due to gravity and R is the radius of the earth (see
eqn. (11.20) in the text). From the given data at perigee, the initial conditions are

x.0/ D �7500 km; Px.0/ D 0; y.0/ D 0; Py.0/ D 9500m=s:

In order to solve the equations of motion by numerical integration, we first rewrite
these equations as four first order equations:

Pz1 D z2

Pz2 D �gR2z1=.z21 C z23/
3=2

Pz3 D z4

Pz4 D �gR2z3=.z21 C z23/
3=2:

Now the given initial conditions in terms of the new variables are

z1.0/ D �7:5 � 106 m; z2.0/ D 0; z3.0/ D 0; z4.0/ D 9500m=s:

We are now ready to go to a computer. We implement the following pseudocode on
the computer to solve the problem.

ODEs ={z1dot=z2, z2dot=-g*Rˆ2*z_1/(z_1ˆ2+z_3ˆ2)ˆ{3/2},
z3dot=z4, z4dot=-g*Rˆ2*z_3/(z_1ˆ2+z_3ˆ2)ˆ{3/2}}

IC ={z1(0)=-7.5E06, z2(0)=0, z3(0)=0, z4(0)=9500}
Set g = 9.81, R = 6.4E06
Solve ODEs with IC for t=0 to t=4E04
Plot z1 vs z3

Results obtained from implementing the code above with a Runge-Kutta method based
integrator is shown in fig. 11.33 where we have also plotted the earth centered at the
origin to put the orbit in perspective. The orbit is clearly elliptical. From the computer
output, we find the following data for the apogee.

x D 4:0049 � 107 m; Px D 0; y D 0; Py D �1:7791 � 103 m=s

2. The expressions for energy E and angular momentum H for a satellite are,

E D EK CEP D
1

2
m. Px2 C Py2/ � GMm

r
*
Ho D *r �m*v D .x O{C y O|/ �m. Px O{C Py O|/ D m.x Py � y Px/ Ok
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Figure 11.33: The elliptical orbit of the
satellite, obtained from numerical inte-
gration of the equations of motion.
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Figure 11.34: The elliptical orbit of the
satellite. The perigee and apogee are
marked as points 1 and 2 on the orbit.

At both apogee and perigee, y D 0 and the velocity (which is tangential) is in the y
direction, i.e., Px D 0. Therefore, the expressions for energy and angular momentum
become simpler:

E D 1

2
m Py2 � GMm

r
D 1

2
m Py2 � gR2m

jxj ;

and H D mx Py:

LetE1 andH1 be the energy and the angular momentum of the satellite at the perigee,
respectively, and E2 andH2 be the respective quantities at the apogee. Then, from the
given data,

E1 D
1

2
m Py21 �

gR2m

jx1j
D 1

2
2000 kg � .9500m=s/2 � 9:81m=s2 � .6:4 � 106 m/2

7:5 � 106 m

D �1:6901 � 1010 Joules

H1 D mx1 Py1 D 2000 kg � .�7:5 � 106 m/ � .9500m=s/

D �1:4250 � 1014 N�m � s

E2 D
1

2
m Py22 �

gR2m

jx2j
D 1

2
2000 kg � .�1779m=s/2 � 9:81m=s2 � .6:4 � 106 m/2

4:0049 � 107 m

D �1:6901 � 1010Joules

H2 D mx2 Py2 D 2000 kg � .4:0049 � 107 m/ � .�1779m=s/

D �1:4250 � 1014 N�m � s

Clearly, the energy and the angular momentum are conserved.

3. From the computer output, we find the time at which the satellite returns to the perigee
for the first time. This is the orbital period. From the output data, we get the orbital
period to be 3:6335 � 104 s D 10:09 hrs. Now let us compare this result with the
analytical value of the orbital period.
Let A be the semimajor axis of the elliptic orbit. Then the square of the orbital time
period T is given by

T 2 D 4�2A3

gR2
:

For the orbit we have obtained by numerical integration,

2A D jx1j C jx2j
D 7:5 � 106 mC 4:0049 � 107 m

D 4:7549 � 107 m

) A D 2:3774 � 107 m

Hence,

T D
s

4�2 � .2:3774 � 107 m/3

9:81m=s2 � .6:4 � 106 m/2

D 3:6335 � 104 s:

which is the same value as obtained from numerical solution.

T D 3:6335 � 104 s D 10:09 hrs
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SAMPLE 11.13 Zero-length spring and central force motion: A zero-
length spring 3 (the relaxed length is zero) is tied to a mass m D 1 kg on
one end and fixed on the other end. The spring stiffness is k D 1N=m.

1. Find appropriate initial conditions for the mass so that its trajectory is
a straight line along the y-axis.

2. Find appropriate initial conditions for the mass so that its trajectory is
a circle.

3. Can you find any condition on initial conditions that guarantees elliptic
orbits of the mass?

4. Let*r.0/ D 0:5mO{ and P*r.0/ D .0:5O{C0:6 O|/m=s. Describe the motion
of the mass by plotting its trajectory for 12 s.

Solution Let the position of the mass be*r at some instant t . Since the relaxed length of the
spring is zero, the stretch in the spring is j*rj and the spring force on the mass is �k*r . Then
the equation of motion of the mass is

�k*r D m R*r
�k.x O{C y O|/ D m. Rx O{C Ry O|/
) Rx C k

m
x D 0

and Ry C k

m
y D 0:

Thus the equations of motion are decoupled in the x and y directions. The solutions, as
discussed in the text (see eqn. (11.23)), are

x D A cos.�t/C B sin.�t/

and y D C cos.�t/CD sin.�t/ (11.26)

where the constants A;B;C , D are determined from initial conditions. Let us take the most
general initial conditions x.0/ D x0; Px.0/ D Px0; y.0/ D y0, and Py.0/ D Py0. By substituting
these values in x and y equations above and their derivatives, we get

A D x0; B D Px0=�; C D y0; D D Py0=�:
Substituting these values we get

x D x0 cos.�t/C Px0=� sin.�t/

and y D y0 cos.�t/C Py0=� sin.�t/: (11.27)

1. For a straight line motion along the y-axis, we should have the x-component of motion
identically zero. We can, therefore, set x0 D 0; Px0 D 0 and take any value for y0 and
Py0 to give

x.t/ D 0

and y.t/ D y0 cos.�t/C Py0=� sin.�t/:

2. For a circular trajectory, we must pick initial conditions such that we get x2 C y2 D
(a constant)2. We can easily achieve this by choosing, say, x.0/ D x0; Px.0/ D
0; y.0/ D 0, and Py.0/ D x0�. Substituting these values in eqn. (11.27), we get

x2 C y2 D x20 cos2.�t/C
�
x0�

�

�2
sin2.�t/ D x20

which is a circular orbit of radius x0. Note that the initial position of the mass for
this orbit is*r.0/ D x0 O{), and the initial velocity is (*v.0/ D x0� O|), i.e., the velocity is
normal to the position vector (*r �*v D 0), and the magnitude of the velocity is dependent
on the magnitude of the position vector, in fact , it must be exactly equal to the product
of the distance from the center and the orbital frequency �.
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Figure 11.35:

3 No spring can have zero relaxed
length, however, a spring can be con-
figured in various ways to make it be-
have as if it has zero relaxed length. See
box 6.1 on page 327
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3. In order to have elliptic orbits, the initial conditions should be selected such that x and
y satisfy the equation of an ellipse. By examining the solutions in eqn. (11.27), we
see that if we set Px0 D 0 and y0 D 0 and let the other two initial conditions have any
arbitrary value, x0 and Py0, we get

x.t/ D x0 cos.�t/;

and y.t/ D . Py0=�/ sin.�t/;

) x2

x20
C y2

. Py0=�/2
D cos2.�t/C sin2.�t/

D 1

which is the equation of an ellipse with semimajor axis x0 and semiminor axis Py=�.
Of course, the symmetry of the equations implies that we could also get elliptic orbits
by setting x0 D 0 and Py0 D 0, and letting the other two initial conditions be arbitrary.
Thus the condition for elliptic orbits is to have the initial velocity normal to the position
vector, e.g.,

*r.0/ D x0 O{ and P*r.0/ D Py0 O|;
or *r.0/ D y0 O| and P*r.0/ D Px0 O{;

or, more generally,
*r.0/ D r0

O� and P*r.0/ D v On;

where O� is a unit vector along the position vector of the mass and On is normal to O�.
Note that the condition obtained in (b) for circular orbits is just a special case of the
condition for elliptic orbits (well, a circle is just a special case of an ellipse). Therefore,
if we keep x0 fixed and vary Py0 we can get different elliptic orbits, including a circular
one, based on the same major axis. Taking x0 D 1m, we show different orbits obtained
for the mass by varying Py0 in fig. 11.38.

4. By substituting the given initial values x0 D 0:5m; Px.0/ D 0:5m=s; y.0/ D 0 and
Py D 0:6m=s in eqn. (11.27) and and noting that � �

p
k=m D

p
.1N=m/=.1 kg/ D

.1= s/, we get

x.t/ D .0:5m/ � cos
�
1

s
� t
�
C
�
0:5m=s
s

�
� sin

�
1

s
� t
�

y.t/ D
�
0:6m=s
s

�
� sin

�
1

s
� t
�

The functions x.t/ and y.t/ do not seem to describe any simple geometric path im-
mediately. We could, perhaps, do some mathematical manipulations and try to get a
relationship between x and y that we can recognize. In stead, let us plot the orbit on a
computer to see the path that the mass takes during its motion with these initial condi-
tions. To plot this orbit, we evaluate x and y at, say, 100 values of t between 0 and 10
s and then plot x vs y.

t = [0 0.1 0.2 ... 9.9 10]
x = 0.5 * cos(t) + 0.6 * sin(t)
y = 0.6 * sin(t)
plot x vs y

The plot obtained by performing these operations on a computer is shown in fig. 11.39.
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Problems for
Chapter 11
Particle dynamics in space

11.1 Dynamics of a
particle in space
Preparatory Problems
11.1.1 Given *r.t/ D A sin.!t/O{C Bt O| C
C Ok; find

1. *v.t/

2. *a.t/

3. *r.t/ �*a.t/.

11.1.2 A particle of mass =3 kg travels in
space with its position known as a function
of time, *r D .sin t

s /mO{ C .cos t
s /m O| C

te
t
s m=s Ok. At t D 3 s, find the particle’s
a) velocity and
b) acceleration.

11.1.3 A particle of mass m D 2 kg trav-
els in the xy-plane with its position known
as a function of time, *r D 3t2 m=s2 O{ C
4t3 m

s3
O|. At t D 5 s, find the particle’s

a) velocity and �

b) acceleration, and �

c) draw the three vectors.

11.1.4 The velocity of a particle of mass
m on a frictionless surface is given as*v D
.0:5m=s/O{ � .1:5m=s/ O|. If the displace-
ment is given by�*r D*vt , find (a) the dis-
tance traveled by the mass in 2 seconds and
(b) a unit vector along the displacement.

11.1.5 If P*r D .u0 sin
t/O{ C v0 O| and
*r.0/ D x0 O{ C y0 O|, with u0, v0, and 

as constants, find*r.t/ D x.t/O{C y.t/ O|. �

11.1.6 For *v D vx O{ C vy O| C vz
Ok and

*a D 2m=s2 O{ � .3m=s2 � 1m/s3 t / O| �
5 m/s4 t2 Ok, write the vector equation*v DR
*a dt as three scalar equations (i.e., find

vx.t/, vy.t/, and vz.t/).

11.1.7 Find *r.5 s/ given that P*r D
v1 sin.ct/O{Cv2 O| and*r.0/ D 2mO{C3m O|,
and that v1 is a constant 4m=s, v2 is a con-
stant 5m=s, and c is a constant 4 s�1.

11.1.8 Let P*r D v0 cos� O{ C v0 sin� O| C
.v0 tan � � gt/ Ok, where v0; �; � , and g
are constants. If*r.0/ D*

0, find*r.t/.

11.1.9 On a smooth circular helical path
the velocity of a particle is P*r D
�R sin t O{CR cos t O|Cgt Ok. If*r.0/ D RO{,
find*r..�=3/ s/.

More-Involved Problems
11.1.10 A particle travels on a path in the
xy-plane given by y.x/ D sin2. xm /m.
where x.t/ D t3. m

s3
/. What are the veloc-

ity and acceleration of the particle in carte-
sian coordinates when t D .�/

1
3 s?

11.1.11 The position of a particle is given
by*r.t/ D .t2 m=s2 O{C e

t
s m O|/. What are

the velocity and acceleration of the particle
as functions of time? Draw the path of the
particle and show the vectors *v and *a at
t D 1 s. �

11.1.12 A particle travels on an elliptical
path given by y2 D b2.1 � x2

a2
/ with con-

stant speed v. Find the velocity of the par-
ticle when x D a=2 and y > 0 in terms of
a, b, and v.

11.1.13 A particle travels on a path in the
xy-plane given by y.x/ D .1 � e� x

m /m.
Make a plot of the path. It is known that
the x coordinate of the particle is given
by x.t/ D t2 m=s2. What is the rate of
change of speed of the particle? What an-
gle does the velocity vector make with the
positive x axis when t D 3 s?

11.1.14 A particle starts at the origin in the
xy-plane, .x0 D 0; y0 D 0/ and travels
only in the positive xy quadrant. Its speed
and x coordinate are known to be v.t/ D

q
1C . 4

s2
/t2 m=s and x.t/ D t m=s, re-

spectively. What is *r.t/ in cartesian co-
ordinates? What are the velocity, acceler-
ation, and rate of change of speed of the
particle as functions of time? What kind of
path is the particle on? What are the dis-
tance of the particle from the origin and its
velocity and acceleration when x D 3m?

11.1.15 For a particle,
P *
F D m*a. Two

forces
*
F1 and

*
F2 act on a mass P as shown

in the figure. P has mass 2 lbm. The accel-
eration of the mass is somehow measured
to be*a D �2 ft=s2 O{C 5 ft=s2 O|.

a) Write the equationX
*
F D m*a

in vector form (evaluating each side
as much as possible).

b) Write the equation in scalar form
(use any method you like to get
two scalar equations in the two un-
knowns F1 and F2).

c) Write the equation in matrix form.

d) Find F1 D j*F1j and F2 D j*F2j by
the following methods:

1. from the scalar equations us-
ing hand algebra,

2. from the matrix equation us-
ing a computer, and

3. from the vector equation us-
ing a cross product.
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11.1.16 Three forces,
*
F1 D 20NO{ �

5N O|; *
F2 D F2x O{ C F2z

Ok, and
*
F3 D

F3
O�, where O� D 1

2 O{ C
p
3
2 O|, act on

a body with mass 2 kg. The accelera-
tion of the body is *a D �0:2m=s2 O{ C
2:2m=s2 O| C 1:7m=s2 Ok. Write the equa-
tion

P *
F D m*a as scalar equations and

solve them (most conveniently on a com-
puter) for F2x ; F2z , and F3.
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11.1.17 In three-dimensional space with no
gravity a particle with m D 3 kg at A is
pulled by three strings which pass through
points B, C, and D respectively. The ac-
celeration is known to be*a D .1O{C 2 O| C
3 Ok/ m=s2. The position vectors of B, C,
and D relative to A are given in the first few
lines of code below. Complete the pseudo-
code to find the three tensions. The last
line should read T = ... with T being
assigned to be a 3-element column vector
with the three tensions in Newtons. [ Hint:
If x, y, and z are three column vectors then
A=[x y z] is a matrix with x, y, and z
as columns.]

% Incomplete PSEUDO-CODE file
m = 3;
a = [ 1 2 3]’;
˜
rAB = [ 2 3 5]’;
rAC = [-3 4 2]’;
rAD = [ 1 1 1]’;
uAB = rAB/(magnitude of rAB);

.

.

.
T =

11.1.18 The rate of change of linear mo-
mentum of a particle is known in two
directions: PLx D 20 kg m=s2; PLy D
�18 kg m=s2 and unknown in the z direc-
tion. The forces acting on the particle are
*
F1 D 25NO{ C 32N O| C 75N Ok; *

F2 D
F2x O{ C F2y O| and

*
F3 D �F3 Ok. Us-

ing
P *
F D P*

L, separate the vector equa-
tion into scalar equations in the x; y,
and z directions. Solve these equations
(maybe with the help of a computer) to find
F2x ; F2y , and F3.

11.1.19 A block of mass 100 kg is pulled
with two strings AC and BC. Given that the
tensions T1 D 1200N and T2 D 1500N,
find the magnitude and direction of the ac-
celeration of the block. [

P *
F D m*a ]
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Problem 11.1.19

11.1.20 Neglecting gravity, the only force
acting on the mass shown in the figure is
from the string. Find the acceleration of
the mass. Use the dimensions and quanti-
ties given. Recall that lbf is a pound force,
lbm is a pound mass, and lbf= lbm D g.
Use g D 32 ft=s2. Note also that 32 C
42 C 122 D 132.
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Problem 11.1.20

11.1.21 Three strings are tied to the mass
shown with the directions indicated in the
figure. They have unknown tensions T1,
T2, and T3. There is no gravity. The
acceleration of the mass is given as *a D
.�0:5O{C 2:5 O| C 1

3
Ok/m=s2.

a) Given the free body diagram in the
figure, write the equations of linear
momentum balance for the mass.

b) Find the tension T3. �
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Problem 11.1.21

11.1.22 An object C of mass 2 kg is pulled
by three strings as shown. The acceleration
of the object at the position shown is a D�
�0:6O{ � 0:2 O| C 2:0 Ok

�
m=s2.

a) Draw a free body diagram of the
mass.

b) Write the equation of linear mo-
mentum balance for the mass. Use
�’s as unit vectors along the strings.

c) Find the three tensions T1, T2, and
T3 at the instant shown. You may
find these tensions by using hand
algebra with the scalar equations,
using a computer with the matrix
equation, or by using a cross prod-
uct on the vector equation.
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Problem 11.1.22

11.1.23 Particle moves on a strange path.
Given that a particle moves in the xy plane
for 1:77 s obeying

*r D .5m/ cos2.t2= s2/O{
C .5m/ sin.t2= s2/ cos.t2= s2/ O|

where x and y are the horizontal distance
in meters and t is measured in seconds.

a) Accurately plot the trajectory of the
particle.

b) Mark on your plot where the parti-
cle is going fast and where it is go-
ing slow. Explain how you know
these points are the fast and slow
places.
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11.1.24 Computer question: What’s the
plot? What’s the mechanics question?
Shown are shown some pseudo computer
commands that are not commented ade-
quately, unfortunately, and no computer is
available at the moment.

a) Draw as accurately as you can, as-
signing numbers etc, the plot that
results from running these com-
mands.

b) See if you can guess a mechanical
situation that is described by this
program. Sketch the system and de-
fine the variables to make the script
file agree with the problem stated.

Filename:pfigure-s94f1p3

ODEs = {z1dot = z2
              z2dot = 0}
ICs = {z1 =1, z2=1}

Solve ODEs with ICs from t=0 to t=5

plot z2 and z1 vs t on the same plot

Problem 11.1.24

11.1.25 A particle is blown out through the
uniform spiral tube shown, which lies flat
on a horizontal frictionless table. Draw the
particle’s path after it is expelled from the
tube. Defend your answer.
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Problem 11.1.25

11.1.26 Bungy Jumping. In a relatively
safe bungy jumping system, people jump
up from the ground while being pulled up
by a rope that runs over a pulley at O and
is connected to a stretched spring anchored
at B. The ideal pulley has negligible size,
mass, and friction. For the situation shown
the spring AB has rest length `0 D 2m and
a stiffness of k D 200N=m. The inexten-
sible massless rope from A to P has length
`r D 8m, the person has a mass of 100 kg.
Take O to be the origin of an xy coordinate
system aligned with the unit vectors O{ and
O|

a) Assume you are given the position
of the person*r D x O{C y O| and the
velocity of the person v D Px O{ C

Py O|. Find her acceleration in terms
of some or all of her position, her
velocity, and the other parameters
given. Then use the numbers given,
where supplied, in your final an-
swer.

b) Given that bungy jumper’s initial
position and velocity are *r0 D
1mO{�5m O| and v0 D 0 write com-
puter commands to find her position
at t D �=

p
2 s.

c) Find the answer to part (b) with
pencil and paper (that is, find an
analytic solution to the differential
equations, a final numerical answer
is desired).
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Problem 11.1.26: Conceptual setup for a
bungy jumping system.

11.1.27 A softball pitcher releases a ball of
massm upwards from her hand with speed
v0 and angle �0 from the horizontal. The
only external force acting on the ball after
its release is gravity.

a) What is the equation of motion for
the ball after its release?

b) What are the position, velocity, and
acceleration of the ball?

c) What is its maximum height?

d) At what distance does the ball re-
turn to the elevation of release?

e) What kind of path does the ball fol-
low and what is its equation y as a
function of x?

11.1.28 Find the trajectory of a not-
vertically-fired cannon ball assuming the
air drag is proportional to the speed. As-
sume the mass is 10 kg, g D 10m=s,
the drag proportionality constant is C D
5N=.m=s/. The cannon ball is launched
at 100m=s at a 45 degree angle.

� Draw a free body diagram of the
mass.

� Write linear momentum balance in
vector form.

� Solve the equations on the com-
puter and plot the trajectory.

� Solve the equations by hand and
then use the computer to plot your
solution.

� Compare the two plots and com-
ment on the differences, if any.

11.1.29 A baseball pitching machine re-
leases a baseball of mass m from its barrel
with speed v0 and angle �0 from the hori-
zontal. The only external forces acting on
the ball after its release are gravity and air
resistance. The speed of the ball is given
by v2 D Px2 C Py2. Taking into account
air resistance on the ball proportional to its
speed squared,

*
F d D �bv2 Oet , find the

equation of motion for the ball, after its re-
lease, in cartesian coordinates. �

11.1.30 The equations of motion from
problem 11.1.29 are nonlinear and cannot
be solved in closed form for the position of
the baseball. Instead, solve the equations
numerically. Make a computer simulation
of the flight of the baseball, as follows.

a) Convert the equation of motion into
a system of first order differential
equations. �

b) Pick values for the gravitational
constant g, the coefficient of resis-
tance b, and initial speed v0, solve
for the x and y coordinates of the
ball and make a plots its trajectory
for various initial angles �0.

c) Use Euler’s, Runge-Kutta, or other
suitable method to numerically in-
tegrate the system of equations.

d) Use your simulation to find the ini-
tial angle that maximizes the dis-
tance of travel for ball, with and
without air resistance.

e) If the air resistance is very high,
what is a qualitative description for
the curve described by the path of
the ball? Show this with an accurate
plot of the trajectory. (Make sure to
integrate long enough for the ball to
get back to the ground.)

11.1.31 A particle of mass m moves in a
viscous fluid which resists motion with a
force of magnitude F D cj*vj, where *v is
the velocity. Do not neglect gravity.
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a) (easy) In terms of some or all of g,
m, and c, what is the particle’s ter-
minal (steady-state) falling speed?

b) Starting with a free body diagram
and linear momentum balance, find
two second order scalar differen-
tial equations that describe the two-
dimensional motion of the particle.

c) (Challenge, long calculation) As-
sume the particle is thrown from
*r D *

0 with *v D vx0 O{ C vy0 O|
at a vertical wall a distance d
away. Find the height h along the
wall where the particle hits. (An-
swer in terms of some or all of
vx0; vy0; m; g; c, and d .) [Hint: i)
find x.t/ and y.t/, ii) eliminate t ,
iii) substitute x D d . The answer
is not tidy. In the limit d ! 0 the
answer reduces to a sensible depen-
dence on d (The limit c ! 0 is also
sensible.).]

d) (Challenge, computer simulation).
Do a computer simulation of the
problem and find the solution in
your simulation. Choose non-trivial
numbers for all constants. To get an
accurate solution you need an ac-
curate interpolation to find at what
time the particle hits the wall.

11.1.32 Someone in a violent part of the
world shot a projectile at someone else.
The basic facts:
Launched from the origin.
Projectile mass = 1 kg.
Launch angle 30� above horizontal.
Launch speed 172 m=s.
Drag force / cv2 with c D :01 kg =m.
Gravity g D 10m=s.

a) Write and execute computer code to
find the height at t D 1 s. [Hints:
sketch of problem, FBD, write drag
force in vector form, LMB, 1st or-
der equations, numerical setup, find
height at 1 s].

b) Estimate the height at t D 1 s using
pencil and paper. An answer in me-
ters is desired. [Hints: Assume g is
negligible. Good calculus skills are
needed but no involved arithmetic is
needed. 1C 1:72 D 2:72 � e. Af-
ter you have found a solution check
that the force of gravity is a small
fraction of the drag force through-
out the duration of one second of
your solution.]

11.1.33 In the arcade game shown, the
object of the game is to propel the small
ball from the ejector device at O in such a
way that is passes through the small aper-
ture at A and strikes the contact point at B .
The player controls the angle � at which
the ball is ejected and the initial velocity
vo. The trajectory is confined to the fric-
tionless xy-plane, which may or may not
be vertical. Find the value of � that gives
success. The coordinates of A and B are
(2`, 2`) and (3`, `), respectively, where `
is your favorite length unit.
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Problem 11.1.33

11.2 Momentum and
energy for particle
motion
Preparatory Problems
11.2.1 What symbols do we use for the fol-
lowing quantities? What are the definitions
of these quantities? Which are vectors and
which are scalars? What are the SI and US
standard units for the following quantities?

a) linear momentum

b) rate of change of linear momentum

c) angular momentum

d) rate of change of angular momen-
tum

e) kinetic energy

f) rate of change of kinetic energy

g) moment

h) work

i) power

11.2.2 Does angular momentum depend on
reference point? (Assume that all candi-
date points are fixed in the same Newto-
nian reference frame.)

11.2.3 Does kinetic energy depend on ref-
erence point? (Assume that all candidate
points are fixed in the same Newtonian ref-
erence frame.)

11.2.4 What is the relation between the dy-
namics ‘Linear Momentum Balance’ equa-
tion and the statics ‘Force Balance’ equa-
tion?

11.2.5 What is the relation between the
dynamics ‘Angular Momentum Balance’
equation and the statics ‘Moment Balance’
equation?

11.2.6 A ball of massm D 0:1 kg is thrown
from a height of h D 10m above the
ground with velocity *v D 120 km=hO{ �
120 km=h O|. What is the kinetic energy of
the ball at its release?

11.2.7 A ball of massm D 0:2 kg is thrown
from a height of h D 20m above the
ground with velocity *v D 120 km=hO{ �
120 km=h O| � 10 km=h Ok. What is the ki-
netic energy of the ball at its release?

11.2.8 How do you calculate P , the power
of all external forces acting on a particle,
from the forces

*
Fi and the velocity *v of

the particle?

11.2.9 A particle A has velocity *vA and
mass mA. A particle B has velocity*vB D
2 *vA and mass equal to the other mB D
mA. What is the relationship between:

a)
*
LA and

*
LB,

b)
*
HA=C and

*
HB=C, and

c) EKA and EKB?

11.2.10 A bullet of mass 50 g travels with
a velocity*v D 0:8 km=sO{C 0:6 km=s O|. (a)
What is the linear momentum of the bullet?
(Answer in consistent units.)

11.2.11 A particle has position*r D 4mO{C
7m O|, velocity *v D 6m=sO{ � 3m=s O|, and
acceleration *a D �2m=s2 O{ C 9m=s2 O|.
For each position of a point P defined be-
low, find

*
HP , the angular momentum of

the particle with respect to the point P .
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a) *rP D 4mO{C 7m O|,

b) *rP D �2mO{C 7m O|, and

c) *rP D 0mO{C 7m O|,

d) *rP D*
0

11.2.12 The position vector of a particle of
mass 1 kg at an instant t is *r D 2mO{ �
0:5m O|. If the velocity of the particle at this
instant is *v D �4m=sO{ C 3m=s O|, com-
pute (a) the linear momentum

*
L D m*v

and (b) the angular momentum (
*
H=O D

*r=O � .m*v/).

11.2.13 The position of a particle of mass
m D 0:5 kg is *r.t/ D ` sin.!t/O{ C h O|;
where ! D 2 rad=s; h D 2m; ` D 2m,
and*r is measured from the origin.

a) Find the kinetic energy of the parti-
cle at t D 0 s and t D 5 s.

b) Find the rate of change of kinetic
energy at t D 0 s and t D 5 s.

11.2.14 For a particle

EK D 1

2
m v2:

Why does it follow that PEK D m *v �*a?
[hint: write v2 as *v �*v and then use the
product rule of differentiation.]

11.2.15 Consider a projectile of massm at
some instant in time t during its flight. Let
*v be the velocity of the projectile at this
instant (see the figure). In addition to the
force of gravity, a drag force acts on the
projectile. The drag force is proportional
to the square of the speed (speed� j*vj D
v) and acts in the opposite direction. Find
an expression for the net power of these
forces (P DP *

F �*v) on the particle.
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Problem 11.2.15

11.2.16 A 10 gm wad of paper is tossed
into the air. At a some instant, the posi-
tion, velocity, and acceleration of its cen-
ter of mass are*r D 3mO{C 3m O| C 6m Ok,
*v D �9m=sO{C 24m=s O| C 30m=s Ok, and
*a D �10m=s2 O{C 24m=s2 O|C 32m=s2 Ok,
respectively. What is the translational ki-
netic energy of the wad at the instant of in-
terest?

11.2.17 A 2 kg particle moves so that its
position*r is given by

*r.t/ D �5 sin.at/O{C bt2 O| C ct Ok�meters

where a D �= sec; b D :25= sec2; c D 2= sec :

a) What is the linear momentum of the
particle at t D 1 sec?

b) What is the force acting on the par-
ticle at t D 1 sec?

11.2.18 A particle A has mass mA and ve-
locity *vA. A particle B at the same loca-
tion has mass mB D 2 mA and velocity
equal to the other *vB D *vA. Point C is
a reference point. What is the relationship
between:

a)
*
LA and

*
LB,

b)
*
HA=C and

*
HB=C, and

c) EKA and EKB?

11.2.19 A particle of mass m D 3 kg
moves in space. Its position, velocity, and
acceleration at a given time are*r D 2mO{C
3m O| C 5m Ok, *v D �3m=sO{ C 8m=s O| C
10m=s Ok, and*a D �5m=s2 O{C12m=s2 O|C
16m=s2 Ok, respectively. For this particle at
the instant of interest, find its:

a) linear momentum
*
L,

b) rate of change of linear momentum
P*
L,

c) angular momentum about the origin
*
H=O,

d) rate of change of angular momen-

tum about the origin P*
H=O,

e) kinetic energy EK, and

f) rate of change of kinetic energy PEK.

11.2.20 A particle has position*r D 3mO{�
2m O| C 4m Ok, velocity *v D 2m=sO{ �
3m=s O| C 7m=s Ok, and acceleration *a D
1m=s2 O{ � 8m=s2 O| C 3m=s2 Ok. For each
position of a point P defined below, find
the rate of change of angular momentum,
P*
HP , of the particle with respect to the
point P .

a) *rP D 3mO{ � 2m O| C 4m Ok,

b) *rP D 6mO{ � 4m O| C 8m Ok,

c) *rP D �9mO{C 6m O| � 12m Ok, and

d) *rP D*
0

More-Involved Problems
11.2.21 A particle of mass m D 6 kg
is moving in space. Its position, veloc-
ity, and acceleration at some instant are
*r D 1mO{ � 2m O| C 4m Ok, *v D 3m=sO{ C
4m=s O| � 7m=s Ok, and *a D 5m=s2 O{ C
11m=s2 O| � 9m=s2 Ok, respectively. At this
instant, find:

a) the net force
P *
F on the particle,

b) the net moment on the particle
about the origin

P *
MO due to the

applied forces, and
c) the power P of the applied forces.
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Problem 11.2.21: FBD of the particle

11.2.22 At a time of interest, a particle with
massm1 D 5 kg has position, velocity, and
acceleration *r1 D 3mO{, *v1 D �4m=s O|,
and *a1 D 6m=s2 O|, respectively. Another
particle with massm2 D 5 kg has position,
velocity, and acceleration *r2 D �6mO{,
*v2 D 5m=s O|, and *a2 D �4m=s2 O|, re-
spectively. For this system of two particles,
and at this time, find its

a) linear momentum
*
L,

b) rate of change of linear momentum
P*
L

c) angular momentum about the origin
*
H=O,

d) rate of change of angular momen-

tum about the origin P*
H=O,
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e) kinetic energy EK, and

f) rate of change of kinetic energy PEK.

11.2.23 A particle of mass m D 250 gm
is shot straight up (parallel to the y-axis)
from the x-axis at a distance d D 2m from
the origin. The velocity of the particle is
given by *v D v O| where v2 D v20 � 2ah,
v0 D 100m=s; a D 10m=s2 and h is the
height of the particle from the x-axis.

a) Find the linear momentum of the
particle at the outset of motion (h D
0).

b) Find the angular momentum of the
particle about the origin at the out-
set of motion (h D 0).

c) Find the linear momentum of the
particle when the particle is 20m
above the x-axis.

d) Find the angular momentum of the
particle about the origin when the
particle is 20m above the x-axis.

11.3 Central force motion
Experts note that these problems do not use
polar coordinates or any other fancy coor-
dinate systems. Such descriptions come
later in the text. At this point we want to
lay out the basic equations and the qual-
itative features that can be found by nu-
merical integration of the equations using
Cartesian (xyz) coordinates.

Preparatory Problems
11.3.1 What exactly is meant by “central
force motion”?

11.3.2 Under what circumstances is the an-
gular momentum of a system, calculated
relative to a point C which is fixed in a
Newtonian frame, conserved?

11.3.3 The mass of the earth is M , the
mass of a satellite orbiting the earth is m,
the radius of the earth is R, the force of
gravity at the earth’s surface ismg, the uni-
versal gravitational constant is G.

a) If the sattelite is at distance r what
is the force of the earth’s gravity in
terms of r;M;m and G?

b) If the sattelite is at distance r what
is the force of the earth’s gravity in
terms of r; R;m and g? (hint: eval-
uate the formula from the first part
at r D R).

More-Involved Problems
11.3.4 A satellite is put into an ellipti-
cal orbit around the earth and has a speed
vP at position P. Find an expression for
the speed vA at position A (in terms of
RE ; rp ; rA; g, and vP . The radii to A and
P are, respectively, rA and rP . [Hint: both
total energy and angular momentum are
conserved.]
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Problem 11.3.4

11.3.5 An intercontinental misile, mod-
elled as a particle, is launched on a ballis-
tic trajectory from the surface of the earth.
The force on the missile from the earth’s
gravity is F D mgR2=r2 and is directed
towards the center of the earth. When it is
launched from the equator it has speed v0
and in the direction shown, 45� from hor-
izontal (both measured relative to a New-
tonian reference frame). For the purposes
of this calculation ignore the earth’s rota-
tion. You can think of this problem as two-
dimensional in the plane shown. If you
need numbers, use the following values:

m D 1000 kg = missile mass
g D 10m=s2 at the earth’s surface,
R D 6; 400; 000m = earth’s radius,

and
v0 D 9000m=s.

The distance of the missile from the center
of the earth is r.t/.

a) Draw a free body diagram of the
missile. Write the linear momen-
tum balance equation. Break this
equation into x and y components.
Rewrite these equations as a system
of-4 first order ODE’s suitable for
computer solution. Write appropri-
ate initial conditions for the ODE’s.

b) Using the computer (or any other
means) plot the trajectory of the
rocket after it is launched for a time
of 6670 seconds. [Hint: use a much
shorter time when debugging your
program.] On the same plot draw a
(round) circle for the earth.
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Problem 11.3.5: In intercontinental ballis-
tic missile launch.

11.3.6 A particle of mass 2 kg moves in the
horizontal xy-plane under the influence of
a central force

*
F D �k*r (attraction force

proportional to distance from the origin),
where k D 200N=m and*r is the position
of the particle relative to the force center.
Neglect all other forces.

a) Show that circular trajectories are
possible, and determine the relation
between speed v and circular radius
ro which must hold on a circular
trajectory. [hint: Write

*
F D m*a,

break into x and y components,
solve the separate scalar equations,
pick fortuitous values for the free
constants in your solutions.]

b) It turns out that trajectories are in
general elliptical, as depicted in the
diagram.
For a particular elliptical trajectory
with a D 1m and b D 0:8m,
the velocity of the particle at point
1 is observed to be perpendicular
to the radial direction, with magni-
tude v1, as shown. When the par-
ticle reaches point 2, its velocity is
again perpendicular to the radial di-
rection.
Determine the speed increment �v
which would have to be added
(instantaneously) to the particle’s
speed at point 2 to transfer it to the
circular trajectory through point 2
(the dotted curve).
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11.3.7 Circular motion. Generally when
people talk about central force motion they
not only mean that the only force is di-
rected at the origin but that the magnitude
of the force only depends on the distance
from the origin. Thus in 2D

*
F D � x O{C y O|p

x2 C y2� �� �
Unit vector

� F
�q

x2 C y2
�

� �� �
Magnitude of force

where the scalar function F.r/ expresses
the dependence of the central attractive
force on distance r D

p
x2 C y2. Con-

sider a particle with massm on a candidate
circular orbit

*r D R cos�t O{CR sin�t O|
with constant speed v D j*vj D j P*rj D R�.
For each of the cases below find the speed
v for circular motion at radius R. Find
this by plugging the circular motion equa-
tion into

*
F D m*a using the form of F.r/

given. Answer in terms of other constants
given (e.g., k;m;M;G)

a) F.r/ D kr (zero-rest-length attrac-
tive spring)

b) F.r/ D GMm=r2 (inverse-square
gravitational attraction)

c) F.r/ D rn (arbitrary power law at-
traction)

d) F.r/ D F.r/ (arbitrary function).
In this case you need to find how the
speed depends on F in general.

e) Can you find a function F.r/ for
which there are two or more circu-
lar orbits at the same speed v?

11.3.8 Circular motion, numerical solu-
tion. For each of the cases in prob-
lem 11.3.7 pick values for the physical
constants. Then pick initial conditions
which, according to theory, should give cir-
cular orbits. Then numerically solve the 4
coupled first order ODEs that describe pla-
nar motion, make a plot, and show that you
do indeed get circular orbits. How big is
the disrepancy between your numerical so-
lution and an exact circle?

11.3.9 Two equal mass satellites have cir-
cular orbits at two different radii. The one
that is closer to the earth has smaller po-
tential energy and bigger kinetic energy.
Which satellite has bigger total energy?

11.3.10 Find initial conditions correspond-
ing to circular motion for a central force
problem and simulate this motion on the
computer. Use any central force attraction
law you like (e.g., zero-length spring, in-
verse square,...) Check that you get closed
circular orbits by plotting several revolu-
tions. Now, in your simulation, apply a
slight drag force opposing motion

*
F D

�c*v. Pick a value for c so that the orbit
slowly spirals in (say, less than 10% per
orbit).

a) Make a plot of the spiraling orbit.

b) Plot the speed j*vj vs time as it spi-
rals in.

c) How is it that a drag force causes
the satellite to speed up? Is that nu-
merical error? An approximation
in our formulation of the govern-
ing equations? A relativistic effect?
What?

11.3.11 Circular motion, numerical solu-
tion. For each of the cases in prob-
lem 11.3.7 pick values for the physical
constants.

a) Pick initial conditions which, ac-
cording to theory, should give cir-
cular orbits.

b) Numerically solve the 4 coupled
first order ODEs that describe pla-
nar motion, make a plot, and show
that you do indeed get circular or-
bits.

c) How big is the disrepancy between
your numerical solution and an ex-
act circle? Between the theoreti-
cally predicted period and the actual
period?

11.3.12 Conic sections, numerical solu-
tion. Newton discovered that with

*
F D

m*a and a central attractive force of F D
C=r2 that all motions were conic sections.
In particular, consider this problem, all in
consistent units: m D 1; C D 1; x0 D
1; y0 D 0; Px0 D 0; Py0 D v0. Newton
claimed that there is a special values for
v0, lets call them vc0 and vp0 with vc0 <

v
p
0 so that

� for v0 < vc0 all orbits are ellipses
with maximum distance from the
origin being 1;

� for v0 D vc0 the orbit is a circle of
radius 1;

� for vc0 < v0 < v
p
0 the orbit is an el-

lipse with minimum distance from
the origin being 1;

� for v0 D v
p
0 the orbit is a left-

opening parabola with base at the
initial condition. (to draw the com-
plete parabola you need also to use
al the same initial conditions but
with Py0 D �v0).

� for vp0 < v0 the orbit is a left-
opening hyperbola, asymptoting to
a straight line. (again you need to
use Py0 D �v0 to draw the complete
hyperbola.

a) By a sequence of more or less sys-
tematic numerical guesses find as
accurately, as you can, vc0 and vp0 .

b) Numerically solve the 4 coupled
first order ODEs for initial condi-
tions that correspond to each of the
5 cases above.

c) Plot all 5 cases on one plot showing
the 5 shapes clearly.
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CHAPTER 12
Two or more particles in

space (unconstrained)
This more advanced chapter concerns the motion of two or more particles in
space. We will use

*

F D m*
a for each particle. We will use Cartesian coor-

dinates only. The start is the set up of “two-body” type problems which are
easily generalized to 3 or more particles. The first section concerns smooth
motions due to forces from gravity, springs, smoothly applied forces and fric-
tion. The second section concerns the sudden change in velocities when im-
pulsive forces are applied.

Contents
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12.2 particle collisions . . . . . . . . . . . . . . . . . . . . . . . 602
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Box 12.4 A particle collision model of running . . . . . . . 610
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In the previous chapter you saw that once you know the forces on a parti-
cle, or how to find those forces given a particle’s position, velocity and time,
you can easily set up the equations of motion. That is, the linear momentum
balance equation for a particle

*

F D m*
a;

with initial conditions, gives a well defined mathematical problem. The so-
lution of this math problem gives the position and velocity of the particle
as a function of time. The solution may be hard or impossible to find with
pencil and paper, but can usually be found quite directly using numerical
integration.

Now we generalize this idea to two, three or more particles. In one model
of the universe every one of its parts is made of particles, and each particle
obeys Newton’s laws. We could think of all materials as made of atoms,
and of all the atoms moving in deterministic ways governed by Newton’s
laws and known force laws. If we knew the initial positions and velocities
accurately enough, then we could accurately predict the motions of all things
for all time. 1

To put it in other words, given a simple atomic view of the world and a big
computer, we could end a course on dynamics here. You know how to use
*

F D m*
a for each atom, so you could then simulate anything by simulating

the motions of the atoms which make it up.
Of course there are some serious limitations to this point of view, so be-

fore proceeding, we list some serious caveats:

� there are no computers big enough to keep track of the 1023 or so atoms
needed to describe macroscopic objects or the 1079 or so atoms in the
universe;

� the laws of interaction between the most fundamental particles are not
given by Newton’s laws but by quantum chromodynamics, or whatever;

� one feature of the rules of the world, as physicists now understand
them, is that they are not deterministic, quantum mechanics says that
you cannot know the state of the world perfectly;

� the state of the world (the positions and velocities of all the bits is not
that well known);

� the solutions of dynamics equations are often unstable in that the small-
est of errors in the initial conditions propagates into a large error in the
predicted motion (so called “chaos theory”);

1The mathematician and mechanician
Laplace (1749-1827) imagined a ’vast
intellect’ that could solve the differen-
tial equations that describe the universe.
“Laplace’s demon” was a hyper mega
super computer with access to perfect
data: “We may regard the present state
of the universe as the effect of its past
and the cause of its future. An intel-
lect which at any given moment knew
all of the forces that animate nature and
the mutual positions of the beings that
compose it, if this intellect were vast
enough to submit the data to analysis,
could condense into a single formula the
movement of the greatest bodies of the
universe and that of the lightest atom;
for such an intellect nothing could be
uncertain and the future just like the
past would be present before its eyes.”
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Filename:tfigure-earthmoon

F F

Earth Moon

FBDs

F = Gmemm
rm/e

⇀
re

⇀
rm

⇀
rm/e

k̂

ı̂

ĵC

Figure 12.1: The earth and moon. Posi-
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� some common descriptions of mechanical interactions, particularly
those for contact between nominally rigid objects, are genuinely non-
deterministic in that the governing equations do not have unique solu-
tions; and finally

� massive simulations, even if accurate, are not always the best way to
understand how things work.

Despite these limitations, in this chapter we look at the nature of systems of
interacting particles. Using this particle model we can, for example, derive
some results about angular momentum that turn out to be reliable, despite
the questionable microscopic physics. Also, the multi-particle model of the
systems is good for intuition and is also useful for modeling machines with
many parts as well as of galaxies.

12.1 Coupled motions of particles in
space

Assume you know enough about a system so that you know the forces on
each particle if someone tells you the time and the positions and velocities of
all the particles. This means you can write the governing equations for the
system of particles like this:

*
a1 D 1

m1

*

F1

*
a2 D 1

m2

*

F2

*
a3 D 1

m3

*

F3

etc. (12.1)

where
*

F1,
*

F2 etc. are the total of the forces on the corresponding parti-
cles. The force on each particle may come from air-friction, from springs or
dashpots connected here and there, or from gravity interactions with other
particles, from known applied loads, etc.. One way or another, all the forces
on all the particles are known given the time, the positions and velocities of
the particles. Thus eqn. (12.1) can be written as a system of first order dif-
ferential equations in standard form, ready for computer simulation. Given
accurate initial conditions and a good computer then the motions of all the
particles can be found accurately.

Example: Coupled motion of the earth and moon in three dimensions.
Let’s neglect the sun and just look at the coupled motions of the earth and moon.
They attract each other by the same law of gravity that we used for the sun and
earth. The difference between this problem and a “central-force” problem is that
we now need to look at the ‘absolute’ positions of the earth and the moon (*re and
*rm), as well as the ‘relative’ position*rm=e �*rm �*re (fig. 12.1).
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The linear momentum balance equations are now

me
R*re D �Gmemm

*rm=e

j*rm=e j3
and (12.2)

mm
R*rm D CGmemm

*rm=e

j*rm=e j3
; (12.3)

which, when broken into x, y, and z components give 6 second order ordinary
differential equations. These equations can be written as 12 first order equations by
defining a list of 12 z variables: z1 D xe , z2 D Pxe , z3 D Pye , z4 D ye , etc.

After you find solutions, using various initial conditions you can check if the
computer finds such truths (that is, features of the exact solution of the differential
equations) as:

1. that the line between the earth and moon always lies on one fixed plane,
2. the center-of-mass moves at constant speed on a straight line,
3. relative to the center-of-mass both the earth and moon travel on paths that are

conic sections (circle, ellipse, parabola, hyperbola or a straight line).
4. the total energy (EK CEP) of the system is constant,
5. and that the angular momentum of the system about the center-of-mass is a

constant.
These facts are discussed further below in the subsection on ‘Two-particle central
force motion’.

Momentum and energy of systems
There are a plethora of theorems about the momentum and energy of systems
of particles. These are discussed in section D. The simplest of these are just
the ones that you get from adding up the results for a single particle from
section 11.2:
Linear momentum balance.

X
all forces

*

Fj D
X

mi
*
ai .

Either because the forces between particles in a system are usually as-
sumed to come in equal and opposite pairs or because it is an indepen-
dent postulate of mechanics for general systems, the force sum can be
replaced with a sum over all the external forces.

Angular momentum balance.
X

all forces

*
rj=C �

*

Fj D
X

*
ri=C � .mi

*
ai /.

As for linear momentum, the force sum can be replaced with only the
forces that act externally on the system.

Power balance.
X

all forces

*

Fj �*vj D
d

dt

X
miv

2
i =2.

In this case the sum is over all the forces, internal and external. The
simplification to just external forces doesn’t apply to system kinetic
energy like it does for momentum and angular momentum.

The one-body problem
Lets review one special problem from the previous section. The ‘one-body’
problem should properly be about the mechanics of a single particle inter-
acting with nothing else. Such a particle moves at constant velocity and is
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1This is such a famous problem in the
history of science that people use it for
word play to describe certain social sit-
uations. For example if two people in
a couple are having trouble finding jobs
in the same city they are said to have a
‘two-body problem’.

too boring to get a name. Instead, when people refer to the ‘one-body’ prob-
lem they are talking about a particle flying around a stationary point mass to
which it is attracted. That stationary point mass is held in place by, well, who
knows what. Its just an idealized thing anchored by a massless structure. The
‘one-body’ problem is to find the motion of the particle flying around.

As we discussed in the previous sections, if the gravitational attraction
follows an inverse square law then the particle moves on a plane on a curve
which is either an ellipse, a circle, a parabola or a hyperbola. These are, quite
accurately, the trajectories of the planets and comets around the sun.

The two-body problem: two mutually attracting
particles
If two particles are attracted equally to each other by mutually central forces,
and no other forces act, this is called ‘the two-body problem’ 1. Assume the
two particles are m1 and m2 with positions *

r1 and *
r2 (relative to the origin

of a coordinate system fixed in a Newtonian frame). The force on particle 1
from particle 2 is

*

F12 D F.r12/

*
r12

r12

where *
r12 D*

r2=1 is the position of particle 2 relative to particle 1, r12 is the
distance j*r12j between the particles and F is the magnitude of the attractive
force. We assume the force on particle 2 is the opposite of this

*

F21 D �*

F12:

The instantaneous velocities are *
v1 and *

v2. We can find the center of mass G
of the pair of particles as

mtot
*
rG D m1

*
r1 Cm2

*
r2

with mtot D m1 Cm2.
Either by system linear momentum balance or by adding up

*

F D m*
a for

each of the particles it is easy to see that
*
aG D

*

0 and *
vG D constant:

Thus we could put the origin of a good Newtonian reference frame at the
center of mass *

rG . The positions, velocities and accelerations relative to G,
indicated with a prime (’), are

*
r 01 D *

r1 �*
rG

*
r 02 D *

r2 �*
rG

*
v01 D *

v1 �*
vG

*
v02 D *

v2 �*
vG

*
a01 D *

a1
*
a02 D *

a2

where we can skip use of the prime for the acceleration. Now some facts.
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� m1
*
r 01 C m2

*
r 02 D

*

0 so *
r 01 D �.m2=m1/*r 02. For all time the two posi-

tions (relative to the center of mass) are in the opposite direction and
proportional. Similarly *

v01 D �.m2=m1/*v02 and *
a01 D �.m2=m1/*a02.

� At a given instant there is a single plane defined by *
r 01;

*
r 02;

*
v01;

*
v02;

*
a01

and *
a02 because the positions and accelerations are all parallel (or an-

tiparallel) and the two velocities are (anti) parallel.

� The plane above is constant in time. This is because neither the velocity
nor the acceleration has a component orthogonal to the plane, thus there
is no tendency to leave the plane.

� Each particle moves as if it was a single particle attracted to a central
force at G. Why? Lets look at the force on mass 1

*

F12 D F.r12/

*
r12

r12
D �F.r12/

*
r 01
r 01

because the relative position of the masses passes through the origin G.

� In the special case of inverse-square gravitational attraction

F D Gm1m2

r212
D Gm1m2

.r 01 C r 02/2
D Gm1M

r 01
2

where M D m2=.1C 2.m1=m2/C .m1=m2/
2/ is a fictitious mass at

G we find using the substitution r 02 D .m1=m2/r
0
1.

What we have found here is somewhat remarkable. Two particles are flying
around in space attracted to each other by inverse-square gravitational attrac-
tion. Instead of doing something wild, they each move, relative to their joint
center of mass, as if they were in central force motion with a fixed mass. That
is, the 3D two-body problem reduces, exactly, to the 2D one body problem.
You just have to use a coordinate system that is on the plane of motion and
whose origin is at the center of mass.

Thus, the moon doesn’t really go around the earth. Rather the moon
and earth go around their common center of mass (a point about 3/4 of the
way out towards the earth’s surface from its center). And Jupiter doesn’t
go around the sun, the sun and Jupiter go around their combined center of
mass just outside the sun. But both of these examples are, in detail, wrong.
Because the earth-moon system is affected by the sun and jupiter. And the
Jupiter-sun system is affected by the earth and moon.

The three-body problem
With inverse-square attraction, one body goes around a fixed point on one or
another conic section. Two bodies go around each other in exactly the same
way as one body about a fixed point. The two-body problem reduced to the
one-body problem. What about lots of bodies? Let’s start with three. How,
in general, do three bodies move that are all mutually attracted with inverse-
square gravitation? Great question. Lots of people have asked it. And no-
one knows the answer. Given any three masses and their initial conditions
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we could use a computer program to find out their subsequent positions and
velocities. But no-one knows how to categorize all the possible motions of
such systems.

Some things are known about ‘the three body problem.’ One is that it is
hard, the best minds haven’t been able to solve it in general. Another is that
the solutions can be pretty wild. For example, three particles might tumble
around each other for a long time and, with no change in the equations, all of
a sudden one of the particles will be ejected at high speed and never return
(as if on a hyperbolic trajectory relative to the other two particles). A few
special solutions of the three-body problem are known. For example, with
the right initial conditions, three identical particles can move in either a circle
or in Montgomery’s figure 8.

Despite the difficulty of analytic description, there is no special impedi-
ment to finding solutions to any 3-body problem with computer simulation.

The n-body problem
With many particles all manner of complicated motion is possible. And there
are few solutions which are known analytically. One solution has the n parti-
cles chasing each-other around in a circle, with the particles forming a regular
polygon. Another amazing approximate solution, the Buck solution, is that a
string of thousands of particles will all chase each-other around an arbitrary
curve in 3-dimensional space. At least approximately, for a while.

By applying
*

F D m*
a to 3 or 1000 interacting particles you can see all

manner of n-body solutions on your computer.
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SAMPLE 12.1 Location of the center-of-mass. A structure is made up of
three point masses, m1 D 1 kg; m2 D 2 kg and m3 D 3 kg. At the moment
of interest, the coordinates of the three masses are (1.25 m, 3 m), (2 m, 2 m),
and (0.75 m, 0.5 m), respectively. At the same instant, the velocities of the
three masses are 2m=sO{; 2m=s.O{ � 1:5 O|/ and 1m=s O|, respectively.

1. Find the coordinates of the center-of-mass of the structure.

2. Find the velocity of the center-of-mass.

Solution

1. Let . Nx; Ny/ be the coordinates of the mass-center. Then from the definition of mass-
center

Nx D
P
mixiP
mi

D m1x1 Cm2x2 Cm3x3
m1 Cm2 Cm3

D 1 kg � 1:25mC 2 kg � 2mC 3 kg � 0:75m
1 kgC 2 kgC 3 kg

D 7:5 6kg � m
6 6kg

D 1:25m:

Similarly,

Ny D
P
miyiP
mi

D 1 kg � 3mC 2 kg � 2mC 3 kg � 0:5m
1 kgC 2 kgC 3 kg

D 8:5 6kg � m
6 6kg

D 1:42m:

Thus the center-of-mass is located at the coordinates (1.25 m, 1.42 m).

.1:25m; 1:42m/

2. For a system of particles, the linear momentum

*
L D

X
mi

*vi D mtot
*vcm

) *vcm D
P
mi

*vi

mtot

D 1 kg � .2m=sO{/C 2 kg � .2O{ � 3 O|/m=sC 3 kg � .1m=s O|/
6 kg

D .6O{ � 3 O|/ 6kg � m=s
6 6kg

D 1m=sO{ � 0:5m=s O|:
*vcm D 1m=sO{ � 0:5m=s O|
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ĵ

k̂

⇀ ⇀

−k (         )

Figure 12.4: Free-body diagram of the
two masses.

Filename:sfig5-10-hopper-b
8

6
4

2
0

2

2

0

2

4

6

8
1

0.5

0

0.5

1

x
y

z

path of m2

path of m1

Figure 12.5: 3-D trajectory of m1 and
m2 plotted from numerical solution of
the equations of motion.

SAMPLE 12.2 A spring-mass system in space. A spring-mass system
consists of two masses, m1 D 10 kg and m2 D 1 kg, and a weak spring with
stiffness k D 1N=m. The spring has zero relaxed length. The system is
in 3-D space where there is no gravity. At the instant of observaion, i.e., at
t D 0, *r1 D

*

0, *r2 D 1m.O{ C O| C Ok/; P*r1 D
*

0, and P*r2 D
p
6m=s.�O{ C O|/.

Track the motion of the system for the next 20 seconds. In particular,
1. Plot the trajectory of the two masses in space.
2. Plot the trajectory of the center-of-mass of the system.
3. Plot the trajectory of the two masses as seen by an observer sitting at

the center-of-mass.
4. Compute and plot the total energy of the system and show that it re-

mains constant during the entire motion.
Solution The free-body diagrams of the two masses are shown in fig. 12.4. The only force
acting on each mass is the force due to the spring which is directed along the line joining the
two masses. Thus, the system represents a central force problem. From the linear momentum
balance of the two masses, we can write the equations of motion as follows.

m1
R*r1 D k.*r2 �*r1/

m2
R*r2 D �k.*r2 �*r1/

Let*r1 D x1 O{C y1 O| C z1
Ok and*r2 D x2 O{C y2 O| C z2

Ok. Substituting above and dotting the
two equations with O{, O|, and Ok, we get

Rx1 D
k

m1

.x2 � x1/I Rx2 D � k

m2

.x2 � x1/

Ry1 D
k

m1

.y2 � y1/I Ry2 D � k

m2

.y2 � y1/

Rz1 D
k

m1

.z2 � z1/I Rz2 D � k

m2

.z2 � z1/

Thus we get six second order coupled linear ODEs as equations of motion.

1. To plot the trajectory of the two masses, we need to solve for *r1.t/ and *r2.t/, i.e.,
for x1.t/; y1.t/; z1.t/, and x2.t/; y2.t/; z2.t/. We can do this by first writing the six
second order equations as a set of 12 first order equations and then solving them using
a numerical ODE solver. Here is a pseudocode to accomplish this task.

ODEs = {x1dot = u1,
u1dot = k/m1*(x2-x1),
y1dot = v1,
v1dot = k/m1*(y2-y1),
z1dot = w1,
w1dot = k/m1*(z2-z1),
x2dot = u2,
u2dot = -k/m2*(x2-x1),
y2dot = v2,
v2dot = -k/m2*(y2-y1),
z2dot = w2,
w2dot = -k/m2*(z2-z1) }

IC = {x1(0)=0, y1(0)=0, z1(0)=0,
u1(0)=0, v1(0)=0, w1(0)=0,
x2(0)=1, y2(0)=1, z2(0)=1,
u2(0)=-sqrt(6), v2(0)=sqrt(6), w2(0)=0}

Set k=1, m1=10, m2=1
Solve ODEs with IC for t=0 to t=20
Plot {x1,y1,z1} and {x2,y2,z2}
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The 3-D plot showing the trajectory of the two masses obtained from the numerical
solution is shown in fig. 12.5. From the plot, it seems like the smaller mass goes
around the bigger mass as the bigger mass moves on its trajectory.

2. We can find the trajectory of the center-of-mass using the following relationships.

xcm D m1x1 Cm2x2
m1 Cm2

; ycm D m1y1 Cm2y2
m1 Cm2

; zcm D m1z1 Cm2z2
m1 Cm2

:

Since there is no external force on the system if we consider the two masses and the
spring together, the center-of-mass of the system has zero acceleration. Therefore,
we expect the center-of-mass to move on a straight path with constant velocity. The
center-of-mass coordinates xcm, ycm, and zcm are plotted against time in fig. 12.6
which show that the center-of-mass moves on a straight line in a plane parallel to the
xy-plane (z is constant). This is expected since the initial velocity of the center of has
no z-component:

*vcm D m1
*v1 Cm2

*v2

m1 Cm2

D m1 �
*
0C 1 kg �

p
.6/m=s.�O{C O|/

10 kgC 1 kg
D 0:22m=s.�O{C O|/:

3. The trajectory of the two masses with respect to the center-of-mass can be easily ob-
tained by the following relationships.

x1=cm D x1 � xcm; y1=cm D y1 � ycm; z1=cm D z1 � zcm

x2=cm D x2 � xcm; y2=cm D y2 � ycm; z2=cm D z2 � zcm

The trajectories thus obtained are shown in fig. 12.7. It is clear that the two masses
have closed orbits with respect to the center-of-mass. These closed orbits are actually
conic sections as we would expect in a central force problem.

4. We can calculate the kinetic energy of the two masses and the potential energy of the
spring at each instant during the motion and add them up to find the total energy.

.Ek/m1 D 1

2
m1.u

2
1 C v21 C w21/

.Ek/m2 D 1

2
m2.u

2
2 C v22 C w22/

Ep D 1

2
k�.x2 � x1/2 C .y2 � y1/2 C .z2 � z1/2�

Etotal D .Ek/m1 C .Ek/m2 CEp

The energies so calculated are plotted in fig. 12.8. It is clear from the plot that the total
energy remains constant during the entire motion.
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Figure 12.9: Two particles collide.
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common tangent plane has normal On.
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12.2 Collisions and explosions of particles
in 2D and 3D

When two things bump into each other there is often a big interaction force.
Think about a ball bouncing off the ground, two pool balls colliding, a base-
ball hitting a bat, two cars crashing, or the big forces when a satellite gravita-
tionally slingshots around a planet it passes close by. Similarly there are big
short-lived forces when things explode into two or more pieces. A big and
short-lived force is often described by

its net impulse
*

P D
Z

*

F dt

rather than its detailed time-history
*

F .t/. The collision modeling assumption
is that these interaction forces are so big that all other forces on the particles
can be ignored. For a two-particle collision the impulses are

*

P1 D
*

P and
*

P2 D �*

P acting on m1 and m2. Rather than looking at the acceleration of
mass during the collision one just calculates

the net change in velocity D �*
v:

Before the collision two particles m1 and m2 have velocities *
v�1 and *

v�2
(see fig. 12.9). The superscript “�” (minus) means just before the collision.
Then the particles collide. Even though we ignore the spatial extent of the
particles for most of the mechanics analysis, we note that the two particles
have a common tangent plane. The normal of that plane, pointing out of
particle 1, say, is On. Just after the collision the particles have velocities *

vC1
and *

vC2 with the superscript“C” indicating just after the collision.
The general collision problem is

Given some information about the motion before the collision, the mo-
tion after the collision, and the collisional impulse, find other informa-
tion about these same quantities.

We find the unknowns using

� Momentum balance for each particle:
*

P D R *

F .t/ dt D m�*
v; and

� Some information about the collisional impulse, usually a constitutive
law for the collision.

For collisional modeling the constitutive law for interaction involves impulse
and change of velocity. We only consider two such constitutive models:

� plastic sticking collisions where *
vC1 D*

vC2 .

� frictionless restitution with .*vC1 � *
vC2 / � On D �e.*v�1 � *

v�2 / � On and
*

P � O� D 0.
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The constitutive models are discussed further below in the context of the the
three idealized collisions we treat here:

� sticking collisions

� frictionless collisions with restitution

� explosions.

The only expansion in this section over the 1D collisions in section 9.5 is the
need for 2D and 3D geometry.

Sticking collisions
The conceptually simplest collision is a sticking collision also called a per-
fectly plastic no-slip collision (see fig. 12.10). Here the word ‘plastic’ is used
in its old latin meaning malleable or ‘clay like’. Imagine two lumps of wet
clay colliding in space and just sticking together. The plastic collision model
applies, for example,

� when a projectile gets embedded in its target,

� when two cars crash and get entangled so they move together after the
collision, or

� when two machine parts engage at contact because of a mechanism like
a door catch.

In short, the constitutive law for plastic collisions is

Plastic (sticking collision) ) *
vC1 D*

vC2

And the impulse is what it is, as determined by momentum balance for the
two particles. Here’s the simplest collision problem.

Example: A particle collides with an immovable object.
The impulse on the particle is

*
P D m�*v D m.

*
0 �*v�/ D �m*v�:

And here is the general two-particle sticking collision problem.
Example: Two particles collide and stick.
There are three velocities to consider, the before-collision velocities*v�1 and*v�2 and
the common after-collision velocity*vC. Also relevant is the interaction impulse

*
P .

That’s 4 vector quantities (8 scalars in 2D, 12 in 3D). The governing equations are
momentum balance for the two particles

*
P D m1.

*vC �*v�1 / and
*
P D m2.

*vC �*v�2 /

making up 2 vector equations (4 scalar equations in 2D, 6 in 3D). Thus to solve a
problem in 2D, 4 scalar quantities need to be given so that the other quantities can
be found from the momentum balance equations. In 3D, 6 scalar quantities have to
be given.
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Figure 12.10: Two particles collide and
stick together so in their subsequent mo-
tion *vC1 D *v�1 D *vC. The action-
reaction impulse pair is in whatever di-
rection it needs to be to get this sticking;
the impulses need not be in just the On
direction.
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bounce off each other frictionlessly. The
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the approach speed is �.*v�1 �*v�2 / � On.

There are all different ways to involute such problems, say by taking one of
the masses as unknown. Here is the most straightforward example.

Example: Find the post-collision velocities for a sticking collision.
Given m1; m2;

*v�1 and *v�2 we find by solving the momentum balance equations
that

*vC D m1
*v�1 Cm2

*v�2
m1 Cm2

and
*
P1 D �*

P2 D
m1m2

m1 Cm2

�
*v�2 �*v�1

�
:

The answer can be interpreted like this. The final velocity is the same as the pre-
collision average velocity. This is also the system’s initial (and final) center of mass
velocity. The impulsive interaction is associated with the change of velocity of
*v�1 �*v�2 of an effective ‘reduced mass’ with a value ofmred D m1m2=.m1Cm2/

(see box 12.1 on page 604).

Frictionless collisions with restitution
This is the most common model used in elementary mechanics courses. It is
originally due to Newton, at least in the 1D case we discussed in section 9.5.
Two particles collide and then separate. There is no interaction force in their
common contact tangent plane (hence ‘frictionless’). See fig. 12.11. The
impulse is such that the particles separate at a speed that is a fixed ratio e of
the speed at which they approached. The speed of approach and separation
are measured in the On direction.

The speed of approach is the rate at which the distance between the parti-
cles decreases just before the collision. Really, this only makes precise sense
if

� the masses are round, or

� the masses are not rotating.

12.1 Effective mass
In two-particle collisions the forces of interest are in the action-
reaction pair between the particles:

*
F1 acts onm1 and

*
F2 D �*

F1
acts on particle 2. If we know one we know the other, so let’s call
*
F the force

*
F1 on m1. The two-particle system has no net accel-

eration, meaning the center of mass does not accelerate. All that the
interaction force does is affect the relative motion of the particles.

So consider the relative acceleration of particle 1, say, relative
to particle 2:

*arel D*a1�*a2 D
*
F1
m1

�
*
F2
m2

D
*
F1
m1

��
*
F1
m2

D *
F

�
1

m1

C 1

m2

�
:

Thus we can write
*
F D meff

*arel

with meff D
�
1
m1

C 1
m2

��1 D m1m2
m1Cm2

The ‘reduced mass’ or ‘effective mass’ meff is that which connects
the interaction force with the relative acceleration *arel D*a1 D*a2
of the masses. To personalize it, imagine you have negligible mass
and are floating in space between two big masses holding a handle
on each. Then the relation between the tension in your arms and the
relative acceleration of the masses is determined by the reduced ef-
fective massmeff. The effective mass is less than either of the masses
separately (because the relative acceleration comes from the addition
of the two accelerations). For two equal massesm D m1 D m2 the
effective mass ismeff D m=2.

Integrating in time the effective mass also relates the interaction
impulse with the change in relative velocity.

*
P D meff�

*vrel:

where
*
P D R *

Fdt acts onm1 and*vrel D*v1 �*v2.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 12. Many particles in space 12.2. particle collisions 605

The approach speed is the relative velocity dotted with the On direction

vapproach D .*v�1 �*
v�2 / � On:

The separation speed, measured just after the collision, has the same defini-
tion but with a sign change

vsep D � �*vC1 �*
vC2
� � On:

Newton’s law of collisional restitution 1 is

vsep D evapproach or
�
*
vC1 �*

vC2
� � On D �e .*v�1 �*

v�2 / � On: (12.4)

We use the coefficient of restitution for approximate collisional modeling
but,

the ‘coefficient of restitution’ restitution equation is not an accurate law
of nature.

Example: Two-particle elastic collision.
Two particles m1 and m2 have pre-collision velocities of *v�1 and *v�2 and collide
frictionlessly with coefficient of restitution e on the tangent plane with normal On.
The post collision velocities *vC1 and *vC2 , as well as the impulse

*
P are found by

simultaneously solving these equations.

*
P D m1

�
*vC1 �*v�1

�
�*
P D m2

�
*vC2 �*v�2

�
�
*vC1 �*vC2

�
� On D �e �*v�1 �*v�2

� � On
In 2D this makes up 5 scalar equations for 5 scalar unknowns. In 3D its 7 equations
for 7 unknowns. The most direct solution is to set up and solve these equations
using a computer.

Rather it is an approximate empirical observation. Or, to put it another way,
the value of the coefficient of restitution e depends on the material, the shape,
the orientation and the speed of the colliding particles. It is not a true con-
stant. Nonetheless, eqn. (12.4) is a reasonable approximation for some engi-
neering purposes. Just don’t assume that predictions it makes will generally
be highly accurate.

The ‘frictionless’ part of this collision law is expressed by the assumption
that the net impulse of interaction is in the On direction. So

*

P D P On with no
component in the O� direction.

Generally one assumes that the coefficient of restitution is between zero
and one:

0 � e � 1:

For e < 0 the masses have to pass through each other. For e > 1 the

1Why the word restitution? The parti-
cles approach each other with some mo-
mentum relative to their common cen-
ter of mass. At some point during the
collision they have none. Then some of
the momentum is restituted, paid back,
and they bounce. No restitution, e D 0,
and there is no bounce. Full restitution,
e D 1, and they separate with the as
much relative momentum as they had
when they approached.
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collision would involve a gain in energy. This might happen if there was
explosive gunpowder in the contact region of the collision.

In the case e D 0 the collision is perfectly plastic but still frictionless.
This is generally not a sticking collision because the masses can enter and
hence leave the collision with some relative velocity in the common contact
plane (the O� direction).

Explosions
If one particle explodes into pieces it’s as if the pieces had a collision. It’s
just that the initial velocities of the pieces were all the same and the total
kinetic energy of the system increases during the ‘collision’. See fig. 12.12.
The overall treatment is extremely similar to that for sticking collisions, but
in some sense backwards. Instead of the particles entering the collision with
different velocities and leaving with the same velocity, they enter with the
same velocity and leave with different velocities. But the same momentum
principles apply. There is no collision law or coefficient of restitution to
apply, all of the post-collision relative velocity is restituted from nothing.
Rather one just has to know (or find) the action-reaction impulse between the
masses.

Example: An explosion.
Two particles m1 and m2 are stuck together and moving at*v� when they explode

12.2 Energetics of collisions
Often one thinks of collisions as passive and energetically dissipa-
tive. However, as noted in the text, an explosion is a collision of
sorts in which the system kinetic energy increases. We’d like to treat
these cases in a unified way. First let’s calculate the total kinetic
energy.

2EK D m1v
2
1 Cm2v

2
2

D mtotv
2
cm Cm1j*v1 �*vcmj2 Cm2j*v2 �*vcmj2

D mtotv
2
cm Cmeffj*v1 �*v2j2

D mtotv
2
cm Cmeffv

2
rel

where mtot D m1 Cm2, meff D m1m2=.m1 Cm2/ and vrel D
j*v1 �*v2j. There are a few algebra steps needed to go from line
to line above (see section D for related calculations). The concept
of effective mass meff is introduced in box 12.1. The key result is
that the kinetic energy of a two-particle system can be written as the
sum of two terms, one involving center of mass velocity and one
involving the relative velocity of the two masses.

This is a special result for two-particle systems. For any system
the kinetic energy is a center of mass term (mv2cm=2) plus a term
for motion relative to the center of mass. But generally the relative
motion term is written as a sum of terms, one for each particle, and
the motion of each particle is measured relative to the center of mass
(mvi=cm). What is special for two-particle systems is that the rel-
ative motion part can be written in terms of the motion of the two

particles relative to each other. Because that is not the velocity of
any real thing, it only gives the right kinetic energy when used with
the corrected effective mass (meff).

What about energy and collisions? The center of mass velocity
and energy do not change in the collision. So the only change in
kinetic energy is that associated with changes inmeffv

2
rel.

2�EK D meff

�
.v
C
rel/

2 � .v�rel/
2
�

D 2*v�rel �
*
P C j*Pj2=meff

where we used that
*
P D meff.

*v
C
rel �*v�rel/. This formula applies

for both sticking collisions, in which case
*
P D �meff

*v�rel and
2�EK D �meff.v

�
rel/

2, and to explosions where
*
P D meff

*v
C
rel

and 2�EK D meff.v
C
rel/

2. It also applies to interactions in-
between.

All that enters the change-of-energy equations above is the pro-
jection of the relative velocity in the

*
P direction. Thus the issue of

energy loss or gain is determined by whether the projection of the
relative velocity in the

*
P direction decreases or increases in magni-

tude. Thus a collision with�1 < e < 1 loses energy and a collision
with jej > 1 increases energy. We included e < 0 for complete-
ness even though it is sometimes considered ‘non-physical’ in that it
involves the particles passing by or passing through each other.
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and an impulse
*
P separates them. After the collision

*vC1 D*v� C *
P=m1 and *vC2 D*v� � *

P=m2:

The full range of behavior for sticking collisions to explosions can be cap-
tured with a single restitution coefficient eg (see box 12.3).

Frictional collisions
Our avoiding of frictional collisions is not because there generally is no
friction during collisions. Friction is a fact of the mechanical world. We
avoid friction here because a host of special assumptions are needed to
make frictional problems deterministic. And no given set of assumptions
is known to yield accurate predictions. Frictional collision models have too
dis-satisfyingly low a ratio of accuracy to complexity for inclusion in a book
at this level.

Simultaneous collisions
If one particle is involved in two collisions at one time then we have not
explained how to calculate the resulting motion. In an attempt to make the
situation clear one is tempted to say “Let’s make it ideal and assume the
collisions are exactly instantaneous and at exactly the same time.” Then,
unfortunately, one is making the situation exactly ambiguous.

Unfortunately for our hope of making reliable predictions, simultaneous
collisions are not rare events. Why? Imagine B is touching C and both are
stationary. Then A comes and bangs into B. Because B and C are already
touching one must assume that there are impulsive forces not just between A
and B, but also between B and C. And we have no reliable rules for sorting
out the result. Nor will we find such rules if we make it a life’s work.

Example: A triangular array of identical spheres.
Imagine 15 accurately-machined nominally-identical spheres laid out in a tight tri-
angle (5 in one row, 4 in the next, then 3,2, and 1) on a very flat smooth surface.
Then imagine a 16th ball rolls in and hits the apex of the triangle. How do the 15
balls move?

This experiment is performed in smoky rooms full of intoxicated people night
after night. Its the ‘break’ in a pool game. And the game depends on the result
being unpredictable. Each time, due to tiny differences, the results are different.

And, according to theory, the more rigid and perfect the balls are, the more
sensitive are the results to the smallest of differences in the initial conditions.

What is the source of the problem?
Example: Three balls in a line.
Consider the one-dimensional collision of three identical particles. B and C are in
line, stationary and touching and then A comes along with vA0 D v�. Let’s assume
that the collision(s) whatever they are, are completely elastic and conserve energy
(e D 1; eg D 0). Here are two ways to predict the outcome:

� A hits B and C, being all the way at the other side of B, is oblivious to the
interaction between A and B until it is complete. Thus A comes to rest and
B is moving to the right with v�. Then B collides elastically with C and B
comes to rest and C shoots off with the v�.
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� B and C are touching and act as a single rigid object throughout the collision
with A. Thus the result is like that between a particle with massm and another
with mass 2m. Such an elastic collision would leave B and C going forwards
at 2v�=3 and A going the other way with vC

A
D �v�=3. A different result.

� actually there is a one-parameter family of results that are consistent with
energy conservation and momentum balance. We have three outcomes (the
velocities of the three particles) and only 2 scalar equations restricting them
(momentum and energy balance).

But what would really happen? That would depend on details that are not stated. Of
course if the exact shape and configuration of the balls was known, and the exact
rules for elastic and inelastic deformation, then one could calculate the resulting
motion solving partial differential equations or with atomic simulations. In prin-
ciple. But we generally do not know such details nor have have such calculation
abilities. And crowding that which we don’t know into concepts like ‘rigid-object’
and ‘exactly simultaneous’ crowds the prediction of the outcome to dependence on
infinitesimal things.

So, as an engineer, what are you supposed to do when calculating in situa-
tions involving simultaneous collisions?

� first relax and remember that no collision calculation is likely to be very
accurate (unless the result only depends on balance of momentum). So
simultaneous collisions, while philosophically worse in that even the
equations are indeterminate, are not that much worse than the usual
deterministic, but not accurate, collisional relations.

� do experiments, and

� take account the range of outcomes depending on assumptions about
the collision details.

Samples 12.4 and 12.5 starting on page 612 illustrate the ambiguity of simul-
taneous collisions in 2D.

Final comments
This is the second of three sections about collisions. Section 9.5 was about
collisions in 1D, then this section about particles in 2D and 3D, and finally
the ideas in this section will be extended from particles to rigid objects in
section 16.5.
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12.3 Coefficient of generation
Often one thinks of collisions as passive and energetically dissipa-
tive. However, as noted in the text, an explosion is a collision of sorts
in which the system kinetic energy increases. For passive friction-
less collisions one can characterize the collision by the coefficient of
restitution

e � (separation speed)
(approach speed)

D �.*vC
1
�*v

C
2
/ � On

.*v�
1
�*v�

2
/ � On (12.5)

However, for explosions the coefficient of restitution is e D 1.
If one is equally interested in energy absorbing or energy creating
collisions one can use a more democratic coefficient of generation

eg � (separation speed)-(approach speed)
(separation speed)+(approach speed)

D �.*vC
1
�*v

C
2
/ � On� .*v�

1
�*v�

2
/ � On

�.*vC
1
�*v

C
2
/ � OnC .*v�

1
�*v�

2
/ � On (12.6)

We can write the collisional coefficient of generation in terms of the

restitution coefficient, and vice versa, as

eg D
e � 1
eC 1 and e D 1C eg

1� eg
:

The generation coefficient is -1 for sticking collisions and 1 for ex-
plosions. This coefficient is zero for energetically neutral collisions
(no gain, no loss, e D 1). And the coefficient of generation does not
allow for passing-through or passing-by collisions (e < 0).

As a replacement for the conventional coefficient of restitution
the coefficient of generation eg is more complex to use in simple
calculations in that eqn. (12.6) is more complex than eqn. (12.5). On
the other hand the coefficient of generation is convenient for describ-
ing situations which are a mix of passive (e < 1 and eg < 0) and
active (e > 1 and eg > 0). Such is the case, for example, in simple
models of legged locomotion (see box 12.4 on page 610).

Note that in all the collisional restitution formulas we could re-
place Onwith�Onwithout affecting the validity of the equations. Sim-
ilarly all the subscript 2’s could be replaced with 1’s and vice versa
without affecting the validity of the equations. Knowing this relieves
anxiety about the choice of normal On (towardsm1 or towardsm2?)
or which particle to call 1 and which to call 2.
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12.4 A particle collision model of running
At every step a running person flies through the air, hits the ground
with a foot and pushes on the ground. By action and reaction, the
ground pushes back on the foot which pushes on the leg which
pushes on the body which causes the body to slow its descent and
then go from moving forward and somewhat down to moving for-
ward and somewhat up. Then the foot leaves the ground and the
person flies through the air again readying for the next foot contact.

Human bodies are somewhat bigger than human legs so one ap-
proximation is that the legs have negligible mass. Human bodies
don’t tumble about much during a running step, so a next approxi-
mation is to neglect all distortion and rotation of the body and think
of it as a particle. Finally, one might imagine that the ground con-
tact time is short, and that the step on the ground is like a bounce.
Thus running is like a sequence of collisions between a body and the
ground. Obviously a running person is not a bouncing particle in all
regards. Nonetheless, this model gives a means for making various
estimates about running.

In the flight phase of running, neglecting air friction, the body
moves in a parabolic arc according to:

*
F D m*a ) �mg O| D m*a

This has solution that the time of flight is

tf D 2vy0=g

where vy0 is the vertical component of the velocity at the start of
flight. The distance of flight is

d D vxtf D 2vxvy=g

where vx is the constant horizontal component of velocity.
What happens in the ‘collision’ with the ground?

The horrible leap-frog model of
running
We could think of each step as independent. Each running step would
be a jump at the end of which the body would come to rest and then
jump again. That is, each step would start with an explosion and,
after a period of flight, end with a plastic no-slip collision. Then
immediately after there would be another jump. How much energy
would it take to run like that? Each jump would involve an impulse
to get the body from zero velocity to *v D vx O{C vy0 O|. The work
of the legs would be the increase in kinetic energy.

W D mv2=2 D m.v2x C v2y0/=2
Then the legs would absorb that much energy at landing. Muscles,
unlike generators, are not regenerative. If muscles were regenerative
you would feel especially peppy after you walked down a long stair
case. On the other hand, walking down stairs is not that tiring. So
let’s approximate that there is no metabolic cost for absorbing work.
So the energetic cost of locomotion per unit time would be

P DW=tf D
m
�
v2x C v2y0

�
=2

2vy0=g
D mgvx

tan � C cot �
4

where tan � D vy0=vx is the angle of the trajectory at liftoff. The
function tan � C cot � has its minimum value of 2 at � D 45� so
the cost of such locomotion, in terms of average power, ismgvx=2.
Muscles use about 4 time as much chemical energy as they can pro-
duce work (ie, about 25% efficient at best) so the chemical energy to
run by jumping and landing, over and over again, would be about

Metabolic Cost per unit time D Pmet D 2mgvx ;

that twice the weight times the speed. The chemical energy needed
per unit distance would be about 2 � .weight/.

Obviously this seems like a tiring way to run. You shouldn’t
stop and start your horizontal motion at every step. Real people don’t
do that. Furthermore, the energy cost we have just predicted is bigger
than what people use by a factor of about 5; the rate at which peo-
ple use chemical energy to run is more like mgvx=2 or mgvx=3.
Notice that the energetic cost of this mode of ‘running’ does not de-
pend on the step length or flight time but only on the initial angle of
the trajectories. Smaller steps involve smaller collisions and hence
smaller energy cost per collision. But with smaller jumps there are
more collisions per unit distance. The two effects exactly cancel in
this model. Only the angle of liftoff matters, not the length of the
jumps.

Frictionless collision model of
running
Although shoes generally have high friction, the legs pivot under the
body during ground contact. The result is that the main force trans-
mitted by the leg to the body is vertical. In effect the leg mediates an
effectively frictionless collision. At least that’s an extreme idealiza-
tion of what a leg does. Perhaps a better model of running is then a
sequence of vertical frictionless collisions.

At each step there is, in effect, a plastic frictionless collision
which absorbs energy immediately followed by an energetically gen-
erative collision that sends the body back up again. Together they
look like a single frictionless elastic collision, but in this model we
want to take account of the work absorbed in landing and the work
needed to take off again. To start we will neglect that humans do
have springs in their legs (e.g., tendons).

Thus at each step the energy needed to take off is

W D mv2y0=2:

The time of flight is again tf D 2vy0=g and so, for this model the
average work per unit time is

P DW=tf D mv2
y0
=2

2vy0=g
D mgvy0=4

and the work per unit distance would be

work per unit distance D mg
vy0=vx

4
D mg tan �=4

and the metabolic cost per unit distance, taking muscle efficiency as
25% again, would be the weight times tan � . So, at a given horizon-
tal speed, the energy cost per unit distance can be made arbitrarily
small by having the flight angle small and there being, consequently,
more and more small collisions. But for a person to try to save en-
ergy that way she would have to swing her legs in impossibly tiring
small rapid steps. To complete this model so that it would not predict
that people should choose infinite frequency and infinitesimal steps
we would have to add in a formula for the cost of swinging the legs
rapidly. If we evaluate this model with the step length of real hu-
man running, and the consequent launch angle � we over-estimate
the actual energetic cost of running by about a factor of 2. Why is
that? Probably because people do use their springs to bounce. They
don’t just throw away all their energy at each ground landing and
then jump vertically. Rather their tendons store energy and release
it at each step, doing something like half of the work needed to get
airborne again.
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SAMPLE 12.3 Projectile hits a slanted floor: A ball of mass m D 0:2 kg
is thrown in the air at an angle � D 60� with initial speed v0 D 10m=s. The
ball lands on a hard, frictionless floor that is tilted at angle � D 20� with
the horizontal. The coefficient of restitution between the floor and the ball is
e D 0:85. Ignore air resistance. Find the height of the ball after the rebound
from the floor.

Solution This problem has two parts to it. In order to figure out the height after rebound,
we need to find the rebound velocity. But to find the rebound velocity, we need to know the
velocity of the ball before impact with the floor. Let the velocity just before the impact be*v�
and the velocity of rebound (just after impact be*vC. Let us first find*v�.

The ball undergoes projectile motion before it lands at A. Its initial (launch) velocity is
*v0 D v0.cos � O{ C sin � O|/. From energy conservation, we know that the kinetic energy just
before impact at A, mj*v�j2=2, must be the same as kinetic energy at launch, mv20=2. Thus
j*v�j D v0. And, from the symmetry of the flight, we can conclude that *v� must make the
same angle � with the horizontal that*v0 does. Thus, using fig. 12.14, we have

*v� D v0.cos � O{ � sin � O|/:

Now we are ready to do collision mechanics at point A. We need to determine *vC given
*v� and the coefficient of restitution for the collision at A. From collision law, we know that
the velocity component normal to the floor changes because of the normal impulse during
collision, while the tangential velocity remains the same because there is no force or impulse
parallel to the floor. Thus,

*vC � O� D *v� � O�
*vC � On D �e.*v� � On/:

Writing out*vC D vCx O{CvCy O|, and noting that O� D cos� O{Csin� O| and On D � sin� O{Ccos� O|,
we get, from the equations above,

cos�vCx C sin�vCy D v0 cos � cos� � v0 sin � sin� D v0 cos.� C �/

� sin�vCx C cos�vCy D �e v0.� cos � sin� � sin � cos�/ D e v0 sin.� C �/:

These are two equations in two unknowns, vCx and vCy . Writing them in a matrix form and
solving the matrix equation, we get�

vCx
vCy

�
D
�

cos� � sin�
sin� cos�

��
v0 cos.� C �/

e v0 sin.� C �/

�
D
�

v0 cos.� C 2�/

e v0 sin.� C 2�/

�
:

Thus, we know the rebound velocity*vC D v0�cos.� C 2�/O{C e sin.� C 2�/ O|�.
To find the maximum height reached by the ball on the rebound, we only need the vertical

component of the rebound velocity. Since the ball has a constant deceleration g, we can use
the formula .vy/

2 D .vy0/
2 � 2gh with vy D 0 at the maximum height hmax to get,

hmax D
.vCy /2

2g
D e2 v20 sin2.� C 2�/

2g

Substituting the given values of v0, e, � , and �, and using g D 9:81m=s2, we get,

hmax D 3:57m:

hmax D 3:57m

You can see that the inclined plane helps in getting the ball reach higher on the bounce. If the

floor were flat (� D 0), we will get hmax D 2:76m. It should be obvious that for maximum

height, we should have sin.� C 2�/ D 1 which gives � D 1
2 .

�
2 � �/.
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Figure 12.14: Trajectory of the ball
through air: From the symmetry of the
trajectory, we can conclude that the an-
gle the velocity vector makes with the
horizontal at point A is the same as the
angle of launch, � .
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Figure 12.15: Collision of the ball with
the tilted floor: The ball strikes the floor
with velocity *v�. It rebounds with ve-
locity *vC. The impulse during the col-
lision acts in the normal direction to the
floor at A. The unit normal and the unit
tangent vectors at A are On D � sin� O{C
cos� O|, and O� D cos� O{Csin� O| respec-
tively.
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Figure 12.17: The ball and the cart as
a system during the collision. There are
no external forces or impulses acting on
the system. Therefore, the linear mo-
mentum must be conserved during the
collision; i.e.,

*
L� D *

LC.
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Figure 12.18: Free body diagram of the
ball during the collision. The impulse
P1 acts normal to the plane of collision
which is the inclined surface of the cart.

SAMPLE 12.4 Simultaneous collisions: This problem involves two simul-
taneous collisions. In general, such problems are hard to solve. We are going
to show one way of solving such problems by treating the collisions succes-
sively. However, this leads to nonuniqueness of solution. Here we solve the
problem in one way and in the next sample, we solve the same problem in
another way.

A 12 kg cart with an inclined face rests on a frictionless floor. A ball of
mass 3 kg is shot horizontally with speed 30m=s at the inclined face of the
cart. The coefficient of restitution between the cart and the ball is 0.9. The
cart subsequently moves horizontally on the floor. Find the velocity of the
ball and that of the cart after the collision.

Solution There are two simultaneous collisions in this problem. One collision is between the
ball and the cart and the other is between the cart and the ground. Here, we will treat the two
collisions one after the other, the one between the ball and the cart preceding the one between
the cart and the ground. In Sample 12.5, we treat the ground collision first.

Collision between the ball and the cart: Here we assume that the ball hits the cart and both
are free to move in any direction immediately after the collision. Let the mass of the ball be
m1 and that of the cart be m2. Let their after collision velocities be*vC1 and*vC2 , respectively.
Let the impulse during this collision be P1.

Let us consider the cart and the ball as a single system during the collision. Then, the
impulse becomes internal to this system and there is no net impulse on this system. Therefore,
the linear momentum is conserved; that is,

*
LC D *

L�. From this relationship, we have,

m1
*vC1 C m2

*vC2 D m1
*v�1 C m2

*v�2 D m1v0 O{:

Writing out the unknown velocities in terms of their x and y components and dotting the
resulting equation with O{ and O| separately, we get the following two scalar equations:

m1v
C
1x Cm2v

C
2x D m1v0 (12.7)

m1v
C
1y Cm2v

C
2y D 0: (12.8)

We have four unknowns here, vC1x , vC1y , vC2x , and vC2y . So, far we have just two equations.
We need more equations. We can write restitution equation relating the relative velocities of
the ball and the cart in the normal direction before and after the collision:

.*vC2 �*vC1 / � On D �e.*v�2 �*v�1 / � On D e.v0 O{/ � On:

Now, writing On D nx O{C ny O| and carrying out the dot products (after writing*vC1 and*vC2 in
terms of their components), we get,

.vC2x � vC1x/nx C .vC2y � vC1y/ny D �e v0 nx : (12.9)

We still need another equation. Let us now consider the impulse acting on the ball during
the collision. From the free body diagram shown in fig. 12.2, we can write the change in
momentum of the ball as,

P1 On D m1
*vC1 �m1

*v�1
or P1.nx O{C ny O|/ D m1.v

C
1x O{C vC1y O| � v0 O{/:

Again, separating out this equation in scalar equations (by dotting the equation with O{ and O|
separately), we get,

P1nx �m1v
C
1x D �m1v0 (12.10)

P1ny �m1v
C
1y D 0: (12.11)
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Now, we have added another unknown P1, but fortunately, we have got an extra equation too.
We now have five unknowns and five independent equations. So we should be able to solve
for all the unknowns.

For solving these equations, we first write them in matrix form and then use a computer
to solve them. We write eqn. (12.7)–eqn. (12.11) as,2

66664
m1 0 m2 0 0

0 m1 0 m2 0

�nx �ny nx ny 0

�m1 0 0 0 nx
0 �m1 0 0 ny

3
77775

0
BBBBB@
vC1x
vC1y
vC2x
vC2y
P1

1
CCCCCA D

0
BBBB@

m1v0
0

�ev0nx
�m1v0
0

1
CCCCA :

Here is the pseudo computer code to solve this matrix equation:

m1 = 3, m2 = 12
theta = pi/6 % angle in radians
nx = -sin(theta), ny = cos(theta) % components of the normal
v0 = 30
e = 0.9

A = [ m1 0 m2 0 0 % x comp of lin mom bal
0 m1 0 m2 0 % y comp of lin mom bal

-nx -ny nx ny 0 % restitution equation
-m1 0 0 0 -nx % impulse-momentum for m1, x comp
0 -m1 0 0 -ny] % impulse-momentum for m1, y comp

b = [m1*v0 0 -e*v0*nx -m1*v0 0]’ % the known right hand side
solve A*x = b for x

The solution thus computed gives us

vC1x D 18:60m=s; vC1y D 19:74m=s;

vC2x D 2:85m=s; vC2y D �4:94m=s;

P1 D �68:40N � s:

*vC1 D .18:60m=s/O{ C .19:74m=s/ O|
*vC2 D .2:85m=s/O{ C .�4:94m=s/ O|

Collision between the cart and the ground: Now, we consider the collision between the cart
and the ground, taking *vC2 as the velocity of the cart just before the collision. Figure 12.19
shows the impulse from the ground acting on the cart. We know the final velocity of the cart
has to be in the O{ direction. Just to keep our notations straight, let us denote the velocity of
the cart after collision as*vCC

2 (after the second collision) and keep the incoming velocity as
*vC2 . Then, from impulse momentum, we have,

P2 O| D m2
*vCC
2 �m2

*vC2 :

This is a vector equation which we can write as two scalar equations in the O{ and O| directions.
Note that*vCC

2 D vCC
2 O{ and we already know*vC2 D .2:85m=s/O{C .�4:94m=s/ O| as found

before. Thus,

vCC
2 D *vC2 � O{ D 2:85m=s

P2 D �m2
*vC2 � O| D �.12 kg/.�4:94m=s/ D 59:24 kg � m=s D 59:24N � s:

*vCC
2 D 2:85m=sO{ Filename:sfig11-2-two-collisions-c
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Figure 12.21: Free body diagram of
the ball-cart system during the collision
with the ground. The ground impulse
is P , the velocities of the ball and the
cart before the collision are given —
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Figure 12.22: Free body diagram of the
ball during the collision with the cart.
The cart impulse P1 acts along the nor-
mal On. From geometry, we find that
On � nx O{C ny O| D � sin� O{C cos� O|.

SAMPLE 12.5 Simultaneous collisions again: Consider the ball and the
cart collision problem of Sample 12.4 again. This time, consider the ball and
the cart together to have a collision with the ground first. Then consider the
collision between the cart and the ball. Once again, you are to find the final
horizontal velocity of the cart. The problem parameters are the same — mass
of the ball m1 D 3 kg, mass of the cart m2 D 12 kg, e D 0:9 between the
ball and the cart, and the velocity of the ball before impact, v0 D 30m=s.

Solution Let us consider the ball and the cart as a system colliding with the ground as shown
in fig. 12.21. There is an unknown external impulse P2 from the ground acting on this system
in the O| direction. Using this information, we now write impulse-momentum equation for this
system:

P2 O| D
*
L2 �

*
L1 D m1

*vC1 Cm2
*vC2 �m1

*v�1
Assuming that*vC1 D vC1x O{CvC1y O| and*vC2 D vC2 O{, and using the given information*v�1 D v0 O{,
we obtain the following two scalar equations from the vector impulse-momentum equation:

m1v
C
1x Cm2v

C
2 D m1v0 (12.12)

m1v
C
1y � P2 D 0 (12.13)

So far, we have two equations and four unknowns — vC1x , vC1y , vC2 and P2. Obviously, we
need more equations. Now, let us consider the collision between the cart and the ball. Let the
impulse of this collision be P1. Then the impulse-momentum equation for the ball gives us,

P1 On D m1.v
C
1x O{C vC1y O|/ �m1v0 O{:

Once again, we separate out the scalar equations from this vector equation, using the infor-
mation On D nx O{C ny O|:

m1v
C
1x � Pnx D m1v0 (12.14)

m1v
C
1y � Pny D 0 (12.15)

Thus, we have now four equations; we still need one more. We now use the restitution
equation to relate the normal components of the relative velocities of approach and departure
of the ball and the cart:

.*vC1 �*vC2 / � On D �e.v�1 � v�2 / � On
) vC1xnx C vC1yny � v2nx D �e v0nx : (12.16)

Now we have five equations in five unknowns. All we need to do now is to solve these linear
equations for all the unknowns. We do so by first writing the five equations (eqn. (12.12) to
eqn. (12.16) in matrix form and then solving the matrix equation on a computer. The matrix
equation is: 2

66664
m1 0 m2 0 0

0 m1 0 0 �1
m1 0 0 �nx 0

0 m1 0 �ny 0

nx ny �nx 0 0

3
77775

0
BBBB@
vC1x
vC1y
vC2
P1
P2

1
CCCCA D

0
BBBB@

m1v0
0

m1v0
0

�e v0nx :

1
CCCCA :

Solving this equation as in the previous sample, we get,

vC1x D 16:59m=s; vC1y D 23:23m=s; vC2 D 3:35m=s; P1 D 80:47N � s; P2 D 69:69N � s:

*vC2 D .3:35m=s/O{

Note that the answer obtained here is not the same as that found in Sample 12.4; the cart

moves a bit faster to the right in this answer. Depending on the mass ratios and the angle of

impact, the two methods can give very different answers or very close answers. Welcome to

the world of modeling!
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Problems for
Chapter 12
Coupled motions for particles in space

12.1 Coupled motions of
particles in space
Preparatory Problems
12.1.1 Linear momentum balance applied
to the whole of a system consisting of mul-
tiple interacting particles reduces to

*
F D

m*a if you interpret the terms correctly.
What are the correct interpretations of

*
F ,

m and*a?

12.1.2 A particle of mass m1 D 6 kg
and a particle of mass m2 D 10 kg are
moving in the xy-plane. At a particu-
lar instant of interest, particle 1 has posi-
tion *r1 D 3mO{ C 2m O|, velocity *v1 D
�16m=sO{C6m=s O|, and acceleration*a1 D
10m=s2 O{ � 24m=s2 O|; and particle 2 has
position *r2 D �6mO{ � 4m O|, velocity
*v2 D 8m=sO{ C 4m=s O|, and acceleration
*a2 D 5m=s2 O{ � 16m=s2 O|.

a) Find the linear momentum
*
L and its

rate of change P*
L of each particle at

the instant of interest.
b) Find the linear momentum

*
L and its

rate of change P*
L of the system of

the two particles at the instant of in-
terest.

c) Find the center of mass of the sys-
tem at the instant of interest.

d) Find the velocity and acceleration
of the center of mass.

12.1.3 A particle of mass m1 D 5 kg and
a particle of mass m2 D 10 kg are moving
in space. At a particular instant of interest,
particle 1 has position, velocity, and accel-
eration

*r1 D 1mO{C 1m O|
*v1 D 2m=s O|
*a1 D 3m=s2 Ok

respectively, and particle 2 has position,
velocity, and acceleration

*r2 D 2mO{
*v2 D 1m=s Ok
*a2 D 1m=s2 O|

respectively. For the system of particles at
the instant of interest, find its

a) linear momentum
*
L,

b) rate of change of linear momentum
P*
L,

c) angular momentum about the origin
*
H=O,

d) rate of change of angular momen-

tum about the origin P*
H=O,

e) kinetic energy EK, and

f) rate of change of kinetic energy.

12.1.4 If you are given the total mass, the
position, the velocity, and the acceleration
of the center of mass of a system of par-
ticles can you find the angular momentum
*
H=O of the system, where O is not at the
center of mass? If so, how and why? If
not, then give a reason and/or a counter ex-
ample. �

12.1.5 Seventeen particles are interaction
with the force on particle i from particle j
being

*
Fij with all

*
Fij known.

a) What is the commonly assumed
assumption about the relation be-
tween, say,

*
F36 and

*
F63?

b) What is the total force on particle 5?

More-Involved Problems
12.1.6 Two particles each of mass m are
connected by a massless elastic spring of
spring constant k and unextended length
2R. The system slides without friction on
a horizontal table, so that no net external
forces act.

a) Is the total linear momentum con-
served? Justify your answer.

b) Can the center of mass accelerate?
Justify your answer.

c) Draw free body diagrams for each
mass.

d) Derive the equations of motion for
each mass in terms of cartesian co-
ordinates.

e) What are the total kinetic and poten-
tial energies of the system?

f) For constant values and initial con-
ditions of your choosing, plot the
trajectories of the two particles and
of the center of mass (on the same
plot).
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Problem 12.1.6

12.1.7 Two ice skaters whirl around one
another. They are connected by a lin-
ear elastic cord whose center is stationary
in space. We wish to consider the mo-
tion of one of the skaters by modeling her
as a mass m held by a cord that exerts
k Newtons for each meter it is extended
from the central position.

a) Draw a free body diagram showing
the forces that act on the mass is at
an arbitrary position.

b) Write the differential equations that
describe the motion.

c) Describe in physical and mathemat-
ical terms the nature of the motion
for the three cases

a) ! <
p
k=m ;

b) ! D
p
k=m ;-

c) ! >
p
k=m.

(You are not asked to solve the
equation of motion.)

Filename:pfigure-blue-154-1

r

0 (fixed)

1

ice skater 2

ice skater 1

θ

Problem 12.1.7

12.1.8 n identical particles with massm are
on the vertices of an n sided regular poly-
gon. Equivalently, n particles are equally
spaced on a circle with radius R. At t D 0
they all have velocities tangent to the circle
and equal in magnitude v0. All the parti-
cles are attracted to each other with an in-
verse square gravitational attraction. For
the numerical simulations below pick val-
ues of n, m, G and R any way that pleases
you.
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a) Find an initial value for v0 so that
all the masses spiral in and then
bounce out again. Plot the trajec-
tories of all the masses on one plot
for a long-enough time so the plot is
pleasing to the eye.

b) Find a value for v0 so all the parti-
cles travel on circular trajectories.

c) Can you find a formula for v0 above
in terms of the other parameters in
the problem?

12.1.9 Two masses, both with M D
1000m travel in circles on the xy plane ac-
cording two

*r1 D �*r2 D R.cos!t O{C sin!t O{/
a) Assume inverse square attraction

and find a set of values for m;G;R
and ! so the assumed circular path
is a solution of the equations of mo-
tion.

b) A third mass m is introduced which
is gravitationally attracted to the
other two. Pick initial conditions
for the two big masses that are con-
sistent with their circular motion so-
lution. For the third mass use initial
conditions �*r0�xyz D �00z0�. Run
a simulation for some time.

� Does the third mass stay ex-
actly on the z axis for all time
in the simulation? Would it if
the simulation was exact? Is
so, why? If not, why not? �

� Is the motion of the third
mass exactly periodic in the
computer simulation? Would
it be if the solution was exact?
If so, why? If not, why not? �

12.1.10 Montgomery’s eight. Three equal
masses, say m D 1, are attracted by an
inverse-square gravity law with G D 1.
That is, each mass is attracted to the other
by F D Gm1m2=r

2 where r is the dis-
tance between them. Use these unusual
and special initial positions:

.x1; y1/ D .�0:97000436; 0:24308753/
.x2; y2/ D .�x1;�y1/
.x3; y3/ D .0; 0/

and initial velocities

.vx3; vy3/ D .0:93240737; 0:86473146/

.vx1; vy1/ D �.vx3; vy3/=2
.vx2; vy2/ D �.vx3; vy3/=2:

For each of the problems below show ac-
curate computer plots and explain any cu-
riosities.

a) Use computer integration to find
and plot the motions of the par-
ticles. Plot each with a different
color. Run the program for 2.1 time
units. �

b) Same as above, but run for 10 time
units. �

c) Same as above, but change the ini-
tial conditions slightly. �

d) Same as above, but change the ini-
tial conditions more and run for a
much longer time. �

12.2 Collisions and
explosions
Preparatory Problems
12.2.1 Assuming �; v0, and e to be known
quantities, write the following equations in
matrix form set up to solve for v0

Ax
and

v0
Ay

:

sin �v0Ax C cos �v0Ay D ev0 cos �

cos �v0Ax � sin �v0Ay D v0 sin �:

12.2.2 The equation (*v01�*v02/ � On D e.*v2�
*v1/ � On relates relative velocities of two
point masses before and after frictionless
impact in the normal direction On of the
impact. If *v01 D v1x O{ C v1y O|;

*v02 D
�v0 O{; e D 0:5; *v2 D

*
0; *v1 D 2 ft=sO{ �

5 ft=s O|, and On D 1p
2
.O{C O|/, find the scalar

equation relating the velocities in the nor-
mal direction.

12.2.3 The following three equations are
obtained by applying the principle of con-
servation of linear momentum on some
system.

m0v0 D 24m=s mA � :67mBvB � :58mC vC

0 D 36m=s mA C :33mBvB C 0:3mC vC

0 D 23m=s mA � :67mBvB � :58mC vC :

Assume v0, vB , and vC are the only un-
knowns. Write the equations in matrix
form set up to solve for the unknowns.

12.2.4 The following three equations are
obtained to solve for v0

Ax
, v0
Ay

, and v0
Bx

:

.v0Bx � v0Ax/ cos � D v0Ay sin � � 10m=s

v0Ax sin � D v0Ay cos � � 36m=s

mBv
0
Bx CmAv

0
Ax D .�60m=s/mA:

Set up these equations in matrix form.

12.2.5 Solve for the unknowns v0
Ax

, v0
Ay

,

and v0
Bx

in problem 12.2.4 taking � D
50

�
,mA D 1:5mB andmB D 0:8 kg. Use

any computer program.

12.2.6 Using the matrix form of equations
in Problem 12.2.1, solve for v0Ax and v0Ay
if � D 20

�
and v0 D 5 ft=s.

More-Involved Problems
12.2.7 Two frictionless equal-mass pucks
sliding on a plane collide as shown be-
low. Puck A is initially at rest. Given
that .VB /i D 1:0m=s, .VA/i D 0, and
.VA/f D 0:5m=s, find the approach an-
gle � and rebound angle  . The coefficient
of restitution is e D 0:9.
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Problem 12.2.7

12.2.8 Reconsider problem 12.2.7. Given
instead that  D 30�, .VA/i D 0, and
.VA/f D 0:5m=s, find the initial velocity
of puck B .

12.2.9 A ball of mass m D 0:5 kg is
thrown up in the air with initial speed v0 D
50m=s at an angle � D 60�. The ball
lands on and bounces off a slanted floor
that makes an angle � D 15� with the hori-
zontal. Assume the collision with the floor
to be elastic and ignore air drag on the ball.
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a) Find the impulse of the collision of
the ball,

b) After bouncing off the slanted floor,
how much horizontal distance does
the ball travel before landing on
the ground again? Is this distance
more, less, or the same as it would
have travelled had the floor been not
slanted?
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Problem 12.2.9

12.2.10 Solve the general two-particle fric-
tionless collision problem. For example,
write computer code that has lines like this
near the start :

m1=3; m2=19 Set values of masses
v1zero=[10 20] Initial velocity of

mass 1
v2zero=[-5 3] Initial velocity of

mass 2
e=.5 Set coefficient of

restitution
theta=pi/4 Angle that the

normal to contact
plane makes,
measured CCW from
+x axis, in radians

Your program (function, code, script)
should calculate the impulse of mass 1
on mass 2, and the velocities of the two
masses after the collision. Your pro-
gram should assume consistent units for all
quantities.

a) You should demonstrate that your
program works by solving at least
4 different problems for which you
can check your answer by sim-
ple pencil-and-paper calculations.
These problems should have as
much variety as possible. Sketch
these problems clearly, show their
analytic solution, and show that the
computer agrees. �

b) Solve the problem given in the sam-
ple text given in the initial problem
statement.

12.2.11 A projectile is launched at � D
40� with speed v0 D 25m=s. The projec-
tile lands on a steel plate that can be ad-
justed to make any angle � with the hori-
zontal. The projectile bounces off the steel

plate without loosing any energy. The pro-
jectile is required to reach a height after re-
bound twice as much it did during its flight
before hitting the plate. Ignore air resis-
tance.

a) Find the required angle � of the
plate.

b) Can you always find some � for any
launch angle � < �=2 such that
h2 D 2h1?
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12.2.12 Two equal mass cars approach an
intersection at right angles. They crash and
stick together. One of the cars was going
at 30 mph before the crash. The other car’s
path gets deflected by 15�. How fast was it
going?

A ball m is thrown horizontally at
height h and speed v0. It then has a
sequence of bounces on the horizontal
ground. Treating each collision as friction-
less with restitution coefficient e how far
has the ball travelled horizontally when it
just finishes bouncing? Answer in terms
of some or all of m; g; h; v0 and e. A
ball m is thrown horizontally at height h
and speed v0. It then has a sequence of
bounces on the horizontal ground. Treat-
ing each collision as frictionless with resti-
tution coefficient e how far has the ball
travelled horizontally when it just finishes
bouncing? Answer in terms of some or
all of m; g; h; v0 and e. 12.2.13 A game
involves using a pedal to direct a falling
ball into a fixed vertical slot by simply
rotating the pedal when the ball hits the
pedal. A model of this game is shown in
the figure. The ball is thrown horizontally
with an initial speed v D 10m=s from a
height hball D 3m. The pedal is located at
d D 2m from the wall that houses the slot
at height h D 2m. The slot itself is 0:3m
in extent. The coefficient of restitution be-
tween the pedal and the ball is e D 0:9.
The air resistance is negligible. Find the
angle � or the range of this angle, so that
the ball makes it through the slot. You can
ignore the dimensions of the ball.
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Problem 12.2.13

12.2.14 An airplane is flying steadily at
an altitutude of 30; 000 ft at a speed of
500mph. It explodes into two equal
pieces. One piece is found to the right of
the airplane’s initial trajectory and 8 miles
forward of the explosion point. Where
should you look for the other piece? As-
sume the interaction impulse is in the hor-
izontal plane and make the approxima-
tion that the two pieces fly in frictionless
parabolic trajectories.

12.2.15 Consider the simultaneous colli-
sion of a ball with a ramp and the ramp
with the ground. Consider the ball to be
much more massive than the cart; m1 D
20 kg and m2 D 1 kg. The angle of the in-
clined face is very shallow, � D 2�. The
ball hits the cart with the velocity *v1 D
50m=sO{. The impact of the ball with the
ramp is elastic and frictionless. The ramp
ends up moving in the O{ direction. Find
the subsequent velocities of the ball and
the cart using the two methods discussed in
Sample 12.4 and Sample 12.5. Comment
on the answers you get. How will your an-
swers change if you reversed the mass ra-
tio?
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12.2.16 Consider the simultaneous colli-
sions problem of problem 12.2.15 again.
Now assume thatm1 D 5 kg,m2 D 10 kg,
*v1 D 50m=s, e D 0:75, and the angle
� D 88�. What is the the net loss of en-
ergy in the impacts as calculated the two
different ways?
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CHAPTER 13
Constrained straight-line

motion
Here is an introduction to kinematic constraint in its simplest context, sys-
tems that are constrained to move without rotation in a straight line. In one
dimension, pulley problems provide the main example. Two and three di-
mensional problems are covered, such as finding structural support forces in
accelerating vehicles and the slowing or incipient capsize of a braking car
or bicycle. Angular momentum balance is introduced as a needed tool but
without the complexities of rotational kinematics.
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In the previous chapters you learned to write the equations of motion for
a particle or collection of a few particles, assuming you have a model for
the forces on the particles in terms of their positions, velocities, and time.
Some caveats to using that approach for engineering systems that don’t seem
to behave like isolated particles, but rather are composed of many particles
were listed at the start of chapter 12 on page 593. One way to finesse these
problems is to make kinematic assumptions about how particles and collec-
tions of particles move. Why? Sometimes, often actually, the simplest model
of mechanical interaction is not a law for force as a function of position, ve-
locity and time, but just a geometric description of the relative positions or
velocities of points. The reasons for this geometric, instead of force-based,
approach are two-fold:

� The minute details of the motion are often not of interest and there-
fore not worth tracking. For example, the vibrations of a solid, or
relative motions of atoms in a solid might be of a smaller scale than the
overall motion of interest, and

� Often one does not know an accurate force law. For example, at
the microscopic level one does not know the details of atomic interac-
tions; or, at the machine level, one may not know exactly the relations
between the small motions of one part relative to another with which
it makes contact. For example, even though one knows that the axle
being in a hole restricts the relative motion of the axle with the train
one may not know in detail how the contact forces depend on the exact
position of the axle in its hole.).

Kinematic constraints
Much mechanical modeling involves the replacement of force-interaction
rules with assumptions about the geometry of the motions. Idealizing an in-
teraction force as causing a definite geometric restriction on motion is called
imposing a kinematic constraint.

A kinematic constraint is an equation that describes a restriction on al-
lowed positions, velocities or accelerations of parts in a system. Kine-
matic constraints are always accompanied by one or more a priori un-
known ‘constraint’ forces that maintain the geometric constraint rela-
tions.

Filename:TruckStraightLine5030

Figure 13.1: A truck or car running on
straight level road is in straight-line mo-
tion, neglecting, of course, the wheel ro-
tation, the bouncing, the moving engine
parts, and the wandering eyes of the pas-
sengers.
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Filename:tfigure-boatpullsbarge

x1 x2

m1

T T F

m2

inextensible massless

connection

FBDs

ı̂

Figure 13.2: A schematic of one car
pulling another, or of a boat pulling a
barge. Also shown are FBDs of the
bodies separately. Because our analysis
is only in one spatial dimension, forces
with no component in O{ direction are not
shown.

The basic laws of forces and mechanics apply to all systems, no matter
how they are or are not constrained. But, if objects are treated as kinemat-
ically constrained the methods in mechanics have a slightly different flavor.
To get the idea we start with simple systems that have simple constraints
and that move in simple ways. In this short chapter, we will discuss the
mechanics of things where every point in each object has the same velocity
and acceleration as every other point (so called parallel motion) and with the
further restriction that every point moves in a straight line.

Example: Train on Straight Level Tracks
Consider a train on straight level tracks. If we focus on the body of the train, we can
approximate the motion as parallel straight-line motion. All parts move the same
amount, with the same velocities and accelerations in the same fixed direction.

We start with 1-D mechanics and constraint with string and pulleys, and
then move on to 2-D and 3-D mechanics (of systems in 1D motion).

13.1 1-D constrained motion and pulleys
In this section masses are connected together with bars or ropes. These con-
nections are idealized as being inextensible. Consider a car towing another
with a strong light chain. We may not want to consider the elasticity of the
chain but instead idealize the chain as having a fixed length. Although the
idealization of zero deformation is a simplification, it is a simplification that
requires special treatment. It is the simplest example of a kinematic con-
straint.

Figure 13.2 shows a schematic of one car pulling another. One-
dimensional free body diagrams are also shown. The force F is the force
transmitted from the road to the front car through the tires. The tension T is
the tension in the connecting chain. From linear momentum balance for each
of the objects (modeled as particles):

T D m1 Rx1 and F � T D m2 Rx2: (13.1)

These equations are exactly the same as for cars connected by a spring, a
dashpot, or any idealized-as-massless connector. And all these systems have
the same free body diagrams but different motions. If the connection were
with a spring or dashpot the equations above would be supplemented with

T D k.x2 � x1 � `0/ or T D c. Px2 � Px1/
In this case we need our equations to somehow indicate that the two particles
are not allowed to move independently. We need a constraint equation to
replace these constitutive laws.

Kinematic constraint: two approaches
There are two basic ways of dealing with kinematic constraints:

1. Use separate free body diagrams and equations of motion for each par-
ticle and then add extra kinematic constraint equations, or

2. do something clever to avoid having to find the constraint forces.
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Method 1: Finding the accelerations and the constraint forces
together

The geometric (or kinematic) constraint that two masses move together is

x1 D x2 C Constant:

We can differentiate the kinematic constraint twice to get

Rx1 D Rx2: (13.2)

If we take F and the two masses as given, equations 13.1 and 13.2 are three
equations for the unknowns Rx1; Rx2, and T . In matrix form,we have:2

4 m1 0 �1
0 m2 1

�1 1 0

3
5
2
4 Rx1
Rx2
T

3
5 D

2
4 0

F

0

3
5 :

We can solve these equations to find Rx1; Rx2, and T in terms of F .

Method 2: Finesse having to find the constraint force

On the other hand, if all we are interested in are the accelerations of the cars
it would be nice to avoid even having to think about the constraint force.
One way to avoid dealing with the constraint force is to draw a free body
diagram of the entire system as in fig. 13.3. If we just call the acceleration
of the system Rx we get, from linear momentum balance, one equation in one
unknown:

F D .m1 Cm2/ Rx:

Kinematic constraints

A generalization of the 1D inextensible-cable constraint example above is the
rigid-object constraint where not just two, but many particles are assumed to
keep constant distance from one another, and in one, two or three dimensions.
Another important constraint is an ideal hinge connection between two ob-
jects. Much of the theory of mechanics after Newton has been motivated by
a desire to deal easily with these and other kinematic constraints. In fact, one
way of characterizing the primary difficulty of dynamics as a subject is the
difficulty of dealing with kinematic constraints.

Pulleys
Pulleys are used to redirect force to amplify or attenuate force and to amplify
or attenuate motion. Like a lever, a pulley system is an example of a me-
chanical transmission. Objects connected by inextensible ropes around ideal
pulleys are also examples of kinematic constraint.

Filename:tfigure-twocarstogether

F

Figure 13.3: A free body diagram of
the whole system. Note that the un-
known tension (constraint) force does
not show. As usual for 1D mechanics,
vertical forces are left off for simplicity
(although it would be more correct to in-
clude them).
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1See fig. 4.27 on page 208 and the re-
lated text which shows why T1 D T2
for one round pulley idealized as fric-
tionless and massless.
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Constant length and constant tension

Problems with pulleys are solved by using two facts about idealized strings.
First, an ideal string is inextensible so the sum of the string lengths, over the
different inter-pulley sections, adds to a constant (not varying in time):

`1 C `2 C `3 C `4 C ::: D constant: (13.3)

Second, for round pulleys of negligible mass and no bearing friction, tension
is constant along the length of the string 1.The tension on one side of a pulley
is the same as the tension on the other side:

T1 D T2 D T3 : : : : (13.4)

Example: Length of string calculation

We use the trivial pulley example in fig. 13.4. Starting from point A, we add up
the lengths of string

`tot D xA C �r C xB � constant: (13.5)

One portion of the string touches half of the pulley circumference, �r , even if xA
and xB change in time and different portions of string wrap around the pulley at
different times.

We now formally deduce the relations between the velocities and accelerations
of points A and B . Differentiating equation 13.5 with respect to time once and then
again, we get

P̀
tot D 0 D PxA C 0C PxB
) PxA D �PxB
) RxA D �RxB (13.6)

When point A is displaced to the right by an amount �xA, point B is displaced
exactly the same amount but to the left; that is, �xA D ��xB . Note, to find the
kinematic relations 13.6 for the pulley system, we never need to know the total
length of the string, only that it is constant in time. The constant-in-time quantities
(the pulley half-circumference and the string length) get ‘killed’ in the process of
differentiation.

Commonly we think of pulleys as small and thus never account for the
pulley-contacting string length. Luckily this approximation generally leads
to no error because we most often are interested in displacements, velocities,
and accelerations. And in these cases, as in the example above, the pulley
contact length drops out of the equations anyway.

The classic simple uses of pulleys
First imagine trying to move a load with no pulley as in fig. 13.5a. The
force you apply goes right to the mass. This is like direct drive with no
transmission.
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Chapter 13. Straight line motion 13.1. 1D motion and pulleys 623

Now you would like to use pulleys to help you move the mass. In the
cases we consider here the mass is on a frictionless support and we are trying
to accelerate it. But the concepts are the same if there are also resisting forces
on the mass. What can we do with one pulley? Three possibilities are shown
in fig. 13.5b-d which might, at a blinking glance, look roughly the same. But
they are quite different. Here we discuss each design qualitatively.
In fig. 13.5b we pull one direction and the mass accelerates the other way.

This illustrates

the simplest use of a pulley, to redirect an applied force.

The force on the mass has magnitude j*F j and there is no mechanical
advantage.

Figure 13.5c shows

the classic use of a pulley, to multiply a force.

Here’s a detailed solution to this problem.

Example: Pulley in figure 13.5c
The methods here will solve every pulley problem 2. First draw the FBDs
and rope geometry sketch (fig. 13.6). First linear momentum balance (and
force balance for the negligible-mass pulley):

LMB ) m RxA D TA and TA D 2TB : (13.7)

Next the rope length kinematics:

`1 D xC � xA and `2 D .xB � xC /C .xD � xC /C �r

Differentiate the rope-length equations twice, remembering that `1; `2; r
and xD are all constants, to get

RxC D RxA and RxB D 2 RxC : (13.8)

The second equation above ( RxB D 2 RxC ) is the only one that you couldn’t
write down at a glance. Solve these equations in terms of F D TA to get:

TA D 2F and RxA D 2F=m and RxB D 4F=m:

Figure 13.5d shows

a less common use of a pulley, to multiply motion.

In this case an analysis similar to that above (that you are asked to do
in problem 13.1.6 on page 646) shows that:

TA D 2F=2 and RxA D F=.2m/ and RxB D F=.4m/

Despite the superficial similarity, this setup is the opposite to the use in
fig. 13.5c.

2 How to solve pulley problems Fol-
low these rules, and you can solve all
pulley problems (see the example from
fig. 13.5c in the text).

1. Draw a free body diagram of each
pulley and each mass, taking ac-
count that the tension in any given
rope is constant along its length.

2. Write linear momentum balance
for each pulley and mass (this
might just be force balance if you
neglect the mass of, say, a pulley).

3. Do length accounting for each
rope, taking account that its length
is constant. To avoid sign errors,
use a reference point that is
off to the side of the whole
mechanism, even if there is no
such point in the original problem
(the wall at 0 in the solution to
fig. 13.5c above).

4. Differentiate the string length
equations (from the step above),
twice.

5. Solve the equations from parts
2 and 4 (above) for desired un-
knowns.
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Figure 13.6: FBDs and kinematics for
the mechanism in fig. 13.5c
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3Caveats: Negligible dissipation and
negligible mass of the transmission
parts.

Force amplification is motion attenuation
In fig. 13.5c a force F is applied at B. The resulting force on the mass at A
is 2F and point A moves with half the acceleration of point B. However, in
fig. 13.5d the resulting force on the mass at A is F=2, and point A moves
with twice the acceleration of point B.

These illustrate a general duality rule

If force is amplified then motion is equally attenuated. If motion is
amplified the force is equally attenuated 3.

High gear and low gear. This rule applies to all frictionless passive trans-
missions (e.g., levers, gear trains, hydraulic systems) with negligible inertia:
In a low gear in a car (or bicycle) the force at the wheel is large for a given
force of the engine (leg muscle) but the wheel doesn’t turn much for a given
displacement of the engine (foot). In a high gear the force at the wheel is
small but the wheel turns a lot for a given amount of engine rotation (or foot
displacement). These are, of course, special cases of the much more general
rule: you can’t win!

Power balance
In every special case we can derive the duality rule (above) using momentum
balance and kinematics. But the general result is best understood with energy
balance:

the power of the applied force is the power applied to the mass.

Example: Power balance and the pulley in figure 13.5c
There are various ways of setting up the energy (or power) balance equations. Here
is one:

Power into the transmission D Power out of the transmission

The power in is F � PxB . The power out, delivered to A, is TA � PxA. So,

TB � PxB D TA � PxA ) TA
TB

D PxB
PxA
:

But because Pxa= PxB is a constant, differentiating we get RxA= RxB D Pxa= PxB . So we
also have

TA
TB

D RxB
RxA
:
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The ‘effective mass’ of a point of force application The feel of the ma-
chine is of concern for machines that people handle. One aspect of feel is
the effective mass (sometimes called ‘reflected inertia’) is defined by the re-
sponse of a point to an applied force.

meff D
j*FBj
j*aBj

:

For the case of fig. 13.5a and fig. 13.5b the effective mass of point B is just
m. For the case of fig. 13.5c the block at A has 2j*F j acting on it and point
B has twice the acceleration of point A. So the acceleration of point B is
4F=m D F=.m=4/ and the effective mass of point B is m=4. For the case of
fig. 13.5d, the mass only has j*F j=2 acting on it and point B only has half the
acceleration of point A, so the effective mass is 4m.

These special cases exemplify the general rule:

The effective mass of one end of a transmission is the mass of the other
end multiplied by the square of the motion amplification ratio.

In terms of the effective mass, the systems shown in fig. 13.5c and fig. 13.5d
which look so similar to a novice, actually differ by a factor of 22 � 22 D 16.
With a given F and m point B in fig. 13.5c has 16 times the acceleration of
point B in fig. 13.5d.
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Filename:sfig4-1-twocars

Figure 13.7:

SAMPLE 13.1 Find the motion of two cars. One car is towing another of
equal mass on level ground. The thrust of the wheels of the first car is F .
The second car rolls frictionlessly. Find the acceleration of the system two
ways:

1. using separate free body diagrams,

2. using a system free body diagram.

Solution

1. The free body diagram of each car is shown below, in fig. 13.8.

Filename:sfig4-1-twocars-fbda

T T
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m m

x

Figure 13.8: Partial free body diagrams of the two cars (the vertical ground reactions
are not shown as they are of no interest to us for the horizontal motion.

From the linear momentum balance of each car, we get

m Rx1 D T (13.9)

F � T D m Rx2 (13.10)

The kinematic constraint of towing (the cars move together, i.e., no relative displace-
ment between the cars) gives

Rx1 � Rx2 D 0 (13.11)

Solving eqns. (13.9), (13.10), and (13.11) simultaneously, we get

Rx1 D Rx2 D
F

2m
.T D F

2
/

2. The free body diagram of the two cars together is shown below, in fig. 13.9.
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Figure 13.9:

From the linear momentum balance of the two cars as one system, we get

m Rx Cm Rx D F

Rx D F=2m

Rx D Rx1 D Rx2 D F=2m
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SAMPLE 13.2 Driving a pile into the ground. A cylindrical wooden pile
of mass 10 kg and cross-sectional diameter 20 cm is driven into the ground
with the blows of a hammer. The hammer is a block of steel with mass 50
kg which is dropped from a height of 2 m to deliver the blow. At the nth
blow the pile is driven into the ground by an additional 5 cm. Assuming the
impact between the hammer and the pile to be totally inelastic (i.e., the two
stick together), find the average resistance of the soil to penetration of the
pile.

Solution Let Fr be the average (constant over the period of driving the pile by 5 cm) resis-
tance of the soil. From the free body diagram of the pile and hammer system, we haveX

*
F D �mg O| �Mg O| CN O| C Fr O|:

But N is the normal reaction of the ground, which from static equilibrium, must be equal to
mg CMg. Thus, X

*
F D F r O|:

Therefore, from linear momentum balance (
P *
F D m*a),

*a D Fr
M Cm

O|:

Now we need to find the acceleration from given conditions. Let v be the speed of the hammer
just before impact and V be the combined speed of the hammer and the pile immediately after
impact. Then, treating the hammer and the pile as one system, we can ignore all other forces
during the impact (none of the external forces: gravity, soil resistance, ground reaction, is
comparable to the impulsive impact force, see page 834). The impact force is internal to
the system. Therefore, during impact,

P *
F D *

0 which implies that linear momentum is
conserved. Thus

�Mv O| D �.mCM/V O|
) V D

�
M

mCM

�
v D 50 kg

60 kg
v D 5

6
v:

The hammer speed v can be easily calculated, since it is the free fall speed from a height of 2
m:

v D
p
2gh D

q
2 � .9:81m=s2/ � .2m/ D 6:26m=s ) V D 5

6
v D 5:22m=s:

The pile and the hammer travel a distance of s D 5 cm under the deceleration a. The
initial speed V D 5:22m=s and the final speed = 0. Plugging these quantities into the one-
dimensional kinematic formula

v2 D v20 C 2as;

we get,

0 D V 2 � 2as (Note that a is negative)

) a D V 2

2s
D .5:22m=s/2

2 � 0:05m
D 272:48m=s2:

Thus*a D 272:48m=s2 O|. Therefore,

Fr D .mCM/a D .60 kg/�.272:48m=s2/ D 1:635 � 104 N

Fr � 16:35 kN
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Figure 13.10:
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Figure 13.11: Free body diagram of the
hammer and pile system. Fr is the total
resistance of the ground.
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Figure 13.13:

4 We have done an elaborate calcula-
tion of `tot here. Usually, the constant
lengths over the pulleys and some con-
stant segments such as aa0 are ignored in
calculating `tot . These constant length
segments can be ignored because they
drop out of the equation when we take
time derivatives to relate velocities and
accelerations of different points, such as
B and D here.

SAMPLE 13.3 Pulley kinematics. For the masses and ideal-massless pul-
leys shown in figure 13.12, find the acceleration of mass A in terms of the
acceleration of mass B. Pulley C is fixed to the ceiling and pulley D is free to
move vertically. All strings are inextensible.

Solution Let us measure the position of the two masses from a fixed point, say the center of
pulley C. (Since C is fixed, its center is fixed too.) Let yA and yB be the vertical distances of
masses A and B, respectively, from the chosen reference (C). Then the position vectors of A
and B are:

*rA D yA O| and *rB D yB O|:
Therefore, the velocities and accelerations of the two masses are

*vA D PyA O|; *vB D PyB O|;
*aA D RyA O|; *aB D RyB O|:

Since all quantities are in the same direction ( O|), we can drop O| from our calculations and just
do scalar calculations. We are asked to relate RyA to RyB .

In all pulley problems, the trick in doing kinematic calculations is to relate the variable
positions to the fixed length of the string. Here, the length of the string `tot is: 4

`tot D ab + bc + cd + de + ef D constant

where ab D aa0����
constant

C a0b����
.DcdDyD/

bc D string over the pulley D = constant

de D string over the pulley C = constant

ef D yB

thus `tot D 2yD C yB C
.aa0CbcCde/� �� �

constant :

Taking the time derivative on both sides, we get

D 0, because `tot does not
change with time

��� �� �
d

dt
.`tot / D 2 PyD C PyB ) PyD D �1

2
PyB (13.12)

) RyD D �1
2
RyB : (13.13)

But yD D yA � AD and AD = constant

) PyD D PyA and RyD D RyA:

Thus, substituting PyA and RyA for PyD and RyD in (13.12) and (13.13) we get

PyA D �1
2
PyB and RyA D �1

2
RyB

RyA D �1
2 RyB
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SAMPLE 13.4 A two-mass pulley system. The two masses shown in
Fig. 13.14 have frictionless bases and round frictionless pulleys. The inex-
tensible cord connecting them is always taut. Given that F D 130N; mA D
mB D m D 40 kg, find the acceleration of the two blocks using:

1. linear momentum balance and

2. energy balance.

Solution

1. Using Linear Momentum Balance: The free-body diagrams of the two masses A
and B are shown in Fig. 13.15.
Linear momentum balance for mass A gives (assuming*aA D aA O{ and*aB D aB O{):

.2T � F /O{C .2NA �mg/ O| D m*aA D maA O{
(dotting with O|) ) 2NA D mg

(dotting with O{) ) 2T � F D maA (13.14)

Similarly, linear momentum balance for mass B gives:

�3T O{C .2NB �mg/ O| D m*aB D maB O{
) 2NB D mg

and � 3T D maB : (13.15)

From (13.14) and (13.15) we have three unknowns: T; aA; aB , but only 2 equations!.
We need an extra equation to solve for the three unknowns. 5

We can get the extra equation from kinematics. Since A and B are connected by a
string of fixed length, their accelerations must be related. For simplicity, and since
these terms drop out anyway, we neglect the radius of the pulleys and the lengths of
the little connecting cords. We use the left wall as the reference position to get

`tot � length of the string connecting A and B

D .3xB �XC /C 2.XC � xA/
D 3xB CXC � 2xA

Now, differentiating the expression for `tot with time and noting that the total length
of the string remains constant and that XC is a fixed location in space, we get

0� �� �
d

dt
.`tot / D 3 PxB C%

0
PXC � 2 PxA

) RxB D 2

3
RxA (13.16)

(13.17)

Since

*vA D vA O{ D PxA O{;
*aA D aA O{ D RxA O{;
*vB D vB O{ D PxB O{; and
*aB D aB O{ D RxB O{;

we get

aB D 2

3
aA: (13.18)
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Figure 13.14: A two-mass pulley sys-
tem.
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Figure 13.15: Free body diagrams of the
two masses.

5 You may be tempted to use angu-
lar momentum balance (AMB) to get
an extra equation. In this case AMB
could help determine the vertical reac-
tions, but offers no help in finding the
rope tension or the accelerations.
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Figure 13.16: Pulley kinematics. The
left wall is added as a reference point,
off to the side of all pulleys and masses,
to help prevent sign errors.
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Figure 13.17: 1D free body diagram of
the whole system. Note that except F ,
no other forces do any work.

6It may not be obvious why T shown
in the FBD in fig. 13.17 does no work.
T acts on a material point q’ somewhere
on the inextensible string from the fixed
point ‘c’. Even though mass B moves,
point ‘q’ on the string has no displace-
ment. Because the material point q on
which it acts does not move, the work
done by T is zero.

Substituting (13.18) into (13.15), we get

9T D �2maA: (13.19)

Now solving (13.14) and (13.19) for T , we get

T D 2F

13
D 2 � 130N

13
D 20N:

Therefore,

aA D � 9T
2m

D � 9 � 20N
2 � 40 kg

D �2:25m=s2

aB D 2

3
aA D �1:5m=s2

*aA D �2:25m=s2 O{; *aB D �1:5m=s2 O{.
2. Using Power Balance (III): We have,

P D PEK:

The power balance equation becomesX
*
F �*v D maA vA CmB aB vB :

Because the force at A is the only force that does work on the system, 6 when we
apply power balance to the whole system (see the FBD in fig. 13.17), we get,

�FvA � T
DvcD0����
vq D mAvAaA CmBvBaB

or F D �maA �m
vB
vA
aB

D �aA.mCm
vB
vA

aB
aA
/:

Substituting aB D 2=3aA and vB D 2=3vA from eqn. (13.18),

aA D �F
mC 4

9m

D �130N

40 kg.1C 4
9 /

D �2:25m=s2;

and since aB D 2=3aA,
aB D �1:5m=s2;

which are the same accelerations as found before.

aA D �2:25m=s2 O{; aB D �1:5m=s2 O{
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SAMPLE 13.5 In static equilibrium the spring in fig. 13.18 is compressed
by ys from its unstretched length `0. Now, the spring is compressed by an
additional amount y0 and released with no initial velocity.

1. Find the force on the top mass m exerted by the lower mass M .

2. When does this force become minimum? Can this force become zero?

3. Can the force on m due to M ever be negative?

Solution

1. The free body diagram of the two masses is shown in Figure 13.19 when the system is
in static equilibrium. From linear momentum balance we haveX

*
F D*

0 ) kys D .mCM/g: (13.20)

The free body diagrams of the two masses at an arbitrary position y during motion are
shown in Figure 13.20. Since the two masses oscillate together, they have the same
acceleration. From linear momentum balance for mass m we get (note that we have
chosen y to be positive downwards),

mg �N D m Ry: (13.21)

We are interested in finding the normal forceN . Clearly, we need to find Ry to calculate
N . Now, from linear momentum balance for mass M we get

Mg CN � k.y C ys/ DM Ry: (13.22)

Adding eqn. (13.21) with eqn. (13.22) we get

.mCM/g � ky � kys D .mCM/ Ry:

But kys D .m CM/g from eqn. (13.20). Therefore, the equation of motion of the
system is

�ky D .mCM/ Ry
or Ry C k

.mCM/
y D 0: (13.23)

As you recall from your study of the harmonic oscillator, the general solution of this
differential equation is

y.t/ D A sin�t C B cos�t (13.24)

where � D
s

k

mCM
: (13.25)

The constants A and B are to be determined from the initial conditions. From
eqn. (13.24) we obtain

Py.t/ D A� cos�t � B� sin�t: (13.26)

Substituting the given initial conditions y.0/ D y0 and Py.0/ D 0 in eqns. (13.24) and
(13.26), respectively, we get

y0����
y.0/ D A sin.� � 0/C B cos.� � 0/ ) B D y0

Py.0/����
0

D A� cos.� � 0/ � B� sin.� � 0/ ) A D 0:
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Thus,
y.t/ D y0 cos�t: (13.27)

Now we can find the acceleration by differentiating eqn. (13.27) twice :

Ry D �y0�2 cos�t:

Substituting this expression in eqn. (13.21) we get the force applied by massM on the
smaller mass m:

mg �N D m

Ry� �� �
.�y0�2 cos�t/

) N D mg Cmy0�
2 cos�t

D mg

 
1C y0�

2

g
cos�t

!
(13.28)

N D mg

�
1C y0�

2

g cos�t
�

2. Since cos�t varies between �1, the value of the force N varies between mg� y0�2.
Clearly, N attains its minimum value when cos�t D �1; i.e., when �t D � . This
condition is met when the spring is fully stretched and the mass is at its highest vertical
position. At this point,

N � Nmin D mg

 
1 � y0�

2

g

!
:

If y0, the initial displacement from the static equilibrium position, is chosen such that
y0�

2 D g (that is, the amplitude of the harmonically varying acceleration equals g),
then N D 0 when cos�t D �1, i.e., at the topmost point in the vertical motion. This
condition, N D 0, means that the two masses momentarily lose contact with each
other; and it happens precisely when they are about to begin their downward motion.

3. From eqn. (13.28) we can get a negative value ofN when cos�t D �1 and y0�
2 > g.

However, a negative value forN is nonsense unless the blocks are glued. Without glue
the bigger mass M cannot apply a negative force (or a compression) on m, i.e., it
cannot “suck” m. When y0�

2 > g then N becomes zero before cos�t decreases to
�1. That is, assuming no bonding, the two masses lose contact on their way to the
highest vertical position but before reaching the highest point. Beyond that point, the
equations of motion derived above are no longer valid for unglued blocks because the
equations assume contact between m and M . Equation (13.28) is inapplicable when
N � 0.
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13.2 1D motion with 2D and 3D forces
Even if all the motion is in a single direction, an engineer may still have to
consider two- or three-dimensional forces.

Example: Piston in a cylinder.
A piston slides vertically in a cylinder with coefficient of friction � between the
piston and the cylinder wall. Assume the connecting rod has negligible mass so it
can be treated as a two-force member as discussed in section 4.2b. The free body
diagram of the piston (with a bit of the connecting rod) is shown in fig. 13.21. If the
piston is moving up so the friction force resists the motion and points down. Linear
momentum balance for this system is:X

*
Fi D P*

L

�N O{ � �N O| C T O�rod D mpiston a O|:
If we assume that the acceleration a O| of the piston is known, as is its massmpiston,
the coefficient of friction �, and the orientation of the connecting rod O�rod , then
we can solve for the rod tension T and the normal reaction N .

Note: even though the piston moves in one direction, the momentum balance
equation is a two-dimensional vector equation.

Unlike the 1D mechanics of the previous chapter, in this section on 1D
motion, the momentum balance equations are 2D and 3D vector equations.
Compared to more general 2D and 3D motion, the 1-D motions we assume in
this chapter allow an easy introduction to 2D and 3D dynamics calculations.

Highly constrained bodies
This chapter is about rigid objects that move in straight lines. Most objects
will not agree to be the topic of such discussion without being forced into
doing so. Without being held in place they would rotate and move in a curvy
way. To keep an object that is subject to various forces from rotating or curv-
ing takes some constraint by wires, rods, rails, hinges, welds, etc.. Of course
the presence of constraint is not always associated with the disallowance of
rotation — constraints could even cause rotation. But in this chapter, con-
straints keep a rigid object in straight-line motion.

Constraint forces are of interest

Of common interest is making sure that static and dynamic loads do not cause
failure of parts that enforce constraints. For example, suppose a truck hauls
a very heavy load that is held down by chains or straps. When the truck
accelerates, what is the tension in the chains, and will it exceed their strength
limits?

1D mechanics with 1D forces, moving on

This all is in contrasts with the situation in 1D ”unconstrained” dynamics
of the previous chapter. For one-dimensional mechanics we assumed that
everything of interest mechanically happened in, say, the O{ (x) direction. That
is, we ignored all torques and angular momenta, and only consider the O{
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Figure 13.21: (a) shows a piston in a
cylinder. (b) shows a free body dia-
gram of the piston. To draw this FBD,
we have assumed: (1) a coefficient of
friction � between the piston and cylin-
der wall, and (2) negligible mass for the
connecting rod, and (3) ignored the spa-
tial extent of the cylinder.
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Figure 13.22: Parallel motion: all points
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tion *a D a O�. For straight-line motion:
O�.t/=constant in time and*v D v O�.
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the same velocity as the others, but the
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components of the forces (i.e.,
*

F � O{) and linear momentum (
*

L � O{), namely
Fx and Lx .

Kinematics of parallel motion and straight line motion
Let’s consider a set of points in the system of interest. Let’s call them A to G,
or generically, P . For convenience we distinguish a reference point O 0. O 0
may be the center-of-mass, the origin of a local coordinate system, or a fleck
of dirt that serves as a marker. By parallel motion, we mean that the system
happens to move in such a way that *aP D *

aO 0 , and *
vP D *

vO 0 (fig. 13.22).
That is,

*
aA D*

aB D*
aC D*

aD D*
aE D*

aF D*
aG D*

aP D*
aO 0

at every instant in time. We also assume that *vA D : : : D*
vP D*

vO 0 .
A special case of parallel motion is straight-line motion.

a system moves with straight-line motion if it moves like a non-
rotating rigid body, in a straight line.

For straight-line motion, the velocity of the body is in a fixed unchanging
direction. If we call a unit vector in that direction O�, then we have

*
v.t/ D v.t/ O�; *

a.t/ D a.t/ O� and *
r.t/ D*

r0 C s.t/ O�

for every point in the system. *
r0 is the position of a point at time 0 and s is

the distance the point moves in the O� direction. Every point in the system has
the same s, v, a, and O� as the other points. There are a variety of problems
of practical interest that can be idealized as fitting into this class, notably, the
motions of things constrained to move on belts, roads, and rails, like the train
on a straight track.

Example: Parallel swing is not straight-line motion
The swing shown does not rotate — all points on the swing have the same velocity.
The velocity of all particles are parallel but, since paths are curved, this motion is
not straight-line motion. Such curvilinear parallel motion will be discussed later in
the book.

Velocity of a point

The velocity of any point P on a non-rotating rigid body (such as for straight-
line motion) is the same as that of any reference point on the body (see
Fig. 13.24).

*
vP D*

vO0

A more general case, which you will learn in later chapters, is shown as 5b in
Table II at the back of the book. This formula concerns rotational rate which
we will measure with the vector *

!. For now all you need to know is that
*
! D*

0 when something is not rotating. In 5b in Table II, if you set *
!B D 0

and *
vP=B D

*

0 it says that *
vP D P*rO0=O or in shorthand, *

vP D *
vO0 , as we

have written above.
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Acceleration of a point

Similarly, the acceleration of every point on a non-rotating rigid body is the
same as every other point. The more general case, not needed in this chapter,
is shown as entry 5c in Table II at the back of the book.

General results
Before we proceed with discussion of the details of the mechanics of straight-
line motion we present some ideas that are also more generally applicable.
That is, the concept of the center-of-mass allows some useful simplifications

of the general expressions for
*

L, P*L,
*

H=C, P*
H=C and EK.

Linear momentum
*

L and its rate of change P*
L

Although we are dealing with zillions of atoms in a given object, the linear
momentum and angular momentum are simple to evaluate:

*

L D mtot
*
vcm and P*

L D mtot
*
acm:

Actually, as the front inside cover states, these formulas are good for any
motion of any system. The nice simplification for the straight-line motion of
this chapter is that all points on a given object have the same velocity and
acceleration. So we don’t need to find or track the center of mass, but can
track the motion of any point on the object.

Angular momentum
*

H=C and its rate of change, P*
HC for

straight-line motion

For the motions in this chapter, where *
ai D *

acm and thus *
ai=cm D *

0, an-
gular momentum considerations are simplified, as explained in Box 13.1 on
page 635 1.

*

H=C D*
rcm=C �*

vcmmtot and P*
HC D*

rcm=C �*
acmmtot

13.1 Angular momentum for straight-line motion
For straight-line motion, and parallel motion in general, we can

derive the simplification in the calculation of
*
H
=C as follows:

*
H
=C �

X
*ri=C � mi

*vi ( definition)

D
X

*ri=C � mi
*vcm (since,*vi D*vcm)

D
�X

*ri=C mi

�
�*vcm;

D *rcm=C � .mtot
*vcm/;

( since,
P

*ri=C mi � mtot
*rcm=C).

The derivation that P*
H
=C D*rcm=C � .m*acm/ follows from P*

H
=C �P

*ri=C � mi
*ai by the same reasoning.

1 Calculating rate of change of angu-
lar momentum will get more difficult as
the book progresses. For a rigid body B
in more general motion, the calculation
of rate of change of angular momen-
tum involves the angular velocity *!B,
its rate of change P*!B, and the moment
of inertia matrix �Icm�. If you look in
the back of the book at Table I, entries
6c and 6d, you will see formulas that
reduce to the formulas below if you as-
sume no rotation and thus use *! D *

0

and P*! D*
0. On the other hand, rate of

change of linear momentum is simple, at
least in concept, in this chapter, as well
as in the rest of this book. For all mo-
tions of all systems we have

P*
L D mtot

*acm:
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2Caution: The special motions in
this chapter are almost the only cases
where the angular momentum and its
rate of change are so easy to calculate.
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Figure 13.25: Uniform plate supported
by a hinge and a rod on an accelerating
cart.

But for straight-line motion (and, slightly more generally, for any parallel
motion), the calculations turn out to be the same as we would get if we put a
single point mass at the center-of-mass 2:

*

H=C �P
.*ri=C �mi

*
vi / D *

rcm=C � .mtotal
*
vcm/;

P*
H=C �P

.*ri=C �mi
*
ai / D *

rcm=C � .mtotal
*
acm/:

Note, there is some subtlety in the definition of
*

H=C, as explained in sec-
tion D.

Kinetic energy

Generally things will not be so simple, but for straight-line motion, or any
parallel motion where all points on an object have the same velocity and
acceleration, kinetic energy and its rate of change are also easy to calculate:

EK D mtotv
2
cm=2 and PEK D mtotvcmacm:

The kinetic energy works the same as if all the mass was concentrated at the
center of mass. This result does not generalize to more complex motions.

Approach

To study systems in straight-line motion (as always) we:

� draw a free body diagram, showing the appropriate forces and couples
at places where connections are ‘cut’,

� state reasonable kinematic assumptions based on the motions that the
constraints allow,

� write linear and/or angular momentum balance equations and/or energy
balance, and

� solve for quantities of interest.

Angular momentum balance about a judiciously chosen axis is a particularly
useful tool for reducing the number of equations that need to be solved.

Example: Plate on a cart
A uniform rectangular plate ABCD of mass m is supported by a light rigid rod
DE and a hinge joint at point B . The dimensions are as shown. The cart has
acceleration ax O{ due to a force F O{ and the constraints of the wheels. Referring to
the free body diagram in fig. 13.25 and writing angular momentum balance for the
plate about point B , we can get an equation for the tension in the rod TDE in terms
of m and ax :

X
*
M=B D P*

H=Bn
*rD=B � .TDE O�DE /C*rG=B � .�mg O|/ D *rG=B � .max O{/

	
f g � Ok) TDE D

p
5

7
m.ax �

3

2
g/:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 13. Straight line motion 13.2. 1D motion w/ 2D & 3D forces 637

Summarizing note:

angular momentum balance is important even when there is no rotation.

Sliding and pseudo-sliding objects
A car coming to a stop can be roughly modeled as a rigid body that translates
and does not rotate. That is, at least for a first approximation, the rotation
of the car due to the suspension and tire deformation, can be neglected. The
free body diagram will show various forces with lines of action that do not all
act through a single point so that angular momentum balance must be used
to analyze the system. Similarly, a bicycle which is braking or a box that is
skidding (if not tipping) may be analyzed by assuming straight-line motion.

Example: Car skidding
Consider the accelerating four-wheel drive car in fig. 13.26. The motion quanti-

ties for the car are P*
L D mcar

*acar and P*
H=C D *rcm=C �*acarmcar . We could

calculate angular momentum balance relative to the car’s center of mass in which

case
P *
Mcm D P*

Hcm D*
0 (because the position of the center-of-mass relative to

the center-of-mass is
*
0).

As mentioned, it is often useful to calculate angular momentum balance of
sliding objects about points of contact (such as where tires contact the road)
or about points that lie on lines of action of applied forces when writing
angular momentum balance to solve for forces or accelerations. To do so
usually eliminates some unknown reactions from the equations to be solved.
For example, the angular momentum balance equation about the rear-wheel
contact of a car does not contain the rear-wheel contact forces.

Wheels

The function of wheels is to allow easy sliding-like (pseudo-sliding) motion
between objects, at least in the direction they are pointed. On the other hand,
wheels do sometimes slip due to:

� being overpowered (as in a screeching accelerating car),

� being braked hard, or

� having very bad bearings (like a rusty toy car).

How wheels are treated when analyzing cars, bikes, and the like depends on
both the application and on the level of detail one requires. In this chapter, we
will always assume that wheels have negligible mass. Thus, when we treat
the special case of un-driven and un-braked wheels our free body diagrams
will be as in fig. 3.64a on page 171 and not like the one in fig. 3.64b. With the
ideal wheel approximation, all of the various cases for a car traveling to the
right are shown with partial free body diagrams of a wheel in fig. 3.63. For
the purposes of actually solving problems, we have accepted Coulomb’s law
of friction as a model for contacting interaction (see page 167 in sec. 3.4).
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Figure 13.26: A four-wheel drive car ac-
celerating but not tipping. See fig. 3.63
on page 171 for more about FBDs in-
volving wheel contact.
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3-D forces in straight-line motion
The ideas we have discussed apply as well in three dimensions as in two.
As you learned from doing statics problems, working out the details in 3D,
where vector methods must be used carefully, is more involved than in 2D. As
for statics, three dimensional problems often yield simple results and simple
intuitions by considering angular momentum balance about an axis.

Angular momentum balance about an axis

The simplest way to think of angular momentum balance about an axis is to
look at angular momentum balance about a point and then take a dot product
with a unit vector along an axis:

O� �
nX

*

M=C D P*
H=C

o
:

Note that the axis need not correspond to any mechanical device in any way
resembling an axle. The equation above applies for any point C and any
vector O�. If you choose C and O� judiciously many terms in your equations
may drop out.
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SAMPLE 13.6 Force in braking. A front-wheel-drive car of mass m D
1200 kg is cruising at v D 60mph on a straight road when the driver slams
on the brake. The car slows down to 20mph in 4 s while maintaining its
straight path.

1. What is the average force (average in time) applied on the car during
braking?

2. What is the average power of braking?

Solution

1. Let us assume that we have an xy coordinate system in which the car is traveling
along the x-axis during the entire time under consideration. Then, the velocity of the
car before braking,*v1, and after braking,*v2, are

*v1 D v1 O{ D 60mph O{ and *v2 D v2 O{ D 20mph O{:
The linear impulse during braking is

*
Fave�t where

*
F � Fx O{ (see free body diagram

of the car). Now, from the impulse-momentum relationship,
*
F�t D *

L2 �
*
L1;

where
*
L1 and

*
L2 are linear momenta of the car before and after braking, respectively,

and
*
F is the average applied force. Therefore,

*
F D 1

�t
.
*
L2 �

*
L1/ D

m

�t
.*v2 �*v1/

D 1200 kg
4 s

.20 � 60/mphO{

D �12000 kg
s
� 6mi
6hr

� 1600 m
1 6mi

� 1 6hr
3600 s

O{

D �16; 000
3

kg � m=s2 O{ D �5:33 kNO{:
Thus

Fx O{ D �5:33 kNO{ ) Fx D �5:33 kN:

Fx D �5:33 kN

2. Let the average power during breaking be Pave. Then the work done during breaking
is W D R

Pavedt . From work-energy principle, we have

W D �EKZ t2

t1

Pavedt D 1

2
m.v22 � v21/

Pave.t2 � t1/ D 1

2
m.v22 � v21/

Pave D m

2�t
.v22 � v21/

Substituting m D 1200 kg, �t D 4 s, v1 D 60mph D 26:67m=s and v2 D 20mph D
8:89m=s, we get

Pave D �94815N�m= s D �94:815 kW:

It is easy to check that if we take the average force Fave calculated above and the
average speed vave D .v1 C v2/=2 D 40mph D 17:77m=s, then

Pave D Favevave D �5:33 kN � 17:77m=s D �94:815 kW;

as obtained above.

Pave D �94:815 kW
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SAMPLE 13.7 A suitcase skidding on frictional ground. A suitcase of
mass m is pushed and sent sliding on a horizontal surface. The suitcase slides
without any rotation. A and B are the only contact points of the suitcase with
the ground. If the coefficient of friction between the suitcase and the ground
is �, find all the forces applied by the ground on the suitcase. Discuss the
results obtained for normal forces.

Solution As usual, we first draw a free body diagram of the suitcase. The FBD is shown in
Fig. 13.29. Assuming Coulomb’s law of friction holds, we can write

*
F1 D ��N1 O{ and

*
F2 D ��N2 O{: (13.29)

Now we write the balance of linear momentum for the suitcase:X
*
F D m*acm

) � .F1 C F2/O{C .N1 CN2 �mg/ O| D maC O{ (13.30)

where*aC D aC O{ is the unknown acceleration. Dotting eqn. (13.30) with O{ and O| and substi-
tuting for F1 and F2 from eqn. (13.29) we get

��.N1 CN2/ D maC (13.31)

N1 CN2 D mg: (13.32)

Equations (13.31) and (13.32) represent 2 scalar equations in three unknowns N1; N2 and a.
Obviously, we need another equation to solve for these unknowns.

We can write the balance of angular momentum about any point. Points A or B are good
choices because they each eliminate some reaction components. Let us write the balance of
angular momentum about point A: X

*
MA D P*

HA

X
*
MA D *rB=A �N2 O| C*rD=A � .�mg/ O|

D `O{ �N2 O| C
`

2
O{ � .�mg/ O|

D .`N2 �mg
`

2
/ Ok (13.33)

and

P*
HA D *rC=A �m*aC

D .
`

2
O{C h O|/ �maC O{

D �maC h Ok: (13.34)

Equating (13.33) and (13.34) and dotting both sides with Ok we get the following third scalar
equation:

`N2 �mg
`

2
D �maC h: (13.35)

Solving eqns. (13.31) and (13.32) for a we get

aC D ��g
and substituting this value of aC in eqn. (13.35) we get

N2 D m�ghCmg`=2

`

D mg

�
1

2
C h

`
�

�
:
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Substituting the value of N2 in either of the equations (13.31) or (13.32) we get

N1 D mg

�
1

2
� h

`
�

�
:

N1 D mg.12 � h
`
�/; N2 D mg.12 C h

`
�/; f1 D �N1; f2 D �N2:

Discussion: From the expressions for N1 and N2 we see that

1. N1 D N2 D 1
2mg if � D 0 because without friction there is no deceleration. The

problem becomes equivalent to a statics problem.

2. N1 D N2 � 1
2mg if ` >> h. In this case, the moment produced by the friction

forces is too small to cause a significant difference in the magnitudes of the normal
forces. For example, take ` D 20h and calculate moment about the center-of-mass to
convince yourself.

Graphically, N1, N2 and their difference N1 � N2 are shown in the plot below as a function
of h=` for a particular value of � and mg. As the equations indicate, N1 � N2 increases
steadily as h=` increases, showing how the moment produced by the friction forces makes a
bigger and bigger difference between N1 and N2 as this moment gets bigger.
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SAMPLE 13.8 Uniform acceleration of a board in 3-D. A uniform sign-
board of mass m D 20 kg sits in the back of an accelerating flatbed truck.
The board is supported with a ball-and-socket joint at O and a hinge at G.
A light rod from H to I keeps the board from falling over. The truck is
on level ground and has forward acceleration *

a D 0:6m=s2 O{. The relevant
dimensions are b D 1:5m; c D 1:5m; d D 3m; e D 0:5m: There is
gravity (g D 10m=s2).

1. Draw a free body diagram of the board.

2. Set up equations to solve for all the unknown forces shown on the FBD.

3. Use the balance of angular momentum about an axis to find the tension
in the rod.

Solution

1. The free body diagram of the board is shown in Fig. 13.32.

2. Linear momentum balance for the board:X
*
F D m*a; or

.Gx COx/O{C .Gy COy/ O| C .Gz COz �mg/ OkC T O�HI D maO{ (13.36)

where

O�HI D
d O{C b O| C e Okp
d2 C b2 C e2

D d O{C b O| C e Ok
`

;

and ` is the length of the rod HI.
Dotting eqn. (13.36) with O{; O| and Ok we get the following three scalar equations:

Gx COx C T
d

`
D ma (13.37)

Gy COy C T
b

`
D 0 (13.38)

Gz COz C T
e

`
D mg (13.39)

Angular momentum balance about point G:X
*
MG D P*

HG

X
*
MG D *rC=G � .�mg Ok/C*rO=G � .Ox O{COz

Ok/C*rH=G � T O�HI

D .�b
2
O| C c � e

2
Ok/ � .�mg Ok/ � b O| � .Ox O{COz

Ok/

C��b O| C .c � e/ Ok� � T
`
.d O{C b O| C e Ok/

D
�
b

2
mg � bOz � be

T

`
� .c � e/b T

`

�
O{

C.c � e/d T
`
O| C

�
bOx C bd

T

`

�
Ok (13.40)

and

P*
HG D *rC=G �maO{

D .�b
2
O| C c � e

2
Ok/ �maO{

D b

2
ma OkC c � e

2
ma O|: (13.41)
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Equating (13.40) and (13.41) and dotting both sides with O{; O| and Ok we get the fol-
lowing three additional scalar equations:

Oz C
c

`
T D 1

2
mg (13.42)

d

`
T D 1

2
ma (13.43)

Ox C
d

`
T D 1

2
ma (13.44)

Now we have six scalar equations in seven unknowns — Ox ; Oy ; Oz , Gx ; Gy ; Gz ;
and T . From basic linear algebra, we know that we cannot find unique solutions for all
these unknowns from the given equations. A closer inspection of eqns. (13.37–13.39)
and (13.42–13.44) shows that we can easily solve for Ox ; Oz , Gx ; Gz ; and T , but
Oy and Gy cannot be determined uniquely because they appear together as the sum
Gy C Oy . 3 Fortunately, we can find the tension in the wire HI without worrying
about the values of Oy and Gy as we show below.

3. Balance of angular momentum about axis OG gives:

O�OG �
X

*
MG D O�OG � P*HG

D O�OG � .*rC=G �maO{/: (13.45)

Since all reaction forces and the weight go through axis OG, they do not produce any
moment about this axis (convince yourself that the forces from the reactions have no
torque about the axis by calculation or geometry). Therefore,

O�OG �
X

*
MG D O| � .*rH=G � T O�HI /

D T
d.c � e/

`
: (13.46)

O�OG � .*rC=G �maO{/ D O| �
��
b

2
O| C c � e

2
Ok
�
�maO{

�

D ma
.c � e/
2

: (13.47)

Equating (13.46) and (13.47), as required by eqn. (13.45), we get

T D ma`

2d

D 20 kg � 0:6m=s2 � 3:39m
2 � 3m

D 6:78N:

THI D 6:78N

3 Note thatGy andOy will always ap-
pear together as the sum Gy COy even
if you took the angular momentum bal-
ance about some other point. This is
because they have the same line of ac-
tion. Thus, they cannot be found in-
dependently. This mathematical prob-
lem corresponds to the physical real-
ity that the supports at points O and
G could be squeezing the plate along
the line OG with, say, Oy D 1000N
and Gy D �1000N even if there were
no gravity, and the truck was not ac-
celerating. To make prestress problems
like this tractable, people often make as-
sumptions like, ‘Assume Gy D 0’, that
is, they try to get rid of the redundancy
in supports to make the problem stati-
cally determinate.
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4 Be careful with units. Most com-
puter programs will not take care of your
units. They only deal with numerical
input and output. You should, there-
fore, make sure that your variables have
proper units for the required calcula-
tions. Either do dimensionless calcula-
tions or use consistent units for all quan-
tities.

SAMPLE 13.9 Computer solution of algebraic equations. In the previous
sample problem (Sample 13.8), six equations were obtained to solve for the
six unknown forces (assumingGy D 0/. (i) Set up the six equations in matrix
form and (ii) solve the matrix equation on a computer. Check the solution by
substituting the values obtained in one or two equations.

Solution

1. The six scalar equations — (13.37), (13.38), (13.39), (13.42), (13.43), and (13.44) are
amenable to hand calculations. We, however, set up these equations in matrix form
and solve the matrix equation on the computer. The matrix form of the equations is:2

66666664

1 0 0 1 0 d
`

0 1 0 0 0 b
`

0 0 1 0 1 e
`

0 0 1 0 0 c
`

0 0 0 0 0 d
`

1 0 0 0 0 d
`

3
77777775

8������<
������:

Ox
Oy
Oz
Gx
Gz
T

9>>>>>>=
>>>>>>;
D

8������<
������:

ma

0

mg

mg=2

ma=2

ma=2

9>>>>>>=
>>>>>>;
: (13.48)

The above equation can be written, in matrix notation, as

A x D b

where A is the coefficient matrix, x is the vector of the unknown forces, and b is the
vector on the right hand side of the equation. Now we are ready to solve the system of
equations on the computer.

2. We use the following pseudo-code to solve the above matrix equation. 4

m = 20, a = 0.6,
b = 1.5, c = 1.5, d = 3, e = 0.5, g = 10,
l = sqrt(bˆ2 + dˆ2 + eˆ2),

A = [1 0 0 1 0 d/l
0 1 0 0 0 b/l
0 0 1 0 1 e/l
0 0 1 0 0 c/l
0 0 0 0 0 d/l
1 0 0 0 0 d/l]

b = [m*a, 0, m*g, m*g/2, m*a/2, m*a/2]’

{Solve A x = b for x}
x = % this is the computer output

0
-3.0000
97.0000
6.0000

102.0000
6.7823

The solution obtained from the computer means:

Ox D 0; Oy D �3N; Oz D 97N; Gx D 6N; Gz D 102N; T D 6:78N:

We now hand-check the solution by substituting the values obtained in, say, Eqns. (13.38) and
(13.43). Before we substitute the values of forces, we need to calculate the length `.

` D
p
d2 C b2 C e2

D 3:3912m:
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Therefore,

Eqn. (13.38): Oy C T
b

`
D �3NC 6:78N � 1:5m

3:3912mp
D 0;

Eqn. (13.43):
d

`
T � 1

2
ma D 3m

3:3912m
6:78N � 1

2
20 kg 0:6m=s2

p
D 0:

Thus, the computer solution agrees with our equations.
Comments: We could have solved the six equations for seven unknowns without assuming
Gy D 0 if our computer program or package allows us to do so. We will, of course, not get a
unique solution. For example, by taking the following A, a 6� 7 matrix, and solving A x = b
for x D �Ox Oy Oz IGx Gy Gz T �T with the same b as input above, we get the solution as
shown below.

A = [1 0 0 1 0 0 d/l
0 1 0 0 1 0 b/l
0 0 1 0 0 1 e/l
0 0 1 0 0 0 c/l
0 0 0 0 0 0 d/l
1 0 0 0 0 0 d/l]

b = [m*a, 0, m*g, m*g/2, m*a/2, m*a/2]’

{Solve A x = b for x}
x = % this is the computer output

0
-3.0000
97.0000
6.0000

0
102.0000

6.7823

This is the same solution as we got before except that it includes Gy D 0 in the solution.

Now, if we add a vector � x D �0 � 0 0 � � 0 0�T to x where � is any number, and compute

A (x+�x) , we get back b. That is, the six equilibrium conditions are satisfied irrespective of

the actual values of Oy and Gy as long as the value of Oy CGy remains the same.
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Problems for
Chapter 13
1D constrained motion

13.1 1D constrained
motion and pulleys
For all problems, unless stated otherwise,
treat all strings as inextensible, flexible and
massless. Treat all pulleys and wheels as
round, frictionless and massless. Assume
all massive objects are prevented from ro-
tating (e.g., wheels stay on the ground,
etc.). When numbers are called for use
g D 10m=s2 or g D 32 ft=s2.

Preparatory Problems
13.1.1 A motor at B allows the block of
mass m D 3 kg shown in the figure to ac-
celerate downwards at 2m=s2. There is
gravity. What is the tension in the string
AB?

Filename:pfigure-blue-12-2
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Problem 13.1.1

13.1.2 Two masses connected by an inex-
tensible string hang from an ideal pulley.

a) Find the downward acceleration of
mass B . Answer in terms of any or
all of mA, mB , g, and the present
velocities of the blocks. As a check,
your answer should give aB D g
when mA D 0 and aB D 0 when
mA D mB . �.

b) Find the tension in the string. As
a check, your answer should give
T D mBg D mAg when mA D
mB and T D 0 when mA D 0. �

Filename:pfigure3-f95p1p2
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Problem 13.1.2

13.1.3 The blocks shown are released from
rest.

a) What is the acceleration of block A
at t D 0C (just after release)?

b) What is the speed of block B after it
has fallen 2 meters?

Filename:pfigure-blue-29-2
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Problem 13.1.3

13.1.4 What is the acceleration of block
A? Use g D 10m=s2. �

Filename:pfigure-f93q4
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Problem 13.1.4

13.1.5 For the system shown in prob-
lem 13.1.2, find the acceleration of mass
B using energy balance .P D PEK/.

13.1.6 For the various situations pictured,
find the acceleration of mass A and point
B. Clearly define any variables, coordi-
nates or sign conventions that you use. �
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Problem 13.1.6: Four different ways to
pull a mass.

13.1.7 For each of the situations in prob-
lem 13.1.6 find the acceleration of the mass
using energy balance .P D PEK/. Define
any variables, coordinates, or sign conven-
tions that you need to do your calculations
and to define your solution.

13.1.8 What is the ratio of the accelera-
tion of point A to that of point B in each
configuration? m D m and F D F . �
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Problem 13.1.8

13.1.9 Find the acceleration of points A
and B in terms of F and m. �

Filename:pfigure-s94q5p1
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Problem 13.1.9

13.1.10 For the situation pictured in prob-
lem 13.1.9 find the accelerations of the two
masses using energy balance .P D PEK/.
Define any variables, coordinates, or sign
conventions that you need to do your cal-
culations and to define your solution.

13.1.11 The point of application A of the
force moves twice as fast as the mass. At
some instant in time t , the speed of the
mass is Px to the left. Find the input power
to the system at time t . �

Filename:pfig2-3-rp8
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Problem 13.1.11

More-Involved Problems
13.1.12 A train engine of massm pulls and
accelerates N cars, each of mass m. The
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Chapter 13. Homework problems 13.1 1D constrained motion and pulleys 647

power of the engine is Pt and its speed is
vt . Find the tension Tn between car n and
car n+1. Assume there is no resistance and
the ground is level. Assume the cars are
connected with rigid links. �

Filename:pfigure-newtrain
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Problem 13.1.12

13.1.13 A cart of massM , initially at rest,
can move horizontally along a frictionless
track. When t D 0, a force F is applied
as shown to the cart. During the accelera-
tion of M by the force F , a small box of
massm slides along the cart from the front
to the rear. The coefficient of friction be-
tween the cart and the box is �, and it is
assumed that the acceleration of the cart is
sufficient to cause sliding.

a) Draw free body diagrams of the
cart, the box, and the cart and box
together.

b) Write the equation of linear mo-
mentum balance for the cart, the
box, and the system of cart and box.

c) Show that the equations of motion
for the cart and box can be com-
bined to give the equation of motion
of the mass center of the system of
two bodies.

d) Find the displacement of the cart at
the time when the box has moved a
distance ` along the cart. �

Filename:pfigure-blue-28-1
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Problem 13.1.13

13.1.14 For the situations pictured, find
the accelerations of mass A and of point B.
Clearly define any variables, coordinates
or sign conventions that you use.

a) A single mass and four pulleys. �

b) Two masses and two pulleys. �

c) A single mass and four pulleys. �
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Problem 13.1.14: Various pulley arrange-
ments.

13.1.15 For the situations pictured in prob-
lem 13.1.14, find the acceleration of the
mass using energy balance .P D PEK/.

13.1.16 A person of mass m, modeled as
a rigid object, is sitting on a cart of mass
M > m and pulling the string towards her-
self. The coefficient of friction between
her seat and the cart is �. Point B is at-
tached to the cart and point A is attached
to the rope.

a) If you are given that she is pulling
rope in with acceleration a0 relative
to herself (that is, *aA=B � *aA �
*aB D �a0 O{) and that she is not
slipping relative to the cart, find*aA.
(Answer in terms of some or all of
m;M; g; �; O{ and a0.) �

b) Find the largest possible value of a0
without the person slipping off the
cart? (Answer in terms of some or
all of m;M; g and �. You may as-
sume her legs get out of the way if
she slips backwards.)

c) If instead, M < m, what is the
largest possible value of a0 with-
out the person slipping off the cart?
(Answer in terms of some or all of
m;M; g and �. You may assume
her legs get out of the way if she
slips backwards.)
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Problem 13.1.16: Pulley.

13.1.17 Two blocks and a pulley. Two
identical blocks are stacked and tied to-
gether by the pulley as shown. Find

a) the acceleration of point A, and
b) the tension in the line.
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Problem 13.1.17

13.1.18 What is the natural frequency of
vibration of this system? Include grav-
ity. x measures the vertical position of the
lower mass from equilibrium. y measures
the vertical position of the upper mass from
equilibrium. �

Filename:pfigure-s95q4
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Problem 13.1.18

13.1.19 For the situation pictured, find the
acceleration of mass A and points B and C
shown. [Hint: the situation with point C is
subtle.] �
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Problem 13.1.19
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648 Chapter 13. Homework problems 13.1 1D constrained motion and pulleys

13.1.20 For the situation pictured in prob-
lem 13.1.19, find the acceleration of point
A using energy balance .P D PEK/. Define
any variables, coordinates, or sign conven-
tions that you need to do your calculations
and to define your solution.

13.1.21 Design a pulley system. You are
to design a pulley system to move a mass.
There is no gravity. Point A has a force
*
F D F O{ pulling it to the right. Mass
B has mass mB . You can connect point
A to the mass with any number of ideal
strings and ideal pulleys. You can make
use of rigid walls or supports anywhere
you like (say, to the right or left of the
mass). You must design the system so that
mass B accelerates to the left with F

2mB

(i.e.,*aB D � F
2mB

O{).
a) Draw the system clearly. Justify

your answer with enough words or
equations so that a reasonable per-
son, say a grader, can tell that you
understand your solution.

b) Find the acceleration of point A.

13.1.22 Design a pulley system. You are
to design a pulley system to move a mass.
There is no gravity. Point A has a force
*
F D F O{ pulling it to the right. Mass B has
mass mB . You can connect the point A to
the mass with any number of ideal strings
and ideal pulleys. You can make use of
rigid walls or supports anywhere you like
(say, to the right or left of the mass). Draw
the system clearly. Justify your answer
with enough words or equations to con-
vince a skeptical person that your solution
is correct. You must design the system so
that the mass B accelerates .

a) to the left with F
mB

(i.e., *aB D
� F
mB

O{)
b) to the left with 2F

mB

c) to the left with F
2mB

d) to the right with 2F
mB

e) to the right with F
2mB

f) to the left with 8F
mB

g) to the right with F
5mB

13.1.23 Pulley and spring. For the hang-
ing mass find the period of oscillation.
Only vertical motion is of interest. There
is gravity.

Filename:pfigure-s94h4p4
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Problem 13.1.23

13.1.24 The spring-mass system shown
(m = 10 slugs (� lb � sec2=f t ), k D
10 lb=f t ) is excited by moving the free end
of the cable vertically according to �.t/ D
4 sin.!t/ in, as shown in the figure.

a) Derive the equation of motion for
the block in terms of the displace-
ment x from the static equilibrium
position, as shown in the figure.

b) If ! D 0:9 rad=s, check to see if the
pulley is always in contact with the
cable (ignore the transient solution).

Filename:pfigure-blue-151-1
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Problem 13.1.24

13.1.25 The block of mass m hanging
on the spring with constant k and a string
shown in the figure is forced by F D
A sin.!t/. Do not neglect gravity. The
pulley has negligible mass.

a) What is the differential equation
governing the motion of the block?
You may assume that the only mo-
tion is vertical motion. �

b) Given A, m and k, for what values
of ! would the string go slack at
some point in the cyclical motion?
(The common assumption in such
problems, which you can use, is
to neglect the homogeneous solu-
tion to the differential equation. It
is assumed that the damping, small
enough to be neglected in the gov-
erning equations is large enough so

that the particular solution will have
damped out at the time of observa-
tion.) �

Filename:pfigure-blue-155-1
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Problem 13.1.25

13.1.26 Block A, with mass mA, is pulled
to the right a distance d from the position
it would have if the spring were relaxed. It
is then released from rest. Assume ideal
string, pulleys and wheels. The spring has
constant k.

a) What is the acceleration of block A
just after it is released (in terms of
k, mA, and d )? �

b) What is the speed of the mass when
the mass passes through the posi-
tion where the spring is relaxed? �.

Filename:pfigure-f93q5
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Problem 13.1.26

13.1.27 What is the static displacement
of the mass from the position where the
spring is just relaxed?
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Problem 13.1.27

13.1.28 For the two situations pictured,
find the acceleration of point A shown us-
ing balance of linear momentum .

P *
F D
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Chapter 13. Homework problems 13.2 1D motion with 2D and 3D forces 649

m*a/. Assuming both masses are de-
flected an equal distance from the posi-
tion where the spring is just relaxed, how
much smaller or bigger is the acceleration
of block (b) than that of block (a). De-
fine any variables, coordinate system ori-
gins, coordinates or sign conventions that
you need to do your calculations and to de-
fine your solution.
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Problem 13.1.28

13.1.29 For each of the situations pictured
in problem 13.1.28, find the acceleration of
the mass using energy balance .P D PEK/.
Define any variables, coordinates, or sign
conventions that you need to do your cal-
culations and to define your solution.

13.2 1D motion with 2D
and 3D forces
Preparatory Problems
13.2.1 Mass pulled by two strings. F1
and F2 are applied so that the system
shown accelerates to the right at 5m=s2
(i.e., a D 5m=s2 O{ C 0 O|) and has no ro-
tation. The mass of D and forces F1 and
F2 are unknown. What is the tension in
string AB?
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Problem 13.2.1

13.2.2 The two blocks, m1 D m2 D
m, are connected by an inextensible string

AB . The string can only withstand a ten-
sion Tcr . Find the maximum value of the
applied force P so that the string does not
break. The sliding coefficient of friction
between the blocks and the ground is �.
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Problem 13.2.2

13.2.3 A point massm is attached to a pis-
ton by two inextensible cables. The piston
has upwards acceleration of ay O|. There is
gravity. In terms of some or all of m; g; d ,
and ay find the tension in cable AB . �
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Problem 13.2.3

13.2.4 A point mass of mass m moves on
a frictional surface with coefficient of fric-
tion � and is connected to a spring with
constant k and unstretched length `. There
is gravity. At the instant of interest, the
mass is at a distance x to the right from
its position where the spring is unstretched
and is moving with Px > 0 to the right.

a) Draw a free body diagram of the
mass at the instant of interest.

b) At the instant of interest, write the
equation of linear momentum bal-
ance for the block evaluating the left
hand side as explicitly as possible.
Let the acceleration of the block be
*a D Rx O{.
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Problem 13.2.4

13.2.5 Consider the mass at B (2 kg) sup-
ported by two strings in the back of a truck

which has acceleration of 3m=s2. Use
g D 10m=s2. What is the tension TAB
in the string AB in Newtons?

Filename:pfigure-s94h2p8
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Problem 13.2.5:

13.2.6 At the instant shown, the mass is
moving to the right at speed v D 3m=s.
Find the rate of work done on the mass.

Filename:pfig2-3-rp9
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Problem 13.2.6

13.2.7 A point mass ‘m’ is pulled straight
up by two strings. The two strings pull the
mass symmetrically about the vertical axis
with constant and equal force T . At an in-
stant in time t , the position and the velocity
of the mass are y.t/ O| and Py.t/ O|, respec-
tively. Find the power input to the moving
mass.
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Problem 13.2.7

More-Involved Problems
13.2.8 Two blocks, each of mass m, are
connectedby a rod of length S . They slide
down a slope of angle � . Do not neglect
gravity but do neglect friction.

a) Draw separate free body diagrams
of each block, the rod, and the sys-
tem of the two blocks and rod.

b) Write separate equations for linear
momentum balance for each block,
the rod, and the system of blocks
and rod.
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650 Chapter 13. Homework problems 13.2 1D motion with 2D and 3D forces

c) What is the acceleration of the cen-
ter of mass of the two blocks? �

d) What is the force in the rod? �

e) What is the speed of the center of
mass for the two blocks after they
have traveled a distance d down
the slope, having started from rest.
[Hint: Dot your momentum bal-
ance equations with a unit vector
along the ramp in order to reduce
this problem to a problem in one di-
mensional mechanics.] �
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Problem 13.2.8

13.2.9 Two blocks, each of mass m, are
connected by a massless rod of length S ;
the blocks’ dimensions are small compared
to S . They slide down a slope of angle � .
The coefficient of friction of the top block
is � and of the bottom block is �=2.

a) Draw separate free body diagrams
of each block, the string, and the
system of the two blocks and rod.

b) Write separate equations for linear
momentum balance for each block,
the string, and the system of blocks
and rod.

c) What is the acceleration of the cen-
ter of mass of the two blocks? �

d) What is the force in the rod? �

e) What is the speed of the center of
mass for the two blocks after they
have traveled a distance d down the
slope, having started from rest. �

f) How would your solutions to parts
(a) and (c) differ if the two blocks
were interchanged with the slippery
one on top? �
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Problem 13.2.9

13.2.10 Coin on a car on a ramp. A stu-
dent engineering design course asked stu-
dents to build a cart (massD mc) that rolls
down a ramp with angle � . A small weight
(mass mw � mc) is placed on top of the
cart on a surface tipped with respect to the
cart (angle �). Assume the small mass
does not slide. Assume massless wheels
with frictionless bearings. O{ is horizontal
and O| is vertical up.

a) Find the acceleration of the cart.
Answer in terms of some or all of
mc ; g; O{; � and O|.

b) What coefficient of friction � is re-
quired (the smallest that will work)
to keep the small mass from slid-
ing as the cart rolls down the slope?
Answer in terms of some or all of
mc ; mw ; g; �; and �.

c) What angle � will allow a small
mass to ride on the cart with the
smallest coefficient of friction? An-
swer in terms of some or all of
mc ; mw ; g; and � .

13.2.11 Guyed plate on a cart A uniform
rectangular plateABCD of massm is sup-
ported by a rod DE and a hinge joint at
point B . The dimensions are as shown.
There is gravity. What must the acceler-
ation of the cart be in order for massless
rod DE to be in tension? �
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Problem 13.2.11: Uniform plate supported
by a hinge and a cable on an accelerating
cart.

13.2.12 A uniform rectangular plate of
mass m is supported by two inextensible
cables AB and CD and by a hinge at point
E on the cart as shown. The cart has ac-
celeration ax O{ due to a force not shown.
There is gravity.

a) Draw a free body diagram of the
plate.

b) Write the equation of linear mo-
mentum balance for the plate and
evaluate the left hand side as explic-
itly as possible.

c) Write the equation for angular mo-
mentum balance about point E and
evaluate the left hand side as explic-
itly as possible.
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Problem 13.2.12

13.2.13 A uniform rectangular plate of
massm is supported by an inextensible ca-
ble CD and a hinge joint at point E on the
cart as shown. The hinge joint is attached
to a rigid column welded to the floor of the
cart. The cart is at rest. There is gravity.
Find the tension in cable CD.
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Problem 13.2.13

13.2.14 A uniform rectangular plate of
massm is supported by an inextensible ca-
ble AB and a hinge joint at point E on the
cart as shown. The hinge joint is attached
to a rigid column welded to the floor of the
cart. The cart has acceleration ax O{. There
is gravity. Find the tension in cable AB .
(What’s ‘wrong’ with this problem? What
if instead point B were at the bottom left
hand corner of the plate?) �

Filename:ch3-11a

G

A

B
C

D

E

a ax

Problem 13.2.14
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13.2.15 A block of mass m is sitting on a
frictionless surface and acted upon at point
E by the horizontal force P through the
center of mass. Draw a free body diagram
of the block. There is gravity. Find a) the
acceleration of the block and b) reactions
on the block at points A and B . �
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Problem 13.2.15

13.2.16 Reconsider the block in prob-
lem 13.2.15. This time, find the acceler-
ation of the block and the reactions at A
and B if the force P is applied instead at
point D. Are the acceleration and the re-
actions on the block different from those
found when P is applied at point E? �

13.2.17 A block of mass m is sitting on a
frictional surface and acted upon at point
D by the horizontal force P . The block
is resting on a sharp edge at point B and
is supported by an ideal wheel at point
A. There is gravity. Assuming the block
is sliding with coefficient of friction � at
point B , find the acceleration of the block
and the reactions on the block at points A
and B .
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Problem 13.2.17

13.2.18 A force FC is applied to the cor-
ner C of a box of weight W with dimen-
sions and center of gravity at G as shown
in the figure. The coefficient of sliding
friction between the floor and the points of
contact A and B is �. Assuming that the
box slides when FC is applied, find the ac-
celeration of the box and the reactions at A
and B in terms of W , FC , � , b, and d .
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Problem 13.2.18

13.2.19 A uniform rod with massmr rests
on a cart (mass mc) which is being pulled
to the right. The rod is hinged at one end
(with a frictionless hinge) and has no fric-
tion at the contact with the cart. The cart is
rolling on wheels that are modeled as hav-
ing no mass and no bearing friction (ideal
massless wheels). Answer in terms of g,
mr , mc , � and F . Find:

a) The force on the rod from the cart at
point B.

b) The force on the rod from the cart at
point A.
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Problem 13.2.19

13.2.20 The box shown in the figure is
dragged in the x-direction with a constant
acceleration*a D 0:5m=s2 O{. At the instant
shown, the velocity of (every point on) the
box is*v D 0:8m=sO{.

a) Find the linear momentum of the
box.

b) Find the rate of change of linear
momentum of the box.

c) Find the angular momentum of the
box about the contact point O .

d) Find the rate of change of angu-
lar momentum of the box about the
contact point O .
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Problem 13.2.20

13.2.21 The groove and disk accelerate
upwards, *a D a O|. Neglecting gravity,
what are the forces on the disk due to the
groove?
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Problem 13.2.21

13.2.22 The following problems concern
a box that is in the back of a pickup truck.
The pickup truck is moving forward with
acceleration of at . The truck’s speed is vt .
The box has sharp feet at the front and back
ends so the only place it contacts the truck
is at the feet. The center of mass of the
box is at the geometric center of the box.
The box has height h, length ` and depth
w (into the paper.) Its mass is m. There
is gravity. The friction coefficient between
the truck and the box edges is �.

In the problems below you should ex-
press your solutions in terms of the vari-
ables given in the figure, `, h, �, m, g, at ,
and vt . If any variables do not enter the
expressions comment on why they do not.
In all cases you may assume that the box
does not rotate (though it might be on the
verge of doing so).

a) Assuming the box does not slide,
what is the total force that the truck
exerts on the box (i.e. the sum of
the reactions at A and B)?

b) Assuming the box does not slide
what are the reactions at A and B?
[Note: You cannot find both of them
without additional assumptions.]

c) Assuming the box does slide, what
is the total force that the truck exerts
on the box?

d) Assuming the box does slide, what
are the reactions at A and B?

e) Assuming the box does not slide,
what is the maximum acceleration
of the truck for which the box will
not tip over (hint: just at that criti-
cal acceleration what is the vertical
reaction at B?)?

f) What is the maximum acceleration
of the truck for which the block will
not slide?

g) The truck hits a brick wall and stops
instantly. Does the block tip over?
Assuming the block does not tip
over, how far does it slide on
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the truck before stopping (assume
the bed of the truck is sufficiently
long)?
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Problem 13.2.22

13.2.23 A collection of uniform boxes
with various heights h and widths w and
massesm sit on a horizontal conveyer belt.
The acceleration a.t/ of the conveyer belt
gets extremely large sometimes due to an
erratic over-powered motor. Assume the
boxes touch the belt at their left and right
edges only and that the coefficient of fric-
tion there is �. It is observed that some
boxes never tip over. What is true about �,
g, w, h, and m for the boxes that always
maintain contact at both the right and left
bottom edges? (Write an inequality that in-
volves some or all of these variables.)
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13.2.24 After failure of her normal brakes,
a driver pulls the emergency brake of her
old car. This action locks the rear wheels
(friction coefficient D �) but leaves the
well lubricated and light front wheels spin-
ning freely. The car, braking inadequately
as is the case for rear wheel braking, hits
a stiff and slippery phone pole which com-
presses the car bumper. The car bumper
is modeled here as a linear spring (con-
stant D k, rest length D l0, present length
D ls). The car is still traveling forward
at the moment of interest. The bumper is
at a height hb above the ground. Assume
that the car, excepting the bumper, is a non-
rotating rigid body and that the wheels re-
main on the ground (that is, the bumper is
compliant but the suspension is stiff).

� What is the acceleration of the car
in terms of g, m, �, lf , lr , k, hb ,
hcm, l0, and ls (and any other pa-
rameters if needed)?
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13.2.25 Car braking: front brakes ver-
sus rear brakes versus all four brakes.
What is the peak deceleration of a car when
you apply: the front brakes till they skid,
the rear brakes till they skid, and all four
brakes till they skid? Assume that the
coefficient of friction between rubber and
road is � D 1 (about right, the coeffi-
cient of friction between rubber and road
varies between about :7 and 1:3) and that
g D 10m=s2 (2% error). Pick the dimen-
sions and mass of the car, but assume the
center of mass height h is greater than zero
but is less than half the wheel base w, the
distance between the front and rear wheel.
Also assume that the CM is halfway be-
tween the front and back wheels (i.e., lf D
lr D w=2). The car has a stiff sus-
pension so the car does not move up or
down or tip appreciably during braking.
Neglect the mass of the rotating wheels
in the linear and angular momentum bal-
ance equations. Treat this problem as two-
dimensional problem; i.e., the car is sym-
metric left to right, does not turn left or
right, and that the left and right wheels
carry the same loads. To organize your
work, here are some steps to follow.

a) Draw a FBD of the car assuming
rear wheel is skidding. The FBD
should show the dimensions, the
gravity force, what you know a pri-
ori about the forces on the wheels
from the ground (i.e., that the fric-
tion force Fr D �Nr , and that there
is no friction at the front wheels),
and the coordinate directions. Label
points of interest that you will use in
your momentum balance equations.
(Hint: also draw a free body dia-
gram of the rear wheel.)

b) Write the equation of linear mo-
mentum balance.

c) Write the equation of angular mo-
mentum balance relative to a point
of your choosing. Some particu-
larly useful points to use are:

� the point above the front
wheel and at the height of the
center of mass;

� the point at the height of the
center of mass, behind the
rear wheel that makes a 45
degree angle line down to
the rear wheel ground contact
point; and

� the point on the ground
straight under the front wheel
that is as far below ground as
the wheel base is long.

d) Solve the momentum balance equa-
tions for the wheel contact forces
and the deceleration of the car. If
you have used any or all of the
recommendations from part (c) you
will have the pleasure of only solv-
ing one equation in one unknown at
a time. �

e) Repeat steps (a) to (d) for front-
wheel skidding. Note that the ad-
vantageous points to use for angular
momentum balance are now differ-
ent. Does a car stop faster or slower
or the same by skidding the front
instead of the rear wheels? Would
your solution to (e) be different if
the center of mass of the car were at
ground level(h=0)? �

f) Repeat steps (a) to (d) for all-wheel
skidding. There are some shortcuts
here. You determine the car de-
celeration without ever knowing the
wheel reactions (or using angular
momentum balance) if you look at
the linear momentum balance equa-
tions carefully. �

g) Does the deceleration in (f) equal
the sum of the decelerations in (d)
and (e)? Why or why not? �

h) What peculiarity occurs in the solu-
tion for front-wheel skidding if the
wheel base is twice the height of the
CM above ground and � D 1? �

i) What impossibility does the solu-
tion predict if the wheel base is
shorter than twice the CM height?
What wrong assumption gives rise
to this impossibility? What would
really happen if one tried to skid a
car this way? �
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13.2.26 Assuming massless wheels, an in-
finitely powerful engine, a stiff suspension
(i.e., no rotation of the car) and a coeffi-
cient of friction � between tires and road,

a) what is the maximum forward ac-
celeration of this front wheel drive
car? �

b) what is the force of the ground on
the rear wheels during this acceler-
ation?

c) what is the force of the ground on
the front wheels?
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13.2.27 At time t D 0, the block of mass
m is released from rest on the slope of an-
gle �. The coefficient of friction between
the block and slope is �.

a) What is the acceleration of the
block for � > 0? �

b) What is the acceleration of the
block for � D 0? �

c) Find the position and velocity of the
block as a function of time for � >
0. �

d) Find the position and velocity of the
block as a function of time for � D
0. �

Filename:Danef94s1q5

φ

 m

µ

g

Problem 13.2.27

13.2.28 A small block of mass m1 is re-
leased from rest at altitude h on a friction-
less slope of angle �. At the instant of re-
lease, another small block of mass m2 is
dropped vertically from rest at the same al-
titude. The second block does not interact
with the ramp. What is the velocity of the
first block relative to the second block after
t seconds have passed?
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Problem 13.2.28

13.2.29 Block sliding on a ramp with
friction. A square box is sliding down a
ramp of angle � with instantaneous veloc-
ity v O{0. Assume it does not tip over.

a) What is the force on the block from
the ramp at point A? Answer in
terms of any or all of � , `, m, g, �,
v, O{0, and O|0. As a check, your an-
swer should reduce to mg

2 O|0 when
� D � D 0. �

b) In addition to solving the problem
by hand, see if you can write a set
of computer commands that, if � ,�,
`, m, v and g were specified, would
give the correct answer.

c) Assuming � D 80� and � D 0:9,
can the box slide this way or would
it tip over? Why? �
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Problem 13.2.29

13.2.30 A coin is given a sliding shove up
a ramp with angle � with the horizontal.
It takes twice as long to slide down as it
does to slide up. What is the coefficient of
friction � between the coin and the ramp.
Answer in terms of some or all of m; g; �
and the initial sliding velocity v.

13.2.31 A skidding car. What is the brak-
ing acceleration of the front-wheel braked
car as it slides down hill. Express your an-
swer as a function of any or all of the fol-
lowing variables: the slope � of the hill, the
mass of the carm, the wheel base `, and the
gravitational constant g. Use � D 1. �
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Problem 13.2.31: A car skidding downhill
on a slope of angle �

13.2.32 Two blocks A and B are pushed up
a frictionless inclined plane by an external
force F as shown in the figure. The coeffi-
cient of friction between the two blocks is
� D 0:2. The masses of the two blocks
are mA D 5 kg and mB D 2 kg. Find
the magnitude of the maximum allowable
force such that no relative slip occurs be-
tween the two blocks.
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Problem 13.2.32

13.2.33 A bead slides on a frictionless
rod. The spring has constant k and rest
length `0. The bead has mass m.

a) Given x and Px find the acceleration
of the bead (in terms of some or
all ofD; `0; x; Px;m; k and any base
vectors that you define).

b) If the bead is allowed to move,
as constrained by the slippery rod
and the spring, find a differential
equation that must be satisfied by
the variable x. (Do not try to
solve this somewhat ugly non-linear
equation.)

c) In the special case that `0 D 0�
find how long it takes for the block
to return to its starting position af-
ter release with no initial velocity at
x D x0.
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Problem 13.2.33

13.2.34 A bead oscillates on a straight fric-
tionless wire. The spring obeys the equa-
tion F D k (` � `o/, where ` = length of
the spring and `0 is the ’rest’ length. As-
sume

x.t D 0/ D x0; Px.t D 0/ D 0:

a) Write a differential equation satis-
fied by x.t/.
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b) What is Px when x D 0? [hint:
Don’t try to solve the equation in
(a)!]

c) What is the simplification in (a) if
`o D 0 (spring is then a so-called
“zero–length” spring).

d) For this special case (`o D 0) solve
the equation in (a) and show the re-
sult agrees with (b) in this special
case.
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13.2.35 A cart on an elastic leash. A
cartB (massm) rolls on a frictionless level
floor. One end of an inextensible string is
attached to the the cart. The string wraps
around a pulley at point A and the other
end is attached to a spring with constant k.
When the cart is at point O , it is in static
equilibrium. The spring relaxed length,
rope length, and room height h are such
that the spring would be relaxed if the end
of rope at B were diconnected from the
cart and brought up to point A. The grav-
itational constant is g. The cart is pulled
a horizontal distance d from the center of
the room (at O) and released.

a) Assuming that the cart never leaves
the floor, what is the speed of the
cart when it passes through the cen-
ter of the room, in terms of m, h, g
and d . �

b) Does the cart undergo simple har-
monic motion for small or large
oscillations (specify which if ei-
ther)? (Simple harmonic motion
occurs when position varies inu-
soidally with time.) �
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Problem 13.2.35

13.2.36 The cart moves to the right with
constant acceleration a. The ball has mass
m. The spring has unstretched length `0
and spring constant k. Assuming the ball
is stationary with respect to the cart find
the distance fromO to A in terms of k, `0,
and a . [Hint: find � first.]
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13.2.37 Consider a person, modeled as a
rigid body, riding an accelerating motorcy-
cle (2-D). The person is sitting on the seat
and cannot slide fore or aft, but is free to
rock in the plane of the motorcycle (as if
there were a hinge connecting the motor-
cycle to the rider at the seat). The per-
son’s feet are off the pegs and the legs are
sticking down and not touching anything.
The person’s arms are like cables (they are
massless and only carry tension). Assume
all dimensions and masses are known (you
have to define them carefully with a sketch
and words). Assume the forward accelera-
tion of the motorcycle is known. You may
use numbers and/or variables to describe
the quantities of interest.

a) Draw a clear sketch of the problem
showing needed dimensional infor-
mation and the coordinate system
you will use.

b) Draw a Free Body Diagram of the
rider.

c) Write the equations of linear and
angular momentum balance for the
rider.

d) Find all forces on the rider from the
motorcycle (i.e., at the hands and
the seat).

e) What are the forces on the motorcy-
cle from the rider?

13.2.38 Acceleration of a bicycle on level
ground. 2-D . A very compact bicycler
(modeled as a point mass M at the bi-
cycle seat C with height h, and distance
b behind the front wheel contact), rides a
very light old-fashioned bicycle (all com-
ponents have negligible mass) that is well
maintained (all bearings have no frictional

torque) and streamlined (neglect air resis-
tance). The rider applies a force Fp to
the pedal perpendicular to the pedal crank
(with lengthLc). No force is applied to the
other pedal. The radius of the front wheel
is Rf .

a) Assuming no slip, what is the for-
ward acceleration of the bicycle? [
Hint: draw a FBD of the front wheel
and crank, and another FBD of the
whole bicycle-rider system.] �

b) (Harder) Assuming the rider can
push arbitrarily hard but that� D 1,
what is the maximum possible for-
ward acceleration of the bicycle. �
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Problem 13.2.38

13.2.39 A 320 lbm mass is attached at the
corner C of a light rigid piece of pipe bent
as shown. The pipe is supported by ball-
and-socket joints at A and D and by ca-
ble EF . The points A, D, and E are fas-
tened to the floor and vertical sidewall of a
pick-up truck which is accelerating in the
z-direction. The acceleration of the truck
is*a D 5 ft=s2 Ok. There is gravity. Find the
tension in cable EF . �
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Problem 13.2.39

13.2.40 A 5 ft by 8 ft rectangular plate of
uniform density has mass m D 10 lbm and
is supported by a ball-and-socket joint at
point A and the light rods CE,BD, and
GH . The entire system is attached to a
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truck which is moving with acceleration
*aT . The plate is moving without rota-
tion or angular acceleration relative to the
truck. Thus, the center of mass accelera-
tion of the plate is the same as the truck’s.
Dimensions are as shown. Points A, C ,
andD are fixed to the truck but the truck is
not touching the plate at any other points.
Find the tension in rod BD.

a) If the truck’s acceleration is acm D
.5 ft=s2/k, what is the tension or
compression in rod BD? �

b) If the truck’s acceleration is*acm D
.5 ft=s2/ O| C .6 ft=s2/ Ok, what is the
tension or compression in rod GH?
�
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Problem 13.2.40

13.2.41 Hanging a shelf. A shelf with
negligible mass supports a 0:5 kg mass at
its center. The shelf is supported at one
corner with a ball and socket joint and at
the other three corners with strings. At the
moment of interest the shelf is in a rocket
in outer space and accelerating at 10m=s2
in the k direction. The shelf is in the xy
plane.

a) Draw a FBD of the shelf.
b) Challenge: without doing any cal-

culations on paper can you find one
of the reaction force components or
the tension in any of the cables?
Give yourself a few minutes of star-
ing to try this approach. If you
can’t, then come back to this ques-
tion after you have done all the cal-
culations. �

c) Write down the linear momentum
balance equation (a vector equa-
tion). �

d) Write down the angular momentum
balance equation using the center of
mass as a reference point. �

e) By taking components, turn (b) and
(c) into six scalar equations in six
unknowns. �

f) Solve these equations by hand or on
the computer. �

g) Instead of using a system of equa-
tions try to find a single equa-
tion which can be solved for TEH .
Solve it and compare to your result
from before. �

h) Challenge: For how many of the re-
actions can you find one equation
which will tell you that particular
reaction without knowing any of the
other reactions? [Hint, try angu-
lar momentum balance about vari-
ous axes as well as linear momen-
tum balance in an appropriate di-
rection. It is possible to find five
of the six unknown reaction com-
ponents this way.] Must these so-
lutions agree with (d)? Do they?
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Problem 13.2.41

13.2.42 A uniform rectangular plate of
massm is supported by an inextensible ca-
ble CD and a hinge joint at point E on the
cart as shown. The hinge joint is attached
to a rigid column welded to the floor of the
cart. The cart has acceleration ax O{. There
is gravity. Find the tension in cable CD.
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Problem 13.2.42

13.2.43 The uniform 2 kg plate DBFH is
held by six massless rods (AF, CB, CF,
GH, ED, and EH) which are hinged at their
ends. The support points A, C, G, and E are
all accelerating in the x-direction with ac-
celeration a D 3m=s2{. There is no grav-
ity.

a) What is fP *
F g � O{ for the forces act-

ing on the plate?

b) What is the tension in bar CB?
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Problem 13.2.43

13.2.44 A massless triangular plate rests
against a frictionless wall of a pick-up
truck at pointD and is rigidly attached to a
massless rod supported by two ideal bear-
ings fixed to the floor of the pick-up truck.
A ball of mass m is fixed to the centroid
of the plate. There is gravity. The pick-up
truck skids across a road with acceleration
*a D ax O{ C az

Ok. What is the reaction at
point D on the plate?
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Problem 13.2.44

13.2.45 Towing a bicycle. A bicycle on
the level xy plane is steered straight ahead
and is being towed by a rope. The bicycle
and rider are modeled as a uniform plate
with mass m (for the convenience of the
artist). The tow force F applied at C has
no z component and makes an angle � with
the x axis. The rolling wheel contacts are
at A and B. The bike is tipped an angle
� from the vertical. The towing force F
is the magnitude needed to keep the bike
accelerating in a straight line (along the y
axis) without tipping any more or less than
the angle �. What is the acceleration of the
bicycle? Answer in terms of some or all of
b; h; �; �;m; g and O| (Note: F should not
appear in your final answer.)

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



656 Chapter 13. Homework problems 13.2 1D motion with 2D and 3D forces

Filename:s97f3

F

A

C

B

x

z
y

φ

φ π/2-α

α

bh

Problem 13.2.45

13.2.46 An airplane is in straight level
flight but is accelerating in the forward di-
rection. In terms of some or all of the fol-
lowing parameters,

� mtot � the total mass of the plane
(including the wings),

� D= the drag force on the fuselage,

� FD= the drag force on each wing,

� g= gravitational constant, and,

� T D the thrust of one engine.

a) What is the lift on each wing FL? �
b) What is the acceleration of the plane

*aP ? �
c) A free body diagram of one wing

is shown. The mass of one wing
is mw . What, in terms of mtot ,
mw , FL, FD , g, a,b, c, and ` are
the reactions at the base of the wing
(where it is attached to the plane),
*
F D Fx O{C Fy O| C Fz

Ok and
*
M D

Mx O{CMy O| CMz
Ok? �
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Problem 13.2.46

13.2.47 A rear-wheel drive car on level
ground. The two left wheels are on per-
fectly slippery ice. The right wheels are on
dry pavement. The negligible-mass front
right wheel at B is steered straight ahead
and rolls without slip. The right rear wheel
at C also rolls without slip and drives the
car forward with velocity *v D v O| and ac-
celeration *a D a O|. Dimensions are as
shown and the car has mass m . What is
the sideways force from the ground on the
right front wheel at B? Answer in terms of
any or all of m, g, a, b, `, w, and O{. �
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Problem 13.2.47: The left wheels of this
car are on ice.

13.2.48 A somewhat crippled car slams
on the brakes. The suspension springs at
A, B, and C are frozen and keep the car
level and at constant height. The normal
force at D is kept equal to ND by the only
working suspension spring which is on the
left rear wheel at D. The only brake which
is working is that of the right rear wheel
at C which slides on the ground with fric-
tion coefficient �. Wheels A, B, and D
roll freely without slip. Dimensions are as
shown.

a) Find the acceleration of the car in
terms of some or all of
m;w; `; b; h; g; �; O|, and ND .

b) From the information given could
you also find all of the reaction
forces at all of the wheels? If so,
why? If not, what can’t you find
and why? (No credit for correct an-
swer. Credit depends on clear ex-
planation.)
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Problem 13.2.48: Given normal force at D,
skidding at C.

13.2.49 Speeding tricycle gets a branch
caught in the right rear wheel. A scared-
stiff tricyclist riding on level ground gets
a branch stuck in the right rear wheel so
the wheel skids with friction coefficient
�. Assume that the center of mass of the
tricycle-person system is directly above the
rear axle. Assume that the left rear wheel
and the front wheel have negligible mass,
good bearings, and have sufficient friction
that they roll in the O| direction without
slip, thus constraining the overall motion
of the tricycle. Dimensions are shown in
the lower sketch. Find the acceleration of
the tricycle (in terms of some or all of
`; h; b; m; �I cm�; �; g; O{; O|; and Ok).
[Hint: check your answer against special
cases for which you might guess the an-
swer, such as when � D 0 or when h D 0.]
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Problem 13.2.49: Right rear wheel skids.

13.2.50 A 3-wheeled robot. A 3-wheeled
robot with mass m is being transported on
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a level flatbed trailer also with mass m.
The trailer is being pushed with a force
F O|. The ideal massless trailer wheels roll
without slip. The ideal massless robot
wheels also roll without slip. The robot
steering mechanism has turned the wheels
so that wheels at A and C are free to roll in
the O| direction and the wheel at B is free to
roll in the O{ direction. The center of mass
of the robot at G is h above the trailer bed
and symmetrically above the axle connect-
ing wheels A and B. The wheels A and B
are a distance b apart. The length of the
robot is `.

Find the force vector
*
FA of the trailer

on the robot at A in terms of some or all of
m; g; `; F; b; h; O{; O|; and Ok . [Hints: Use a
free body diagram of the cart with robot to
find their acceleration. With reference to a
free body diagram of the robot, use angular
momentum balance about axis BC to find
FAz .]
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CHAPTER 14
Circular motion of a

particle
After movement on straight lines the next important special motion is rotation
on a circular path. Polar coordinates and base vectors are introduced in this
simplest possible context. The key new idea is that not just coordinates, but
base vectors, can change with time.

Contents
14.1 Circular motion kinematics . . . . . . . . . . . . . . . . . . 660

Box 14.1 Summary: the motion quantities . . . . . . . . . 664
Box 14.2 d’Alembert’s mechanics: beginners beware . . . 665

14.2 Dynamics of particle circular motion . . . . . . . . . . . . . 672
Box 14.3 Other derivations of the pendulum equation . . . 676

Problems for Chapter 14 . . . . . . . . . . . . . . . . . . . . . . . 683

658 Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



We covered the special case of straight-line motion in the previous chap-
ter. But an unconstrained particle, such as a thrown ball, generally moves
on a curved path as pushed by gravity and aerodynamic forces. Also, when
a rigid object moves, it translates and rotates while the points on the object
move on complicated curved paths. Now we consider the archetypal curved
motion, motion on along a circular path. Circular motion deserves special
attention because

� the most common connection between moving parts on a machine is
with a bearing (or hinge or axle) (fig. 15.1), if the axle on one part is
fixed then all points on the part move in circles;

� circular motion is the simplest case of curved-path motion;

� circular motion provides a simple way to introduce time-varying base
vectors;

� circular motion includes most of the conceptual ingredients of more
general curved motions;

� at least in 2 dimensions, the only way two particles on one rigid object
can move relative to each other is by circular motion (no matter how
the object is moving); and

� circular motion is the simplest case with which to introduce two impor-
tant rigid-object concepts:

– angular velocity, and
– moment of inertia.

Many useful calculations can be made by approximating the motion of
particles as circular. For example, the motions of points on a jet engine’s tur-
bine blade, a car engine’s crank shaft, a car’s wheel, a windmill’s propeller,
the earth spinning about its axis, a clock pendulum or watch balance wheel,
all the points on a bicycle when it is going around a corner, a satellite orbit-
ing the earth or a spinning satellite going around its spin axis, might all be
approximately described as having circular motion about some appropriate
point or axis.

This short chapter concerns only motion in two dimensions, namely the
kinematics and mechanics of a single particle going in circles. The next chap-
ter concerns the kinematics and mechanics of rigid objects. A later chapter
discusses circular motion, which is always planar, in a three-dimensional
context.

659



660 Chapter 14. Circular motion of a particle 14.1. Circular motion kinematics
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Figure 14.1: Trajectory of particle for
circular motion.
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Figure 14.2: Plots of x versus t and y
versus t for a particle going in a cir-
cle of radius R at constant rate. For
simplicity we assumed constant P� with
� D P� t . So both x and y vary as sinu-
soidal functions of time: x D R cos. P� t/
and y D R sin. P� t/.
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Figure 14.3: Plot of x and y versus time
for a particle going in circles at constant
rate. x versus t is a cosine curve, y ver-
sus t is a sine curve. Together they make
up the 3D helix.

14.1 Kinematics of a particle in planar
circular motion

This section concerns the position, velocity and accelerations of one point
going in circles. The essence of the content here is this:

If OeR is a unit vector in the plane that is rotating counter-clockwise
(CCW) at a rate of P� its rate of change is

POeR D P� Oe�
where Oe� is a unit vector given by rotating OeR 90� CCW.

If you learn this idea inside and out then either you will have picked up all
the other key facts on the way, or you will be able to learn them in a flash.
Note, we use

*

R and *
r interchangeably. Likewise for Oer and OeR.

Circular motion
The position of a particle going in circles around the origin on the xy plane
is

*
r D R cos � O{CR sin � O|;

with the radius R a constant. Or, in terms of components,

x D R cos � and y D R sin �:

A natural graphical representation of this motion is a circle (fig. 14.1). Un-
fortunately, a picture of the circular trajectory doesn’t give any information
about the speed of the particle on the circle. A plot of a particle moving in
circles slowly looks just like a plot of a particle moving quickly.

To get a sense of how position changes in time one can plot the functions
x.t/ and y.t/ (fig. 14.2). Unfortunately this figure only indirectly conveys
that the particle is going in circles.

If you want to see both the trajectory and the time history of both variables
one can make a 3-D plot of xy position versus time (fig. 14.2). The shadows
of this helix on the three coordinate planes are the three graphs just discussed.

Finally, rather than representing time as a spatial coordinate, one can rep-
resent time with time itself. How? Make an animated movie showing a
particle on the xy plane as it moves. Move your finger around in circles on
the table. That’s it. Similarly, you can make a dot move in circles on your
screen. How do you make all these plots? Using a calculator or computer
you can evaluate x and y for a range of values of t . Then, using pencil and
paper, a plotting calculator, or a computer, plot x vs t , y vs t , and y vs x. For
animations plot x and y over and over again for a sequence of values of t ,
and show these on your screen at a sequence of times.
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Polar coordinates R and � and unit vectors Oe
R

and Oe
�

Especially for circular motion, it is convenient to represent position, velocity
and acceleration with polar, rather than rectangular, coordinates. With polar
coordinates we use polar base vectors which, unlike the fixed O{ and O|, rotate
as the particle goes around. Let’s redraw fig. 14.1 and show the unit base
vectors

OeR (‘e R’) and Oe� (‘e theta’).

The radial unit vector OeR is directed from the center of the circle towards the
point of interest and the transverse vector Oe� , perpendicular to OeR, is tangent
to the circle at that point in the direction of increasing � . As the particle goes
around, its OeR and Oe� unit vectors change accordingly. Two different particles
both going in circles with the same center at the same rate each have their
own OeR and Oe� vectors. To be precise we can define OeR and Oe� as

OeR �
*

R=j*Rj D *

R=R and Oe� � Ok � OeR: (14.1)

Note that also OeR � Oe� D Ok.

The velocity and acceleration of a point going in circles,
using polar coordinates
In dynamics we are interested in velocity and acceleration so we need to
know how to represent these in polar coordinates. First, observe that the
position of the particle is (see fig. 14.4)

*

R D R OeR: (14.2)

That is, the position vector is the distance from the origin times a unit vector
in the direction of the particle’s position. Given the position, it is just a
matter of careful differentiation to find velocity and acceleration. Here is one
of many possible ways to derive the polar-coordinate expressions for velocity
and acceleration. First, velocity is the time derivative of position, so

*
v D d

dt

*

R D d

dt
.R OeR/ D PR����

0

OeR CR POeR: (14.3)

Because a circle has constant radius R, PR is zero. But how do we calculate
the rate of change of OeR with respect to time, POeR,?

Derivatives of OeR and of Oe�
To find the velocity in polar coordinates we were just confronted with the
problem of finding POeR.
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Figure 14.4: The position vector*r of the
particle relative to the center of the cir-
cle is*r (or

*
R) which is both

*r D x O{C y O| and
*r D R OeR (or r Oer ).

*r makes an angle � measured counter-
clockwise from the positive x-axis. The
unit vectors OeR and Oe� are in the radial
and tangential directions, the directions
of increasing R and increasing � .
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Figure 14.5: You can think of the unit
vectors OeR and Oe� as the set O{ and O| ro-
tated counter-clockwise by the angle � .
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Figure 14.6: Projections of OeR and Oe� in
the x and y directions. From this picture
you can immediately extract that

OeR D cos � O{C sin � O| and that
Oe� D � sin � O{C cos � O|.

A similar picture showing the projec-
tions of O{ and O| in the OeR and Oe� d di-
rections would show that

O{ D cos � OeR � sin � Oe� and that
O| D sin � OeR C cos � Oe� .
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Figure 14.7: A close up view of the unit
vectors OeR and Oe� . They make an an-
gle � with the positive x and y-axis, re-
spectively. As the particle advances an
amount �� both OeR and Oe� change. In
particular, for small�� ,� OeR is approx-
imately in the Oe� direction and � Oe� is
approximately in the �OeR direction.

Method 1: One way to find d OeR=dt D POeR uses the geometry of fig. 14.7
and the informal calculus of finite differences (represented by �). � OeR is ev-
idently (about) in the direction Oe� and has magnitude �� so � OeR � .��/ Oe� .
Dividing by �t , we have � OeR=�t � .��=�t/ Oe� . So, using this sloppy cal-
culus, we get POeR D P� Oe� . Similarly, and we will need this shortly, we could
get POe� D � P� OeR.

Method 2 This method is a little less geometric and a little more alge-
braic. We start with the decomposition of OeR and Oe� into cartesian coordi-
nates. These decompositions are found by looking at the projections of OeR
and Oe� in the x and y-directions (see fig. 14.6).

OeR D cos � O{C sin � O| (14.4)

Oe� D � sin � O{C cos � O|

We can find POeR by differentiating, taking into account that � is changing with
time but that the unit vectors O{ and O| are fixed (so they don’t change with
time).

POeR D d

dt
.cos � O{C sin � O|/ D � P� sin � O{C P� cos � O| D P� Oe�

POe� D d

dt
.� sin � O{C cos � O|/ D � P� OeR

We had to use the chain rule, that is

d sin �.t/
dt

D d sin �
d�

d�.t/

dt
D P� cos �:

Now, two different ways, we know

POeR D P� Oe� and POe� D � P� OeR: (14.5)

Continuing the quest for velocity and acceleration

Now that we know how OeR changes in time we can continue our quest for *v.
Continuing from eqn. (14.3) we now have

*
v D P*

R D R POeR D R P� Oe� : (14.6)

Similarly we can find the acceleration R*
R by differentiating once again,

*
a D R*

R D P*v D d

dt
.R P� Oe�/ D PR P� Oe�����

*
0

CR R� Oe� CR P� POe� (14.7)
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The first term on the right hand side is zero because PR is 0 for circular motion.
The third term is evaluated using the formula we just found for the rate of
change of Oe� : POe� D � P� OeR. So, using that

*

R D R OeR,

*
a D � P�2*R CR R� Oe� D �R P�2 OeR CR R� Oe� (14.8)

The velocity*
v and acceleration*

a for a particle going in circles at constant
rate are shown in fig. 14.8.

Example: A person standing on the earth’s equator
A person standing on the equator has velocity

*v D P�R Oe� �
�
2� rad
24 hr

�
4000mi Oe�

� 1050mph Oe� � 1535 ft=s Oe�
and acceleration

*a D � P�2R OeR � �
�
2� rad
24 hr

�2
4000mi OeR

� �274mi= hr2 OeR � �0:11 ft=s2 OeR:
The velocity of a person standing on the equator, due to the earth’s rotation, is about
1000mph tangent to the earth. Her acceleration is about 0:11 ft=s2 � 0:03m=s2

towards the center of the earth, about 1=300 of g, about 1=300 the acceleration of a
an object in near-earth-surface frictionless free-fall.

Alternate expressions for the velocity and acceleration
formulas
Note that we can define a scalar velocity v D R P� . We informally call this
scalar the speed even though it can be positive or negative. So

*
v D R P� Oe� D v Oe� :

Similarly the acceleration is

*
a D �R P�2 OeR CR R� Oe� D �v

2

R
OeR C Pv Oe� :

where Pv is the rate of change of tangential speed 1. Thus the acceleration
is made of two terms. One proportional to the speed squared and directed
towards the center of the circle, and one proportional to the rate of change of
speed and directed tangent to the circle.

Centripetal acceleration

The term
�R P�2 OeR D � P�2*R

is called the centripetal acceleration. Why, intuitively, is the centripetal ac-
celeration proportional to the speed squared? Well, the acceleration is the
change in the velocity vector per unit time. There are two effects
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Figure 14.8: The directions of velocity*v
and acceleration*a are shown for a parti-
cle going in circles at constant rate. The
velocity is tangent to the circle and the
acceleration is directed towards the cen-
ter of the circle.
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1Caution: Note that the rate of
change of speed is not the magnitude of
the acceleration: Pv ¤ j*aj or in other
words: d

dt
j*vj ¤ j d

dt
*vj. Consider the

case of a car driving in circles at con-
stant rate. Its rate of change of speed is
zero, yet it has an acceleration.
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1. If the speed is twice as big then the velocity is twice as big.

2. And, for a given radius, the angle it rotates per unit time is twice as big.
These two proportionalities with speed, the size of the velocity vector which
rotates and the rate at which it rotates both apply. So if the speed is twice as
big the acceleration is 4 times as big. Hence the v2.

14.1 Summary: the motion quantities
We can use our results for velocity and acceleration to better eval-

uate the momenta and energy quantities. These results will allow us
to do mechanics problems associated with circular motion. For one
particle in circular motion we have:

Linear momentum:
*
L D *vm D R P� Oe�m;

Rate of change of linear momentum:
P*
L D *am D .� P�2*RCR R� Oe� /m;

Angular momentum:
*
H
=O D *r=0 �*vm D R2 P�m Ok;

Rate of change of angular momentum:

P*
H
=O D *r=0 �*am D R2 R�m Ok;

Kinetic energy:

EK D
1

2
v2m D 1

2
R2 P�2m;and

Rate of change of kinetic energy:
PEK D *v �*am D mR2 P� R�
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14.2 d’Alembert’s mechanics: beginners beware
This box is an aside. It will not help you do dynamics problems.
As warned on page 151, its worse than that. The material in this
box usually harms more than it helps. The d’Alembert’s approach
to mechanics, described here, cannot be well-absorbed by beginners.
Students attempting to use D’Alembert methods make frequent mis-
takes. We advise against the use of D’Alembert mechanics for be-
ginners. We don’t allow its use in homework and exams.

But you might be curious about this forbidden fruit. To demys-
tify the taboo, we briefly describe the approach. You might as well
learn it here instead of somewhere else.

The D’Alembert approach has an intuitive appeal to experts.
And the D’Alembert equations are the first step in deriving the more
advanced (e.g., Lagrangian, Hamiltonian, ‘method of virtual speed’,
and ‘Kane’) approaches to dynamics.

How does it go?
First, label the free body diagram: ‘free body diagram includ-

ing inertial forces.’ Then, in addition to the applied forces draw
pseudo-forces equal to �m*a for every mass particle m. These
pseudo-forces are shown in the ‘FBD’ of a falling ball. The pseudo-
forces are sometimes called ‘inertial’ forces or ‘D’Alembert forces.

Filename:tfigure1-dalembert-fbd
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inertial forces

d'Alembert  FBD
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For the d’Alembert approach, instead of momentum balance
equations you write ‘pseudo-statics’ equations of ‘force’ balance and
‘moment’ balance

pseudo-statics force balance� �� �X
*
F����

including inertial forces

D*
0

pseudo-statics moment balance� �� �X
*
MC� �� �

including torques from inertial forces

D*
0

These equations include the actual forces as well as the ‘inertial’
forces shown on the ‘D’Alembert free body diagram’.

By these means, the dynamics equations have been reduced to
statics equations. Linear momentum balance is replaced by pseudo-

statics force balance. Angular momentum balance is replaced by
pseudo-statics moment balance.

The moving of the inertial terms from the right side of the equa-
tion to the left leads to both conceptual simplicity and puts the equa-
tions of dynamics in a form that is closer to most people’s intuitions.
The simplification is not so great as it may seem at first sight. Accel-
erations still need to be calculated and the sums involved in calcula-
tion of rate of change of linear and angular momentum still need to
be calculated, only now they are sums of pseudo inertial forces.

Consider the example of sitting in a car as the car rounds a cor-
ner to the left. In the momentum balance approach, we write

*
F D m*a����

P*
L

and say the force from the car on you to the left is equal to the rate
of change of your linear momentum as you accelerate to the left. In
the d‘Alembert approach, we write

*
F � m*a����

inertia force

D*
0

and think the inertia force to the right is balanced by the interaction
force of the car on your body to the left.

It is a puzzle of human consciousness why such a trivial alge-
braic manipulation, namely,

*
F D m*a ) *

F �m*a D*
0

should lead to such a great conceptual confusion. But, it is an empir-
ical fact that most of us are susceptible to this confusion.

That is, if you follow your likely first intuition and think ofm*a

as a force you will probably join the ranks of many other talented
students who consequently make many sign errors.

Every teacher of mechanics has encountered the confusion in
their students about whether �m*a is or is not a force (and most
likely in themselves as well.) To avoid such confusion, many teach-
ers or texts take a firm stand and say

� ‘m*a is not a force!’; but, as if believing in a different god,
others will say with equal conviction

� ‘-m*a is a force!’.

In this book, we take the former approach. We take the equation
*
F D m*a

to mean:

forces from interactions =m� (acceleration of mass).

If you insist on working with the d‘Alembert approach instead, you
must do so confidently and clearly. To repeat,

� instead of labeling your free body diagram ‘FBD’, label it
‘FBD including inertial forces’,

� instead of using ‘Linear Momentum Balance’, use
‘Pseudo-Force Balance’, and

� instead of using ‘Angular Momentum Balance’ use
‘Pseudo-Moment Balance’

We do not recommend d‘Alembert mechanics to beginners, but
if you insist, good luck to you and don’t blame us for your (almost
inevitable) sign errors!
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⇀
v v

θ

Figure 14.10: The velocity vector *v at
t D 2 s.

SAMPLE 14.1 The velocity vector in circular motion. A particle executes
circular motion in the xy plane with constant speed v D 5m=s. At t D 0 the
particle is at � D 0. Given that the radius of the circular orbit is 2:5m, find
the velocity of the particle at t D 2 sec.

Solution It is given that

R D 2:5m

v D constant D 5m=s

�.t D 0/ D 0:

The velocity of a particle in constant-rate circular motion is:

*v D R P� Oe�
where Oe� D � sin � O{C cos � O|:

Since R is constant and v D j*vj D R P� is constant,

P� D v

R
D 5m=s
2:5m

D 2 rad=s

is also constant. Thus,

*v.t D 2 s/ D R P�����
v

Oe�
���
tD2 s

D 5m=s Oe� .t D 2 s/:

Clearly, we need to find Oe� at t D 2 sec.

Now P� � d�

dt
D 2 rad=s

)
Z �

0
d� D

Z 2 s

0
2 rad=s dt

) � D .2 rad=s/ t
���2 s

0

D 2 rad=s � 2 s

D 4 rad:

Therefore,

Oe� D � sin 4O{C cos 4 O|
D 0:76O{ � 0:65 O|;

and

*v.2 s/ D 5m=s.0:76O{ � 0:65 O|/
D .3:78O{ � 3:27 O|/m=s:

*v D .3:78O{ � 3:27 O|/m=s
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SAMPLE 14.2 Basic kinematics: A point mass executes circular motion
with angular acceleration R� D 5 rad=s2: The radius of the circular path is
0.25 m. If the mass starts from rest at � D 0

�
, find and draw

1. the velocity of the mass at � D 0
�
; 30

�
; 90

�
; and 210

�
,

2. the acceleration of the mass at � D 0
�
; 30

�
; 90

�
; and 210

�
.

Solution We are given, R� D 5 rad=s2, and R D 0:25m.

1. The velocity*v in circular (constant or non-constant rate) motion is given by:

*v D R P� Oe� :

So, to find the velocity at different positions we need P� at those positions. Here the
angular acceleration is constant, i.e., R� D 5 rad=s2. Therefore, we can use the formula
2

P�2 D P�20 C 2 R��
to find the angular speed P� at various � ’s. But P�0 D 0 (mass starts from rest), therefore
P� D

p
2 R�� . Now we make a table for computing the velocities at different positions:

Position (� ) � in radians P� D
p
2 R�� *v D R P� Oe�

0
�

0 0 rad=s
*
0

30
�

�=6
p
10�=6 D 2:29 rad=s 0:57m=s Oe�

90
�

�=2
p
10�=2 D 3:96 rad=s 0:99m=s Oe�

210
�

7�=6
p
70�=6 D 6:05 rad=s 1:51m=s Oe�

The computed velocities are shown in Fig. 14.11.

2. The acceleration of the mass is given by

*a D
radial����
aR OeR C

tangential����
a� Oe�

D �R P�2 OeR CR R� Oe� :

Since R� is constant, the tangential component of the acceleration is constant at all
positions. We have already calculated P� at various positions, so we can easily calculate
the radial (also called the normal) component of the acceleration. Thus we can find the
acceleration. For example, at � D 30

�
,

*a D �R P�2 OeR CR R� Oe�
D �0:25m � 10�

6

1

s2
OeR C 0:25m � 5 1

s2
Oe�

D �1:31m=s2 OeR C 1:25m=s2 Oe� :

Similarly, we find the acceleration of the mass at other positions by substituting the
values of R; R� and P� in the formula and tabulate the results in the table below.

2 We use this formula because we
need P� at different values of � . In el-
ementary physics books, the same for-
mula is usually written as

P�2 D P�20 C 2��

where � is the constant angular acceler-
ation and P�.D P�/ is the angular speed.
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Figure 14.11: Velocity of the mass at
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Position (� ) ar D �R P�2 a� D R R� *a D ar OeR C a� Oe�

0
�

0 1:25m=s2 1:25m=s2 Oe�
30

� �1:31m=s2 1:25m=s2 .�1:31 OeR C 1:25 Oe� /m=s2

90
� �3:93m=s2 1:25m=s2 .�3:93 OeR C 1:25 Oe� /m=s2

210
� �9:16m=s2 1:25m=s2 .�9:16 OeR C 1:25 Oe� /m=s2

The accelerations computed are shown in Fig. 14.12. The acceleration vector as well
as its tangential and radial components are shown in the figure at each position.
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SAMPLE 14.3 In an experiment, the magnitude of angular deceleration of a
rotating ball is found to be proportional to its angular speed P� (i.e., R� / � P� ).
Assume that the proportionality constant is k.

1. Find P� as a function of t , given that P�.t D 0/ D P�0.

2. Given that k D 0:1= s, how much time does it take for P� to reduce to
half the initial value?

Solution The equation given is:

R� D d P�
dt

D �k P�: (14.9)

1. We can solve this equation in a couple of ways.

Method-1: Let us guess a solution of the exponential form with arbitrary constants and
plug it into eqn. (14.9) to check if our solution works. Let P�.t/ D C1e

C2t . Substituting
in eqn. (14.9), we get

C1C2e
C2t D �kC1eC2t

) C2 D �k;
also, P�.0/ D P�0 D C1e

C2�0

) C1 D P�0:
Therefore,

P�.t/ D P�0e�kt : (14.10)

P�.t/ D P�0 e�kt

Method-2: Equation (14.9) can also be solved by direct integration as follows.

d P�
P�

D �k dt

)
Z P�.t/
P�0

d P�
P�

D �
Z t

0
k dt

) ln P�
��� P�.t/P�0

D �kt

) ln

 P�.t/
P�0

!
D �kt

Therefore,
P�.t/ D P�0 e�kt ;

which is the same solution as equation (14.10).

2. We need to find t for P� D P�0=2, given that k D 0:1. From eqn. (14.10), we get

P�
P�0

D e�kt

) t D 1

�k ln

 P�
P�0

!

D 1

�0:1 ln
�
1

2

�
D �0:693
�0:1= s

D 6:93 s:

t D 6:93 s for P�.t/ D P�0=2
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SAMPLE 14.4 Using kinematic formulae: The spinning wheel of a sta-
tionary exercise bike is brought to rest from 100 rpm by applying brakes over
a period of 5 seconds.

1. Find the average angular deceleration of the wheel.

2. Find the number of revolutions it makes during the braking.

Solution We are given,

P�0 D 100 rpm; P�final D 0; and t D 5 s:

1. Let � be the average (constant) deceleration. Then

P�final D P�0 � �t:

Therefore,

� D
P�0 � P�final

t

D 100 rpm � 0 rpm
5 s

D 100 rev
60 s

� 1
5 s

D 0:33
rev
s2
:

� D 0:33 rev
s2

2. To find the number of revolutions made during the braking period, we use the formula

�.t/ D �0����
0

C P�0t C
1

2
.��/t2 D P�0t �

1

2
�t2:

Substituting the known values, we get

� D 100 rev
60 s

� 5 s � 1

2
0:33

rev
s2

� 25 s2

D 8:33 rev � 4:12 rev

D 4:21 rev:

� D 4:21 rev

Comments:

� Note the negative sign used in both the formulae above. Since � is deceleration, that
is, a negative acceleration, we have used negative sign with � in the formulae.

� Note that it is not always necessary to convert rpm in rad=s. Here we changed rpm to
rev= s because time was given in seconds.
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SAMPLE 14.5 Non-constant acceleration: A particle of mass 500 grams
executes circular motion with radius R D 100 cm and angular acceleration
R�.t/ D c sin�t , where c D 2 rad=s2 and � D 2 rad=s.

1. Find the position of the particle after 10 seconds if the particle starts
from rest, that is, �.0/ D 0.

2. How much kinetic energy does the particle have at the position found
above?

Solution

1. We are given R�.t/ D c sin�t , P�.0/ D 0 and �.0/ D 0. We have to find �.10 s/.
Basically, we have to solve a second order differential equation with given initial con-
ditions.

R� � d

dt
. P�/ D c sin�t

)
Z P�.t/
P�0D0

d P� D
Z t

0
c sin�� d�

P�.t/ D � c
�

cos��
����t
0

D c

�
.1 � cos�t/:

Thus, we get the expression for the angular speed P�.t/. We can solve for the position
�.t/ by integrating once more:

P� � d

dt
.�/ D c

�
.1 � cos�t/

)
Z �.t/

�0D0
d� D

Z t

0

c

�
.1 � cos��/

�.t/ D c

�

�
� � sin��

�

�t
0

D c

�2
.�t � sin�t/:

Now substituting t D 10 s in the last expression along with the values of other con-
stants, we get

�.10 s/ D 2 rad=s2

.2 rad=s/2
�2 rad=s � 10 s � sin.2 rad=s � 10 s/�

D 9:54 rad:

� D 9:54 rad

2. The kinetic energy of the particle is given by

EK D 1

2
mv2 D 1

2
m.R P�/2

D 1

2
mR2�

c

�
.1 � cos�t/� �� �

P�.t/

�2

D 1

2
0:5 kg � 1m2 �

"
2 rad=s2

2 rad=s
� .1 � cos.20//

#2

D 0:086 kg � m2 � s2 D 0:086Joule:

EK D 0:086J
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body diagram.

1There are various errors (approxi-
mations) in this satellite calculation, of
course. The earth doesn’t rotate once
per day, but a little more because it goes
around once per day relative to a line
connecting the earth and sun and that
line is itself rotating relative to the ‘fixed
stars’ (the period of a geosynchronous
satellite is one part in 365.25 shorter
than a day). And the force of gravity on
a near-earth mass is a bit more than mg
because ‘g’ actually measures the force
it takes to hold up a mass on the earth’s
surface, which is the gravity force less
the acceleration from going in circles on
the surface of the earth (the actual accel-
eration of gravity at the earth’s surface is
about 0.5% more than g). And the earth
isn’t exactly spherical, and so on. The
actual geosynchronous radius is close to
42164 km. So the example calculation
is off by 436 kmor about 1%.

14.2 Dynamics of a particle in circular
motion

The simplest examples of circular motion concern the motion of a particle
constrained by a massless connection to be a fixed distance from a support
point.

Example: Rock spinning on a string
Neglecting gravity, we can now deal with the familiar problem of a point mass being
held in constant circular-rate motion by a massless string or rod. Linear momentum
balance for the mass gives:X

*
Fi D P*

L

) �T OeR D m*a

f�T OeR D m.� P�2` OeR/
o

fg � OeR ) T D P�2`m D .v2=`/m

The force required to keep a mass in constant rate circular motion ismv2=` (some-
times remembered as mv2=R).

The simplest example of ‘celestial mechanics’ is also circular motion.
Example: Geosynchronous orbit
Assuming a spherical earth, the centrally acing force of earth’s gravity on a satellite
is mg at the earth’s surface and decays with radius squared so is

F D mg
R2e

r2

where Re is the radius of the earth and r is the distance of the satellite from the
center of the earth. Linear momentum balance for the mass gives:X

*
Fi D P*

L

) �mgR
2
e

r2
OeR D m*a(

�mgR
2
e

r2
OeR D m.� P�2r OeR/

o

fg � OeR ) r D
 
gR2e
P�2

!1=3
:

Communication satellites in ‘geosynchronous’ orbits go around once a day (staying
in the sites of millions of satellite dishes). So, using g � 10m=s2, Re � 6400 km
and P� � 1 rev/day, we get r D 42600 km 1.

Similar calculations can find the motion of low altitude satellites, the mo-
tion of the moon around the earth and of the earth around the sun.

Centripetal and centrifugal forces

Because the centrally directed part of a particle’s acceleration is called the
‘centripetal’ acceleration, the centrally directed force needed to keep a parti-
cle in circular motion is sometimes called the ‘centripetal’ force. Thus, in the
first example above the tension in the string is a centripetal force, and in the
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satellite problem the gravity force is a centripetal force. On the other hand,
the ‘centrifugal’ force outwards is not really a force at all and is best dropped
as a concept, at least for beginners.

Non-constant rate circular motion
Situations in which the circular rate is not constant are just slightly more
complex. In these cases the part of the acceleration tangent to the circular
motion is nonzero,

a� D R� r D Pv� ;
so the net force on the particle has a component tangent to the circle.

Linear momentum balance in polar coordinates
The equation of linear momentum balance for a particle

*

F D m*
a in polar

coordinates can be written as follows:X
*

F D m*
aX

Fr OeR C
X

F� Oe� D m.ar OeR C a� Oe�/ : (14.11)

(14.12)

For circular motion we have, from Section 14.1, that

ar D � P�2r D �v
2

r
and a� D R� r D Pv:

Angular momentum
In general one can use angular momentum balance with respect to any point
you like. But for circular motion with the circle center at 0 one is almost
always concerned with angular momentum balance about 0. In this case the
various torque and angular momentum expressions are particularly simple,
for example X

*

M=0 D P*
H=0

) *
r �

�X
*

F
�

D *
r � .m*

a/

) r OeR �
�X

Fr OeR C
X

F� Oe�
�

D r OeR �m.ar OeR C a� Oe�/

OeR � OeR D
*

0; OeR � Oe� D Ok )
n
r
X

F� Ok D rma� Ok
o

�	 � Ok ) r
X

F� D rma� : (14.13)
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Figure 14.18: The ideal simple pendu-
lum.

Filename:tfigure5-spend-fbd

θ

O

T

mg

ı̂

ĵ

êθ

êR
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Energy
Kinetic energy is also particularly simple in polar coordinates for circular
motion because there is only one degree of freedom:

EK D mv2

2
D mv2

�

2

D m P�2r2=2: (14.14)

The simple pendulum
Perhaps the most famous mechanics example of circular motion at non-
constant rate is a simple pendulum. As a child’s swing, the inside of a
grandfather clock, a hypnotist’s device, or a gallows, the motion of a simple
pendulum is a clear image to all of us. Galileo studied the simple pendulum
before Newton created Newton’s laws, and the pendulum is a core topic in
high-school and freshman physics.

For starters, we consider a 2-D pendulum of fixed length with no forcing
other than gravity. All mass is concentrated at a point. Of primary interest
is the motion of the pendulum and the tension in the string. First we find
governing differential equations (the equations of motion).

First, the tension in the pendulum rod (or string) acts along the length
because the rod is a massless two-force body. At least that is the idealization.
For any real pendulum, where the rod is not precisely massless and where the
mass is not precisely concentrated at a point, there is a small force transmitted
that is not along the rod. We neglect this ‘shear’ force in the treatment of
the ideal pendulum. One way to get the equation of motion is to use linear
momentum balance in polar coordinates, eqn. (14.12), and dot both sides
with Oe� to get

�T OeR � Oe�����
0

Cmg O{ � Oe�����
� sin �

D m

0
@` R� Oe� � Oe�����

1

�` P�2 OeR � Oe�����
0

1
A

) �mg sin � D m` R�
so R� D �g

`
sin �:

Small angle approximation (linearization)
For small angles, sin � � � , so we have

R� D �g
`
�

for small oscillations. This equation describes a harmonic oscillator withq
g
`

replacing the
q
k
m

coefficient in a spring-mass system. Thus the general
solution is

� D A cos
p
g=lt C B sin

p
g=lt (14.15)
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where A D �0 and B
p
g=l D P�0. This solution has the famous property,

Galileo loved this, that the frequency is the same for big as for small os-
cillations. Thus, a pendulum of a given length that swings back and forth
1 degree makes about the same number of swings per minute as one that
swings with an amplitude of 10 degrees. How big is the error in this constant
frequency result? Well, something less than the error in the approximation
that sin � D � .

% error D 100 � � � sin �
sin �

� 100 � �
3=3

�
� �2

3
� 1%

for � D 10� � 1=6 rad. The actual error in the period is less than this, as
you can find by numerically solving the non-linear pendulum equation.

The inverted pendulum

A pendulum with the mass-end up is called an inverted pendulum. By meth-
ods just like we used for the regular pendulum, we find the equation of mo-
tion to be

R� D g

`
sin �

which, for small � , is well approximated by

R� D g

`
�:

As opposed to the simple pendulum, which has oscillatory solutions, this
differential equation has exponential solutions

� D C1e
p
g=` t C C2e

�pg=` t ;

one term of which has exponential growth (the implicit “C” in front of the
argument of the

p
g=` t ), indicating the inherent instability of the inverted

pendulum. That is, as is intuitively obvious, an inverted pendulum has ten-
dency to fall over when slightly disturbed from the vertical position 2.

More about pendula
Pendula are useful as models of many phenomena from the swing of a leg in
walking to the tipping of a chimney in an earthquake. Pendula also serve as a
simple example for many more general concepts in mechanics. For example,
the pendulum is popular as an example of “chaos”; if you push a pendulum
periodically its motions can be wild.
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Figure 14.20: The inverted pendulum

2After the pendulum falls a ways, say
past 30 degrees from vertical, the ex-
ponential solution is not an accurate
description, but the actual motion (as
viewed by an experiment, a computer
simulation, or the exact elliptic integral
solution of the equations) shows that the
pendulum keeps falling.
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14.3 Other derivations of the pendulum equation
The simplest derivation of the pendulum differential equation is to
use linear momentum balance in polar coordinates. Here are two
other derivations.

Method one: linear momentum
balance in cartesian coordinates
The equation of linear momentum balance is

X
*
F D

m
*
a����
P*
L

Evaluating the left side (using the free body diagram) and right side
(using the kinematics of circular motion), we get

�T OeR Cmg O{ D m�` R� Oe� � ` P�2 OeR� (14.16)

From the picture (or recalling) we see that OeR D cos � O{ C sin � O|
and Oe� D cos � O| � sin � O{. So, upon substitution into the equation
above, we get

�T.cos � O{C sin � O|/Cmg O{
D m

h
` R� .cos � O| � sin � O{/� ` P�2 .cos � O{C sin � O|/

i
Breaking this equation into its x and y components (by dotting both
sides with O{ and O|, respectively) gives

�T cos � Cmg D �m`
� R� sin � C P�2 cos �

�
and

�T sin � D m`
� R� cos � � P�2 sin �

�
: (14.17)

Note, when deriving equations of motion, we think of both positions
and the rates and velocities as knowns. For example, we take � and
P� as known. But how do we know them? We don’t. But think of
them as known helps us write a set of differential equations from
which we can eventually find them. Thus the equations above are
two simultaneous equations that we can solve for the two unknowns
T and R� to get

R� D �g
`

sin � (14.18)

T D m�` P�2 C g cos ��: (14.19)

The first equation is the familiar pendulum differential equation, the
second allows as to find the tension in the pendulum string.

Method two: angular momentum
balance
Using angular momentum balance, we can ‘kill’ (eliminate) the ten-
sion term at the start. Taking angular momentum balance about the

pointO , we get X
*
MO D P*

H
=O

�mg` sin � Ok D
�
��

` OeR

*r=O �*a

B
BM

` R� Oe� � ` P�2 OeR

m

�mg` sin � Ok D m`2 R� Ok
) R� D �g

`
sin �

since OeR � OeR D 0 and OeR � Oe� D Ok. So, the governing equation
for a simple pendulum is

R� D �g
`

sin �

Method three: Conservation of
energy
The string tension is always orthogonal to the velocity so does no
work. The gravity force is conservative. So energy is conserved.

constant D ET

) constant D EK CEP

) 0 D PEK C PEP

) 0 D d

dt

�
1

2
mv2

�
C d

dt
.mgh/

) 0 D d

dt

�
1

2
m.` P�/2

�
C d

dt
.�mg` cos �/

) 0 D m`2 R� P� Cmg`.sin �/ P�
Now m cancels from both sides and we can divide through by `2.
We can also divide through by P� , but for exceptional instants in time
when P� D 0. Thus

R� C g

`
sin � D 0

which is the familiar differential equation for a pendulum. This
method lacks some rigor in that the cancelation of P� is not valid
at exactly every instant in time. However, it is valid for all but those
instants, and happens to give the right answer at the exceptional in-
stants as well.
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SAMPLE 14.6 Circular motion in 2-D. Two bars, each of negligible mass
and length ` D 3 ft, are welded together at right angles to form an ‘L’ shaped
structure. The structure supports a 3:2 lbf .D mg/ ball at one end and is
connected to a motor on the other end (see Fig. 14.21). The motor rotates the
structure in the vertical plane at a constant rate P� D 10 rad=s in the counter-
clockwise direction. Take g D 32 ft=s2. At the instant shown in Fig. 14.21,
find

1. the velocity of the ball,

2. the acceleration of the ball, and

3. the net force and moment applied by the motor and the support at O on
the structure.

Solution The motor rotates the structure at a constant rate. Therefore, the ball is going
in circles with angular velocity *! D P� Ok D 10 rad=s Ok. The radius of the circle is R Dp
`2 C `2 D `

p
2. Since the motion is in the xy plane, we use the following formulae to find

the velocity*v and acceleration*a.

*v D PR OeR CR P� Oe�
*a D �R P�2 OeR CR R� Oe� ;

where OeR and Oe� are the polar basis vectors shown in Fig. 14.22. In Fig. 14.22, we note that
� D 45

�
. Therefore,

OeR D cos � O{C sin � O|
D 1p

2
.O{C O|/;

Oe� D � sin � O{C cos � O|
D 1p

2
.�O{C O|/:

Here, R D L
p
2 D 3

p
2 ft is constant, and R� D 0 because P� D 10 rad=s D constant. Thus,

1. the velocity of the ball is

*v D R P� Oe�
D 3

p
2 ft � 10 rad=s Oe�

D 30
p
2 ft=s � 1p

2
.�O{C O|/

D 30 ft=s.�O{C O|/:
*v D 30 ft=s.�O{C O|/

2. The acceleration of the ball is

*a D �R P�2 OeR
D �3

p
2 ft � .10 rad=s/2 OeR

D �300
p
2 ft=s2 � 1p

2
.O{C O|/

D �300 ft=s2.O{C O|/:
*a D �300 ft=s2.O{C O|/
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Figure 14.21: The motor rotates the
structure at a constant angular speed in
the counterclockwise direction.

Filename:sfig4-1-1a

O

R

x

y
êRê
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locity, and acceleration of the ball can
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Figure 14.23: Free body diagram of the
structure.

3. Let the net force and the moment applied by the motor-support system be
*
F and

*
M as

shown in Fig. 14.23. From the linear momentum balance for the structure,X
*
F D m*a

*
F �mg O| D m*a

) *
F D m*aCmg O|

D

m� �� �
3:2 lbf
32 ft=s2

.�300
p
2 ft=s2/ OeR C

mg����
3:2 lbf O|

D �30
p
2 lbf OeR C 3:2 lbf O|:

D �30
p
2 lbf

1p
2
.O{C O|/C 3:2 lbf O|

D �30 lbfO{ � 26:8 lbf O|:

Similarly, from the angular momentum balance for the structure,X
*
MO D P*

H=O;

where
X

*
MO D *

M C*r=O �mg.� O|/
D *

M C R OeR����
`.O{C O|/

�mg.� O|/

D *
M �mg` Ok;

and P*
H=O D *r=O �m*a

D R OeR �m.�R P�2 OeR/
D �mR2 P�2 . OeR � OeR/� �� �

*
0

D *
0:

Therefore,
*
M D mg` Ok

D 3:2 lbf����
mg

� 3 ft����
`

Ok

D 9:6 lbf� ft Ok:

*
F D �30 lbfO{ � 26:8 lbf O|; *

M D 9:6 lbf� ft Ok

Note: If there was no gravity, the moment applied by the motor would be zero.
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SAMPLE 14.7 A 50 gm point mass executes circular motion with angular
acceleration R� D 2 rad=s2. The radius of the circular path is 200 mm. If the
mass starts from rest at t D 0, find

1. Its angular momentum
*

H about the center at t D 5 s.

2. Its rate of change of angular momentum P*
H about the center.

Solution

1. From the definition of angular momentum,
*
H=O D *r=0 �m*v

D R OeR �m P�R Oe�
D mR2 P�. OeR � Oe� /
D mR2 P� Ok

On the right hand side of this equation, the only unknown is P� . Thus to find
*
H=O at

t D 5 s, we need to find P� at t D 5 s. Now,

R� D d P�
dt

d P� D R� dtZ P�.t/
P�0

d P� D
Z t

0

R� dt

P�.t/ � P�0 D R�.tt � t0/
P� D P�0 C R�.t � t0/

Writing � for R� and substituting t0 D 0 in the above expression, we get P�.t/ D P�0C�t ,
which is the angular speed version of the linear speed formula v.t/ D v0 C at . 3
Substituting t D 5 s, P�0 D 0, and � D 2 rad=s2 we get P� D 2 rad=s2 � 5 s D 10 rad=s.
Therefore,

*
H=O D 0:05 kg � .0:2m/2 � 10 rad=s Ok

D 0:02 kg:m2= s D 0:02N�m � s:

*
H=O D 0:02N�m � s:

2. Similarly, we can calculate the rate of change of angular momentum:

P*
H=O D *r=0 �m*a

D R OeR �m.R R� Oe� � P�2R OeR/
D mR2 R�. OeR � Oe� /
D mR2 R� Ok
D 0:05 kg � .0:2m/2 � 2 rad=s2 Ok
D 0:004 kg � m2= s2 D 0:004N�m

P*
H=O D 0:004N�m

Filename:sfig13-2-circularpath

200 mm

50 gm

t = 0

Figure 14.24:

3 Be warned that these formulae are
valid only for constant rate of change of
speed.
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Filename:sfig5-5-DH1

m = 0.2 kg
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θ

Figure 14.25:

SAMPLE 14.8 The simple pendulum. A simple pendulum swings about
its vertical equilibrium position (2-D motion) with amplitude �max D 10

�
.

Find
1. the magnitude of the maximum angular acceleration,

2. the maximum tension in the string.

Solution

1. The equation of motion of the pendulum is given by (see eqn. (14.18) in the text):

R� D �g
`

sin �:

We are given that j� j � �max. For �max D 10
� D 0:1745 rad; sin �max D 0:1736.

Thus we see that sin � � � even when � is maximum. Therefore, we can safely use
linear approximation (although we could solve this problem without it); i.e.,

R� D �g
`
�:

Clearly, j R� j is maximum when � is maximum. Thus,

j R� jmax D
g

`
�max D

9:81m=s2

1m
�.0:1745 rad/ D 1:71 rad=s2:

j R� jmax D 1:71 rad=s2

2. The tension in the string is given by (see equation 14.19 of text):

T D m.` P�2 C g cos �/:

This time, we will not make the small angle assumption. We can find Tmax and the
corresponding � using conservation of energy. Let the position of maximum amplitude
be position 1 and the position at any � be position 2. When � D �max, the mass comes
to rest and switches its direction of motion. Thus, its angular velocity and, hence, its
kinetic energy is zero at �max. Using conservation of energy, we have

EK1 CEP1 D EK2 CEP2

0Cmg`.1 � cos �max/ D 1

2
m.` P�/2 Cmg`.1 � cos �/: (14.20)

and solving for P� , we get,

P� D
r
2g

`
.cos � � cos �max/:

Therefore, the tension at any � is

T .�/ D m.` P�2 C g cos �/ D mg.3 cos � � 2 cos �max/:

To find the maximum tension, we set dT
d�

D 0, and find that, for 0 � � � �max, T is
maximum when � D 0. Now, substituting � D 0 in T .�/, we get,

Tmax D mg
�
3 cos.0/ � 2 cos.�max/

� D 0:2 kg � 9:81m=s2
�
3 � 1:97� D 2:02N:

The maximum tension corresponds to maximum speed which occurs at the bottom of
the swing where all of the potential energy is converted to kinetic energy.

Tmax D 2:02N
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SAMPLE 14.9 The nonlinear pendulum: Consider the simple pendulum
of Sample 14.8 again. Let the mass be m and the length of the pendulum `.
The equation of motion of the pendulum is R� D �g

`
sin � as derived in the

text (see eqn. (14.18)). This is a nonlinear ordinary differential equation but
it can be solved easily numerically. Write a computer code using some ODE
solver to solve the equation. Take g and ` such that � D

p
g=` D 2� (this

makes the time period of the pendulum T D 2�=� D 1 s). Using the code,
do the following calculations.

1. Solve the equation over a time interval of t D 0 to 4 seconds using the
initial conditions �.0/ D 6� and P�.0/ D 0, and plot � vs t , P� vs t ,
and P� vs � . How do these plots compare with the solution of the linear
equation R� D �g

`
�?

2. Solve the equation again over the same time interval using the initial
conditions ��.0/; P�.0/� D �18�; 0�, and �30�; 0�. Plot �.t/ starting with
all the three initial conditions used so far on the same graph and com-
ment on the time period of oscillations.

3. Solve the equation again over t in�0; 4 s� using �.0/ D �=2 and �=1:02
while keeping P�.0/ D 0. Again plot � vs t , P� vs t , and P� vs � , for the
three solutions obtained with �.0/ D �=6; �=2, and �=1:02. Comment
on the plots.

4. For the last three initial conditions, compute EP, EK, and ET D EP C
EK from the solutions obtained. For each initial condition, plot EP,
EK, and ET on the same graph and show that the total energy in each
case remains constant irrespective of the nature of oscillations.

Solution The equation of motion of the pendulum is (as given)

R� D �g
`

sin �:

To solve this second order differential equation numerically, we need to first convert it into a
set of two first order equations. Let ! D P� . Then, we can write

P� D !

P! D �g
`

sin �:

We are now ready to write a computer program to solve these equations numerically. We use
the following pseudocode to accomplish the task.

ODEs = {thetadot = omega,
omegadot = -g/l*sin(theta) }

ICs = {theta(0) = pi/30, omega(0) = 0 }
Set g = 1, l = g/(4*piˆ2)
Solve ODEs with ICs for t=0 to t=4
plot theta vs t, and omega vs t; plot omega vs theta

1. Small amplitude oscillations: The solution obtained with �.0/ D 6� D �=30, and
P�.0/ D 0 is shown in fig. 14.27. The plots of �.t/ and P�.t/ clearly show the initial
conditions at t D 0. From the figure, we see that the motion is sinusoidal and the time
period of oscillation is 1 second, as expected.

2. Deviation from linear equation solution: The new initial conditions involve larger
initial angles (�.0/ D 18� and 30�). That is the only difference. We use the same
program as used before and get the solutions with the new initial conditions. We plot

Filename:sfig13-2-simppend

m

�

θ

Figure 14.26:
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Figure 14.27: Numerical solution of
the nonlinear pendulum equation, R� D
�g=el l sin � , with the initial conditions,
�.0/ D �=30 and P�.0/ D 0; (a) �.t/, (b)
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Figure 14.30: Plots of potential en-
ergy EP, kinetic energy EK, and to-
tal energy ET during motion under
three different initial conditions: (a)
�.0/ D �=30; P�.0/ D 0; (b) �.0/ D
�=2; P�.0/ D 0; and (c) �.0/ D
�=1:02; P�.0/ D 0.

�.t/ against t for all the three solutions on the same graph. The resulting plot is shown
in fig. 14.28.
Now what we observe from this plot is that the three solutions, starting with the three
different initial conditions, do not have the same time period of oscillations. The dif-
ference is not clearly visible between �.0/ D 6� and �.0/ D 18� solutions but it is
much clearer for � D 30� (see the third peak, marked with 3T ). As the initial angle,
�.0/, increases, the period of oscillation seems to increase.
The dependence of time period (or frequency) of oscillations on the amplitude is the
hallmark of nonlinear oscillators. In contrast, linear oscillators have a constant period
of oscillation, irrespective of the amplitude of motion. For our pendulum, as long as
the initial � is so small that sin � � � , the equation of motion can be replaced by
the linear equation, R� D �g=`� , and all solutions will have the same time period of
oscillation. As �.0/ becomes larger, the approximation sin � � � breaks down, and
the linear equation of motion is no longer valid.

3. Large amplitude oscillations: We now run the program with large initial angles,
�.0/ D �=2 .90�/ and �.0/ D �=1:02 .� 176�, i.e., close to the vertically upright
position), and obtain the corresponding solutions. Plots of �.t/ and P�.t/ for three initial
conditions, small � (�=30), moderately large � (�=2), and very large � (�=1:02) are
shown in fig. 14.29. From the plots it is clear that not only the period of oscillation in-
creases drastically with larger amplitudes, but also the qualitative nature of oscillations
changes. For small amplitude (small initial � ), oscillations are simple harmonic but for
larger amplitudes (large initial � ) oscillations are no more simple harmonic. This fact
is more evident from the velocity plot, fig. 14.29(b). The phase plot, fig. 14.29(c),
shows how the three solution trajectories (also called orbits) look in the phase space.
All simple harmonic motions lead to circular orbits (you can show that by writing the
solution for �.t/ and P�.t/ and then showing that �2 C P�2 D constant) in this phase
space. However, for large amplitude motion, the orbits become oblong and approach
a rather strange looking trajectory, called the separatrix, as the amplitude of motion
grows. This separatrix marks the boundary of all possible periodic motions of the
pendulum. Outside this separatrix, solutions do exist but they correspond to whirling
motion of the pendulum which is not periodic (because �.t/ keeps growing without
bounds).

4. Energy conservation: Let �� and P�� be the values of angular displacement and angu-
lar speed of the pendulum at some instant t�. Then, assuming � D 0 to be the datum
for potential energy, we can write the expressions for potential energy and kinetic en-
ergy as

EP D mg`.1 � cos ��/

EK D 1

2
m`2 P��2:

Therefore, the total energy at t D t� is,

ET D EP CEK D mg`.1 � cos ��/C 1

2
m`2 P��2:

From the numerical solutions obtained for the three initial conditions, we have values
of � and P� at different time instants. Now, using the formulas for EP, EK and ET,
we compute the values of these quantities and plot them as shown in fig. 14.30. We
see that for each initial condition, the potential and kinetic energies vary differently
with time. However, the total energy remains constant at all times. This is expected
as there is no dissipation in the system (not present in our mathematical model). A
given initial condition determines the initial energy of the pendulum which must be
preserved throughout the motion.
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Problems for
Chapter 14
Circular motion

14.1 Kinematics of a
particle in circular
motion
Preparatory Problems
14.1.1 A particle goes on a circular path
with radius R making the angle � D ct
measured counter clockwise from the pos-
itive x axis. Assume R D 5 cm and c D
2� s�1.

a) Plot the path.

b) What is the angular rate in revolu-
tions per second?

c) Put a dot on the path for the location
of the particle at t D t� D 1=6 s.

d) What are the x and y coordinates
of the particle position at t D t�?
Mark them on your plot.

e) Draw the vectors Oe� and OeR at t D
t�.

f) What are the x and y components
of OeR and Oe� at t D t�?

g) What are the R and � components
of O{ and O| at t D t�?

h) Draw an arrow representing both
the velocity and the acceleration at
t D t�.

i) Find the OeR and Oe� components of
position*r , velocity*v and accelera-
tion*a at t D t�.

j) Find the x and y components of po-
sition*r , velocity*v and acceleration
*a at t D t�. Find the velocity and
acceleration two ways:

1. Differentiate the position
given as*r D x O{C y O|.

2. Differentiate the position give
as *r D r Oer and then convert
the results to Cartesian coor-
dinates.

14.1.2 A bead goes around a circular track
of radius 1 ft at a constant speed. It makes
it around the track in exactly 1 s.

a) Find the speed of the bead. Does
this vary in time?

b) Find the magnitude of acceleration
of the bead. Does this vary in time?

c) Is the magnitude of the accelera-
tion the derivative of the speed (i.e.,

j*aj �D d
dt
j*vj/

14.1.3 If a particle moves along a circle
at constant rate (constant P� ) following the
equation

*r.t/ D R cos. P� t/O{CR sin. P� t/ O|
which of these things are true and why? If
not true, explain why.

a) *v D*
0

b) *v D constant
c) j*vj D constant

d) *a D*
0

e) *a D constant
f) j*aj D constant
g) *v ?*a

14.1.4 A particle moves according to:

x.t/ D R cos.ct/;
y.t/ D R sin.ct/:

where R D 1m and c D 5 rad=s.
a) Show that the speed of the particle

is constant.
b) How much time does the particle

take to go from P at .0; 1m/ to Q
at .1m; 0/?

c) What is the acceleration of the par-
ticle at point Q?

More-Involved Problems
14.1.5 A 200mm diameter gear rotates at
a constant speed of 100 rpm.

a) What is the speed of a peripheral
point on the gear?

b) If no point on the gear is to ex-
ceed the centripetal acceleration of
25m=s2, find the maximum allow-
able angular speed (in rpm) of the
gear.

14.1.6 A particle is in circular motion in
the xy-plane at the constant angular speed
of P� D 2 rad=s at radius 0:5m. At t D 0
the particle is at � D 0.

a) Draw the path and mark the position
of the particle at t D 0:5 s and t D
15 s.

b) Find the velocity and acceleration
of the particle at t D 0:5 s and
t D 15 s.

.

14.1.7 A particle undergoes constant rate
circular motion in the xy-plane. At
some instant t0, its velocity is *v.t0/ D
�3m=sO{C 4m=s O| and after 5 s the veloc-
ity is v.t0C 5 s/ D .5=

p
2/m=s.O{C O|/. If

the particle has not yet completed one rev-
olution between the two instants, find

a) the angular speed of the particle,
b) the distance traveled by the particle

in 5 s, and
c) the acceleration of the particle at the

two instants.

14.1.8 A bead on a circular path of radius
R in the xy-plane has rate of change of an-
gular speed � D bt2. The bead starts from
rest at � D 0.

a) What is the bead’s angular position
� (measured from the positive x-
axis) and angular speed P� as a func-
tion of time ?

b) What is the angular speed as func-
tion of angular position?

14.1.9 A bead on a circular wire has an an-
gular speed given by P� D c�1=2. The bead
starts from rest at � D 0. What is the an-
gular position and speed of the bead as a
function of time? [This problem is subtle
because it has multiple solutions. One an-
swer you can find with a quick guess. An-
other you can find by separation of vari-
ables. The full general solution is an ap-
propriate mixture of these two.)] �

14.1.10 Solve R� D C , given P�.0/ D P�0,
�.0/ D �0 and that C is a constant. That
is, find � in terms of some or all of C , P�0,
�0 and t .

14.1.11 Given that R� � �2� D 0, �.0/ D
�=2, P�.0/ D 0, and � D 3= s find the value
of � at t D 1 s.
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14.1.12 Two runners run on a circular track
side-by-side at the same constant angular
rate P� D 0:25 rad=s about the center of the
track. The inside runner is in a lane of ra-
dius ri D 35m and the outside runner is in
a lane of radius ro D 37m. What is the ve-
locity of the outside runner relative to the
inside runner?

14.1.13 A particle oscillates on the arc of a
circle with radius R according to the equa-
tion � D �0 cos.�t/. What are the con-
ditions on R; �0, and � so that the max-
imum acceleration in this motion occurs
at � D 0. “Acceleration” here means the
magnitude of the acceleration vector.

14.1.14 A particle moves on a circular arc
starting from rest at �0 D 0. As � in-
creases, the magnitude of the acceleration
is constant. Assume, all in consistent units,
that R D 1 and j*aj D 1.

a) Write the statement ‘the magnitude
of acceleration is constant’ as an
equation in terms of P� and R� .

b) Find a solution to the equation with
the given initial conditions (analyti-
cally or numerically).

c) Find and plot P� vs t and � vs t .
d) In circular

motion does j*aj=constant necessar-
ily mean that the motion is at or is
gradually approaching constant rate
circular motion? Is so, why? If not
show a counter-example.

14.1.15 A particle moves in circles so that
its acceleration*a always makes a fixed an-
gle � with the position vector �*r , with
0 � � � �=2. For example, � D 0 would
be constant rate circular motion. Assume
� D �=4, R D 1m and P�0 D 1 rad= s.
How long does it take the particle to reach

a) the speed of sound (� 300m=s)?
b) the speed of light (� 3 � 108 m=s)?
c) 1?

14.2 Dynamics of a
particle in circular
motion
Preparatory Problems

14.2.1 Force on a person standing on the
equator. Find the magnitude of the total
force acting on a 150 lbm person standing
on the equator. The total force is the grav-
ity force plus the force of the ground on
the person (note that these two do not ex-
actly cancel). Neglect the motion of the
earth around the sun and of the sun around
the solar system, etc. The radius of the
earth is 3963mi. Give your solution in
both pounds ( lbf) and Newtons ( N). �

14.2.2 Consider a mass m in circular mo-
tion. Let

P *
F DP

Fr Oer C
P
F� Oe� . Us-

ing
P *
F D m*a, express

P
Fr and

P
F�

in terms of some or all of �; P�; R�; , r , and
m.

14.2.3 Using
P *
F D m*a, find the ex-

pressions for
P
Fx and

P
Fy in terms of

R�; P�; r , and � . [Hint Oer D cos � O{C sin � O|
and Oe� D � sin � O{C cos � O|].

14.2.4 A bead of mass m goes around a
circular path of radius R in the xy-plane
with angular acceleration R� D ct3. The
bead starts from rest at � D 0.

a) What is the angular momentum of
the bead about the origin at t D t1?

b) what is the rate of change of angular
momentum about the origin at t D
t1?

c) What is the kinetic energy of the
bead at t D t1?

d) Does the kinetic energy increase,
decrease, or remain constant with
time? Why?

14.2.5 A 200 gm particle goes in circles
about a fixed center at a constant speed
v D 1:5m=s. It takes 7:5 s to go around
the circle once.

a) Find the angular speed of the parti-
cle.

b) Find the magnitude of acceleration
of the particle.

c) Take center of the circle to be the
origin of a xy-coordinate system.
Find the net force on the particle
when it is at � D 30

�
from the x-

axis.

14.2.6 A race car cruises on a circular
track at a constant speed of 120mph. It
goes around the track once in three min-
utes. Find the magnitude of the centripetal
force on the car. What applies this force on
the car? Does the driver have any control
over this force?

14.2.7 A particle moves on a counter-
clockwise, origin-centered circular path in
the xy-plane at a constant rate. The radius
of the circle is r , the mass of the particle is
m, and the particle completes one revolu-
tion in time � .

a) Neatly draw the following things:
1. The path of the particle.
2. A dot on the path when the

particle is at � D 0�, 90�,
and 210�, where � is mea-
sured from the x-axis (posi-
tive counter-clockwise).

3. Arrows representing OeR, Oe� ,
*v, and *a at each of these
points.

b) Calculate all of the quantities in part
(3) above at the points defined in
part (2), (represent vector quantities
in terms of the cartesian base vec-
tors O{ and O|). �

c) If this motion was imposed by the
tension in a string, what would that
tension be? �

d) Is radial tension enough to main-
tain this motion or is another force
needed to keep the motion going
(assuming no friction) ? �

e) Again, if this motion was imposed
by the tension in a string, what is
Fx , the x component of the force in
the string, when � D 210�? Ignore
gravity.

14.2.8 The velocity and acceleration of a
1 kg particle, undergoing constant rate cir-
cular motion, are known at some instant t :

*v D �10m=s.O{C O|/; *a D 2m=s2.O{� O|/:
a) Write the position of the particle at

time t using OeR and Oe� base vectors.
b) Find the net force on the particle at

time t .
c) At some later time t�, the net force

on the particle is in the � O| direc-
tion. Find the elapsed time t � t�.

d) After how much time does the force
on the particle reverse its direction.
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14.2.9 A particle of mass 3 kg moves in the
xy-plane so that its position is given by

*r.t/ D 4m
�

cos
�
2�t

s

�
O{C sin

�
2�t

s

�
O|
�

with respect to point O, the origin of a fixed
cartesian coordinate system.

a) What is the path of the particle?
Show how you know what the path
is.

b) What is the angular velocity of the
particle? Is it constant? Show how
you know if it is constant or not.

c) What is the velocity of the particle
in polar coordinates?

d) What is the speed of the particle at
t D 3 s?

e) What net force does it exert on its
surroundings at t D 0 s? Assume
the x and y axes are fixed.

f) What is the angular momentum of
the particle at t D 3 s about point
O?

14.2.10 A comparison of constant and
nonconstant rate circular motion. A
100 gm mass is going in circles of radius
R D 20 cm at a constant rate P� D 3 rad=s.
Another identical mass is going in circles
of the same radius but at a non-constant
rate. The second mass is accelerating at
R� D 2 rad=s2 and at position A, it happens
to have the same angular speed as the first
mass.

a) Find and draw the accelerations of
the two masses (call them I and II)
at position A.

b) Find P*
H=O for both masses at posi-

tion A. �

c) Find
*
H=O for both masses at posi-

tions A and B. Do the changes in
*
H=O between the two positions re-
flect (qualitatively) the results ob-
tained in (b)? �

d) If the masses are pinned to the cen-
ter O by massless rigid rods, is ten-
sion in the rods enough to keep the
two motions going? Explain.
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Problem 14.2.10

More-Involved Problems
14.2.11 A small mass m is connected to
one end of a spring. The other end of the
spring is fixed to the center of a circular
track. The radius of the track is R, the un-
stretched length of the spring is `0 (with
`0 < R), and the spring constant is k.

a) With what speed should the mass be
launched in the track so that it keeps
going at a constant speed?

b) If the spring is replaced by another
spring of same relaxed length but
twice the stiffness, what will be the
new required launch speed of the
particle?

14.2.12 A bead of mass m is attached to
a spring of stiffness k. The bead slides
without friction in the tube shown. The
tube is driven at a constant angular rate P�0
about axis AA0 by a motor (not pictured).
There is no gravity. The unstretched spring
length is r0. Find the radial position r of
the bead if it is stationary with respect to
the rotating tube. �
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Problem 14.2.12

14.2.13 A particle of mass m is restrained
by a string to move with a constant angu-
lar speed ! around a circle of radius R on
a horizontal frictionless table. If the ra-
dius of the circle is reduced slowly to r ,
by pulling the string with a slowly vary-
ing force F through a hole in the table,
what will the particle’s angular velocity be
in the final circular motion? Is kinetic en-
ergy changed in moving from circular mo-
tion at R to circular motion at r? Why or
why not?
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Problem 14.2.13

14.2.14 An ‘L’ shaped rigid, massless, and
frictionless bar is made up of two uniform
segments of length ` D 0:4m each. A
collar of mass m D 0:5 kg, attached to a
spring at one end, slides frictionlessly on
one of the arms of the ‘L’. The spring is
fixed to the elbow of the ‘L’ and has a
spring constant k D 6N=m. The struc-
ture rotates clockwise at a constant rate
! D 2 rad=s. If the collar is steady at a
distance 3

4` D 0:3m away from the el-
bow of the ‘L’, find the relaxed length of
the spring, `0. Neglect gravity. �

.
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Problem 14.2.14: Forces in constant rate
circular motion.

14.2.15 A massless rigid rod with length `
attached to a ball of massM spins at a con-
stant angular rate ! which is maintained by
a motor (not shown) at the hinge point. The
rod can only withstand a tension of Tcr be-
fore breaking. Find the maximum angular
speed of the ball so that the rod does not
break assuming

a) there is no gravity, and

b) there is gravity (neglect bending
stresses).
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Problem 14.2.15

14.2.16 A 1m long massless string has a
particle of 10 grams mass at one end and is
tied to a stationary pointO at the other end.
The particle rotates counter-clockwise in
circles on a frictionless horizontal plane.
The rotation rate is 2� rev=sec. Assume
an xy-coordinate system in the plane with
its origin at O .

a) Make a clear sketch of the system.

b) What is the tension in the string (in
Newtons)? �

c) What is the angular momentum of
the mass about O? �

d) When the string makes a 45� angle
with the positive x and y axis on

the plane, the string is quickly and
cleanly cut. What is the position of
the mass 1 sec later? Make a sketch
of the particle’s trajectory. �

14.2.17 A ball of mass M fixed to an in-
extensible rod of length ` and negligible
mass rotates about a frictionless hinge as
shown in the figure. A motor (not shown)
at the hinge point accelerates the mass-rod
system from rest by applying a constant
torque MO . The rod is initially lined up
with the positive x-axis. The rod can only
withstand a tension of Tcr before breaking.
At what time will the rod break and after
how many revolutions? Neglect bending
stresses.

a) Neglect gravity.
b) Include gravity.
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Problem 14.2.17

14.2.18 A particle of mass m, tied to one
end of a rod whose other end is fixed at
point O to a motor, moves in a circular
path in the vertical plane at a constant rate.
Gravity acts in the � O| direction.

a) Find the difference between the
maximum and minimum tension in
the rod. �

b) Find the ratio �T
Tmax

where �T D
Tmax � Tmin. A criterion for ig-
noring gravity might be if the vari-
ation in tension is less than 2% of
the maximum tension; i.e., when
�T
Tmax

< 0:02. For a given length
r of the rod, find the rotation rate !
for which this condition is met. �.

c) For ! D 300 rpm, what would be
the length of the rod for the condi-
tion in part (b) to be satisfied? �.
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Problem 14.2.18

14.2.19 A massless rigid bar of lengthL is
hinged at the bottom. A force F is applied
at point A at the end of the bar. A mass m
is glued to the bar at point B, a distance d
from the hinge. There is no gravity. What
is the acceleration of point A at the instant
shown? Assume the angular velocity is ini-
tially zero.
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Problem 14.2.19

14.2.20 The mass m is attached rigidly to
the rotating disk by the light rod AB of
length `. Neglect gravity. Find MA (the
moment on the rod AB from its support
point at A) in terms of P� and R� . What is
the sign of MA if P� D 0 and R� > 0? What
is the sign if R� D 0 and P� > 0?
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Problem 14.2.20

Pendulum problems
14.2.21 Simple pendulum, comprehen-
sive version. This problem covers many
aspects of a simple pendulum. A point
mass M hangs on a massless string or rod
of lengthL. The gravitational force isMg.
The pendulum is in a vertical plane. At any
time t , the angle between the straight down
line and the pendulum, measured counter
clockwise, is �.t/. Neglect air friction.
When numbers are called for use M D
1 kg, L D 1m and g D 10m=s2.

a) Find the equations of motion.
That is, assume that you know both
� and P� , find R� . There are several
ways to do this problem.� Find the
equations using

1. Linear momentum balance
2. Angular momentum balance
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3. Conservation of energy

b) Tension. Assuming that you know
� and P� , find the tension T in the
string.

c) Reaction components. Assuming
you know � and P� , find the x and
y components of the force that the
hinge support causes on the pendu-
lum. Clearly define the directions
of positive x and y with a sketch.

d) Reduction to first order equa-
tions. The equation that you found
in (a) is a nonlinear second order or-
dinary differential equation. It can
be changed to a pair of first order
equations by defining a new vari-
able ! � P� . Write the equation
from (a) as a pair of first order equa-
tions. �

e) Numerical solution. Given the ini-
tial conditions �.t D 0/ D �=2

and !.t D 0/ D P�.t D 0/ D 0.
Using numerical integration, find:
�.t/; P�.t/ & T .t/. Make a sin-
gle plot, or three vertically aligned
plots, of these variables for one full
oscillation of the pendulum.

f) Maximum tension. Using your
numerical solutions, find the maxi-
mum value of the tension in the rod
as the mass swings. �

g) Plot the x and y reaction compo-
nents as a function of time.

h) Period of oscillation. How long
does it take to make one oscillation?

i) Other observations. Some ques-
tions:

1. Does the solution to (f) de-
pend on the length of the
string?

2. Is the solution to (f) exactly
30 or just a number near 30?
If it is exact can you find the
result analytically?

3. Is the period found in (h)
longer or shorter than the pe-
riod found by solving the lin-
ear equation R�C.g=l/� D 0,
based on the (inappropriate-
to-use in this case) small an-
gle approximation sin � D �?
Explain intuitively why you
expect the period to be longer
or shorter?

14.2.22 Tension in a simple pendulum
string. A simple pendulum of length 2m
with mass 3 kg is released from rest at
an initial angle of 60� from the vertically
down position.

a) What is the tension in the string just
after the pendulum is released?

b) What is the tension in the string
when the pendulum has reached
30� from the vertical?

14.2.23 Cartesian coordinates Find the
nonlinear governing differential equation
for a simple pendulum

R� D �g
`

sin �

using linear momentum in Cartesian coor-
dinates and without using the polar coor-
dinate formulas for velocity and acceler-
ation. Of course you can use that x D
` cos � and y D ` sin � for x pointing
down.

Filename:spend

θ �

Problem 14.2.23

14.2.24 Tension in a rope-swing rope.
Model a swinging person as a point mass.
The swing starts from rest at an angle � D
90�. When the rope passes through vertical
the tension in the rope is higher (it is hard
to hang on). A person wants to know ahead
of time if she is strong enough to hold on.
How hard does she have to hang on com-
pared, say, to her own weight? You are to
find the solution two ways. Use the same
m, g, and L for both solutions.

a) Find R� as a function of g; L; � , and
m. This equation is the govern-
ing differential equation. Write it
as a system of first order equations.
Solve them numerically. Once you
know P� at the time the rope is verti-
cal you can use other mechanics re-
lations to find the tension. If you
like, you can plot the tension as a
function of time as the mass falls.

b) Use conservation of energy to find P�
at � D 0. Then use other mechanics
relations to find the tension. �
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Problem 14.2.24

14.2.25 Pendulum. A pendulum with a
negligible-mass rod and point mass m is
released from rest at the horizontal posi-
tion � D �=2.

a) Find the acceleration (a vector) of
the mass just after it is released at
� D �=2 in terms of `;m; g and
any base vectors you define clearly.

b) Find the acceleration (a vector) of
the mass when the pendulum passes
through the vertical at � D 0 in
terms of `;m; g and any base vec-
tors you define clearly

c) Find the string tension when the
pendulum passes through the ver-
tical at � D 0 (in terms of
`;m and g).
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Problem 14.2.25

14.2.26 Write a computer program to solve
the nonlinear pendulum equation, R� D
�g
`

sin � , over a given time interval (0, t ),
and initial conditions �.0/, and P�.0/. The
output should be a vector of time instants,
ti , in the given time interval and the corre-
sponding �i and P�i .

Now use your computer program to
find the solution of

R� D � sin �; �.0/ D �=4; P�.0/ D 0:

Compare the solution obtained with the an-
alytical solution of the corresponding sim-
ple pendulum equation, R� D �� with the
same initial conditions. In particular,
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a) Find the difference in the time pe-
riod of oscillations of the two sys-
tems.

b) Plot P� obtained from the two solu-
tions against time and comment on
the differences.

c) Plot P� against � from the two solu-
tions on the same plot and compare
the two phase portraits. Comment
on the differences.

14.2.27 Solve the nonlinear pendulum
equation numerically taking 20 different
initial angular positions between � D 0
and � D � , each time releasing the pen-
dulum gently from rest. Find the time pe-
riod of oscillation, T , from each solution
and plot it against the amplitude of motion,
i.e., �.0/.

a) How does the period of oscillation
depend on the amplitude for small
amplitudes?

b) What is the limiting value of the
time period for large amplitudes,
i.e., �.0/! �?

c) How does T depend on the ampli-
tude over the entire range?

14.2.28 A pendulum of massm and length
` is released from rest at �.0/ D 60�. It ex-
ecutes oscillatory motion. If the pendulum
were to be released from two different po-
sitions, �.0/ D 45� and �.0/ D 0�, with
some corresponding initial angular speed
such that the ensuing motion were exactly
the same as that with �.0/ D 60� and
P�.0/ D 0, find the required initial angular
speeds.

a) First, find the corresponding P�.0/
without any computer simulation.

b) Verify your answer by plotting
computer generated solutions for
the three different initial conditions.

c) What is the general relationship be-
tween �.0/ and P�.0/ that produces
a predefined motion generated by,
say, a given set of �.0/ D �0 and
P�.0/ D P�0.

14.2.29 Use a computer program to solve
the nonlinear pendulum equation, R� C
�2 sin � D 0, where �2 D 1:56= s2,
with the following 11 initial conditions:
��.0/; P�.0/� D �1; 0�, [2, 0], [3, 0], [4, -1],
[-4, 1], [4, -1.02], [-4, 1.02], [4, -1.1], [-4,
1.1], [4, 1.4], and [-4, 1.4], where � is in ra-
dians and P� in rad=s. Obtain each solution
over the time interval t D 0 to t D 20 s.

a) Plot all solutions in the phase space
(i.e., � vs P� ) in a single graph.

b) What does the extension of the plot
beyond � D �� mean?

c) Which initial conditions give solu-
tions outside the separatrix? What
do these solutions mean? Are these
solutions periodic?

d) If you added a little bit of viscous
damping to the pendulum motion,
can you guess what will happen to
the solutions inside the separatrix?
[Hint: think about energy associ-
ated with these solutions.]

More circular motion
problems
14.2.30 Bead on a hoop with friction. A
bead slides on a rigid, stationary, circular
wire. The coefficient of friction between
the bead and the wire is �. The bead is
loose on the wire (not a tight fit but not
so loose that you have to worry about rat-
tling). Assume gravity is negligible.

a) Given v, m, R, & �; what is Pv? �

b) If v.� D 0/ D v0, how does v de-
pend on � , �, v0 and m? �
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Problem 14.2.30

14.2.31 Particle in a chute. One of a mil-
lion non-interacting rice grains is sliding in
a circular chute with radius R. Its mass is
m and it slides with coefficient of friction
� (Actually it slides, rolls and tumbles —
� is just the effective coefficient of friction
from all of these interactions.) Gravity g
acts downwards.

a) Find a differential equation that is
satisfied by � that governs the speed
of the rice as it slides down the
hoop. Parameters in this equation
can be m, g, R and � [Hint: Draw
FBD, write eqs of mechanics, ex-
press as ODE.]

b) Find the particle speed at the bot-
tom of the chute if R D 0:5m,
m D 0:1 grams, g D 10m=s2, and
� D 0:2 as well as the initial values
of �0 D 0 and its initial downward
speed is v0 D 10m=s. [Hint: you
are probably best off using a numer-
ical solution.]
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Problem 14.2.31

14.2.32 Due to a push which happened in
the past, the collar with mass m is sliding
up at speed v0 on the circular ring when
it passes through the point A. The ring is
frictionless. A spring of constant k and un-
stretched length R is also pulling on the
collar.

a) What is the acceleration of the col-
lar at A. Solve in terms of R, v0,
m, k, g and any base vectors you
define.

b) What is the force on the collar from
the ring when it passes point A?
Solve in terms ofR, v0,m, k, g and
any base vectors you define.
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Problem 14.2.32

14.2.33 A toy used to shoot pellets is made
out of a thin tube which has a spring of
spring constant k on one end. The spring
is placed in a straight section of length `;
it is unstretched when its length is `. The
straight part is attached to a (quarter) cir-
cular tube of radius R, which points up in
the air.
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a) A pellet of mass m is placed in the
device and the spring is pulled to
the left by an amount �`. Ignoring
friction along the travel path, what
is the pellet’s velocity*v as it leaves
the tube? �

b) What force acts on the pellet just
prior to its departure from the tube?
What about just after? �
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14.2.34 A block with mass m is moving
to the right at speed v0 when it reaches a
circular frictionless portion of the ramp.

a) What is the speed of the block when
it reaches point B? Solve in terms of
R, v0, m and g.

b) What is the force on the block from
the ramp just after it gets onto the
ramp at point A? Solve in terms of
R, v0, m and g. Remember, force
is a vector.
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Problem 14.2.34

14.2.35 A car moves with speed v along
the surface of the hill shown which can
be approximated as a circle of radius R.
The car starts at a point on the hill at point
O . Compute the magnitude of the speed v
such that the car just leaves the ground at
the top of the hill.
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CHAPTER 15
Circular motion of a rigid

object
Here we extend the idea of circular motion from particles to objects. A par-
ticle can go in circles. On a rigid object in 2D, all pairs of particles go in
circles around each other. The key theoretical idea is of rigid-object rota-
tion. The primary applications are pendulums, gear trains, and rotationally
accelerating motors or brakes.
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We covered the special case circular motion of a particle in the previous
chapter. Now we consider the kinematics and mechanics of rotating rigid ob-
jects in 2D. The key new conceptual idea is that of rotation of a rigid object.

Mechanics of circular motion

For the systems in this chapter, for every system we show in a free body
diagram we have, as always,

linear momentum balance,
X

*

Fi D P*
L

angular momentum balance,
X

*

Mi=C D P*
H=C;

and power balance: P D PEK C PEP C PEint:

Because you already know how to work with forces and moments (the left
sides of the top two equations), the primary new skill in this chapter is the

evaluation of P*L; P*H=C, and PEK for a rotating rigid object. That is, you need to
understand the position, velocity and acceleration of points moving in circles.
The rest of the skills used are universal, for example solving algebraic or
differential equations, plotting, etc.

15.1 Rotation of a rigid object in planar
circular motion

When two parts are glued together or attached by welding, gluing, several
tight screws, bolts, rivets bolts or the like we call the connection a ‘rigid
attachment’. And, for the purposes of mechanics analysis, the two connected
parts make up one bigger object. But most machines have various parts that
are connected to each other, but not welded to each other. The most common
such non-rigid attachment in engineering is a hinge. In 2D,

a hinge attachment between two objects keeps two points, one from
each object, on top of each other while freely allowing relative rotation
of the two objects about the hinge point.

In 3D a hinge keeps two lines, one on each body, coincident and allows rel-
ative rotation about that line. The common line, or in 2D the line orthogonal
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Figure 15.1: All the points on a gear
move in circles, assuming the axle is not
translating.
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Figure 15.2: All points on a flywheel
move in circles. The points further
from the center move faster, so they
mover further while the camera shutter
is open, so they show a bigger motion
blur (the constant-thickness spokes look
fatter near the rim).
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Figure 15.3: a) A object, b) rotated
counterclockwise an angle � about 0.
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Figure 15.4: Rotation of lines on a ro-
tating rigid object. Some real or imag-
ined lines marked on the rigid object are
shown. They make the angles �1, �2, �3,
: : : with respect to various fixed lines
which do not rotate. As the object ro-
tates, each of these angles increases by
the same amount.

1The word axis is obviously related
to the word axle. More generally the
word axis means ’line’. For example
the x and y axes are generally not axles
about which anything rotates, they are
just lines.

to the plane through the points, is called the hinge, the hinge axis, or the axis
of relative rotation.

One example of a hinge is a car axle which allows rotation of a wheel
relative to the car suspension. The hinge axis is the wheel axle 1. Physically,
hinges are made various ways, sometimes by poking a cylindrical pin through
the two objects and sometimes with ball bearings (see box 4.6 on page 218).
So hinges are also called pin connections or bearings (fig. 15.3). In this
chapter we limit our attention to a simple use of a hinge: one rigid part is
hinged to a second fixed part that doesn’t move at all. Such a non-moving
part can be thought of as connected to, or an extension of, the ground or
‘fixed frame’. In this simple case of interest in this chapter, one point on the
moving part does not move and the rest of the part rotates about that point.

For definiteness and simplicity let’s call the hinge location 0 and the hinge
axis through 0 the z axis. One function of the hinge is to make the part’s only
possible motion to be rotation about O. Thus to understand the dynamics of
a hinged part we need to understand the position, velocity and acceleration
of points on a rigid object which rotates. This whole section is about the
kinematics (the geometry of motion) for this rotation. We will measure the
amount of rotation by the angle � , and the rate of rotation � by the angular
velocity *

! (‘omega’), and of rate of change of this angular velocity *
! by the

angular acceleration *
� (‘alpha’).

As simple as this topic seems at first glance, you should pay close at-
tention to the meanings and uses of these quantities. The rest of the book
completely depends on the material in this section.

Rotation of an object counterclockwise by �
We start by imagining the object in a distinguished configuration which we
call the reference configuration, reference state or reference position. For ex-
ample we could take the left figure in fig. 15.3 as the reference configuration.
If possible its usually best to pick the reference state to be one in which a
prominent feature of the object is aligned with the x or y axes. The reference
state may or may not be the start of the motion of interest. Even if not, we
measure an object’s rotation by the change, relative to the reference state, in
the counterclockwise angle � of a reference line marked in the object relative
to a fixed line outside. Which reference line? Fortunately,

All real or imagined lines marked on a rotating rigid object rotate by
the same angle, the rotation angle, � . (See box 15.1).

In three dimensions things are more complicated. General rotation of a rigid
object is then represented not with a single angle � , but rather with 3 angles,
or with a unit vector and an angle, or a 3�3 matrix. So we wait to discuss
which of the 2D ideas here generalize to 3D and which do not.
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Rotated coordinates and base vectors O{0 and O|0

We pick two orthogonal lines on the rotating object and give them distin-
guished status as object-fixed (or body-fixed) rotating coordinate axes x0 and
y0. Think of these axes as x0y0 coordinate axes on a piece of graph paper that
is glued to the object (see fig. 15.5a&b). Its easiest if we start by assuming
that the x0y0 axes have the same origin 0 as the xy axes and are parallel with
the fixed xy axes when the object is in the reference configuration (when
� D 0).

These rotating coordinate axes, x0 and y0, have associated rotating base
vectors O{0 and O|0 (fig. 15.6 and 15.7). So O{0 is always in the x0 direction and
O|0 always in the y0 direction. We will use these rotating coordinates and base
vectors to keep track of a some particle of interest P that is ‘glued’ to the
object. To start, note that particle P which is glued to the object has x0 and
y0 coordinates that don’t change as the rotation progresses.

Example: A particle on the x0 axis
If a particle P is fixed on the x0-axis at position x0 D 3 cm, then we have.

*rP D 3 cmO{0

for all time, even as the object rotates.

The position vector of a point P fixed to a rigid object hinged at O remains,

15.1 Rotation is uniquely defined for a rigid object (2D)
Most people will find it self-evident that, starting with a rigid object
at a reference orientation, all lines marked on the object rotate by the
same angle � . Here, for the doubting, we demonstrate this fact.

A rigid object is defined this way:

For every pair of material points A and B on a rigid object the
distance jABj between them does not change as the object
moves.

In particular, when a rigid object rotates all distances between all
pairs of points are preserved. Thus, by the “side-side-side” similar
triangle theorem of elementary geometry, all relative angles between
marked line segments are preserved by the rotation. For example, for
a triangle ABC the angle at B is constant as the object rotates. Now
consider any pair of line segments on the object.

[By ‘on’ the object we don’t mean a projected image drawn with
a light pen that can move around on the object relative to the atoms.
Rather, by ‘on the object’ we mean something defined by a particular
set of atoms that make up the object.]

If the segments do not cross we can extend them to a point of
intersection B. Such a pair of intersecting lines is shown here before
and after rotation.Initially BA makes and angle �0 with a horizontal

reference line. BC then makes an angle of �ABCC�0. After rotation
we measure the angle to the line BD. BA now makes an angle of
�0 C � . By the addition of angles in the rotated configuration line
BC now makes an angle of �ABCC�0C� which makes an increase

by � of the angle made by BC with the horizontal reference line. So
both BA and AC rotate by the same angle � .

We could use one of these two lines and compare it with an
arbitrary third line through B and show that the third line also has
equal rotation, and then a fourth, and so on. So all lines on the object
through a point B rotate by the same angle � . The demonstration
for a pair of parallel lines, one of them through B, is easy, they stay
parallel so always make a common angle with any reference line.

Because any line on the object either goes through B or is par-
allel to a line through B, all lines marked on a rigid object rotate by
the same angle � .

The rotation of a rigid object in 2D is thus unambiguously
defined as the angle through which all lines on the object
rotate.
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as the rotation progresses,
*
rP D x0 O{0 C y0 O|0; (15.1)

(15.2)

with x0 and y0 both constant. These rotating coordinate system components,

�*r�x0y0 D �x0; y0�, are sometimes written as �*r�x0y0 D
�
x0
y0
�

.

You will see that much of the math for rotating x0y0 coordinates is rem-
iniscent of that for polar coordinates. However, the spirit is a bit different.
In polar coordinates the OeR axes was picked to track a particular particle of
interest. Here we pick axes that rotate with an extended object and use that
one set of axes to track any and all particles of interest.

Note, even though neither x0 nor y0 change as � changes, the point P they
describe moves, in circles actually. How can the particle’s position change
if its coordinates don’t change? Well, in eqn. (15.3) the change in position
is represented by the base vectors changing as the object rotates. Thus we
could write more explicitly that

*
rP D x0 O{0.�/C y0 O|0.�/: (15.3)

Here we show more explicitly that the base vectors O{0 and O|0 depend on � .
Just like for polar base vectors (see eqn. (14.5) on page 662) we can express

the rotating base vectors in terms of the fixed base vectors and � .

O{0 D cos � O{C sin � O|; (15.4)

O|0 D � sin � O{C cos � O|:

Also we can express the fixed basis vectors in terms of the rotating vectors
like this:

O{ D cos � O{0 � sin � O|0 (15.5)

O| D sin � O{0 C cos � O|0:
Please review the section on dot products, 2.2, to see one derivation of these
formulae.

We will use the phrase reference frame or just frame to mean “a coordi-
nate system attached to a rigid object”. One can think of the coordinate grid
as like an invisible metal framework (hence the word ‘frame’) that rotates
with the object. We refer to a calculation based on the rotating coordinates
in fig. 15.6 variously as “in the frame C” or “using the x0y0 frame” or “in the
O{0 O|0 frame 2.

In computer calculations we usually manipulate lists and arrays of num-
bers and not geometric vectors. So on a computer we keep track of vectors
by keeping track of their lists of components. Lets look at a point fixed to the
object and whose coordinates we know in the reference configuration:h

*
rP

ref
i
xy
D
�
xref

yref

�
:
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Assuming the object axes and fixed axes coincide in the reference configu-
ration, the object coordinates of a point �*rP�x0y0 are equal to the space fixed

coordinates of the point in the reference configuration
h
*
rP

ref
i
xy

. We can

think of the point as defined either way, so

�*rP�x0y0 D
h
*
rP

ref
i
xy

:

The rotation matrix �R�
Here is a question we often need to answer: What are the fixed basis coor-

dinates of a point that has the rotating-frame coordinates �*r�x0y0 D
�
x0
y0
�

?

Here is one way to find the answer:

*
rP D x0 O{0 C y0 O|0

D x0.cos � O{C sin � O|/C y0.� sin � O{C cos � O|/
D �

.cos �/x0 � .sin �/y0
�� �� �

x

O{C �
.sin �/x0 C .cos �/y0

�� �� �
y

O| (15.6)

so we can pull out the x and y coordinates compactly as,

�*rP�xy D
�
x

y

�
D
�

cos � x0 C sin �.�y0/
sin � x0 C cos �.y0/

�
: (15.7)

But this can, in turn be written in matrix notation as

�
x

y

�
D

�
cos � � sin �
sin � cos �

�
� �� �h

R
i

�
x0
y0
�
; or

�*rP�xy D �
R
�
�*rP�x0y0 ; or (15.8)

�*rP�xy D �
R
� h

*
rP

ref
i
xy

:

The matrix �R� or �R.�/� is the rotation matrix for counterclockwise rota-
tions by � . As shown above, if you know the coordinates of a point fixed on
an object before rotation, you can find its coordinates after rotation by mul-
tiplying the coordinate column vector by the matrix �R�. You can remember
what �R� is by remembering its components or by remembering that

the first and second column of �R� are the components of O{0 and O|0,
respectively, in the fixed coordinate system.

For example, the first column of �R� consist of the x and y components of O{0.
A feature of eqn. (15.8) is that the same matrix �R� prescribes the coordinate

2Advanced aside. Sometimes a refer-
ence frame is defined as the set of all co-
ordinate systems that could be attached
to a rigid object. Two coordinate sys-
tems, even if rotated with respect to each
other, then represent the same frame so
long as they rotate together. Some of the
results we will develop only depend on
this more slack definition of frame, that
the coordinates are glued to the object
with no mind of their orientation in the
reference configuration.
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change for every different point on the object. Thus for points called 1, 2 and
3 we have�

x1
y1

�
D �

R
� � x01

y01

�
;

�
x2
y2

�
D �

R
� � x02

y02

�
&�

x3
y3

�
D �

R
� � x03

y03

�
:

A more compact way to write a matrix times a list of column vectors is
to arrange the column vectors one next to the other in a matrix. By multi-
plying this matrix by �R� we get a new matrix whose columns are the new
coordinates of various points. For example,�

x1 x2 x3
y1 y2 y3

�
D �

R
� � x01 x02 x03

y01 y02 y03

�
: (15.9)

Eqn. 15.9 is useful for computer animation of rotating things in video games
(and in dynamics simulations too) where points 1,2, and 3 are points on an
object.

Example: Rotate a picture
If a simple picture of a house is drawn by connecting the six points (fig. 15.5a) with
the first point at .x; y/ D .1; 2/, the second at .x; y/ D .3; 2/, etc., and the sixth
point on top of the first, we have,

�xy points BEFORE� �
2
4 1 3 3 2 1 1

2 2 4 5 4 2

3
5 :

After a 30
�

counter-clockwise rotation about O, the coordinates of the house, in a
coordinate system that rotates with the house, are unchanged (fig. 15.5b). But in
the fixed (non-rotating, Newtonian) coordinate system the new coordinates of the
rotated house points are,

�xy points AFTER� D �
R
�
�xy points BEFORE� D �

R
� �
x0y0 points

�
D

2
4 p

3=2 �:5
:5

p
3=2

3
5
2
4 1 3 3 2 1 1

2 2 4 5 4 2

3
5

�
2
4 �0:1 1:6 0:6 �0:8 �1:1 �0:1

2:2 3:2 5:0 5:3 4:0 2:2

3
5

as shown in fig. 15.5c.
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SAMPLE 15.1 Computing rotated position of an object: A rigid object
AOB is pinned at point O and is free to rotate about this point. Using the
rotation matrix, find the coordinates of points A and B when � D 30� and
110� respectively.

Solution Let x0y0 be a set of axes glued to the object with origin at O which is also the origin
of the space-fixed coordinate axes xy. We first write the coordinates of points A and B in the
body-fixed axes.

*rAjx0y0 D
�
1m
0

�
; *rBjx0y0 D

�
1m
1m

�
:

The rotation matrix for the x0y0 axes rotating counterclockwise along with the object is

R D
�

cos � � sin �
sin � cos �

�
:

We can find the coordinates of A and B in the rotated position by multiplying their x0y0
coordinates with the rotation matrix. We first write the coordinates of both points A and B in
a single matrix, one column for each, and multiply with R to get the new coordinates:

� *rA
*rB �xy D

�
cos � � sin �
sin � cos �

� �
x0
A

x0
B

y0
A

y0
B

�
:

Now, we calculate the new coordinates for the given values of � .

� For � D 30�, we have,

� *rA
*rB �xy D

�
0:866 �0:5
0:5 0:866

� �
1m 1m
0 1m

�

D
�
0:866m 0:366m
0:5m 1:366m

�
:

Thus,

�*rA�xy D
�
0:866m
0:5m

�
; �*rB�xy D

�
0:366m
1:366m

�
:

� Similarly, for � D 110�, we get,

� *rA
*rB �xy D

� �0:342 �0:94
0:94 �0:342

� �
1m 1m
0 1m

�

D
� �0:342m �1:282m

0:94m 0:598m

�
:

�*rA�xy D
� �0:342m

0:94m

�
; �*rB�xy D

� �1:282m
0:598m

�
:
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SAMPLE 15.2 Computer program for object rotation: The object shown
in the figure rotates counterclockwise with its angular position � given by
�.t/ D P�0t where P�0 D 10�=s. Write a computer program to animate the
motion of the object by plotting its position at specified time instants. Use
your program to plot the position of the object every two seconds for a total
of 18 seconds.

Solution In order to draw the object on the computer screen, we need to define it by taking
sufficient number of points on its boundary so that plotting all those points with connected
line segments represents the object as closely as possible. In this case, we can select all the
corner points on its boundary and define the object with the coordinates of these points. With
the given geometry, it is fairly easy to find these coordinates. Denoting the coordinates of the
kth point by .xk ; yk/, we can define this object by the following set of coordinates:

object D
�
x1 x2 : : : x6 x1
y1 y2 : : : y6 y1

�
D
�

0 2 4 4 2 0 0

�1 �1 �2 2 1 1 �1
�
:

Note that last column is a repeat of the first column. This is essential so that when we plot the
object using the x and y coordinates listed here, we get a closed boundary.

Animation of the angular motion of this object basically requires determining the rotated
position of the object and plotting it at sufficiently small time intervals. To do this, we need
to define the initial orientation (position), define the time increment, find the angle of rotation
� corresponding to the new time, compute the corresponding rotation matrix, multiply the
object coordinates with the rotation matrix, separate out the x and y coordinates, and plot x
vs y. We then repeat the whole sequence until we reach the final time.

The following pseudocode can be easily adapted to a computer program to do the required
animation.

object = [ 0 2 4 4 2 0 0
-1 -1 -2 2 1 1 -1] % coordinates of points

t = 0 % specify initial time
t_final = 36 % specify final time
delta_t = 3 % specify time increment
thetadot0 = 10*pi/180 % specify thetadot0 in rad/s

while t < t_final
t = t + delta_t % increment the time
theta = thetadot0*t % compute current theta
R = [ cos(theta) -sin(theta) % find the rotation matrix

sin(theta) cos(theta)]
new_position = R*object % find new coordinates
x = new_position(1st row) % extract all x-coordinates
y = new_position(2nd row) % extract all y-coordinates
plot y vs x % plot the new position

end

The plot obtained by implementing this code is shown in fig. 15.14.
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15.2 Angular velocity and acceleration of
a rigid object in planar circular
motion

Angular velocity of a rigid object: *
!

Thus far we have talked about rotation, but not how it varies in time. Dynam-
ics is about motion, velocities and accelerations, so we need to think about
rotation rates and rotational accelerations.

A 2D rigid object’s net rotation is measured by the rotation angle � . Thus,
the simplest measure of rotation rate is P� � d�

dt
. Because all marked lines

rotate the same amount � they all have the same rates of change. So P�1 DP�2 D P�3 D etc. and, as for rotation, the concept of rotation rate of a rigid
object transcends the concept of rotation rate of this or that particular line.
We give this rotation rate of a rigid object a special name, angular velocity,
and symbol, ! (omega).

Repeating, for all lines marked on a rigid object,

! � P�1 D P�2 D P�3 D � � � D P�: (15.10)

Often we think of angular velocity as a vector *
!. Its direction is the axis

of the rotation which, for objects in the xy plane is Ok, pointed in the Cz
direction normal to the xy plane. The scalar part of *

! is !. So, the angular
velocity vector is

*
! � ! Ok (15.11)

with ! as defined in eqn. (15.10). Note *
! is the angular velocity of the object

(and of every line on it) 1. The usual sign convention for ! is the same as
that for � , positive is counter-clockwise (CCW) around the origin. That’s the
direction your fingers wrap if you point your thumb in the Cz direction and
grab the z axis.

Rate of change of O{0, O|0

Our first use of the angular velocity vector *! is to calculate the rate of change
of the rotating unit base vectors O{0 and O|0. We can find the rate of change of,
say, O{0, by taking the time derivative of the first eqn. (15.4), and using the
chain rule while recognizing that � D �.t/. We can also make an analogy
with polar coordinates (page 661), where we think of OeR as like O{0 and Oe�
as like O|0. We found there that POeR D P� Oe� and POe� D � P� OeR. Either from
differentiating O{0 or from the correlation with polar coordinates, we get

1We could also think of rotation rate
as a derivative of the rotation matrix �R�.
This point of view and its relation to the
vector point of view here, is described in
Box 15.5 on page 705.
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2 Eqn. 15.12 is sometimes considered
the definition of *!. In this view, pop-
ularized by Tom Kane, *! is that vector
which determines PO{0 and PO|0 by the for-
mulas PO{0 D*!�O{0 and PO|0 D*!� O|0. Then
one needs to show that such a vector ex-
ists and that it is *! D O{0 � PO{0. Luckily
this reasoning leads to the same*! as our
*! D P� Ok.

PO{0 D P� O|0 or PO{0 D *
! � O{0 and

PO|0 D � P� O{0 or PO|0 D *
! � O|0 (15.12)

because O|0 D Ok0 � O{0 and O{0 D �Ok0 � O|0. Depending on the tastes of your
lecturer, you may find Equations 15.12 are the most used equations from this
point onward 2.

Velocity of a point fixed on a rigid object
Lets call some rotating object B (script capital B) to which is glued a coordi-
nate system x0y0 with base vectors O{0 and O|0. We now introduce the concept
of derivative in a frame which we write, for the frame B, as

Bd

dt

which means, in words, the rate of change of something as viewed in the
rotating frame B. Now consider a point P at *rP that is glued to the object.
That is, the x0 and y0 coordinates of *rP do not change in time.

Bd*rP
dt

� BP*rP D Px0 O{0 C Py0 O|0 D*

0:

That is, relative to a moving frame, the velocity of a point glued to the frame
is zero (no surprise).

We would like to know the velocity of such a point in the fixed frame. We
just take the derivative, using the product rule and the differentiation rules
we have developed for the rotating base vectors:

15.2 The fixed Newtonian reference frame F
Now we can reconsider the concept of a Newtonian frame, a con-

cept which we had to assume to write the equations of dynamics in
the first place. All of mechanics depends, of course, on the laws of
mechanics. The laws of mechanics are equations which involve, in
part, the positions of things as a function of time. But how posi-
tion is perceived to change in time depends on your reference frame.
And some reference frames are better than others. The best, from
our point of view, are reference frames in which Newton’s laws are
accurate. Such a reference frame is called a Newtonian frame. In
engineering practice the frames we use as approximations of a New-
tonian frame often seem, loosely speaking, somehow still. So we
sometimes call such a frame the fixed frame and label it with a script
capital F . When we talk about velocity and acceleration of mass
points, for use in the equations of mechanics, we are always talking
about the velocity and acceleration relative to a Fixed, or equiva-
lently, Newtonian frame.

Assume x and y are the coordinates of a vector *rP and F is a
fixed frame with fixed axis (with associated constant base vectors O{
and O|). When we write P*rP we mean Px O{ C Py O|. But we could be
more explicit (and notationally ornate) and write the velocity of P in

the Newtonian frame as

Fd P*rP
dt

� FP*rP by which we mean Px O{C Py O|:
The F in front of the time derivative (or in front of the dot) means
that when we calculate a derivative we hold the base vectors of F
constant. This is no surprise, because for F the base vectors are
constant. In general, however, when taking a derivative in a given
frame you

� write vectors in terms of base vectors stuck to the frame, and

� only differentiate the components.

But only for the F ixed or N ewtonian frame will accelerations cal-
culated this way be directly applicable to Newton’s laws.

We will avoid the ornate notation of labeling frames when it is
not needed. For example, if you don’t see any script capital letters
floating around in front of derivatives, you can assume that we are
taking derivatives relative to a fixed Newtonian frame.
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*rP D x0 O{0 C y0 O|0

) *vP D
P*r

P
D

d

dt

�
x0 O{0 C y0 O|0

�
D x0 PO{0 C y0 PO|0 D x0.*! � O{0/C y0.*! � O|0/

D *! � .x0 O{0 C y0 O|0/

where P*rP is the simple way to write
Fd*rP
dt

. Thus,

*
vP D *

! �*
rP (15.18)

We can rewrite eqn. (15.18) in a minimalist or elaborate notation as

*
v D *

! �*
r or

Fd*rP
dt

D *
!
B=F

�*
rP=O:

Both are correct. In the first case you have to use common sense to know
what point you are talking about and that it is on a object rotating with ab-
solute angular velocity *

!. In the second case everything is laid out perfectly
clearly (which is why it looks perfectly confusing). On the left side of the
equation it says that we are interested in how point P moves relative to, not
just any frame, but the fixed frame F . On the right side we make clear that
the rotation rate we are looking at is that of object B relative to F and not
some other relative rotation. We further make clear that the formula only
makes sense if the position of the point P is measured relative to a point
which doesn’t move, namely 0.

What we have just found largely duplicates what we already learned in
section 7.1 for points moving in circles. The slight generalization is that the
same angular velocity *

! can be used to calculate the velocities of multiple
points on one rigid object. But the key idea remains: the velocity of a point

15.3 Plato’s discussion of spinning in circles as motion (or not)
Plato imagines a discussion between Socrates and Glaucon about

how an object can maintain contradictory attributes simultaneously:

“ Socrates: Now let’s have a more precise agreement so that we
won’t have any grounds for dispute as we proceed. If someone were
to say of a human being standing still, but moving his hands and
head, that the same man at the same time stands still and moves, I
don’t suppose we’d claim that it should be said like that, but rather
that one part of him stands still and another moves. Isn’t that so?
Glaucon: Yes it is.
Socrates: Then if the man who says this should become still more
charming and make the subtle point that tops as wholes stand still
and move at the same time when the peg is fixed in the same place
and they spin, or that anything else going around in a circle on the

same spot does this too, we wouldn’t accept it because it’s not with
respect to the same part of themselves that such things are at the
same time both at rest and in motion. But we’d say that they have
in them both a straight and a circumference; and with respect to the
straight they stand still since they don’t lean in any direction –while
with respect to the circumference they move in a circle; and when
the straight inclines to the right the left, forward, or backward at the
same time that it’s spinning, then in no way does it stand still.
Glaucon: And we’d be right.”

This chapter is about things that are still with respect to their
own parts (they do not distort) but in which the points do move in
circles.
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3 Although the form eqn. (15.19) is
not of much immediate use, if you are
going to continue on to the mechanics of
mechanisms or three dimensional me-
chanics, you should follow the deriva-
tion of eqn. (15.19) carefully.

4The derivation of eqn. (15.20) can be
written more informally and briefly like
this (using minimalist notation):

*a D P*v D d

dt
.*! �*r/

D P*! �*r C*! � P*r
D P*! �*r C*! � .*! �*r/

D P*! �*r � !2*r:

going in circles is tangent to the circle it is going around and with magni-
tude proportional both to distance from the center and to the angular rate of
rotation (fig. 15.15a).

Acceleration of a point on a rotating rigid object
Let’s again consider a point stuck on a rotating object and with position

*
rP D x0 O{0 C y0 O|0:

Relative to the frame B to which a point is attached, its acceleration is zero
(again no surprise). But what is its acceleration in the fixed frame? We find
this acceleration by writing the position vector and then differentiating twice,
repeatedly using the product rule and eqn. (15.12) we get (see Box 15.4 for
the details).

*
aP D P*! �*

rP C *
! � .*! �*

rP/ (15.19)

which is hardly intuitive at a glance 3. Recalling that in 2D *
! D ! Ok we

can use either the right hand rule or manipulation of unit vectors to rewrite
eqn. (15.19) as

*
aP D P! Ok �*

rP � !2*rP (15.20)

where ! D P� and P! D R� 4.
Thus, as we found in section 14.1 for a particle going in circles, the ac-

celeration can be written as the sum of two terms, a tangential acceleration
P! Ok � *

rP due to increasing tangential speed, and a centrally directed (cen-
tripetal) acceleration �!2*rP due to the direction of the velocity continuously
changing towards the center (see fig. 15.15b). The generalization we have

15.4 Acceleration of a point on a rotating body, using *
!

Leaving off the ornate pre-super-script F for simplicity, we have

*aP D P*v
P

D d

dt

�
d

dt

�
x0 O{0 C y0 O|0��

D d

dt

�
x0.*!� O{0/C y0.*!� O|0/� : (15.13)

To continue we need to use the product rule of differentiation for the
cross product of two time dependent vectors like this:

d

dt

�
*!� O{0� D P*!� O{0 C*!� PO{0 (15.14)

D P*!� O{0 C*!� .*!� O{0/; (15.15)

d

dt

�
*!� O|0� D P*!� O|0 C*!� PO|0 (15.16)

D P*!� O|0 C*!� .*!� O|0/: (15.17)

Substituting back into eqn. (15.13) we get

*aP D x0
� P*!� O{0 C*!� .*!� O{0/

�
C y0

� P*!� O|0 C*!� .*!� O|0/
�

D P*!� .x0 O{0 C y0 O{0/C*!� �*!� �x0 O{0 C y0 O{0/��
D P*!�*rP C*!� �*!�*rP

�
which derives eqn. (15.19).
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made in this section is that the same *
! can be used to calculate the accelera-

tion for all the different points on one rotating object.

Relative motion of points on a rigid object
As you well know by now, the position of point B relative to point A is
*
rB=A �*

rB�*
rA. Similarly the relative velocity and acceleration of two points

A and B is defined to be

*
vB=A �*

vB �*
vA and *

aB=A �*
aB �*

aA (15.21)

So, the relative velocity (as calculated relative to a fixed frame) of two points
glued to one spinning rigid object B is given by

*
vB=A � *

vB �*
vA

D *
! �*

rB=O � *
! �*

rA=O

D *
! � .*rB=O �*

rA=O/

D *
! �*

rB=A;

where point O is the point in the Newtonian frame on the fixed axis of rota-
tion and *

! D *
!C is the angular velocity of C. Repeating,

*
vB=A D *

! �*
rB=A: (15.22)

Because points A and B are fixed on B their velocities and hence their relative
velocity as observed in a reference frame fixed to C are all

*

0. But, point A
has an absolute velocity that is different from that of point B. So they have a
relative velocity as seen in the fixed frame. And it is what you would get if
B was just going in circles around A. Similarly, the relative acceleration of
two points glued to one rigid object spinning at constant rate is

*
aB=A � *

aB �*
aA D P*! �*

rB=A C *
! � .*! �*

rB=A/: (15.23)

Again, the relative acceleration is due to the difference in the points’ po-
sitions relative to the point O fixed on the axis. These kinematics results,
15.22 and 15.23, are useful for calculating angular momentum relative to the
center-of-mass. They are also sometimes useful for the understanding of the
motions of machines with moving connected parts.

The fundamental *! equation
Equation 15.22 actually applies to any vector

*

Q that has the property that it is
fixed in the frame which is rotating at *! (fig. 15.17). That is, all we needed
in the derivation was that

*

Q’s components .Qx0 ;Qy0/ in the O{0- O|0 reference
frame be constant. Examples of such

*

Q would include more than just the
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relative position of two points fixed on the object, *rB=A. Both O{0 and O|0 are
also are fixed in the rotating frame. Also imagine a bug moving at a constant
speed on a straight line marked on a body. That bug’s velocity relative to the
rotating frame would also be constant as seen in the frame. For any

*

Q whose
representation as an arrow moves like a line segment drawn on a rigid object
rotating at *!:

P*
Q D *

! � *

Q: (15.24)

This is the most fundamental equation of rigid-object kinematics. Know it
well. For future reference, equation (15.24) is also valid in three dimensions.
Equation 15.24 is the generalization of the three equations

P*r D *
! �*

r; PO{0 D *
! � O{0 and PO|0 D *

! � O|0:

Calculating relative velocity directly, using rotating
frames
A coordinate system x0y0 attached to a rotating rigid object C, defines a
reference frame C (fig. 15.6 on page 694). Recall, the base vectors in this
frame change in time just like any other vector fixed in the rotating frame
(eqn. (15.24))

d

dt
O{0 D *

!C � O{0 and
d

dt
O|0 D *

!C � O|0:

Once we know how the base vectors O{0 and O|0 change with time, as per the
above equations, we can find velocity and acceleration by differentiation of
position. For example, consider two points A and B fixed on a rotating object.
The position of B relative to A is

*
rB=A D x0 O{0 C y0 O|0:

where we are using x0 and y0 as a shorthand notation for x0B/A and y0B/A (see
fig. 15.18). The coordinates x0 and y0 are constant so

Px0 D 0 and Py0 D 0:

Now we just differentiate the relative position *
rB=A with respect to time,

d

dt
.*rB=A/ D d

dt

�
x0 O{0 C y0 O|0�

D Px0����
0

O{0 C x0
d

dt
O{0 C Py0����

0

O|0 C y0
d

dt
O|0

D x0.*!C � O{0/C y0.*!C � O|0/
D *

!C � .x0 O{0 C y0 O|0/� �� �
*
rB=A

D *
!C �*

rB=A:
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We could similarly calculate *
aB=A by taking another derivative to get, after a

calculation much like that above,

*
aB=A D *

!C �
�
*
!C �*

rB=A
�C P*!C �*

rB=A:

For the above calculation the points A and B were fixed on a rotating part.
Most machines have many parts, at least some of which move in more com-
plex ways than just circular motion. We will be able to understand such
machines by considering points and parts that are moving relative to a part
that is itself rotating. Such will be considered in Chapter 18.

15.5 Angular velocity *
! and the rotation matrix �R�

The rotation matrix �R� and the angular velocity vector *! D ! Ok are
related. Because angular velocity is a rotation rate, in some sense it
must be the derivative of the rotation. But the situation is a bit subtle
because *! is a vector and �R� is a matrix.

On the one hand we have the rotation equation:�
x
y

�
� �� �
�*r�xy

D
�

cos � � sin �
sin � cos �

�
� �� �h

R

i

�
x0

y0

�
� �� �h
*
r

ref
i
xy

:

This gives the coordinates of *r after rotation in terms of its coordi-

nates before the rotation. Because the coordinates
h
*r

ref
i
xy

before

rotation are fixed we can take the time derivative of both sides to get� Px
Py
�

� �� �h
P*r
i
xy

D P�
� � sin � � cos �

cos � � sin �

�
� �� �h

PR
i

�
x0

y0

�
� �� �h
*
r

ref
i
xy

:

On the other hand we have the vector equation

P*r D *!�*r:

where *! D ! Ok. We can relate this vector equation to the matrix
component equation above it by expressing the cross product with a
matrix multiplication as described in box 2.6 on 74. Applying that
result to this 2D case where

�*!�xyz D
2
4 0
0
!

3
5 and �*r �xyz D

2
4 x
y
0

3
5

we get 2
4 �!y

!x
0

3
5

� �� �h
P*r
i
xy

D
2
4 0 �! 0
! 0 0
0 0 0

3
5

� �� �
�S.*!/�

2
4 x
y
0

3
5

� �� �h
*
r

ref
i
xy

:

Just keeping the 2D terms we have

�*!�*r�xy D �S.*!/�
�
x
y

�

D
�
0 �!
! 0

� �
x
y

�
:

But �R� tells us the coordinates in terms of the reference coordinates.
So

�*!�*r�xy D
�
0 �!
! 0

�
�R�

�
x0

y0

�
� �� �"

x
y

#
:

Comparing the equations above we see that

� PR� D
�
0 �!
! 0

�
�R�: (15.25)

Using the notation from box 2.6 we can rewrite this as

� PR� D �S.*!/� �R�: (15.26)

Equation 15.26 is the way that angular velocity *! and the rate of
change � PR� of the rotation matrix are related.

We can also solve for �S.*!/� as

�S.*!/� D � PR��R��1

from which we can find �! in the off diagonal elements if we are
given �R� and � PR�.

We can understand eqn. (15.26) better, perhaps, by thinking of
the rotation matrix �R� as having two columns which are, respec-
tively, the fixed-coordinate-system components of O{0 and O|0:

�R� D �
�O{0�xy j � O|0�xy

�
Thus the columns of � PR� are the rates of change of these two unit
vectors:

� PR� D
h
�PO{0�xy j � PO|0�xy

i
D �
�*!� O{0�xy j �*!� O|0�xy

�
:

With a total abuse of notation (in general one does not allow cross
products of a vectors with matrices) we can write the above equation
more memorably as

“ � PR� D *!� �R�: ”

Thus eqn. (15.26) is just a version of the fundamental kinematic
equation 15.24 on page 704.
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SAMPLE 15.3 A uniform bar AB of length ` D 50 cm rotates counterclock-
wise about point A with constant angular speed !. At the instant shown in
fig. 15.19 the linear speed vC of the center-of-mass C is 7:5 cm= s.

1. What are the angular speed and angular velocity of the bar?

2. What is the linear velocity of point B?

3. By what angles do the angular positions of points C and B change in 2
seconds?

Solution Let the angular velocity of the bar be *! D P� Ok where P� is the angular speed. We
first need to find P� .

1. The linear speed of point C is given, vC D 7:5 cm= s. Now,

vC D P� rC
) P� D vC

rC
D 7:5 cm= s

25 cm
D 0:3 rad=s:

Therefore, the angular velocity of the bar is *! D P� Ok D 0:3 rad=s Ok.

P� D 0:3 rad=s; and *! D 0:3 rad=s Ok
2. Point B is at distance ` from the pivot point A. Thus it goes around a circle of radius `

(see fig. 15.21). Therefore,

*vB D *! �*rB D P� Ok � `.cos � O{C sin � O|/
D P�`.cos � O| � sin � O{/

D 0:3 rad=s � 50 cm

 p
3

2
O| � 1

2
O{
!

D 15 cm= s

 p
3

2
O| � 1

2
O{
!
:

*vB D 15 cm= s
�p

3
2 O| � 1

2 O{
�

We can also write*vB D 15 cm= s=; Oe� where Oe� D
p
3
2 O| � 1

2 O{:
3. Let �1 be the position of point C at some time t1 and �2 be the position at time t2. We

want to find �� D �2 � �1 for t2 � t1 D 2 s.

d�

dt
D P� D constant D 0:3 rad=s:

) d� D .0:3 rad=s/dt:

)
Z �2

�1

d� D
Z t2

t1

.0:3 rad=s/dt:

) �2 � �1 D 0:3 rad=s.t2 � t1/
or �� D 0:3

rad
6 s �26 s D 0:6 rad:

The change in angular position of point B is the same as that of point C. In fact, all
points on AB undergo the same change in angular position because AB is a rigid body.

��C D ��B D 0:6 rad
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SAMPLE 15.4 A flywheel of diameter 2 ft is made of cast iron. To avoid ex-
tremely high stresses and cracks it is recommended that the peripheral speed
not exceed 6000 to 7000 ft/min. What is the corresponding rpm rating for
the wheel?

Solution

Diameter of the wheel D 2 ft:

) radius of wheel D 1 ft:

Now,

v D !r

) ! D v

r
D 60006 ft=min

16 ft
D 6000

rad
min

� 1rev
2ß rad

D 955 rpm:

Similarly, corresponding to v D 7000 ft=min

! D 70006 ft=min
16 ft

D 7000
rad
min

� 1rev
2ß rad

D 1114 rpm:

Thus the rpm rating of the wheel should read 955 – 1114 rpm.

! D 955 to 1114 rpm:

SAMPLE 15.5 Two gears A and B have the diameter ratio of 1:2. Gear A
drives gear B. If the output at gear B is required to be 150 rpm, what should
be the angular speed of the driving gear? Assume no slip at the contact point.

Solution Let C and C0 be the points of contact on gear A and B respectively at some instant
t . Since there is no relative slip between C and C0, both points must have the same linear
velocity at instant t . If the velocities are the same, then the linear speeds must also be the
same. Thus

vC D vC 0

) !ArA D !BrB

) !A D !B �
rB
rA

D !B �
26 r
6 r D 2!B

D .2/�.150 rpm/

D 300 rpm:

!A D 300 rpm
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5 We know that the rod rotates about
the z-axis but we do not know the sense
of the rotation i.e., COk or �Ok. Here we
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direction, although just by sketching*vA
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R cos � O{CR sin � O|, we can findR from
the given*vA.

SAMPLE 15.6 A uniform rigid rod AB of length ` D 0:6m is connected
to two rigid links OA and OB. The assembly rotates at a constant rate about
point O in the xy plane. At the instant shown, when rod AB is vertical,
the velocities of points A and B are *

vA D �4:64m=s O| � 1:87m=sO{, and
*
vB D 1:87m=sO{ � 4:64m=s O|. Find the angular velocity of bar AB. What is
the length R of the links?

Solution Let the angular velocity of the rod AB be *! D ! Ok. 5 Since we are given the
velocities of two points on the rod we can use the relative velocity formula to find *!:

*vB=A D*! �*rB=A D *vB �*vA

or ! Ok����
*!

� ` O|����
*rB=A

D .1:87O{ � 4:64 O|/m=s � .�4:64 O| � 1:87O{/m=s

or !`.�O{/ D .1:87O{C 1:87O{/m=s � . 64:64 O| � 64:64 O|/m=s

D 3:74O{m=s

) ! D �3:74m=s
`

D �3:74
0:6

rad=s

D �6:233 rad=s (15.27)

Thus,
*! D �6:233 rad=s Ok: (15.28)

*! D �6:23 rad=s Ok

Let � be the angle between link OA and the horizontal axis. Now,

*vA D*! �*rA D ! Ok �R.cos � O{ � sin � O|/� �� �
*rA

or .�4:64 O| � 1:87O{/m=s D !R.cos � O| C sin � O{/

Dotting both sides of the equation with O{ and O| we get

�1:87m=s D !R sin � (15.29)

�4:64m=s D !R cos � (15.30)

Squaring and adding Eqns (15.29) and (15.30) together we get

!2R2 D .�4:64m=s/2 C .�1:187m=s/2

D 25:026m2= s2

) R2 D 25:026m2= s2

.�6:23 rad=s/2

D 0:645m2

) R D 0:8m

R D 0:8m
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SAMPLE 15.7 Verify the relative velocity formula: The motor at O in
Fig. 15.27 rotates the ‘L’ shaped bar OAB in counterclockwise direction at
an angular speed which increases at P! D 2:5 rad=s2. At the instant shown,
the angular speed ! D 4:5 rad=s. Each arm of the bar is of length L = 2 ft.

1. Find the velocity of point A.

2. Find the relative velocity *
vB=A .D *

!�*
rB=A/ and use the result to find

the absolute velocity of point B .*vB D*
vA C*

vB=A/.

3. Find the velocity of point B directly. Check the answer obtained in
part (b) against the new answer.

Solution

1. As the bar rotates, every point on the bar goes in circles centered at point O. Therefore,
we can easily find the velocity of any point on the bar using circular motion formula
*v D*! �*r . Thus,

*vA D *! �*rA D ! Ok � LO{ D !L O|
D 4:5 rad=s � 2 ft O| D 9 ft=s O|:

The velocity vector*vA is shown in Fig. 15.28.

*vA D 9 ft=s O|
2. Point B and A are on the same rigid body. Therefore, with respect to point A, point B

goes in circles about A. Hence the relative velocity of B with respect to A is

*vB=A D *! �*rB=A

D ! Ok � L O| D �!LO{
D �4:5 rad=s � 2 ftO{ D �9 ft=sO{:

and *vB D *vA C*vB=A

D 9 ft=s.�O{C O|/:

These velocities are shown in Fig. 15.29.

*vB=A D �9 ft=sO{; *vB D 9 ft=s.�O{C O|/

3. Since point B goes in circles of radius OB about point O, we can find its velocity
directly using circular motion formula:

*vB D *! �*rB

D ! Ok � .LO{C L O|/ D !L. O| � O{/
D 9 ft=s.�O{C O|/:

The velocity vector is shown in Fig. 15.30. Of course this velocity is the same velocity
as obtained in part (b) above.

*vB D 9 ft=s.�O{C O|/

Note: Nothing in this sample uses P!!
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Figure 15.27: An ‘L’ shaped bar rotates
at speed ! about point O.
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SAMPLE 15.8 Verify the relative acceleration formula: Consider the ‘L’
shaped bar of Sample 15.7 again. At the instant shown, the bar is rotating at
4 rad=s and is slowing down at the rate of 2 rad=s2.

(i) Find the acceleration of point A.

(ii) Find the relative acceleration *
aB=A of point B with respect to point A

and use the result to find the absolute acceleration of point B (*aB D
*
aA C*

aB=A).

(iii) Find the acceleration of point B directly and verify the result obtained
in (ii).

Solution We are given:

*! D ! Ok D 4 rad=s Ok; and P*! D � P! Ok D �2 rad=s2 Ok:

(i) Point A is going in circles of radius L. Hence,

*aA D P*! �*rA C*! � .*! �*rA/ D P*! �*rA � !2*rA
D � P! Ok � LO{ � !2LO{ D � P!L O| � !2LO{
D �2 rad=s � 2 ft O| � .4 rad=s/2 � 2 ftO{
D �.4 O| C 32O{/ ft=s2:

*aA D �.4 O| C 32O{/ ft=s2

(ii) The relative acceleration of point B with respect to point A is found by considering the
motion of B with respect to A. Since both the points are on the same rigid body, point
B executes circular motion with respect to point A. Therefore,

*aB=A D P*! �*rB=A C*! � .*! �*rB=A/ D P*! �*rB=A � !2L O|
D � P! Ok � L O| � !2L O|
D P!LO{ � !2L O| D 2 rad=s2 � 2 ftO{ � .4 rad=s/2 � 2 ft O|
D .4O{ � 32 O|/ ft=s2;

and

*aB D *aA C*aB=A D .�28O{ � 36 O|/ ft=s2:

*aB D �.28O{C 36 O|/ ft=s2

(iii) Since point B is going in circles of radius OB about point O, we can find the accelera-
tion of B as follows.

*aB D P*! �*rB C*! � .*! �*rB /

D P*! �*rB � !2*rB
D � P! Ok � .LO{C L O|/ � !2.LO{C L O|/
D .� P!L � !2L/ O| C . P!L � !2L/O{
D .�4 � 32/ ft=s2 O| C .4 � 32/ ft=s2 O{
D .�36 O| � 28O{/ ft=s2:

This acceleration is, naturally again, the same acceleration as found in (ii) above.

*aB D �.28O{C 36 O|/ ft=s2
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15.3 Polar moment of inertia
All of the basic equations of Dynamics concern the motion of mass. In par-
ticular, linear momentum, angular momentum, and energy are all expressed
as sums over all the bits of mass in a system, with each bit of mass multi-
plied by some terms concerning position, velocity and acceleration. From
the earlier sections in this chapter we know how to find the velocity and ac-
celeration of every bit of mass on a 2-D rigid object as it spins about a fixed
axis. So it is just a matter of doing integrals or sums to calculate the various
momentum and energy quantities of interest. As an object moves and rotates
the region of integration and the values of the integrands change. So, in prin-
ciple, in order to analyze a rigid object one has to evaluate a different integral
or sum at every different configuration. But there is a shortcut: for a rotating
rigid object a sum (over all atoms, say), or a difficult integral (for example,
over the complex region representing a machine part) is reduced to simple
multiplication.

The moment of inertia I cm 1simplifies the expressions for the angular
momentum, the rate of change of angular momentum, and the energy of a
rigid object. For more general motions the shortcuts need a 3�3 matrix �Icm�

But for 2D mechanics only one component of the matrix �Icm� is relevant, it
is I cm

zz , called just I or J for short.
Here are the main results. A flat object spinning with *

! D ! Ok in the xy
plane has a mass distribution which gives, by means of a calculation which
we will discuss shortly, a moment of inertia I cm so that:

*

Hcm D I cm! Ok (15.31)
P*
Hcm D I cm P! Ok (15.32)

EK=cm D 1

2
!2I cm: (15.33)

There are two main skills you need to develop associated with I .

� Using the formulas above properly in angular momentum and energy
balance. This is covered in sec. 15.4.

� Finding I of an object, as is covered in most freshman calculus texts
and is reviewed in this section.

Some facts about moment of inertia are summarized on the inside back cover.

The moments of inertia in 2-D : �Icm� and �IO�.
The definition of moment of inertia 2 I cm is

Filename:tfigure4-4-DefofI
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Figure 15.35: A bit of mass dm on a
general planar object.

1The COM is the most common ref-
erence point. The moment of inertia
of a given object depends on what ref-
erence point is used. Most often when
people say ‘the’ moment of inertia they
mean the moment of inertia with respect
to the center-of-mass. For clarity, this
moment of inertia is often notated as
I cm in this book. If a different reference
point, say point O is used, the moment
of inertia is notated as I0.

2What do the words ‘moment of in-
ertia’ mean? The word inertia, in this
case, can be translated to mean mass. So
it’s ‘moment of mass’. The word ‘mo-
ment’ is similar to the word ‘moment’
as in torque, or (force)�(distance), but
slightly more general. The more general
word moment is ‘the product of a quan-
tity and its distance, raised to a power,
from a reference point,’

the n’th moment of a quantity rel to 0

D
Z
xn.quantity at x/ dx:

So, what we used to call ‘moment’
(meaning torque) we can think of as
short for ‘the first moment of perpendic-
ular force’. And the moment of inertia
is ‘the second moment of mass’. The
words ‘first’ and ‘second’ refer to the
exponent n.
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3k for stiffness. The radius of gyra-
tion rgyr is sometimes called k but we
save k for stiffness in this book.

4Radius of gyration and average
distance of mass. The radius of gyra-
tion is an equivalent radius of the collec-
tion of mass. But the radius of gyration
is not exactly the average radius of the
distributed mass. Rather the radius of
gyration is the square root of the mean
square radius:

rgyr �
sR

r2 dm

mtot
:

For the special cases where all the mass
is at the same radius R (as for a circu-
lar hoop or for masses distributed on the
vertices of, say, a regular pentagon) the
radius of gyration is R. For all other
cases the radius of gyration is larger than
the average radius of the mass.

5Notation: simple vs precise. When
just the symbol I is used one assumes
I D I cm

zz , and if just I cm is used, one
assumes I cm D I cm

zz . Similarly I0 and
IC are assumed to mean I0zz and IC

zz ,
respectively.

I cm �
Z
.x2 C y2� �� �

r2

/ dm

D
Z Z

r2

dm� �� ��mtot

A

�
� �� �
BBM

The mass per unit area.

dA for a uniform planar object

where x D x=cm, y D y=cm and r D r=cm are the distances in the x and y

directions of the bits of mass (dm) from the center of mass and r D r=cm is
the total distance. Similarly if all distances are measured relative to a point
C or O (instead of relative to the center of mass) then similar formulas as
above calculate IC or IO . See box 15.7 on page 715 for the calculation of
the moments of inertia of some simple objects.

The term I cm D I cm
zz is sometimes called the polar moment of inertia,

or polar mass moment of inertia to distinguish it from the Ixx and Iyy ,
terms which have little utility in planar dynamics (Ixx and Iyy , as area iner-
tias rather than mass inertias, are all-important when calculating the bending
stiffness or the stress in elastic beams, however).

What, physically, is the polar moment of inertia? It is a measure of the
extent to which mass is far from the given reference point. Every bit of
mass contributes to I in proportion to the square of its distance from the
reference point. As we will show in sec. 15.4 on page 722 (see eqn. (15.36)
on page 724) I cm is just the quantity we need to do mechanics problems.

Radius of gyration

Another measure of the extent to which mass is spread from the reference
point, besides the moment of inertia I cm, is the radius of gyration, rgyr

3.
The radius of gyration is defined as:

rgyr �
p
I=m ) r2gyrm D I:

That is, the radius of gyration of an object is the radius of an equivalent ring
of mass that has the same I and the same mass as the given object. It is an
equivalent single radius for the whole mass distribution 4.

Example: Radius of gyration of a hoop
The radius of gyration about its center of a circular hoop of mass m and radius R
about its center is rgyr D R.

Other reference points

For the most part it is I cm which is of primary interest. Other reference
points are useful 5
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1. If the rigid object is hinged at a fixed point O then I 0 can be used in a
slight short cut in calculation of angular momentum and energy; and

2. If one wants to calculate the moment of inertia of a composite object
about its center-of-mass then it is useful to first find the moment of
inertia of each of its parts about that system’s center of mass (which is
generally not the center-of-mass of any of the separate parts).

3. Sometimes it is easiest to set up the integral for moment of inertia about
a special point C that is not the center of mass and then use the parallel
axis theorem (eqn. (15.34) to find the center of mass about a special
point (see, for example the semi-circle example on 713).

The parallel axis theorem
The planar parallel axis theorem is the equation

ICzz D I cmzz Cmtot r
2
cm=C����
d2

: (15.34)

In this equation d D rcm=C is the distance from the center-of-mass to a line
parallel to the z-axis which passes through point C . See box 15.6 on page
717 for a derivation of the parallel axis theorem for planar objects.

Note that ICzz � I cmzz , always.

Moment of inertia of complex objects. One can calculate the moment of
inertia of a composite object about its center of mass, in terms of the masses
and moments of inertia of the separate parts. Say the position of the center of
mass of mi is .xi ; yi / relative to a fixed origin, and the moment of inertia of
that part about its center of mass is Ii . We can then find the moment of inertia
of the composite Itot about its center-of-mass .xcm; ycm/ by the following
sequence of calculations, in order:

.1/ mtot D P
mi

.2/ xcm D �
P

ximi � =mtot

ycm D �
P

yimi � =mtot

.3/ d2i D .xi � xcm/
2 C .yi � ycm/

2

.4/ Itot D P�
I cmi Cmid

2
i

�
:

You can reduce this recipe to one grand formula with lots of summation signs.
But you would end up doing the calculations in about the order prescribed
above in any case. This sequence of steps lends itself naturally to a computer
spread sheet or to any program that deals easily with arrays of numbers. This
is laid out for the similar center-of-mass calculation on page 142 6.

Example: Inertia of a semicircle about its COM.
The moment of inertia of a semicircle with mass m and radius r about O (see

fig. 15.36) is

I0 D
Z
r2=0 dm D mr2:

6 The tidy recipe just presented is ac-
tually more commonly used, with slight
modification, in strength of materials
than in dynamics. The need for find-
ing area moments of inertia of strange
beam cross sections arises more fre-
quently than the need to find the po-
lar mass moment of inertia of a strange
cutout shape.

Filename:tfig-semicircleinertia

G

r

O

r θdm =       (rd  )  π )( m

dyG

Semi circular
hoop

x

y

θ

θ

Figure 15.36: The moment of inertia of
a semi-circle about the COM is calcu-
lated by calculating about point O and
then using the parallel axis theorem.
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From the example on page 137 the center of mass is at yG D 2

�
r: By the parallel

axis theorem
I0 D I cm Cmy2G

which we can solve for I cm to get

I cm D I0 �my2G D mr2 � 4

�2
mr2 D

�
1 � 4

�2

�
mr2 � 0:6mr2 :

The radius of gyration is that radius �gyr so that m�2gyr D I cm and is

�gyr D
r
1 � 4

�2
r:

The perpendicular axis theorem for planar rigid bodies
The perpendicular axis theorem for planar objects is the equation

Izz D Ixx C Iyy

which is derived in box 15.6 on page 717. It gives the ‘polar’ inertia Izz in
terms of the inertias Ixx and Iyy . Unlike the parallel axis theorem, the per-
pendicular axis theorem does not have a three-dimensional counterpart. The
theorem is of greatest utility when one wants to study the three-dimensional
mechanics of a flat object and thus are in need of its full moment of inertia
matrix.
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15.7 Some examples of 2-D Moment of Inertia
Here, we illustrate some simple moment of inertia calculations for
two-dimensional objects. The needed formulas are summarized, in
part, by the lower right corner components (that is, the elements in
the third column and third row (3,3)) of the matrices in the table on
the inside back cover.

One point mass

Filename:tfigure4-pointmassIo

r

x

y

O

x2 + y2 = r2

If we assume that all mass is concentrated at one or more points,
then the integral

Iozz D
Z
r2
=o
dm

reduces to the sum

Iozz D
X
r2
i=o
mi

which reduces to one term if there is only one mass,

Iozz D r2m D .x2 C y2/m:

So, if x D 3 in, y D 4 in, and m D 0:1 lbm, then Iozz D
2:5 lbm in2. Note that, in this case, Icmzz D 0 since the radius from
the center-of-mass to the center-of-mass is zero.

Two point masses

Filename:tfigure4-2pointmassesIo
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r2

r1
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y

In this case, the sum that defines Iozz reduces to two terms, so

Iozz D
X
r2
i=o
mi D m1r

2
1 Cm2r

2
2 :

Note that, if r1 D r2 D r , then Iozz D mtotr
2.

A thin uniform rod

Filename:tfigure4-2DrodIo

x

y

d

s

ds

O�1

�1 + �2 = �

�2

� m = ρ�
dm = ρds
ρ = mass per

unit length

Consider a thin rod with uniform mass density, �, per unit
length, and length `. We calculate Iozz as

Iozz D
Z
r2

�ds����
dm

D
Z `2

�`1

s2�ds .s D r/

D 1

3
�s3

���� `2
�`1

.since � � const:/

D 1

3
�.`31 C `32/:

If either `1 D 0 or `2 D 0, then this expression reduces to Iozz D
1
3
m`2. If `1 D `2, thenO is at the center-of-mass and

Iozz D Icmzz D 1

3
�

 �
`

2

�3
C
�
`

2

�3!
D ml2

12
:

We can illustrate one last point. With a little bit of algebraic histri-
onics of the type that only hindsight can inspire, you can verify that
the expression for I0zz can be arranged as follows:

I0zz D 1

3
�.`31 C `32/

D �.`1 C `2/� �� �
m

0
BBB@`2 � `12� �� �

d

1
CCCA
2

C � .`1 C `2/
3

12� �� �
m`2=12

D md2 Cm`
2

12

D md2 C Icmzz
That is, the moment of inertia about point O is greater than that
about the center of mass by an amount equal to the mass times the
distance from the center-of-mass to pointO squared. This derivation
of the parallel axis theorem is for one special case, that of a uniform
thin rod.

(continued...)
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15.7 Some examples of 2-D Moment of Inertia (continued)
A uniform hoop

Filename:tfigure4-2DhoopIo

R

O x

y dm = ρRdθ

dθ

m = 2ρπ R

For a hoop of uniform mass density, �, per unit length, we might
consider all of the points to have the same radiusR. So,

Iozz D
Z
r2dm D

Z
R2dm D R2

Z
dm D R2m:

Or, a little more tediously,

Iozz D
Z
r2dm

D
Z 2�

0

R2�Rd�

D �R3
Z 2�

0

d�

D 2��R3 D .2��R/� �� �
m

R2 D mR2:

This Iozz is the same as for a single point mass m at a distance R
from the originO . It is also the same as for two point masses if they
both are a distanceR from the origin. For the hoop, however,O is at
the center-of-mass so Iozz D Icmzz which is not the case for a single
point mass.

A uniform disk

Filename:tfigure4-2DdiskIo

R

rO x

y dm = ρ dA = ρr dr dθ

rdθ
dθ

dA dr

m = ρπ R2

Assume the disk has uniform mass density, �, per unit area. For
a uniform disk centered at the origin, the center-of-mass is at the
origin so

Iozz D Icmzz D
Z
r2dm

D
Z R

0

Z 2�

0

r2�rd�dr

D
Z R

0

2��r3dr

D 2��
r4

4

����
R

0

D ��
R4

2
D .��R2/

R2

2

D m
R2

2
:

For example, a 1 kg plate of 1m radius has the same moment of
inertia as a 1 kg hoop with a 70:7 cm radius.

Uniform rectangular plate

Filename:tfigure4-2DplateIo
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For the special case that the center of the plate is at pointO , the
center-of-mass of mass is also atO and Iozz D Icmzz .

Iozz D Icmzz D
Z
r2dm

D
Z b

2

� b
2

Z a
2

� a
2

.x2 C y2/
dm� �� �

�dxdy

D
Z b

2

� b
2

�

 
x3

3
C xy2

!�����
xD a

2

xD� a
2

dy

D �

 
x3y

3
C xy3

3

!�����
xD a

2

xD� a
2

������
yD b

2

yD� b
2

D �

 
a3b

12
C ab3

12

!

D m

12
.a2 C b2/:

Note that
R
r2dm D R

x2dmCR y2dm for all planar objects (the
perpendicular axis theorem). For a uniform rectangle,

R
y2dm D

�
R
y2dA. But the integral y2dA is just the term often used for I ,

the area moment of inertia, in strength of materials calculations for
the stresses and stiffnesses of beams in bending. You may recall thatR
y2dA D ab3

12
D Ab2

12
for a rectangle. Similarly,

R
x2dA D

Aa2

12
. So, the polar moment of inertia J D Iozz D m 1

12
.a2 C

b2/ can be recalled by remembering the area moment of inertia of a
rectangle combined with the perpendicular axis theorem.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 15. Circular motion of a rigid object 15.3. Polar moment of inertia 717

15.6 The 2-D parallel axis theorem and the perpendicular axis
theorem

Sometimes one wants to know the moment of inertia relative to the
center of mass. And, sometimes, if the object is held at a hinge
joint at O , relative to that hinge point O There is a simple relation
between these two moments of inertia known as the parallel axis
theorem.

2-D parallel axis theorem
For the two-dimensional mechanics of two-dimensional objects, our
only concern is Iozz and Icmzz and not the full moment of inertia ma-
trix. In this case, Iozz D

R
r2
=o
dm and Icmzz D R

r2
=cm

dm. Now,
let’s prove the theorem in two dimensions referring to the figure.

Filename:tfigure4-para-axis
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dm

IOzz D
Z
r2
=O
dm

D
Z
.x2
=O

C y2
=O
/dm

D
Z
�.xcm=O C x=cm/� �� �

x=O

2 C .ycm=O C y=cm/� �� �
y=O

2�dm

D
Z
�.x2

cm=O
C 2xcm=Ox=cm C x2

=cm
/C

.y2
cm=O

C 2ycm=Oy=cm C y2
=cm

/�dm

D .x2
cm=O

C y2
cm=O

/

Z
dm����
m

C2xcm=O
Z
x=cmdm� �� �

0

C

2ycm=O

Z
y=cmdm� �� �

0

C
Z
.x2
=cm

C y2
=cm

/dm

D r2
cm=O

mC
Z
.x2
=cm

C y2
=cm

/dm� �� �
Icmzz

D Icmzz C r2
cm=O� �� �
d2

m

The cancellation
R
y=cm dm D R

x=cm dm D 0 comes from the
definition of center of mass.

Sometimes, people write the parallel axis theorem more simply
as

I0 D Icm Cmd2 or JO D Jcm Cmd2

using the symbol J to mean Izz . One thing to note about the par-
allel axis theorem is that the moment of inertia about any point O
is always greater than the moment of inertia about the center of
mass. For a given object, the minimum moment of inertia is about
the center-of-mass.

Why the name parallel axis theorem? We use the name because
the two I ’s calculated are the moments of inertia about two parallel
axes (both in the z direction) through the two points cm andO .

One way to think about the theorem is the following. The mo-
ment of inertia of an object about a pointO not at the center-of-mass
is the same as that of the object about the cm plus that of a point mass
located at the center-of-mass. If the distance from O to the cm is
larger than the outer radius of the object, then the d2m term is larger
than Icmzz . The distance of equality of the two terms is the radius of
gyration, rgyr.

Perpendicular axis theorem (applies to
planar objects only)
For planar objects,

IOzz D
Z
j*rj2 dm

D
Z
.x2
=O

C y2
=O
/dm

D
Z
x2
=O
dmC

Z
y2
=O
dm

D IOyy C IOxx
Similarly,

Icmzz D Icmxx C Icmyy :
That is, the moment of inertia about the z-axis is the sum of the
inertias about the two perpendicular axes x and y. Note that the
objects must be planar (z D 0 everywhere) or the theorem would
not be true. For example, Ioxx D

R
.y2
=O
Cz2

=O
/dm ¤ R

y2
=O
dm

for a three-dimensional object.
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SAMPLE 15.9 Moment of inertia of point masses: A pendulum is made
up of two unequal point masses m and 2m connected by a massless rigid rod
of length 4r . The pendulum is pivoted at distance r along the rod from the
small mass.

1. Find the moment of inertia I cm
zz of the pendulum.

2. Find the moment of inertia IOzz of the pendulum.

3. Find the radius of gyration of the pendulum.

Solution

1. First we need to find the center of mass of the system. Let the center of mass C be
located at distance rcm from the origin O. An easy way to find the location of C will
be to consider the pendulum to lie along the x-axis with the origin at O (see fig. 15.38).
Then

xcm D
P
mixiP
mi

) rcm D m.�r/C 2m.3r/

mC 2m
D 5

3
r:

So, the moment of inertia about the center of mass is

I cm
zz D

X
mi r

2
i=cm D m

�
r C 5

3
r

�2
C 2m

�
3r � 5

3
r

�2
D 32

3
mr2:

I cm
zz D 10:67mr2

2. We can calculate I O
zz in two different ways, one directly by summing the contributions

of each mass about point O, and the other by using I cm
zz and the parallel axis theorem.

I O
zz D mr2 C 2m.3r/2 D 19mr2

or I O
zz D I cm

zz Cmtot r
2
cm=O

D 32

3
mr2 C 3m

�
5

3
r

�2
D 19mr2:

IOzz D 19mr2

3. The radius of gyration, by definition, is the distance that gives the desired moment of
inertia if the entire mass of the system is concentrated there. Thus, if rgyr is the radius
of gyration for the moment of inertia about point O, then

I O
zz D .3m/�r2gyr

) 196mr2 D 36mr2gyr

) rgyr D
r
19

3
r D 2:52r:

Thus the radius of gyration rgyr of the given pendulum is rgyr D 2:52 r .

rgyr D 2:52 r
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SAMPLE 15.10 Moment of inertia of a rod: A uniform rigid rod AB of
mass M D 2 kg and length 3` D 1:5m swings about the z-axis passing
through the pivot point O.

1. Find the moment of inertia IOzz of the bar using the fundamental defini-
tion IOzz D

R
m r2

=O
dm.

2. Find IOzz using the parallel axis theorem given that I cm
zz D 1

12
m`2

where m D total mass, and ` D total length of the rod. (You can
find I cm

zz for many commonly encountered objects in the table on the
inside backcover of the text).

Solution

1. Since we need to carry out the integral, IOzz D
R
m r

2
=O
dm, to find IOzz , let us consider

an infinitesimal length segment d`0 of the bar at distance `0 from the pivot point O.
(see Figure 15.41). Let the mass of the infinitesimal segment be dm.
Now the mass of the segment may be written as

dm D (mass per unit length of the bar) � (length of the segment)

D M

3`
d`0

�
Note:

mass
unit length

D total mass
total length

�
:

We also note that the distance of the segment from point O, r=O D `. Substituting the
values found above for r=O and dm in the formula we get

IOzz D
Z 2`

�`
.`0/2����
r2
=O

M

3`
d`0����

dm

D M

3`

Z 2`

�`
.`0/2d`0 D M

3`

"
`03

3

#2`
�`

D M

3`

"
8`3

3
�
 
�`

3

3

!#
DM`2

D 2 kg�.0:5m/2 D 0:5 kg�m2:

IOzz D 0:5 kg�m2

2. The parallel axis theorem states that

IOzz D I cm
zz CMr2O=cm:

Since the rod is uniform, its center-of-mass is at its geometric center, i.e., at distance
3`
2 from either end. From the Fig 15.42 we can see that

rO=cm D AG � AO D 3`

2
� ` D `

2

Therefore, IOzz D 1

12
M.3`/2� �� �
I cm
zz

CM.`
2
/2

D 9

12
M`2 CM

`2

4
DM`2

D 0:5 kg�m2 (same as in (a), of course)

IOzz D 0:5 kg�m2
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SAMPLE 15.11 Moment of inertia of a wheel with a cut-out: A uniform
rigid wheel of radius r D 1 ft is made eccentric by cutting out a portion of the
wheel. The center-of-mass of the eccentric wheel is at C, a distance e D r

3

from the geometric center O. The mass of the wheel (after deducting the cut-
out) is 3.2 lbm. The moment of inertia of the wheel about point O, IO

zz , is 1.8
lbm� ft2. We are interested in the moment of inertia Izz of the wheel about
points A and B on the perimeter.

1. Without any calculations, guess which point, A or B, gives a higher
moment of inertia. Why?

2. Calculate IC
zz , IA

zz and IB
zz and compare with the guess in (a).

Solution

1. The moment of inertia IB
zz should be higher. Moment of inertia Izz measures the

geometric distribution of mass about the z-axis. But the distance of the mass from
the axis counts more than the mass itself (IOzz D

R
m r

2
=O
dm). The distance r=O of

the mass appears as a quadratic term in IO
zz . The total mass is the same whether we

take the moment of inertia about point A or about point B. However, the distribution
of mass is not the same about the two points. Due to the cut-out being closer to point
B there are more “dm’s” at greater distances from point B than from point A. So, we
guess that

IB
zz > I

A
zz

2. If we know the moment of inertia IC
zz (about the center-of-mass) of the wheel, we can

use the parallel axis theorem to find IA
zz and IB

zz . In the problem, we are given IO
zz .

But,

IO
zz D IC

zz CMr2O=C (parallel axis theorem)

) IC
zz D IO

zz �Mr2O=C

D 1:8 lbm ft2 � 3:2 lbm
�
1 ft
3

�2
� �� �

rO=CDeD r
3

D 1:44 lbm� ft2

Now, IA
zz D IC

zz CMr2A=C D IC
zz CM

�
2r

3

�2

D 1:44 lbm� ft2 C 3:2 lbm
�
2 ft
3

�2
D 2:86 lbm� ft2

and IB
zz D IC

zz CMr2B=C D IC
zz CM

�
r C r

3

�2
D 1:44 lbm� ft2 C 3:2 lbm

�
1 ftC 1 ft

3

�2
D 7:13 lbm� ft2

IC
zz D 1:44 lbm� ft2; IA

zz D 2:86 lbm� ft2; IB
zz D 7:13 lbm� ft2

Clearly, IB
zz > I

A
zz , as guessed in (a).
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SAMPLE 15.12 Moment of inertia: modeling a sphere as a point mass:
A uniform solid sphere of mass m and radius r is attached to a massless
rigid rod of length `. The sphere swings in the xy plane. Find the error in
calculating IOzz as a function of r=` if the sphere is treated as a point mass
concentrated at the center-of-mass of the sphere.

Solution The exact moment of inertia of the sphere about point O can be calculated using
parallel axis theorem:

IOzz D I cmzz Cm`2

D 2

5
mr2 Cm`2: (See Table IV on inside cover)

If we treat the sphere as a point mass, he moment of inertia IOzz is

QIOzz D m`2:

Therefore, the relative error in IOzz is

error D IOzz � QIOzz
IOzz

D
2
5mr

2 Cm`2 �m`2
2
5mr

2 Cm`2

D
2
5
r2

`2

2
5
r2

`2
C 1

From the above expression we see that for r � ` the error is very small. From the graph of
error in Fig. 15.45 we see that even for r D `=5, the error in IOzz due to approximating the
sphere as a point mass is less than 2%.
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1Accuracy of planar analysis. The
planar analysis might be accurate for
one of two different reasons: 1) the ob-
jects are nearly planar, or 2) the projec-
tion of the 3D equations to 2D gives the
planar equations.
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15.4 Dynamics of a rigid object in planar
circular motion

We now want to find what we can about the forces on and motions of a
single planar object that is hinged at one point. The most famous examples
are pendula and gears. But many things move like pendula, like people or
towers falling over or boats rocking in the water. And many machine parts
besides gears rotate about a bearing including propellers, lawn mower blades,
and printing-press rollers. None of these things are strictly planar objects, but
the planar approximation is more or less accurate for many analyses 1.

The basic method, as always, is to use a free body diagram and kinematics
results to evaluate terms in the linear momentum, angular momentum and en-
ergy balance equations. Then these equations are used to calculate unknown
forces or to find differential equations of motion. The terms involving force
and moment are found from a free body diagram exactly as in statics. The
terms involving motion, namely momentum, angular momentum and energy,
are evaluated using the various tools developed earlier in this chapter.

Mechanics and the motion quantities
We can evaluate all the momentum and energy terms in the equations of mo-

tion (inside cover), namely:
*

L;
P*
L;

*

H=C;
P*
H

=C
; EK and PEK (for any reference

point C of our choosing) if we can calculate the velocity and acceleration of
every point in the system. For circular motion of a rigid object about point
C, we know from sec. 15.2 that the velocities and accelerations of a point at
*
r D*

r=C are
*
v D *

! �*
r;

*
a D P*! �*

r C *
! � .*! �*

r/;

D P*! �*
r � !2*r

where *
! is the angular velocity of the object relative to a fixed frame. This

situation is a little more complex than the special case of straight-line motion
in chapter 6, where all points in a system had the same acceleration as each
other, but is still quite manageable. The most general case of 2D rigid-object
circular motion is an arbitrarily shaped 2D rigid object with arbitrary ! and
P!. The situation shown in fig. 15.46 shows the general case (but for that
in that example exactly two forces are applied, as opposed to an arbitrary
number).

Linear momentum:
*

L and P*
L

For any system in any motion we have the general result that
*

L D mtot
*
vcm and P*

L D mtot
*
acm:

For a rigid object, the center-of-mass is a particular point G that is fixed
relative to the object. So the velocity and acceleration of that point can be
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expressed the same way as for any other point. So, for an object in planar
rotational motion about 0

*

L D mtot
*
! �*

rG=0

and

P*
L D mtot

� P*! �*
rG=0 � !2*rG=0

�
� �� �

*
aG

:

If the center-of-mass is at 0 the momentum and its rate of change are both
zero. But if the center-of-mass is off the axis of rotation, there must be a net
force on the object with a component parallel to *

r0=G (if ! ¤ 0) and also a
component orthogonal to *

r0=G (if P! ¤ 0). This net force might be applied at
0 or G or any other place(s) on the object.

Angular momentum:
*

H=O and P*
H=O

The angular momentum itself is easy enough to calculate, using the short
hand notation that *

r is the position vector *
r=0 of a point relative to hinge

point O.
*

H=O D
Z

all mass

*
r �*

v dm (a)

D
Z

*
r � .*! �*

r/ dm (b)

D ! Ok
Z

r2 dm (c)

D IOzz����
BBM

IOzz is the ‘polar’ moment
of inertia.

! Ok

) H0 D !IOzz (d)

(15.35)

Here eqn. (15.35)c is a vector equation. But since both sides are in the Ok
direction we can dot both sides with Ok to get the scalar moment equation
eqn. (15.35)d, taking both Mnet and ! as positive when counterclockwise.

The moment of inertia shortcut. Note that an integral over all the
mass of *r �*

v has been reduced to a simple multiplication by using thatZ
r2 dm D I 0zz :

This shortcut is especially useful because
R
r2 dm does not change as

the object rotates about 0.
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2Forces distributed on a curve, sur-
face or throughout a volume could be
treated similarly with sums replaced by
line, surface, or volume integrals.

However, the moment of inertia is never needed for problem solving. One
can just evaluate, for example,

*

H=O by evaluating the integral
R
*
r �*

v dm for
the specific problem at hand.

To get the all important term for angular momentum balance, namely
P*
H/0, for this system we can differentiate eqn. (15.35). We can also use the

general expression for P*
H=O to write the angular momentum balance equation

as follows.

P*
H=O D rate of change of angular momentum=0 (a)

D
Z

all mass

*
r �*

a dm (b)

D
Z

*
r �

0
@�!2*r C P! Ok �*

r� �� �
*
a

1
A dm (c)

D
Z

*
r �

�
P! Ok �*

r
�
dm .because *

r �*
r D*

0/ (d)

D
Z

*
r �

�
P! Ok �*

r
�
dm (e)

P*
H=O D P! Ok

Z
r2 dm D P!I 0zz Ok (f)

) PH=0 D P!
Z

r2 dm D P!I 0zz (g)

(15.36)
We get from eqn. (15.36)e to eqn. (15.36)f by noting that *r is perpendicular
to Ok. Thus, using the right hand rule twice we get *r � . Ok �*

r/ D r2 Ok.
Eqn. 15.36f and eqn. (15.36)g are the vector and scalar versions for the

rate of change of angular momentum with respect to point 0 for rotation of a
planar object about 0. Repeating,

P*
H=O D P! Ok

Z
r2 dm D P!I 0zz Ok

and PH=0 D P!
Z

r2 dm D P!I 0zz : (15.37)

Again, P*
H=O can always be evaluated either of two ways: 1) as a sum or

integral of *r=0 �*
a over all the mass or 2) using the shortcut with I 0zz .

Power and Energy
Let’s assume that there are a set of point forces applied to and object 2.
And, to be contrary, lets assume the mass is continuously distributed (the
derivation for rigidly connected point masses would be similar). The power
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balance equation for one rotating rigid object is (discussed below):

Net power in D rate of change of kinetic energy (a)
P D PEK (b)X

all applied forces

*

Fi �*vi D d

dt

Z
all mass

1

2
v2 dm (c)

X
*

Fi � .*! �*
ri / D d

dt

Z
1

2
.*! �*

r/ � .*! �*
r/ dm (d)X

*
! � .*ri �

*

Fi / D d

dt

Z
1

2
!2r2 dm (e)

*
! �

X
.*ri �

*

Fi / D d

dt

�
1

2
!2
�Z

r2 dm (f)

*
! �

X
*

Mi D P!!
Z

r2 dm (g)

*
! � *

Mtot D P*! �
�
*
!

Z
r2 dm

�
� �� �

*
H=0

(h)

(15.38)

When not directly labeled, positions and moments are assumed to be relative
to the hinge at 0. Derivation 15.38 is two derivations in one. The left side
about power and the right side about kinetic energy. Lets discuss one at a
time.

Power. On the left side of eqn. (15.38) we note in (c) that the power of each
force is the dot product of the force with the velocity of the point it touches.
In (d) we use what we know about the velocities of points on rotating rigid
bodies. In (e) we use the vector identity

*

A � *B� *

C D *

B � *C � *

A (see sec. 2.3,
71). In (f) we note that *! is common to all points so factors out of the sum.
In (g) we note that *r � *

Fi is the moment of the force about pt O. And in (g)
we sum the moments of the forces. So the power of a set of forces acting
on a rigid object is the product of their net moment (about 0) and the object
angular velocity,

P D *
! � *

Mtot: (15.39)

Kinetic energy. On the right side of eqn. (15.38) we note in (c) that the
kinetic energy is the sum of the kinetic energy of the mass increments. In (d)
we use what we know about the velocities of these bits of mass, given that
they are on a common rotating object. In (e) we use that the magnitude of the
cross product of orthogonal vectors is the product of the magnitudes (j*A �
*

Bj D AB) and that the dot product of a vector with itself is its magnitude
squared (

*

A � *

A D A2). In (f) we factor out !2 because it is common to all
the mass increments and note that the remaining integral is constant in time
for a rigid object. In (g) we carry out the derivative. In (h) we de-simplify the
result from (g) in order to show a more general form that we will find later in
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êR

⇀
F

⇀
M

ı̂

ĵ

Figure 15.48: A uniform disk turned by
a motor at a constant rate. The free
body diagram shows a force and mo-
ment equivalent to the force system that
acts including gravity, bearing forces,
etc. A bit of mass dm occupies the
space between the radial lines at � and
� C d� and between the circles at radii
R and R D dR.

3D mechanics. Eqn. (h) follows from (g) because *
! is parallel to P*! for 2D

rotations.
Note that we started here with the basic power balance equation from the

front inside cover. Instead, we could have derived power balance from our
angular momentum balance expression (see box 15.8 on 726).

Example: Spinning disk
The round flat uniform disk in fig. 15.47 is in the xy plane spinning at the constant
rate *! D ! Ok about its center. It has mass mtot and radius R0. What force is
required to cause this motion? What torque? What power?

From linear momentum balance we have:X
*
Fi D P*

L D mtot
*acm D *

0;

Which we could also have calculated by evaluating the integral P*L � R
*a dm instead

of using the general result that P*L D mtot
*acm. From angular momentum balance

we have:X
*
Mi=O D P*

H =O

) *
M D

Z
*r=O �*a dm

D
Z R0

0

Z 2�

0
.R OeR/ � .�R!2 OeR/

�� �� � 
mtot

�R2
O

! dA� �� �
Rd� dR

� �� �
dm

D
Z Z

*
0 d� dR

D *
0:

So the net force and moment needed are
*
F D*

0 and
*
M D*

0. Like a particle that
moves at constant velocity with no force, a uniform disk rotates at constant rate
with no torque (at least in 2D).

15.8 The relation between angular momentum balance and
power balance

For this system, angular momentum balance can be derived from
power balance and vice versa. Thus neither is essentially more fun-
damental than the other and both are reliable. First we can derive
power balance from angular momentum balance as follows:

*
Mnet D P! Ok R r2 dm

*! � *
Mnet D *! �

�
P! Ok R r2 dm� :

P D PEK

(15.40)

That is, when we dot both sides of the angular momentum equation
with *! we get on the left side a term which we recognize as the
power of the forces and on the right side a term which is the rate of
change of kinetic energy.

The opposite derivation starts with the power balance
fig. 15.38(g)

*! �
X

*
Mi D P!!

Z
r2 dm (g)

) !
� Ok �X *

Mi

�
D P!!

Z
r2 dm

)
� Ok �X *

Mi

�
D P!

Z
r2 dm

(15.41)
and, assuming ! ¤ 0, divide by ! to get the angular momentum
equation for planar rotational motion.
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Using moment-of-inertia in 2-D circular motion
dynamics
Once one knows the velocity and acceleration of all points in a system one
can find all of the motion quantities in the equations of motion by adding
or integrating using the defining sums from chapter 1.1. This addition or
integration is an impractical task for many motions of many objects where
the required sums may involve billions and billions of atoms or a difficult
integral. As you recall from chapter 3.6, the linear momentum and the rate
of change of linear momentum can be calculated by just keeping track of the
center-of-mass of the system of interest. One wishes for something so simple
for the calculation of angular momentum.

It turns out that we are in luck if we are only interested in the two-
dimensional motion of two-dimensional rigid bodies. The luck is not so great
for 3-D rigid bodies but still there is some simplification. For general motion
of non-rigid bodies there is no simplification to be had. The simplification
is to use the moment of inertia for the bodies rather than evaluating the mo-
menta and energy quantities as integrals and sums. Of course one may have
to do a sum or integral to evaluate I � I cmzz or �Icm� but once this calcula-
tion is done, one need not work with the integrals while worrying about the
dynamics. At this point we will assume that you are comfortable calculating
and looking-up moments of inertia. We proceed to use it for the purposes
of studying mechanics. For constant rate rotation, we can calculate the ve-
locity and acceleration of various points on a rigid body using *

v D *
! �*

r

and *
a D *

! � .*! �*
r/. So we can calculate the various motion quantities of

interest: linear momentum
*

L, rate of change of linear momentum P*
L, angular

momentum
*

H , rate of change of angular momentum P*
H , and kinetic energy

EK.
Consider a two-dimensional rigid body like that shown in fig. 15.48.

Now let us consider the various motion quantities in turn. First the lin-
ear momentum

*

L. The linear momentum of any system in any motion is
*

L D *
vcmmtot . So, for a rigid body spinning at constant rate ! about point

O (using *
! D ! Ok):

*

L D*
vcmmtot D *

! �*
rcm=omtot :

Similarly, for any system, we can calculate the rate of change of linear mo-

mentum P*
L as P*L D*

acmmtot . So, for a rigid body spinning at constant rate,

P*
L D*

acmmtot D *
! � .*! �*

rcm=o/mtot :

That is, the linear momentum is correctly calculated for this special motion,
as it is for all motions, by thinking of the body as a point mass at the center-
of-mass.

Unlike the calculation of linear momentum, the angular momentum turns
out to be something different than would be calculated by using a point mass
at the center of mass. You can remember this important fact by looking at
the case when the rotation is about the center-of-mass (point O coincides

Filename:tfigure4-2Dinertia

dm

O

center of mass

x

y

ω

⇀
r

Figure 15.49: A two-dimensional body
is rotating around the point O at con-
stant rate !. A differential bit of mass
dm is shown. The center-of-mass is also
shown.
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3 Note that the angular momentum
about some other point than O will not
be constant unless the center-of-mass
does not accelerate (i.e., is at point O).

with the center-of-mass). In this case one can intuitively see that the angular
momentum of a rigid body is not zero even though the center-of-mass is not
moving. Here’s the calculation just to be sure:

*

H=O D
R
*r=O �*v dm (by definition of

*

H=O)

D
R
*r=O � .*! �*r=O/ dm (using *v D *! �*r)

D
R
.x=O O{C y=O O|/ �

h
.! Ok/ � .x=O O{C y=O O|/

i
dm (substituting *r=O and *!)

D f
R
.x2

=O
C y2

=O
/ dmg! Ok (doing cross products)

D f
R
r2
=O

dmg! Ok

D IOzz����
BBM

IOzz is the ‘polar’ moment of
inertia.

! Ok

We have defined the ‘polar’ moment of inertia as I ozz D
R
r2
=o
dm. In or-

der to calculate I ozz for a specific body, assuming uniform mass distribution
for example, one must convert the differential quantity of mass dm into a
differential of geometric quantities. For a line or curve, dm D �d`; for
a plate or surface, dm D �dA, and for a 3-D region, dm D �dV . d`,
dA, and dV are differential line, area, and volume elements, respectively.
In each case, � is the mass density per unit length, per unit area, or per unit
volume, respectively. To avoid clutter, we do not define a different symbol
for the density in each geometric case. The differential elements must be
further defined depending on the coordinate systems chosen for the calcula-
tion; e.g., for rectangular coordinates, dA D dxdy or, for polar coordinates,
dA D rdrd� .

Since
*

H and *
! always point in the Ok direction for two dimensional prob-

lems people often just think of angular momentum as a scalar and write the
equation above simply as ‘H D I!,’ the form usually seen in elementary
physics courses.

The derivation above has a feature that one might not notice at first sight.
The quantity called I O

zz does not depend on the rotation of the body. That is,
the value of the integral does not change with time, so I O

zz is a constant. So,
perhaps unsurprisingly, a two-dimensional body spinning about the z-axis
through O has constant angular momentum about O if it spins at a constant
rate. 3

P*
H=O D

*

0:

Now, of course we could find this result about constant rate motion of 2-D
bodies somewhat more cumbersomely by plugging in the general formula for
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rate of change of angular momentum as follows:

P*
H=O D R

*
r=O �*

a dm

D R
*
r=O � .*! � .*! �*

r=O// dm

D R
.x=O O{C y=O O|/ �

h
! Ok � .! Ok � .x=O O{C y=O O|//

i
dm

D*

0:
(15.42)

Using moment of inertia about the center of mass. Often it is easier
to think of the motion as composed of two parts, motion of the center of
mass and motion relative to the center of mass, as explained in box 15.9 on
page 730. Thus we have two terms for angular momentum

*

H=O and its rate

of change P*
H=O:

*

H=O D*
rG=O �m*

vcm C I cmzz ! Ok (15.43)

P*
H=O D*

rG=O �m*
acm C I cmzz � Ok (15.44)

Kinetic energy. Finally, we can calculate the kinetic energy by adding up
1
2
miv

2
i for all the bits of mass on a 2-D body spinning about the z-axis:

EK D
Z

1

2
v2 dm D

Z
1

2
.!r/2 dm D 1

2
!2
Z

r2 dm D 1

2
I ozz!

2 :

(15.45)
The kinetic energy can also be written as a sum of contributions of motion of
the center of mass and motion relative to the center of mass,

EK D
1

2
mv2cm C

1

2
I cmzz !

2 : (15.46)

Example: Pendulum disk
For the disk shown in fig. 15.49, we can calculate the rate of change of angular

momentum about point O as

P*
H=O D *rG=O �m*acm C I cmzz �

Ok
D R2m R� OkC I cmzz

R� Ok
D .I cmzz CR2m/ R� Ok:

Alternatively, we could calculate directly

P*
H=O D IOzz�

Ok
D .I cmzz CR2m/� �� �

BBM

by the parallel axis theorem

R� Ok:

Note that we are using the planarity of the objects and of their motion for our
calculations 4.

Filename:tfigure5-3-pend-disk

θ
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Figure 15.50:

42D vs 3D. Beware of falling into the
common misconception that the formula
M D I� applies in three dimensions
by just thinking of the scalars as vectors
and matrices. In 3D the formula

P*
H=O D �IO� � P*!����

*�

is only correct when *! is zero or when
*! is an eigen vector of �I=O �. That is,
the vector equationX

Moments about O D �IO� �*�

is generally wrong in 3D.
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The equation for linear momentum balance is the same as always, we just
need to calculate the acceleration of the center-of-mass of the spinning body.

P*
L D mtot

*
acm D mtot

h
*
! � .*! �*

rcm=O/C P*! �*
rcm=O

i
(15.47)

Finally, the kinetic energy for a planar rigid body rotating in the plane is:

EK D
1

2

*
! � .�Icm� � *!/C 1

2
m v2cm����
���

*
vcm D *

! �*
rcm=O

:

15.9 Simplifying
*

H=C using the center of mass
The definition of angular momentum relative to a point C is

*
H
=C D

X
*ri=C �mi

*vi :

If we rewrite*vi as
*vi D .*vi �*vcm/C*vcm D*vi=cm C*vcm

and
*ri D .*ri �*rcm/C*rcm D*ri=cm C*rcm

then
*
H
=C D

X�
*rcm C*ri=cm

�� �*vcm C*vi=cm
�
mi :

D
X

*rcm �*vcmmi C
X

*ri=cm �*vi=cmmi

C
X

*rcm �*vi=cmmi C
X

*ri=cm �*vcmmi

D *rcm �*vcmmtot C
X

*ri=cm �*vi=cm mi

C*rcm �
hX

*vi=cm mi

i
� �� �

*
0

C
hX

*ri=cm mi

i
� �� �

*
0

�*vcm

So,

*
H
=C D*rcm �*vcmmtot� �� �

���

contribution of cen-
ter of mass motion

C
X

*ri=cm �*vi=cm mi� �� �
B
BM

contribution of
motion relative to
center-of-mass

:

The reason
P

*ri=cm mi D
*
0 is somewhat intuitive. It is what you

would calculate if you were looking for the center-of-mass relative
to the center of mass. More formally,X

*ri=cm mi D
X
.*ri �*rcm/ mi

D
X

*ri mi� �� �
mtot

*
rcm

�mtot
*rcm

D *
0:

Similarly,
P

*vi=cm mi D
*
0 because it is what you would calculate

if you were looking for the velocity of the center-of-mass relative to
the center of mass.

The central result of this box is that

angular momentum of any system is that due to motion of the
center-of-mass plus motion relative to the center-of-mass.
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SAMPLE 15.13 A rod in a constant rate circular motion: A uniform rod
of mass m and length ` is connected to a motor at end O. A ball of mass m
is attached to the rod at end B. The motor turns the rod in counterclockwise
direction at a constant angular speed !. There is gravity pointing in the � O|
direction. Find the torque applied by the motor (i) at the instant shown and
(ii) when � D 0�; 90�; 180�. How does the torque change if the angular
speed is doubled?

Solution The FBD of the rod and ball system is shown in Fig. 15.51(a). Since the system is
undergoing circular motion at a constant speed, the acceleration of the ball as well as every
point on the rod is just radial (pointing towards the center of rotation O) and is given by
*a D �!2r O� where r is the radial distance from the center O to the point of interest and O� is
a unit vector along OB pointing away from O (Fig. 15.51(b)).

Angular Momentum Balance about point O givesX
*
MO D P*

H=O

X
*
MO D *rG=O � .�mg O|/C*rB=O � .�mg O|/CM Ok

D � `
2

cos �mg Ok � ` cos �mg OkCM Ok

D .M � 3`

2
mg cos �/ Ok (15.48)

P*
H=O D

.
P*
H
=O/ball� �� �

*rB=O �m*aB C

.
P*
H
=O/rod� �� �Z

m

*rdm=O �*adm dm

D ` O� � .�m!2` O�/C
Z
m

*rdm=O����
s O� �

*adm� �� �
.�!2s O�/ dm

D *
0 (since O� � O� D*

0) (15.49)

(i) Equating (15.48) and (15.49) we get

M D 3

2
mg` cos �:

M D 3
2mg` cos �

(ii) Substituting the given values of � in the above expression we get

M.� D 0�/ D 3

2
mg`; M.� D 90�/ D 0 M.� D 180�/ D �3

2
mg`

M.0�/ D 3
2mg`; M.90�/ D 0 M.180�/ D �3

2mg`

5

It is clear from the expression of the torque that it does not depend on the value of the

angular speed !! Therefore, the torque will not change if the speed is doubled. In fact, as long

as the speed remains constant at any value, the only torque required to maintain the motion is

the torque to counteract the moments due to gravity at O.
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Figure 15.51: A rod goes in circles at a
constant rate.
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Figure 15.52: A rod goes in circles at a
constant rate.

5The values obtained above make
sense (at least qualitatively). To make
the rod and the ball go up from the 0�
position, the motor has to apply some
torque in the counterclockwise direc-
tion. In the 90� position no torque is
required for the dynamic balance. In
180� position the system is accelerating
downwards under gravity; therefore, the
motor has to apply a clockwise torque
to make the system maintain a uniform
speed.
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Figure 15.53: A rectangular plate is
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Figure 15.54: (a) The free body diagram
of the plate. (b) Computation of the in-

tegral in P*
H=O D P! Ok Rm r2dm. (c) The

geometry of motion. From the given
dimensions, OeR D aO{�b O|p

.a2Cb2/ ,

Oe� D b O{Ca O|p
.a2Cb2/ , and rG=O D

p
a2Cb2
2 .

SAMPLE 15.14 At the onset of circular motion: A 20 � 40 rectangular
plate of mass 20 lbm is pivoted at one of its corners as shown in the figure.
The plate is released from rest in the position shown. Find the force on the
support immediately after release.

Solution The free body diagram of the plate is shown in Fig. 15.53. The force
*
F applied on

the plate by the support is unknown.
The linear momentum balance for the plate givesX

*
F D m*aG

*
F �mg O| D m. R� rG=O Oe� � P�2rG=O OeR/

D m R� rG=O Oe� (since P� D 0 at t D 0): (15.50)

Thus to find
*
F we need to find R� .

The angular momentum balance for the plate about the fixed support point O gives

*
MO D P*

HO

where
*
MO D *rG=O �mg.� O|/

D .
a

2
O{ � b

2
O|� �� �

*
rG=O

/ �mg.� O|/ D �mga
2
Ok;

and

P*
H=O D P! Ok

Z
m
r2dm D R� Ok

Z b

0

Z a

0

r2� �� �
.x2 C y2/

dm� �� �
m

ab
dxdy

D m.a2 C b2/

3
R� Ok:

Thus,

�mga
2
Ok D m.a2 C b2/

3
R� Ok

) R� D � 3ga

2.a2 C b2/

D �3 � 32:2 ft=s2 � 4 ft

2.16C 4/ ft2
D �9:66 rad=s2:

From eqn. (15.50), the support force is now readily calculated:
*
F D mg O| Cm R� rG=O Oe�

D mg O| Cm R�
p
a2 C b2

2

b O{C a O|p
.a2 C b2/

D 1

2
m R�b O{C .mg C 1

2
m R�a/ O|

Using the given numerical values of m; a, and b, R� D �9:66 rad=s2, and g D 32:2 ft=s2, we
get

*
F D .�6O{C 8 O|/ lbf:

*
F D .�6O{C 8 O|/ lbf
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SAMPLE 15.15 A compound gear train. When the gear of an input shaft,
often called the driver or the pinion, is directly meshed in with the gear of
an output shaft, the motion of the output shaft is opposite to that of the input
shaft. To get the output motion in the same direction as that of the input
motion, an idler gear is used. If the idler shaft has more than one gear in
mesh, then the gear train is called a compound gear train.

In the gear train shown in Fig. 15.54, the input shaft is rotating at 2000
rpm and the input torque is 200 N-m. The efficiency (defined as the ratio of
output power to input power) of the train is 0.96 and the various radii of the
gears are: RA D 5 cm; RB D 8 cm; RC D 4 cm; and RD D 10 cm. Find

1. the input power Pin and the output power Pout,

2. the output speed !out, and

3. the output torque.

Solution

1. The power:

Pin D Min!in D 200N�m � 2000 rpm

D 400000N�m � 6rev
6min

� 2�
1 6rev

� 1 6min
60 s

D 41887:9N m=s � 42 kW:

) pout D efficiency � Pin D 0:96 � 42 kW � 40 kW

Pin D 42 kW; pout D 40 kW

2. The angular speed of meshing gears can be easily calculated by realizing that the linear
speed of the point of contact has to be the same irrespective of which gear’s speed and
geometry is used to calculate it. Thus,

vP D !inRA D !B RB

) !B D !in �
RA
RB

and vR D !C RC D !outRD

) !out D !C � RC
RD

But !C D !B

) !out D !in �
RA
RB

� RC
RD

D 2000 rpm � 5
8
� 4
10

D 500 rpm:

!out D 500 rpm

3. The output torque,

Mout D
Pout
!out

D 40 kW
500 rpm

D 40

500
� 1000 N�m

6 s � 6min
6rev

� 1 6rev
2�

� 606 s
1 6min

D 764N�m:

Mout D 764N�m
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Figure 15.55: A compound gear train.
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Figure 15.57: An accelerating com-
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respective of which meshing gear’s ge-
ometry and motion is used to compute
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SAMPLE 15.16 An accelerating gear train. In the gear train shown in
Fig. 15.56, the torque at the input shaft is Min D 200N�m and the angular
acceleration is �in D 50 rad=s2. The radii of the various gears are: RA D
5 cm; RB D 8 cm; RC D 4 cm; and RD D 10 cm and the moments of
inertia about the shaft axis passing through their respective centers are: IA D
0:1 kg m2; IBC D 5IA; ID D 4IA. Find the output torque Mout of the gear
train.

Solution Since the difference between the input power and the output power is used in
accelerating the gears, we may write

Pin � Pout D PEK

Let Mout be the output torque of the gear train. Then,

Pin � Pout DMin !in �Mout !out: (15.51)

Now,

PEK D d

dt
.EK/ (15.52)

D d

dt

�
1

2
IA !

2
in C

1

2
IBC !

2
BC C 1

2
ID !

2
out

�
D IA !in P!in C IBC !BC P!BC C ID !out P!out

D IA !in �in C 5IA !BC �BC C 4IA !out �out: (15.53)

The different !’s and the �’s can be related by realizing that the linear speed or the tangen-
tial acceleration of the point of contact between any two meshing gears has to be the same
irrespective of which gear’s speed and geometry is used to calculate it. Thus, using the linear
speed and tangential acceleration calculations for points P and R in Fig. 15.57, we can find
!B , �B and !out, �out. Considering the linear speed of point P, we find

vP D !inRA D !B RB

) !B D !in �
RA
RB

;

and considering the tangential acceleration of point P, .aP /� , we find

.aP /� D �inRA D �B RB

) �B D �in �
RA
RB

:

Similarly,

vR D !C RC D !outRD

) !out D !C � RC
RD

;

and

.aR/� D �C RC D �outRD

) �out D �C � RC
RD

:

But

!C D !B D !BC

) !out D !in �
RA
RB

� RC
RD
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and

�C D �B D �BC

) �out D �in �
RA
RB

� RC
RD

:

Substituting these expressions for !out; �out; !BC and �BC in equations (15.51) and
(15.53), we get

Pin � Pout D Min !in �Mout!in �
RA
RB

� RC
RD

D !in

�
Min �Mout �

RA
RB

� RC
RD

�
:

PEK D IA

"
!in�in C 5!in�in

�
RA
RB

�2
C 4!in�in

�
RA
RB

� RC
RD

�2#

D IA!in

"
�in C 5�in

�
RA
RB

�2
C 4�in

�
RA
RB

� RC
RD

�2#
:

Now equating the two quantities, Pin � Pout and PEK, and canceling !in from both sides, we
obtain

Mout
RA
RB

� RC
RD

D Min � IA�in

"
1C 5

�
RA
RB

�2
C 4

�
RA
RB

� RC
RD

�2#

Mout
5

8
� 4
10

D 200N�m � 5 kg m2 � rad=s2
"
1C 5

�
5

8

�2
C 4

�
5

8
� 4
10

�2#
Mout D 735:94N�m

� 736N�m:

Mout D 736N�m
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Figure 15.60: Free-body diagram of the
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in the string supporting mass m and Ox
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at O.

SAMPLE 15.17 Drums used as pulleys. Two drums, A and B of radii
Ro D 200mm and Ri D 100mm are welded together. The combined mass
of the drums ismD D 20 kg and the combined moment of inertia about the z-
axis passing through their common center O is Izz=O D 1:6 kg m2. A string
attached to and wrapped around drum B supports a mass m D 2 kg. The
string wrapped around drum A is pulled with a force F D 20N as shown in
Fig. 15.58. Assume there is no slip between the strings and the drums. Find

1. the angular acceleration of the drums,
2. the tension in the string supporting mass m, and
3. the acceleration of mass m.

Solution The free-body diagram of the drums and the mass are shown in Fig. 15.59 sepa-
rately where T is the tension in the string supporting mass m and Ox and Oy are the support
reactions at O. Since the drums can only rotate about the z-axis, let

*! D ! Ok and P*! D P! Ok:
Now, let us do angular momentum balance about the center of rotation O:X

*
MO D P*

H=OX
*
MO D TRi

Ok � FRo Ok
D .TRi � FRo/ Ok:

Since the motion is restricted to the xy-plane (i.e., 2-D motion), the rate of change of angular

momentum P*
H=O may be computed as

P*
H=O D Izz=cm P! OkC*rcm=O �*acm mD

D Izz=O P! OkC*rO=O����
0

� *acm����
0

mD

D Izz=O P! Ok:

Setting
P *
MO D P*

H=O we get

TRi � FRo D Izz=O P!: (15.54)

Now, let us write linear momentum balance,
P *
F D m*a, for mass m:

.T �mg/ O|� �� �
P*
F

D m*a:

Do we know anything about acceleration*a of the mass? Yes, we know its direction (� O|) and
we also know that it has to be the same as the tangential acceleration .*aD/� of point D on
drum B (why?). Thus,

*a D .*aD/�

D P! Ok � .�Ri O{/
D � P!Ri O|: (15.55)
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Therefore,
T �mg D �m P!Ri : (15.56)

1. Calculation of P!: We now have two equations, (15.54) and (15.56), and two un-
knowns, P! and T . Subtracting Ri times Eqn.(15.56) from Eqn. (15.54) we get

�FRo CmgRi D .Izz=O CmR2i / P!

) P! D �FRo CmgRi

.Izz=O CmR2i /

D �20N � 0:2mC 2 kg � 9:81m=s2 � 0:1m
1:6 kg m2 C 2 kg � .0:1m/2

D �2:038 kg m2= s2

1:62 kg m2

D �1:258 1
s2

P*! D �1:26 rad=s2 Ok
2. Calculation of tension T: From equation (15.56):

T D mg �m P!Ri
D 2 kg � 9:81m=s2 � 2 kg � .�1:26 s�2/ � 0:1m

D 19:87N

T D 19:87N

3. Calculation of acceleration of the mass: Since the acceleration of the mass is the
same as the tangential acceleration of point D on the drum, we get (from eqn. (15.55))

*a D .*aD/� D � P!Ri O|
D �.�1:26 s�2/ � 0:1m

D 0:126m=s2 O|
*a D 0:13m=s2 O|

Comments: It is important to understand why the acceleration of the mass is the same as the

tangential acceleration of point D on the drum. We have assumed (as is common practice)

that the string is massless and inextensible. Therefore each point of the string supporting the

mass must have the same linear displacement, velocity, and acceleration as the mass. Now

think about the point on the string which is momentarily in contact with point D of the drum.

Since there is no relative slip between the drum and the string, the two points must have the

same vertical acceleration. This vertical acceleration for point D on the drum is the tangential

acceleration .*aD/� .
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SAMPLE 15.18 Energy method for pulley dynamics: Consider the pulley
problem of Sample 15.17 again. Use energy method to

1. find the angular acceleration of the pulley, and

2. the acceleration of the mass.

Solution In energy method we use speeds, not velocities. Therefore, we have to be careful
in our thinking about the direction of motion. In the present problem, let us assume that the
pulley rotates and accelerates clockwise. Consequently, the mass moves up against gravity.

1. The energy equation we want to use is

P D PEK :

The power P is given by P DP *
Fi �*vi where the sum is carried out over all external

forces. For the mass and pulley system the external forces that do work are F andmg.
The other external forces on the system—the reaction force of the support point O and
the weight of the pulley—are acting at point O (see fig. 15.60). But, since point O is
stationary, these forces do no work. Therefore,

P D *
F �*vA Cm*g �*vm

D F O{ � vA O{C .�mg O|/ � vD O|����
*vm

D FvA �mgvD : (15.57)

Now we need to calculate the rate of change of kinetic energy PEK . There are two
objects here that have kinetic energy—the hanging mass and the pulley. Hence,

PEK D . PEK/m C . PEK/pulley:

The hanging mass has pure translational motion and hence its kinetic energy is

.EK/m D 1

2
mv2

where v is the linear speed of the mass. If we assume the string to be inextensible, then
the linear speed v of the mass has to be the same as the tangential speed of point D of
the pulley. Thus v D vD and

.EK/m D 1

2
mv2D :

The pulley, on the other hand, has pure rotational motion about point O, and hence its
kinetic energy is given by

.EK/pulley D
1

2
I O
zz!

2:

Summing the two kinetic energies and differentiating with respect to time t , we get

PEK D d

dt

�
1

2
mv2D C 1

2
I O
zz!

2

�
(15.58)

D mvD PvD C I O
zz ! P!: (15.59)

Now equating the power and the rate of change of kinetic energy from
eqns. eqn. (15.57) and eqn. (15.59), we get

F vA �mg vD D mvD PvD C I O
zz ! P!:
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From kinematics of circular motion,

vA D !Ro;

vD D !Ri

and PvD � .aD/� D P!Ri :

Substituting these values in the power balance equation above, we get

!.FRo �mgRi / D ! P!.mR2i C I O
zz/

) P! D FRo �mgRi
.I O
zz CmR2i /

D 20N � 0:2m � 2 kg � 9:81m=s2 � 0:1m
1:6 kg m2 C 2 kg � .0:1m/2

D 1:258
1

s2
: (same as the answer before.)

Since the sign of P! is positive, our initial assumption of clockwise acceleration of the
pulley is correct.

P! D 1:26 rad=s2

2. From kinematics of circular motion,

am D .aD/�

D P!Ri
D 0:126m=s2:

am D 0:13m=s2
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SAMPLE 15.19 Energy Accounting: Consider the pulley problem of Sam-
ple 15.17 again.

1. What percentage of the input energy (work done by the applied force
F ) is used in raising the mass by 1 m?

2. Where does the rest of the energy go? Provide an energy-balance sheet.

Solution

1. Let Wi and Wh be the input energy and the energy used in raising the mass by 1 m,
respectively. Then the percentage of energy used in raising the mass is

% of input energy used D Wh

Wi

� 100:

Thus we need to calculate Wi and Wh to find the answer. Wi is the work done by the
force F on the system during the interval in which the mass moves up by 1 m. Let s
be the displacement of the force F during this interval. Since the displacement is in
the same direction as the force (we know it is from Sample 15.17), the input-energy is

Wi D F s:

So to find Wi we need to find s.
For the mass to move up by 1 m the inner drum B must rotate by an angle � where

1m D � Ri ) � D 1m
0:1m

D 10 rad:

Since the two drums, A and B, are welded together, drum A must rotate by � as well.
Therefore the displacement of force F is

s D � Ro D 10 rad � 0:2m D 2m;

and the energy input is

Wi D F s D 20N � 2m D 40J:

Now, the work done in raising the mass by 1m is

Wh D mgh D 2 kg � 9:81m=s2 � 1m D 19:62J:

Therefore, the percentage of input-energy used in raising the mass

D 19:62N�m
40

� 100 D 49:05% � 49%:

2. The rest of the energy (D 51%) goes in accelerating the mass and the pulley. Let us
find out how much energy goes into each of these activities. Since the initial state of
the system from which we begin energy accounting is not prescribed (that is, we are
not given the height of the mass from which it is to be raised 1 m, nor do we know the
velocities of the mass or the pulley at that initial height), let us assume that at the initial
state, the angular speed of the pulley is !o and the linear speed of the mass is vo. At
the end of raising the mass by 1 m from this state, let the angular speed of the pulley
be !f and the linear speed of the mass be vf . Then, the energy used in accelerating
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the pulley is

.�EK/pulley D final kinetic energy � initial kinetic energy

D 1

2
I!2f � 1

2
I!2o

D 1

2
I .!2f � !2o /� �� �

BBM

assuming constant accelera-

tion, !2
f

D !2o C 2�� , or

!2
f
� !2o D 2�� .

D I� � (from Sample 15.18, � D 1:258 rad=s2: )

D 1:6 kg m2 � 1:258 rad=s2 � 10 rad

D 20:13N�m D 20:13 J:

Similarly, the energy used in accelerating the mass is

.�EK/mass D final kinetic energy � initial kinetic energy

D 1

2
mv2f � 1

2
mv2o

D 1

2
m.v2f � v2o� �� �

2ah

/

D mah

D 2 kg � 0:126m=s2 � 1m

D 0:25 J:

We can calculate the percentage of input energy used in these activities to get a better
idea of energy allocation. Here is the summary table:

Activities Energy Spent

in Joule as % of input energy

In raising the mass by 1 m 19.62 49.05%

In accelerating the mass 0.25 0.62 %

In accelerating the pulley 20.13 50.33 %

Total 40.00 100 %

So, what would you change in the set-up so that more of the input energy is used in raising the

mass? Think about what aspects of the motion would change due to your proposed design.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



742 Chapter 15. Circular motion of a rigid object 15.4. Dynamics of rigid-object planar circular motion

Filename:sfig5-4-1a

O

A

m 

ı̂

ĵ
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Figure 15.62: A uniform rod swings in
the plane about its pinned end O.
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SAMPLE 15.20 Equation of motion of a swinging stick: A uniform bar
of mass m and length ` is pinned at one of its ends O. The bar is displaced
from its vertical position by an angle � and released (Fig. 15.61).

1. Find the equation of motion using momentum balance.

2. Find the reaction at O as a function of .�; P�; g; m; `/.

Solution First we draw a simple sketch of the given problem showing relevant geometry
(Fig. 15.61(a)), and then a free-body diagram of the bar (Fig. 15.61(b)).
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ĵ

ı̂

�

Rx

Ry

θ

Figure 15.64: (a) A line sketch of the swinging rod and (b) free-body diagram of the rod.

We should note for future reference that

*! D ! Ok � P� Ok
P*! D P! Ok � R� Ok

1. Equation of motion using momentum balance: We can write angular momentum
balance about point O as X

*
MO D P*

H=O:

Let us now calculate both sides of this equation:X
*
MO D *rG=O �mg.� O|/

D `

2
.sin � O{ � cos � O|/ �mg.� O|/

D � `
2
mg sin � Ok: (15.60)

P*
H=O D P! Ok

Z
m
r2dm

D R� Ok
Z `

0
s2
m

`
ds .dm D m=` � ds/

D m R�
`

2
4 s3
3

�����
`

0

3
5 D m`2

3
R� Ok (15.61)
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Equating (15.60) and (15.61) we get

� `
2
6mg sin � D 6m`

2

3
R�

or P! C 3g

2`
sin � D 0

or R� C 3g

2`
sin � D 0: (15.62)

R� C 3g
2`

sin � D 0

2. Reaction at O: Using linear momentum balanceX
*
F D m*aG ;

where
X

*
F D Rx O{C .Ry �mg/ O|;

and *aG D `

2
P!.cos � O{C sin � O|/C `

2
!2.� sin � O{C cos � O|/

D `

2
�. P! cos � � !2 sin �/O{C . P! sin � C !2 cos �/ O|�:

Dotting both sides of
P *
F D m*aG with O{ and O| and rearranging, we get

Rx D m
`

2
. P! cos � � !2 sin �/

� m
`

2
. R� cos � � P�2 sin �/;

Ry D mg Cm
`

2
. P! sin � C !2 cos �/

� mg Cm
`

2
. R� sin � C P�2 cos �/:

Now substituting the expression for R� from (15.62) in Rx and Ry , we get

Rx D �m sin �
�
3

4
g cos � C `

2
P�2
�
; (15.63)

Ry D mg

�
1 � 3

4
sin2 �

�
Cm

`

2
P�2 cos �: (15.64)

*
R D �m.34g cos � C `

2
P�2/ sin � O{C �mg.1 � 3

4 sin2 �/Cm `
2
P�2 cos �� O|

Check: We can check the reaction force in the special case when the rod does not
swing but just hangs from point O. The forces on the bar in this case have to satisfy
static equilibrium. Therefore, the reaction at O must be equal to mg and directed
vertically upwards. Plugging � D 0 and P� D 0 (no motion) in Eqn. (15.63) and
(15.64) we get Rx D 0 and Ry D mg, the values we expect.
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Figure 15.65: A uniform rod swings in
the plane about its pinned end O.
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Figure 15.66: The free-body diagram of
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4 P! Ok.

SAMPLE 15.21 Swinging stick dynamics using moment of inertia: A
uniform bar of mass m and length ` is pinned at one of its ends O. The bar is
displaced from its vertical position by an angle � and released (Fig. 15.64).
Find the equation of motion of the stick.

Solution We repeat the problem solved in Sample 15.20 here with just one different step of
finding the rate of change of angular momentum with the help of moment of inertia formula.
As usual, we first draw a free-body diagram of the bar (Fig. 15.65). We assume, *! D ! Ok �
P� Ok, and P*! D P! Ok � R� Ok We can write angular momentum balance about point O asX

*
MO D P*

H=O:

Let us now calculate both sides of this equation:X
*
MO D *rG=O �mg.� O|/

D `

2
.sin � O{ � cos � O|/ �mg.� O|/

D � `
2
mg sin � Ok: (15.65)

P*
H=O D Izz=G

P*!C*rG �m*aG

D m`2

12
P! OkC*rG �m.

*aG� �� �
P! Ok �*rG � !2*rG/

D m`2

12
P! OkC m`2

4
P! Ok (15.66)

D m`2

3
P! Ok (15.67)

where the last step,*rG �m*aG D m`2

4 P! Ok, should be clear from Fig. 15.66. Equating (15.60)
and (15.61) we get

� `
2
6mg sin � D 6m`

2

3
P!

or P! C 3g

2`
sin � D 0

or R� C 3g

2`
sin � D 0: (15.68)

R� C 3g
2`

sin � D 0
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SAMPLE 15.22 Numerical solution of the swinging stick motion: For
the swinging stick considered in Samples 15.20 or 15.23, find the time that
the rod takes to fall from � D �=2 to � D 0 if it is released from rest at
� D �=2?
Solution The given initial angle �=2 is a big value of � – big in that we cannot assume
sin � � � (obviously 1 ¤ 1:5708). Therefore we may not use the linearized equation (15.71)
to solve for t explicitly. We have to solve the full nonlinear equation (15.68) to find the
required time. Unfortunately, we cannot get a closed form solution of this equation using
mathematical skills you have at this level. Therefore, we resort to numerical integration of
this equation.

For numerical integration, we need to first write the given differential equation as a set
of first order ordinary differential equations. To do so, we introduce ! as a new variable and
rewrite eqn. (15.68) as

P� D ! (15.69)

P! D �3g
2`

sin � (15.70)

Now we need to specify the initial conditions and the time duration for integration, and solve
the equations using some ODE solver program. Here is a pseudo-code that lists the steps:

g = 9.81, L = 1 % define constants
ODES = { thetadot = omega

omegadot = -3*g/(2*L) * sin(theta) }
ICs = { theta_0 = pi/2

omega_0 = 0 }
solve ODES with ICs for t = 0 to 4 s
plot theta vs t and plot omega vs t

The results obtained from the numerical solution are shown in Fig. 15.67.
The problem of finding the time taken by the bar to fall from � D �=2 to � D 0 numer-

ically is nontrivial. It is called a boundary value problem. We have only illustrated how to
solve initial value problems. However, we can get fairly good estimate of the time from the
solution obtained.

We first plot � against time t as shown in fig. 15.68. We find the values of t and the
corresponding values of � that bracket � D 0. Now, we can use linear interpolation to find
the value of t at � D 0. Proceeding this way, we get t D 0:48 (seconds), a little more than we
get from the linear ODE in sample 15.23 (t D 0:41).
Comments: Additionally, we can also get the value of P� � ! when � D 0 using similar
interpolation. In fact, from the ! vs t plot, we find that at t D 0:48 s, ! D �5:42 rad=s.
How does this result compare with the analytical value of ! from sample 15.23 (which did
not depend on the small angle approximation)? Well, we found that

! D �
r
3g

`
D �

s
3 � 9:81m=s2

1m
D �5:4249 s�1:

Thus, we get a fairly accurate value from numerical integration.
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dm considered in the calculation of EK.

SAMPLE 15.23 The swinging stick dynamics with energy balance: Con-
sider the same swinging stick as in Sample 15.20. The stick is, again, dis-
placed from its vertical position by an angle � and released (See Fig. 15.61).

1. Find the equation of motion using energy balance.

2. What is P� at � D 0 if �.t D 0/ D �=2?

3. Find the period of small oscillations about � D 0.

Solution

1. Equation of motion using energy balance: We use the power equation, PEK D P ,
to derive the equation of motion of the bar. Now, the kinetic energy is given by

EK D 1

2

Z
m
v2dm

where v is the speed of the infinitesimal mass element dm. Refering to fig. 15.70, we
can write, dm D .m=`/ds, and v D !s � P�s. Thus,

EK D 1

2

Z `

0

P�2s2m
`
ds

D m P�2
2`

Z `

0
s2ds

D 1

6
m`2 P�2

and, therefore,

PEK D d

dt
.
1

6
m`2!2/ D 1

3
m`2! P! D 1

3
m`2 P� R�:

Calculation of power (P ): There are only two forces acting on the bar, the reaction
force,

*
R.D Rx O{C Ry O|/ and the force due to gravity, �mg O|. Since the support point

O does not move, no work is done by
*
R. Therefore,

W D Work done by gravity force in moving from G0 to G. D �mgh

Note that the negative sign stands for the work done against gravity. Now,

h D OG0 �OG00 D `

2
� `

2
cos � D `

2
.1 � cos �/:

Therefore,

W D �mg `
2
.1 � cos �/

and P D PW D dW

dt
D �mg `

2
sin � P�:

Equating PEK and P we get

�6mg `
2

sin �6 P� D 1

3
6m`26 P� R�

or R� C 3g

2`
sin � D 0:

R� C 3g
2`

sin � D 0

This equation is, of course, the same as we obtained using balance of angular momen-
tum in Sample 15.20.
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2. Find ! at � D 0: We are given that at t D 0; � D �=2 and P� � ! D 0 (released
from rest). This position is (1) shown in Fig. 15.71. In position (2) � D 0, i.e., the rod
is vertical. Since there are no dissipative forces, the total energy of the system remains
constant. Therefore, taking datum for potential energy as shown in Fig. 15.71, we may
write

EK1����
0

CV1 D EK2 C V2����
0

or mg
`

2
D 1

2

Z
m
v2dm

D 1

6
m`2!2 .see part (a)/

) ! D �
r
3g

`

! D �
q

3g
`

3. Period of small oscillations: The equation of motion is

R� C 3g

2`
sin � D 0:

For small � , sin � � �

) R� C 3g
2`
� D 0 (15.71)

or R� C �2� D 0

where �2 D 3g
2`
:

Therefore,

the circular frequency D � D
r
3g

2`
;

and the time period T D 2�

�
D 2�

s
2`

3g
:

T D 2�
q

2`
3g

[Say for g D 9:81m=s2; ` D 1m we get T
4 D �

2

q
2
3

1
9:81 s D 0:4097 s]
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SAMPLE 15.24 The swinging stick with a destabilizing torque. Consider
the swinging stick of Sample 15.20 once again.

1. Find the equation of motion of the stick, if a torque
*

M D M Ok is
applied at end O and a force

*

F D F O{ is applied at the other end A.

2. Take F D 0 and M D C� . For C D 0 you get the equation of free
oscillations obtained in Sample 15.20 or 15.23 For small C , does the
period of the pendulum increase or decrease?

3. What happens if C is big?

Solution

1. A free body diagram of the bar is shown in Fig. 15.72. Once again, we can useP *
MO D P*

H=O to derive the equation of motion as in Sample 15.20. We calculatedP *
MO and P*

H=O in Sample 15.20. Calculation of P*
H=O remains the same in the present

problem. We only need to recalculate
P *
MO.X

*
MO D M OkC*rG=O �mg.� O|/C*rA=O � *

F

D M Ok � `

2
mg sin � OkC F ` cos � Ok

D .M C F ` cos � � `

2
mg sin �/ Ok

and

P*
H=O D m R� `

2

3
Ok (see Sample 15.20)

Therefore, from
P *
MO D P*

H=O

M C F ` cos � � `

2
mg sin � D m R� `

2

3

) R� C 3g

2`
sin � � 3F

m`
cos � � 3M

m`2
D 0:

R� C 3g
2`

sin � � 3F
m`

cos � � 3M
m`2

D 0

2. Now, setting F D 0 and M D C � we get

R� C 3g

2`
sin � � 3C�

m`2
D 0 (15.72)

Numerical Solution: We can numerically integrate (15.72) just as in the previous
Sample to find �.t/. Here is the pseudo-code that can be used for this purpose.

g = 9.81, L = 1 % specify parameters
m = 1, C = 4
ODES = { thetadot = omega

omegadot = -(3*g/(2*L)) * sin(theta)
+ 3*C/(m*Lˆ2) * theta }

ICs = { thetazero = pi/20
omegazero = 0 }

solve ODES with ICs until t = 10

Using this pseudo-code, we find the response of the pendulum. Figure 15.73 shows
different responses for various values of C . Note that for C D 0, it is the same case
as unforced bar pendulum considered above. From Fig. 15.73 it is clear that the bar
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has periodic motion for small C , with the period of motion increasing with increasing
values of C . It makes sense if you look at Eqn. (15.72) carefully. Gravity acts as a
restoring force while the applied torque acts as a destabilizing force. Thus, with the
resistance of the applied torque, the stick swings more sluggishly making its period of
oscillation bigger.
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Figure 15.74: �.t/with applied torqueM D C � for C D 0; 1; 2; 4; 4:905; 5:Note
that for small C the motion is periodic but for large C (C � 4:4) the motion becomes
aperiodic.

3. From Fig. 15.73, we see that at about C � 4:9 the stability of the system changes
completely. �.t/ is not periodic anymore. It keeps on increasing at faster and faster
rate, that is, the bar makes complete loops about point O with ever increasing speed.
Does it make physical sense? Yes, it does. As the value of C is increased beyond a
certain value (can you guess the value?), the applied torque overcomes any restoring
torque due to gravity. Consequently, the bar is forced to rotate continuously in the
direction of the applied force.
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SAMPLE 15.25 A torsional pendulum with linear springs: A uniform
rigid bar of mass m D 2 kg and length ` D 1m is pinned at one end and
connected to two springs, each with spring constant k, at the other end. The
bar is tweaked slightly from its vertical position. It then oscillates about its
original position. The bar is timed for 20 full oscillations which take 12.5
seconds. Ignore gravity.

1. Find the equation of motion of the rod.

2. Find the spring constant k.

3. What should be the spring constant of a torsional spring if the bar is
attached to one at the bottom and has the same oscillating motion char-
acteristics?

Solution

1. Refer to the free-body diagram in figure 15.75. Angular momentum balance for the
rod about point O gives X

*
MO D P*

H=O

where
*
MO D �2k

` sin �����
x �` cos � Ok

D �2k`2 sin � cos � Ok;
and P*

H=O D IOzz
R� Ok D 1

3
m`2����
IOzz

R� Ok:

Thus
1

3
m`2 R� D �2k`2 sin � cos �:

However, for small �; cos � � 1 and sin � � � ,

) R� C 6k 6̀ 2
m 6̀ 2 � D 0: (15.73)

R� C 6k
m � D 0

2. Comparing Eqn. (15.73) with the standard harmonic oscillator equation RxC�2x D 0,
we get

angular frequency � D
r
6k

m
;

and the time period T D 2�

�

D 2�

r
m

6k
:

From the measured time for 20 oscillations, the time period (time for one oscillation)
is

T D 12:5

20
s D 0:625 s
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Now equating the measured T with the derived expression for T we get

2�

r
m

6k
D 0:625 s

) k D 4�2� m

6.0:625 s/2

D 4�2�2 kg
6.0:625 s/2

D 33:7N=m:

k D 33:7N=m

3. If the two linear springs are to be replaced by a torsional spring at the bottom, we
can find the spring constant of the torsional spring by comparison. Let ktor be the
spring constant of the torsional spring. Then, as shown in the free body diagram (see
figure 15.76), the restoring torque applied by the spring at an angular displacement �
is ktor� . Now, writing the angular momentum balance about point O, we getX

*
MO D P*

H=O

�ktor�
Ok D IOzz.

R� Ok/

) R� C ktor

IOzz
� D 0:

Comparing with the standard harmonic equation, we find the angular frequency

� D
s
ktor

IOzz
D
s

ktor
1
3m`

2
:

If this system has to have the same period of oscillation as the first system, the two
angular frequencies must be equal, i.e.,s

ktor
1
3m`

2
D

r
6k

m

) ktor D 6k�1
3
`2 D 2k`2

D 2�.33:7N=m/�.1m/2

D 67:4N�m:

ktor D 67:4N�m
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6 Here, we are considering a very
small y so that we can ignore the arc the
point mass B moves on and take its mo-
tion to be just vertical (i.e., sin � � �

for small � ).

SAMPLE 15.26 A spring loaded seesaw: A kid, modelled as a point mass
with m D 10 kg, is sitting at end B of a rigid rod AB of negligible mass.
The rod is supported by a spring at end A and a pin at point O. The system
is in static equilibrium when the rod is horizontal. Someone pushes the kid
vertically downwards by a small distance y and lets go. Given that AB D
3m; AC D 0:5m; k D 1 kN=m; find

1. the unstretched (relaxed) length of the spring,

2. the equation of motion (a differential equation relating the position of
the mass to its acceleration) of the system, and

3. the natural frequency of the system.
If the rod is pinned at the midpoint instead of at O, what is the natural fre-
quency of the system? How does the new natural frequency compare with
that of a massm simply suspended by a spring with the same spring constant?

Solution

1. Static Equilibrium: The FBD of the (rod + mass) system is shown in Fig. 15.78. Let
the stretch in the spring in this position be yst and the relaxed length of the spring be
`0. The balance of angular momentum about point O gives:X

*
M=o D P*

H=o D *
0 (no motion)

) .kyst /d1 � .mg/d2 D 0

) yst D mg

k
� d2
d1

D 10 kg � 9:8m=s2 � 2`
1000N=m � ` D 0:196m

Therefore, `0 D AC � yst
D 0:5m � 0:196m D 0:304m:

`0 D 30:4 cm

2. Equation of motion: As point B gets displaced downwards by a distance y, point A
moves up by a proportionate distance ya. From geometry, 6

y � d2� ) � D y

d2

ya � d1� D
d1
d2
y

Therefore, the total stretch in the spring, in this position,

�y D ya C yst D
d1
d2
y C d2

d1

mg

k

Now, Angular Momentum Balance about point O gives:X
*
M=o D P*

H=oX
*
M=o D *rB �mg O| C*rA � k�y O|

D .d2mg � d1k�y/ Ok (15.74)
P*
H=o D *rB �m*a D*rB �m Ry O| (15.75)

D d2m Ry Ok (15.76)
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Equating (15.74) and (15.76) we get

d2mg � d1k�y D d2m Ry

or d2mg � d1k
�
d1
d2
y C d2mg

d1k

�
D d2m Ry

or 6d2mg � k
d21
d2
y � 6d2mg D d2m Ry

or Ry C k

m

�
d1
d2

�2
y D 0

Ry C k
m

�
d1
d2

�2
y D 0

3. The natural frequency of the system: We may also write the previous equation as

Ry C �2y D 0 where �2 D k

m

d21

d22
: (15.77)

Substituting d1 D ` and d2 D 2` in the expression for � we get the natural frequency
of the system

� D 1

2

r
k

m
D 1

2

s
1000N=m
10 kg

D 5 s�1

� D 5 s�1

4. Comparison with a simple spring mass system:
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L

m 

L

m 

k≡

k

A

C

BO

Figure 15.80:

When d1 D d2, the equation of motion (15.77) becomes

Ry C k

m
y D 0

and the natural frequency of the system is simply

� D
r
k

m

which corresponds to the natural frequency of a simple spring mass system shown in
Fig. 15.79.
In our system (with d1 D d2 ) any vertical displacement of the mass at B induces an
equal amount of stretch or compression in the spring which is exactly the case in the
simple spring-mass system. Therefore, the two systems are mechanically equivalent.
Such equivalences are widely used in modeling complex physical systems with simpler
mechanical models.
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Problems for
Chapter 15
Circular motion of rigid bodies

15.1 Rotation of a rigid
body
Preparatory Problems
15.1.1 Give the definition of each term be-
low in words and, if possible, with an equa-
tion.

a) rotation angle

b) .x0; y0/
c) .x; y/

d) rotation matrix

15.1.2 Assume that in the reference con-
figuration, when � D 0, that the x0y0 axes
attached to an object are aligned with the
xy axes. Consider a point P attached to the
moving frame (object) that has coordinates
.x0; y0/. Find each of the quantities below
in terms of some or all of x0; y0; O{; O|; �; P�
and R� .

a) *rP

b) The rotation matrix �R�.

15.1.3 Assume that in the reference con-
figuration, when � D 0, that the x0y0
axes are aligned with the xy axes. Con-
sider two points P1 and P2 attached to the
moving frame. P1 and P2 have coordi-
nates .x01; y

0
1/ .x

0
2; y

0
2/. Find each of the

quantities below in terms of some or all of
x01; y

0
1; x

0
2; y

0
2; O{; O|; �; P� and R� .

a) *rP1=P2

b) The rotation matrix �R�.

15.1.4 The square plate OABC shown in
the figure measures ` D 1m on a side. The
coordinate axes x0y0 are fixed to the plate
and the axes xy are fixed in space. The
plate is rotated by an angle � D 60� as
shown.

a) Find the coordinates x0 and y0 of
the corner point B in the rotated
frame.

b) Find the coordinates x and y of the
same point in the fixed frame with-
out using the rotation matrix.

c) Write the rotation matrix R for to
the given rotation.

d) Find the coordinates of point B in
the fixed frame using its .x0; y0/ co-
ordinates and the rotation matrix R.

e) Find the coordinates of point B in
the rotated frame using its .x; y/
coordinates and the rotation matrix
R in its appropriate form.

�

Filename:pfigure13-3-rectangle1
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Problem 15.1.4

15.1.5 The rod shown in the figure rotates
counterclockwise, starting from � D 0.
Find the following quantities.

a) Write the position vector of points
A and B as a list of numbers in an

array, e.g., �*rA�xy D
�
xA
yA

�
, at

� D 0.
b) Write the rotation matrix R for � D
45�.

c) Find the coordinates of points A and
B using the rotation matrix R for
� D 45�.

d) If the rod rotates at a constant angu-
lar speed ! D �=3 rad=s, find the
coordinates of points A and B af-
ter 2 seconds, assuming the rod is
at � D 0 when t D 0.
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Problem 15.1.5

15.1.6 Find the angle of rotation corre-
sponding to the following rotation matri-
ces:

a)
�
0:7071 �0:7071
0:7071 0:7071

�
.

b)
� �0:7071 �0:7071

0:7071 �0:7071
�

.

c)
�

0:7071 0:7071
�0:7071 0:7071

�
.

More-Involved Problems
15.1.7 The rod shown in the figure rotates
with constant angular speed ! D 10 rad=s.

a) Find the position vector *rBjt1 and
the velocity*vBjt1 of point B at t1 D
1 s.

b) Find the position vector *rBjt2 of
point B at t2 D 1:2 s. What is the
net displacement of point B during
the time interval �t D t2 � t1?
Is this net displacement equal to
*vBjt1�t? Why not?
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Problem 15.1.7

15.1.8 Write a computer program to an-
imate the rotation of an object. Your
input should be a set of x and y co-
ordinates defining the object (such that
plot y vs x draws the object on the

screen) and the rotation angle � . The out-
put should be the rotated coordinates of the
object.

a) From the geometric information
given in the figure, generate coordi-
nates of enough points to define the
given object.

b) Using your program, plot the object
at � D 20�; 60�; 100�; 160�; and
270�.

c) Assume that the object rotates
with constant angular speed ! D
2 rad=s. Find and plot the position
of the object at t D 1 s; 2 s; and3 s.
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Problem 15.1.8

15.1.9 The arrow shaped object shown
in the figure is defined by the five points
whose coordinates are given in some nor-
malized units. The position shown is at
t D 0. The time dependent angular po-
sition of the object is given by �.t/ D
C1t

2 C C2t where C1 D 0:25 rad=s2 and
C2 D 0:1 rad=s. Animate the motion of
the object and show its position from t D 0
to t D 5 s at every second.
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Problem 15.1.9

15.2 Angular velocity
Preparatory Problems
15.2.1 Give the definition of each term be-
low in words and, but for the first, with an
equation.

a) angular velocity

b) angular acceleration

15.2.2 Assume that in the reference con-
figuration, when � D 0, that the x0y0 axes
attached to an object are aligned with the
xy axes. Consider a point P attached to the
moving frame (object) that has coordinates
.x0; y0/. Find each of the quantities below
in terms of some or all of x0; y0; O{; O|; �; P�
and R� .

a) *rP

b) *vP
c) *aP

15.2.3 Assume that in the reference con-
figuration, when � D 0, that the x0y0
axes are aligned with the xy axes. Con-
sider two points P1 and P2 attached to the
moving frame. P1 and P2 have coordi-
nates .x01; y

0
1/ .x

0
2; y

0
2/. Find each of the

quantities below in terms of some or all of
x01; y

0
1; x

0
2; y

0
2; O{; O|; �; P� and R� .

a) *rP1=P2

b) *vP1=P2

c) *aP1=P2

15.2.4 Find*v D*!�*r , if *! D 1:5 rad=s Ok
and*r D 2mO{ � 3m O|.

15.2.5 A rod OB rotates with its end O
fixed as shown in the figure with angular
velocity *! D 5 rad=s Ok and angular accel-
eration *� D 2 rad=s2 Ok at the moment of
interest. Find, draw, and label the tangen-
tial and normal acceleration of point B at
� D 60

�
.
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Problem 15.2.5

15.2.6 A disc rotates at 15 rpm. How many
seconds does it take to rotate by 180 de-
grees? What is the angular speed of the
disc in rad=s?

15.2.7 A motor turns a uniform disc of
radius R counter-clockwise about its mass
center at a constant rate !. The disc lies in
the xy-plane and its angular displacement
� is measured (positive counter-clockwise)
from the x-axis. What is the angular dis-
placement �.t/ of the disc if it starts at
�.0/ D �0 and P�.0/ D !? What are the
velocity and acceleration of a point P at
position*r D x O{C y O|?

15.2.8 Find the angular velocities of the
second, minute, and hour hands of a clock.

15.2.9 A disc C spins at a constant rate
of two revolutions per second counter-
clockwise about its geometric center, G,
which is fixed. A point P is marked on the
disk at a radius of one meter. At the mo-
ment of interest, point P is on the x-axis of
an xy-coordinate system centered at point
G.

a) Draw a neat diagram showing the
disk, the particle, and the coordinate
axes.

b) What is the angular velocity of the
disk, *!C?

c) What is the angular acceleration of
the disk, P*!C?

d) What is the velocity*vP of point P?

e) What is the acceleration*aP of point
P?

15.2.10 A uniform rigid rod rotates at con-
stant speed in the xy-plane about a peg
at point O . The center of mass of the
rod may not exceed a specified accelera-
tion amax D 0:5m=s2. Find the maxi-
mum angular velocity of the rod.
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Problem 15.2.10

15.2.11 A dumbbell AB is welded to a
rigid arm OC such that OC is perpendic-
ular to AB. Arm OC rotates about O at a
constant angular velocity *! D 10 rad=s Ok.
At the instant when � D 60

�
,

a) Find the relative velocity of B with
respect to A. �

b) Find the acceleration of point B rel-
ative to point A. �
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Problem 15.2.11

More-Involved Problems
15.2.12 Two discs A and B rotate at con-
stant speeds about their centers. Disc A
rotates at 100 rpm and disc B rotates at
10 rad=s. Which is rotating faster?

15.2.13 A motor turns a uniform disc of
radius R counter-clockwise about its mass
center at a constant rate !. The disc lies in
the xy-plane and its angular displacement
� is measured (positive counter-clockwise)
from the x-axis. What are the velocity
and acceleration of a point P at position
*rP D c O{ C d O| relative to the veloc-
ity and acceleration of a point Q at posi-
tion *rQ D 0:5.�d O{ C c O|) on the disk?
(c2 C d2 < R2.)

15.2.14 A 0:4m long rod AB has many
holes along its length such that it can be
pegged at any of the various locations. It
rotates counter-clockwise at a constant an-
gular speed about a peg whose location is
not known. At some instant t , the velocity
of end B is *vB D �3m=s O|. After �

20 s,
the velocity of end B is*vB D �3m=sO{. If
the rod has not completed one revolution
during this period,

a) find the angular velocity of the rod,
and

b) find the location of the peg along the
length of the rod.
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Problem 15.2.14

15.2.15 A circular disc of radius r D
250mm rotates in the xy-plane about a
point which is at a distance d D 2r away
from the center of the disk. At the instant
of interest, the linear speed of the center C
is 0:60m=s and the magnitude of its cen-
tripetal acceleration is 0:72m=s2.

a) Find the rotational speed of the
disk.

b) Is the given information enough to
locate the center of rotation of the
disk?

c) If the acceleration of the center has
no component in the O| direction at
the moment of interest, can you lo-
cate the center of rotation? If yes, is
the point you locate unique? If not,
what other information is required
to make the point unique?
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Problem 15.2.15

15.2.16 A uniform disc of radius r D
200mm is mounted eccentrically on a mo-
tor shaft at point O . The motor rotates the
disc at a constant angular speed. At the in-
stant shown, the velocity of the center of
mass is*vG D �1:5m=s O|.

a) Find the angular velocity of the
disc.

b) Find the point with the highest lin-
ear speed on the disc. What is its
velocity?
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Problem 15.2.16

15.2.17 The circular disc of radius R D
100mm rotates about its center O . At a
given instant, point A on the disk has a
velocity vA D 0:8m=s in the direction
shown. At the same instant, the tangent of
the angle � made by the total acceleration
vector of any point B with its radial line to
O is 0.6. Compute the angular acceleration
� of the disc.
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Problem 15.2.17

15.2.18 Show that, for non-constant rate
circular motion, the acceleration of all
points in a given radial line are parallel.
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Problem 15.2.18

15.2.19 A motor turns a uniform disc of
radius R about its mass center at a vari-
able angular rate ! with rate of change
P!, counter-clockwise. The disc lies in
the xy-plane and its angular displacement
� is measured from the x-axis, positive
counter-clockwise. What are the veloc-
ity and acceleration of a point P at posi-
tion *rP D c O{ C d O| relative to the veloc-
ity and acceleration of a point Q at posi-
tion *rQ D 0:5.�d O{ C y O|) on the disk?
(c2 C d2 < R2.)
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15.2.20 The dumbbell AB shown in the
figure rotates counterclockwise about point
O with angular acceleration 3 rad=s2. Bar
AB is perpendicular to bar OC. At the in-
stant of interest, � D 45

�
and the angular

speed is 2 rad=s.

a) Find the velocity of point B rela-
tive to point A. Will this relative ve-
locity be different if the dumbbell
were rotating at a constant rate of
2 rad=s?

b) Without calculations, draw a vector
approximately representing the ac-
celeration of B relative to A.

c) Find the acceleration of point B rel-
ative to A. What can you say about
the direction of this vector as the
motion progresses in time?

�
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Problem 15.2.20

15.2.21 Bit-stream kinematics of a CD.
A Compact Disk (CD) has bits of data
etched on concentric circular tracks. The
data from a track is read by a beam of
light from a head that is positioned un-
der the track. The angular speed of the
disk remains constant as long as the head
is positioned over a particular track. As
the head moves to the next track, the an-
gular speed of the disk changes, so that
the linear speed at any track is always the
same. The data stream comes out at a con-
stant rate 4:32�106 bits/second. When the
head is positioned on the outermost track,
for which r D 56mm, the disk rotates at
200 rpm.

a) What is the number of bits of data
on the outermost track.

b) find the angular speed of the disk
when the head is on the innermost
track (r D 22mm), and

c) find the numbers of bits on the in-
nermost track.

15.2.22 2-D constant rate gear train.
The angular velocity of the input shaft
(driven by a motor not shown) is a con-
stant, !input D !A. What is the angular
velocity !output D !C of the output shaft
and the speed of a point on the outer edge
of disc C , in terms of RA, RB , RC , and
!A?
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Problem 15.2.22: Gear B is welded to C
and engages with A.

15.2.23 A horizontal disk D of diameter
d D 500mm is driven at a constant speed
of 100 rpm. A small disk C can be posi-
tioned anywhere between r D 10mm and
r D 240mm on disk D by sliding it along
the overhead shaft and then fixing it at the
desired position with a set screw (see the
figure). Disk C rolls without slip on disk
D. The overhead shaft rotates with disk
C and, therefore, its rotational speed can
be varied by varying the position of disk
C. This gear system is called brush gear-
ing. Find the maximum and minimum ro-
tational speeds of the overhead shaft. �
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Problem 15.2.23

15.2.24 Two points A and B are on the
same machine part that is hinged at an as

yet unknown location C. Assume you are
given that points at positions*rA and*rB are
supposed to move in given directions, in-
dicated by unit vectors O�A and O�B . For
each of the problem parts below, illustrate
your results with two numerical examples
(in consistent units): i)*rA D 1O{,*rB D 1 O|,
O�A D 1 O|, and O�B D �1O{ (thus *rC D*

0),
and ii) a more complex example of your
choosing.

a) Describe in detail what equations
must be satisfied by the point*rC.

b) Write a computer program that
takes as input the 4 pairs of numbers
�*rA�, �

*rB�, � O�A� and � O�B � and gives
as output the pair of numbers �*rC �.

c) Find a formula of the form *rC D
: : : that explicitly gives the position
vector for point C in terms of the 4
given vectors.

15.3 Polar moment of
inertia
Preparatory Problems
15.3.1 Find an expression for the polar mo-
ment of inertia for each of the following
systems about the specified points. An-
swer in terms of some or all of the variables
given. If a position vector *r is given then
you can assume the coordinates .x; y/ are
given so that*r D x O{C y O|.

a) A particle with mass m at*r about

1. Its center of mass
2. The origin

b) Two particles with masses m1 and
m2 a distance d apart located at*r1
and*r2, respectively, about

i) Mass 1
ii) Mass 2
i) The center of mass of the sys-

tem
iv) The origin

c) A collection of n particlesmi at lo-
cations*ri=0 about

i) The origin
ii) The center of mass G of the

system

d) A uniform line segment with length
` and massm with center of mass at
location*rG=0 about

i) Its center of mass G
ii) One end
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iii) The origin
e) A uniform hoop with mass m and

radius R and center at*rG=0 about
i) Its center of mass G

ii) A point on the hoop
iiii) The origin

f) A uniform disk with mass m and
radius R and center at*rG=0 about

i) Its center of mass G
ii) A point on the perimeter

iii) The origin
g) A uniform rectangle with mass m

and sides ` andw and with center at
*rG=0 about

i) Its center of mass G
ii) A corner

iii) The origin

15.3.2 Two objects have masses m1 and
m2 and polar moments of inertia I1 and
I2 about their respective centers of mass
G1 and G2 which are a distance d apart.
What is the moment of inertia of the sys-
tem about its center of mass?

15.3.3 A point mass m D 0:5 kg is located
at x D 0:3m and y D 0:4m in the xy-
plane. Find the moment of inertia of the
mass about the z-axis. �

15.3.4 A small ball of mass 0:2 kg is at-
tached to a 1m massless rod.

a) What is value of Izz of the ball
about the other end of the rod? �

b) How much must you shorten the rod
to reduce the moment of inertia of
the ball by half? �

More-Involved Problems
15.3.5 Two identical point masses are at-
tached to the two ends of a rigid massless
bar of length ` (one mass at each end). Lo-
cate a point along the length of the bar
about which the polar moment of inertia
of the system is 20% more than that cal-
culated about the mid point of the bar. �

15.3.6 A dumbbell consists of a rigid mass-
less bar of length ` and two identical point
masses m and m, one at each end of the
bar.

a) About which point on the dumbbell
is its polar moment of inertia Izz a
minimum and what is this minimum
value? �

b) About which point on the dumbbell
is its polar moment of inertia Izz
a maximum and what is this max-
imum value? �

15.3.7 A light rigid rod AB of length 3`
has a point mass m at end A and a point
mass 2m at end B . Point C is the cen-
ter of mass of the system. First, answer
the following questions without any calcu-
lations and then do calculations to verify
your guesses.

a) About which point A, B , or C , is
the polar moment of inertia Izz of
the system a minimum? �

b) About which point is Izz a maxi-
mum? �

c) What is the ratio of IAzz and IBzz? �

d) Is the radius of gyration of the sys-
tem greater, smaller, or equal to the
length of the rod? �
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Problem 15.3.7

15.3.8 Three identical particles of mass
m are connected to three identical mass-
less rods of length ` and welded together
at point O as shown in the figure.

a) Guess (no calculations) which of
the three moment of inertia terms
IOxx , IOyy , IOzz is the smallest and
which is the biggest. �

b) Calculate the three moments of in-
ertia to check your guess. �

c) If the orientation of the system is
changed, so that one mass is along
the x-axis, will your answer to part
(a) change?

d) Find the radius of gyration of the
system for the polar moment of in-
ertia. �
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Problem 15.3.8

15.3.9 Show that the polar moment of in-
ertia IOzz of the uniform bar of length ` and
mass m, shown in the figure, is 1

3m`
2, in

two different ways:

a) by using the basic definition of
polar moment of inertia IOzz DZ
r2 dm, and

b) by computing I cmzz first and then us-
ing the parallel axis theorem.
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Problem 15.3.9

15.3.10 Approximately locate the center
of mass of the tapered rod shown in the fig-
ure and compute the polar moment of iner-
tia I cmzz . [Hint: use the variable thickness
of the rod to define an approximate equiva-
lent variable mass density per unit length.]
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Problem 15.3.10

15.3.11 A short rod of mass m and length
h hangs from an inextensible and massless
rod of length `.

a) Find the moment of inertia IOzz of
the rod.

b) Find the moment of inertia of the
rod IOzz by considering it as a point
mass located at its center of mass.
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c) Find the percent error in IOzz in
treating the bar as a point mass by
comparing the expressions in parts
(a) and (b). Plot the percent er-
ror versus h=`. For what values of
h=` is the percentage error less than
5%?
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Problem 15.3.11

15.3.12 Parallel axis theorem? A mass-
less square plate ABCD has four identical
point masses located at its corners.

a) Find the polar moment of inertia
I cmzz . �

b) Find a point P on the plate about
which the system’s moment of iner-
tia Izz is maximum? �

c) Find the radius of gyration of the
system about the rectangle center. �
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Problem 15.3.12

15.3.13 For the massless square plate with
four point masses on the corners, the polar
moment of inertia I cmzz D 0:6 kg�m2. Find
I cmxx of the system. �
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Problem 15.3.13

15.3.14 A uniform square plate (2m on
edge) has a corner cut out. The total mass
of the remaining plate is 3 kg.

a) Where is the center of mass of the
plate at the instant shown?

b) What is the moment of inertia of the
plate about point O?

c) What is the moment of inertia of the
plate about its center of mass?
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Problem 15.3.14

15.3.15 A uniform thin triangular plate of
mass m, height h , and base b lies in the
xy-plane.

a) Set up the integral to find the polar
moment of inertia IOzz of the plate.
�

b) Show that IOzz D
m

6
.h2 C 3b2/ by

evaluating the integral in part (a).

c) Locate the center of mass of the
plate and calculate I cmzz .
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Problem 15.3.15

15.3.16 A uniform thin plate of mass m is
cast in the shape of a semi-circular disk of
radius R as shown in the figure.

a) Find the location of the center of
mass of the plate

b) Find the polar moment of inertia
of the plate, I cmzz . [Hint: It may
be easier to set up and evaluate the
integral for IOzz and then use the
parallel axis theorem to calculate
I cmzz .]

Filename:pfigure4-4-rp10
O

m
R

x

y

Problem 15.3.16

15.3.17 A uniform square plate of side
` D 250mm has a circular cut-out of ra-
dius r D 50mm. The mass of the plate is

m D 1

2
kg.

a) Find the polar moment of inertia of
the plate about its center.

b) Plot I cmzz versus r=`.

c) Find the limiting values of I cmzz for
r D 0 and r D `.
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Problem 15.3.17

15.3.18 A uniform thin circular disk of ra-
dius r D 100mm and mass m D 2 kg has
a rectangular slot of width w D 10mm cut
into it as shown in the figure. You can ap-
proximate the right edge of the cutout as a
straight line (thus your calculation would
be exact for a system that has a very thin
sliver of material closing the gap at the
right).

a) Find the polar moment of inertia
IOzz of the disk.

b) Locate the center of mass of the
disk and calculate I cmzz .

c) estimate the error in your calcula-
tion of the mass, center of mass lo-
cation and moment of inertia due to
not subtracting out the sliver of ma-
terial at the right edge of the slot.
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Problem 15.3.18

15.3.19 Calculate the polar moment of in-
ertia of a uniform square plate with massm
and side ` various ways. Choose numerical
values for m and ` if you want to address
this as a numerical calculation rather than
a theoretical one.

a) As a single uniform plate
b) As a composite of 4 plates, each

with sides `=2
c) As a composite of 100 plates, each

with sides `=10 (These first three
methods should give exactly the
same answer).

d) For the composite of 100 plates now
neglect the terms which concern the
moments of inertia of each small
square about its center of mass.
What is the error in making this ne-
glect? �

15.4 Dynamics
Preparatory Problems
15.4.1 An object consists of a massless bar
with two attached massesm1 andm2. The
object is hinged at O .

a) What is the moment of inertia of the
object about point O (IOzz)?

b) Given � , P� , and R� , what is
*
H=O, the

angular momentum about point O?

c) Given � , P� , and R� , what is P*
H=O, the

rate of change of angular momen-
tum about point O?

d) Given � , P� , and R� , what is T , the
total kinetic energy?

e) Assume that you don’t know � , P�
or R� but you do know that F1 is ap-
plied to the rod, perpendicular to the
rod at m1. What is R�? (Neglect
gravity.)

f) If F1 were applied to m2 instead of
m1, would R� be bigger or smaller?
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Problem 15.4.1

15.4.2 A uniform circular disc rotates at
constant angular speed ! about the origin,
which is also the center of the disc. It’s
radius is R. It’s total mass is M .

a) What is the total force and moment
required to hold it in place (use the
origin as the reference point of an-
gular momentum and torque).

b) What is the total kinetic energy of
the disk?
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Problem 15.4.2

15.4.3 The hinged disk of mass m (uni-
formly distributed) is acted upon by a force
P shown in the figure. Determine the ini-
tial angular acceleration and the reaction
forces at the pin O .
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Problem 15.4.3

15.4.4 A motor turns a bar. A uniform
bar of length ` and mass m is turned by a

motor whose shaft is attached to the end
of the bar at O. The angle that the bar
makes (measured counter-clockwise) from
the positive x axis is � D 2� t2=s2. Ne-
glect gravity.

a) Draw a free body diagram of the
bar.

b) Find the force acting on the bar
from the motor and hinge at t D 1 s.

c) Find the torque applied to the bar
from the motor at t D 1 s.

d) What is the power produced by the
motor at t D 1 s?
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Problem 15.4.4

15.4.5 A physical pendulum. A swing-
ing stick is sometimes called a ‘physical’
pendulum. Take the ‘body’, the system of
interest, to be the whole stick.

a) Draw a free body diagram of the
system.

b) Write the equation of angular mo-
mentum balance for this system
about point O .

c) Evaluate the left-hand-side as ex-
plicitly as possible in terms of the
forces showing on your Free Body
Diagram.

d) Evaluate the right hand side as com-
pletely as possible. You may use the
following facts:

*v D l P� cos � O| C�l P� sin � O{
*a D �l P�2 �cos � O{C sin � O|�

Cl R� �cos � O| � sin � O{�
where ` is the distance along the
pendulum from the top, � is the an-
gle by which the pendulum is dis-
placed counter-clockwise from the
vertically down position, O{ is ver-
tically down, and O| is to the right.
You will have to set up and evaluate
an integral.
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Problem 15.4.5

15.4.6 A uniform one meter bar is hung
from a hinge that is at the end. It is allowed
to swing freely. g D 10m=s2.

a) What is the period of small oscilla-
tions for this pendulum?

b) Suppose the rod is hung 0:4m from
one end. What is the period of
small oscillations for this pendu-
lum? Can you explain why it is
longer or shorter than when it is is
hung by its end?

More-Involved Problems
15.4.7 Motor turns a dumbbell. Two
uniform bars of length ` and mass m are
welded at right angles. At the ends of the
horizontal bar are two more massesm. The
bottom end of the vertical rod is attached to
a hinge at O where a motor keeps the struc-
ture rotating at constant rate ! (counter-
clockwise). What is the net force and mo-
ment that the motor and hinge cause on the
structure at the instant shown?
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ĵ

ω

�

�

motor

Problem 15.4.7

15.4.8 The structure shown in the fig-
ure consists of two point masses connected
by three rigid, massless rods such that the
whole structure behaves like a rigid body.
The structure rotates counterclockwise at
a constant rate of 60 rpm. At the instant
shown, find the force in each rod.
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Problem 15.4.8

15.4.9 Balancing a system of rotating
particles. A wire frame structure is made
of four concentric loops of massless and
rigid wires, connected to each other by
four rigid wires presently coincident with
the x and y axes. Three masses, m1 D
200 grams, m2 D 150 grams and m3 D
100 grams, are glued to the structure as
shown in the figure. The structure rotates
counter-clockwise at a constant rate P� D
5 rad=s. There is no gravity.

a) Find the net force exerted by the
structure on the support at the in-
stant shown. �

b) You are to put a mass m at an ap-
propriate location on the third loop
so that the net force on the support
is zero. Find the appropriate mass
and the location on the loop.
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Problem 15.4.9

15.4.10 Motor turns a bent bar. Two uni-
form bars of length ` and uniform mass
m are welded at right angles. One end is
attached to a hinge at O where a motor
keeps the structure rotating at a constant
rate ! (counterclockwise). What is the net
force and moment that the motor and hinge
cause on the structure at the instant shown.

a) neglecting gravity �

b) including gravity. �
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Problem 15.4.10: A bent bar is rotated by
a motor.

15.4.11 A uniform disk of massM and ra-
dius R rotates about a hinge O in the xy-
plane. A point mass m is fixed to the disk
at a distance R=2 from the hinge. A motor
at the hinge drives the disk/point mass as-
sembly with constant angular acceleration
�. What torque at the hinge does the motor
supply to the system?

15.4.12 A rigid rod of length ` and total
massm is held fixed at one end and whirled
around in circular motion at a constant rate
! in the horizontal plane. Ignore gravity.

a) Find the tension in the rod as a func-
tion of r , the radial distance from
the center of rotation to any desired
location on the rod. �

b) Where does the maximum tension
occur in the rod? �.

c) At what distance from the center
of rotation does the tension drop to
half its maximum value? �.

15.4.13 A thin uniform circular disc of
mass M and radius R rotates in the xy
plane about its center of mass point O .
Driven by a motor, it has rate of change of
angular speed proportional to angular posi-
tion, � D k�5=2. The disc starts from rest
at � D 0.

a) What is the rate of change of angu-
lar momentum about the origin at
� D �

3 rad?

b) What is the torque of the motor at
� D �

3 rad?

c) What is the total kinetic energy of
the disk at � D �

3 rad?
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15.4.14 Neglecting gravity, calculate � D
P! D R� at the instant shown for the system
in the figure.
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Problem 15.4.14

15.4.15 The uniform square shown is re-
leased from rest at t D 0. What is � D
P! D R� immediately after release?
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Problem 15.4.15

15.4.16 Acceleration of a trap door. A
uniform bar AB of mass m and a ball of
the same mass are released from rest from
the same horizontal position. The bar is
hinged at end A. There is gravity.

a) Which point on the rod has the same
acceleration as the ball, immedi-
ately after release. �

b) What is the reaction force on the bar
at end A just after release? �
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Problem 15.4.16

15.4.17 A disk with radius R has a string
wrapped around it which is pulled with a
force F . The disk is free to rotate about the
axis through O normal to the page. The
moment of inertia of the disk about O is
Io. A point A is marked on the string.
Given that xA(0) = 0 and that PxA(0) = 0,
what is xA.t/?
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Problem 15.4.17

15.4.18 A uniform stick with length ` and
mass Mo is welded to a pulley hinged at
the center O . The pulley has negligible
mass and radius Rp . A string is wrapped
many times around the pulley. At time
t D 0, the pulley, stick, and string are at
rest and a force F is suddenly applied to
the string. How long does it take for the
pulley to make one full revolution? Ignore
gravity. �
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Problem 15.4.18: String wraps around a
pulley with a stick glued to it.

Gears, Belt Drives, and Gear
Trains
15.4.19 Constant speed gear train. Gear
A is connected to a motor (not shown) and
gear B, which is welded to gear C, is con-
nected to a taffy-pulling mechanism. As-
sume you know the torque Minput D MA
and angular velocity !input D !A of the
input shaft. Assume the bearings and con-
tacts are frictionless.

a) What is the input power?

b) What is the output power?

c) What is the output torqueMoutput D
MC , the torque that gear C applies
to its surroundings in the clockwise
direction?
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Problem 15.4.19

15.4.20 At the input to a gear box a 100 lbf
force is applied to gear A. At the output,
the machinery (not shown) applies a force
of FB to the output gear. Gear A rotates at
constant angular rate ! D 2 rad=s, clock-
wise.

a) What is the angular speed of the
right gear?

b) What is the velocity of point P ?
c) What is FB?
d) If the gear bearings had friction,

would FB have to be larger or
smaller in order to achieve the same
constant velocity?

e) If instead of applying a 100 lbf to
the left gear it is driven by a mo-
tor (not shown) at constant angular
speed !, what is the angular speed
of the right gear?
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Problem 15.4.20: Two gears with end
loads.

15.4.21 A bevel gear system. A bevel-
type gear system, shown in the figure,
is used to transmit power between two
shafts that are perpendicular to each other.
The driving gear has a mean radius of
50mm and rotates at a constant speed ! D
150 rpm. The mean radius of the driven
gear is 80mm and the driven shaft is ex-
pected to deliver a torque of Mout D
25N�m. Assuming no power loss, find the
input torque supplied by the driving shaft
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Problem 15.4.21: A bevel gear

15.4.22 Belt drives are used to transmit
power between parallel shafts. Two par-
allel shafts, 3m apart, are connected by a
belt passing over the pulleys A and B fixed
to the two shafts. The driver pulley A ro-
tates at a constant 200 rpm. The speed ratio
between the pulleys A and B is 1:2.5. The
input torque is 350N�m. Assume no loss
of power between the two shafts.
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a) Find the input power. �

b) Find the rotational speed of the
driven pulley B �.

c) Find the output torque at B . �
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Problem 15.4.22

15.4.23 In the belt drive system shown,
assume that the driver pulley rotates at a
constant angular speed !. If the motor ap-
plies a constant torque MO on the driver
pulley, show that the tensions in the two
parts, AB and CD, of the belt must be dif-
ferent. Which part has a greater tension?
Does your conclusion about unequal ten-
sion depend on whether the pulley is mass-
less or not? Assume any dimensions you
need.
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Problem 15.4.23

15.4.24 Two racks connected by three
constant rate gears. A 100 lbf force is ap-
plied to one rack. At the output, the ma-
chinery (not shown) applies a force of FB
to the other rack.

a) Assume the gear-train is spinning
at constant rate and is frictionless.
What is FB? �

b) If the gear bearings had friction
would that increase or decrease FB
to achieve the same constant rate?

c) If instead of applying a 100 lbf to
the left rack it is driven by a mo-
tor (not shown) at constant speed v,
what is the speed of the right rack?
�

d) If the angular velocity of the gear
is increasing at rate � does this in-
crease or decrease FB at the given
!.
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Problem 15.4.24: Two racks connected by
three gears.

15.4.25 -3-D accelerating gear train.
This is really a 2-D problem; each gear
turns in a different parallel plane. Shaft B
is rigidly connected to gears G4 and G5.
G3 meshes with gear G6. Gears G6 and
G5 are both rigidly attached to shaft AD.
Gear G5 meshes with G2 which is welded
to shaft A. Shaft A and shaft B spin inde-
pendently. Assume you know the torque
Minput, angular velocity !input and the
angular acceleration �input of the input
shaft. Assume the bearings and contacts
are frictionless.

a) What is the input power?

b) What is the output power?

c) What is the angular velocity
!output of the output shaft?

d) What is the output torqueMoutput?
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Problem 15.4.25: A 3-D gear train.

15.4.26 Gear A with radius RA D 400mm
is rigidly connected to a drum B with
radius RB D 200mm. The com-
bined moment of inertia of the gear and
the drum about the axis of rotation is
Izz D 0:5 kg � m2. Gear A is driven by

gear C which has radius RC D 300mm.
As the drum rotates, a 5 kg mass m is
pulled up by a string wrapped around the
drum. At the instant of interest, The an-
gular speed and angular acceleration of the
driving gear are 60 rpm and 12 rpm=s, re-
spectively. Find the acceleration of the
mass m. �
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Problem 15.4.26

15.4.27 A spindle and pulley arrangement
is used to hoist a 50 kg mass as shown in
the figure. Assume that the pulley is to be
of negligible mass. When the motor is run-
ning at a constant 100 rpm,

a) Find the velocity of the mass at B .
b) Find the tension in strings AB and
CD.
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Problem 15.4.27

15.4.28 Accelerating rack and pinion.
The two gears shown are welded together
and spin on a frictionless bearing. The in-
ner gear has radius 0:5m and negligible
mass. The outer disk has 1m radius and a
uniformly distributed mass of 0:2 kg. They
are loaded as shown with the force F D
20N on the massless rack which is held in
place by massless frictionless rollers. At
the time of interest the angular velocity is
! D 2 rad=s (though ! is not constant).
The point P is on the disk a distance 1m
from the center. At the time of interest,
point P is on the positive y axis.
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a) What is the speed of point P?

b) What is the velocity of point P?

c) What is the angular acceleration �
of the gear?

d) What is the acceleration of point P?

e) What is the magnitude of the accel-
eration of point P?

f) What is the rate of increase of the
speed of point P?
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Problem 15.4.28: Accelerating rack and
pinion

15.4.29 Two racks connected by a gear.
A 100 lbf force is applied to one rack. At
the output the machinery (not shown) ap-
plies a force FB to the other rack.

a) Assume the gear is spinning at con-
stant rate and is frictionless. What
is FB?

b) If the gear bearing had friction,
would that increase or decrease FB
to achieve the same constant rate?

c) If the angular velocity of the gear
is increasing at rate �, does this in-
crease or decrease FB at the given
!.

d) If the output load FB is given then
the motion of the machine can be
found from the input load. Assume
that the machine starts from rest
with a given output load. So long
as rack B moves in the opposite di-
rection of the output force FB the
output power is positive.

1. For what values of FB is the
output power positive?

2. For what values of FB is the
output work maximum if the
machine starts from rest and
runs for a fixed amount of
time?
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Problem 15.4.29: Two racks connected by
a gear.

15.4.30 A rack and pinion constrained
by a linear spring. Neglect gravity. The
spring is relaxed when the angle � D 0.
Assume the system is released from rest
at � D �0. What is the acceleration of
the point P at the end of the stick when
� D 0? Answer in terms of any or all ofm,
R, `, �0, k, O{, and O|. [Hint: There are sev-
eral steps of reasoning required. You might
want to draw FBD(s), use angular momen-
tum balance, set up a differential equation,
solve it, plug values into this solution, and
use the result to find the quantities of inter-
est.

Filename:p-f96-p2-2

P

k

R

m,ℓ

θ
ı̂

̂

Problem 15.4.30

Pendulum Problems
15.4.31 A small particle of mass m is at-
tached to the end of a thin rod of mass M
(uniformly distributed), which is pinned at
hinge O, as depicted in the figure.

a) Obtain the equation of motion gov-
erning the rotation � of the rod.

b) What is the natural frequency of the
system for small oscillations �?

Filename:pfigure-blue-151-3

m

M

�/3

2�/3 θ

O
g

Problem 15.4.31

15.4.32 A rigid massless rod has two equal
masses mB and mC (mB D mC D m)
attached to it at distances 2` and 3`, re-
spectively, measured along the rod from a
frictionless hinge located at a point A. The
rod swings freely from the hinge. There is
gravity. Let � denote the angle of the rod
measured from the vertical. Assume that �
and P� are known at the moment of interest.

a) What is R�? Find R� in terms of m, `,
g, � and P�.

b) What is the force of the hinge on the
rod? Solve in terms of m, `, g, �,
P�, R� and any unit vectors you may
need to define.

c) Would you get the same answers if
you put a mass 2m at 2:5`? Why or
why not?
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Problem 15.4.32

15.4.33 For the pendula in the figure :

a) Without doing any calculations, try
to figure out the relative durations
of the periods of oscillation for the
five pendula (i.e. the order, slowest
to fastest) Assume small angles of
oscillation.

b) Calculate the period of small oscil-
lations. [Hint: use balance of angu-
lar momentum about the point 0]. �

c) Rank the relative duration of oscil-
lations and compare to your intu-
itive solution in part (a), and explain
in words why things work the way
they do.
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Problem 15.4.33

15.4.34 A pegged compound pendulum.
A uniform bar of mass m and length `
hangs from a peg at point C and swings
in the vertical plane about an axis passing
through the peg. The distance d from the
center of mass of the rod to the peg can be
changed by putting the peg at some other
point along the length of the rod.

a) Find the angular momentum of the
rod about point C.

b) Find the rate of change of angular
momentum of the rod about C.

c) How does the period of the pendu-
lum vary with d? Show the varia-
tion by plotting the period against
d
`

. [Hint, you must first find the
equations of motion, linearize for
small � , and then solve.] �

d) Find the total energy of the rod (us-
ing point C as a datum for potential
energy).

e) Find R� when � D �=6.

f) Find the reaction force on the rod at
C, as a function of m, d , `, � , and
P� .

g) For the given rod, what should be
the value of d (in terms of `) in or-
der to have the fastest pendulum? �

h) Test of Schuler’s pendulum. The
pendulum with the value of d ob-
tained in (g) is called the Schuler’s
pendulum. It is not only the fastest
pendulum but also the “most accu-
rate pendulum”. The claim is that
even if d changes slightly over time
due to wear at the support point,
the period of the pendulum does not
change much. Verify this claim by
calculating the percent error in the

time period of a pendulum of length
` D 1m under the following three
conditions: (i) initial d D 0:15m
and after some wear d D 0:16m,
(ii) initial d D 0:29m and after
some wear d D 0:30m, and (iii)
initial d D 0:45m and after some
wear d D 0:46m. Which pendu-
lum shows the least error in its time
period? What is the connection be-
tween this result and the plot ob-
tained in (c)?
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Problem 15.4.34

15.4.35 A uniform stick of length ` and
mass m is a hair away from vertically up
position when it is released with no angular
velocity (a ‘hair’ is a technical word that
means ‘very small amount, zero for some
purposes’). It falls to the right. What is the
force on the stick at pointO when the stick
is horizontal. Solve in terms of `, m, g, O{,
and O|. Carefully define any coordinates,
base vectors, or angles that you use.
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Problem 15.4.35

15.4.36 A massless 10 meter long bar is
supported by a frictionless hinge at one end
and has a 3:759 kg point mass at the other
end. It is released at t D 0 from a tip an-
gle of � D :02 radians measured from ver-
tically upright position (hinge at the bot-
tom). Use g D 10m s�2.

a) Using a small angle approximation
and the solution to the resulting lin-
ear differential equation, find the

angle of tip at t D 1s and t D 7s.
Use a calculator, not a numerical in-
tegrator.

b) Using numerical integration of the
non-linear differential equation for
an inverted pendulum find � at t D
1s and t D 7s.

c) Make a plot of the angle versus time
for your numerical solution. In-
clude on the same plot the angle
versus time from the approximate
linear solution from part (a).

d) Comment on the similarities and
differences in your plots.

15.4.37 A zero length spring (relaxed
length `0 D 0) with stiffness k D 5N=m
supports the pendulum shown.

a) Find R� assuming P� D 2 rad=s, � D
�=2. �

b) Find R� as a function of P� and � (and
k, `, m, and g.) �

[Hint: use vectors (otherwise it’s
hard)]

[Hint: For the special case, kD D mg,
the solution simplifies greatly.]
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Problem 15.4.37

15.4.38 A spring-mass-damper system is
depicted in the figure. The horizontal
damping force applied at B is given by
FD D �c PyB
The dimensions and parameters are as fol-
lows:

rB=0 D 2f t

rA=0 D ` D 3f t

k D 2 lbf= ft
c D 0:3 lbf � s= ft

For small � , assume that sin.�/ � � and
cos.�/ � 1.
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a) Determine the natural circular fre-
quency of small oscillations
about equilibrium for the pendulum
shown. The static equilibrium po-
sition is � D 0 (pendulum hanging
vertically), so the spring is at its rest
point in this position. Idealize the
pendulum as a point mass attached
to a rigid massless rod of length 1,
so IO D m`2. Also use the “small
angle approximation” where appro-
priate.

b) Sketch a graph of � as a function of
t .t � 0/ if the pendulum is released
from rest at position � D 0:2 rad
when t D 0. Your graph should
show the correct qualitative behav-
ior, but calculations are not neces-
sary.
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Problem 15.4.38

15.4.39 The asymmetric dumbbell shown
in the figure is pivoted in the center and
also attached to a spring at one quarter of
its length from the bigger mass. When the
bar is horizontal, the compression in the
spring is ys . At the instant of interest, the
bar is at an angle � from the horizontal; �
is small enough so that y � L

2 � . If, at this
position, the velocity of mass ‘m’ is v O| and
that of mass 3m is�v O|, evaluate the power
term (

P *
F �*v) in the energy balance equa-

tion.
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Problem 15.4.39

15.4.40 The dumbbell shown in the fig-
ure has a torsional spring with spring con-
stant k (torsional stiffness units are kN�m

rad ).
The dumbbell oscillates about the horizon-
tal position with small amplitude � . At an

instant when the angular velocity of the bar
is P� Ok, the velocity of the left mass is�L P� O|
and that of the right mass is L P� O|. Find the
expression for the power P of the spring
on the dumbbell at the instant of interest.
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Problem 15.4.40

15.4.41 A square plate with side ` and
mass m is hinged at one corner in a grav-
itational field g. Find the period of small
oscillation.
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Problem 15.4.41

15.4.42 A thin hoop of radius R and mass
M is hung from a point on its edge and
swings in its plane. Assuming it swings
near to the position where its center of
mass G is below the hinge:

a) What is the period of its swinging
oscillations?

b) If, instead, the hoop was set to
swinging in and out of the plane
would the period of oscillations be
greater or less?
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Problem 15.4.42

15.4.43 Oscillating disk. A uniform disk
with mass m and radius R pivots around a
frictionless hinge at its center. It is attached
to a massless spring which is horizontal
and relaxed when the attachment point is
directly above the center of the disk. As-
sume small rotations and the consequent
geometrical simplifications. Assume the
spring can carry compression. What is the
period of oscillation of the disk if it is dis-
turbed from its equilibrium configuration?
[You may use the fact that, for the disk

shown, P*
H=O D 1

2mR
2 R� Ok, where � is the

angle of rotation of the disk.]. �
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Problem 15.4.43

15.4.44 A thin rod of mass m and length
` is hinged with a torsional spring of stiff-
nessK at A, and is connected to a thin disk
of massM and radiusR at B. The spring is
uncoiled when � D 0. Determine the nat-
ural frequency !n of the system for small
oscillations � , assuming that the disk is:

a) welded to the rod, and �

b) pinned frictionlessly to the rod. �
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Problem 15.4.44

15.4.45 Robotics problem: Simplest bal-
ancing of an inverted pendulum. You
are holding a stick upside down, one end
is in your hand, the other end sticking up.
To simplify things, think of the stick as
massless but with a point mass at the up-
per end. Also, imagine that it is only a
two-dimensional problem (either you can
ignore one direction of falling for simplic-
ity or imagine wire guides that keep the
stick from moving in and out of the plane
of the paper on which you draw the prob-
lem).
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You note that if you model your hold-
ing the stick as just having a stationary
hinge then you get R� D g

l
sin�. Assum-

ing small angles, this hinge leads to expo-
nentially growing solutions. Upside-down
sticks fall over. How can you prevent this
falling?

One way to do keep the stick from
falling over is to firmly grab it with your
hand, and if the stick tips, apply a torque
in order to right it. This corrective torque
is (roughly) how your ankles keep you bal-
anced when you stand upright. Your task
in this assignment is to design a robot that
keeps an inverted pendulum balanced by
applying appropriate torque.

Your model is: Inverted pendulum,
length `, point mass m, and a hinge at
the bottom with a motor that can apply a
torque Tm. The stick might be tipped an
angle � from the vertical. A horizontal dis-
turbing force F.t/ is applied to the mass
(representing wind, annoying friends, etc).

a) Draw a picture and a FBD

b) Write the equation for angular mo-
mentum balance about the hinge
point. �

c) Imagine that your robot can sense
the angle of tip � and its rate of
change P� and can apply a torque
in response to that sensing. That is
you can make Tm any function of �
and P� that you want. Can you find
a function that will make the pen-
dulum stay upright? Make a guess
(you will test it below).

d) Test your guess the following way:
plug it into the equation of motion
from part (b), linearize the equation,
assume the disturbing force is zero,
and see if the solution of the dif-
ferential equation has exponentially
growing (i.e. unstable) solutions.
Go back to (c) if it does and find a
control strategy that works.

e) Pick numbers and model your sys-
tem on a computer using the full
non-linear equations. Use initial
conditions both close to and far
from the upright position and plot �
versus time.

f) If you are ambitious, pick a non-
zero forcing function F.t/ (say a
sine wave of some frequency and
amplitude) and see how that affects
the stability of the solution in your
simulations.
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Problem 15.4.45

Mixed Problems
15.4.46 Assume that the pulley shown in
figure(a) rotates at a constant speed !. Let
the angle of contact between the belt and
pulley surface be � . Assume that the belt
is massless and that the condition of im-
pending slip exists between the pulley and
the belt. The free body diagram of an in-
finitesimal section ab of the belt is shown
in figure(b).

a) Write the equations of linear mo-
mentum balance for section ab of
the belt in the O{ and O| directions.

b) Eliminate the normal force N from
the two equations in part (a) and get
a differential equation for the ten-
sion T in terms of the coefficient of
friction � and The contact angle � .

c) Show that the solution to the equa-
tion in part (b) satisfies T1

T2
D e�� ,

where T1 and T2 are the tensions in
the lower and the upper segments of
the belt, respectively.
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ĵ

Problem 15.4.46

15.4.47 A belt drive is required to trans-
mit 15 kW power from a 750mm diameter
pulley rotating at a constant 300 rpm to a
500mm diameter pulley. The centers of
the pulleys are located 2:5m apart. The
coefficient of friction between the belt and
pulleys is � D 0:2.

a) (See problem 15.4.46.) Draw a neat
diagram of the pulleys and the belt-
drive system and find the angle of
lap, the contact angle � , of the belt
on the driver pulley.

b) Find the rotational speed of the
driven pulley.

c) (See the figure in problem 15.4.46.)
The power transmitted by the belt
is given by power = net tension �
belt speed, i.e., P D .T1 � T2/v,
where v is the linear speed of the
belt. Find the maximum tension in
the belt. [Hint: T1

T2
D e�� (see

problem 15.4.46).]

d) The belt in use has a 15mm�5mm
rectangular cross-section. Find the
maximum tensile stress in the belt.

15.4.48 Slippery money A round uniform
flat horizontal platform with radius R and
mass m is mounted on frictionless bear-
ings with a vertical axis at 0. At the mo-
ment of interest it is rotating counter clock-
wise (looking down) with angular veloc-
ity *! D ! Ok. A force in the xy plane
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with magnitude F is applied at the perime-
ter at an angle of 30� from the radial di-
rection. The force is applied at a location
that is � from the fixed positive x axis. At
the moment of interest a small coin sits
on a radial line that is an angle � from
the fixed positive x axis (with mass much
much smaller than m). Gravity presses it
down, the platform holds it up, and friction
(coefficient=�) keeps it from sliding.

Find the biggest value of d for which
the coin does not slide in terms of some or
all of F;m; g;R; !; �; �, and �.
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Problem 15.4.48

15.4.49 Frequently parents will build a
tower of blocks for their children. Just
as frequently, kids knock them down. In
falling (even when they start to topple
aligned), these towers invariably break in
two (or more) pieces at some point along
their length. Why does this breaking oc-
cur? What condition is satisfied at the
point of the break? Will the stack bend
towards or away from the floor after the
break?
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Problem 15.4.49
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CHAPTER 16
General planar motion of

a single rigid object
The main goal here is to generate equations of motion for general planar
motion of a (planar) rigid object that may roll, slide or be in free flight.
Multi-object systems are also considered so long as they do not involve other
kinematic constraints between the bodies. Features of the solution that can
be obtained from analysis are discussed, as are numerical solutions.
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Many machine and structural parts move in straight-lines (Chapter 12) or
circles (Chapters 13). But other things have with more general motions, like
a plane in unsteady flight or a connecting rod in a car engine. Keeping track
of such motion is a bit more difficult.

In this chapter we will use these two modeling approximations:

� The objects are planar, or symmetric with respect to a plane; and

� They have planar motions in that plane.

A planar object is one where the whole object is flat and all its matter is
confined to one plane, say the xy plane. This is a palatable approximation
for a piece cut out of flat sheet metal. For more substantial real objects, like
a full car, the approximation seems at a glance to be terrible. But it turns
out that so long as the motion is planar and the car is reasonably idealized
as symmetrical (left to right) that treating the car as equivalent to it being
squished into a plane does not introduce any more approximation. Thus,
even in this 3-D world we live in with 3-D objects, it is fruitful to do 2-D
analysis of the type you will learn in this chapter.

A planar motion is one where the velocities of all points are in the same
constant plane, say a fixed xy plane, at all times and where points with, say,
the same z coordinate have the same velocity. The positions of the points do
not have to be in same plane for a planar motion. Each point stays in a plane,
but different points can be in different planes, with each plane parallel to the
others.

Example: A car going over a hill
Assume the road is straight in map view in, say, the x direction. Assume the whole
width of the road has the same hump. Although the car is clearly not planar, the car
motion is probably close to planar, with the velocities of all points in the car in the
xy plane (see fig. 16.1)

Example: Skewered sphere
A sphere skewered and rotating about a fixed axes in the Ok direction has a planar
motion (see fig. 16.2). The points on the object do not all lie in a common plane.
But all of the velocities are orthogonal to Ok and thus in the xy plane. This problem
does fit in with the methods of this chapter. The symmetry of the sphere with respect
to the xy plane makes it so that the three-dimensional mass distribution does not
invalidate the two-dimensional analysis.
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Figure 16.1: Planar motion of a 3D car.
If the car is symmetrical it can be stud-
ied by the means of this chapter.
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Figure 16.2: Planar motion of a skew-
ered sphere. This can be studied by the
means in this chapter.
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Figure 16.3: Planar motion of a planar
object. But the plane of the motion is
not the plane of the object. This is not a
natural topic for this chapter.
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1 Actually, a two-dimensional analy-
sis of the plate in this example we would
be legitimate in this sense. Project all
the plate’s mass into the plane normal to
the O� direction. The projections of the
forces on this plane would be correctly
predicted, but three dimensional effects,
like those associated with dynamic im-
balance, would be lost in this projection.

Example: Skewered plate
A flat rectangular plate with normal On has a fixed axis of rotation in the direction O�
that makes a 45

�
to On (see fig. 16.3). This is a planar object (a plane normal to On) in

planar motion (all velocities are in the plane normal to O�). But the plane of motion
is not the plane of the mass distribution, the object is not symmetric with respect to
a motion plane, so this example does not fit into the discussion of this chapter 1.

No real object is exactly planar and no real motion is exactly a planar mo-
tion. But many objects are relatively flat and thin or symmetrical and many
motions are approximately planar motions. Thus many, if not most, simple
engineering analyses assume planar motion. For bodies that are approxi-
mately symmetric about the xy plane of motion (such as a car, if the asym-
metrically placed driver’s mass etc. is neglected), there is no loss in doing a
two-dimensional planar rather than full three dimensional analysis.

The plan of this chapter. We start with planar kinematics. Then we evalu-
ate and use expressions for the rates of change of linear and angular momen-
tum for planar bodies. Finally we discuss rolling, sliding and collisions.

16.1 Description of motion: planar
rigid-object kinematics

As a rigid object moves, how do the points on it move? There are two rea-
sons to ask this question. First, velocities and accelerations of mass points
are needed to apply the momentum-balance equations. Second, formulas
for positions, velocities and accelerations of points are useful to understand
mechanisms, machines where various parts (each one usually idealized as a
rigid object) are connected to each other with hinges and bearings of one type
of another.

The central observation in all rigid-object kinematics is the definition of
a rigid object:

All pairs of points on a single rigid object keep constant distance from
each other as the object moves.

In this section you will learn how to use rigidity to calculate positions,
velocities and accelerations of all points (millions and billions of them) on a
rigid object given only a few numbers (9 of them). This goal is achieved by
putting together the ideas from Chapter 11 (arbitrary motion of one particle),
Chapter 12 (straight-line motion), and Chapter 13 (circular motion of a rigid
object in a plane).

Displacement and rotation
When a planar object (say a machine part) B moves from one configuration
in the plane to another it has a displacement and a rotation. It starts in some
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reference configuration *. We mark a reference point on the body that, in the
reference configuration, coincides with a fixed reference point, say 0 1. We
also mark a (directed) line on the body that, in the reference configuration,
coincides with a fixed reference line, say the positive x axis.

We could measure rotation by measuring the rotation of any line segment
connecting any pair of points fixed to the object. For each line we keep track
of the angle that line makes with a line fixed in space, say the positive x or y
axis. Its simplest to stick to the convention that counter-clockwise rotations
are positive (fig. 16.4). The angles �1, �2 : : : , all change with time and are
all different from each other. But all the angles change the same amount, just
like in section 15.1. We can pick any one line we like for definiteness and
measure the object rotation by the rotation of that line. So

The net motion of a rigid planar object is described by translation,
the vector displacement of a reference point from a reference position
*
ro0=o D *

roo0 , and a scalar rotation � of the reference line from its refer-
ence orientation.

The position of a point on a moving rigid object.
Given that P on the object is at*rP=0

� in the reference (*) configuration, where
is it (What is *

rP=0?) after the object has been displaced by *
r00=0 and rotated

an angle �?

The base-independent or direct vector notation. An easy way to treat
this is to write the new position of P as (see fig. 16.5), in the base-independent
or direct vector representation of the position of P,

*
rP=0 D*

r00=0 C*
rP=00 : (16.1)

The vector *
r00=0 describes translation, that’s half the story. The other term

*
rP=00 we find by rotating *

rP=0
� as we did in Section 15.2. This ‘base-

independent’ formula is correct no matter what base vectors are used to rep-
resent the vectors in the formula (e.g., O{ and O| or O{0 and O|0).

Fixed basis or component representation. For a given basis, say O{ and O|
associated with x and y, we can write the coordinates of a point as,�

*
rP=0

�
xy
D �

*
r00=0

�
xy� �� �

displacement

C �R.�/� �*rP=00�x0y0� �� �
rotation

(16.2)

or, writing out all the components of the vectors and matrices, We get the
fixed basis or component representation of the motion:�

xP
yP

�
D
�
x00=0
y00=0

�
C
�

cos � � sin �
sin � cos �

�"
x�
P=0

y�
P=0

#
: (16.3)

1The body never has to pass through
this reference position, however. For ex-
ample, the position of an airplane fly-
ing from New York to Mumbai is mea-
sured relative to a point in the Gulf of
Guinea 1000 miles west of Gabon ( the
location of O

�
longitude and O

�
lat-

itude) even though the airplane never
goes there (nor does anyone want it to).
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�2 ¤ �3 etc, but P�1 D P�2 D P�3 D : : : .
Angular velocity is defined as *! D ! Ok
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Filename:tfigure-posomega
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Figure 16.6: It is generally best to take
positive ! to be counterclockwise when
viewed from the positive z axis.

As the motion progresses the displacement
�
x00=0
y00=0

�
changes with time as

does the rotation angle � . In this fixed basis or component representation of
the motion of eqn. (16.3) we get the components of the position in terms of
base vectors that are fixed in space.

Example:
If in the reference position a particle on a rigid object is at*rP=0 D .1O{C 2 O|/m and
the object displaces by *r00=0 D .3O{ C 4 O|/m and rotates by � D �=3 rad D 60�
relative to that configuration, then its new position is:�

*rP=0
�
xy

D �
*r00=0

�
xy
C �

R.�/
� �
*rP=00

�
x0y0

D
2
4 x00=0

y00=0

3
5C

2
4 cos � � sin �

sin � cos �

3
5
2
4 x�P=0

y�P=0

3
5

D
8<
:
2
4 3

4

3
5C

2
4 cos�=3 � sin�=3

sin�=3 cos�=3

3
5
2
4 1

2

3
5
9=
; m

D
2
4 3:5 �

p
3

5C
p
3=2

3
5 m

)*rP=0 D
�
.3:5 �

p
3/O{C .5C

p
3=2/ O|

�
m

Changing-base representation. Finally, the changing base representation
uses base vectors O{0; O|0 that are aligned with O{; O| in the reference configuration
but which are glued to the rotating object. If we define x0 and y0 as the x and
y components of P in the reference (*) configuration we have that

�
*
rP=0

��
xy

D �
*
rP=00

��
x0y0

D
�
x0
y0
�

so *
rP=0 D �

x00=0 O{C y00=0 O|
�C �

x0 O{0 C y0 O|0� : (16.4)

The second equation above is the changing base representation.
Although all three notations are in some sense equivalent, they have their

best uses depending on context. The base-independent or direct-vector no-
tation eqn. (16.1) is the most direct, least ornate and shortest to write. The
component or fixed base representation eqn. (16.3) is the best for computer
calculations. And the changing-base notation eqn. (16.4) is the most explicit
for pencil and paper work.

Angular velocity
Because all lines object B rotate at the same rate (at a given instant) B’s
rotation rate is the single number we call !B (‘omega b’). As for the case of
pure rotation, we define a vector angular velocity with magnitude !B which
is perpendicular to the xy plane:

*
!B D !B����

P�

Ok
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where P� is the rate of change of the angle of any line marked on object B.
So long as you are careful to define angular velocity by the rotation of

line segments and not by the motion of individual particles, the concept of
angular velocity in general motion is defined exactly as for an object rotating
about a fixed axis. The key kinematic fact is, in words:

On a rigid object in 2D any given point is moving in circles about any
other given point (relative to that point).

So you can think of the general planar motion of a rigid object is the general
motion of a point plus uniform circular motion about that point. When a
rigid object moves it always has an angular velocity (possibly zero). If we
call the object B (script B for body), we then call the object’s angular velocity
*
!B. Again, it is generally best to use the CCW sign convention that when
!B > 0 the object is rotating counterclockwise when viewed looking in from
a point outside the object on the positive z axis (that is, ‘looking down’, see
fig. 16.6).

The angular velocity vector *
!B of a object B describes it’s rate and

direction of rotation. For planar motions *
!B D !B Ok.

Relative velocity of two points on a rigid object
For any two points A and B glued to a rigid object B the relative velocity
*
vB=A of the points (‘the velocity of B relative to A’) is given by the cross
product of the angular velocity of the object with the relative position of the
two points (fig. 16.7):

*
vB=A �*

vB �*
vA D *

!B �*
rB=A: (16.5)

That is, the relative velocity of two points on a rigid object is the same as
would be predicted for one of the points if the other were stationary. The
derivation of this formula is the same as for planar circular motion.

Note that we use three-dimensional cross products even though we are
doing planar 2D kinematics. Generally the plane of motion is the xy plane
and *

! will be in the z direction. Because *
!�*

r must be perpendicular to *
! it

is perpendicular to the z axis. So the three dimensional cross product *! �*
r

gives a vector that is perpendicular to *
r and is in the xy plane .
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Figure 16.7: The relative velocity of
points A and B is in the xy plane and
perpendicular to the line segment AB.
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We can also represent the relative velocity in the changing base notation
as

*
vB=A D d

dt

�
x0B/A O{0 C y0B/A O|0

�
D x0B/A

d

dt
O{0 C y0B/A

d

dt
O|0

D x0B/A
�
*
!B � O{0

�C y0B/A
�
*
!B � O|0� :

That is, the relative velocity is the same as the relative position, but with the
base vectors substituted with their rates of change.

Finally, we can use the fixed-base or component notation for position and
differentiate the terms 15.5 (See also box 15.5 on page 705):�

*
vB=A

�
xy

D d

dt

�
xB=A
yB=A

�

D d

dt

(�
cos � � sin �
sin � cos �

�"
x�B=A
y�B=A

#)

D
� � P� sin � � P� cos �

P� cos � � P� sin �

�"
x�B=A
y�B=A

#

D
�

0 �!
! 0

� �
cos � � sin �
sin � cos �

�"
x�B=A
y�B=A

#

where x�
B=A

and y�
B=A

are the components of the position of B with respect
to A in the reference configuration and hence do not change with time.

Absolute velocity of a point on a rigid object
If one knows the velocity of one point on a rigid object and one also knows
the angular velocity of the object, then one can find the velocity of any other
point. How? By addition. Say we know the velocity of point A, the angular
velocity of the object, and the relative position of A and B, then

*
vB D *

vA C .*vB �*
vA/

D *
vA C*

vB=A

D *
vA C *

!B � *
rB=A����
*
rB�*rA

: (16.6)

That is, the absolute velocity of the point B is the absolute velocity of the
point A plus the velocity of the point B relative to the point A (fig. 16.8).

Equation (16.6) is a 2D vector equation, and thus equivalent to 2 scalar
equations, in 4 vectors which have 7 independent components (*! only has
one independent component). Generally one could use eqn. (16.6) to solve
for any 2 components in terms of the other 5.
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Instantaneous Center of Rotation. Interestingly, for any planar object
with non-zero ! there is some point C ‘on’ the object that has exactly zero
velocity (fig. 16.9). By ‘on’ the object we mean a point that moves with the
object in a rigid way. Imagine a giant sheet of clear plexiglass glued to the
object and extending way beyond the object. By ‘on’ the object we mean a
point on the plexiglass. Why must there be such a point? Consider a point
A on the object with some velocity. Relative to A the other points are going
in circles. Each radial line extending from A has a relative velocity orthog-
onal to that line. Thus, considering all radial lines, every velocity direction
is represented. And the relative velocities have magnitudes from 0 to infinity
as points on a radial line are scanned from A outwards. Thus each possible
relative velocity is had by some point ‘on’ the body. And one of those ex-
actly cancels the velocity of A. Thus some point C has no velocity and all
other points on the body rotate around it. This point is called the center of
rotation. For other than purely circular motion, as an object moves, its center
of rotation changes with time. See Sample 16.2 on page 782 for more details.

When trying to understand a mechanism it is often useful to think about
the locus of locations of the center of rotation of each of the parts.

Angular acceleration
The angular acceleration *

� (‘alpha’) of a rigid object is the rate of change of
angular velocity, *� D P*!. The angular acceleration of a object B is *

�B. As
for angular velocity, in 2D angular acceleration is perpendicular to the plane
of motion:

*
! D ! Ok and *

� D � Ok D P! Ok:
In 2D the angular acceleration is only due to the speeding up or slowing down
of the rotation rate; i.e., � D P! D R� .

Relative acceleration of two points on a rigid object
For any two points A and B glued to a rigid object B, the acceleration of B
relative to A is

*
aB=A D d

dt

*
vB=A

D d

dt

�
*
!B �*

rB=A
	

D P*!B �*
rB=A C *

!B � .*vB=A/;

D P*!B �*
rB=A C *

!B � .*!B �*
rB=A/;

D �B Ok �*
rB=A C .�!2B*rB=A/; (16.7)

This is the base-independent or direct-vector expression for relative acceler-
ation. If point A has no acceleration, this formula is the same as that for the
acceleration of a point going in circles from chapter 7.
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Figure 16.10: A two link robot arm.

Equation (16.7) could also be derived, with some algebra, by taking two
time derivatives of the relative position coordinate expression�

*
rB=A

�
xy
D �

R.�/
� �

*
rB=A

��
x0y0

or by taking two time derivatives of the changing base vector expression

*
rB=A D x0B=A O{0 C y0B=A O|0:

Absolute acceleration of a point on a rigid object
If one knows the acceleration of one point on a rigid body and the angular
velocity and acceleration of the body, then one can find the acceleration of
any other point. How? Add the absolute acceleration of one point to the
acceleration of the second relative to the first.

*
aB D *

aA C .*aB �*
aA/ D*

aA C*
aB=A

D *
aA C *

!B � .*!B �*
rB=A/C P*!B �*

rB=A

D *
aA � !2B

*
rB=A C �B Ok �*

rB=A (16.8)

This is the base-independent or direct-vector expression for acceleration.
The fixed-base (component) and changing-base notations are somewhat more
complex.

Equation 16.8 is often called ‘the three term acceleration formula’ be-
cause the acceleration of B is the sum of three terms. First is *

aA, the accel-
eration of some point A on the object. Second is *

!B � .*!B � *
rB=A), the

centripetal acceleration of B going in circles relative to A. It is directed from
B towards A. Third is P*!B �*

rB=A, due to the change in the magnitude of the
angular velocity. The third term is in the direction normal to the line from A
to B (tangent to the circle of B going around A).

Example: Robot arm
Given the configuration shown in fig. 16.10 the acceleration of point B can be

found by thinking of link AB as the object B in eqn. (16.8) and using what you
know about circular motion to find the acceleration of A:

*aB D *aA � !2B*rB=A C �B Ok �*rB=A

D
�
�!2OA` O| � P!OA`O{

�
�
�
!2AB`O{

�
C
�
P!AB

Ok � .`O{/
�

D �
�
P!OA`C !2AB`

�
O{C

�
�!2OA`C P!AB`

�
O|

[Note that !AB ¤ P� where � is the angle between the links. Rather !AB D !0A CP� .]
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Computer graphics

Given one point given by the xy pair
�
x0
y0

�
we can find out what happens

to it by rotation �R� as �
x

y

�
D �R�

�
x0
y0

�
:

For example the point
�
0

2

�
gets changed by a 45 deg rotation to

�
x

y

�
D �R�

�
x0
y0

�
D

�
cos �

4
� sin �

4

sin �
4

cos �
4

� �
0

2

�

�
�
:7 �:7
:7 :7

� �
0

2

�
�
� �1:4

1:4

�
:

A translation is just a vector addition. For example the point
� �1:4

1:4

�
gets

translated a distance 2 in the y direction by the addition of
�
xt
yt

�
D
�
0

2

�
like this�

x

y

�
translated

D
�
x

y

�
C
�
xt
yt

�
D
� �1:4

1:4

�
C
�
0

2

�
D
� �1:4

3:4

�
:

Putting these together the point
�
x0
y0

�
gets rotated and translated by first

multiplying by the rotation matrix and then adding the translation:�
x

y

�
D �R�

�
x0
y0

�
C
�
xt
yt

�
�

�
:7 �:7
:7 :7

� �
0

2

�
C
�
0

2

�
�
� �1:4

3:4

�
:

A collection of points all rotated the same amount and then all translated the
same amount keep their relative distances.

A picture is a set of points on a plane. If all the points are rotated and
translated the same amount the picture is rotated and translated. Thus a pic-
ture of a rigid object described by points is rigidly rotated and translated. On
a computer line drawings are often represented as a connect-the-dots picture.
The picture is represented by the x and y coordinates of the reference dots
at the corners. These can be stored in an array with the first row being the x
coordinates and the second row the y coordinates as explained on page 696.
Each column of this matrix represents one point of the connect-the-dots pic-
ture. Thus a primitive picture of a house at the origin is given by the array

�P0� � �xy points originally� D
�
0 2 2 1 0 0

0 0 2 3 2 1

�
with the lower left corner of the house at the origin.

To rotate this picture we rotate each of the columns of the matrix P0�. But
this is exactly what is accomplished by the matrix multiplication �R��P0�. To
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Figure 16.11: (a) A house drawn as 6
dots connected by line segments. The
first and last point are the same. (b) The
same house but rigidly rotated and trans-
lated.

2In 1D it takes just 3 numbers and in
3D just 18. The unusual pattern (3,9,18)
comes from rotation being characterized
by 0, 1, and 3 numbers in 1, 2, and 3
dimensions, respectively.

translate the points you add the translation vector to each of the columns of
the resulting matrix. Thus the whole picture rotated by 45

�
and translated up

by 1 is given by

�Pnew� D �R��P0�C
�
xt
yt

�
�

�
:7 :7

�:7 :7

�
�P0�C

�
0

1

�
which gives a new array of points that, when connected give the picture
shown. We have allowed the informal notation of adding a column matrix
to a rectangular matrix, by which we mean adding to each column of the
rectangular matrix.

To animate the motion of a house flying in, say, the Wizard of Oz, you
would first define the house as the set of points �P0�. Then define, maybe by
means of numerical solution of differential equations, a set of rotations and
translations. Then for each rotation and translation the picture of the house
should be drawn, one after the other. The sequence of such pictures is an
animation of a flying and spinning house.

Summary of the kinematics of one rigid object in
general 2D motion
You can use the position of one reference point and the rotation of the ob-
ject as simple kinematic measures of the entire motion of the object. If you
know the position, velocity, and acceleration of one point on a rigid object
(represented by 6 scalars, say) , and you know the angular rate and angular
acceleration (3 scalars) then you can find the position, velocity and acceler-
ation of any point on the object (also given its initial position). In 2D, just 9
numbers tell you the position, velocity, and acceleration of any of the billions
of points whose initial positions you know 2.
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SAMPLE 16.1 Velocity of a point on a rigid body in planar motion. An
equilateral triangular plate ABC is in motion in the x-y plane. At the instant
shown in the figure, point B has velocity *

vB D 0:3m=sO{C 0:6m=s O| and the
plate has angular velocity *

! D 2 rad=s Ok.
1. Find the velocity of point A using vector calculations.

2. Find the velocity of point C using matrix calculations.

Solution

1. We are given *vB and !, and we need to find *vA, the velocity of point A on the same
rigid body. We know that,

*vA D*vB C*! �*rA=B

Thus, to find *vA, we need to find *rA=B. Let us take an x-y coordinate system whose
origin coincides with point A of the plate at the instant of interest and the x-axis is
along AB. Then,

*rA=B D*rA �*rB D
*
0 � .0:2mO{/ D �0:2mO{

Thus,

*vA D *vB C*! �*rA=B

D .0:3O{C 0:6 O|/m=sC 2 rad=s Ok � .�0:2O{/m

D .0:3O{C 0:2 O|/m=s:

*vA D .0:3O{C 0:2 O|/m=s

2. Let xy axes with origin at A be fixed in space with x-axis along AB at the instant of
interest. Let x0y0 axes be fixed to the plate with origin at O and the x0-axis along AC
as shown in fig. 16.13. Thus the coordinates of point C in the rotating axes are�

x0
C
y0
C

�
D
�
0:2m
0

�

Clearly, at the instant of interest, the rotating axes make an angle of � D �=3 with the
fixed axes. Now, we can calculate the velocity of point C as follows.

�*vC�xy D �*vA�xy C
�
0 �!
! 0

� �
cos � � sin �
sin � cos �

�"
x0
C=A

y0
C=A

#
:

Using � D �=3, the angle that the rotating axes make with the fixed axes at the instant
of interest, and ! D 2 rad=s, we get

�*vC�xy D
�
0:3m=s
0:2m=s

�
C
�

0 �2 rad=s
2 rad=s 0

�"
1
2 �

p
3
2p

3
2

1
2

#�
0:2m
0

�

D
�
0:3m=s
0:2m=s

�
C
� �0:35m=s

0:2m=s

�
D
� �0:05m=s

0:4m=s

�
:

Thus, *vC D �0:05m=sO{ C 0:4m=s O|. We can also verify this answer by computing
*vC D*vB C*! �*rC=B.

*vC D �0:05m=sO{C 0:4m=s O|
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Figure 16.12: The rigid triangular
plate ABC rotates counterclockwise at
5 rad=s. Velocity of point B is given. We
have to find the velocity of points A and
C.
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Figure 16.14:

SAMPLE 16.2 The instantaneous center of rotation. A rigid body is in
planar motion. At some instant t , the angular velocity of the body is *

! D
5 rad=s Ok and the linear velocity of a point C on the body is *

vC D 2m=sO{ �
5m=s O|. Find the instantaneous center of rotation.

Solution Let a point O be the instantaneous center of rotation. We need to find the location
of O using the given information. Whether O lies inside the object or outside is irrelevant
here since the object boundary is not specified. So, let us consider an abstract rigid object as
shown in fig. 16.14. What we know about O is that it has zero velocity (since it is the center
of rotation). Let point O be a distance r away from C in some unknown direction On (to be
found). Thus,*rO=C D r On is the position vector of point O with respect to point C. Now,

*vC D *vO����
*
0

C*! � *rC=O����
�*rO=C

D �! Ok � r On D �!r. Ok � On/:

Thus, Ok � On must be parallel to and in the opposite direction of *vC. Let *vC D vC
O�. Then,

we must have Ok � On D �O�, which says that On must be normal to O�. Since O� D *rC=j*rCj D
.2m=sO{�5m=s O|/=.

p
22 C 52 m=s/ D 0:37O{�0:93 O|, we can immediately write On D 0:93O{C

0:37 O|. So, now,

vC
O� D �!r.

�O�����
Ok � On/

) vC D !r

) r D vC =!

D
p
29m=s=.5 rad=s/ D 1:08m:

Thus
*rO=C D r On D 1:08m.0:93O{C 0:37 O|/ D 1mO{C 0:4m O|:

*rO=C D 1mO{C 0:4m O|

Alternatively,

We can find*rO=C purely by vector algebra. Let*rO=C D .x O{C y O|/m. So,

*vO D *vC C*! �*rO=C

or
*
0 D 2m=sO{ � 5m=s O| C .5 rad=s/ Ok � .x O{C y O|/m

D .2 � 5y/m=sO{C .�5C 5x/m=s O|:

Dotting this equation with O{ and O| respectively, we get

2 � 5y D 0

�5C 5x D 0:

Solving these two equations simultaneously, we get, x D 1 and y D 0:4. Thus,

*rO=C D 1mO{C 0:4m O|

as obtained above.
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SAMPLE 16.3 A cheerleader throws her baton up in the air in the vertical
xy-plane. At an instant when the baton axis is at � D 60

�
from the horizon-

tal, the velocity of end A of the baton is *
vA D 2m=sO{ C p

3m=s O|. At the
same instant, end B of the baton has velocity in the negative x-direction (but
j*vB j is not known). If the length of the baton is ` D 1

2
m and the center-of-

mass is in the middle of the baton, find the velocity of the center-of-mass.

Solution

We are given: *vA D .2O{C
p
3 O|/m=s

and *vB D �vB O{

where vB D j*vB j is unknown. We need to find *vG : Using the relative velocity formula for
two points on a rigid body, we can write:

*vG D*vA C*! �*rG=A (16.9)

Here,*vA and*rG=A are known. Thus, to find*vG , we need to find *!, the angular velocity of
the baton. Since the motion is in the vertical xy-plane, let *! D ! Ok. Then,

*vB D *vA C*! �*rA=B D*vA C ! Ok � `.� cos � O{C sin � O|/� �� �
*rA=B

or � vB O{ D .2O{C
p
3 O|/m=s � !`.cos � O| C sin � O{/

D .2O{C
p
3 O|/m=s � !�1

2
m�. 1

2
O| C

p
3

2
O{/

Dotting both sides of this equation with O| we get:

0 D
p
3m=s � !

2
m�1
2

) ! D
p
3
6m
s
� 4
1 6m D 4

p
3 rad=s:

Now substituting the appropriate values in Eqn 16.9 we get:

*vG D *vA C ! Ok � `

2
.cos � O{ � sin � O|/� �� �

*rG=A

D *vA C
!`

2
.cos � O| C sin � O{/

D .2O{C
p
3 O|/m=sC

p
3m=s�. 1

2
O| C

p
3

2
O{/

D .2C 3

2
/m=sO{C .

p
3C

p
3

2
/m=s O|

D 3:5m=sO{C 2:6m=s O|
*vG D .3:5O{C 2:6 O|/m=s
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Figure 16.18: A board in the back of an
accelerating truck.

SAMPLE 16.4 A board in the back of an accelerating truck. A 10 ft long
uniform board AB rests in the back of a flat-bed truck as shown in Fig. 16.18.
End A of the board is hinged to the bed of the truck. The truck is going on
a level road at 55 mph. In preparation for overtaking a vehicle in the front,
the trucker accelerates at a rate of 3 mph=s. At the instant when the speed
of the truck is 60 mph, the magnitude of the relative velocity and relative
acceleration of end B with respect to the bed of the truck are 10 ft=s and
12 ft=s2, respectively. There is wind and at this instant, the board has lost
contact with point C. If the angle � between the board and the bed is 45

�
at

the instant mentioned, find
1. the angular velocity and angular acceleration of the board,

2. the absolute velocity and absolute acceleration of point B, and

3. the acceleration of the center-of-mass G of the board.

Solution At the instant of interest, the quantities given are:

*vA D velocity of the truck D 60mph O{ D 88 ft=s O{
*aA D acceleration of the truck D 3mph=s D 4:4 ft=s2 O{

j*vB=Aj D vB=A D magnitude of relative velocity of B D 10 ft=s

j*aB=Aj D aB=A D magnitude of relative acceleration of B D 12 ft=s2:

Let *! D ! Ok be the angular velocity and P*! D P! Ok be the angular acceleration of the board.

1. The relative velocity of end B of the board with respect to end A is

*vB=A D *! �*rB=A D ! Ok � `.cos � O{C sin � O|/
D !`.cos � O| � sin � O{/

) ! D j*vB=Aj
`

D vB=A

`
D 10 ft=s

10 ft
D 1 rad=s:

Note that we have taken the positive value for ! because the board is rotating counter-
clockwise at the instant of interest (since it is given that the board has lost contact with
point C).
Similarly, we can compute the angular acceleration:

*aB=A D P*! �*rB=A � !2*rB=A
D P! Ok � `.cos � O{C sin � O|/ � !2`.cos � O{C sin � O|/
D P!`.cos � O| � sin � O{/ � !2`.cos � O{C sin � O|/

) j*aB=Aj D
q
. P!`/2 C .!2`/2 D aB=A (given)

) a2B=A D . P!`/2 C .!2`/2

) P! D

s
a2
B=A

`2
� !4 D

s�
12 ft=s2

10 ft

�2
� .1 rad=s/4

D �0:663 rad=s2:

Once again, we select the positive value for P! since we assume that the board acceler-
ates counterclockwise.

*! D 1 rad=s Ok; P*! D 0:663 rad=s2 Ok
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2. The absolute velocity and the absolute acceleration of the end point B can be found as
follows.

*vB D *vA C*vB=A

D vA O{C vB=A.cos � O| � sin � O{/

D 88 ft=sO{C 10 ft=s.
1p
2
O| � 1p

2
O{/

D 80:93 ft=sO{C 7:07 ft=s O|:

*aB D *aA C*aB=A

D *aA C P*! �*rB=A � !2*rB=A
D aA O{C P! Ok � `.cos � O{C sin � O|/ � !2`.cos � O{C sin � O|/
D .aA � P!` sin � � !2` cos �/O{C . P!` cos � � !2` sin �/ O|

D
�
4:4 ft=s2 � 0:66

s2
� 10 ft � 1p

2
� 1

s2
� 10 ft � 1p

2

�
O{

C
�
0:66

s2
� 10 ft � 1p

2
� 1

s2
� 10 ft � 1p

2

�
O|

D �7:34 ft=s2 O{ � 2:40 ft=s2 O|:

*vB D .80:93O{C 7:07 O|/ ft=s; *aB D �.7:34O{C 2:40 O|/ ft=s2:

3. Now, we can easily calculate the acceleration of the center-of-mass as follows.

*aG D *aA C*aG=A

D aA O{C P*! �*rG=A � !2*rG=A
D aA O{C P! Ok � `

2
.cos � O{C sin � O|/ � !2 `

2
.cos � O{C sin � O|/

D aA O{C P! `
2
.cos � O| � sin � O{/ � !2 `

2
.cos � O{C sin � O|/

D 4:4 ft=s2 O{C 0:663 rad=s2 � 10 ft
2

� . 1p
2
O| � 1p

2
O{/

�.1 rad=s/2 � 10 ft
2

� . 1p
2
O{C 1p

2
O|/

D �1:48 ft=s2 O{ � 1:19 ft=s2 O|:
*aG D �.1:48O{C 1:19 O|/ ft=s2

Comments: This problem is admittedly artificial. We, however, solve this problem to show

kinematic calculations.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



786 Chapter 16. Planar motion of an object 16.1. Rigid object kinematics
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Figure 16.19:

SAMPLE 16.5 Tracking motion. A cart moves along a suspended curved
path. A rod AB of length ` D 1m hangs from the cart. End A of the rod is
attached to a motor on the cart. The other end, B, hangs freely. The motor
rotates the rod such that �.t/ D �0 sin.�t/ (� is measured with respect to
a fixed vertical line) while the cart moves along the path such that *

rA D
t O{C t3

18
O|, where all variables (r , t , etc.) are nondimensional.

1. Find the velocity and acceleration of point B as a function of nondi-
mensional time t .

2. Take �0 D �=3 and � D 6. Find and plot the position of the bar at
t D 0; 0:1; 0:3; 0:9; 1; 1:1; 1:2, and 1:5. Find and draw *

vB and*
aB at the

specified t .

Solution

1. The velocity and acceleration of point B are given by
*vB D *vA C*vB=A D*vA C*! �*rB=A

*aB D *aA C P*! �*rB=A � !2*rB=A:
Thus, in order to find the velocity and acceleration of point B, we need to find the
velocity and acceleration of point A and the angular velocity and angular acceleration
of the bar. We are given the position of point A and the angular position of the bar as
functions of t . We can, therefore, find *vA, *aA, *!, and P*! by differentiating the given
functions with respect to t .

*rA D t O{C t3

18
O|

) *vA � P*rA D O{C .t2=6/ O| (16.10)

) *aA � P*vA D .t=3/ O| (16.11)

and
� Ok D �0 sin.�t/ Ok

) *! � P� Ok D �0� cos.�t/ Ok (16.12)

) P*! � R� Ok D ��0�2 sin.�t/ Ok: (16.13)

So,
*vB D *vA C*! � `.sin � O{ � cos � O|/

D O{C .t2=6/ O| C ` P�.sin � O| C cos � O{/
D .1C ` P� cos �/O{C .t2=6C ` P� sin �/ O| (16.14)

*aB D *aA C R� Ok � `.sin � O{ � cos � O|/ � P�2`.sin � O{ � cos � O|/
D .t=3/ O| C ` R� sin � O| C ` R� cos � O{ � ` P�2 sin � O{C ` P�2 cos � O|
D `. R� cos � � P�2 sin �/O{C �t=3C `. R� sin � C P�2 cos �/� O|

(16.15)

where � D �0 sin.�t/; P� D �0� cos.�t/, and R� D ��0�2 sin.�t/ D ��2�: Thus*vB
and*aB are functions of t .

2. The position of the rod at any time t is specified by the position of the two end points
A and B (or alternatively, the position of A and the angle of the rod � ). The position of
point A is easily determined by substituting the value of t in the given expression for
*rA. The position of end B is given by

*rB D *rA C*rB=A D t O{C .t3=18/ O| C `.sin � O{ � cos � O|/
D .t C ` sin �/O{C .t3=18 � ` cos �/ O|:
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To compute the positions, velocities, and accelerations of end points A and B at the
given instants, we first compute � , P� , and R� , and then substitute them in the expressions
for*rA;

*rB ;
*vA;

*vB ;
*aA, and*aB . A pseudocode for computer calculation is given below.

t = [0 0.1 0.3 0.9 1.0 1.1 1.2 1.5]
theta0=pi/3, L=.5, lam=6
for each t, compute
theta = theta0*sin(lam*t)
w = lam*theta0*cos(lam*t)
wdot = -lamˆ2*theta

% Position of A and B
xA=t, yA=tˆ3/18
xB = xA + L*sin(theta)
yB = yA - L*cos(theta)

% Velocity of A and B
uA = 1, vA = tˆ2/6
uB = uA + L*w.*cos(theta)
vB = vA + L*w.*sin(theta)

% Acceleration of A and B
axA = 0, ayA = t/3
axB = L*wdot*cos(theta) - L*wˆ2*sin(theta)
ayB = ayA + L*wdot*sin(theta) + L*wˆ2*cos(theta)

From the above calculation, we get the desired quantities at each t . For example, at
t D 0 we get,

xA = 0, yA = 0, xB = 0, yB = -0.5
uA = 1, vA = 0, uB = 4.14, vB = 0, axB = 0, ayB = 19.74

which means,

*rA D*
0; *rB D �0:5 O|; *vA D O{; *vB D 4:14O{; *aB D 19:74 O|:

The position of the bar, the velocity vectors at points A and B, and the acceleration
vector at B, thus obtained, are shown in fig. 16.20 graphically. 3
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Figure 16.20: Position, velocity of the end points A and B, and acceleration of point B at
various time instants.

3 We can take several values of t , say
400 equally spaced values between t D
0 and t D 4, and draw the bar at each
t to see its motion and the trajectory of
its end points. fig. 16.21 shows such a
graph.
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1Advanced aside: What we call
“simple measures” are examples of
“generalized coordinates” in more ad-
vanced books. The idea sounds intim-
idating, but is simply this: If some-
thing can only move in a few ways,
you should only keep track of the mo-
tion with that many variables. The kine-
matics of a rigid object (Sect. 16.1) al-
low us to “evaluate” the motion quan-
tities, namely linear momentum, an-
gular momentum, kinetic energy, and
their rates of change in terms of these
“simple measures”. By “evaluate” we
mean express the motion quantities in
terms of these measures. The alterna-
tive is as sums over Avogadro’s num-
ber of particles (There are on the order
of 1023 atoms in a typical engineering
part.). Even neglecting atoms and view-
ing matter as continuous we would still
be stuck with integrals over complicated
regions if we did not describe the mo-
tion with as few variables as possible.
In the case of 2-D rigid object motion,
the position of a reference point (x and
y) with the rotation � is called a set of
minimal coordinates. These, and their
time derivatives are the minimal infor-
mation needed to describe all important
mechanics motion quantities.

16.2 General planar mechanics of a
rigid-object

We now apply the kinematics ideas of the last section to the general me-
chanics principles in Table I in the inside cover. The goal is to understand
the relation between forces and motion for a planar object in general 2-D
motion. The simple measures 1of motion will be the displacement of one
reference point 00 on the object and the rotation the object. We also need the
first and second time derivatives of the displacement and rotation, altogether
we use *

r00 ;
*
v00 ,

*
a00 ; �;

*
! and *

�.
We will treat all bodies as if they are squished into the plane (planar) and

moving in the plane (planar motion). But the analysis is sensible for a object
that is symmetric with respect to the plane containing the velocities (see Box
16.1 on page 794).

The balance laws for a rigid object
As always, once you have defined the system and the forces acting on it by
drawing a free body diagram, the basic momentum balance equations are
applicable (and exact for engineering purposes). Namely,

Linear momentum balance:
X

*

Fi D P*
L and

Angular momentum balance:
X

*

Mi=O D P*
H=O:

The same point 0, any point, is used on both sides of the angular momentum
balance equation. We also have power balance which, for a system with no
internal energy or dissipation, is

Power balance: P D PEK:

The left hand sides of the momentum balance equations are evaluated the
same way, whether the system is composed of one object or many, whether
the bodies are deformable or not, and whether the points move in straight
lines, circles, hither and thither, or not at all. It is the right hand sides of
the momentum equations that involve the motion. Similarly, in the energy
balance equations the applied power P only depends on the position of the
forces and the motions of the material points at those positions. But the
kinetic energy EK and its rate of change depend on the motion of the whole
system. You already know how to evaluate the momenta and energy, and
their rates of change, for a variety of special cases, namely

� Systems composed of particles where all the positions and accelera-
tions are known (chapter 12);

� Systems where all points have the same acceleration. That is, the sys-
tem moves like a rigid object that does not rotate (chapter 13); and

� Systems where all points move in circles about the same fixed axis in
2D (chapter 15).
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Now we go on to consider the general 2-D motions of a planar rigid ob-

ject. Its now a little harder to evaluate
*

L;
P*
L;

*

H=O;
P*
H=O; EK and PEK. But not

much.

Summary of the motion quantities
Table I in the back of the book describes the motion quantities for various
special cases, including the planar motions we consider in this chapter. Most
relevant is row (7).

The basic idea is that the momenta for general motion, which involves
translation and rotation, is the sum of the momenta (both linear and angular,
and their rates of change too) from those two effects. Namely, the linear
momentum is described, as for any system with any motion, by the motion
of the center-of-mass

*

L D mtot
*
vcm and P*

L D mtot
*
acm; (16.16)

and the angular momentum has two contributions, one from the motion of
the center-of-mass and one from rotation of the object about the center of
mass,

*

H=O D

Angular momentum
due to motion of the
center-of-mass

BBN� �� �
*
rcm=O � .mtot

*
vcm/C

Angular momentum
due to motion relative
to the center-of-mass

������
I cm
zz

*
! (16.17)

and P*
H=O D *

rcm=O � .mtot
*
acm/C I cm

zz
P*!: (16.18)

These simplifications, for 2D objects moving in the plane, are discussed in
box 16.2 on page 795. An important special case for the angular momentum
evaluation is when the reference point is coincident with the center-of-mass.
Then the angular momentum and its rate of change simplify to

*

Hcm D I cm
zz

*
! and P*

Hcm D I cm
zz
P*!: (16.19)

The kinetic energy and its rate of change are given by
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EK D

kinetic energy from
center-of-mass motion

BBN� �� �
1

2
mtot v2cm����

*
vcm�*vcm

C

kinetic energy relative
to the center-of-mass

��� �� �
1

2
I cm
zz !

2 (16.20)

and PEK D mtot vcm Pvcm� �� �
*
vcm�*acm

C I cm
zz ! P! (16.21)

The relations above are easily derived from the general center of mass theo-
rems (see box 16.2 on page 795 for some of these derivations).

Equations of motion
Putting together the general balance equations and the expressions for the
motion quantities we can now write linear momentum balance, angular mo-
mentum balance and power balance as:

LMB W
X

*

Fi D mtot
*
acm; (a)

AMB W
X

*

MO D *
rcm=O � .mtot

*
acm/C I cm

zz
P*! (b)

or
X

*

Mcm D I cm
zz
P*!; and

Power W *

Ftot �*vcm C *
! � *

Mcm D mtotv Pv C I cm
zz ! P!: (c)

(16.22)

Independent equations?
Equations are only independent if no one of them can be derived from the
others. When counting equations and unknowns one needs to make sure one
is writing independent equations. How many independent equations are in
the set eqns. (16.22)abc applied to one free object diagram? The short answer
is 3.

The linear momentum balance equation 16.22a yields two independent
equations by dotting with any two non-parallel vectors (say, O{ and O|). Dotting
with a third vector yields a dependent equation.

For any one reference point the angular momentum equation 16.22b
yields one scalar equation. It is a vector equation but always has zero com-
ponents in the O{ and O| directions. But angular momentum equation can yield
up to three independent equations by being applied to any set of three non-
collinear points.
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The power balance equation is one scalar equation.
In total, however, the full set of equations above only makes up a set of

three independent equations.
To avoid thinking about what is or is not an independent set of equations

some people prefer to stick with one of the canonical sets of independent
equations:

� The coordinate based set (“old standard”)

– fLMBg�O{ or, equivalently,
P

Fx D mtotacmx
,

– fLMBg� O| or, equivalently,
P

Fy D mtotacmy , and

– fAMBg� Ok or, equivalently,
P

Mcm D I cm
zz P!.

� Moment only (good for eliminating unknown reaction forces)

– fAMB about pt Ag� Ok (A is any point, on or off the object)
– fAMB about pt Bg� Ok (B is any other point)
– fAMB about pt Cg� Ok (C is a third point not on the line AB)

� Two moments and a force component

– fAMB about pt Ag� Ok (A is any point, on or off the object)
– fAMB about pt Bg� Ok (B is any other point)
– fLMBg� O� (where O� is not perpendicular to the line AB)

� Two force components and a moment (also good for eliminating un-
known forces)

– fLMBg� O�1 (where O�1 is any unit vector)
– fLMBg� O�2 (where O�2 is any other unit vector)
– fAMB about pt Ag� Ok (A is any point, on or off the object)

Any of these will always do the job. The power balance equation is often
used as a consistency check rather than an independent equation.

From a theoretical point of view one might ask the related question of
which of the equations of motion can be derived from the others. There are
many answers. Here are some of them:

� Power balance follows from LMB and AMB,

� AMB about three non-collinear points implies LMB, and

� LMB and power balance yield AMB

Interestingly, there is no way to derive angular momentum balance from lin-
ear momentum balance without the questionable microscopic assumptions
discussed in box D.3 on page 1028.

Some simple examples
Here we consider some simple examples of unconstrained motion of a rigid
object.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



792 Chapter 16. Planar motion of an object 16.2. Mechanics of a rigid-object
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Figure 16.22: The X marked at the
center-of-mass of a thrown spinning
clipboard follows a parabolic trajectory.
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Figure 16.23: The only force applied to
the object is the constant force

*
F D F O{

applied at point A. The resulting motion
is a constant acceleration of the center-
of-mass *aG D .F=m/O{ and an oscil-
latory motion of � identical to that of
a pendulum hinged at G. Note that the
center of mass goes in a straight line.
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Figure 16.24: A rocket is pointed in the
direction O� which makes and angle �
with the positive x axis. The position
and velocity of the center-of-mass at G
are called *r and *v. The velocity of the
tail is*vC

Example: The simplest case: no force and no moment.
If the net force and moment applied to a object are zero we have:

LMB )*
0 D mtot

*acm and

AMB )*
0 D I cm

zz P! Ok

so *acm D *
0 and P! D 0 and the object moves at constant speed in a constant

direction with a constant rate of rotation, all determined by the initial conditions.
Throw an object in space and its center-of-mass goes in a straight line and it spins
at constant rate (subject to the 2-D restrictions of this chapter).

Example: Constant force applied to the center-of-mass.
In this case angular momentum balance about the center-of-mass again yields that
the rotation rate is constant. Linear momentum balance is now the same as for a
particle at the center-of-mass, i.e., the center-of-mass has a parabolic trajectory.

Near-earth (constant) gravity provides a simple example. An ‘X’ marked at the
center-of-mass of a clipboard tossed across a room follows a parabolic trajectory
(see fig. 16.22).

Example: Constant force not at the center-of-mass.
Assume the only force applied to an object is a constant force

*
F D F O{ at A (see

fig. 16.23). Then linear momentum balance gives us thatX
*
Fi D P*

L ) F O{ D m*aG ) *aG D F=mO{ D constant:

So if the object starts at rest, the point G will move in a straight line in the O{ direc-
tion (The common intuition that point G will be pulled up is incorrect). Angular
momentum about the center-of-mass givesX

*
Mcm i D P*

Hcm )
n
*rA=G � F O{ D I cm

zz
R� Ok
o

fg � Ok ) R� C F `

I cm
zz

sin � D 0;

with ` D j*rA=Gj, which is the pendulum equation. That is, the object can swing
back and forth about � D 0 just like a pendulum, approximately sinusoidally if
the angle � starts small and with P� initially also small. [One might wonder how
to do this experiment. One way would be with a jet on a space craft that keeps
re-orienting itself to keep in a constant spatial direction as the object changes orien-
tation. Another would be with a string tied to A and pulled from a great distance.]

Example: The flight of an arrow or rocket.
As a primitive model of an arrow or rocket assume that the only force is from drag
on the fins at C and that this force opposes motion according to

*
F D �c*vC

where c is a drag coefficient (see fig. 16.24). From linear momentum balance we
have: X

*
Fi D P*

L ) *
F D m*a

�c*vC D m P*v
m P*v D �c �*vC*! �*rC=G

�
D �c

�
*vC P� Ok � .�` O�/

�
. Ok � O� D On/ ) P*v D c

m

�
P�` On �*v

�
:
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So if*v; � and P� are known the acceleration P*v is calculated by the formula above.
Similarly angular momentum balance about G givesX

*
MG D P*

HG ) f*rC=G �
*
F D I cm

zz P! Okg
fg � Ok ) I cm

zz P! D *rC=G �
*
F � Ok:

Then, making the same substitutions as before for*rC=G and
*
F we get

P! D c`

I cm
zz

�
O� �*v � Ok � P�`

�
which determines the rate of change of ! if the present values of *v; � and P� are
known.

Setting up differential equations for solution
If one knows the forces and torques on a object in terms of its position, veloc-
ity, orientation and angular velocity one then has a ‘closed’ set of differential
equations. That is, one has enough information to define the equations for a
mathematician or a computer to solve them.

The full set of differential equations is gathered from linear and angular
momentum balance and also from simple kinematics. Namely, one has the
following set of 6 first order differential equations:

Px D vx;

Pvx D Fx=m;

Py D vy ;

Pvy D Fy=m;P� D !; and
P! D Mcm=I

cm
zz ;

where the positions and velocities are the positions and velocities of the
center-of-mass. The expressions for Fx; Fy ; and Mcm may well be com-
plicated, as in the rocket example above.
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16.1 2-D mechanics makes sense in a 3-D world
The math for two-dimensional mechanics analysis is simpler than
the math for three-dimensional analysis. And thus easier to learn
first. But we do actually live in a three-dimensional world you might
wonder at the utility of learning something that is not right. There
are three answers.

1. Two dimensional analysis can give partial information about
the three-dimensional system that is exactly the same as the
three-dimensional analysis would give by projection, no mat-
ter what the motion;

2. if the motion is planar the 2-D kinematics can be used; and

3. if the object is planar or symmetric about the motion plane,
and any constraints that hold the object are also symmetric
about the motion plane, the 2-D analysis is not only correct,
but complete.

Of course no machine is exactly planar or exactly symmetric, but
if the approximation seems reasonable most engineers will accept a
small loss in accuracy for great gain in simplicity.

a) Projection
First lets relax our assumption of 2-D motion. Consider arbitrary 3-D
motions of an arbitrarily complex system. If we take the dot prod-
uct of the linear momentum equations with O{ and O| and the angular
momentum balance equation with Ok we getnP *

Fi D
P
mi

*ai

o
� O{ )P

Fi x D
P
miai x ; (a)nP *

Fi D
P
mi

*ai

o
� O|)P

Fiy D
P
miaiy ; and (b)nP

*ri �
*
Fi D

P
*ri �mi

*ai

o
� Ok

)P
ri xFiy � riyFi x D

P
mi .ri xaiy � riyai x/: (c)

(16.23)
These are exactly the equations of 2-D mechanics. That is, if we only
consider the planar components of the forces, the planar components
of the positions, and the planar components of the motions, we get a
correct but partial set of the 3-D equations. In this sense 2-D analysis
is correct but incomplete.

b) Planar motion
If all the velocities of the parts of a 3-D system have no z component
the motion is planar (in the xy plane). Thus the right-hand sides of
eqns. (16.23) are not just projections, but the whole story. Further, in
the case of rigid-object motion, the 2-D kinematics equation

*vP D*vG C ! Ok�*rP=G D*vG C ! Ok�
�
rP=Gx O{C rP=Gy O|

�
(16.24)

also applies (the z component of the position drops out of the cross
product) and the expression for, say, the z component of the angular
momentum of a object about its center-of-mass is

Hcmz D I cm
zz!:

Differentiating, or adding up themi
*ai terms we get,

Hcmz D I cm
zz!:

Similarly, the z component of the full angular momentum balance
equation for a 3-D rigid object in planar motion is the same as the z
component of eqn. (16.22)b.X

*
MO � Ok D

�
*rcm=O � .mtot

*acm/
� � OkC I cm

zz P!
So for planar motion of 3-D rigid bodies one can do a correct

2-D analysis with the full ease of analyzing a planar object.
But this result is deceptively simple. The free object diagram in

3-D most likely shows forces in the z direction, pairs of forces in the
x or y directions that are applied at points with the same x and y
coordinates but different z values, or moments with components in
the x or y directions. Full information about these force and moment
components can’t be found from 2-D analysis. That is,

the nature of the forces that it takes to keep a system in planar
motion can’t be found from a planar analysis.

For example, a system rotating about the z axis which is statically
balanced but is dynamically imbalanced has no net x or y reaction
force, as a planar analysis would reveal, yet the bearing reaction
forces are not zero.

Another example would be a plan view of a car in a turn (assum-
ing a stiff suspension). A 2-D analysis could be accurate, but would
no be complete enough to describe the tire reaction forces needed to
keep the car flat.

c) Symmetric bodies and planar
bodies
If the rigid object has all its mass in the xy plane, or its mass is sym-
metrically distributed about the xy plane, and it is in planar motion
in the xy plane thenP

miai z D 0 and�P
*ri �mi

*ai
	 � O{ D 0 and

�P
*ri �mi

*ai
	 � O| D 0

where *r is measured relative to any point in the plane. Thus, by
linear and angular momentum balance,P

Fz D 0 andnP
*ri �

*
Fi

o
� O{ D 0 and

nP
*ri �

*
Fi

o
� O| D 0

so

A planar object or a symmetric object in planar motion needs
no force in the z direction and no moment in the x or y
direction to keep it in the plane.

Systems that are symmetric or flat and moving in an approximately
planar manner, are thus both accurately and completely modeled
with a 2-D analysis. A slight generalization of the result is to any ob-
ject or collection of objects whose center’s of mass are on the plane
and each of which is dynamically balanced for rotation about a Ok
axis through its center-of-mass.
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16.2 The center-of-mass theorems for 2-D rigid bodies
That all the particles in a system are part of one planar object in pla-
nar motion (in that plane) allows highly useful simplification of the
expressions for the motion quantities, namely Eqns. 16.16 to 16.20.
We can derive these expressions from the center-of-mass theorems
from chapter D. For completeness, we repeat some of those deriva-
tions here. To save space, we only use the integral (

R
) forms for the

general expressions; the derivations with sums (
P

) are similar. In all
cases position, velocity, and acceleration are relative to a fixed point
in space (that is*r;*v; and*a mean*r=0;

*v=0; and*a
=0 respectively).

Linear momentum.
Here we show that to evaluate linear momentum and its rate of
change you only need to know the motion of the center of mass.

*
L �

Z
*vdm D

Z
d

dt
*r dm D d

dt

Z
*r dm D d

dt
.mtot

*rcm/

D mtot
d

dt
*rcm D mtot

*vcm

By identical reasoning, or by differentiating the expression above
with respect to time,

P*
L D mtot

*acm

Thus for linear momentum balance one need not pay heed to rotation,
only the center-of-mass motion matters.

Angular momentum.
Here we attempt a derivation like the one above but get slightly more
complicated results. For simplicity we evaluate angular momentum
and its rate of change relative to the origin, but a very similar deriva-
tion would hold relative to any fixed point C.

*
H
=O �

Z
*r �*vdm

D
Z �

*r �*rcm C*rcm
�� �*v �*vcm C*vcm

�
dm

D
Z �

*r=cm C*rcm
�� �*v=cm C*vcm

�
dm

D
Z

*r=cm �*v=cm dmC
Z

*rcm �*vcm dm

C
Z

*r=cm �*vcm dmC
Z

*rcm �*v=cm dm

D
Z

*r=cm �*v=cm dmC*rcm �*vcm

Z
dm

C
�Z

*r=cm dm

�
� �� �

*
0

�*vcm C*rcm �
�Z

*v=cm dm

�
� �� �

*
0

D
Z

*r=cm �*v=cm dmC*rcm �*vcmmtot:

This much is true for any system in any motion. For a rigid object
we know about the motions of the parts. Using the center-of-mass as

a reference point we know that for all points on the object *v=cm D
*!�*r=cm. Thus we can continue the derivation above, following the
same reasoning as was used in chapter 7 for circular motion of rigid
bodies:

*
H
=O D

Z
*r=cm �

�
*!�*r=cm

�
dmC*rcm �*vcmmtot:

Using the identity for the triple cross product (see box 16.4 on page
797) or using the geometry of the cross product directly with *! D
! Ok as in chapters 7 and 8 we get

*
H
=O D ! Ok

Z
r2
=cm dmC*rcm �*vcmmtot:

Then defining I cm
zz �

R
r2
=cm dm we get the desired result:

*
H
=O D *rcm �*vcmmtot C I cm

zz!
Ok:

A similar derivation, or differentiation of the result above (and using
that . d

dt
*r/�*v D*v �*v D*

0) gives

P*
H
=O D *rcm �*acmmtot C I cm

zz P! Ok:

The results above hold for any reference point, not just the origin of
the fixed coordinate system. Thus, relative to a point instantaneously
coinciding with the center-of-mass

*
Hcm D *rcm=cm����

*
0�*vcmmtotCI

cm
zz! Ok

D I cm
zz!

Ok:

and similarly

P*
Hcm D I cm

zz P! Ok:

Kinetic energy.
Unsurprisingly the expression for kinetic energy and its rate of
change are also simplified by derivations very similar to those above.
Skipping the details (or leaving them as an exercise for the peppy
reader):

EK �
Z
1

2
*v �*vdm

D 1

2
mtotv

2
cm C 1

2
I cm
zz!

2

and

PEK � d

dt
EK

D mtotv PvC I cm
zz! P!:
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16.3 The work of a moving force and of a couple
The work of a force acting on a object from state one to state two

is

W12 D
Z t2

t1

Pdt:

But sometimes we like to think not of the time integral of the power,
but of the path integral of the moving force. So we rearrange this
integral as follows.

W12 D
Z t2

t1

Pdt

D
Z t2

t1

*
F � *vdt����

d
*
r

D
Z *
r2

*
r1

*
F � d*r (16.25)

The validity of equation 16.25 depends on the force acting on the
same material point of the moving object as it moves from position
1 to position 2; i.e., the force moves with the object. If the ma-
terial point of force application changes with time, eqn. (16.25) is
senseless and should be replaced with the following more generally
applicable equation:

W12 �
Z t2

t1

P dt D
Z t2

t1

*
F �*vdt (16.26)

where *v is the velocity of the material point at the instantaneous
location of the applied force.

Hand drags on a passing train: a
subtlety
There is a subtle distinction between eqn. (16.25) and eqn. (16.26).
As an example think of standing still and dragging your hand on a
passing train. Your hand slows down the train with the force

*
Fhand on train:

It might seem that the work of the hand on the train is zero because
your hand doesn’t move; work is force times distance and the dis-
tance is zero and eqn. (16.25) superficially evaluates toZ *

r2

*
r1

*
F � d*r D 0:

But we have violated the condition for the validity of eqn. (16.25):
the force be applied to a fixed material point as time progresses.
Whereas on the train your hand smears a whole line of material
points.

Clearly your hand does slow the train, so it must do (negative)
work on the train, as eqn. (16.26) correctly shows because

Pforce on train D
*
Fhand on train �*vtrain ¤ 0:

The power of the hand force on the train is the force on the train
dotted with the velocity of the train (not with the velocity of your
hand. Thus, your hand does negative work on the train. eqn. (16.26)
applies to the train and eqn. (16.25) does not.

On the other hand (so to speak) if one looks at the power of the
force on the hand we have:

*
Ftrain on hand D �*

Fhand on train

while the velocity of the hand is zero so

Pforce on hand D
*
Ftrain on hand �*vhand D 0:

So the train does no work on your hand since while your hand does
(negative) work on the train. The difference, of course, is mechanical
energy lost to heat.

Work of an applied torque
By thinking of an applied torque as really a distribution of forces,
the work of an applied torque is the sum of the contributions of the
applied forces. If a collection of forces equivalent to a torque is
applied to one rigid object the power of these forces turns out to be
*
M � *!. At a given angular velocity a bigger torque applies more
power. And a given torque applies more power to a faster spinning
object.

Here’s a quick derivation for a collection of forces
*
Fi that add to

zero acting at points with positions*ri relative to a reference point on
the object o0.

P D
X

*
Fi �*vi

D
X

*
Fi �

�
*vo0 C*!�*ri=o0

�
D *vo0 �

X
*
Fi����

*
0

C
X

*
Fi �

�
*!�*ri=o0

�

D
X

*! �
�
*ri=o0 �

*
Fi

�
D *! �

X
*ri=o0 �

*
Fi

D *! � *
Mo0 (16.27)

Work of a general force distribution
A general force distribution has, by reasoning close to that above, a
power of:

P D *
Ftot �*vo0 C*! � *

Mo0 : (16.28)

For a given force system applied to a given object in a given motion
any point o0 can be used. The terms in the formula above will depend
on o0, but the sum does not. Besides the center-of-mass, another
convenient locations for o0 is a fixed hinge, in which case the applied
force has no power.
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16.4 The vector triple product
*

A � .
*

B �
*

C /

The formula

*
A � .*B � *

C / D .
*
A � *C /*B � .*A � *B/*C : (16.29)

can be verified by writing each of the vectors in terms of its orthog-
onal components (e.g.,

*
A D Ax O{ C Ay O| C Az

Ok) and checking
equality of the 27 terms on the two sides of the equations (only 12
are non-zero). If this 20 minute proof seems tedious it can be re-
placed by a more abstract geometric argument partly presented be-
low that surely takes more than 20 minutes to grasp.

Geometry of the vector triple product

Filename:tfigure1-14

B C
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B

C

A (B C)

θ

Because
*
B � *

C is perpendicular to both
*
B and

*
C it is perpen-

dicular to the plane of
*
B and

*
C , that is, it is ‘normal’ to the plane

BC .
*
A � .*B � *

C / is perpendicular to both
*
A and

*
B � *

C , so it is
perpendicular to the normal to the plane of BC . That is, it must be
in the plane of

*
B and

*
C . But any vector in the plane of

*
B and

*
C

must be a combination of
*
B and

*
C . Also, the vector triple product

must be proportional in magnitude to each of
*
A,

*
B and

*
C . Finally,

the triple cross product of
*
A � .*B � *

C / must be the negative of
*
A � .*C � *

B/ because
*
B � *

C D �*
C � *

B. So the identity

*
A � .*B � *

C / D .
*
A � *C /*B � .*A � *B/*C

is almost natural: The expression above is almost the only expres-
sion that is a linear combination of

*
A and

*
B that is linear in both,

also linear in
*
C and switches sign if

*
B and

*
C are interchanged.

These properties would be true if the whole expression were multi-
plied by any constant scalar. But a test of the equation with three unit

vectors shows that such a multiplicative constant must be one. This
reasoning constitutes an informal derivation of the identity 16.29.

Using the triple cross product in dynamics
equations

We will use identity 16.29 for two purposes in the development of
dynamics equations:

1. In the 2D expression for acceleration, the centripetal
acceleration is given by *! � .*! � *

R/ simplifies to
�!2*R if *! ? *

R. This equation follows by setting
*
A D *!,

*
B D *! and

*
C D *

R in equation 16.29
and using

*
R � *! D 0 if *! ? *

R. In 3D *! � .*! �
*r/ gives the vector shown in the lower figure below.
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Filename:tfigure1-15

r

( r )

( r )

2. The term *r � .*! �*r/ will appear in the calculation of the
angular momentum of a rigid body. By setting

*
A D *r ,

*
B D *! and

*
C D*r , in equation 16.29 and use *r �*r D r2

because *r k*r we get the useful result that *r � .*! �*r/ D
r2*!� .*r �*!/*r .
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SAMPLE 16.6 Free planar motion. A rigid rod of length ` D 1m and
mass mr D 1 kg, and a rigid square plate of side 1m and mass mp D 10 kg
are launched in motion on a frictionless plane (e.g., an ice hockey rink) with
exactly the same initial velocities *

vcm.0/ D 10m=sO{C 1m=s O| and *
!.0/ D

1 rad=s Ok. Both the rod and the plate have their center-of-mass at the baseline
at t D 0.

1. Which of the two is farther from the base line in 3 seconds and which
one has undergone more number of revolutions?

2. Find and draw the position of the bar at t D 1 sec and at t D 3 sec.

Solution

1. The free-body diagram of the rod is shown in fig. 16.26. There are no forces acting
on the rod in the xy-plane. Although there is force of gravity and the normal reaction
of the surface acting on the rod, these forces are inconsequential since they act normal
to the xy-plane. Therefore, we do not include these forces in our free-body diagram .
The linear momentum balance for the rod givesX

*
F D mr

*acm
*
0 D mr

P*vcm

) *vcm D
Z

*
0 dt D constant D*vcm0

) *rcm D
Z

*vcm0 dt D*rcm0 C*vcm0t (16.30)

It is clear from the analysis above that in the absence of any applied forces, the position
of the body depends only on the initial position and the initial velocity. Since both the
plate and the rod start from the same base line with the same initial velocity, they
travel the same distance from the base line during any given time period; mass or its
geometric distribution play no role in the motion. Thus the center-of-mass of the rod
and the plate will be exactly the same distance (j*rcm.t/ �*rcm0j D j*vcm0t j) at time t .
Similarly, the angular momentum balance about the center-of-mass of the rod givesX

*
Mcm D P*

Hcm
*
0 D I cm

zz
P*!

) *! D
Z

*
0 dt D constant D*!0 D P�0 Ok

) � D
Z

P�0 dt D �0 C P�0t (16.31)

Thus the angular position of the body is also, as expected, independent of the mass
and mass distribution of the body, and depends entirely on the initial position and the
initial angular velocity. Therefore, both the rod and the plate undergo exactly the same
amount of rotation

�
�.t/ � �0 D P�0t

�
during any given time.

2. We can find the position of the rod at t D 1 s and t D 3 s by substituting these values
of t in eqns. (16.30) and 16.31. For convenience, let us assume that*rcm0 D

*
0. From

the initial configuration of the rod, we also know that �0 D 0.
*rcm.t D 1 s/ D *vcm0 � .1 s/ D .10m=sO{C 1m=s O|/ � .1 s/10mO{C 1m O|
*rcm.t D 3 s/ D *vcm0 � .3 s/ D 30mO{C 3m O|:
�.t D 1 s/ D P�0 � .1 s/ D .1 rad=s/ � .1 s/ D 1 rad

�.t D 3 s/ D P�0 � .3 s/ D 3 rad:

Accordingly, we show the position of the rod in fig. 16.27.
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SAMPLE 16.7 A passive rigid diver. An experimental model of a rigid diver
is to be launched from a diving board that is 3m above the water level. Say
that the initial velocity of the center-of-mass and the initial angular velocity
of the diver can be controlled at launch. The diver is launched into the dive in
almost vertical position, and it is required to be as vertical as possible at the
very end of the dive (which is marked by the position of the diver’s center-
of-mass at 1m above the water level). If the initial vertical velocity of the
diver’s center-of-mass is 3m=s, find the required initial angular velocity for
the vertical entry of the diver into the water.

Solution Once the diver leaves the diving board, it is in free flight under gravity, i.e., the only
force acting on it is the force due to gravity. The free-body diagram of the diver is shown in
fig. 16.29. The linear momentum balance for the diver givesX

*
F D m*acm

�mg O| D m Ry O|
) Ry D �gX

*
Mcm D P*

Hcm
*
0 D I cm

zz
R� Ok

) R� D 0:

From these equations of motion, it is clear that the linear and the angular motions of the diver
are uncoupled. We can easily solve the equations of motion to get

y.t/ D y0 C Py0t �
1

2
gt2

�.t/ D �0 C P�0t:

We need to find the initial angular speed P�0 such that � D � when y D 1m (the center-of-
mass position at the water entry). From the expression for �.t/, we get, P�0 D �=t . Thus we
need to find the value of t at the instant of water entry. We can find t from the expression for
y.t/ since we know that y D 1m at that instant, and that y0 D 3m and Py0 D 3m=s. We
have,

y D y0 C Py0 �
1

2
gt2

) t D
Py0 �

q
Py20 C 2g.y0 � y/
g

D 3m=s�
p
.3m=s/2 C 2 � 9:8m=s2 � .3m � 1m/

9:8m=s2

D 1:15 or � 0:53 s:

We reject the negative value of time as meaningless in this context. Thus it takes the diver
1:15 s to complete the dive. Since, the diver must rotate by � during this time, we have

P�0 D �=t D �=.1:15 s/ D 2:73 rad=s:

P�0 D 2:73 rad=s

Filename:sfig9-2-diver
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Figure 16.28:
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Figure 16.30:
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Figure 16.31: Free body diagram of the
plate at some instant t when the longi-
tudinal axis of the plate makes an angle
�.t/ with the fixed vertical axis.

SAMPLE 16.8 A plate tumbling in space. A rectangular plate of mass
m D 0:5 kg; I cm

zz D 2:08 � 10�3 kg � m2, and dimensions a D 200mm
and b D 100mm is pushed by a force

*

F D 0:5NO{, acting at d D 30mm
away from the mass-center, as shown in the figure. Assume that the force
remains constant in magnitude and direction but remains attached to the ma-
terial point P of the plate. There is no gravity.

1. Find the initial acceleration of the mass-center.

2. Find the initial angular acceleration of the plate.

3. Write the equations of motion of the plate (for both linear and angular
motion).

Solution The only force acting on the plate is the applied force
*
F . Thus, fig. 16.30 is also

the free-body diagram of the plate at the start of motion.

1. From the linear momentum balance we get,X
*
F D m*acm

) *acm D
P *
F

m
D 0:5NO{
0:5 kg

D 1m=s2 O{:

which is the initial acceleration of the mass-center.

*acm D 1m=s2 O{
2. From the angular momentum balance about the mass-center, we get

*
Mcm D P*

Hcm

Fd Ok D I cm
zz

P*!

) P*! D Fd

I cm
zz

Ok D 0:5N � 0:03m
2:08 kg � m2

D 7:2 rad=s2 Ok

which is the initial angular acceleration of the plate.

P*! D 7:2 rad=s2 Ok
3. To find the equations of motion, we can use the linear momentum balance and the

angular momentum balance as we have done above. So, why aren’t the equations
obtained above for the linear acceleration,*acm D F=mO{, and the angular acceleration,
P*! D Fd=I cm

zz
Ok, qualified to be called equations of motion? Because, they are not

valid for a general configuration of the plate during its motion. The expressions for
the accelerations are valid only in the initial configuration (and hence those are initial
accelerations).
Let us first draw a free-body diagram of the plate in a general configuration during
its motion (see fig. 16.31). Assume the center-of-mass to be displaced by x O{ and y O|,
and the longitudinal axis of the plate to be rotated by � Ok with respect to the vertical
(inertial y-axis). The applied force remains horizontal and attached to the material
point P, as stated in the problem. The linear momentum balance gives

X
*
F D m*acm ) *acm D

P *
F

m

or Rx O{C Ry O| D F

m
O{ ) Rx D F

m
; Ry D 0:

Since F=m is constant, the equations of motion of the center-of-mass indicate that the
acceleration is constant and that the mass-center moves in the x-direction.
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Similarly, we now use angular momentum balance to determine the rotation (angular
motion) of the plate. The angular momentum balance about the mass-center give

*
Mcm D P*

Hcm
*rP=cm � *

F D I cm
zz
R� Ok:

Now,
*rP=cm D �r�cos.� C �/O{C sin.� C �/ O|�

*
F D F O{

) *rP=cm � *
F D F r sin.� C �/ Ok:

Thus,
R� D F r

I cm
zz

sin.� C �/

where r D
p
d2 C .b=2/2 and � D tan�1.2d=b/:

Thus, we have got the equations of motion for both the linear and the angular motion.

Rx D F
m ; Ry D 0; R� D F r

I cm
zz

sin.� C �/

4. The equations of linear motion of the plate are very simple and we can solve them at
once to get

x.t/ D x0 C Px0t C
1

2

F

m
t2

y.t/ D y0 C Py0t:

If the plate starts from rest ( Px0 D 0; Py0 D 0) with the center-of-mass at the origin
(x0 D 0; y0 D 0), then we have

x.t/ D F

2m
t2; and y.t/ D 0:

Thus the center-of-mass moves along the x-axis with acceleration F=m.
The equation of angular motion of the plate is not so simple. In fact, it is a nonlinear
ODE. It is difficult to get an analytical solution of this equation. However, we can
solve it numerically using, say, a Runge-Kutta ODE solver:

ODEs = {thetadot = w, wdot = (F*r/Icm)*sin(theta+a)}
IC = {theta(0) = 0, w(0) = 0}
Set F=.5, d=0.03; b=0.1; Icm=2.08e-03
compute r = sqrt(dˆ2+.25*bˆ2), a = atan(2*d/b)
Solve ODEs with IC for t=0 to t=10
Plot theta(t)

The plot obtained from this calculation is shown in fig. 16.34 which shows that the
plate oscillates in its plane as the center of mass races along the x-axis.

The trajectory of point P can now be obtained from*rP D*rcm� r cos.�C�/O{� r sin.�C�/ O|.
Using this relationship, the trajectory of point P, along with the trajectory of the center of
mass, is shown in fig. 16.32 for the first 3 seconds.

Filename:sfig14-2-tumblingplate˙traj
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Figure 16.32: Motion of the plate during the first 3 seconds: Position of the plate at various time instants along with the trajectories of the
center of mass and point P.
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SAMPLE 16.9 Impulse-momentum. Consider the plate problem of Sam-
ple 16.8 (page 800) again. Assume that the plate is at rest at t D 0 in the
vertical upright position and that the force acts on the plate for 2 seconds.

1. Find the velocity of the center-of-mass of the plate at the end of 2 sec-
onds.

2. Can you also find the angular velocity of the plate at the end of 2 sec-
onds?

Solution

1. Since we are interested in finding the velocity at a particular instant t , given the velocity
at another instant t D 0, we can use the impulse-momentum equations to find the
desired velocity.

*
L2 �

*
L1 D

Z t2

t1

X
*
F dt

m*vcm.t/ �m*vcm.0/ D
Z t

0

*
F dt

) *vcm.t/ D *vcm.0/C
1

m

Z 2

0

*
F dt

D *
0C 1

0:5 kg

Z 2

0
.0:5NO{/ dt

D 2m=sO{:
*vcm.2 s/ D 2m=sO{

2. Now, let us try to find the angular velocity the same way, using angular impulse-
momentum relation. We have,

.
*
Hcm/2 � .

*
Hcm/1 D

Z t2

t1

X
*
Mcm dt

I cm
zz

*!.t/ � I cm
zz

*!.0/ D
Z t

0

X
*
Mcm dt

) *!.t/ D *!.0/C 1

I cm
zz

Z t

0

X
*
Mcm dt

D *!.0/C 1

I cm
zz

Z t

0
.*rP=cm � *

F / dt

D *
0C 1

I cm
zz

Z t

0
.F r sin.� C �/ Ok/ dt

D F r

I cm
zz

�Z t

0
sin.� C �/ dt

�
Ok:

Now, we are in trouble; how do we evaluate the integral? In the integrand, we have
� which is an implicit function of t . Unless we know how � depends on t we cannot
evaluate the integral. To find �.t/ we have to solve the equation of angular motion we
derived in the previous sample. However, we were not able to solve for �.t/ analyt-
ically, we had to resort to numerical solution. Thus, it is not possible to evaluate the
integral above and, therefore, we cannot find the angular velocity of the plate at the
end of 2 seconds using impulse-momentum equations. We could, however, find the
desired velocity easily from the numerical solution.
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16.3 Kinematics of rolling and sliding
Pure rolling in 2-D
In this section, we would like to add to the vocabulary of special motions
by considering pure rolling. Most commonly, one discusses pure rolling of
round objects on flat ground, like wheels and balls, and rolling of round
things on other round things like gears and cams.

2-D rolling of a round wheel on level ground
The simplest case, the no-slip rolling of a round wheel, is an instructive start-
ing point. First, we define the geometric and kinematic variables as shown in
fig. 16.33. For convenience, we pick a point D which was at xD D 0 at the
start of rolling, when xC D 0. The key to the kinematics is that:

The arc length traversed on the wheel is the distance traveled by
the wheel center.

That is,

xC D sD

D R�

) vC D PxC D R P�
) aC D PvC D RxC D R R�

So the rolling condition amounts to the following set of restrictions on the
position of C , *rC , and the rotations of the wheel �:

*
rC D R� O{CR O|; *

vC D R P� O{; *
aC D R R� O{; *

! D � P� Ok; and *
� D P*! D � R� Ok:

If we want to track the motion of a particular point, say D, we could do so
by using the following parametric formula:

*
rD D *

rC C*
rD=C

D R.� O{C O|/CR.� sin� O{ � cos� O|/
D R �.� � sin�/O{C .1 � cos�/ O|/�

)*
vD D R

�
. P�.1 � cos�/O{C P� sin� O|/� (16.32)

)*
aD D

BBM

assuming P�= constant

R P�2.sin� O{C cos� O|/:

Note that if � D 0 or 2� or 4� , etc., then the point D is on the ground and
eqn. (16.32) correctly gives that

*
vD D R

2
4 P�.1 � 1� �� �

cos.2n�/� �� �
0

3
5 O{C P� sin.2n�/� �� �

0

O| D*

0:
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Figure 16.35: Pure rolling of a round
wheel on a level support.
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Filename:tfigure7-rolling-on-another
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Figure 16.36: One round object rolling
on another round object.

Instantaneous kinematics
Instead of tracking the wheel from its start, we could analyze the kinematics
at the instant of interest. Here, we make the observation that the wheel rolls
without slip. Therefore, the point on the wheel touching the ground has no
velocity relative to the ground.

Velocity of point on
the wheel touching the
ground

BBN����
*
vA D

Velocity of ground =
*

0

������
*
vB (16.33)

Now, we know how to calculate the velocity of points on a rigid body. So,

*
vA D*

vC C*
vA=C ;

where, since A and C are on the same rigid body (fig. 16.33), we have from
eqn. (15.22) that

*
vA=C D *

! �*
rA=C :

Putting this equation together with eqn. (16.33), we get

*
vA D *

vB

) *
vC����
vC O{

C *
!����
! Ok

� *
rA=C����
�R O|

D *

0

) vC O{C !RO{ D *

0

) vC D �!R: (16.34)

We use *
vC D v O{ since the center of the wheel goes neither up nor down.

Note that if you measure the angle by �, like we did before, then *
! D � P� Ok

so that positive rotation rate is in the counter-clockwise direction. Thus,
vC D �!R D �.� P�/R D P�R.

Since there is always some point of the wheel touching the ground, we
know that vC D �!R for all time. Therefore,

*
aC D PvC O{ D � P!RO{:

Rolling of round objects on round surfaces
For round objects rolling on or in another round object, the analysis is similar
to that for rolling on a flat surface. Common applications are the so-called
epicyclic, hypo-cyclic, or planetary gears (See Box 16.5 on planetary gears
on page 806). Referring to fig. 16.34, we can calculate the velocity of C
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with respect to a fixed frame two ways and compare:

*
vC D *

vB C*
vC=B

*
vC D

*
vB� �� �

*
vA����
*
0

C *
vB=A����
*
0

C*
vC=B :

P�.R1 CR2/ Oe� D !BR2 Oe�
) !B D

P�.R1 CR2/

R2
D P�.1C R1

R2
/:

Example: Two quarters.
The formula above can be tested in the case of R1 D R2 by using two quarters or
two dimes on a table. Roll one quarter, call it B, around another quarter pressed fast
to the table. You will see that as the rolling quarter B travels around the stationary
quarter one time, it makes two full revolutions. That is, the orientation of B changes
twice as fast as the angle of the line from the center of the stationary quarter to its
center. Or, in the language of the calculation above, !B D 2 P� .

Sliding
Although wheels and balls are known for rolling, they do sometimes slide
such as when a car screeches at fast acceleration or sudden braking or when
a bowling ball is released on the lane.

The sliding velocity is the velocity of the material point on the wheel (or
ball) relative to its contacting substrate. In the case of pure rolling, the sliding
velocity is zero. In the case of a ball or wheel moving against a stationary
support surface, whether round or curved, the sliding velocity is

*
vsliding D*

vcircle center C *
! �*

rcontact=center (16.35)

Example: Bowling ball
The velocity of that point on the bowling ball which is instantaneously in contact

with the alley (ground) is *vC D vG O{ C ! Ok �*rC=G D .vG C !R/O{. So unless
! D �vG=R the ball is sliding.

Note that, if sliding, the friction force on the ball opposes the slip of the ball and
tends to accelerate the balls rotation towards rolling. That is, for example, if the ball
is not rotating the sliding velocity is vG O{, the friction force is in the �O{ direction
and angular momentum balance about the center-of-mass implies P! < 0 and a
clockwise rotational acceleration. No matter what the initial velocity or rotational
rate the ball will eventually roll.

Filename:tfigure-bowlball
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Figure 16.37: The bowling ball is slid-
ing so long as vG ¤ �!R
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16.5 The Sturmey-Archer hub
In 1903, the year the Wright Brothers first flew powered airplanes,
the Sturmey-Archer company patented the internal-hub three-speed
bicycle transmission. This marvel of engineering was sold on the
best bikes until finicky but fast racing bicycles using derailleurs
started to push them out of the market in the 1960’s. Now, a hun-
dred years later, internal bicycle hubs (now made by Shimano and
Sachs) are having something of a revival, particularly in Europe.
These internal-hub transmissions utilize a system called planetary
gears, gears which roll around other gears. See the figure below.

Filename:tfigure7-2D-planetary

In order to understand this gear system, we need to understand its
kinematics—the motion of its parts. The central ‘sun’ gear F is sta-
tionary, at least we treat it as stationary in this discussion since it is
fixed to the bike frame, so it is fixed in body F . The ‘planet’ gears
roll around the sun gear. Let’s call one of these planetsP . The spider
S connects the centers of the rolling planets. Finally, the ring gear
R rotates around the sun.

Filename:tfigure7-2D-planetary-b

Sun F 
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Planet P
(rolls on sun)
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(connects
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planets)

The gear transmission steps up the angular velocity when the spi-
der S is driven and ring R, which moves faster, is connected to the
wheel. The transmission steps down the angular velocity when the
ring gear is driven and the slower spider is connected to the wheel.
The third ‘speed’ in the three-speed gear transmission is direct drive
(the wheel is driven directly).

What are the ‘gear ratios’ in the planetary gear system? The ‘trick’
is to recognize that for rolling contact that the contacting points have
the same velocity, *vA D *vB and *vD D *vE . Let’s define some
terms.

*!S D !S Ok angular velocity of the spider
*!P D !P Ok angular velocity of the planet
*!R D !R Ok angular velocity of the ring

Now, we can find the relation of these angular velocities as follows.
Look at the velocity of point C in two ways. First,

A point on the spider

B
BN����
*vC D

A point on the plane-
tary gear

�
�����

*vC

) *!S �*rC D *vB����
*
0

C*!P �*rC=B

) !SrC D !PRP

) !P D rC
RP

!S (16.36)

Next, let’s look at pointD andE :
*vD D *vE

*vA C*vD=A D *!R �*rR
*
0C*!P �*rD=A D !R Ok�*rR

!P .2RP / Oe� D !RrR Oe�
) !R D 2RP

rR
!P����
BBM

!P D rC
RP
!S

!R D 2RP
rR

rC D rS CRP
�
�����
rC
RP

!S

D 2.rS CRP /
rR����
BBM

rR D rS C 2RP

!S

) !R
!S

D 2
1C RP

rS

1C 2RP
rS

D angular velocity step-up:
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êθ ⇀
vA = ⇀

vB
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⇀
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Typically, the gears have radius ratio of RP
rS

D 3
2

which gives a

gear ratio of 5
4

. Thus, the ratio of the highest gear to the lowest gear
on a Sturmey-Archer hub is 5

4
= 4
5
D 25

16
D 1:5625. You might

compare this ratio to that of a modern mountain bike, with eighteen
or twenty-one gears, where the ratio of the highest gear to the lowest
is about 4:1.
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SAMPLE 16.10 Falling ladder: The ends of a ladder of length L D 3m
slip along the frictionless wall and floor shown in Figure 16.36. At the instant
shown, when � D 60

�
, the angular speed P� D 1:15 rad=s and the angular

acceleration R� D 2:5 rad=s2. Find the absolute velocity and acceleration of
end B of the ladder.

Solution Since the ladder is falling, it is rotating clockwise. From the given information:

*! D P� Ok D �1:15 rad=s Ok
P*! D R� Ok D �2:5 rad=s2 Ok:

We need to find*vB , the absolute velocity of end B, and*aB , the absolute acceleration of end
B.

Since the end A slides along the wall and end the B slides along the floor, we know the
directions of*vA;

*vB ;
*aA and*aB .

Let *vA D vA O|; *aA D aA O|; *vB D vB O{ and *aB D aB O{ where the scalar quantities
vA; aA; vB and aB are unknown.

Now, *vA D *vB C*vA=B D*vB C*! �*rA=B

or vA O| D vB O{C P� Ok � L.� cos � O{ � sin � O|/� �� �
*rA=B

D .vB C P�L sin �/O{ � P�L cos � O|:
Dotting both sides of the equation with O{, we get:

vA O|�O{����
0

D .vB C P�L sin �/ O{�O{����
1

C P�L cos � O|�O{����
0

) 0 D vB C P�L sin �

) vB D � P�L sin � D �.�1:15 rad=s/�3m�
p
3

2
D 2:99m=s:

*vB D 2:9m=sO{

Similarly,

*aA D *aB C P*! �*rA=B C
�!2*rA=B� �� �

*! � .*! �*rA=B /

aA O| D aB O{C R� Ok � L.� cos � O{ � sin � O|/ � P�2L.� cos � O{ � sin � O|/
D .aB C R�L sin � C P�2L cos �/O{C .� R�L cos � C P�2L sin �/ O|:

Dotting both sides of this equation with O{ (as we did for velocity) we get:

0 D aB C R�L sin � C P�2L cos �

) aB D � R�L sin � � P�2L cos �

D �.�2:5 rad=s2�3m�
p
3

2
/ � .�1:15 rad=s/2�3m�1

2

D 4:51m=s2:

*aB D 4:51m=s2
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SAMPLE 16.11 A cylinder of diameter 500mm rolls down an inclined
plane with uniform acceleration (of the center-of-mass) a D 0:1m=s2. At an
instant t0, the mass-center has speed v0 D 0:5m=s.

1. Find the angular speed ! and the angular acceleration P! at t0.

2. How many revolutions does the cylinder make in the next 2 seconds?

3. What is the distance travelled by the center-of-mass in those 2 seconds?

Solution This problem is about simple kinematic calculations. We are given the velocity,
Px, and the acceleration, Rx, of the center-of-mass. We are supposed to find angular velocity
!, angular acceleration P!, angular displacement � in 2 seconds, and the corresponding linear
distance x along the incline. The radius of the cylinder R D diameter=2 D 0:25m.

1. From the kinematics of pure rolling,

! D Px
R
D 0:5m=s

0:25m
D 2 rad=s;

P! D Rx
R
D 0:1m=s2

0:25m
D 0:4 rad=s2:

! D 2 rad=s; P! D 0:4 rad=s2

2. We can find the number of revolutions the cylinder makes in 2 seconds by solving for
the angular displacement � in this time period. Since,

R� � P! D constant;

we integrate this equation twice and substitute the initial conditions, P�.t D 0/ D ! D
2 rad=s and �.t D 0/ D 0, to get

�.t/ D !t C 1

2
P!t2

) �.t D 2 s/ D .2 rad=s/ � .2 s/C 1

2
.0:4 rad=s/ � .4 s2/

D 4:8 rad D 4:8

2�
rev D 0:76 rev:

� D 0:76 rev

3. Now that we know the angular displacement � , the distance travelled by the mass-
center is the arc-length corresponding to � , i.e.,

x D R� D .0:25m/ � .4:8/ D 1:2m:

x D 1:2m

Note that we could have found the distance travelled by the mass-center by integrating
the equation Rx D 0:1m=s2 twice.
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Chapter 16. Planar motion of an object 16.3. Kinematics of rolling and sliding 809

SAMPLE 16.12 Condition of pure rolling. A cylinder of radius R D 20 cm
rolls on a flat surface with absolute angular speed ! D 12 rad=s under the
conditions shown in the figure (In cases (ii) and (iii), you may think of the
‘flat surface’ as a conveyor belt). In each case,

1. Write the condition for pure rolling.

2. Find the velocity of the center C of the cylinder.

Filename:sfig7-rolling1

C

P

C

P

C

Pv0 = 1m/s

v0 = 1m/s

( i )  Fixed base ( i i )  Base moves to the right ( i i i )  Base moves to the left

ı̂

̂

Figure 16.41:

Solution At any instant during rolling, the cylinder makes a point-contact with the flat
surface. Let the point of instantaneous contact on the cylinder be P, and let the corresponding
point on the flat surface be Q. The condition of pure rolling, in each case, is*vP D*vQ, that
is, there is no relative motion between the two contacting points (a relative motion will imply
slip). Now, we analyze each case.

Case(i) In this case, the bottom surface is fixed. Therefore,

1. The condition of pure rolling is: *vP D*vQ D*
0:

2. Velocity of the center:

*vC D *vP C*! �*rC=P D*
0C .�! Ok/ �R O|

D !RO{ D .12 rad=s/ � .0:2m/O{ D 2:4m=sO{:

Case(ii) In this case, the bottom surface moves with velocity*v D 1m=sO{. Therefore,*vQ D
1m=sO{. Thus,

1. The condition of pure rolling is: *vP D*vQ D 1m=sO{:
2. Velocity of the center:

*vC D *vP C*! �*rC=P D v0 O{C !RO{
D 1m=sO{C 2:4m=sO{ D 3:4m=sO{:

Case(iii) In this case, the bottom surface moves with velocity *v D �1m=sO{. Therefore,
*vQ D �1m=sO{. Thus,

1. The condition of pure rolling is: *vP D*vQ D �1m=sO{:
2. Velocity of the center:

*vC D *vP C*! �*rC=P D �v0 O{C !RO{
D �1m=sO{C 2:4m=sO{ D 1:4m=sO{:

(a) W (i)*vP D*
0; (ii)*vP D 1m=sO{; (iii)*vP D �1m=sO{;

(b) W (i)*vC D 2:4m=sO{; (ii)*vC D 3:4m=sO{; (iii)*vC D 1:4m=sO{
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Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



810 Chapter 16. Planar motion of an object 16.3. Kinematics of rolling and sliding
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SAMPLE 16.13 Motion of a point on a disk rolling inside a cylinder. A
uniform disk of radius r rolls without slipping with constant angular speed
! inside a fixed cylinder of radius R. A point P is marked on the disk at a
distance ` (` < r) from the center of the disk. At a general time t during
rolling, find

1. the position of point P,

2. the velocity of point P, and

3. the acceleration of point P

Solution Let the disk be vertically below the center of the cylinder at t D 0 s such that
point P is vertically above the center of the disk (Fig. 16.42). At this instant, Q is the point
of contact between the disk and the cylinder. Let the disk roll for time t such that at instant
t the line joining the two centers (line OC) makes an angle � with its vertical position at
t D 0 s. Since the disk has rolled for time t at a constant angular speed !, point P has rotated
counter-clockwise by an angle � D !t from its original vertical position P’.
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Figure 16.44: Geometry of motion: keeping track of point P while the disk rolls for time t ,
rotating by angle � D !t inside the cylinder.

1. Position of point P: From Fig. 16.42(b) we can write

*rP D*rC C*rP=C D .R � r/ O�OC C ` O�CP
where

O�OC D a unit vector along OC D � sin� O{ � cos� O|;
O�CP D a unit vector along CP D � sin � O{C cos � O|:

Thus,

*rP D ��.R � r/ sin� � ` sin ��O{C ��.R � r/ cos� C ` cos �� O|:

We have thus obtained an expression for the position vector of point P as a function of
� and � . Since we also want to find velocity and acceleration of point P, it will be nice
to express*rP as a function of t . As noted above, � D !t ; but how do we find � as a
function of t? Note that the center of the disk C is going around point O in circles with
angular velocity � P� Ok. The disk, however, is rotating with angular velocity *! D ! Ok
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about the instantaneous center of rotation, point D. Therefore, we can calculate the
velocity of point C in two ways:

*vC D *vC

or *! �*rC=D D � P� Ok �*rC=O

or ! Ok � r.�O�OC / D � P� Ok � .R � r/ O�OC

or � !r. Ok � O�OC / D � P�.R � r/. Ok � O�OC /

) r

R � r ! D P�:

Integrating the last expression with respect to time, we obtain

� D r

R � r !t:

Let
q D r

R � r ;
then, the position vector of point P may now be written as

*rP D ��.R�r/ sin.q!t/�` sin.!t/�O{C ��.R�r/ cos.q!t/C` cos.!t/� O|: (16.37)

2. Velocity of point P: Differentiating Eqn. (16.37) once with respect to time we get

*vP D �!�.R � r/q cos.q!t/C ` cos.!t/�O{C !�.R � r/q sin.q!t/ � ` sin.!t/� O|:

Substituting .R � r/q D r in*vP we get

*vP D �!r�fcos.q!t/C `

r
cos.!t/gO{ � fsin.q!t/ � `

r
sin.!t/g O|�: (16.38)

3. Acceleration of point P: Differentiating Eqn. (16.38) once with respect to time we get

*aP D �!2r��fq sin.q!t/C `

r
sin.!t/gO{ � fq cos.q!t/ � `

r
cos.!t/g O|�: (16.39)

*rP D ��.R � r/ sin.q!t/ � ` sin.!t/�O{C ��.R � r/ cos.q!t/C ` cos.!t/� O|
*vP D �!r�fcos.q!t/C `

r cos.!t/gO{ � fsin.q!t/ � `
r sin.!t/g O|�

*aP D �!2r��fq sin.q!t/C `
r sin.!t/gO{ � fq cos.q!t/ � `

r cos.!t/g O|�
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812 Chapter 16. Planar motion of an object 16.3. Kinematics of rolling and sliding

SAMPLE 16.14 The rolling disk: instantaneous kinematics. For the
rolling disk in Sample 16.13, let R D 4 ft; r D 1 ft and point P be on
the rim of the disk. Assume that at t D 0, the center of the disk is vertically
below the center of the cylinder and point P is on the vertical line joining the
two centers. If the disk is rolling at a constant speed ! D � rad=s, find

1. the position of point P and center C at t D 1 s; 3 s; and 5:25 s,

2. the velocity of point P and center C at those instants, and

3. the acceleration of point P and center C at the same instants as above.
Draw the position of the disk at the three instants and show the velocities and
accelerations found above.

Solution The general expressions for position, velocity, and acceleration of point P obtained
in Sample 16.13 can be used to find the position, velocity, and acceleration of any point on
the disk by substituting an appropriate value of ` in equations (16.37), (16.38), and (16.39).
Since R D 4r ,

q D r

R � r D
1

3
:

Now, point P is on the rim of the disk and point C is the center of the disk. Therefore,

for point P: ` D r;

for point C: ` D 0:

Substituting these values for `, and q D 1=3 in equations (16.37), (16.38), and (16.39) we get
the following.

1. Position:

*rC D �3r
�

sin
�
!t

3

�
O{C cos

�
!t

3

�
O|
�
;

*rP D *rC C r ��sin .!t/ O{C cos .!t/ O|� :

2. Velocity:

*vC D �!r
�

cos
�
!t

3

�
O{ � sin

�
!t

3

�
O|
�
;

*vP D �!r
��

cos
�
!t

3

�
C cos .!t/

�
O{ �

�
sin
�
!t

3

�
� sin .!t/

�
O|
�
:

3. Acceleration:

*aC D !2r

3

�
sin
�
!t

3

�
O{C cos

�
!t

3

�
O|
�
;

*aP D !2r

��
1

3
sin
�
!t

3

�
C sin .!t/

�
O{C

�
1

3
cos

�
!t

3

�
� cos .!t/

�
O|
�
:

We can now use these expressions to find the position, velocity, and acceleration of
the two points at the instants of interest by substituting r D 1 ft, ! D � rad=s, and
appropriate values of t . These values are shown in Table 16.1.

The velocity and acceleration of the two points are shown in Figures 16.43(a) and (b) respec-
tively.
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Figure 16.45: (a) Velocity and (b) Acceleration of points P and C at t D 1 s; 3 s; and 5:25 s.

It is worthwhile to check the directions of velocities and the accelerations by thinking

about the velocity and acceleration of point P as a vector sum of the velocity (same for ac-

celeration) of the center of the disk and the velocity (same for acceleration) of point P with

respect to the center of the disk. Since the motions involved are circular motions at constant

rate, a visual inspection of the velocities and the accelerations is not very difficult. Try it.

t 1 s 3 s 5.25 s

*rC ( ft) 3.�
p
3
2
O{ � 1

2
O|/ 3 O| 3. 1p

2
O{ � 1p

2
O|/

*rP ( ft) *rC � O| *rC � O| 4. 1p
2
O{ � 1p

2
O|/

*vC ( ft=s) �.�1
2
O{C

p
3
2
O|/ � O{ �.� 1p

2
O{ � 1p

2
O|/

*vP ( ft=s) �.1
2
O{C

p
3
2
O|/ 2� O{

*

0

*aC . ft=s2/ �2

3
.
p
3
2
O{C 1

2
O|/ ��2

3
O| �2

3
.� 1p

2
O{C 1p

2
O|/

*vP . ft=s2/ 11:86.:24O{C :97 O|/ 2�2

3
O| 13:16.� 1p

2
O{C 1p

2
O|/

Table 16.1: Position, velocity, and acceleration of point P and point C
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SAMPLE 16.15 The rolling disk: path of a point on the disk. For the
rolling disk in Sample 16.13, take ! D � rad=s. Draw the path of a point
on the rim of the disk for one complete revolution of the center of the disk
around the cylinder for the following conditions:

1. R D 8r ,

2. R D 4r , and

3. R D 2r .

Solution In Sample 16.13, we obtained a general expression for the position of a point on the
disk as a function of time. By computing the position of the point for various values of time
t up to the time required to go around the cylinder for one complete cycle, we can draw the
path of the point. For the various given conditions, the variable that changes in Eqn. (16.37) is
q. We can write a computer program to generate the path of any point on the disk for a given
set of R and r . Here is a pseudocode to generate the required path on a computer according
to Eqn. (16.37).

A pseudocode to plot the path of a point on the disk:

(pseudo-code) program rollingdisk
%-------------------------------------------------------------
% This code plots the path of any point on a disk of radius
% ’r’ rolling with speed ’w’ inside a cylinder of radius ’R’.
% The point of interest is distance ’l’ away from the center of
% the disk. The coordinates x and y of the specified point P are
% calculated according to the relation mentioned above.
%--------------------------------------------------------------
phi = pi/50*[1,2,3,...,100] % make a vector phi from 0 to 2*pi
x = R*cos(phi) % create points on the outer cylinder
y = R*sin(phi)
plot y vs x % plot the outer cylinder
hold this plot % hold to overlay plots of paths
q = r/(R-r) % calculate q.
T = 2*pi/(q*w) % calculate time T for going around-

% the cylinder once at speed ’w’.
t = T/100*[1,2,3, ..., 100] % make a time vector t from 0 to T-

% taking 101 points.

rcx = -(R-r)*(sin(q*w*t)) % find the x coordinates of pt. C.
rcy = -(R-r)*(cos(q*w*t)) % find the y coordinates of pt. C.
rpx = rcx-l*sin(w*t) % find the x coordinates of pt. P.
rpy = rcy + l*cos(q*t) % find the y coordinates of pt. P.
plot rpy vs rpx % plot the path of P and the path
plot rcy vs rcx % of C. For path of C

Once coded, we can use this program to plot the paths of both the center and the point P on
the rim of the disk for the three given situations. Note that for any point on the rim of the disk
l D r (see Fig 16.42).
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1. Let R D 4 units. Then r D 0:5 for R D 8r . To plot the required path, we run our
program rollingdisk with desired input,

R = 4
r = 0.5
w = pi
l = 0.5
execute rollingdisk

The plot generated is shown in Fig.16.44 with a few graphic elements added for illus-
trative purposes.

2. Similarly, for R D 4r we type:

R = 4
r = 1
w = pi
l = 1
execute rollingdisk

to plot the desired paths. The plot generated in this case is shown in Fig.16.45

3. The last one is the most interesting case. The plot obtained in this case by typing:

R = 4
r = 2
w = pi
l = 2
execute rollingdisk

is shown in Fig.16.46. Point P just travels on a straight line! In fact, every point on the
rim of the disk goes back and forth on a straight line. Most people find this motion odd
at first sight. You can roughly verify the result by cutting a whole twice the diameter
of a coin (say a US quarter or dime) in a piece of cardboard and rolling the coin around
inside while watching a marked point on the perimeter.

A curiosity. We just discovered something simple about the path of a point on the edge of a

circle rolling in another circle that is twice as big. The edge point moves in a straight line.

In contrast one might think about the motion of the center G of a straight line segment that

slides against two straight walls as in sample 16.23. A problem couldn’t be more different.

Naturally the path of point G is a circle (as you can check physically by looking at the middle

of a ruler as you hold it as you sliding against a wall-floor corner).
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816 Chapter 16. Planar motion of an object 16.4. Mechanics of contact

16.4 Mechanics of contacting bodies:
rolling and sliding

A typical machine part has forces that come from contact with other parts. In
fact, with the major exceptions of

� Gravity,

� Electromagnetic forces inside motors, and

� Magnetic attraction/repulsion

most of the forces that act on bodies of engineering interest come from con-
tact. Many of the forces you have drawn in free body diagrams have been
contact forces: The force of the ground on a wheel, of an axle on a bearing,
of any part on any other part it touches.

We’d now like to consider some mechanics problems that involve sliding
or rolling contact. Once you understand the kinematics from the previous
section, there is nothing new in the mechanics. As always, the mechanics is
linear momentum balance, angular momentum balance and energy balance.
Because we are considering single rigid objects in 2D the expressions for the
motion quantities are especially simple (as you can look up in Table I at the
back of the book):

P*
L D mtot

*
acm; (16.40)

P*
H=C D*

rcm=C � .mtot
*
acm/C I P! Ok .whereI D I cm

zz / (16.41)

EK D mtotv
2
cm=2C I!2=2 (16.42)

The key to success, as usual, is the drawing of appropriate free body
diagrams (see Chapter 3). For rolling and sliding the two cases one needs
to consider as possible are, self-evidently, rolling, where the contact point
has no relative velocity and the tangential reaction force is unknown but less
than �N , and sliding where the relative velocity could be anything and the
tangential reaction force is usually assumed to have a magnitude of �N but
oppose the relative motion.

Work-energy relations and impulse-momentum relations are useful to
solve some problems both with and without slip. In pure rolling contact
the contact force does no work because the material point of contact has no
velocity. However, when there is sliding mechanical energy is dissipated.
The rate of loss of kinetic and potential energy is

Rate of frictional dissipation D Pdiss D Ffriction � vslip (16.43)

where vslip is the relative velocity of the contacting slipping points. If either
the friction force (ideal lubrication) or sliding velocity (no slip) is zero there
is no dissipation.
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As for various problems throughout the text, it is often a savings of cal-
culation to use angular momentum balance (or moment balance in statics)
relative to a point where there are unknown reaction forces. For rolling and
slipping problems this often means making use of contact points.

Example: Pure rolling on level ground
A ball or wheel rolling on level ground, with no air friction etc, rolls at constant
speed (see fig. 16.47). This is most directly deduced from angular momentum bal-
ance about the contact point C:

*
MC D

P*
HC ) *rG=C � �mg O| D *rG=C �m*aG C P!I cm

zz
Ok

) *
0 D R O| � .�m P!RO{/C P!I cm

zz
Ok

dotting with Ok ) P! D 0 ) ! D constant:

Because for rolling vG D �!R we thus have that vG is a constant. [The result
can also be obtained by combining angular momentum balance about the center-of-
mass with linear momentum balance.]

Finally, linear momentum balance gives the reaction force at C to be
*
Ftot D

F O{C n O| D mg O|. So,

assuming point contact, there is no rolling resistance.

Example: Bowling ball with initial sliding
A bowling ball is released with an initial speed of v0 and no rotation rate. What is
its subsequent motion? To start with, the motion is incompatible with rolling, the
bottom of the ball is sliding to the right. So there is a frictional force which opposes
motion and F D ��N (see fig. 16.47). Linear and angular momentum balance
give:

LMB: ) f�F O{CN O| �mg O| D maO{g
fg � O| ) N D mg

fg � O{ ) a D ��g
AMB=G: ) �R�mg D I cm

zz P!

) v D v0 � �gt and ! D ��Rmgt=I cm
zz

Thus the forward speed of the ball decreases linearly with time while the counter-
clockwise angular velocity decreases linearly with time.

This solution is only appropriate so long as there is rightward slip, vG > �!R.
Just like for a sliding block, there is no impetus for reversal, and the block switches
to pure rolling when

v D �!R) v0 � �gt D � .��Rmgt=I cm
zz /R) t D v0

�g
�
1C mR2

I cm
zz

� :
Note that the energy lost during sliding is less than �mg times the distance the
center of the ball moves during slip.

Example: Ball rolling down hill.
Assuming rolling we can find the acceleration of a ball as it rolls downhill (see
fig. 16.48). We start out with the kinematic observations that *aG D aG

O�, that
R! D �vG and that R P! D �aG. Angular momentum balance about the stationary
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ĵ

θ êθ
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point on the ground instantaneously coinciding with the contact point gives

AMB=C ) *rG=C � .�mg O|/ D*rG=C �m*aG C I cm
zz P! Okn

�R sin�mg Ok D .R On/ � .maG
O�/C I cm

zz P! Ok
o

fg � Ok ) �Rmg sin� D �RmaG � I cm
zz aG=R

) aG D g sin�
1CI cm

zz =.mR
2/
:

Which is less than the acceleration of a block sliding on a ramp without friction:
a D g sin� (unless the mass of the rolling ball is concentrated at the center with
I cm
zz D 0). Note that a very small ball rolls just as slowly. In the limit as the ball

radius goes to zero the behavior does not approach that of a point mass that slides;
the rolling remains significant.

Example: Ball rolling down hill: energy approach
We can find the acceleration of the rolling ball using power balance or conservation
of energy. For example

0 D d
dt
ET ) 0 D PEK C PEP

D d
dt

�
mv2=2C I cm

zz !
2=2

�C d
dt
.mgy/

D mv Pv C I cm
zz ! P! Cmg Py

D mv Pv C I cm
zz .v=R/ Pv=R �mg.sin�/v

assuming v ¤ 0) 0 D .mC I cm
zz =R

2/ Pv �mg sin�

) Pv D g sin�
1CI cm

zz =.mR
2/

as before.

Example: Does the ball slide?
How big is the coefficient of friction � needed to prevent slip for a ball rolling
down a hill? Use angular momentum balance to find the normal and frictional
components of the contact force, using the rolling example above.

LMB (
*
Ftot D m*aG) )

n
N OnC F O� �mg O| D maG

O�
o

fg � On ) N D mg cos�

fg � O� ) F Cmg sin� D m g sin�
1CI cm

zz =.mR
2/

F D �mg sin�
1CmR2=I cm

zz

Critical condition: ) � D jF j
N

D tan�
1CmR2=I cm

zz

If I cm
zz is very small (the mass concentrated near the center of the ball) then small

friction is needed to prevent rolling. For a uniform rubber ball on pavement (with
� � 1 and I cm

zz � 2mR2=5) the steepest slope for rolling without slip is a steep
� D tan�1.7=2/ � 74

�
. A metal hoop on the other hand (with � � :3 and I cm

zz �
mR2) will only roll without slip for slopes less than about � D tan�1.:6/ � 31

�
.

Example: Oscillations of a ball in a bowl.
A round ball can oscillate back and forth in the bottom of a circular cross section

bowl or pipe (see fig. 16.49). Similarly, a cylindrical object can roll inside a pipe.
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What is the period of oscillation? Start with angular momentum balance about the
contact point

*rG=C � .�mg O|/ D *rG=C �m*aG C I cm
zz P! Ok

rmg sin � Ok D �r Oer �
�
m
�
.R � r/ R� Oe� � .R � r/ P�2 Oer

��
CI cm

zz P! Ok:

Evaluating the cross products (using that Oer � Oe� D Ok) and using the kinematics
from the previous section (that .R � r/ P� D �r!) and dotting the left and right
sides with Ok gives

.R � r/ R� D �g sin �
1C I cm

zz =mr
2
;

the tangential acceleration is the same as would have been predicted by putting the
ball on a constant slope of �� . Using the small angle approximation that sin � D �

the equation can be rearranged as a standard harmonic oscillator equation

R� C
�

g

.R � r/.1C I cm
zz =mr

2/

�
� D 0:

If all the ball’s mass were concentrated in its middle, keeping r a fixed non-zero
size, (so I cm

zz D 0, like a lead pellet inside a styrofoam ball) this is the same as for a
simple pendulum with length R � r . For any parameter values the period of small
oscillation is

T D 2�

s
.R � r/.1C I cm

zz =mr
2/

g
:

For a marble or ball bearing in a sideways glass (with R � r � 2 cm D :04m,
I cm
zz =mr

2 � 2=5 and g � 10m=s2) this gives about one oscillation every half
second. See page 956 for the energy approach to this problem.
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SAMPLE 16.16 Equation of motion of a driven wheel Consider a wheel
of mass m and radius R driven by an axle force

*

F as shown in the figure.
The wheel rolls to the left without slipping. Write the equation of motion of
the wheel.

Solution The free body diagram of the wheel is shown in figure 16.51. We can write
the equation of motion of the wheel in terms of either the center-of-mass position x or the
angular displacement of the wheel � . Since in pure rolling, these two variables share a simple
relationship (x D R� ), we can easily get the equation of motion in terms of x if we have the
equation in terms of � and vice versa. Let *! D ! Ok and P*! D P! Ok.

Since all the forces are shown in the free body diagram, we can readily write the an-
gular momentum balance for the wheel. We choose the point of contact C as our reference
point for the angular momentum balance (because the gravity force, �mg O|, the friction force
�Ffriction O{, and the normal reaction of the ground N O|, all pass through the contact point C
and therefore, produce no moment about this point). We haveX

*
MC D P*

H=C

where

X
*
MC D

R O|����
*rcm=C �.F O�/

D R O| � F.� cos� O{ � sin� O|/
D FR cos� Ok

and P*
H=C D *rcm=C �m*acm C I cm

zz
P*!

D R O| �m Rx����
� P!R

O{C I cm
zz P! Ok

D m P!R2 OkC I cm
zz P! Ok

D .I cm
zz CmR2/ P! Ok:

Thus,
FR cos� Ok D .I cm

zz CmR2/ P! Ok
) P! � R� D FR cos�

I cm
zz CmR2

which is the equation of motion we are looking for. Note that we can easily substitute R� D
�Rx=R in the equation of motion above to get the equation of motion in terms of the center-
of-mass displacement x as

Rx D � FR2 cos�
I cm
zz CmR2

:

R� D FR cos�
I cm
zzCmR2

Comments: We could have, of course, used linear momentum balance with angular momen-

tum balance about the center-of-mass to derive the equation of motion. Note, however, that

the linear momentum balance will essentially give two scalar equations in the x and y direc-

tions involving all forces shown in the free-body diagram . The angular momentum balance ,

on the other hand, gets rid of some of them. Depending on which forces are known, we may

or may not need to use all the three scalar equations. In the final equation of motion, we must

have only one unknown.
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SAMPLE 16.17 Energy and power of a rolling wheel. A wheel of diam-
eter 2 ft and mass 20 lbm rolls without slipping on a horizontal surface. The
kinetic energy of the wheel is 1700 ft� lbf. Assume the wheel to be a thin,
uniform disk.

1. Find the rate of rotation of the wheel.

2. Find the average power required to bring the wheel to a complete stop
in 5 s.

Solution

1. Let ! be the rate of rotation of the wheel. Since the wheel rotates without slip, its
center-of-mass moves with speed vcm D !r . The wheel has both translational and
rotational kinetic energy. The total kinetic energy is

EK D 1

2
mv2cm C 1

2
I cm!2

D 1

2
m!2r2 C 1

2
I cm!2

D 1

2
.mr2 C I cm����

1
2mr2

/!2

D 3

4
mr2!2

) !2 D 4EK

3mr2

D 4 � 1700 ft� lbf

3 � 20 lbm�1 ft2

D 4 � 1700 � 32:2 6lbm�6 ft= s2

3 � 20 6lbm�6 ft
D 3649:33

1

s2
) ! D 60:4 rad=s:

! D 60:4 rad=s

Note: This rotational speed, by the way, is extremely high. At this speed the center-
of-mass moves at 60.4 ft=s!

2. Power is the rate of work done on a body or the rate of change of kinetic energy. Here
we are given the initial kinetic energy, the final kinetic energy (zero) and the time to
achieve the final state. Therefore, the average power is,

P D EK1 �EK2
�t

D 1700 ft� lbf � 0
5 s

D 340 ft� lbf= s

D 340 ft� lbf= s � 1 hp
550 ft� lbf= s

D 0:62 hp

P D 0:62 hp
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SAMPLE 16.18 Equation of motion of a rolling wheel from energy bal-
ance. Consider the wheel with mass m from figure 16.53. The free-body
diagram of the wheel is shown here again. Derive the equation of motion of
the wheel using energy balance. Assume CCW (counter clockwise) rotation
is positive.

Solution From energy balance, we have

P D PEK

where
P D

X
*
Fi �*vi

D �Ffriction O{ �

*
0����

*vC CN O| �

*
0����

*vC �mg O| �
v O{����

*vcm CF O� �
v O{����

*vcm

D �mgv. O{ � O|����
0

/C Fv. O� � O{����
� cos�

/

D �Fv cos�

and

PEK D d

dt
.
1

2
m Px2 C 1

2
I cm
zz

. Px=R/2����
!2 /

D 1

2

d

dt

��
mC I cm

zz

R2

�
Px2
�

D
�
mC I cm

zz

R2

�
Px Rx:

Thus,

�Fv cos� D
�
mC I cm

zz

R2

�
Px Rx

or � F 6 Px cos� D
�
mC I cm

zz

R2

�
6 Px Rx

) Rx D � F cos�

mC I cm
zz

R2

:

We can also write the equation of motion in terms of � by replacing Rx with � R�R giving,

R� D .F=R/ cos�

mC I cm
zz

R2

:

Rx D � F cos�
mCI cm

zz =R
2

Comments: In the equations above (for calculating P ), we have set*vC D*
0 because in pure

rolling, the instantaneous velocity of the contact point is zero. Note that the force due to

gravity is normal to the direction of the velocity of the center-of-mass. So, the only power

supplied to the wheel is due to the force F O� acting at the center-of-mass.
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SAMPLE 16.19 Equation of motion of a rolling disk on an incline. A
uniform circular disk of mass m D 1 kg and radius R D 0:4m rolls down
an inclined shown in the figure. Write the equation of motion of the disk
assuming pure rolling, and find the distance travelled by the center-of-mass
in 2 s.

Solution The free-body diagram of the disk is shown in fig. 16.55. In addition to the base
unit vectors O{ and O|, let us use unit vectors O� and On along the plane and perpendicular to the
plane, respectively, to express various vectors. We can write the equation of motion using
linear momentum balance or angular momentum balance. However, note that if we use linear
momentum balance we have two unknown forces in the equation. On the other hand, if we
use angular momentum balance about the contact point C, these forces do not show up in the
equation. So, let us use angular momentum balance about point C:X

*
MC D P*

H=C

where X
*
MC D *rO=C �m*g D R On � .�mg O|/

D �Rmg sin� Ok
and

P*
H=C D �I cm

zz P! OkC
R On����

*rO=C �m
R P! O�����
*acm

D �I cm
zz P! OkCmR2 P!. On � O�/

D �.I cm
zz CmR2/ P! Ok:

Thus,
�Rmg sin� Ok D �.I cm

zz CmR2/ P! Ok
) P! D g sin�

R�1C I cm
zz =.mR

2/�
:

P! D g sin�
R�1CI cm

zz =.mR
2/�

Note that in the above equation of motion, the right hand side is constant. So, we can solve the
equation for ! and � by simply integrating this equation and substituting the initial conditions
!.t D 0/ D 0 and �.t D 0/ D 0. Let us write the equation of motion as P! D � where
� D g sin�=R.1C I cm

zz =mR
2/. Then,

! � P� D �t C C1

� D 1

2
�t2 C C1t C C2:

Substituting the given initial conditions P�.0/ D 0 and �.0/ D 0, we get C1 D 0 and C2 D 0,
which implies that � D 1

2�t
2. Now, in pure rolling, x D R� . Therefore,

x.t/ D R�.t/ D 1

2
�t2 D 6R � 1

2

g sin�
6R.1C I cm

zz =mR
2/
t2

D 1

2

g sin�

1C
1
2mR

2

mR2

t2 D 1

3
.g sin�/t2

x.2 s/ D 1

3
� 9:8m=s2 � sin.30

�

/ � .2 s/2 D 6:53m:

x.2 s/ D 6:53m
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SAMPLE 16.20 Using Work and energy in pure rolling. Consider the
disk of Sample 16.19 rolling down the incline again. Suppose the disk starts
rolling from rest. Find the speed of the center-of-mass when the disk is 2 m
down the inclined plane.

Solution We are given that the disk rolls down, starting with zero initial velocity. We are
to find the speed of the center-of-mass after it has travelled 2 malong the incline. We can, of
course, solve this problem using equation of motion, by first solving for the time t the disk
takes to travel the given distance and then evaluating the expression for speed !.t/ or x.t/
at that t . However, it is usually easier to use work energy principle whenever positions are
specified at two instants, speed is specified at one of those instants, and speed is to be found at
the other instant. This is because we can, presumably, compute the work done on the system
in travelling the specified distance and relate it to the change in kinetic energy of the system
between the two instants. In the problem given here, let !1 and !2 be the initial and final
(after rolling down by d D 2m) angular speeds of the disk, respectively. We know that in
rolling, the kinetic energy is given by

EK D 1

2
m

.!R/2����
v2cm C1

2
I cm
zz !

2 D 1

2
.mR2 C I cm

zz /!
2:

Therefore,

�EK D EK2 �EK1 D
1

2
.mR2 C I cm

zz /.!
2
2 � !21 /: (16.44)

Now, let us calculate the work done by all the forces acting on the disk during the displacement
of the mass-center by d along the plane. Note that in ideal rolling, the contact forces do no
work. Therefore, the work done on the disk is only due to the gravitational force:

W D .�mg O|/ � .d O�/ D �mgd.
� sin�����
O| � O� / D mgd sin�: (16.45)

From work-energy principle (integral form of power balance, P D PEK ), we know that
W D �EK. Therefore, from eqn. (16.44) and eqn. (16.45), we get

mgd sin� D 1

2
.mR2 C I cm

zz /.!
2
2 � !21 /

) !22 D !21 C
2mgd sin�
mR2 C I cm

zz
D !21 C

2gd sin�

R2
�
1C I cm

zz

mR2

�
D !21 C

4gd sin�
3R2

:

Substituting the values of g; d; �;R, etc., and setting !1 D 0, we get

!22 D 4 � .9:8m=s2/ � .2m/ � .sin.30
�
/

3 � .0:4m/2
D 81:67=s2

) !2 D 9:04 rad=s:

The corresponding speed of the center-of-mass is

vcm D !2R D 9:04 rad=s � 0:4m D 3:61m=s:

vcm D 3:61m=s
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SAMPLE 16.21 Impulse and momentum calculations in pure rolling.
Consider the disk of Sample 16.19 rolling down the incline again. Find an
expression for the rolling speed (!) of the disk after a finite time �t , given
the rolling speed !1 at some instant t1.

Solution Once again, this problem can be solved by integrating the equation of motion (as
done in Sample 16.19). However, we will solve this problem here using impulse-momentum
relationship. Let the desired angular speed at t2 D t1 C�t be !2. We need to find !2, given
the !1 at t D t1. Since the forces acting on the disk do not change during this time (assuming
pure rolling), it is easy to calculate impulse and then relate it to the change in the momenta
of the disk between the two instants. Now, from the linear impulse momentum relationship,P *
F ��t D *

L2 �
*
L1, we have

.�F O�CN O{ �mg O|/�t D m.v2 � v1/ O�: (16.46)

Dotting eqn. (16.46) with O� gives

.�F �mg. O| � O�����
� sin�

//�t D m.v2 � v1/

.�F Cmg sin�/�t D mR.!2 � !1/: (16.47)

Similarly, the angular impulse-momentum relationship about the mass-center,
*
MO�t D

.
*
H=O/2 � .

*
H=O/1, gives

.�FR Ok/�t D �I cm
zz .!2 � !1/ Ok

) FR�t D I cm
zz .!2 � !1/: (16.48)

Note that the other forces (N and mg) do not produce any moment about the mass-center as
they pass through this point. We can now eliminate the unknown force F from eqn. (16.47)
and eqn. (16.48) by multiplying eqn. (16.47) with R and adding to eqn. (16.48):

.�F Cmg sin�/�t �RC FR�t D mR.!2 � !1/ �RC I cm
zz .!2 � !1/

or mgR sin��t D .I cm
zz CmR2/.!2 � !1/

or g sin��t D R

�
1C I cm

zz

mR2

�
.!2 � !1/

) !2 D !1 C
g sin�

R
�
1C I cm

zz

mR2

��t:

!2 D !1 C g sin�

R
�
1C I cm

zz

mR2

��t

Note: From the answer obtained, we clearly see that !2 D !1C P!�t where P! is the angular

acceleration given by the expression P! D g sin�
R.1CI cm

zz =mR
2/

. This is the same expression we

obtained for the angular acceleration in Sample 16.19.
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SAMPLE 16.22 Falling ladder. A ladder AB, modeled as a uniform rigid
rod of mass m and length `, rests against frictionless horizontal and vertical
surfaces. The ladder is released from rest at � D �o .�o < �=2/. Assume
the motion to be planar (in the vertical plane).

1. As the ladder falls, what is the path of the center-of-mass of the ladder?

2. Find the equation of motion (e.g., a differential equation in terms of �
and its time derivatives) for the ladder.

3. How does the angular speed ! .D P�/ depend on �?

Solution Since the ladder is modeled by a uniform rod AB, its center-of-mass is at G, half
way between the two ends. As the ladder slides down, the end A moves down along the
vertical wall and the end B moves out along the floor. Note that it is a single degree of
freedom system as angle � (a single variable) is sufficient to determine the position of every
point on the ladder at any instant of time.

1. Path of the center-of-mass: Let the origin of our x-y coordinate system be the
intersection of the two surfaces on which the ends of the ladder slide (see Fig. 16.61).
The position vector of the center-of-mass G may be written as

*rG D *rB C*rG=B

D ` cos � O{C `

2
.� cos � O{C sin � O|/

D `

2
.cos � O{C sin � O|/: (16.49)

Thus the coordinates of the center-of-mass are

xG D `

2
cos � and yG D `

2
sin �;

from which we get

x2G C y2G D `2

4

which is the equation of a circle of radius `
2 . Therefore, the center-of-mass of the

ladder follows a circular path of radius `
2 centered at the origin. Of course, the center-

of-mass traverses only that part of the circle which lies between its initial position at
� D �o and the final position at � D 0.

2. Equation of motion: The free-body diagram of the ladder is shown in Fig. 16.62.
Since there is no friction, the only forces acting at the end points A and B are the
normal reactions from the contacting surfaces. Now, writing the the linear momentum
balance (

P *
F D m*a) for the ladder we get

N1 O{C .N2 �mg/ O| D m*aG D m R*rG :

Differentiating eqn. (16.49) twice we get R*rG as

R*rG D `

2
�.� R� sin � � P�2 cos �/O{C . R� cos � � P�2 sin �/ O|�:

Substituting this expression in the linear momentum balance equation above and dot-
ting both sides of the equation by O{ and then by O| we get

N1 D �1
2
m`. R� sin � C P�2 cos �/

N2 D 1

2
m`. R� cos � � P�2 sin �/Cmg:
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Next, we write the angular momentum balance for the ladder about its center-of-mass,P *
M=G D P*

H=G , where

X
*
M=G D

�
�N1

`

2
sin � CN2

`

2
cos �

�
Ok

D 1

2
m`. R� sin � C P�2 cos �/

`

2
sin � Ok

C
�
1

2
m`. R� cos � � P�2 sin �/Cmg

�
`

2
cos � Ok

D
�
1

4
m`2 R� C 1

2
mg` cos �

�
Ok

and
P*
H=G D Izz=G

P*! D 1

12
m`2 R�.�Ok/;

where P*! D R�.�Ok/ because � is measured positive in the clockwise direction .�Ok/.
Now, equating the two quantities

P *
M=G D P*

H=G and dotting both sides with Ok we
get

1

4
6m`2 R� C 1

2
6mg` cos � D � 1

12
6m`2 R�

or .
1

12
C 1

4
/`2 R� D �1

2
g` cos �

or R� D �3g
2`

cos � (16.50)

which is the required equation of motion. Unfortunately, it is a nonlinear equation
which does not have a nice closed form solution for �.t/.

3. Angular Speed of the ladder: To solve for the angular speed ! .D P�/ as a function of
� we need to express eqn. (16.50) in terms of !; � , and derivatives of ! with respect
to � . Now,

R� D P! D d!

dt
D d!

d�
� d�
dt

D !
d!

d�
:

Substituting in eqn. (16.50) and integrating both sides from the initial rest position to
an arbitrary position � we getZ !

0
! d! D �

Z �

�0

3g

2`
cos � d�

) 1

2
!2 D �3g

2`
.sin � � sin �0/

) ! D �
r
3g

`
.sin �0 � sin �/:

Since end B is sliding to the right, � is decreasing; hence it is the negative sign in front
of the square root which gives the correct answer, i.e.,

*! D P�.�Ok/ D �
r
3g

`
.sin �0 � sin �/ Ok:

Note: To do this problem we have assumed that the upper end of the ladder stays in contact

with the wall as it slides down. If a real ladder were sliding against a slippery wall and floor,

would it not lose contact? The answer is yes, it would. One way of finding when the contact

would be lost is to calculate the normal reaction N1 and finding out at what value of � it

passes through zero. The answer depends on �0. For example, if �0 D 80
�
, then N1 is zero

at about � D 41�. You can verify this result by substituting the expressions for R� and P� in the

expression for N1 and solving for � when N1 D 0.
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SAMPLE 16.23 The falling ladder again. Consider the falling ladder of
Sample 16.10 again. The mass of the ladder is m and the length is `. The
ladder is released from rest at � D 80

�
.

1. At the instant when � D 45
�
, find the speed of the center-of-mass of

the ladder using energy.

2. Derive the equation of motion of the ladder using work-energy balance.

Solution

1. Since there is no friction, there is no loss of energy between the two states: �0 D 80
�

and �f D 45
�
. The only external forces on the ladder are N1; N2; and mg as shown

in the free body diagram. Since the displacements of points A and B are perpendicular
to the normal reactions of the walls,N1 andN2, respectively, no work is done by these
forces on the ladder. The only force that does work is the force due to gravity. But this
force is conservative. Therefore, the conservation of energy holds between any two
states of the ladder during its fall.

Let E1 and E2 be the total energy of the ladder at �0 and �f , respectively. Then

E1 D E2 (conservation of energy).

Now E1 D EK1����
K:E:

C EP1����
P:E:

D 0Cmgh1

D mg
`

2
sin �0

and E2 D EK2
CEP2 D

1

2
mv2G C 1

2
IG
zz!

2� �� �
EK2

Cmgh2:

Equating E1 and E2 we get

6mg `6 2 .sin �0 � sin �f / D 1

6 2 .6mv
2
G C 1

12
6m`2� �� �
IG
zz

!2/

or g`.sin �0 � sin �f / D v2G C 1

12
`2!2: (16.51)

Clearly, we cannot find vG from this equation alone because the equation contains
another unknown, !. So we need to find another equation which relates vG and !. To
find this equation we turn to kinematics. Note that

*rG D `

2
.cos � O{C sin � O|/

) *vG D P*rG D `

2
.� sin � � P� O{C cos � � P� O|/

) vG D j*vG j D
s
`2

4
.cos2 � C sin2 �/ P�2

D `

2
P� D `

2
!

) ! D 2vG
`
:
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Substituting the expression for ! in eqn. (16.51) we get

g`.sin �0 � sin �f / D v2G C 1

12
6̀ 2�4v

2
G

6̀ 2

D 4

3
v2G

) vG D
r
3g`

4
.sin �0 � sin �f /

D 0:46
p
g`:

vG D 0:46
p
g`

2. Equation of motion: Since the ladder is a single degree of freedom system, we can use
the power equation to derive the equation of motion:

P D PEK :

For the ladder, the only force that does work is mg. This force acts at the center-of-
mass G. Therefore,

P D *
F �*v D �mg O| �*vG

D �mg O|�
�
`

2
.� sin � O{C cos � O|/ P�

�

D �mg `
2
P� cos �:

Now, the rate of change of kinetic energy is

PEK D d

dt

�
1

2
mv2G C 1

2
IG
zz!

2

�

D d

dt

 
1

2
m
`2!2

4
C 1

2

m`2

12
!2

!

D m`2

4
! P! C m`2

12
! P!

D m`2

3
! P! � m`2

3
P� R� (since ! D P� and P! D R� ):

Now equating P and PEK we get

6m`2
3
6 P� R� D �6mg `

2
6 P� cos �

) R� D �3g
2`

cos �

which is the same expression as obtained in Sample 16.22 (b).

R� D �3g
2`

cos �

Note: Just like in the last problem, we have assumed that the upper end of the ladder stays

in contact with the vertical wall. This assumption is used implicitly in the kinematics of the

ladder. In energy calculations, the normal reactions of the two walls make no contribution as

the work done by them is zero and hence the assumption of wall contact does not figure in the

calculations above.
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This diagram can be used to find vari-
ous dot and cross products between any
two unit vectors. For example, On � O| D
sin � Ok:

SAMPLE 16.24 Rolling on an inclined plane. A wheel is made up of three
uniform disks— the center disk of mass m D 1 kg, radius r D 10 cm and
two identical outer disks of mass M D 2 kg each and radius R. The wheel
rolls down an inclined wedge without slipping. The angle of inclination of
the wedge with horizontal is � D 30

�
. The radius of the bigger disks is to be

selected such that the linear acceleration of the wheel center does not exceed
0.2g. Find the radius R of the bigger disks.

Solution Since a bound is prescribed on the linear acceleration of the wheel and the radius
of the bigger disks is to be selected to satisfy this bound, we need to find an expression for
the acceleration of the wheel (hopefully) in terms of the radius R.

The free-body diagram of the wheel is shown in Fig. 16.67. In addition to the weight
.mC2M/g of the wheel and the normal reactionN of the wedge surface there is an unknown
force of friction Ff acting on the wheel at point C. This friction force is necessary for the
condition of rolling motion. You must realize, however, that Ff ¤ �N because there is
neither slipping nor a condition of impending slipping. Thus the magnitude of Ff is not
known yet.

Let the acceleration of the center-of-mass of the wheel be

*aG D aG
O�

and the angular acceleration of the wheel be

P*! D � P! Ok:

We assumed P*! to be in the negative Ok direction. But, if this assumption is wrong, we will get
a negative value for P!.

Now we write the equation of linear momentum balance for the wheel:X
*
F D mtotal

*acm

�.mC 2M/g O| CN On � Ff O� D .mC 2M/aG
O�

This 2-D vector equation gives (at the most) two independent scalar equations. But we have
three unknowns: N; Ff ; and aG . Thus we do not have enough equations to solve for the
unknowns including the quantity of interest aG . So, we now write the equation of angular
momentum balance for the wheel about the point of contact C (using*rG=C D r On):

X
*
MC D P*

H=C

where
*
MC D *rG=C � .mC 2M/g.� O|/

D r On � .mC 2M/g.� O|/
D �.mC 2M/gr sin � Ok (see Fig. 16.68)

and
P*
H=C D IGzz

P*!C*rG=C �mtotal
*aG

D IGzz .� P! Ok/ �mtotal P!r2 Ok
D .IGzz Cmtotalr

2/.� P! Ok/

D

2
64. 1
2
mr2 C 2 � 1

2
MR2/C

mtotal� �� �
.mC 2M/ r2

3
75 .� P! Ok/

D �
�
3

2
mr2 CM.R2 C 2r2/

�
P! Ok:
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Thus,

�.mC 2M/gr sin � Ok D �
�
3

2
mr2 CM.R2 C 2r2/

�
P! Ok

) P! D .mC 2M/gr sin �
3
2mr

2 CM.R2 C 2r2/
: (16.52)

Now we need to relate P! to aG . From the kinematics of rolling,

aG D P!r:

Therefore, from Eqn. (16.52) we get

aG D .mC 2M/gr2 sin �
3
2mr

2 CM.R2 C 2r2/
:

Now we can solve for R in terms of aG :

3

2
mr2 CM.R2 C 2r2/ D .mC 2M/gr2 sin �

aG

) M.R2 C 2r2/ D .mC 2M/g

aG
r2 sin � � 3

2
mr2

) R2 D .mC 2M/g

MaG
r2 sin � � 3m

2M
r2 � 2r2:

Since we require aG � 0:2g we get

R2 �
�
.mC 2M/g

M � 0:2g sin � � 3m

2M
� 2

�
r2

�
�
5 kg
0:4 kg

� 1
2
� 3 kg
4 kg

� 2
�
.0:1m/2

� 0:035m2

) R � 0:187m:

Thus the outer disks of radius 20 cm will do the job.

R � 18:7 cm
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SAMPLE 16.25 Which one starts rolling first — a marble or a bowling
ball? A marble and a bowling ball, made of the same material, are launched
on a horizontal platform with the same initial velocity, say v0. The initial
velocity is large enough so that both start out sliding. Towards the end of
their motion, both have pure rolling motion. If the radius of the bowling ball
is 16 times that of the marble, find the instant, for each ball, when the sliding
motion changes to rolling motion.

Solution Let us consider one ball, say the bowling ball, first. Let the radius of the ball be
r and mass m. The ball starts with center-of-mass velocity *vo D v0 O{. The ball starts out
sliding. During the sliding motion, the force of friction acting on the ball must equal �N (see
the FBD). The friction force creates a torque about the mass-center which, in turn, starts the
rolling motion of the ball. However, rolling and sliding coexist for a while, till the speed of
the mass-center slows down enough to satisfy the pure rolling condition, v D !r . Let the
instant of transition from the mixed motion to pure rolling be t�. From linear momentum
balance , we have

m Pv O{ D ��N O{C .N �mg/ O| (16.53)

eqn. (16.53) � O| ) N D mg

eqn. (16.53) � O{ ) m Pv D ��N D ��mg
) Pv D ��g
) v D v0 � �gt: (16.54)

Similarly, from angular momentum balance about the mass-center, we get

�I cm
zz P! Ok D ��Nr Ok D ��mgr Ok

) P! D �mgr

I cm
zz

) ! D !0����
0

C�mgr
I cm
zz

t: (16.55)

At the instant of transition from mixed rolling and sliding to pure rolling, i.e., at t D t�,
v D !r . Therefore, from eqn. (16.54) and eqn. (16.55), we get

v0 � �gt� D �mgr2

I cm
zz

t�

) v0 D �gt�.1C mr2

I cm
zz
/

) t� D v0

�g.1C mr2

I cm
zz
/
:

Now, for a sphere, I cm
zz D 2

5mr
2. Therefore,

t� D v0

�g.1C mr2
2
5mr2

/
D 2v0
7�g

:

Note that the expression for t� is independent of mass and radius of the ball! Therefore, the
bowling ball and the marble are going to change their mixed motion to pure rolling at exactly
the same instant. This is not an intuitive result.

t� D 2v0
7�g for both.
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SAMPLE 16.26 Transition from a mix of sliding and rolling to pure
rolling, using impulse-momentum. Consider the problem in Sample 16.25
again: A ball of radius r D 10 cm and mass m D 1 kg is launched horizon-
tally with initial velocity v0 D 5m=s on a surface with coefficient of friction
� D 0:2. The ball starts sliding, rolls and slides simultaneously for a while,
and then rolls without sliding. Find the time it takes to start pure rolling.

Solution Let us denote the time of transition from mixed motion (rolling and sliding) to
pure rolling by t�. At t D 0, we know that vcm D v0 D 5m=s, and !0 D 0. We also
know that at t D t�, vcm D vt� D !t�r , where r is the radius of the ball. We do not
know t� and vt� . However, we are considering a finite time event (during t�) and the forces
acting on the ball during this duration are known. Recall that impulse momentum equations
involve the net force on the body, the time of impulse, and momenta of the body at the
two instants. Momenta calculations involve velocities. Therefore, we should be able to use
impulse-momentum equations here and find the desired unknowns. From linear impulse-
momentum, we have �X

*
F
�
t� D mvt� O{ �mv0 O{

.��N O{C .N �mg/ O|/ t� D m.vt� � v0/O{:
Dotting the above equation with O| and O{, respectively, we get

N D mg

�� N����
mg

t� D m.vt� � v0/

) � �gt� D vt� � v0: (16.56)

Similarly, from angular impulse-momentum relation about the mass-center, we getX
*
Mcmt

� D .
*
Hcm/t� � .

*
Hcm/0

.��Nr Ok/t� D .I cm
zz !t� � I cm

zz !0����
0

/.�Ok/

or � �mgrt� D �I cm
zz !t�

) !t� D �mgrt�=I cm
zz

) vt� � !t�r D �mgr2t�=I cm
zz :

Substituting this expression for vt� in eqn. (16.56), we get

��gt� D �mgr2t�=I cm
zz � v0

) t� D v0

�g.1C mr2

I cm
zz
/

which is, of course, the same expression we obtained for t� in Sample 16.25. Again, noting
that I cm

zz D 2
5mr

2 for a sphere, we calculate the time of transition as

t� D 2v0
7�g

D 2 � .5m=s/
7 � .0:2/ � .9:8m=s2/

D 0:73 s:

t� D 0:73 s
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16.5 Rigid-object collision mechanics
This section extends the particle collisions discussion in Section 12.2 that
starts on page 602.

2D collisions

For collisions between rigid bodies with more general motions before and
after the collisions we depend on the three key ideas

I. Collision forces are big,

II. Collisions are quick, and

III. The laws of mechanics apply during the collision.

There are two extra assumptions that are needed in simple analysis:

IV. Collision forces are few. For a given rigid body there is one, or at
most two non-negligible collision forces. This is the real import of
idea (I) above. Because collision forces are big most other forces can
be neglected.

V. The collision force(s) act at a well defined point which does not move
during the collision.

Based on these assumptions one then uses linear and angular momentum
balance in their time-integrated form.

Example: Two bodies in space
Two bodies collide at point C. The impulse acting on body 2 is

*
P D R *

Fcoll dt .
If the mass and inertia properties of both bodies is known, as are the velocities
and rotation rates before the collision we have the following linear and angular
momentum balance equations for the two bodies:

�*
P D m1

�
*vCG1 �*v�G1

�
*
P D m2

�
*vCG2 �*v�G2

�
*rC=G1 � .�

*
P/ D I cm

zz
1
�
!C1 � !�1

�
Ok

*rC=G2 �
*
P D I cm

zz
2
�
!C2 � !�2

�
Ok:

(16.57)

These make up 6 scalar equations (2 for each momentum equation, 1 for each an-
gular momentum equation). There are 8 scalar unknowns: *vCG1 (2), *vCG2 (2), !C1
(1), !C2 (1), and

*
P (2). Thus the motion after the collision cannot be determined.

[Note that linear and angular momentum balance for the system would give
equations which could be obtained by adding and subtracting combinations of the
equations above. So adding system momentum balance equations does not add
information (ie, adds linearly dependent equations).]

So, as for 1-D collisions, momentum balance is not enough to determine
the outcome of the collision. Eqns. 16.57 aren’t enough. A thousand different
models and assumptions could be added to make the system solvable. But
there are only two cases that are non-controversial and also relatively simple:
1) sticking collisions, and 2) frictionless collisions.
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Sticking collisions
A ‘perfectly-plastic’ sticking collision is one where the relative velocities of
the two contacting points are assumed to go suddenly to zero. That is

*
vCC1 D*

vCC2

Writing*
vCC1 D*

vCG1C .!C1 Ok/�*
rC=G1 and similarly for*vC2 thus adds a vector

equation (2 scalar equations) to the equation set 16.57. This gives 8 equations
in 8 unknowns.

A little cleverness can reduce the problem to one of solving only 4 equa-
tions in 4 unknowns. Linear momentum balance for the system, angular mo-
mentum balance for the system and angular momentum balance for object 2
make up 4 scalar equations. None of these equations includes the impulse

*

P .
Because the system moves as if hinged at C1 after the collision, the state of
motion after the system is fully characterized by *

vCG1, !C1 , and !C2 . Thus we
have 4 equations in 4 unknowns.

Example: One body is hugely massive: collision with an immovable object
If body 2, say, is huge compared to body 1 then it can be taken to be immovable
and collision problems can be solved by only considering body 1 (see fig. 16.74).
In the case of a sticking collision the full state of the system after the collision is
determined by !C1 . This can be found from the single scalar equation obtained
from angular momentum balance about the collision point.

*
H�

A D *
HC

A
*rG=A �m*v�G C I cm

zz !
� Ok D *rG=A �m*vCG C I cm

zz !
C Ok

Because the state of the system before the collision is assumed known (the left “-”
side of the equation, and because the post-collision (+) state is a rotation about A,
this equation is one scalar equation in the one unknown !C. Note that

*
HC

A could
also be evaluated as

*
HC

A D !CIAzz Ok. So one way of expressing the post-collision
state is as

!C D

�
*rG=A �m*v�G C I cm

zz !
� Ok
�
� Ok

IAzz
and *v

C
G D !C Ok �*rG=A:

Note also that the same*rG=A is used on the right and left sides of the equation be-
cause only the velocity and not the position is assumed to jump during the collision.

The collision impulse
*
P can then be found from linear momentum balance as

*
P D m

�
*v
C
G �*v

�
G

�
:

Sticking collisions are used as models of projectiles hitting targets, of robot
and animal limbs making contact with the ground, of monkeys and acrobats
grabbing hand holds, and of some particularly dead and frictional collisions
between solids (such as when a car trips on a curb).

Frictionless collisions
The second special case is that of a frictionless collision. Here we add two
assumptions:

1. There is no friction so
*

P D P On. The number of unknowns is thus
reduced from 8 to 7.
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2. There is a coefficient of (normal) restitution e.
The normal restitution coefficient is taken as a property of the colliding

bodies. It is a given number with 0 < e < 1 with this defining equation:

.*vCC2 �*
vCC1/ � On D �e.*v�C2 �*

v�C1/ � On:

This says that the normal part of the relative velocity of the contacting points
reverses sign and its magnitude is attenuated by e. This adds a scalar equation
to the set Eqns. 16.57 thus giving 7 scalar equations (4 momentum, 2 angular
momentum, 1 restitution) for 7 unknowns (4 velocity components, 2 angular
velocities and the normal impulse).

The most popular application of the frictionless collision model is for
billiard or pool balls, or carom pucks. These things have relatively small
coefficients of friction.

We state without proof that a frictionless collision with e D 1 conserves
energy.

Example: Pool balls
Assume one ball approaches the other with initial velocity *vCG1 D v O{ and has an
elastic frictionless collision with the other ball at a collision angle of � as shown in
fig. 16.75. Defining On � cos � O{ � sin � O| we have that

*
P D P On. To determine the

outcome of the equation we have the angular momentum balance equations (about
the center-of-mass) which trivially tell us that

!C1 D !C2 D 0

because the balls start with no spin and the frictionless collision impulses
*
P D P On

and �*
P D �P On have no moment about the center-of-mass. Linear momentum

balance for each of the balls

�P On D m*vCG1 �mv O{
P On D m*vCG2 �

*
0

gives 4 scalar equations which are supplemented by the restitution equation (using
e D 1) �

�*vC
�
� On D �e .�*v�/ � On

) �v cos � D*vCG2 � On �*vCG1 � On
which together make 5 scalar equations in the 5 scalar unknowns*vCG1,*vCG2, and P
(each vector has 2 unknown components). These have the solution

*vCG1 D v sin �.sin � O{C cos � O|/;
*vCG1 D v cos �.cos � O{ � sin � O|/; and

P D mv cos �:

The solution can be checked by plugging back into the momentum and restitution
equations. Also, as promised, this e D 1 solution conserves kinetic energy. The
solution has the interesting property that the outgoing trajectories of the two balls
are orthogonal for all � but � D 0 in which case ball 1 comes to rest in the collision.
[The solution can be found graphically by looking for two outgoing vectors which
add to the original velocity of mass 1, where the sum of the squares of the outgoing
speeds must add to the square of the incoming speed.]
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Frictional collisions

For a collision with friction, but not so much that total sticking is accurate,
the modeling is complex and subtle. As of this writing there are no stan-
dard acceptable ways of dealing with such situations. Commercial simulation
packages should be used for such with skeptical caution. They are generally
defective in that they can predict only a limited range of phenomena and/or
they can create energy even with innocent input parameters.

Why is it hard to find a good collision law
Ideally one would like a rule to determine how bodies move after a collision
from how they move before the collision. Such a rule would be called a
collision law or a constitutive relation for collisions. That accurate collision
laws are rare at best might be surmised from the basic problem that the phrase
rigid body collisions is in some sense a contradiction in terms, an oxymoron.
The force generated in the contact comes from material deformation, and
deformation is just what we generally try to neglect when doing rigid body
mechanics.

There is a temptation to say that one wants to continue to neglect defor-
mation during the collision, but for in an infinitesimal contact region. And
some collision laws are formulated with this approach. Even then, there are
no reliable models for the deformation in that small region, and such laws are
doomed to inaccuracy in situations where the deformation is not so limited.

For complex shaped bodies touching at various points that are generally
not known a priori, no collision law is reliably accurate.
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SAMPLE 16.27 For two masses conservation of momentum is expressed
by the vector equation m1

*
v1 C m2

*
v2 D m1

*
vC1 C m2

*
vC2 . Suppose *

v1 D
*

0; *
v2 D �v0 O|; *

vC1 D vC1 O{ and *
vC2 D vC2t Oet C vC2n Oen, where Oet D cos � O{C

sin � O| and Oen D � sin � O{C cos � O|.
1. Obtain two independent scalar equations from the momentum equation

corresponding to projections in the Oen and Oet directions.

2. Assume that you are given another equation vC2t D �v0 sin � . Set up
a matrix equation to solve for vC1 ; v

C
2t

, and vC2n from the three equa-
tions.

Solution

1. The given equation of conservation of linear momentum is

m1
*v1����
0

Cm2
*v2 D m1

*vC1 C m2
*vC2

or �m2v0 O| D m1v
C
1 O{Cm2.v

C
2t
Oet C vC2n Oen/: (16.58)

Dotting both sides of eqn. (16.58) with Oen gives

�m2v0.

cos �����
Oen � O| / D m1v

C
1 .

� sin �����
Oen � O{ /Cm2v

C
2t
.

0����
Oen � Oet /Cm2v

C
2n
.

1����
Oen � Oen/

or �m2v0 cos � D �m1v
C
1 sin � Cm2v

C
2n
: (16.59)

Dotting both sides of eqn. (16.58) with Oet gives

�m2v0.

sin �����
Oet � O| / D m1v

C
1 .

cos �����
Oet � O{ /Cm2v

C
2t
.

1����
Oet � Oet /Cm2v

C
2n
.

0����
Oet � Oen/

or �m2v0 sin � D m1v
C
1 cos � Cm2v

C
2t
: (16.60)

�m2v0 cos � D �m1v
C
1 sin � Cm2v

C
2n
; �m2v0 sin � D m1v

C
1 cos � Cm2v

C
2t

2. Now, we rearrange eqn. (16.59) and 16.60 along with the third given equation, vC2t
D

�v0 sin � , so that all unknowns are on the left hand side and the known quantities are
on the right hand side of the equal sign. These equations, in matrix form, are as follows.

2
4 �m1 sin � 0 m2

�m1 cos � m2 0

0 1 0

3
5
8�<
�:

vC1
vC2t
vC2n

9>=
>; D

8<
:

�m2v0 cos �
�m2v0 sin �
�v0 sin �

9=
; :

This equation can be easily solved on a computer for the unknowns.
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SAMPLE 16.28 Cueing a billiard ball. A billiard ball is cued by striking
it horizontally at a distance d D 10mm above the center of the ball. The ball
has mass m D 0:2 kg and radius r D 30mm. Immediately after the strike,
the center-of-mass of the ball moves with linear speed v D 1m=s. Find the
angular speed of the ball immediately after the strike. Ignore friction between
the ball and the table during the strike.

Solution Let the force imparted during the strike be F . Since the ball is cued by giving a
blow with the cue, F is an impulsive force. Impulsive forces, such as F , are in general so
large that all non-impulsive forces are negligible in comparison during the time such forces
act. Therefore, we can ignore all other forces .mg;N; f / acting on the ball from its free body
diagram during the strike.

Now, from the linear momentum balance of the ball we get

F O{ D P*
L or .F O{/dt D d

*
L )

Z
.F O{/dt D *

L2 �
*
L1

where L2 �L1 D �
*
L is the net change in the linear momentum of the ball during the strike.

Since the ball is at rest before the strike,
*
L1 D m *v1����

0

D*
0. Immediately after the strike,

*v D v O{ D 1m=s.

Thus
*
L2 D m*v D 0:2 kg�1m=sO{ D 0:2N� sO{:

Hence
Z
.F O{/dt D 0:2N� sO{ or

Z
F dt D 0:2N� s: (16.61)

To find the angular speed we apply the angular momentum balance. Let ! be the angular
speed immediately after the strike and *! D ! Ok. Now,

X
*
Mcm D P*

Hcm )
Z X

*
Mcm dt D

Z
d
*
Hcm D .

*
Hcm/2 � .

*
Hcm/1:

Because
*
Hcm D I zzcm

*! and just before the strike, *! D*
0;

.
*
Hcm/1 � angular momentum just before the strike D*

0

.
*
Hcm/2 � angular momentum just after the strike D I zzcm!

Ok;Z X
*
Mcm dt D I zzcm!

Ok D 2

5
mr2! Ok (since for a sphere, I zzcm D 2

5mr
2).

But
X

*
Mcm D �Fd Ok;

therefore �
Z
.Fd/dt Ok D 2

5
mr2! Ok

or � d����
constant

Z
F dt D 2

5
mr2! ) ! D � 5d

2mr2

Z
F dt:

Substituting the given values and
R
F dt D 0:2N� s from equation 16.61 we get

! D � 5.0:01m/
2�0:2 kg�.0:03m/2

�0:2N� s D �27:78 rad=s:

The negative value makes sense because the ball will spin clockwise after the strike, but we
assumed that ! was anticlockwise.

! D �27:78 rad=s:
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1Since C is a fixed point for the mo-
tion of the bar after impact, we could
calculate

*
HC
C

as follows.

*
HC
C
D ICzz

*! D 1

3
m`2����
ICzz

!.�Ok/:

SAMPLE 16.29 Falling stick. A uniform bar of length ` and mass m

falls on the ground at an angle � as shown in the figure. Just before impact at
point C, the entire bar has the same velocity v directed vertically downwards.
Assume that the collision at C is plastic, i.e., end C of the bar gets stuck to
the ground upon impact.

1. Find the angular velocity of the bar just after impact.

2. Assuming � to be small, find the velocity of end B of the bar just after
impact.

Solution We are given that the impact at point C is plastic. That is, end C of the bar has zero
velocity after impact. Thus end C gets stuck to the ground. Then we expect the rod to rotate
about point C as rest of the bar moves (perhaps faster) to touch the ground. The free-body
diagram of the bar is shown in fig. 16.79 during the impact at point C. Note that we can ignore
the force of gravity in comparison to the large impulsive force Fc due to impact at C.

1. Now, if we carry out angular momentum balance about point C, there will be no net
moment acting on the bar, and therefore, angular momentum about the impact point C
is conserved. Distinguishing the kinematic quantities before and after impact with su-
perscripts ‘-’ and ‘+’, respectively, we get from the conservation of angular momentum
about point C,

*
H�
C D *

HC
C

I cm
zz

*!� C*rG=C �m*v�G D I cm
zz

*!C C*rG=C �m*vCG :

Now, we know that *!� D*
0 since every point on the bar has the same vertical velocity

*v D �v O|, and that just after impact, *vC
G
D *!C �*rG=C where we can take *!C D

!.�Ok/. Thus, 1

*
H�
C D *rG=C �m*v�G D .`=2/ O� �mv.� O|/

D �mv`
2

cos � Ok .since O� D cos � O{C sin � O|/
*
HC
C

D I cm
zz

*!C C*rG=C �m.*!C �*rG=C/

D �I cm
zz !

OkC .`=2/ O� �m.�! Ok � `=2 O�/� �� �
!`=2.�On/

D � 1

12
m`2! Ok � 1

4
m`2! Ok D �1

3
m`2! Ok:

Now, equating
*
H�
C

and
*
HC
C

we get

! D 3v

2`
cos �; ) *! D �3v

2`
cos � Ok:

*! D �3v
2`

cos � Ok

2. The velocity of the end B is now easily found using *vB D *vC C*vB=C D *vB=C and
*vB=C D*! �*rB=C. Thus,

*vB=C D *! �*rB=C D �! Ok � ` O�

D �!` On D �3v
2

cos �.� sin � O{C cos � O|/

but, for small � , cos � � 1, and sin � � 0. Therefore,*vB=C D �3v
2 O|. Thus, end B of

the bar speeds up by one and a half times its original speed due to the plastic impact at
C.

*vB=C D �.3=2/v O|
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SAMPLE 16.30 Tipping box. A box of mass m and dimensions 2a and 2b
moves along a horizontal surface with uniform speed v. Suddenly, it bumps
into an obstacle at A. Assume that the impact is plastic and point A is at the
lowest level of the box. What is the maximum v the box can have so that it
does not tip over after the impact.
Solution Whether the box can tip or not depends on whether it gets sufficient initial angular
speed just after collision to overcome the restoring moment due to gravity about the point of
rotation A. So, first we need to find the angular velocity of the box immediately following the
collision. The free-body diagram of the box during collision is shown in fig. 16.81. There is an
impulse

*
P acting at the point of impact. If we carry out the angular momentum balance about

point A, we see that the impulse at A produces no moment impulse about A, and therefore,

the angular momentum about point A has to be conserved. That is,
*
HA

C D *
HA

�
. Now,

*
HA

� D*rG=A �m*vG
� D .�b O{C a O|/ �mv O{ D �mav Ok

Let the box have angular velocity *!C D ! Ok just after impact. Then,

*
HA

C D I cm
zz

*!C C*rG=A �m*vG
C D I cm

zz !
OkC r O� �m.! Ok � r O�/

D I cm
zz !

OkCmr2! Ok D 1

12
.4a2 C 4b2/m! OkCm.a2 C b2/! Ok

D 4

3
.a2 C b2/m! Ok:

Now equating the two momenta, we get

!C D � 3a

4.a2 C b2/
v ) *!C D � 3a

4.a2 C b2/
v Ok: (16.62)

Thus we know the angular velocity immediately after impact. Now let us find out if it is
enough to get over the hill, so to speak. Once the impact is over (in a few milliseconds), the
usual forces show up on the free-body diagram (see fig. 16.82).

In this post-collision part of the motion energy is conserved. Calling just after collision
‘+’ and the top position ‘t’ (where G is directly above A), using that IAzz D 4

3m.a
2 C b2/

and solving for the critical condition, that the block has just enough energy to get to the top
position, we have,

EP
C CEK

C D EK
t CEP

t

EP
t �EP

C D �.EK
t �EK

C/

mg.

q
.b2 C a2/ � b/ D �

�
0 � 1

2
.!C/2IAzz

�

.!C/2 D 3

2
g

�
1 � bp

.b2Ca2/

�
p
.b2 C a2/

:

This tells us how big !C has to be. Substituting this !C into eqn. (16.62) we find how big v
has to be. We find that the box does not tip over so long as v is small enough, as given by

v � 2
a

s
2g.b2 C a2/3=2

�
1 � bp

.b2Ca2/

�
=3:
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Figure 16.83: The free-body diagram of
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lision. The impulsive force at the point
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SAMPLE 16.31 Ball hits the bat. A uniform bar of mass m2 D 1 kg
and length 2` D 1m hangs vertically from a hinge at A. A ball of mass
m1 D 0:25 kg comes and hits the bar horizontally at point D with speed
v D 5m=s. The point of impact D is located at d D 0:75m from the hinge
point A. Assume that the collision between the ball and the bar is plastic.

1. Find the velocity of point D on the bar immediately after impact.

2. Find the impulse on the bar at D due to the impact.

3. Find and plot the impulsive reaction at the hinge point A as a function
of d , the distance of the point of impact from the hinge point. What is
the value of d which makes the impulse at A to be zero?

Solution The free-body diagram of the ball and the bar as a single system is shown in
fig. 16.84 during impact. There is only one external impulsive force

*
FA acting at the hinge

point A. We take the ball and the bar together here so that the impulsive force acting between
the ball and the bar becomes internal to the system and we are left with only one external

force at A. Then, the angular momentum balance about point A yields P*
HA D*

0 since there is
no net moment about A. Thus the angular momentum about A is conserved during the impact.

1. Let us distinguish the kinematic quantities just before impact and immediately after
impact with superscripts ‘-’ and ‘+’, respectively. Then, from the conservation of
angular momentum about point A, we get

*
H�
A
D *
HC
A

. Now,

*
H�
A D .

*
H�
A /ball C .

*
H�
A /bar

D *rD=A �m1
*v� C IAzz

*!�

D d O| �m1v.�O{/C
*
0 D m1dv

Ok:
Similarly,

*
HC
A

D *rD=A �m1
*vC C IAzz

*!C

but,*vC D*!C �*rD=A D �!d O{, where *!C D ! Ok (let). Hence,
*
HC
A

D d O| �m1.�!d O{/C
1

3
m2.2`/

2! Ok

D .m1d
2 C 4

3
m2`

2/! Ok:

Equating the two momenta, we get

! D m1dv

m1d
2 C .4=3/m2`

2

D v

d

�
1C 4

3
m2
m1

�
`
d

�2�
) *vD D *!C �*rD=A D !d.�O{/

D � v

1C 4
3
m2
m1

�
`
d

�2 O{:
Now, substituting the given numerical values, v D 5m=s, m1 D 0:25 kg, m2 D 1 kg,
` D 0:5m, and d D 0:75m, we get*vD D �2:08m=sO{

*vD D �2:08m=sO{
2. To find the impulse at D due to the impact, we can consider either the ball or the bar

separately, and find the impulse by evaluating the change in the linear momentum of
the body. Let us consider the ball since it has only one impulse acting on it. The

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 16. Planar motion of an object 16.5. Collisions 843

free-body diagram of the ball during impact is shown in fig. 16.85. From the linear
impulse-momentum relationship we get,

*
PD D

Z
*
FD dt D *

LC �*
L� D m1.

*vC �*v�/

D m1

0
B@� v

1C 4
3
m2
m1

�
`
d

�2 O{C v O{

1
CA

D m1v

0
B@1 � 1

1C 4
3
m2
m1

�
`
d

�2
1
CA O{:

Substituting the given numerical values, we get
*
PD D 0:73 kg�m=sO{. The impulse

on the bar is equal and opposite. Therefore, the impulse on the bar is �*
PD D

�0:73 kg�m=sO{.
Impulse at D D �0:73 kg�m=sO{

3. Now that we know the impulse at D, we can easily find the impulse at A by applying
impulse-momentum relationship to the bar. Since, the bar is stationary just before
impact, its initial momentum is zero. Thus, for the bar,Z

.
*
FA �

*
FD/dt D

*
LC �*

L� D *
LC D m2

*vCcm:

Denoting the impulse at A with
*
PA, the mass ratiom2=m1 bymr , and the length ratio

`=d byh q, and noting that*vCcm D ! Ok � ` O| D �!`O{, we get

*
PA �

Z
*
FA dt D

Z
*
FD dt Cm2.�!`O{/

D m1v

 
1 � 1

1C 4
3mrq

2

!
O{ �m2`

v

d
�
1C 4

3mrq
2
� O{

D m1v

 
4
3mrq

2

1C 4
3mrq

2

!
O{ �m2v

 
q

1C 4
3mrq

2

!
O{

D .4=3/m2q
2 �m2q

1C 4
3mrq

2
v O{ D q.4q � 3/

3
�
1C 4

3mrq
2
� m2v O{:

Now, we are ready to graph the impulse at A as a function of q � `=d . However, note
that a better quantity to graph will be PA=.m1v/, that is, the nondimensional impulse
at A, normalized with respect to the initial linear momentumm1v of the ball. The plot
is shown in fig. 16.86. It is clear from the plot, as well as from the expression for

*
PA,

that the impulse at A is zero when q D 3=4 or d D 4`=3 D 2=3.2`/, that is, when
the ball strikes at two thirds the length of the bar. Note that this location of the impact
point is independent of the mass ratio mr .

d D 2=3.2`/ for
*
PA D*

0

Comment: This particular point of impact D (when d D 2=3.2`/) which induces no impulse

at the support point A is called the center of percussion. If you imagine the bar to be a bat

or a racquet and point A to be the location of your grip, then hitting a ball at D gives you an

impulse-free shot. In sports, point D is called a sweet spot.
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ĵ

⇀

P-
⇀

D

Figure 16.90: Separate free-body dia-
grams of the disk and the plate during
collision. The impulse

*
P acts normal

to the colliding surfaces and hence we
can assume that on the plate,

*
P D P O{.

Therefore, the impulse on the disk is
�P O{.
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SAMPLE 16.32 Flying dish collides with solar panel. A uniform rectan-
gular plate of dimensions 2a D 2m and 2b D 1m and mass mP D 2 kg
drifts in space at a uniform speed vp D 10m=s (relative to some local New-
tonian reference frame) in the direction shown. A circular disk of radius
R D 0:25m and mass mD D 1 kg is heading towards the plate at a linear
speed v0 D vD D 1m=s directed normal to the facing edge of the plate. In
addition, the disk is spinning at !D D 5 rad=s in the clockwise direction.
The plate and the disk collide at point A of the plate, located at d D 0:8m
from the center of the long edge. Assume that the collision is frictionless and
purely elastic. Find the linear and angular velocities of the plate and the disk
immediately after the collision.
Solution We are given the linear and angular velocities of the two bodies before their col-
lision. We have to find their linear and angular velocities after the collision. Let the linear
velocities of the plate and the disk after the collision be*vC

P
and*vC

D
, respectively. We assume

that the collision takes place in the plane of the two bodies (that is, all motions before and
after collision are planar). Then the unknown angular velocities of the plate and the disk after
the collision can be assumed as *!C

P
D !C

P
Ok and *!C

D
D !C

D
Ok. Thus, in total, we have 6

scalar unknowns here — 4 for linear velocities of the disk and the plate (each velocity has
two components) and 2 for the two angular velocities.

Since we are trying to find velocities after a collision, given the velocities before the
collision, we can use linear and angular momentum-impulse relations. Let

*
P be the impulse

acting during the collision. Note that the collision is frictionless and hence
*
P must act normal

to the two colliding surfaces. Therefore, the direction of the impulse is known, only its
magnitude is not known. Thus, in total, we have 7 unknowns now. To solve for them, we
need 7 independent equations.

We have 6 independent equations from the linear and angular impulse-momentum bal-
ance for the two bodies (3 each). We need one more equation. That equation is the rela-
tionship between the normal components of the relative velocities of approach and departure
with the coefficient of restitution e (=1 for elastic collision). Thus we have 7 equations for 7
unknowns. First we set them up, then we solve them with a calculator or computer.

The free-body diagrams of the disk and the plate together and the two separately are
shown in fig. 16.89 and 16.88, respectively. Using an xy coordinate system oriented as shown
in fig. 16.89, we can write

LMB for disk: mD.
*vC
D
�*v�

D
/ D �P O{

LMB for plate: mP .
*vC
P
�*v�

P
/ D P O{

AMB for disk: I cm
D
.*!C

D
�*!�

D
/ D *

0

AMB for plate: I cm
P
.*!C

P
�*!�

P
/ D *rA=P � P O{

kinematics: *vC
AD

�*vC
AP

D e.*v�
AP

�*v�
AD
/

where, in the last equation*vAD and*vAP refer to the velocities of the material points located at
A on the disk and on the plate, respectively. Other linear velocities in the equations above refer
to the velocities at the center-of-mass of the corresponding bodies. We are given that*v�

D
D

vD O{;*v�P D �vP O{; *!�
D
D �!D Ok, and *!�

P
D*
0. Let us assume that *!C

D
D !C

D
Ok; *!C

P
D

!C
P
Ok;*vC

D
D vC

Dx
O{C vC

Dy
O|, and similarly,*vC

P
D vC

Px
O{C vC

Py
O|. Then,

*v�AD D *v�D C*!�
D �*rA=O D vD O{ � !DR O|

*vC
AD

D *vC
D
C*!C

D
�*rA=O D vC

Dx
O{C .vC

Dy
C !C

D
R/ O|

*v�AP D *v�P D �vP O{
*vC
AP

D *vC
P
C*!C

P
�*rA=P D .vC

Px
� !C

P
d/O{C .vC

Py
� !C

P
b/ O|:

Substituting these quantities in the kinematics equation above and dotting with O{, the unit
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Chapter 16. Planar motion of an object 16.5. Collisions 845

normal at A, we get

vC
Dx

� vC
Px

C !C
P
d D e����

1

.�vP � vD/ D �vP � vD : (16.63)

Now, let us extract the scalar equations from the impulse-momentum equations for the disk
and the plate by dotting with appropriate unit vectors.

Dotting LMB for the disk with O{ and O|, respectively, we get
mD.v

C
Dx

� vD/ D �P (16.64)

mDv
C
Dy

D 0: (16.65)

Dotting LMB for the plate with O{ and O|, respectively, we get
mP .v

C
Px

C vP / D P (16.66)

mP v
C
Py

D 0: (16.67)

Dotting AMB for the disk and the plate with Ok, we get
I cm
D .!C

D
C !D/ D 0 (16.68)

I cm
P !C

P
D �Pd: (16.69)

We have all the equations we need. Let us rearrange these equations in a matrix form, taking
the known quantities to the right and putting all unknowns to the left side. We then, write
eqns. (16.64)–(16.69), and then eqn. (16.63) as

2
666666664

mD 0 0 0 0 0 1

0 mD 0 0 0 0 0

0 0 mP 0 0 0 �1
0 0 0 mP 0 0 0

0 0 0 0 I cm
D

0 0

0 0 0 0 0 I cm
P

d

1 0 �1 0 0 d 0

3
777777775

8�����������<
�����������:

vC
Dx

vC
Dy

vC
Px

vC
Py

!C
D

!C
P
P

9>>>>>>>>>>>=
>>>>>>>>>>>;
D

8��������<
��������:

mDvD
0

�mP vP
0

�I cm
D
!D
0

�vP � vD

9>>>>>>>>=
>>>>>>>>;
:

Substituting the given numerical values for the masses and the pre-collision velocities, and
the moments of inertia, I cm

D
D .1=2/mDR

2 and I cm
P

D .1=12/mP .4a
2 C 4b2/, and then

solving the matrix equation on a computer, we get,

*vC
D
D �8:70m=sO{; *vC

P
D �5:15m=sO{

*!C
D
D �5 rad=s Ok; *!C

P
D �9:31 rad=s Ok

P D 9:70 kg�m=s:

You can easily check that the results obtained satisfy the conservation of linear momentum
for the plate and the disk taken together as one system.

Comments: In this particular problem, the equations are simple enough to be solved by

hand. For example, eqns. (16.65), (16.67), and (16.68) are trivial to solve and immediately

give, vC
Dy

D 0; vC
Py

D 0, and !C
D
D !D D �5 rad=s. The rest of the equations can be solved

by usual eliminations and substitutions, etc. The key is that you have 7 linear independent

equations for the 7 unknowns.
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Problems for
Chapter 16
Planar motion of an object

16.1 Rigid object
kinematics
Preparatory Problems
16.1.1 A disk of radius R is hinged at point
O at the edge of the disk, approximately
as shown. It rotates counterclockwise with
angular velocity P� D *!. A bolt is fixed on
the disk at point P at a distance r from the
center of the disk. A frame x0y0 is fixed
to the disk with its origin at the center C
of the disk. The bolt position P makes an
angle � with the x0-axis. At the instant of
interest, the disk has rotated by an angle � .

a) Write the position vector of point P
relative to C in the x0y0 coordinates
in terms of given quantities.

b) Write the position vector of point P
relative to O in the xy coordinates
in terms of given quantities.

c) Write the expressions for the rota-
tion matrix R.�/ and the angular
velocity matrix S.*!/.

d) Find the velocity of point P relative
to C using R.�/ and the angular ve-
locity matrix S.*!/.

e) Using R D 30 cm, r D 25 cm, � D
60�, and � D 45�, find �*rC=0�xy ,
and �*rP=0�xy at the instant shown.

f) Assuming that the angular speed is
! D 10 rad=s at the instant shown,
find �*vC=0�xy and �*vP=0�xy taking
other quantities as specified above.
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Problem 16.1.1

16.1.2 A uniform rigid rod AB of length
` D 1m rotates at a constant angular speed
! about an unknown fixed point. At the
instant shown, the velocities of the two
ends of the rod are *vA D �1m=sO{ and
*vB D 1m=s O|.

a) Find the angular velocity of the rod.

b) Find the center of rotation of the
rod.

Filename:pfigure4-3-rp6
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Problem 16.1.2

16.1.3 A square plate ABCD rotates at a
constant angular speed about an unknown
point in its plane. At the instant shown,
the velocities of the two corner points A
and D are*vA D �2 ft=s.O{C O|/ and*vD D
�.2 ft=s/O{, respectively.

a) Find the center of rotation of the
plate.

b) Find the acceleration of the center
of mass of the plate.

Filename:pfigure4-3-rp7
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Problem 16.1.3

More-Involved Problems
16.1.4 A ten foot ladder is leaning between
a floor and a wall. The top of the ladder is
sliding down the wall at one foot per sec-
ond. (The foot is simultaneously sliding
out on the floor). When the ladder makes
a 45 degree angle with the vertical what is
the speed of the midpoint of the ladder?

16.1.5 The slender rod AB rests against
the step of height h, while end “A” is
moved along the ground at a constant ve-
locity vo. Find P� and R� in terms of x, h,

and vo. Is P� positive or negative? Is R� pos-
itive or negative?

Filename:pfigure-blue-98-1
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Problem 16.1.5

16.1.6 Consider the motion of a rigid lad-
der which can slide on a wall and on the
floor as shown in the figure. The point A on
the ladder moves parallel to the wall. The
point B moves parallel to the floor. Yet, at a
given instant, both have velocities that are
consistent with the ladder rotating about
some special point, the center of rotation
(COR). Define appropriate dimensions for
the problem.

a) Find the COR for the ladder when it
is at some given position (and mov-
ing, of course). [Hint: if a point A
is ‘going in circles’ about another
point C, that other point C must be
in the direction perpendicular to the
motion of A.

b) As the ladder moves, the COR
changes with time. What is the set
of points on the plane that are the
COR’s for the ladder as it falls from
straight up to lying on the floor?

Filename:pfigure-blue-96-1
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Problem 16.1.6

16.1.7 A car driver on a very boring
highway is carefully monitoring her speed.
Over a one hour period, the car travels on
a curve with constant radius of curvature,
� D 25mi, and its speed increases uni-
formly from 50mph to 60mph. What is
the acceleration of the of the car half-way
through this one hour period, in path coor-
dinates?

846 Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 16. Homework problems 16.2 Dynamics of a rigid object 847

16.1.8 The bar AB shown in the figure is
1 m long. The end A of the bar is dragged
to the left on the horizontal floor at a con-
stant speed v0 D 0:2m=s. The other end
of the bar drags along the inclined plane
that makes an angle � D 60� with the hor-
izontal.

a) Does the end B of the rod also have
a constant speed? Does it imply
that the rod has a constant angular
velocity? Guess your answer and
write down your reasoning. No cal-
culations.

b) Find an expression for the angular
velocity of the rod in terms of � , �,
`, and v0. �

c) Find the velocity of end B when
� D 30�.

Filename:pfigure14-1-slidingbar1
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Problem 16.1.8

16.1.9 The disk shown in the figure drives
the slider AB. The disk rotates clockwise
at a constant angular speed !D D 60 rpm.
The radius of the disk is R D 0:25m.

a) Find the velocity of collar A when
� D 30�.

b) Find the acceleration of collar A
when � D 30�.

c) Find the maximum and minimum
velocity of the collar and the corre-
sponding angle � of the slider.

Filename:pfigure14-1-slider1
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Problem 16.1.9

16.1.10 A rod AC of length ` D 2m
is mounted on a cart at point C. The cart
slides down under gravity on a friction-
less surface inclined at � D 45� from the
horizontal. Assume that bar has negligi-
ble mass compared to that of the cart. The
cart is released from rest and it reaches the
position shown in t D 2 s. At the instant

shown, � D 60�, and rod AC has an an-
gular velocity *! D 0:5 rad=s Ok and angu-
lar acceleration *� D 1 rad=s2 Ok. Find the
velocity and acceleration of the center of
mass of the rod at the instant shown.
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Problem 16.1.10

16.1.11 A vertical bar pendulum AB of
length ` D 4 ft is mounted on a cart at
point A. The cart has a motor that drives
the bar pendulum back and forth about the
vertical position such that �.t/ D �0 sin!t
where �0 D �=6 and ! D � rad=s.
The cart moves at a constant speed v0 D
2 ft=s on a sinusoidal track represented by
y.x/ D y0 sin�x where y0 D 0:5 ft and
� D �=4= ft.

a) Find the velocity of point B when
� D 0.

b) Find and plot the position of point
B for one full oscillation of the
bar, assuming the bar starts from
its leftmost angular position (that is,
theta D ��0) when the cart is on
one of the crests of the track.
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Problem 16.1.11

16.1.12 The center of mass of a javelin
travels on a more or less parabolic path
while the javelin rotates during its flight. In
a particular throw, the velocity of the cen-
ter of mass of a javelin is measured to be
*vC D 10m=sO{ when the center of mass
is at its highest point h D 6m. As the
javelin lands on the ground, its nose hits
the ground at G such that the javelin is al-
most tangent to the path of the center of
mass at G. Neglect the air drag and lift on
the javelin.

a) Given that the javelin is at an angle
� D 45� at the highest point, find

the angular velocity of the javelin.
Assume the angular velocity iscon-
stant during the flight and that the
javelin makes less than a full revo-
lution.
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Problem 16.1.12

16.2 Dynamics of a rigid
object
16.2.1 The uniform rectangle of width
a D 1m, length b D 2m, and mass
m D 1 kg in the figure is sliding on the
xy-plane with no friction. At the mo-
ment in question, point C is at xC D 3m
and yC D 2m. The linear momentum
is

*
L D 4O{ C 3 O| . kg�m=s/ and the angu-

lar momentum about the center of mass is
*
Hcm D 5 Ok. kg�m=s2/. Find the acceler-
ation of any point on the body that you
choose. (Mark it.) [Hint: You have been
given some redundant information.]

Filename:pfigure-blue-101-1
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Problem 16.2.1

16.2.2 The vertical pole AB of massm and
length ` is initially, at rest on a frictionless
surface. A tension T is suddenly applied
at A. What is Rxcm? What is R�AB? What is
RxB? Gravity may be ignored.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



848 Chapter 16. Homework problems 16.2 Dynamics of a rigid object

Filename:pfigure-blue-95-1
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Problem 16.2.2

16.2.3 Force on a stick in space. 2-D . No
gravity. A uniform thin stick with length
` and mass m is, at the instant of interest,
parallel to the y axis and has no velocity
and no angular velocity. The force

*
F D

F O{with F > 0 is suddenly applied at point
A. The questions below concern the instant
after the force

*
F is applied.

a) What is the acceleration of point C ,
the center of mass? �

b) What is the angular acceleration of
the stick? �

c) What is the acceleration of the point
A? �

d) (relatively harder) What additional
force would have to be applied to
point B to make point B’s acceler-
ation zero? �
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Problem 16.2.3

16.2.4 A uniform thin rod of length ` and
massm stands vertically, with one end rest-
ing on a frictionless surface and the other
held by someone’s hand. The rod is re-
leased from rest, displaced slightly from
the vertical. No forces are applied during
the release. There is gravity.

a) Find the path of the center of mass.
b) Find the force of the floor on the end

of the rod just before the rod is hor-
izontal.

16.2.5 A uniform disk, with mass center
labeled as point G, is sitting motionless on
the frictionless xy plane. A massless peg
is attached to a point on its perimeter. This
disk has radius of 1m and mass of 10 kg. A
constant force of F D 1000N{ is applied
to the peg for :0001 s (one ten-thousandth
of a second).

a) What is the velocity of the center of
mass of the center of the disk after
the force is applied?

b) Assuming that the idealizations
named in the problem statement are
exact is your answer to (a) exact or
approximate?

c) What is the angular velocity of the
disk after the force is applied?

d) Assuming that the idealizations
named in the problem statement are
exact is your answer to (c) exact or
approximate?

16.2.6 A uniform thin flat disc is float-
ing in space. It has radius R and mass m.
A force F is applied to it at a distance d
from the center in the y direction. Treat
this problem as two-dimensional.

a) What is the acceleration of the cen-
ter of the disc? �

b) What is the angular acceleration of
the disk? �
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Problem 16.2.6

16.2.7 A uniform 1kg plate that is one me-
ter on a side is initially at rest in the posi-
tion shown. A constant force

*
F D 1NO{

is applied at t D 0 and maintained hence-
forth. If you need to calculate any quantity
that you don’t know, but can’t do the cal-
culation to find it, assume that the value is
given.

a) Find the position of G as a func-
tion of time (the answer should have
numbers and units).

b) Find a differential equation, and ini-
tial conditions, that when solved
would give � as a function of time.
� is the counterclockwise rotation
of the plate from the configuration
shown.

c) Write computer commands that
would generate a drawing of the
outline of the plate at t D 1 s.
You can use hand calculations or
the computer for as many of the in-
termediate commands as you like.
Hand work and sketches should be
provided as needed to justify or ex-
plain the computer work.

d) Run your code and show clear out-
put with labeled plots. Mark output
by hand to clarify any points.
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Problem 16.2.7

16.2.8 A uniform rectangular metal beam
of mass m hangs symmetrically by two
strings as shown in the figure.

a) Draw a free-body diagram of the
beam and evaluate

P *
F .

b) Repeat (a) immediately after the left
string is cut.

Filename:pfig2-2-rp8
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Problem 16.2.8

16.2.9 A uniform slender bar AB of mass
m is suspended from two springs (each of
spring constant K) as shown. Immediately
after spring 2 breaks, determine
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Chapter 16. Homework problems 16.3 Kinematics of rolling and sliding 849

a) the angular acceleration of the bar,
b) the acceleration of point A, and
c) the acceleration of point B .

Filename:pfigure-blue-50-2
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Problem 16.2.9

16.2.10 Two small spheres A and B are
connected by a rigid rod of length ` D
1:0 ft and negligible mass. The assembly is
hung from a hook, as shown. Sphere A is
struck, suddenly breaking its contact with
the hook and giving it a horizontal veloc-
ity v0 D 3:0 ft=s which sends the assem-
bly into free fall. Determine the angular
momentum of the assembly about its mass
center at point G immediately after A is hit.
After the center of mass has fallen two feet,
determine:

a) the angle � through which the rod
has rotated,

b) the velocity of sphere A,
c) the total kinetic energy of the as-

sembly of spheres A and B and the
rod, and

d) the acceleration of sphere A.
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Problem 16.2.10

The next several problems concern
Work, power and energy 16.2.11 Verify
that the expressions for work done by a
force F , W D F�S , and by a moment
M , W DM�� , are dimensionally correct
if �S and �� are linear and angular dis-
placements respectively.

16.2.12 A uniform disc of mass m and ra-
dius r rotates with angular velocity ! Ok.
Its center of mass translates with velocity
*v D Px O{C Py O| in the xy-plane. What is the
total kinetic energy of the disk?

16.2.13 Calculate the energy stored in a
spring using the expression EP D 1

2k�
2

if the spring is compressed by 100 mm and
the spring constant is 100 N/m.

16.2.14 In a rack and pinion system, the
rack is acted upon by a constant force F D
50N and has speed v D 2m=s in the di-
rection of the force. Find the input power
to the system.
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Problem 16.2.14

16.2.15 The driving gear in a compound
gear train rotates at constant speed !0. The
driving torque is Min. If the driven gear
rotates at a constant speed !out , find:

a) the input power to the system, and

b) the output torque of the system as-
suming there is no power loss in the
system; i.e., power in = power out.
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Problem 16.2.15

16.2.16 An elaborate frictionless gear box
has an input and output roller with Vin D
const . Assuming that Vout D 7Vin and
the force between the left belt and roller is
Fin D 3 lb:

a) What is Fout (draw a picture defin-
ing the signs of Fin and Fout )?. �

b) Is Fout greater or less than the Fin?
(Assume Fin > 0.) Why? �
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Problem 16.2.16

16.3 Kinematics of rolling
and sliding
16.3.1 A stone in a wheel. A round wheel
rolls to the right. At time t D 0 it picks up
a stone the road. The stone is stuck in the
edge of the wheel. You want to know the
direction of the rock’s motion just before
and after it next hits the ground. Here are
some candidate answers:

� When the stone approaches the
ground its motion is tangent to the
ground.

� The stone approaches the ground at
angle x (you name it).

� When the stone approaches the
ground its motion is perpendicular
to the ground.

� The stone approaches the ground
at various angles depending on the
following conditions(...you list the
conditions.)

Although you could address this ques-
tion analytically, you are to try to get a
clear answer by looking at computer gen-
erated plots. In particular, you are to plot
the pebble’s path for a small interval of
time near when the stone next touches the
ground. You should pick the parameters
that make your case for an answer the
strongest. You may make more than one
plot.

Here are some steps to follow:
a) Assuming the wheel has radius Rw

and the pebble is a distance Rp
from the center (not necessarily
equal toRw ). The pebble is directly
below the center of the wheel at
time t D 0. The wheel spins at con-
stant clockwise rate !. The x-axis
is on the ground and x.t D 0/ D
0. The wheel rolls without slipping.
Using a clear well labeled drawing
(use a compass and ruler or a com-
puter drawing program), show that

x.t/ D !tRw �Rp sin.!t/
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y.t/ D Rw �Rp cos.!t/

b) Using this relation, write a program
to make a plot of the path of the peb-
ble as the wheel makes a little more
than one revolution. Also show the
outline of the wheel and the peb-
ble itself at some intermediate time
of interest. [Use any software and
computer that pleases you.]

c) Change whatever you need to
change to make a good plot of the
pebble’s path for a small amount
of time as the pebble approaches
and leaves the road. Also show the
wheel and the pebble at some time
in this interval.

d) In this configuration the pebble
moves a very small distance in a
small time so your axes need to be
scaled. But make sure your x- and
y- axes have the same scale so that
the path of the pebble and the out-
line of the wheel will not be dis-
torted.

e) How does your computer output
buttress your claim that the pebble
approaches and leaves the ground at
the angles you claim?

f) Think of something about the peb-
ble in the wheel that was not explic-
itly asked in this problem and ex-
plain it using the computer, and/or
hand calculation and/or a drawing.

16.3.2 A uniform disk of radius r rolls at a
constant rate without slip. A small ball of
mass m is attached to the outside edge of
the disk. What is the force required to hold
the disk in place when the mass is above
the center of the disk?

16.3.3 Rolling at constant rate. A round
disk rolls on the ground at constant rate. It
rolls 114 revolutions over the time of inter-
est.

a) Particle paths. Accurately plot the
paths of three points: the center of
the disk C, a point on the outer edge
that is initially on the ground, and
a point that is initially half way be-
tween the former two points. [Hint:
Write a parametric equation for the
position of the points. First find a
relation between ! and vC . Then
note that the position of a point is
the position of the center plus the
position of the point relative to the
center.] Draw the paths on the com-
puter, make sure x and y scales are
the same.

b) Velocity of points. Find the veloc-
ity of the points at a few instants in
the motion: after 1

4 , 1
2 , 3

4 , and 1
revolution. Draw the velocity vec-
tor (by hand) on your plot. Draw
the direction accurately and draw
the lengths of the vectors in propor-
tion to their magnitude. You can
find the velocity by differentiating
the position vector or by using rela-
tive motion formulas appropriately.
Draw the disk at its position after
one quarter revolution. Note that
the velocity of the points is perpen-
dicular to the line connecting the
points to the ground contact.

c) Acceleration of points. Do the
same as above but for acceleration.
Note that the acceleration of the
points is parallel to the line connect-
ing the points to the center of the
disk.
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Problem 16.3.3

16.3.4 The concentric wheels are welded
to each other and roll without slip on the
rack and stationary support. The rack
moves to the right at vr D 1m=s. What
is the velocity of point A in the middle of
the wheels shown?
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Problem 16.3.4

16.3.5 Questions (a) - (e) refer to the
cylinders in the configuration shown fig-
ure. Question (f) is closely related. An-
swer the questions in terms of the given
quantities (and any other quantities you de-
fine if needed).

a) What is the speed (magnitude of ve-
locity) of point c?

b) What is the speed of point P?
c) What is the magnitude of the accel-

eration of point c?
d) What is the magnitude of the accel-

eration of point P?

e) What is the radius of curvature of
the path of the particle P at the point
of interest?

f) In the special case of A D 2b what
is the curve which particle P traces
(for all time)? Sketch the path.
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Problem 16.3.5: A little cylinder (with
outer radius b and center at point c)
rolls without slipping inside a bigger fixed
cylinder (with inner radius A and center
at point O). The absolute angular veloc-
ity of the little cylinder ! is constant. P
is attached to the outside edge of the little
cylinder. At the instant of interest, P is on
the line between O and c.

16.4 Mechanics of contact
16.4.1 A uniform disc of mass m and ra-
dius r rolls without slip at constant rate.
What is the total kinetic energy of the disk?

16.4.2 A non-uniform disc of mass m and
radius r rolls without slip at constant rate.
The center of mass is located at a distance
r
2 from the center of the disc. What is the
total kinetic energy of the disc when the
center of mass is directly above the center
of the disc?

16.4.3 Falling hoop. A bicycle rim (no
spokes, tube, tire, or hub) is idealized as a
hoop with massm and radiusR. G is at the
center of the hoop. An inextensible string
is wrapped around the hoop and attached
to the ceiling. The hoop is released from
rest at the position shown at t D 0.

a) Find yG at a later time t in terms of
any or all of m, R, g, and t .

b) Does G move sideways as the hoop
falls and unrolls?
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Problem 16.4.3
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16.4.4 A uniform disk with radius R and
mass m has a string wrapped around it.
The string is pulled with a force F . The
disk rolls without slipping.

a) What is the angular acceleration of
the disk,*�Disk D � R� Ok? Make any
reasonable assumptions you need
that are consistent with the figure
information and the laws of me-
chanics. State your assumptions. �

b) Find the acceleration of the point A
in the figure. �
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Problem 16.4.4

16.4.5 If a pebble is stuck to the edge of
the wheel in problem 16.3.3, what is the
maximum speed of the pebble during the
motion? When is the force on the pebble
from the wheel maximum? Draw a good
FBD including the force due to gravity.
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Problem 16.4.5

16.4.6 Spool Rolling without Slip and
Pulled by a Cord. The light-weight spool
is nearly empty but a lead ball with mass
m has been placed at its center. A force F
is applied in the horizontal direction to the
cord wound around the wheel. Dimensions
are as marked. Coordinate directions are as
marked.

a) What is the acceleration of the cen-
ter of the spool? �

b) What is the horizontal force of the
ground on the spool? �

Filename:pfigure-s94h11p5

Ro

RiCroll without
slip F

ı̂

ĵ

Problem 16.4.6

16.4.7 A film spool is placed on a very
slippery table. Assume that the film and
reel (together) have mass distributed the
same as a uniform disk of radiusRi . What,
in terms of Ri ; Ro; m; g; O{; O|, and F are
the accelerations of points C and B at the
instant shown (the start of motion)?

Filename:p-f96-f-4

Ro

Ri
C

B

frictionless
contact

(no friction) F

ı̂

̂

Problem 16.4.7

16.4.8 Again, Spool Rolling without Slip
and Pulled by a Cord. Reconsider the
spool from problem 16.4.6. This time, a
force F is applied vertically to the cord
wound around the wheel. In this case,
what is the acceleration of the center of
the spool? Is it possible to pull the cord
at some angle between horizontal and ver-
tical so that the angular acceleration of the
spool or the acceleration of the center of
mass is zero? If so, find the angle in terms
of Ri , R0, m, and F .

16.4.9 A napkin ring lies on a thick velvet
tablecloth. The thin ring (of massm, radius
r) rolls without slip as a mischievous child
pulls the tablecloth (mass M ) out with ac-
celeration A. The ring starts at the right
end (x D d ). You can make a reason-
able physical model of this situation with
an empty soda can and a piece of paper on
a flat table.

a) What is the ring’s acceleration as
the tablecloth is being withdrawn?

b) How far has the tablecloth moved
to the right from its starting point
x D 0 when the ring rolls off its
left-hand end?

c) Clearly describe the subsequent
motion of the ring. Which way does
it end up rolling at what speed?

d) Would your answer to the previ-
ous question be different if the ring
slipped on the cloth as the cloth was
being pulled out?
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Problem 16.4.9

16.4.10 A block of mass M is supported
by two rollers (uniform cylinders) each of
mass m and radius r . They roll without
slip on the block and the ground. A force
F is applied in the horizontal direction to
the right, as shown in the figure. Given F ,
m, r , and M , find:

a) the acceleration of the block,

b) the acceleration of the center of
mass of this block/roller system,

c) the reaction at the wheel bases,

d) the force of the right wheel on the
block,

e) the acceleration of the wheel cen-
ters, and

f) the angular acceleration of the
wheels.
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Problem 16.4.10

16.4.11 Dropped spinning disk. 2-D . A
uniform disk of radius R and mass m is
gently dropped onto a surface and doesn’t
bounce. When it is released it is spinning
clockwise at the rate P�0. The disk skids for
a while and then is eventually rolling.

a) What is the speed of the center of
the disk when the disk is eventually
rolling (answer in terms of g, �, R,
P�0, and m)? �

b) In the transition from slipping to
rolling, energy is lost to friction.
How does the amount lost depend
on the coefficient of friction (and
other parameters)? How does this
loss make or not make sense in the
limit as � ! 0 and the dissipation
rate ! zero? �
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Problem 16.4.11

16.4.12 Disk on a conveyor belt. A uni-
form metal cylinder with mass of 200 kg is
carried on a conveyer belt which moves at
V0 D 3m=s. The disk is not rotating when
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on the belt. The disk is delivered to a flat
hard platform where it slides for a while
and ends up rolling. How fast is it mov-
ing (i.e. what is the speed of the center of
mass) when it eventually rolls? �
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Problem 16.4.12

16.4.13 A rigid hoop with radius R and
mass m is rolling without slip so that its
center has translational speed vo. It then
hits a narrow bar with height R=2. When
the hoop hits the bar suddenly it sticks and
doesn’t slide. It does hinge freely about the
bar, however. The gravitational constant is
g. How big is vo if the hoop just barely
rolls over the bar? �
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Problem 16.4.13

16.4.14 2-D rolling of an unbalanced
wheel. A wheel, modeled as massless, has
a point mass (mass D m) at its perimeter.
The wheel is released from rest at the posi-
tion shown. The wheel makes contact with
coefficient of friction �.

a) What is the acceleration of the point
P just after the wheel is released if
� D 0?

b) What is the acceleration of the point
P just after the wheel is released if
� D 2?

c) Assuming the wheel rolls without
slip (no-slip requires, by the way,
that the friction be high: � D 1)
what is the velocity of the point P
just before it touches the ground?
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Problem 16.4.14

16.4.15 Spool and mass. A reel of mass
M and moment of inertia I cmzz D I rolls
without slipping upwards on an incline
with slope-angle �. It is pulled up by a
string attached to mass m as shown. Find
the acceleration of point G in terms of
some or all of M;m; I;R; r; �; g and any
base vectors you clearly define.
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Problem 16.4.15

16.4.16 Two objects are released on two
identical ramps. One is a sliding block (no
friction), the other a rolling hoop (no slip).
Both have the same mass, m, are in the
same gravity field and have the same dis-
tance to travel. It takes the sliding mass 1
s to reach the bottom of the ramp. How
long does it take the hoop? [Useful for-
mula: “s D 1

2at
2”]
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Problem 16.4.16

16.4.17 The hoop is rolled down an incline
that is 30� from horizontal. It does not slip.
It does not fall over sideways. It is let go
from rest at t = 0.

a) At t = 0C what is the acceleration
of the hoop center of mass?

b) At t = 0C what is the acceleration of
the point on the hoop that is on the
incline?

c) At t = 0C what is the acceleration of
the point on the hoop that is furthest
from the incline?

d) After the hoop has descended 2 ver-
tical meters (and traveled an ap-
propriate distance down the incline)
what is the acceleration of the point
on the hoop that is (at that instant)
furthest from the incline?
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Problem 16.4.17

16.4.18 A uniform cylinder of massm and
radius r rolls down an incline without slip,
as shown below. Determine: (a) the angu-
lar acceleration � of the disk; (b) the min-
imum value of the coefficient of friction �
that will insure no slip.

Filename:pfigure-blue-49-3

r

30o

g

Problem 16.4.18

16.4.19 Race of rollers. A uniform disk
with mass M0 and radius R0 is allowed to
roll down the quite slip-resistant (� D 1)
30� ramp shown. It is raced against four
other objects (A, B , C and D), one at a
time. Who wins the races, or are there ties?
First try to construct any plausible reason-
ing. Good answers will be based, at least
in part, on careful use of equations of me-
chanics. �

a) Block A has the same mass and
has center of mass a distance R0
from the ramp. It rolls on massless
wheels with frictionless bearings.

b) Uniform disk B has the same mass
(MB D M0) but twice the radius
(RB D 2R0).

c) Hollow pipe C has the same mass
(MC D M0) and the same radius
(RC D R0).

d) Uniform disk D has the same ra-
dius (RD D R0) but twice the mass
(MD D 2M0).

Can you find a round object which will
roll as fast as the block slides? How about
a massless cylinder with a point mass in its
center? Can you find an object which will
go slower than the slowest or faster than
the fastest of these objects? What would
they be and why? (This problem is harder.)
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Problem 16.4.19

16.4.20 A roller of massM and polar mo-
ment of inertia about the center of mass IG
is connected to a spring of stiffness K by
a frictionless hinge as shown in the figure.
Consider two kinds of friction between the
roller and the surface it moves on:

1. Perfect slipping (no friction), and

2. Perfect rolling (infinite friction).

a) What is the period of oscillation in
the first case?

b) What is the period of oscillation in
the second case?
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Problem 16.4.20

16.4.21 A uniform cylinder of mass m
and radius R rolls back and forth with-
out slipping through small amplitudes (i.e.,
the springs attached at point A on the
rim act linearly and the vertical change in
the height of point A is negligible). The
springs, which act both in compression and
tension, are unextended when A is directly
over C.

a) Determine the differential equation
of motion for the cylinder’s center.

b) Calculate the natural frequency of
the system for small oscillations.
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Problem 16.4.21

16.4.22 Hanging disk, 2-D. A uniform
thin disk of radius R and mass m hangs
in a gravity field g from a pair of massless
springs each with constant k. In the static
equilibrium configuration the springs are
vertical and attached to points A and B on
the right and left edges of the disk. In the
equilibrium configuration the springs carry
the weight, the disk counter-clockwise ro-
tation is � D 0, and the downwards verti-
cal deflection is y D 0. Assume through-
out that the center of the disk only moves
up and down, and that � is small so that the
springs may be regarded as vertical when
calculating their stretch (sin� � � and
cos� � 1).

a) Find R� and Ry in terms of some or all
of �; P�; y; Py; k;m;R, and g.

b) Find the natural frequencies of vi-
bration in terms of some or all of
k;m;R, and g.
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Problem 16.4.22

16.4.23 A disk rolls in a cylinder. For all
of the problems below, the disk rolls with-
out slip and rocks back and forth due to
gravity.

a) Sketch. Draw a neat sketch of
the disk in the cylinder. The sketch
should show all variables, coordi-
nates and dimension used in the
problem.

b) FBD. Draw a free body diagram of
the disk.

c) Momentum balance. Write the
equations of linear and angular mo-
mentum balance for the disk. Use
the point on the cylinder which
touches the disk for the angular mo-
mentum balance equation. Leave
as unknown in these equations vari-
ables which you do not know.

d) Kinematics. The disk rolling
in the cylinder is a one-degree-of-
freedom system. That is, the val-
ues of only one coordinate and its
derivatives are enough to determine
the positions, velocities and accel-
erations of all points. The angle
that the line from the center of the
cylinder to the center of the disk
makes from the vertical can be used
as such a variable. Find all of the
velocities and accelerations needed
in the momentum balance equation
in terms of this variable and it’s
derivative. [Hint: you’ll need to
think about the rolling contact in or-
der to do this part.]

e) Equation of motion. Write the an-
gular momentum balance equation
as a single second order differential
equation.

f) Simple pendulum? Does this
equation reduce to the equation for
a pendulum with a point mass and
length equal to the radius of the
cylinder, when the disk radius gets
arbitrarily small? Why, or why not?
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Problem 16.4.23: A disk rolls without slip
inside a bigger cylinder.

16.4.24 A uniform hoop of radius R1
and mass m rolls from rest down a semi-
circular track of radius R2 as shown. As-
sume that no slipping occurs. At what an-
gle � does the hoop leave the track and
what is its angular velocity ! and the lin-
ear velocity *v of its center of mass at that
instant? If the hoop slides down the track
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without friction, so that it does not rotate,
will it leave at a smaller or larger angle �
than if it rolls without slip (as above)? Give
a qualitative argument to justify your an-
swer.

HINT: Here is a geometric relationship
between angle � hoop turns through and
angle � subtended by its center when no
slipping occurs: � D �.R1 C R2/=R2�� .
(You may or may not need to use this hint.)
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Problem 16.4.24

16.5 Collisions
16.5.1 The two blocks shown in the fig-
ure are identical except that one rests on
two springs while the other one sits on
two massless wheels. Draw free-body di-
agrams of each mass as each is struck by
a hammer. Here we are interested in the
free-body diagrams only during collision.
Therefore, ignore all forces that are much
smaller than the impulsive forces. State in
words why the forces you choose to show
should not be ignored during the collision.
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Problem 16.5.1

16.5.2 These problems concerns two col-
liding masses. In the first case In (a)
the smaller mass hits the hanging mass
from above at an angle 45� with the ver-
tical. In (b) second case the smaller mass
hits the hanging mass from below at the
same angle. Assuming perfectly elastic
impact between the balls, find the velocity
of the hanging mass just after the collision.
[Note, these problems are not well posed
and can only be solved if you make addi-
tional modeling assumptions.]
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Problem 16.5.2

16.5.3 A narrow pole is in the middle of
a pond with a 10m rope tied to it. A fric-
tionless ice skater of mass 50 kg and speed
3m=s grabs the rope. The rope slowly
wraps around the pole. What is the speed
of the skater when the rope is 5 m long? (A
tricky question.)
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Problem 16.5.3

16.5.4 The massesm and 3m are joined by
a light-weight bar of length 4`. If point A
in the center of the bar strikes fixed point B
vertically with velocity V0, and is not per-
mitted to rebound, find P� of the system im-
mediately after impact.
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Problem 16.5.4: Neglect gravity!

16.5.5 Two equal masses each of mass m
are joined by a massless rigid rod of length
`. The assembly strikes the edge of a table
as shown in the figure, when the center of
mass is moving downward with a linear ve-
locity v and the system is rotating with an-
gular velocity P� in the counter-clockwise
sense. The impact is ’elastic’. Find the im-
mediate subsequent motion of the system,
assuming that no energy is lost during the
impact and that there is no gravity. Show
that there is an interchange of translational
and rotational kinetic energy.
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Problem 16.5.5

16.5.6 In the absence of gravity, a thin rod
of mass m and length ` is initially tum-
bling with constant angular speed !o, in
the counter-clockwise direction, while its
mass center has constant speed vo, directed
as shown below. The end A then makes a
perfectly plastic collision with a rigid peg
O (via a hook). The velocity of the mass
center happens to be perpendicular to the
rod just before impact.

a) What is the angular speed !f im-
mediately after impact?

b) What is the angular speed 10 sec-
onds after impact? Why?

c) What is the loss in energy in the
plastic collision?
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Problem 16.5.6

16.5.7 A gymnast of massm and extended
height L is performing on the uneven par-
allel bars. About the x, y, z axes which
pass through her center of mass, her radii
of gyration are kx , ky , and kz , respec-
tively. Just before she grasps the top bar,
her fully extended body is horizontal and
rotating with angular rate !; her center of
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mass is then stationary. Neglect any fric-
tion between the bar and her hands and as-
sume that she remains rigid throughout the
entire stunt.

a) What is the gymnast’s rotation
rate just after she grasps the
bar? State clearly any approxima-
tions/assumptions that you make.

b) Calculate the linear speed with
which her hips (CM) strike the
lower bar. State all assump-
tions/approximations.

c) Describe (in words, no equations
please) her motion immediately af-
ter her hips strike the lower bar if
she releases her hands just prior to
this impact.
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Problem 16.5.7

16.5.8 An acrobat modeled as a rigid
body with uniform rigid mass m of length
l . She falls without rotation in the position
shown from height h where she was sta-
tionary. She then grabs a bar with a firm
but slippery grip. What is h so that after
the subsequent motion the acrobat ends up
in a stationary handstand? [ Hint: What
quantities are preserved in what parts of the
motion?] �
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Problem 16.5.8

16.5.9 A crude see-saw is built with two
supports separated by distance d about
which a rigid plank (massm, lengthL) can
pivot smoothly. The plank is placed sym-
metrically, so that its center of mass is mid-
way between the supports when the plan is
at rest.

a) While the left end is resting on the
left support, the right end of the
plank is lifted to an angle � and re-
leased. At what angular velocity !1
will the plank strike the right hand
support?

b) Following the impact, the left end of
the plank can pivot purely about the
right end if d=L is properly chosen
and the right end does not bounce.
Find !2 under these circumstances.
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Problem 16.5.9

16.5.10 Baseball bat. In order to convey
the ideas without making the calculation
to complicated, some of the simplifying
assumptions here are highly approximate.
Assume that a bat is a uniform rigid stick
with length L and mass ms . The motion
of the bat is a pivoting about one end held
firmly in place with hands that rotate but
do not move. The swinging of the bat oc-
curs by the application of a constant torque
Ms at the hands over an angle of � D �=2
until the point of impact with the ball. The
ball has massmb and arrives perpendicular
to the bat at an absolute speed vb at a point
a distance ` from the hands. The collision
between the bat and the ball is completely
elastic.

a) To maximize the speed vhit of the
hit ball How heavy should a base-
ball bat be? Where should the ball
hit the bat? Here are some hints for
one way to approach the problem.

� Find the angular velocity of
the bat just before collision
by drawing a FBD of the bat
etc.

� Find the total energy of the
ball and bat system just be-
fore the collision.

� Draw a FBD of the ball and
of the bat during the collision
(with this model there is an
impulse at the hands on the
bat). Call the magnitude of
the impulse of the ball on the
bat (and vice versa)

R
Fdt .

� Use various
momentum equations to find
the angular velocity of the bat
and velocity of the ball just
after the collision in terms
of
R
Fdt and other quantities

above. Use these to find the
energy of the system just af-
ter collision.

� Solve for the value of
R
Fdt

that conserves energy. As a
check you should see if this
also predicts that the relative
separation speed of the ball
and bat (at the impact point)
is the same as the relative ap-
proach speed (it should be).

� You now know can calculate
vhit in terms of
mb ; ms ;Ms ; L; `, and vb .

� Find the maximum of the
above expression by varying
ms and `. Pick numbers
for the fixed quantities if you
like.

b) Can you explain in words what is
wrong with a bat that is too light or
too heavy?

c) Which aspects of the model above
do you think lead to the biggest er-
rors in predicting what a real ball
player should pick for a bat and
place on the bat to hit the ball?

d) Describe as clearly as possible a dif-
ferent model of a baseball swing
that you think would give a more
accurate prediction. (You need not
do the calculation).
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CHAPTER 17
Kinematics using

time-varying basis
vectors

Here is a second approach to the kinematics of particle motion. Now, instead
of using constant base vectors, we use time-varying base vectors. The dis-
cussion of polar coordinates started in Chapter 13 is completed here. Path
coordinates, where one base vector is parallel to the velocity and the oth-
ers orthogonal to that, are introduced. The challenging kinematics topic of
relative motion is introduced in two stages: first using rotating base vectors
connected to a moving rigid object and then using the more abstract nota-
tion associated with frame-dependent differentiation and the famous “five
term acceleration formula.”
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Many parts of practical machines and structures move in ways that can be
idealized as straight-line motion (Chapter 12) or circular motion (Chapter
13). But often an engineer must analyze parts with more general motions as
we began to study in Chapter 14.

In principle one can study all motions of all things using one fixed, say
xyz, coordinate system. If one knows the x; y; and z coordinates or all points
at all times than one can evaluate the linear momentum, the angular momen-
tum, and their rates of change. In this way one can do all of mechanics. But
when a machine has various parts, each moving relative to the other, it turns
out it is helpful to make use of additional base vectors besides those fixed
to a Newtonian (“fixed”) reference frame. That is, the formulas for velocity
and acceleration are in some senses simplified (or clarified) by using moving
base vectors. Most often these moving base vectors base vectors move with
the moving parts.

You have seen the time-varying base vectors OeR and Oe� , the polar coor-
dinate base vectors used to describe circular motion. These are the ideas
on which we build here. Altogether we discuss 4 approaches that use time
varying base vectors:

1. Polar coordinates are generalized to include more than just circular mo-
tion;

2. Path coordinates and path base vectors;

3. General rotating base vectors and coordinate systems with an origin
that moves are introduced; and

4. Formulas are presented for differentiation ‘in’ moving frames that don’t
depend on any particular choice of base vectors.

The basic idea is to try to use coordinate systems that most simply de-
scribe the motions of interest, even if these coordinate systems are superfi-
cially confusing because they rotate and move. Time-varying base vectors
are difficult at first. Like many shortcuts, they have a cost. In the end, how-
ever, they can aid intuition and simplify calculations.

17.1 Polar coordinates and path
coordinates

As you learned in Chapter 13, when a particle moves in a plane while going
in circles around the origin its position, velocity, and acceleration can be
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Figure 17.1: Polar coordinates.

described like this:

*
r D R OeR
*
v D R P� Oe� D v� Oe�
*
a D �R P�2 OeR CR R� Oe� D �v

2
�

R
OeR C Pv� Oe� :

These three equations say that the position is the distance from the origin
times a unit vector towards the point; that the velocity is tangent to the circle
of motion; and that the acceleration has a centripetal component proportional
to the speed squared, and a tangential component, tangent to the circle of
motion with magnitude equal to the rate of change of speed.

We will now generalize these results two different ways.

� First we will use polar base vectors for non-constant R.

� Next we will use path base vectors to show that, in a sense to be ex-
plained, the 2nd and 3rd formulas above (for*v and*

a) apply to any wild
motion in 2D or 3D.

As mentioned, in principle these new methods are not needed. We could
just use one fixed coordinate system with base vectors O{; O|, and Ok and write
the velocity and acceleration of a point at position *

r D x O{C y O| as

*
v D Px O{C Py O| C Pz Ok and *

a D Rx O{C Ry O| C Rz Ok
as in Chapters 9-12. But, as for the circular motion of Chapter 13, rotat-
ing base vectors are helpful for simplifying some kinematics and mechanics
problems.

Polar coordinates for general (non-circular) motion
The extension of polar coordinates to 3 dimensions as cylindrical coordi-
nates is shown in fig. 17.1.

Rather than identifying the location of a point by its x, y and z coordi-
nates, a point is located by its cylindrical coordinates

R; the distance to the point from the z axis,

�; the angle that the most direct line from the z axis to the point makes
with the positive x direction,

z; the conventional z coordinate of the particle,

and base vectors:

OeR; a unit vector normal to the z axis that points from the z axis to the
particle
(in 2-D OeR D*

r=r ,
in 3-D OeR D .*r � .*r � Ok/ Ok/=j*r � .*r � Ok/ Okj

D a unit vector in the direction of the shadow of *
r in the

xy plane)

Oe� ; a vector in the xy plane normal to OeR (Formally Oe� D Ok � OeR),
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Ok; the conventional Ok base vector.

The position vector of a particle is

*
r D R OeR C z Ok:

The z component of position, velocity and acceleration is the same
with Cylindrical coordinates as with Cartesian coordinates. If only two-
dimensional problems are being considered then

*
r D R OeR:

As the particle moves, the values of its coordinates R, � and z change as do
the base vectors OeR and Oe� .

Example: Oblong path
A particle that moves on the oblong path R D A C B cos.2�/ with A > B is

shown in fig. 17.2. The position vector is

*r D R OeR D .AC B cos.2�// OeR:
Note that, unlike for circular motion, Oe� is not tangent to the particle’s path in
general. The base vector Oe� is only tangent to the path at those points where the
path is closest to, or furthest from, the origin (which, in this example, are also the
points where the path crosses the x and y axes).

Velocity in polar coordinates
The velocity and acceleration are found by differentiating the position *

r ,
taking account that the base vectors OeR and Oe� also change with time just as
they did for circular motion:

POeR D P� Oe� and POe� D � P� OeR:

We find the velocity by taking the time derivative of the position, using the
product rule of differentiation:

*
v D d

dt

*
r D d

dt
�R OeR C z Ok�

D d

dt
.R OeR/C

d

dt
.z Ok/

D . PR OeR CR POeR����
P� Oe�

/C . Pz Ok/

D PR����
vR

OeR C R P�����
v�

Oe� C Pz����
vz

Ok: (17.1)

This formula is intuitive. The velocity is the sum of three vectors: one, PR OeR,
due to moving towards or away from the z axis; one, P�R Oe� , having to do with
the angle being swept; and in 3-D, one, Pz Ok, for motion perpendicular to the
xy plane. In 2-D this is shown in fig. 17.3.
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êθ
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Figure 17.2: Particle P on an oblong
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Figure 17.5: The simplest case for un-
derstanding of the Coriolis term in the
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when the particle is at the origin and a
time�t later. The change in the velocity
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radial line has rotated, and (b) a circum-
ferential component is added to the ve-
locity when the particle is away from the
origin. For small �� these two changes
to the velocity are both approximately
perpendicular to *v and parallel to each
other.

But, as has been emphasized before, this isn’t a new vector *
v but just a

new way of representing the same vector:

*
v D *

v

vx O{C vy O| C vz Ok D vR OeR C v� Oe� C vz Ok:

The vector *v can be represented in different base vector systems, in this case
cartesian and polar.

Note that eqn. (17.1) adds two terms to the circular motion case from
Chapter 13: one for variable R and one for variable z.

Acceleration in polar coordinates
To find the acceleration, we differentiate once again. The resulting formula
has new terms generated by the product rule of differentiation.

*
a D d

dt

*
v

D d

dt
. PR OeR CR P� Oe� C Pz Ok/

D . RR OeR C PR POeR����
P� Oe�

/C . PR P� Oe� CR R� Oe� CR P� POe�����
� P� OeR

/C . Rz Ok/

D . RR � P�2R� �� �
aR

/ OeR C .2 PR P� CR R�� �� �
a�

/ Oe� C Rz����
az

Ok: (17.2)

The acceleration for an arbitrary planar path is shown in fig. 17.4. Four
of the five terms comprising the polar coordinate formula for acceleration are
easy to understand.

RR is just the acceleration due to the distance from the origin changing
with time.

P�2R is the familiar centripetal acceleration.

R R� is the acceleration due to rotation proceeding at a faster and faster rate.
And

Rz is the same as for Cartesian coordinates.

The Coriolis term. The difficult term in the polar coordinate expression
for the acceleration is the

2 P� PR term, called the Coriolis acceleration, after the civil engineer Gustave-
Gaspard Coriolis who first wrote about it in 1835 (in a slightly more
general context).

The presence of the ‘2’ in this term is due to the two effects from which it
derives: 1 from the change of the PR OeR term in the velocity and 1 from the
change of the R P� Oe� term in the velocity (1C 1 D 2).

The Coriolis acceleration occurs even if both P� and PR are constant. That
is, a particle that moves at constant speed ( PR = constant) on a straight line
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that is itself rotating at constant rate ( P� D constant) does not have a straight-
line path, and thus has some acceleration. The Coriolis term catches this
acceleration. Here is a situation in which the Coriolis term is the only non-
zero term in the general polar-coordinate acceleration formula (eqn. (17.2)).

Example: The simplest Coriolis example
Consider, like above, a particle moving at constant speed PR along a line which is
itself rotating at constant P� about the origin. Let’s look at a the particle as it passes
through the origin at time t and a small amount of time �t later (see fig. 17.5). At
time tC�t the direction of the scribed line has changed by an angle�� D P��t . So
that, even if at that later time P� D 0 the direction of*v has changed so*v has changed
by an amount v�� . But the rotation of the line does continue, so the velocity
includes a part in the Oe� direction with magnitude P��R. That is *v is changed by
both ��v and by P��R so

�*v �
�
v�� C P��R

�
Oe�

�
�
PR. P��t/C P�. PR�t/

�
Oe�

�
�
PR P� C P� PR

�
Oe��t

) �*v

�t
�

�
PR P� C P� PR

�
Oe�

)*a �
�
PR P� C P� PR

�
Oe� D 2 PR P� Oe�

as predicted by the general polar coordinate acceleration formula.

But one need not get confounded by a desire to understand every term
intuitively. Equation (17.2) is a way of describing the same acceleration we
have described with cartesian coordinates. Namely,

*
a D*

a

) Rx O{C Ry O| C Rz Ok D . RR � P�2R� �� �
aR

/ OeR C .2 PR P� CR R�� �� �
a�

/ Oe� C Rz����
az

Ok:

Example: R.t/ and �.t/ are given functions.
Say � and R vary in time according to

� D at and R D ct2

with a and c as given constants. Then at any t the position, velocity, and accelera-
tion are (see fig. 17.6)

*r D R OeR D ct2 OeR;
*v D PR OeR CR P� Oe� D 2ct OeR C act2 Oe� ; and
*a D . RR � P�2R/ OeR C .R R� C 2 PR P�/ Oe�

D
�
2c � a2ct2

�
OeR C .0C 4act/ Oe�

with polar base vectors

OeR D cos � O{C sin � O| D cos.at/O{C sin.at/ O| and

Oe� D � sin � O{C cos � O| D � sin.at/O{C cos.at/ O|:

If we substituted these expressions for the polar base vectors into the expressions
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êR

θ

R

⇀
v

⇀
a
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for *r;*v, and *a we would get the same cartesian representation (a giant mess that
we don’t show) that we would get from using x D R cos � and y D R sin � with
*r D x O{C y O|,*v D Px O{C Py O|, and*a D Rx O{C Ry O|. That is*r D*r ,*v D*v, and*a D*a

even if the representation is different.

Path coordinates
Another way still to describe the velocity and acceleration is to use base
vectors which are defined by the motion. In particular, the path base vectors
used are:

1. the unit tangent to the path Oet , and

2. the unit normal to the path Oen.
Somewhat surprisingly at first glance, only two base vectors are needed to
define the velocity and acceleration, even in three dimensions.

The base vectors can be described geometrically and analytically. Let’s
start out with a geometric description.

The geometry of the path basis vectors.
As a particle moves through space it traces a path *

r.t/. At the moment of
interest the path has a unique tangent line. The unit tangent Oet is along this
line in the direction of motion, as shown in fig. 17.7.

Less clear is that the path has a unique ‘kissing’ plane. One line on this
plane is the tangent line. The other line needed to define this plane is de-
termined by the position of the particle just before and just after the time of
interest. Just before and just after the time of interest the particle is a little
off the tangent line (unless the motion happens to be a straight line and the
tangent plane is not uniquely determined). Three points, the position of the
particle just before, just at, and just after the moment of interest determine
the tangent plane.

Another way to picture the tangent plane is to find the circle in space
that is tangent to the path and which turns at the same rate and in the same
direction as the path turns. This circle, which touches the path so intimately,
is called the osculating or ‘kissing’ circle. The tangent plane is the plane of
this circle. (See fig. 17.7).

The unit normal Oen is the unit vector which is perpendicular to the unit
tangent and is in the tangent plane. It is pointed in the direction from the edge
of the osculating circle towards the center of the circle as shown in fig. 17.7.
For 2-D motion in the xy plane the osculating plane is the xy plane and the
osculating circle is in the xy plane. The path base vectors are unit vectors
that vary along the path, always tangent and normal to the path (see fig. 17.8).

Formal definition of path basis vectors
The path of a particle*

r.t/ can also be parameterized by arc length s along the
path, as explained in any introductory calculus text. So the path in space is
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also*
r.s/ 1, where the arc length s is the path “coordinate”. The unit tangent

is:

Oet �
d*r.s/

ds
:

Using the chain rule with *
r.s.t// this is also

Oet D
d*r.t/

dt

dt

ds
D

*
v

v
:

To define the unit normal let’s first define the curvature *
� of the path as

the rate of change of the tangent (rate in terms of arc length).

*
� � d Oet

ds

The unit normal Oen is the unit vector in the direction of the curvature

Oen D
*
�

j*�j :

Finally, the binormal Oeb is the unit vector perpendicular to Oet and Oen:

Oeb � Oet � Oen:

For 2-D motion the binormal Oeb is always in the Ok direction. The radius of
the osculating circle � is

� D 1

j*�j :

Note that, in general, the polar and path coordinate basis vectors are not
parallel; i.e., Oen is not parallel to OeR and Oet is not parallel to Oe� . For exam-
ple, consider a particle moving on an elliptical path in the plane shown in
fig. 17.9. In this case, the polar coordinate and path coordinate basis vectors
are only parallel where the major and minor axes intersect the path.

Velocity and acceleration in path coordinates.
Although it is not necessarily easy to compute the path basis vectors Oet and
Oen, they lead to simple expressions for the velocity and acceleration:

*
v D v Oet D

ds

dt
Oet (17.3)

*
a D d

dt

*
v D d

dt
.v Oet / D Pv Oet C v

:

Oet

D Pv Oet C v
d Oet
ds

ds

dt
D Pv Oet C v*�v

D Pv Oet����
*
at

C v2

�
Oen����

*
an

: (17.4)

1Mathematicians often do not like this
engineering sloppiness of notation. That
is, the sequence of points *r that a par-
ticle traverses as both time t and accu-
mulated arc length s increase is not the
same mathematical function of both the
arguments s and t . For example, when
t D 6 s the position is not the same as
when s D 6 cm. Here we don’t think it
is worth the trouble of writing*r D f.t/
and*r D g.s/.
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ĵ

θ

êθ
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to D on the path shown. At A it is speed-
ing up so Pv > 0. At B it is turning to the
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So the acceleration must be a positive
vector pointed in the quadrant shown.

This formula for velocity is intuitive: velocity is speed times a unit vector
in the direction of motion. The formula for acceleration is more interesting.
It says that the acceleration of any particle at any time is given by the same
formula as the formula for acceleration of a particle going around in circles
at non-constant rate.

� The first term Pv Oet is tangent to the path (also tangent to the osculating
circle), as shown in fig. 17.10. If we draw the osculating circle at the
point of interest and fix it in space, then this first term is � R� Oe� in a polar
coordinate system centered at the center of that fixed circle.

� There is a term v2=� On is directed towards the center of the osculat-
ing circle. This term is associated with change of direction and does
not vanish even if the speed is constant. This normal acceleration is
perpendicular to the path.

That is, the two terms in the path-coordinate acceleration formula corre-
spond exactly to the two terms for acceleration for a particle going in circles.

Example: Estimating the direction of acceleration
By looking at the path of a particle (e.g., see fig. 17.11) and just knowing whether it
is speeding up or slowing down one can estimate the direction of the acceleration.

If the particle is known to be speeding up at A then Pv > 0 so the tangential
acceleration is in the direction of the velocity. Without thinking about the normal
acceleration you know that the acceleration vector is pointed in the half plane of
directions shown.

If at point B nothing is known about the rate of change of speed, you still know
that the acceleration must be in the half plane shown because that is the direction
of*� and Oen.

If at C you know that the particle is slowing down then you know that Pv < 0.
But you also can see the curve is to the right so Oen is to the right. So the acceleration
must be in the quadrant shown.

One can use the information about the curvature to further restrict the possible
accelerations at point A also. At point B there is nothing more to know unless you
know how the speed is changing with time.

Earlier we found the curvature by assuming the particle’s path was pa-
rameterized by arc length s. A second way of calculating the curvature *

�

(and then the unit normal Oen) is to calculate the normal part of the acceler-
ation. First calculate the acceleration. Then subtract from the acceleration
that part which is parallel to the velocity.

*
an D*

a � .*a � Oet / Oet D*
a � .*a �*v/*v

v2

The normal acceleration is *
an D v2*� so

*
� D

*
an

v2
D

*
a

v2
� .*a �*v/*v

v4
:

Recipes for path coordinates.

Assume that you know the position as a function of time in either cartesian or
polar coordinates. Then, say, at a particular time of interest when the particle
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is at *r , you can calculate the velocity of the particle using:
*
v D Px O{C Py O| C Pz Ok or *

v D PR OeR CR P� Oe� C Pz Ok
and the acceleration using

*
a D Rx O{C Ry O| C Rz Ok or *

a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� C Rz Ok:
From these expressions we can calculate all the quantities used in the path
coordinate description. So we repeat what we have already said but in an
algorithmic form. Here is one set of steps one can follow. This recipe is of
little practical use, but does show that the motion explicitly determines the
path base vectors as well as the osculating circle.

1. Calculate Oet D*
v=j*vj.

2. Calculate at D*
a �*v=v.

3. Calculate *
an D*

a � .*a �*v/*v=v2.

4. Calculate Oen D
*
an
j*anj

5. Calculate the radius of curvature as � D j*vj2
j*anj .

6. Write a parametric equation for the osculating circle as
*
rosculating D .*r C � Oen/� �� �

center

C �.� cos� Oen C sin� Oet /� �� �
circle

where � is the parameter used to parameterize the points on the circle
*
rosculating of the point on the curve *

r . As � ranges from 0 to 2� the
point *rosculating goes from *

r around the circle and back. The plane of
the osculating circle is determined by Oet and Oen. For planar curves, the
osculating circle is in the plane of the curve.

Example: Particle on the rim of a tire
A particle P on the rim of a tire whose center is moving at constant speed v has

position r given by

*r D �
vt �R sin.vt=R/

� O{CR
�
1 � cos.vt=R/

� O|
where the origin is at the ground contact time t D 0. When the particle is at its
highest point vt D �R and

*v D 2v O{ and *a D �.v2=R/ O|:
At that midpoint

Oet D O{; Oen D � O|;*� D �.1=.4R// O|
and .2v/2=� D v2=R) � D 4R

as shown in fig. 17.12. The osculating circle has 4 times the radius of the tire. Note
the intimacy of the osculating circle’s kiss with the cycloidal path.

Summary of polar(cylindrical) coordinates
See also the inside back cover, table II, row 3 in for future reference.
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Figure 17.12: The path of a rock in a tire
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circle at the top position.
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*
r D R OeR C z Ok
*
v D vR OeR C v� Oe� C vz Ok D PR OeR CR P� Oe� C Pz Ok
*
a D aR OeR C a� Oe� C az Ok D . RR � P�2R/ OeR C .R R� C 2 PR P�/ Oe� C Rz Ok

OeR D .*r � z Ok/=j*r � z Okj
Oe� D Ok � OeR

For 2-D problems just set z D 0; Pz D 0, and Rz D 0 in these equations.

Summary of path coordinates
See the inside back cover table II, row 4 and the text under the table for future
reference:

*
r D no simple expression in terms of path base vectors

*
v D Ps Oet D v Oet
*
a D*

at C*
an

*
at D at Oet D Pv Oet D Rs Oet D .*a � Oet / Oet
*
an D an Oen D .v2=�/ Oen D*

a � .*a � Oet / Oet

Oet D d*r=ds D*
v=v

Oen D*
�=j*�j D �*� D .*a � .*a � Oet / Oet /=j*a � .*a � Oet / Oet j

Oeb D Oet � Oen
*
� D d Oet=ds D .*a � .*a � Oet / Oet /=v2 � D 1=j*�j

Both polar coordinates and path coordinates define base vectors in terms of
the motion of a particle of interest relative to a fixed coordinate system.
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SAMPLE 17.1 Acceleration in polar coordinates. A bug walks along the
spiral section of a natural shell. The path of the bug is described by the
equation R D R0ea� where a D 0:182 and R0 D 5mm. The bug’s radial
distance from the center of the spiral is seen to be increasing at a constant
rate of 2mm= s. Find the x and y components of the acceleration of the bug
at � D � .

Solution In polar coordinates, the acceleration of a particle in planar motion is

*a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� :

Since we know the position of the bug,

R D R0 ea� ;

PR D R0 aea� P� ) P� D
PR

R0a ea�
;

RR D R0 aea� R� CR0 a
2ea� P�2:

Since the radial distance R of the bug is increasing at a constant rate PR D 2 mm=s, RR D 0,
that is,

R0 aea� . R� C a P�2/ D 0

) R� D �a P�2

D �
PR2

R20a e2a�
:

Therefore,

*a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe�

D
 
0 �R0ea� �

PR2
R20a

2e2a�

!
OeR C

 
2 PR2

R0a ea�
CR0ea� � � PR2

R20a e2a�

!
Oe�

D
PR2

R0a ea�

�
� 1
a
OeR C .2 � 1/ Oe�

�
:

Now substitutingR0 D 5mm; a D 0:182; PR D 2mm=s, and � D � in the above expression,
we get

*a D .�13:63mm= s2/ OeR C .2:48mm= s2/ Oe� :
But, at � D �

OeR D cos � O{C sin � O| D �O{ and Oe� D � sin � O{C cos � O| D � O|;

therefore,

*a D .13:63mm= s2/ O{ � .2:48mm= s2/ O|;
) ax D 13:63mm= s2 and ay D �2:48mm= s2:

ax D 13:63mm= s2; ay D �2:48mm= s2
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Figure 17.13:
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SAMPLE 17.2 Going back and forth between .x; y/ and .R; �/. Given the
position of a particle in polar coordinates .R; �/ and its radial and angular
velocity . PR; P�/ and radial and angular acceleration . RR; R�/, find . Px; Py/ and
. Rx; Ry/. Also, find the inverse relationship.

Solution

� Polar to Cartesian: In polar coordinates, we are given R; �; PR; P�; RR, and R� . We need
to find Px; Py; Rx, and Ry. Let us consider the velocity first. The velocity of a point is
*v D Px O{ C Py O| in cartesian coordinates and *v D PR OeR C R P� Oe� in polar coordinates.
Thus,

Px O{C Py O| D PR OeR CR P� Oe� :
where OeR D cos � O{C sin � O| and Oe� D � sin � O{C cos � O|. Dotting this equation with O{
and O|, respectively, we get

Px D PR
cos �����
. OeR � O{/CR P�

� sin �����
. Oe� � O{/

Py D PR . OeR � O|/� �� �
sin �

CR P� . Oe� � O|/� �� �
cos �

or,
Px D PR cos � CR P�.� sin �/

Py D PR sin � CR P� cos �

or, � Px
Py
�

D
�

cos � � sin �
sin � cos �

� �
1 0

0 R

�� PR
P�
�
: (17.5)

Thus given PR and P� at .R; �/, we can find Px and Py. Similarly, from the acceleration
formula,*a D Rx O{C Ry O| D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� , we derive� Rx

Ry
�

D
�

cos � � sin �
sin � cos �

���
1 0

0 R

�� RR
R�
�
C
� �R P�2

2 PR P�
��

:

(17.6)

It is not necessary to split the terms on the right hand side. We could have kept them
together as . RR�R P�2/ and .2 PR P�CR R�/ but we split them to keep the radial acceleration
term RR and angular acceleration R� in evidence.

� Cartesian to Polar: Given Px; Py; Rx, and Ry at .x; y/, we can now find PR; P�; RR, and R�
easily by inverting eqn. (17.5) and eqn. (17.6):� PR

P�
�

D
�
1 0

0 1
R

� �
cos � sin �

� sin � cos �

�� Px
Py
�
: (17.7)

� RR
R�
�

D
�
1 0

0 1
R

���
cos � sin �

� sin � cos �

�� Rx
Ry
�
�
� �R P�2

2 PR P�
��

:

(17.8)

Note that in eqn. (17.8) we need PR and P� in order to compute RR and R� . This, however,
is no problem since we have PR and P� from eqn. (17.7). Of course,R and � are required
too, which are easily computed as R D

p
x2 C y2 and � D tan�1.y=x/.
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SAMPLE 17.3 Velocity in path coordinates. The path of a particle, stuck
at the edge of a disk rolling on a level ground with constant speed, is called
a cycloid. The parametric equations of a cycloid described by a particle is
x D t�sin t , y D 1�cos t where t is a dimensionless time. Find the velocity
of the particle at

1. t D �
2

,

2. t D � , and

3. t D 2�

and express the velocity in terms of path basis vectors . Oet ; Oen/.

Solution The position of the particle is given:

*r D x O{C y O|
D .t � sin t /O{C .1 � cos t / O|

) *v � d*r

dt
(17.9)

D .1 � cos t /O{C sin t O|;
and v D j*vj (17.10)

D
q
.1 � cos t /2 C sin2 t

D
p
2 � 2 cos t : (17.11)

In terms of path basis vectors, the velocity is given by

*v D v Oet where Oet D*v=v:

Here,

Oet D
.1 � cos t /O{C sin t O|p

2 � 2 cos t
: (17.12)

Substituting the values of t in equations 17.11 and 17.12 we get

1. at t D �
2 :

v D
p
2; Oet D

1p
2
.O{C O|/; *v D

p
2 Oet :

*v D
p
2 Oet ; Oet D 1p

2
.O{C O|/

2. at t D � :
v D 2; Oet D O{; *v D 2 Oet :

*v D 2 Oet ; Oet D O{
3. at t D 2� :

v D 0; Oet D undefined; *v D*
0:

*v D*
0
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Figure 17.15: The unit vectors OeR; Oe� ;
and Oet ; Oen at � D �=2.

SAMPLE 17.4 Path coordinates in 2-D. A particle traverses a limacon R D
.1C 2 cos �/ ft; with constant angular speed P� D 3 rad=s.

1. Find the normal and tangential accelerations (at and an) of the particle
at � D �

2
.

2. Find the radius of the osculating circle and draw the circle at � D �
2

.

Solution

1. The equation of the path is
R D .1C 2 cos �/ ft:

The path is shown in Fig. 17.14. Since the equation of the path is given in polar
coordinates, we can calculate the velocity and acceleration using the polar coordinate
formulae:

*v D PR OeR CR P� Oe� (17.13)
*a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� : (17.14)

So, we need to find PR; RR; R� for computing*v and*a. From the given equation for R

R D .1C 2 cos �/ ft

) PR D �.2 ft/ sin � P�
) RR D �.2 ft/ sin � R� � .2 ft/ cos � P�2

D �.2 ft/ P�2 cos �

where we set R� D 0 because P� D constant. Substituting these expressions in
Eqn. (17.13) and (17.14), we get

*v D �.2 ft/ P� sin � OeR C P�.1C cos �/ ft Oe�
*a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe�

D ��2 P�2 cos � � .1C 2 cos �/ P�2� ft OeR C .�2 P�2 sin �/ ft Oe�
D � P�2�.1C 4 cos �/ OeR C .2 sin �/ Oe� � ft

which give velocity and acceleration at any � . Now substituting � D �=2 we get the
velocity and acceleration at the desired point:

*vj�
2

D P���2 sin
�

2
OeR C .1C 2 cos

�

2
/ Oe� � ft

D 3 ft=s.�2 OeR C Oe� /
*aj�

2
D �9 ft=s2. OeR C 2 Oe� /:

Thus we know the velocity and the acceleration of the particle in polar coordinates.
Now we proceed to find the tangential and the normal components of acceleration
(acceleration in path coordinates). In path coordinates

*a D *at C*an

� at Oet C an Oen
where Oet and Oen are unit vectors in the directions of the tangent and the principal
normal of the path. We compute these unit vectors as follows.
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Oet D
*v

j*vj
D .

�6 ft=s/ OeR C .3 ft=s/ Oe�p
45 ft=s

D � 2p
5
OeR C

1p
5
Oe� :

So,
*at D .*a � Oet / Oet

D 9 ft=s2
�
� 2p

5
C 2p

5

�
Oet

D *
0;

and
*an D *a �*at

D �9 ft=s2. OeR C 2 Oe� /:
Therefore,

Oen D
*an

j*anj
D � 1p

5
. OeR C 2 Oe� /:

Thus,

*a D 9
p
5 ft=s2 Oen

) at D 0 and an D 20:12 ft=s2:

at D 0; an D 20:12 ft=s2

2. In path coordinates the acceleration is also expressed as

*a D Pv Oet C
v2

�
Oen

where � is the radius of the osculating circle. Since we already know the speed v
and the normal component of acceleration an we can easily compute the radius of the
osculating circle.

an D v2

�

) � D v2

an
D 45. ft=s/2

9
p
5 ft=s2

D
p
5 ft:

� D 2:24 ft

Filename:sfig6-3-1c
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Figure 17.16: The osculating circle of
radius � D 51=2 ft at � D �=2. Note
that Oen points to the center of the oscu-
lating circle.
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17.2 Rotating reference frames and their
time-varying base vectors

In this section you will learn about rotating reference frames, how to take the
derivative of a vector ‘in’ a rotating frame, and how to use that derivative to
find the derivative in a Newtonian or fixed frame. We start by showing the
alternative, just using one frame with one set of fixed base vectors.

The fixed base-vector method
To motivate the sections that follow we first show the “fixed base vector”
method. Consider the task of determining the acceleration of a bug walk-
ing at constant speed as it walks on a straight line marked on the surface of
a tire rolling at constant rate. Artificial as this problem seems, it is simi-
lar to the sort of calculation needed in the kinematics of mechanisms. For
now, imagine you really care how strong the bugs legs need to be to hold
on (unreasonably neglecting air friction). So knowing the bugs acceleration
determines the net force on it by

*

F D m*
a. Now we try to find *

a by taking
two time derivatives of position.

If we want to avoid using rotating base vectors we have to write an expres-
sion for the position of the bug in terms of x and y components. Choosing a
suitable origin of the coordinate system we have

*
rP=0 D*

r00=0 C*
rP=00

D .R� O{CR O|/� �� �
*
r00=0

C .s.cos � O{ � sin � O|/C `.sin � O{C cos � O|//� �� �
*
rP=00

D �
R� C s cos � C ` sin �

� O{C �
R � s sin � C ` cos �

� O|: (17.15)

To find the velocity we take the time derivative, taking account that both �

and ` are functions of t . Thus, for example looking at the term ` cos � both
the product rule and chain rule need be applied. Proceeding we get

*
vP=0 D

�
R P� � s P� sin � C P̀ sin � C ` P� cos �

�
O{

C
�
�s P� cos � C P̀ cos � � ` P� sin �

�
O|: (17.16)

To get the acceleration of the bug we differentiate one more time. This time
we use the product rule and chain rule again, but get to use the simplification
for this problem that the rolling and bug walking are at constant rate so R� D 0

and R̀ D 0:

*
aP=0 D

�
�s P�2 cos � C P̀ P� cos � C P̀ P� cos � � ` P�2 sin �

�
O{

C
�

s P�2 sin � � P̀ P� sin � � P̀ P� sin � � ` P�2 cos �
�
O|

D
�
� P�2.s cos � C ` sin �/C 2 P̀ P� cos �

�
O{

C
� P�2.s sin � � ` cos �/ � 2 P̀ P� sin �

�
O| (17.17)
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which is a bit of a mess. We could regroup the terms, but there would still be
6 of them.

The moving-reference-frame methods that follow don’t change this an-
swer. But they give a somewhat simpler derivation. And they also group the
terms in physically meaningful way. One would be hard pressed to make
sense of all the terms in eqn. (17.17). With the time-varying base vector
methods below we can interpret the terms.

Reference frames
A reference frame is a coordinate system 1. It has an origin and a set of
preferred mutually orthogonal directions represented by base vectors. You
can think of a reference frame as a giant piece of graph paper, or in 3-D as
a giant jungle gym, that permeates space. It has the look of a wire frame.
Because we will use various frames, we name them. We always have one
frame that we think of as fixed for the purposes of Newtonian mechanics.
We call this frame F (or sometimes N ). Most often we choose a frame
that is ‘glued’ to the ground with an origin at a convenient point and with at
least one base vector lined up with something convenient (e.g., up, sideways,
along a slope, along the edge of an important part, etc.). F is a frame in
which the mechanics laws we use are accurate. We define it by its origin and
the direction of its coordinate axes, thus we would write

F is 0xyz or F is O O{ O| Ok.

where we would generally have a picture showing the position of the origin
and the orientation of the coordinate axes (see fig. 17.18).

When we write casually ‘position *
r’ of a point we mean *

rP=0. When

we write ‘velocity *
v’ we mean

d

dt

*
r as calculated in F . That is, if *

r D
x O{C y O| C z Ok then we define the derivative of *r with respect to t in F as

Fd*r

dt
D FP*r D Px O{C Py O| C Pz Ok:

The script F shows explicitly that when we take the time derivative of the
vector we take the time derivative of its components, using the components
associated with F and holding constant the base vectors associated with F .
That is

Fd*rP=0

dt
D FP*r

P=0
are just fancy ways of writing what we have been

calling *
v.

The elaborate notation just makes explicit how *
v is defined. The only need

for this elaborate notation is if there is ambiguity. There is only ambiguity if
more than one reference frame is used in a given problem.
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Figure 17.18: A fixed reference frameF
is defined by an origin 0 and coordinate
axes xyz or base vectors O{ O| Ok. Once the
xy (or O{ O|) directions are chosen the z
(or Ok) direction is implicitly defined by
the right hand rule.

1A fine point for experts: reference
frame vs coordinate system. There is
a semantic debate about the degree to
which the phrases “coordinate system”
and “ reference frame” are synonymous.
For simplicity we take them to mean the
same thing. An alternative definition
distinguishes reference frames from co-
ordinate systems. It turns out that co-
ordinate systems which are rotated, but
not rotating, with respect to each other
both calculate the same time-derivative
of a given vector. Because these coor-
dinate systems are equivalent in this re-
gard they are sometimes called the same
reference frame. That is, some peo-
ple consider one reference frame to be
the set of all coordinate systems that are
glued to each other, no matter what their
position or orientation. In this way of
thinking, a frame is made manifest by
the use of one of its coordinate systems,
but no particular coordinate system is
unique to the frame.
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Figure 17.19: A second reference frame
B is defined by an origin 0’ and coordi-
nate axes x0y0z0 or base vectors O{0 O|0 Ok0.
Once the x0y0 (or O{0 O|0) directions are
chosen the z0 (or Ok0) direction is implic-
itly defined by the right hand rule.
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Using more than one reference frame
Let’s add a second reference frame called B glued to and oriented with
the roof of the building. We will always use script capital letters
(A;B; C;D; E ;F or N ) to name reference frames. We define B by writing

B is 00x0y0z0 or B is O 0 O{0 O|0 Ok0
and by drawing a picture (see fig. 17.19). This new frame, as we have drawn
it, is also a good Newtonian or fixed frame. So we could write all positions
using the B coordinates and base vectors and then proceed with all of our
mechanics equations with the only confusion being that gravity doesn’t point
in the� O|0 direction, but in some crooked direction relative to O{0 and O|0 (which
we would have to work out from the angle of the roof). Although one hardly
notices when using just a single fixed frame, we actually use frames for three
somewhat distinct purposes:

I. To define a vector. For example if we were tracking the motion of a
canon ball at P we could define its position vector*r as*rP=0, using frame
F to define *

r . Or we could define *
r as *rP=O0 using frame B to define *

r .

II. To assign coordinate values to a given vector. For example, the vector
*
rB=A could be written as

*
rB=A D *

rB=A;

4mO{C 5m O| D 6mO{0 � 2:24m O|0:

Alternatively, if we just want to look at the components of a given vec-
tor we use ��F to indicate the components of the vector in ��s using the
base vectors of F . Thus

�*rB=A�F D �4m; 5m�0 and �*rB=A�B D �6m; �2:23m�0

where we have used ��0 to put the components in their standard column
form (though this is a picky detail). Note that although *

rB=A D *
rB=A

that

�*rB=A�F ¤ �*rB=A�B

because
�
4m
5m

�
¤

�
6m

2:23m

�

III. To find the rate of change of a given vector. The position of P rela-
tive to A changes with time. We can calculate this rate of change two
different ways. First using frame F

Fd*vP=A

dt
D FP*rP=A D

�
d

dt
xP=A

�
O{C

�
d

dt
yP=A

�
O|

or more informally as
FP*r D Px O{C Py O|

if we are clear in our minds that x and y are the coordinates of P relative
to A. But we can also calculate the rate of change of the same vector
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*
rP=A using frame B as

Bd*rP=A

dt
D BP*rP=A D

�
d

dt
x0P=A

�
O{0 C

�
d

dt
y0P=A

�
O|0

or more informally as
BP*r D Px0 O{0 C Py0 O|0:

For the two frames F and B
BP*r D FP*r because the two frames are not

rotating relative to each other. Specifically, for F and B the formula
for finding x and y from x0 and y0 does not involve time. Similarly,
the formulas for finding O{0 and O|0 from O{ and O| do not involve time.
For frames that are rotated with respect to each other but not rotating,
the two time derivatives of a given vector are related the same way the
vector itself is related to itself in the two frames. The vectors are the
same but their coordinates are different. That is, for rotated but not
relatively rotating frames

*
rP=A D*

rP=A and
Fd*rP=A

dt
D

Bd*rP=A

dt

but �*rP=A�F ¤ �*rP=A�B and �
Fd*rP=A

dt
�F ¤ �

Fd*rP=A

dt
�B:

Going back and forth between these three uses of frames with ease is one of
the advanced skills of a person who can analyze the dynamics of complex
systems (And being confused about the distinctions is an almost universal
part of learning advanced dynamics).

Example: Two fixed frames F and B
Consider F and B both to be fixed to the ground. Let’s look at *rP=A where P is
moving at up at constant rate (see fig. 17.20). First look at the position using both
frames:

*rP=A D *rP=A and

ct O| D
�p

2ct=2
�
O{0 C

�p
2ct=2

�
O|0 but

�*rP=A�F D �ct; 0�0 ¤ �*rP=A�B D �
p
2ct=2;

p
2ct=2�0:

Now look at the rate of change of position using both frames. First F :

Fd*rP=A

dt
D FP*rP=A D

�
d

dt
xP=A

�
O{C

�
d

dt
yP=A

�
O|

D c O|

Then the rate of change of*rB=A as calculated in B:

Bd*rP=A

dt
D BP*rP=A D

�
d

dt
x0P=A

�
O{0 C

�
d

dt
y0P=A

�
O|0

D .
p
2c=2/O{0 C .

p
2c=2/ O|0 D c O|

You can quickly verify that
Fd*rP=A
dt

D
Bd*rP=A
dt

by noting that O{0 D
p
2.O{ C O|/=2

and O|0 D
p
2.�O{C O|/=2.
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Figure 17.20: A particle P is moving up
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are used to keep track of it.
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Figure 17.21: A third reference frame C
is defined by an origin 000 and coordinate
axes x00y00z00 or base vectors O{00 O|00 Ok00. In
this case C is moving and rotating with
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Ok00) direction is implicitly defined by the
right hand rule.
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Figure 17.22: A fixed frame F and a ro-
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sition vector*rP=A.

So long as B is not rotating with respect to F then the rate of change of
a given vector is the same in both reference frames.

Translating and rotating reference frames
Now look at a third reference frame C that is glued to the roof of the car as it
starts up hill (see fig. 17.21). We define C by the origin of its coordinate sys-
tem 000 and its time-varying base vectors O{00 and O|00. The issues with defining
a vector with C and with writing components using C are the same as for B.
However taking the time derivative of a given vector in C is different than
taking the time derivative in B or F because C is rotating relative to them.

Rate of change of a vector relative to a rotating frame:
the P*

Q formula
Because dynamics involves the time derivatives of so many different vectors
(e.g. *

r , *v,
*

L,
*

H=C, and *
!) it is easier to think about the derivative of some

arbitrary or general vector, call it
*

Q, and then apply what we learn to these
other vectors.

Recalling our three uses of frames:

I. To define a vector.

II. To express the coordinates of a given vector.

III. To take the time derivative of a vector.

we see that items [III.] and [I.] can be combined. That is, once a vector
*

Q

is defined clearly by some means then we can define a new vector as the

derivative of that vector in, say, moving frame C. Once this new vector
CP*
Q

is defined it can be expressed in terms of the coordinates of any convenient
frame.

Example: Derivative in a moving frame of a constant vector
Consider as

*
Q the relative position vector *rP=A of the points A and P that do not

move in the fixed frame F . That is, the points A and B don’t move in the ordinary
sense of the words (see fig. 17.22). Now also look at the frame B that is rotating
with respect to F at the rate P� . We have

*rP=A D *rP=A

` O| D ` sin � O{0 C ` cos � O|0

So we can now calculate the derivative in each frame by holding the corresponding
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base vectors as constant. So

Fd*rP=A

dt
D P̀ O| D*

0

and
Bd*rP=A

dt
D ` P� cos � O{0 � ` P� sin � O|0

D ` P� �cos � O{0 � sin � O|0�� �� �
O{

D ` P� O{

That is, the stationary vector *rP=A and the rotating frame B define a new vector,
the derivative of *rP=A in B. This is also *vP=B �*vA=B, the difference between the
velocity of P and the velocity of A in the frame B. This new vector can be expressed
in any coordinate system of choice for example the O{ O| system. So we wrote above

Bd*rP=A

dt
D ` P� O{

which looks mixed up but isn’t. The frame B is used to help define a vector which
is then expressed in the coordinates of F .

Using the moving-frame derivative to calculate the
fixed-frame derivative
Given a new vector

CP*
Q, the derivative of

*

Q as calculated in a rotating frame

C, one calculation of common use is the determination of the derivative
FP*
Q

of the same vector in the fixed frame F .
First think of a line segment that is marked between two points that are

glued to a moving frame C. We know (at least in 2-D and for fixed axis
rotation) that

*
vB=A D *

!C �*
rB=A:

Likewise for any vector which is fixed in C. It is especially useful to apply
this formula to unit base vectors, so

PO{00 D *
!C � O{00;

PO|00 D *
!C � O|00; and (17.18)

POk00 D *
!C � Ok00:

In some minds, Eqns. 17.18 are the core of rigid body kinematics. Box 17.1
on 881 shows how these relations give ‘the Q dot’ formula: For any time
dependent vector

*

Q

FP*
Q D

CP*
QC *

!C=F �
*

Q: (17.19)
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or more simply, but less explicitly,

P*
Q D P*

Qrel C *
! � *

Q:

where P*
Qrel is the time derivative of

*

Q relative to the moving frame of inter-
est (in this case C). The ‘Q dot’ formula says that

The derivative of a vector with respect to a Newtonian frame F (or

‘absolute derivative’) can be calculated as the derivative
CP*
Q of the vec-

tor with respect to a moving frame C, plus a term *
!C �

*

Q that corrects
for the rotation of frame C relative to frame F .

Note that if
*

Q is a constant in the frame C, like the relative position vector of

two points glued to C, then
CP*
Q D *

Qrel D
*

0 and the P*
Q formula reduces to

FP*
Q D *

! � *

Q:

The P*
Q formula 17.19 is useful for the derivation of a variety of formulas and

is also useful in the solution of problems.
While we have shown how to use this formula to calculate the rate of

change of a vector with respect to a Newtonian frame, the formula can be
used to calculate its rate of change with respect to a non-Newtonian frame.

Letting A and B be two possibly non-Newtonian frames, the P*
Q formula for

the rate of change of
*

Q with respect to frame A is

AP*
Q D

BP*
QC *

!B=A �
*

Q: (17.20)

Both A and B could be non-Fixed (non-Newtonian).

Summary of the P*
Q formula

For a vector
*

Q fixed in B,

P*
Q D *

!B �
*

Q or
FP*
Q D *

!B=F �
*

Q:

For any time dependent vector
*

Q,

P*
Q D

BP*
QC *

!B �
*

Q or
FP*
Q D

BP*
QC *

!B=F �
*

Q:

Some examples of applying the P*
Q formula are:
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� Absolute velocity of a point P relative to O 0:

P*rP=O 0 D BP*rP=O 0 C *
!B �*

rP=O 0

� Rate of change of a rotating unit vector which is fixed in B:

PO{0 D PO{0rel����
*
0

C*
!B � O{0

The varying base-vectors method of computing velocity
and acceleration
One way to calculate velocity, acceleration is to express the position of a
particle in terms of a combination of based vectors, some of which change
in time. Velocity and acceleration are then determined by directly differ-
entiating the expression for position, taking account that the base vectors
themselves are changing. This method is sometimes convenient for bodies
connected in series, one body to the next, etc. The overall approach is as
follows:

1) Glue a coordinate system to every moving body. If needed, also create
moving frames that move independently of any particular body.

2) Call the basis vectors associated with these frames O{, O|, Ok for the fixed
frame F ; O{0, O|0, Ok0 for the moving frame B; and O{00, O|00, Ok00 for the
moving frame C, etc.

3) Evaluate all of the relative angular velocities; *
!B=F , *

!C=B, etc. in
terms of the scalar angular rates P� , P�, etc. and the base vectors glued
to the frames.

4) Express all of the absolute angular velocities in terms of the relative
angular velocities.

5) Differentiate to get the angular accelerations using, for example,

PO{0 D *
!B � O{0 or

PO|00 D *
!C � O|00

6) Write the position of all points of interest in terms of the various base
vectors.

7) Differentiate the position to get the velocities (again using PO|00 D *
!C �

O|00, etc.)

8) Differentiate again to get acceleration.
First, reconsider the bug crawling on the tire in fig. 17.24.

Example: Absolute velocity of a point moving relative to a moving frame: Bug
crawling on a tire
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We write the position of the bug in terms of the various basis vectors as

*rP=O D *rO0=O C*rP=O0

D

*rO0=O� �� �
d O{CR O|C

*rP=O0� �� �
s O{0 C ` O|0/ :

To get the absolute velocity
Fd
dt
.*rP=O / of the bug at the instant shown, we differ-

entiate the position of the bug once, using the product rule and the rates of change
of the rotating basis vectors with respect to the fixed frame, to get

P*rP=O D*vP D Pd O{C PR����
0

O| C Ps����
0

O{0 C s PO{0 C P̀ O|0 C ` PO|0

D Pd O{C s.*!B � O{0/C P̀ O|0 C `.*!B � O|0/
D Pd O{C s.� P� Ok0 � O{0/C P̀ O|0 C `.� P� Ok0 � O|0/
D Pd O{C ` P� O{0 C . P̀ � s P�/ O|0: (17.21)

Example: Absolute acceleration of a point moving relative to a moving frame
(2-D): Bug crawling on a tire, again
Differentiating equation 17.21 from the example above again, we get the absolute
acceleration

Fd2

dt2
.*rP=O / D

Fd
dt
.*vP / of the bug at the instant shown,

R*rP=O D P*vP D*aP D Rd O{C .` R� C P̀ P�/O{0 C ` P�.� P� Ok0 � O{0/
C. R̀ � s R� � Ps����

0

P�/ O|0 C . P̀ � s P�/.� P� Ok0 � O|0/

D Rd O{C .` R� � s P�2 C 2 P̀ P�/O{0 C . R̀ � ` P�2 � s R�/ O|0:

Summary of the varying base-vector method
In the varying base vector method, we calculate the velocity of a point by
looking at the position as the sum of two position vector, one of which is
expressed in the moving base vectors. We then differentiate the position,
taking account that the base vectors of the moving frame change with time.
In general

*
vP D d

dt

*
rP

D d

dt

�
*
rO 0=O C*

rP=O 0

�
D d

dt

h
.x O{C y O| C z Ok/C .x0 O{0 C y0 O|0 C z0 Ok0/

i
D . Px O{C Py O| C Pz Ok/C . Px0 O{0 C Py0 O|0 C Pz0 Ok0/Ch

x0.*!B � O{0/C y0.*!B � O|0/C z0.*!B � Ok0/
i

We could calculate *
aP similarly using a combination of the product rule

of differentiation and the facts that PO{0 D *
!B � O{0, PO|0 D *

!B � O|0, and
POk0 D *

!B � Ok0, and would get a formula with 15 non-zero terms.
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17.1 The P*
Q formula

We think about some vector
*
Q as a quantity that could be repre-

sented by an arrow. We can write
*
Q using the coordinates of the

fixed Newtonian frame with base vectors O{; O|; Ok:
*
Q D Qx O{ C

Qy O| C Qz
Ok. Similarly we could write

*
Q in terms of the co-

ordinates of some moving and rotating frame B with base vectors
O{0; O|0; Ok0: *

Q DQx0 O{0 CQy0 O|0 CQz0
Ok0. Now of course

*
Q D *

Q

so Qx O{CQy O|CQz
Ok D Qx0 O{0 CQy0 O|0 CQz0

Ok0:
Similarly, P*

Q D P*
Q so long as what we mean by P*

Q is its derivative

in a fixed frame. That is, we use P*
Q as an informal notation for

FP*
Q D

Fd
*
Q

dt
. We can calculate P*

Q the same way we have from the

start of the book, namely,
P*
Q D PQx O{C PQy O|C PQz

Ok:
We didn’t have to use the product rule of differentiation because the
unit vectors O{, O|, and Ok, associated with a fixed frame, are constant
in time.

What if we wanted to use the coordinate information that was
given to us by a person who was moving and rotating with the mov-

ing frame B? Now we calculate P*
Q taking account that the B base

vectors change in time.

P*
Q D d

dt
�Qx0 O{0 CQy0 O|0 CQz0

Ok0�
D � PQx0 O{0 C PQy0 O|0 C PQz0

Ok0�� �� �
BP*
Q

(17.22)

C �Qx0
PO0{CQy0

PO0|CQz0
PO 0k�� �� �

?

:

The first term in the product rule is just the derivative of
*
Q in the

moving frame
BP*
Q. That is,

BP*
Q is calculated by differentiating the

components in B holding the base vectors in B fixed. The second

term depends on evaluating PO0{, PO0|, and PO 0k. We know (at least for 2-D
and for fixed-axis rotation in 3-D) that

PO{0 D *!B � O{0;
PO|0 D *!B � O|0; and (17.23)

POk0 D *!B � Ok0:

Eqns. 17.23 are the core of rigid body kinematics.
Now we can go back to the second group of terms in Eqn. 17.22.

? D �Qx0
PO0{CQy0

PO0|CQz0
PO 0k�

D �Qx0

*!B � O{0 CQy0

*!B � O|0 CQz0
*!B � Ok0�

D *!B � �Qx0 O{0 CQy0 O|0 CQz0
Ok0�

D *!B �
*
Q

Going back to Eqn. 17.22 we get the desired result:

FP*
Q D

BP*
QC*!B=F �

*
Q: (17.24)

or more simply, but less explicitly,

P*
Q D P*

Qrel C*!� *
Q: (17.25)

Geometric ‘derivation’ of the P*
Q

formula
Here is a geometrical ‘derivation’ of the P*

Q formula in two dimen-
sions. Referring to the figure at right, we look at a vector

*
Q at two

successive times. We then look at how
*
Q seems to change in a frame

that rotates slightly as
*
Q changes. The picture shows how to account

for the difference between the change of
*
Q as perceived by the two

different frames.
In detail the parts (a) to (e) of the picture show the following.

� Part (a) shows a vector
*
Q at time t .

� Part (b) shows
*
Q at time t C �t and the change in

*
Q,

�
*
Q � P*

Q ��t .
� Part (c) is like (a) but shows a moving body or frameA.

� Part (d) shows the change in
*
Q, .*!A�

*
Q/ ��t , that would

occur if
*
Q were fixed (constant) inA.

� Part (e) shows the change in
*
Q that would be observed in the

moving frameA.

� Part (f) shows the net change in
*
Q, �

*
Q, that is the same

as that in (b) above; here, it is shown as the sum of the two
contributions from (d) and (e).

Thus, using A, �
*
Q for small �t is composed of two parts: (1) the

�
*
Q observed inA.t/, and (2) the change in

*
Q which would occur

if
*
Q were constant in A.t/ and thus rotating with it. Dividing �

*
Q

by�t gives the ‘ P*Q formula’, P*Q D
A�

*
Q C*!A �

*
Q.

(continued...)
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17.1 The P*
Q formula (continued)
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2D Cartoon of the ˙⇀Q Formula

F ˙⇀Q
in F

F ˙⇀Q
using A

time t time t + �t [�t is small]

[
⇀

Q(t) is an arbitrary vector
not attached to A or F .]

x-y axes fixed in F

⇀

Q(t)

�
⇀

Q = [The total change in
⇀

Q
observed in F in time �t]

⇀

Q(t + �t)

�
⇀

Q≈ ˙ ˙
⇀

Q �t

x'-y' axes fixed in A

A(t)

⇀

Q(t)
⇀
ωA

�θ

�θ

A(t +�t)

�θ ≈ |⇀
ωA|�t

[The change in
⇀

Q, if constant in A,
relative to F in time �t ≈ (�θ k̂)× ⇀

Q

≈ (⇀
ωA ˙�t)× ⇀

Q

≈ (⇀
ωA × ⇀

Q)˙�t.]

[What
⇀

Q would look like from F at
time t + �t if it was constant in A.]

[
A˙⇀Q (�t) ≈ the change in

⇀

Q

relative to A in time �t]
˙

A(t +�t)

⇀

Q(t +�t) A˙⇀Q (�t)˙

A(t + �t)

⇀

Q(t +�t)

⇀

Q(t)

A˙⇀Q (�t)˙≈

�
⇀

Q ≈ (⇀
ωA× ⇀

Q +A˙⇀Q) �t˙

�Q

�θ

≈ (⇀
ωA× ⇀

Q) �t˙

�
⇀

Q = [The total change in
⇀

Q

(observed in F in time �t)]

≈ A˙⇀Q (�t)+(⇀
ωA× ⇀

Q) �t˙ ˙

Two different looks at the change in the vector
*
Q,�

*
Q, over a time interval�t .
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SAMPLE 17.5 Acceleration of a point moving in a rotating frame. Con-
sider the rotating tube of Sample 17.9 again. It is given that the arm OAB
rotates with counterclockwise angular acceleration P! D 3 rad=s2 and at the
instant shown the angular speed ! D 5 rad=s. Also, at the same instant,
the particle P is falling down with speed v=tube D 4 ft=s and acceleration
a=tube D 2 ft=s2. Find the absolute acceleration of the particle at the given
instant. Take ` D 2 ft in the figure.

Solution Let us attach a body frame B to the rigid arm OAB. For calculations we fix a coor-
dinate system x0y0z0 in this frame such that the origin O 0 of the coordinate system coincides
with O, and at the given instant, the axes are aligned with the inertial coordinate axes xyz.
Since x0y0z0 is fixed in the frame B and B rotates with the rigid arm with P*!B D 3 rad=s2 Ok
and *!B D 5 rad=s Ok, the basis vectors O{0, O|0 and Ok0 rotate with the same P*!B and *!B.

In the rotating (primed) coordinate system,

*rP D x0 O{0 C y0 O|0
*vP D d

dt
.*rP / D

d

dt
.x0 O{0 C y0 O|0/

D Px0 O{0 C x0 PO{0 C Py0 O|0 C y0 PO|0:

Now, we use the P*
Q formula to evaluate PO{0 and PO|0, i.e.,

PO{0 D *!B � O{0 D ! Ok0 � O{0 D ! O|0
PO|0 D *!B � O|0 D ! Ok0 � O|0 D �! O{0:

Also, note that x0 is constant since in frame B, the motion of the particle is always along the
tube, i.e., along the negative y0 axis (see Fig. 17.27). Thus, x0 D 2`, Px0 D 0, y0 D `, and
Py0 D �v=tube. Substituting these quantities in*vP , we get:

*vP D x0! O|0 � v=tube O|0 C y0.�! O{0/
D .x0! � v=tube/ O|0 � !y0 O{0: (17.26)

Now substituting x0 D 2` D 4 ft, ! D 5 rad=s, y0 D ` D 2 ft, v=tube D 4 ft=s and noting
that O{0 D O{; O|0 D O| at the given instant, we get:

*vP D �.20 � 4/ O| � 10O{� ft=s D .�10O{C 16 O|/ ft=s:

We can find*aP by differentiating Eq. (17.26) and noting again that O{0 D O{; O|0 D O| at the
given instant 2:

*aP D d

dt
.*vP / D

d

dt
�.x0! � v=tube/ O|0 � !y0 O{0�

D . Px0����
0

! C x0 P! �
a=tube����
Pv=tube / O|0 C .x0! � v=tube/

PO|0 � . P!y0 C !

�v=tube����
Py0 /O{0 � !y0 PO{0

D .x0 P! � a=tube/ O|0 C .x0! � v=tube/.�! O{0/ � . P!y0 � !v=tube/O{0 � !y0.! O|0/
D �a=tube O|0 C 2!v=tube O{0 � !2.x0 O{0 C y0 O|0/C P!.x0 O|0 � y0 O{0/
D �2 ft=s2 O| C 40 ft=s2 O{ � 25.4O{C 2 O|/ ft=s2 C 3.4 O| � 2O{/ ft=s2

D �.66O{C 40 O|/ ft=s2:

*aP D �.66O{C 40 O|/ ft=s2
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2 We will revisit this problem in Sam-

ple 17.9. Here we use the P*
Q formula on

various base vectors. In Sample 17.9 we
will use the relative velocity and accel-
eration formulae.
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SAMPLE 17.6 Rate of change of unit vectors. A circular diskD is welded
to a rigid rod AB. The rod rotates about point A with angular velocity *

! D
! Ok. A frame B is attached to the disk and therefore rotates with the same *

!.
Two coordinate systems, .O{0; O|0/ and . OeR; Oe�/ are fixed in frame B as shown
in the figure.

1. Find the rate of change of unit vectors OeR; Oe� ; O{0 and O|0 using the P*
Q

formula.

2. Express the OeR and Oe� vectors in terms of O{0 and O|0 and verify the results
obtained above for POeR and POe� by direct differentiation.

Solution Since the disk is welded to the rod and frame B is fixed in the disk, the frame rotates
with *!B D ! Ok.

1. To find the rate of change of the unit vectors using the P*
Q formula, we substitute the

desired unit vector in place of
*
Q in the formula (eqn. (17.19)). For example,

POeR D B POeR C*!B � OeR:

It should be clear that B POeR D 0, since OeR does not change with respect to an observer
sitting in frame B. Therefore,

POeR D*!B � OeR D ! Ok � OeR D ! Oe� :

Similarly,

POe� D B POe�����
*
0

C*!B � Oe� D !

� OeR����
Ok � Oe� D �! OeR:

PO{0 D B PO{0����
*
0

C*!B � O{0 D ! Ok � O{0 D ! O|0:

PO|0 D B PO|0����
*
0

C*!B � O|0 D ! Ok � O|0 D �! O{0:

POeR D ! Oe� ; POe� D �! OeR; PO{0 D ! O|0; and PO|0 D �! O{0

2. Since OeR D cos � O{0Csin � O|0 and Oe� D � sin � O{0Ccos � O|0, we get their rates of change
by direct differentiation as

POeR D cos � PO{0 C sin � PO|0
D cos �.! O|0/C sin �.�! O{0/
D !.� sin � O{0 C cos � O|0/ D ! Oe� ;

POe� D � sin � PO{0 C cos � PO|0
D � sin �.! O|0/C cos �.�! O{0/
D �!.cos � O{0 C sin � O|0/ D �! OeR:

Here we have used the fact that � , the angle between the unit vectors OeR and O{0, remains
constant during the motion. The results obtained are the same as in part (a).
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SAMPLE 17.7 Rate of change of a position vector. A rigid rod OAB
rotates counterclockwise about point O with constant angular speed ! D
5 rad=s. A collar C slides out on the bent arm AB with constant speed v D
0:5m=s with respect to the arm. Find the velocity of the collar using the

*

Q

formula.

Solution Let *rC be the position vector of the collar. Then the velocity of the collar is P*rC .
Let the rod OAB be the rotating frame B. Now we can find P*rC using the

*
Q formula:

P*rC D B P*rC C*!B �*rC

To compute P*rC , let us first find B P*rC , the rate of change of*rC as seem in frame B (this term
represents the velocity of the collar you see if you sit on the rod and watch the collar; also
called*vrel ).

*rC D *rA C*rC=A

B P*rC D B P*rA CB P*rC=A

Note that the vector *rA D ` O� does not change in frame B since both its magnitude, `, and
direction, O�, remain fixed in B. Therefore,

B P*rA D 0

Now *rC=A D rO{0: ) B P*rC=A D PrO{0 D 0:5 m=sO{0
because O{0 does not change in B and Pr = speed of the collar with respect to the arm. (see
Figure 17.31) Thus,

B P*rC D 0:5m=sO{0:
Hence,

P*rC D B P*rC C ! Ok � .` O�C r O{0/
D B P*rC C !`. Ok � O�/C !r. Ok � O{0/
D Pr O{0 C !`.sin � O{C cos � O|/C !r O|0

D 0:5m=sO{0 C 5m=s.

p
3

2
O{C 1

2
O|/C 1m=s O|0

D 4:83m=sO{C 3:5m=s O|

where we have used the fact that at the given instant, O{0 D O{ and O|0 D O|:
*vC D 4:83m=sO{C 3:5m=s O|
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17.3 General expressions for velocity *

v

and acceleration *

a of a moving point
Now that we have some comfort with moving frames we can develop formu-
las that are not so strongly attached to base vectors. That is, we take account
that the base vectors rotate with the frame, but develop formulas that don’t
use the base vectors explicitly. Thus the formulas we develop here work
equally for any frame that is glued to the rotating frame of choice, indepen-
dent of its orientation.

Absolute velocity of a point moving relative to a moving
frame
Imagine that you know the absolute velocity *

v00=F of some point O 0 on an
object B, say the center of a car tire and the angular velocity of the tire, *!B=F .
Finally, imagine you also know the relative velocity of point P, *vP=B, say of
a bug crawling on the tire.

If the frame B is translating or rotating, the velocity of particle P relative
to the frame *

vP=B is not the absolute velocity (the velocity relative to a New-
tonian frame). The absolute velocity in this case is *

vP=F , or more simply *
vP,

or more simply still, just *v. We want to know the relationship between the
relative velocity *

vP=B and the absolute velocity *
vP=F (otherwise known as

just *v).
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The position of the origin of the frame B relative to the originO of the fixed frameF is*rO0=O.
The position of point P relative to O is the sum of *rP=O0 and *rO0=O. The motion of point P
relative to the fixed frame may be complicated.

Let’s start by looking at the position. The position of a point P that is
moving is:

*
rP=O D*

rO0=O C*
rP=O0

where O 0 is the origin of a coordinate system which is glued to the rigid
object, as shown in fig. 17.32.
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To find the absolute velocity of point P we will use the P*
Q formula, equa-

tion 17.19, for computing the rate of change of a vector. The velocity of P is
the rate of change of its position. Here, we use

*

Q D*
rP=O0

*
vP=F D FP*rP=O

D FP*rO 0=O C
FP*rP=O0

D *
vO0=F C

FP*rP=O0� �� �
BP*rP=O0����
*
vP=B

C*
!B=F �*

rP0=O0

The P*
Q formula 17.19 was used in the calculation to compute F P*rP=O 0

FP*rP=O 0 D BP*rP=O 0 C *
!B=F �*

rP0=O0 : (17.27)

Thus, the ‘three term velocity formula’.

Absolute velocity of
point P

B
BN����
*
vP D *

vO0����
�
��

1. Velocity of reference
point O 0 on object B

C

2. Velocity of point
P relative to moving
frame B

�
�����

*
vP=B C*

!B �*
rP0=O0� �� �
BBM

3. Velocity relative to
point O 0 of the point P 0
glued to object B which
is instantaneously coin-
cident with point P

(17.28)

Another way to write the formula for absolute velocity is as

*
vP D*

vP0 C*
vP=B

where P’ is a point glued to B which is instantaneously coincident with P, so
the absolute velocity of P 0 is

*
vP0 D*

vO0 C *
!B �*

rP0=O0 : (17.29)

Reconsider the bug crawling on the tire, object B, in fig. 17.33. To find
the absolute velocity of the bug, we need be concerned with how the bug
moves relative to the tire and how the tire moves relative to the ground.

Example: Absolute velocity of a point moving relative to a moving frame (2-D):
Bug crawling on a tire, again
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Referring to equation 17.27 on page 887, the absolute velocity of the bug is
*vP=F D *vO0=F C B P*rP=O0����

*vP=B

C*!B=F �*rP=O0

D R P� O{ C P̀ O|0 C .� P� Ok0/ � .s O{0 C ` O|0/
D R P� O{ C ` P� O{0 C . P̀ � s P�/ O|0:

At the instant of interest, the direction of the bug’s absolute velocity depends upon
the relative magnitudes of P̀ and P� as well as the orientation of O{0 and O|0.

As we noted earlier, another way to write the formula for absolute velocity is
*
vP D*

vP0 C*
vP=B

where, in the example above, *vP0 D R P� O{C P�.`O{0 � s O|0/ and *
vP=B D P̀ O|0. At

the instant of concern, we can think of the absolute velocity of the bug as the
velocity of the mark labeled P 0 under the bug plus the velocity of the bug
relative to the tire.

Acceleration
We would like to find acceleration of a point using information about its
motion relative to a moving frame. The result, the ‘five term acceleration
formula’ is the most complicated formula in this book. (For reference, it is
in Table II, 5c).

Acceleration relative to a object or frame
The acceleration of a point relative to a object or frame is the acceleration
you would calculate if you were looking at the particle while you translated
and rotated with the frame and took no account of the outside world. That is,
if the position of a particle P relative to the origin O 0 of a coordinate system
in a moving frame B is given by:

*
rP=O0 D rPx0=O 0����

x0

O{0 C rPy0=O 0����
y0

O|0 C rPz0=O 0����
z0

Ok0;

then the acceleration of the particle P relative to the frame is:
*
aP=B D RrPx0=O 0����

Rx0
O{0 C RrPy0=O 0����

Ry0
O|0 C RrPz0=O 0����

Rz0

Ok0:

That is, the acceleration relative to the frame takes no account of (a) the
motion of the frame or of (b) the rotation of the base vectors with the frame
to which they are fixed.

Reconsider the bug labeled point P crawling on the tire, object B, in
fig. 17.35.

Example: Acceleration relative to a frame (2-D): Bug crawling on a tire, again
If we are sitting on the tire, all that we see is the bug crawling in a straight line at

non-constant rate relative to us. Thus, its acceleration relative to the tire is
*aP=B D R̀ O|0:
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So, at the instant of interest, the bug has an acceleration relative to the tire frame
parallel to the y0-axis.

Absolute acceleration of a point P0 glued to a moving
frame
Imagine that you know the absolute acceleration of some point O 0 at the
center of a frame B, say the center of a car tire. Imagine you also know
the angular velocity of the tire, *

!B=F , and the angular acceleration, *�B=F .
Then, you can find the absolute acceleration of a piece of gum labeled point
D stuck to the sidewall (see fig. 17.37). If we start with the equation 17.29
for the absolute velocity of a point glued to a moving frame on page 887 and
differentiate with respect to time, we get the absolute acceleration of a point
D fixed in a moving frame B as follows:

*
aD D d

dt
�*vO0 C *

!B �*
rD=O0 �

D *
aO0=O C � P*!B �*

rD=O0 C *
!B � .*!B �*

rD=O0/�

D *
aO0=O C*

�B �*
rD=O0 C *

!B � .*!B �*
rD=O0/ (17.30)

Example: Absolute acceleration of a point glued to a moving frame (2-D): Bug
crawling on a tire, again

Here, the acceleration of point P0 glued to the tire, relative to the tire is zero,
*aP0=B D 0 (see fig. 17.37). The angular velocity of the wheel with respect to the

ground is*!B=F D � P� Ok D � P� Ok0. The angular speed is increasing at a rate R� . Thus,
*�B=F D � R� Ok D � R� Ok0. The position of P 0 relative to O 0 is*rP0=O0 D s O{0 C ` O|0.

Using equation 17.30 on page 889, we get the absolute acceleration of point P 0
to be

*aP0=F D *aO0=F C*!B=F � .*!B=F �*rP0=O0/C*�B=F �*rP0=O0

D R R� O{����
�
��

acceleration of origin of
moving frame

�

centripetal term

BBN� �� �
P�2.s O{0 C ` O|0/C

tangential term

��� �� �
R R�.s O|0 � `O{0/

In this example, the absolute acceleration P 0 is due to:
1. the increase in the translational speed of the tire relative to the ground (accel-

eration of origin of moving frame),
2. its going in circles at non-constant rate about point O 0 relative to the ground

(‘tangential term’), and
3. ‘centripetal term’ towards the origin of the moving frame. (In three-

dimensional problems, this term is directed towards an axis through *! that
goes through O’).
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Absolute acceleration of a point moving relative to a
moving frame
If we start with the equation for absolute velocity 17.27 on page 887 and
differentiate with respect to time we get the absolute acceleration of a point
P using a moving frame B. To do this calculation we need to use the product

rule of differentiation. Refer to the P*
Q formula, eqn. (17.24) on page 881.

Here is the calculation:

*
aP D d

dt
�*vO0=O C*

vP=B C *
!B �*

rP=O0 �

D *
aO0=O C .*aP=B C *

!B �*
vP=B/

C � P*!B �*
rP=O0 C *

!B �*
vP=B C *

!B � .*!B �*
rP=O0/�

D *
aO0=O C *

!B � .*!B �*
rP=O0/C*

�B �*
rP=O0� �� �

*
aP0

C*
aP=B C 2*!B �*

vP=B:

The collection of terms*aP0 is the acceleration of a point P 0 which is glued
to body B and is instantaneously coincident with P. It is the same as*aD using
D D P 0 in equation 17.30. To repeat, the result is

The ‘five term’ acceleration formula

*aP����
The absolute acceleration

D

1. acceleration of reference point O 0 on
object B

B
BN����

*aO0=O C*!B � .*!B �
*rP=O0/� �� �

���

2. centripetal acceleration: acceleration relative to
O 0 of point glued to object, coincident with P, and
going in circles around O 0 at constant rate

C

3. tangential acceleration: acceleration
relative to O 0 of point glued to object,
coincident with P, due to non-constant *!

�
�� �� �

*�B �
*rP=O0 C

*aP=B����
BBM

4. acceleration of P relative to moving
frame B

C 2 *!B �
*vP=B� �� �

5. Coriolis accel.

(17.31)

D *aP0����
The first 3 terms above

C*aP=B C 2*!B �
*vP=B (17.32)

This ‘five-term-acceleration’ formula is both famous and infamous. It’s fa-
mous because it is given a lot of emphasis by some instructors 1. and in-
famous because it takes some getting used to. Eqn. 17.32 is the ‘three term
acceleration formula’. It combines the first three terms in the 5-term formula
and interprets them as the acceleration of the point P0 on B that instanta-
neously coincides with P. The best way to get used to the five term accelera-
tion formula is to find situations where some of the terms drop out.

Reconsider the bug labeled point P crawling on the tire, object B, in
fig. 17.37. To find the absolute acceleration of the bug we need to think
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about how the bug moves relative to the tire and how the tire moves relative
to the ground.

Example: Absolute acceleration of a point moving relative to a moving frame
(2-D): Bug crawling on a tire, again

From the previous bug examples on page 887 and page 888 we know that

*vP=B D P̀ O|0; and*aP=B D R̀ O|0:

Referring to the five term acceleration formula, equation 17.31 on page 890, the
absolute acceleration of the bug is

*aP=F D *aO0=O

C*!B � .*!B �*rP=O0/

C*�B �*rP=O0

C*aP=B

C2*!B �*vP=B

D R R� O{ � P�2.s O{0 C ` O|0/C R�.`O{0 � s O|0/� �� �
*aP0=F

C R̀ O|0 C 2 P� P̀O{0

D R R� O{C .` R� � s P�2 C 2 P� P̀/O{0 C .�s R� C R̀ � ` P�2/ O|0:

So, at the instant of interest, the bug’s absolute acceleration is due to:
1. the translational acceleration of the tire,*aO0=O D R R� O{
2. the centripetal acceleration of going in circles of radius

p
s2 C `2 about the

center of the tire as it rolls, � P�2.s O{0 C ` O|0/, pointing at the center of the tire,
3. the tangential acceleration of going in circles about the center of the tire as

the tire rolls at non-constant rate, R�.`O{0 � s O|0/,
4. the acceleration of the bug relative to the tire as it crawls on the line,*aP=B D

R̀ O|0, and
5. the Coriolis acceleration caused, in part, by the change in direction, relative

to the ground, of the velocity of the bug relative to the tire, 2 P� P̀O{0.
Items 1, 2 and 3 sum to be the acceleration of point P 0 on the tire but instanta-
neously coinciding with moving point P.

Motion relative to a point versus motion relative to a
frame
We can now give a different interpretation of the expressions we have been
using*

vB=A and*
aB=A. Rather than thinking of*vB=A as the difference between

*
vB and *

vA we can think of *vB=A as the *
vB=A where A is a frame with origin

that moves with point A and which has no rotation rate relative to F . That is

*
vB=A means *

vB=A

Similarly,
*
aB=A means *

aB=A:

1True story. Once a teacher wrote
eqn. (17.31) in big letters on a fresh
clean black board, including the expla-
nations in boxes. Then he talked it
through, telling the class that this was
what they had been building up to. That
after all the vector notation, the more in-
volved kinematic development and the
messy notation that this was finally the
climax. There was still silence in the
room as, so the teacher was hoping, the
students could feel satisfied with the ac-
complishment. After time for a slow
breath a student asked “Was it as good
for you as it was for us?”
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17.2 Relation between moving frame formulae and polar
coordinate formulae

A similarity exists between the polar coordinate velocity formula

*v D PR OeR CR P� Oe�

and the second two terms in the ‘three-term’ velocity formula

*vP D*vO0=O C*!B �*rP=O0 C*vP=B:

In fact, we have tried to build your understanding of moving frames
by means of that connection.

Similarly, the polar coordinate formula for acceleration

*a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe�

is somehow closely linked to the last four terms of the ‘5-term’ ac-
celeration formula

*aP D *aO0=O C*aP=B C*!� .*!�*rP=O0 /

C P*!�*rP=O0 C 2*!B �*vP=B:

Let’s make these connections explicit. Imagine a particle P
moving around on the xy-plane.
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Let’s create a moving frame B with rotating coordinate system x0y0

attached to it whose originO 0 is coincident with originO of a coor-
dinate system xy attached to a fixed frame F . Let this frame rotate
in exactly such a way so that the particle is always on the x0-axis.
So, in this frame, *rP=O0 D RO{0, *vP=B D PRO{0, and *aP=B D RRO{0.
Also, the frame motion is characterized by*vO0=O D

*
0;*aO0=O D

*
0,

*!B D P� Ok, and P*!B D R� Ok. So, if we plug in the three-term velocity
formula, we get

*vP D *vO0=O C*!B �*rP=O0 C*vP=B

D *
0C . P� Ok/� .RO{0/C PRO{0

D R P� O|0 C PRO{0
D R P� Oe� C PR Oer (because O{0 k Oer and O|0 k Oe� )

which is the polar coordinate velocity formula.

Similarly, if we plug into the five-term acceleration formula, we
get

*aP D *aO0=O C*aP=B C*!� .*!�*rP=O0 /

C P*!�*rP=O0 C 2*!B �*vP=B

D *
0C RRO{0 C P� Ok� . P� Ok�RO{0/
C. R� Ok/� .RO{0/C 2. P� Ok/� PRO{0

D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe�

Again, we recover the appropriate polar coordinate formula.

We have just shown how the polar coordinate formulae are spe-
cial cases of the relative motion formulae.

Warning!

In problems where we want the rotating frame to be a rotating object
on which a particle moves, the polar coordinate formulae only corre-
spond term by term with the relative motion formulae if the particle
path is a straight radial line fixed on a 2D object, as in the example
of a bug walking on a straight line scribed on the surface of a rotating
CD or a bead sliding in a tube rotating about an axis perpendicular
to the tube.
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Because we are sometimes interested in more general relative mo-
tions, the polar coordinate formulae do not always apply and we must
make use of the more general relative motion formulae.
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SAMPLE 17.8 A ‘T’ shaped tube is welded to a massless rigid arm OAB
which rotates about O at a constant rate ! D 5 rad=s. At the instant shown
a particle P is falling down in the vertical section of the tube with speed
v=tube D 4 ft=s. Find the absolute velocity of the particle. Take ` D 2 ft in
the figure.

Solution Let us attach a frameB to arm OAB. ThusB rotates with OAB with angular velocity
*!B D ! Ok where ! D 5 rad=s. To do calculations in B we attach a coordinate system x0y0z0
to B at point O. At the instant of interest the rotating coordinate system x0y0z0 coincides with
the fixed coordinate system xyz. (Since the entire motion is in the xy-plane, the z-axis is not
shown in the figure). Let P 0 be a point coincident with P but fixed in B. Now,

*vP D*vP 0 C*vrel

where

*vP 0 D *vO0����
*
0

C*!B �*rP 0=O0

D ! Ok � .2`O{C ` O|/
D 2!` O| � !`O{;

and

*vrel D Velocity relative to the frame B
D �v=tube O|:

Thus,

*vP D *vP 0 C*vrel

D �!`O{C .2!` � v=tube/ O|
D �5 rad=s � 2 ftO{C .2 � 5 rad=s � 2 ft � 4 ft=s/ O|
D �10 ft=sO{C 16 ft=s O|:

*vP D �10 ft=sO{C 16 ft=s O|

Comments: The kinematics calculation is equivalent to the vector addition shown in Fig-

ure 17.41. The velocity of P is the sum of*vP 0 and*vrel D*vP=B.
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SAMPLE 17.9 Acceleration of a point in a rotating frame. Consider the
rotating tube of Sample 17.8 again. The arm OAB rotates with counterclock-
wise angular acceleration P! D 3 rad=s2 and, at the instant shown, its angular
speed ! D 5 rad=s. Also, at the same instant, the particle P falls down with
speed v=tube D 4 ft=s and acceleration a=tube D 2 ft=s2. Find the absolute
acceleration of the particle at the given instant. Take ` D 2 ft in the figure.

Solution We consider a frame B, with coordinate axes x0y0z0, fixed to the arm OAB and
thus rotating with *!B D ! Ok D 5 rad=s Ok and *�B D P! Ok D 3 rad=s2 Ok. The acceleration of
point P is given by

*aP D*aP 0 C*acor C*arel

where

*aP 0 D acceleration of a point P0 that is fixed in B
and at the moment coincides with P,

*acor D Coriolis acceleration, and
*arel D acceleration of P relative to frame B.

Now we calculate each of these terms separately. For calculating *aP 0 , imagine a rigid rod
from point O to point P, rotating with the frame B. Mark the far end of the rod as P0 (same as
point P). The acceleration of this end of the rod is*aP 0 . To find the relative terms*vrel and*arel,
freeze the motion of the frame B at the given moment and watch the motion of point P. The
non-intuitive term *acor has no such simple physical interpretation but has a simple formula.
Thus,

*aP 0 D

*
0����

*aO0 C*�B �*rP 0=O0 C
�!2B*rP 0=O0� �� �

*!B � .*!B �*rP 0=O0/

D P! Ok � .2`O{C ` O|/ � !2.2`O{C ` O|/
D 2 P!` O| � P!`O{ � 2!2`O{ � !2` O|
D �`. P! C 2!2/O{C `.2 P! � !2/ O|
D �.106O{C 38 O|/ ft=s2;

*acor D 2*!B �*vrel

D 2! Ok � v=tube.� O|/
D 2!v=tube O{ D 2 � 5 rad=s � 4 ft=s

D 40 ft=s2 O{;

*arel D a=tube.� O|/ D �2 ft=s2 O|:

Adding the three terms together, we get

*aP D �106 ft=s2 O{ � 38 ft=s2 O| C 40 ft=s2 O{ � 2 ft=s2 O|
D �66 ft=s2 O{ � 40 ft=s2 O|:

*aP D �.66O{C 40 O|/ ft=s2

Note that the single term*aP 0 encompasses three terms of the five term acceleration formula.
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SAMPLE 17.10 A small collar P is pinned to a rigid rod AB at length
` D 1m along the rod. The collar is free to slide in a straight track on a
disk of radius r D 400mm. The disk rotates about its center O at a constant
! D 2 rad=s. At the instant shown, when � D 45

�
and the collar is at a

distance 3
4
r in the track from the center O, find

1. the angular velocity of the rod AB and

2. the velocity of point P relative to the disk.

Solution We will think of P in two ways: one as attached to the rod and the other as sliding
in the slot. First, let us attach a frame B to the disk. Thus B rotates with the disk with angular
velocity *!B D ! Ok D 2 rad=s Ok. We attach a coordinate system x0y0z0 to B at point O. At the
instant of interest, the rotating coordinate system x0y0z0 coincides with the fixed coordinate
system xyz. Now let us consider point P 0 which is fixed on the disk (and hence in B) and
coincides with point P at the moment of interest. We can write the velocity of P as:

*vP D*vP 0 C*vrel

where

*vP 0 D

*
0����

*vO0 C*!B �*rP 0=O0 D ! Ok �
�
3

4
r O{0
�
D 3

4
!r O|0 D 3

4
!r O|;

*vrel � *vP=B D vrel O{0 D vrel O{:

In the last expression,*vrel D vrel O{, we do not know the magnitude of*vrel and hence have left
it as an unknown vrel, but its direction is known because*vrel has to be along the track and the
track at the given instant is along the x-axis. Thus,

*vP D 3

4
!r O| C vrel O{: (17.33)

Now let us consider the motion of rod AB. Let
*

 D 
 Ok be the angular velocity of AB at

the instant of interest where 
 is unknown. Since P is pinned to the rod, it executes circular
motion about A with radius AP D `. Therefore,

*vP D *

 �*rP=A D 
 Ok � `.cos � O{C sin � O|/ D 
`.cos � O| � sin � O{/: (17.34)

But, and this trivial formula is the key,*vP D*vP . Therefore, from Eqn. (17.33) and (17.34),

3

4
!r O| C vrel O{ D 
`.cos � O| � sin � O{/: (17.35)

Taking dot product of both sides of the above equation with O| we get

3

4
!r D 
` cos �

) 
 D 3!r

4` cos �
D 3 � 2 rad=s � 0:4m

4 � 1m � 1p
2

D 0:85 rad=s:

Again taking the dot product of both sides of Eqn. (17.35) with O{ we get

vrel D �
` sin � D �0:85 rad=s � 1m � 1p
2
D �0:6m=s:

.i/
*

 D 0:85 rad=s Ok; .i i/*vrel D �0:6m=sO{
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SAMPLE 17.11 Spinning wheel on a rotating rod in 2-D . A rigid body
OA is attached to a wheel that is massless except for three point masses P,
Q, and R, placed symmetrically on the wheel. Each of the three masses is
m D 0:5 kg. The rod OA rotates about point O in the counterclockwise
direction at a constant rate !1 D 3 rad=s. The wheel rotates with respect to
the arm about point A with angular acceleration P!2 D 1 rad=s2 and at the
instant shown it has angular speed !2 D 5 rad=s. Note that both !2 and P!2
are given with respect to the arm.

Using a rotating frame B attached to the rod and a coordinate system
attached to the frame with origin at O, find

1. the velocity of the mass P and

2. the acceleration of the mass P.

Solution Frame B is attached to the rod. We choose a coordinate system x0y0z0 in frame
B with its origin at O and, at the instant, aligned with the fixed coordinate system xyz. We
consider a point P0 momentarily coincident with point P but fixed in frame B. Since P0 is
fixed in B, it rotates with B with *!B D !1

Ok. To visualize the motion of P0 imagine a rigid
rod from O to P0 (see Fig. 17.47). Now we can calculate the velocity and acceleration of point
P0 as follows.

1. Velocity of point P:
*vP D*vP 0 C*vrel:

Now we calculate the two terms separately:

*vP 0 D *vO0����
*
0

C*!B �*rP 0=O0

D !1
Ok � .*rA=O0 C*rP 0=A/

D !1
Ok � �`.cos � O{C sin � O|/� �� �

*rA=O0

C r.cos � O{ � sin � O|/� �� �
*rP 0=A

�

D !1.`C r/ cos � O| � !1.` � r/ sin � O{
D 3 rad=s � 2:5m � cos 30

� O| � 3 rad=s � 1:5m � sin 30
� O{

D .6:50 O| � 2:25O{/m=s:

Since the wheel rotates with angular speed !2 with respect to the rod, an observer
sitting in frame B would see a circular motion of point P about point A. Therefore,

*vrel D *!wheel=B �*rP=A

D �!2 Ok0 � r.cos � O{0 � sin � O|0/
D �!2r.cos � O|0 C sin � O{0/
D �.2:16 O|0 C 1:25O{0/m=s:

But at the instant of interest, O{0 D O{; O|0 D O|; and Ok0 D Ok: So,

*vrel D �.2:16 O| C 1:25O{/ m=s

Therefore,
*vP D*vP 0 C*vrel D 4:33m=s O| � 3:50m=sO{:

*vP D .�3:50O{C 4:33 O|/m=s
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2. Acceleration of point P: We can similarly find the acceleration of point P:

*aP D*aP 0 C*acor C*arel

where

*aP 0 D acceleration of point P0

D *aO0����
*
0

C *�B����
*
0

�*rP 0=O0 C*!B � .*!B �*rP 0=O0/

D �!2B*rP 0=O0

D �!21 �.`C r/ cos � O{C .` � r/ sin � O|�
D �9. rad=s/2�2:5m � cos 30

� O{C 1:5m � sin 30
� O|�

D �.19:48O{C 6:75 O|/m=s2;

*acor D Coriolis acceleration

D 2*!B �*vrel

D 2!1
Ok �*vrel (see part (a) above for*vrel).

D .6 rad=s/ Ok � .�2:16 O| � 1:25O{/m=s

D .12:99O{ � 7:50 O|/m=s2;

*arel D acceleration of P relative to frame B
D *aP=B D P*!2 �*rP=A � !22*rP=A
D � P!2 Ok0 � r.cos � O{0 � sin � O|0/ � !22r.cos � O{0 � sin � O|0/
D �r�. P!2 sin � C !22 cos �/O{0 C . P!2 cos � � !22 sin �/ O|0�
D �0:5m�.1 rad=s2 � sin 30

� C 25. rad=s/2 � cos 30
�

/O{0

C.1 rad=s2 � cos 30
� � 25. rad=s/2 � sin 30

�

/ O|0�
D .�11:08O{0 C 5:82 O|0/m=s2

D .�11:08O{C 5:82 O|/m=s2:

The term*aP 0 encompasses three terms of the five term acceleration formula. The last
line in the calculation of*arel follows from the fact that at the instant of interest O{0 D O{
and O|0 D O|.
Now adding the three parts of*aP we get

*aP D *aP 0 C*acor C*arel

D �17:57m=s2 O{ � 8:43m=s2 O|:
*aP D �.17:57O{C 8:43 O|/m=s2
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1Very advanced aside. The general
kinematics of planar linkages is as com-
plicated as the classification of closed
surfaces in any number of dimensions:
spheres, donuts, spheres with two holes,
etc. For every surface there is a corre-
sponding 2D mechanism. In impene-
trable math-speak: Any orientable man-
ifold is a connected component of the
configuration space of some planar link-
age. This idea was proposed by Bill
Thurston in the 1970’s and later proved
by Kapovich and Millson. We report
this just so you don’t feel bad that you
don’t know now, and never will know,
all there is to know about planar mecha-
nisms.

17.4 Kinematics of 2-D mechanisms
An ideal mechanism or linkage is a collection of rigid objects constrained
to move relative to the ground and each other by hinges but which still has
some possible motion(s). People also use the word mechanism or linkage
more loosely to include any collection of machine parts connected by any
means.

The analysis of the kinematics of mechanisms is an important part of
machine design. Mechanisms synthesis, coming up with a mechanism design
which has desired motions, is obviously key in creative design, and now days
in computer aided design.

Finally, the determination of the dynamics of a mechanism, how it will
move and with what forces, is completely dependent on understanding the
kinematics of the mechanism. The whole subject of mechanism kinematic
analysis, although in some sense a subset of dynamics, is actually a huge and
infinitely complex subject in itself 1and also a useful subject in itself. Often
kinematics is the central interest in machine design , and mechanics (force
and acceleration) analysis is only carried out if something that shouldn’t do
so, breaks or shakes. This section presents some of the basic ideas in kine-
matic analysis. The overall question in mechanism kinematic analysis is this:

Given a collection of parts and a description of how they are connected,
in what ways can they move?

Without getting into the details of the motions yet, the first question to answer
is simpler than finding the motions, but just counting them: In how many
ways can the mechanism move?

Degrees of freedom (DOF)
The number of degrees of freedom (DOF) nDOF of a mechanism is the num-
ber of different ways it can move. More precisely

The number of degrees of freedom nDOF of a mechanism is the mini-
mum number of configuration variables needed to describe all possible
configurations of the mechanism.

The minimum number of configuration variables nDOF is a property of the
mechanism. The choice of what these variables are, however is not unique to
a given mechanism.

Example: A particle in a plane has 2 degrees of freedom.
The set of ‘configurations’ of a particle in a plane is the set of positions of the
particle. This is fully described by its x and y coordinates. Thus nDOF D 2. But
the configuration is also determined by the particles polar coordinates R and � .
And there are an infinite number of other pairs of numbers that could be used to
describe the configurations (e.g., the x0 and y0 coordinates, the w and z coordinates
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with w D ex and z D ey , etc). The minimum number of configuration variables,
2, is unique, but the choice of variables is not.

For planar mechanisms one can often determine the number of degrees of
freedom by the following formula

3 � .# of rigid objects� �� �
nbod

/C 2 � .# of particles� �� �
npart

/� .# of constraints� �� �
ncon

/ D nDOF

(17.36)

The formula starts with the number of ways one rigid object can move (2
translations and a rotation makes 3) and one particle can move (just 2 trans-
lations) and then subtracts the restrictions to the motion. In eqn. (17.36) the
number ncon of constraints is counted as the number of degrees of freedom
restricted by the connections.

Examples of connections and their effect on nDOF

See fig. 17.50 for some standard idealized connections and their number of
constraints (assuming they are already constrained to a plane).

a) 2 for a pin joint: a pin joint restricts relative motion in 2 directions
but still allows relative rotation. If three objects are connected at one
pin then it counts as two pin joints and thus 2 � 2 D 4 reductions in
the number of degrees of freedom. There are 6 reductions for 4 objects
connected at one pin, etc.

b) 3 for a welded connection: a weld restricts relative translation in two
directions as well as relative rotation (2 C 1 D 3). So two parts that
are welded together have 2 � 3 � 3 D 3 degrees of freedom. That is,
any collection of rigid objects welded together is the same as one rigid
object. The word ‘weld’ is meant to include any collection of bolts,
glue, string, rivets or bailing wire that prevents any relative motion.

c) 1 for a sliding contact: the sliding contact restricts relative transla-
tion normal to the contact surfaces and allows translation tangent to the
surfaces. Relative rotation is also allowed.

d) 2 for a keyed sliding contact: allows relative translation in one direc-
tion but disallows translation in one direction as well as rotation.

e) 1 for a massless link hinged at its ends to two objects: this keeps the
distance between two points fixed which is one restriction (alternatively
the bar adds 3 degrees of freedom and each hinge subtracts 2 (C3�2�
2 D �1 degree of freedom).

f) 2 for a rolling contact: relative slip is not allowed nor is interpenetra-
tion.

Be warned
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If some of the constraints are redundant then a system can have more
degrees of freedom than eqn. (17.36) indicates. But a mechanism never
has fewer degrees of freedom than eqn. (17.36) indicates.

Some simple mechanisms
Figure 17.51 shows some examples of simple mechanisms and the number
of degrees of freedom. In each case we look at eqn. (17.36): 3 � nbod C 2 �
npart � ncon D nDOF.

a) A object connected to ground by a hinge has 1 degree of freedom;
the set of all possible configurations can be described by the angle of
the object: nbod D 1; ncon D 2 ) nDOF D 1.

b) An unconstrained object has 3 degrees of freedom; the set of all con-
figurations can be described by the x and y coordinates of a reference
point and by the rotation � : nbod D 1; ncon D 0 ) nDOF D 3.

c) A bead on a wire has 1 degree of freedom; its configuration is fully de-
termined by the distance the bead has advanced along the wire relative
to a reference mark: npart D 1; ncon D 1 ) nDOF D 1.

d) A statically determinate truss has 0 degrees of freedom; a statically
determinate truss has no ways to move: nbod D nbars; npart D 0; ncon D
2 � npins C nground const ) nDOF D 0. Note that the number of pin
restrictions in our count here is more than twice the number of joints
in the study of trusses in statics. In statics we focussed on joints as
restricted by bars. Here we look at bars as restricted by joints and a
given joint counts 2, 4 or 6 pin restrictions depending on whether it
connects 2, 3 or 4 bars. Thus the 11 bar truss shown has 7 joints (by
truss-analysis counting) but, by the counting here it has 2�2C2�4C
3�6 D 30 pin restrictions plus 3 ground restrictions for 33 restrictions
in all. Without restrictions the 11 bars had 33 degrees of freedom. So,
because 33-33 = 0, the truss has zero degrees of freedom.

e) A rolling wheel has 1 degree of freedom; its configuration is fully
determined either by the net angle � it has rolled or by the x coordinate
of its center: nbod D 1, ncon D 2 ) nDOF D 1.

f) A double pendulum or two-link robot arm has 2 degrees of freedom;
its configuration is determined by the net rotations of its two links (or
by the rotation of the first link and the relative rotation of the second
link): nbod D 2; ncon D 4 ) nDOF D 2.

g) A cart with two rolling wheels has 1 degree of freedom; given the
position of the cart, say x, the rotation of the wheels is determined.
Similarly for a bicycle. For this model of a bicycle we are neglecting
the steering degree of freedom and also the freedoms of the crank and
pedals. For a vehicle with 2 wheels in 2D we have: nbod D 3; ncon D
4� 2 D 8 (2 hinges and 2 rolling contacts) ) nDOF D 9� 8 D 1.
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h) A “four” bar linkage has 1 degree of freedom; the angle of any one
of the bars determines the angles of the others: nbod D 4; ncon D 2 �
4C 2C 1 D 11 (there are 4 pin joints between the bars, one pin joint
to ground and one roller connection to the ground) ) nDOF D 1.

i) A slider crank has 1 degree of freedom; the rotation of the crank
determines the configuration of the system nbod D 3; ncon D 3 � 2C 2

(there are 3 pins and one keyed connection) ) nDOF D 1 .

j) An ideal gear train (with all gears pinned to ground) has 1 degree of
freedom; the amount of rotation of any one gear determines the rotation
of all of the gears: In this case the counting formula is wrong. Say
there are 2 gears, then nbod D 2; ncon D 3 � 2 D 6 (two pins and one
rolling contact) ) nDOF D 0 ¤ 1. The rolling constraint prevents
interpenetration, but this was already prevented by the hinges at the
center of the gears. The constraints are redundant and the system has
more degrees of freedom than eqn. (17.36) indicates.

k) A redundant swing with one horizontal bar suspended by 3 parallel
struts has 1 degree of freedom; the angle of one upright links deter-
mines the full configuration of the mechanism. The counting formula
is again wrong: nbod D 4; ncon D 6 � 2 D 12 ) nDOF D 0 un-
derestimates the number of degrees of freedom because the constraints
are redundant.

l) A 2-D 10-link model of a person with one foot on the ground has 10
degrees of freedom; the angles of the 10 links (4 arm links, 4 leg links,
a body and a head) determine the full configuration of the mechanism.
There are no redundant constraints so the counting formula also works
using nbod D 10; nhinges D 10:

nDOF D 3 � nbod � ncon (17.37)

D 3 � nbod � 2 � nhinges D 30 � 2 � 10 D 10 (17.38)

What are the 10 hinges? One at the ground, 1 at each knee and elbow,
2 at the hip and 3 at the shoulders (one hinge for each object linked to
the trunk).

Configuration variables
Once we know the number of degrees of freedom nDOF of a system it is often
useful to settle on one set of nDOF configuration variables. In this book nDOF
will be 1, 2 or at most 3. Thus we pick 1,2 or 3 variables.

Example: Straight line motion
Chapter 6 on straight line motion was mostly about one-degree-of-freedom systems
(nDOF D 1). These systems could all be characterized by the single configuration
variable x, the displacement along the line of a reference point on the object relative
to a reference point on the ground. All the positions,velocities and accelerations of
all points in the system could be found in terms of x, Px and Rx (in fact all points had
(*v D Px O{ and*a D Rx O{.
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Example: Circular motion about a fixed axis
In chapters 7 and 8 we were almost entirely focussed on systems with one degree
of freedom well characterized by the one configuration variable, the rotation angle
� . For such motions positions, velocities, and accelerations of all points were de-
termined by the initial positions of the points �; P� and R� by equations which you
know well by now.

For more general motions we almost always take inspiration from the two
examples above. We use the translation of a conspicuous point, or we use the
rotation of a conspicuous object for a configuration variable. And more of
the same if the system has more than 1 degree of freedom. The natural choice
of configuration variables for some simple mechanisms is given in the text
discussing fig. 17.51.

Often our main kinematic task is to express the full configuration of the
system as well as all the velocities and accelerations of all its parts in terms
of the positions of the parts, the configuration variables, and their first and
second time derivatives.

Adding relative angular velocities
One last simple kinematic fact is needed before we can plug and chug with
the theory we have so far and apply it to general kinematic mechanisms. It
concerns the addition of rotations and rotation rates. The following example
basically tells the whole story

Example: Double pendulum and the addition of rotation rates
The commonly used configuration variables for the double pendulum shown in
fig. 17.52 are �1 and �2. To actually know the configuration of the system obvi-
ously we need to know � which is given by

� D �1 C �2 so P� D P�1 C P�2 and so R� D R�1 C R�2:

[Aside: One reason for choosing �2 instead of � as a configuration variable is
that if one was measuring or controlling the second link, say as a robotic arm, the
angle �2 can be measured more easily than �. Also, it turns out (in hindsight) that
the differential equations of motion are slightly simpler using �2 instead of �.]

Looking at the bars as being glued to reference frames (F for the fixed frame,
B for bar AB, and C for bar BC), the above example shows that

*
!C=F D *

!B=F C *
!C=B (17.39)

which is often written with the simple notation
*
! D *

!1 C *
!2

Which can only be given strict meaning by the more elaborate eqn. (17.39)
above it.

Example: Double pendulum (see previous example)
Take *!B=F D P�1 Ok, *!C=B D P�2 Ok and *!C=F D P� Ok and eqn. (17.39) is self evident
from the addition of angles.

Similarly we have
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*
�C=F D *

�B=F C*
�C=B (17.40)

which is often written with the simple notation
*
� D *

�1 C*
�2:

For those going on to study 3-D mechanics (Chapter 12), one should note
that, unlike eqn. (17.39), eqn. (17.40) does not hold in 3-D.

Kinematics of mechanisms
One approach to mechanisms is to do what one can with high-school geom-
etry and trigonometry, the laws of sines (see page 96), and so on.

Example: Rod on step using geometry and trigonometry
One end of a rod slides on the ground. The other end slides on a corner at A (see
fig. 17.53). Given that*vB D vB O{ we can find P� as follows:

h

`AB
D tan� )

�
`AB
h

D cos�
sin�

�
d

dt

� �
)

P̀
AB

h
D � P�

sin2 �
) P� D �vB sin2 �

h

As the above calculation shows, this problem doesn’t need the heavy ma-
chinery of our moving-frame vector methods. But it provides an instructive
example.

Example: Rod on step using moving-frame methods (see previous example)
We look at point A and note that we can think of it as a fixed point in the fixed
frame F and also as a point that is moving relative to the translating and rotating
frame B. We evaluate its velocity both ways.

*vA D *vA
*
0 D *vB C*!B �*rA=B C*vA=B (eqn. (17.28))

f*0 D vB O{ � P� Ok �
�
`BA

O�BA
�
C vA=B O�BAg

) 0 D vB O{ � OnBA����
sin�

C P�`BA ( fg � OnBA)

) P� D �vB sin�
`BA

D �vB sin2 �
h

( sin� D h

`AB
)

as we had before. The key equation was the ‘three term velocity formula’
eqn. (17.28) on page 887 and the observation that relative to frame B point A slides
along the rod. Note that we never had to explicitly use the rotating coordinates
associated with frame B to do this calculation.

You should understand the examples above, and the needed background ma-
terial, before going on to the following examples.

Example: Slider Crank using geometry and trigonometry
The slider crank mechanism (fig. 17.54) was briefly introduced in the context of
statics where its forces could be analyzed assuming inertial terms were negligible
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tal at all times and the displacement of
point C is almost entirely due to the hor-
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crank arm. Thus point C moves with
almost exactly a cosine wave with am-
plitude equal to the length of the crank.
The velocity and acceleration curves are
thus also sine and cosine waves. In case
(b) the motion is close to a cosine curve
approximately when �60� < � < 60

�
.

That is, the displacement of C is about
twice the horizontal displacement of the
end of the crank arm when the end is to
the right of its base bearing. When the
end of the crank arm is to the left of the
bearing point C is nearly stationary and
is just to the right of the crank base bear-
ing. The transition between these two
cases involves a sudden large accelera-
tion.

(see 361). But it is a commonly used mechanism (e.g., in every car) and its motions
are of central interest. The angle � is the most natural configuration variable for this
nDOF D 1 system. One would like to know the position, velocity and acceleration
of the slider (xC ; PxC and RxC ) in terms of �; P� and R� .

xC D xD C `DC

D d cos � C
p
`2 � h2

D d cos � C
q
`2 � .d sin �/2

D d

�
cos � C

q
.`=d/2 � sin2 �

�

D d

�
cos � C

q
.`=d/2 C .cos 2� � 1/=2

�
(17.41)

The positive p corresponds to C being to the right of 0. The negative p corre-
sponds to point C being to the left of 0. The mechanism just doesn’t work for a full
revolution of the link 0A if ` < d as you can see from the picture or from that thep above giving imaginary values for cos 2� near -1, sin � near 1, and � near �=2.

To get the velocity of point C we just take the derivative of eqn. (17.41) above.

vC D PxC (17.42)

D d

dt

�
d

�
cos � C

q
.`=d/2 C .cos 2� � 1/=2

��

D P�d

8�<
�:� sin.�/ � sin.2 �/

1q
4 l2

d2
C 2 cos.2 �/ � 2

9>=
>;

To get the acceleration we differentiate once again. For simplicity lets assume the
crank rotates at constant rate, so P� is a constant and R� D 0. Cranking out the
derivative of eqn. (17.42), so to speak, we get

ac D PvC D d

dt
fthe mess on the right of eqn. (17.42)g (17.43)

D �d P�2
8�<
�: cos.�/

C2 sin2.2 �/

 
4
l2

d2
C 2 cos.2 �/ � 2

!�3=2

C2 cos.2 �/
1q

4 l2

d2
C 2 cos.2 �/ � 2

9>=
>;

So we now know the position, velocity and acceleration of point C in terms of �; P�
and R� . You should commit the solution eqn. (17.43) to memory. Just kidding.

Plots of xC ; vC , and aC from these equations are shown in fig. 17.55ab for two
different extremes of slider crank design: one with a very long connecting rod that
gives sinusoidal motion, and one with a connecting rod just barely long enough to
prevent locking that gives intermittent motion.

Unlike some more complex mechanisms, the slider crank is solvable in that
one can write a formula for the position of any point of interest in terms of
the single configuration variable � . For more complex mechanisms this may
not be possible. Further, even if possible the above example shows that the
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differentiation required to find velocity and acceleration can lead to a bit of a
mess.

A different approach is to assume that at some value of the configuration
variable (� for the slider crank) that the full configuration of the system is
known. That is, that the locations of all points are known. Then we can
use our vector methods to find velocities and accelerations of all points of
interest.

Example: Slider crank using vector methods (see previous example)
Take the slider crank of fig. 17.54 to be in some known configuration. We now try
to find the velocity and acceleration of point C in terms of the positions of the points
0, B, and C as well as � and P� .

The basic approach is to write true things, and then solve for unknowns. First
work on velocities. The basic idea is to look at the closure condition. That is, the
velocity of point C as calculated by working down the linkage from 0 to A to C has
to be consistent with the velocity of C as calculated in the fixed frame.

*vC D *vC

vC O{ D *vA=0 C*vC=A

vC O{ D . P� Ok/ �*rA=0 C .� P� Ok/ �*rC=A (17.44)

eqn. (17.44) is a 2-D vector equation in the 2 unknown scalars vC and P�. It could
be solved as a pair of equations, or solved directly by first dotting both sides with O|
to find P� and dotting both sides with*rC=A to find vC . These yield

P� D

�
. P� Ok/ �*rA=0

�
� O|�

Ok �*rC=A

�
� O|

and

vC D
P�
�
Ok �*rA=0

�
�*rC=A

O{ �*rC=A

where everything on the right of these equations is assumed known. Without grind-
ing out the vector products in terms, say, of components, we can just know that we
can at this point know P� and vC .

We proceed to find the accelerations by similar means, assuming P� is a constant
so*�A D*

0:

*aC D *aC

aC O{ D *aA=0 C*aC=A

aC O{ D � P�2*rA=0 C .� R� Ok/ �*rC=A � P�2*rC=A (17.45)

eqn. (17.45) is a 2-D vector equation in the two scalar unknowns ac and R�. We can
set this up as two equations in two unknowns. Or we can solve for R� directly by
dotting both sides with O| and we can solve for aC directly by crossing both sides
with*rC=A or by dotting with a vector perpendicular to*rC=A (e.g.,*r?

C=A
D Ok�*rC=A

Although we have presented an algorithm rather than a formula, we have found
the velocity and acceleration of C without writing any large equations of the type
needed in the previous example. The shortcoming is that this method depends on
knowing the full configuration at the time of interest.

Example: Four bar linkage using geometry and trigonometry
fig. 17.56 shows a “four-bar linkage”. Please see 360 for an introduction to 4-bar
linkages in the context of statics. Four bar linkages are solvable in the sense that
one can write equations for the positions of any point of interest in terms of the
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2Relative vs absolute angles. In this
example, and the examples above, we
use the absolute rotations of the links.
However, we could also have done the
calculations using the relative rotations
and then used the formulas for veloc-
ity and acceleration relative to a rotating
frame. For these examples this would
make the calculations slightly. but not
intractably, longer.

single configuration variable � marked in fig. 17.56. But the formulas are really a
mess. And the first and second time derivatives are an unbelievable mess.

The four-bar linkage is about as complex a system as can be solved in this
sense, and it is probably too-complex for this solution to be useful in the kinematic
analysis of accelerations.

For complex mechanisms one is often stuck using vector methods, like we are
for practical purposes stuck with the 4-bar linkage. But the vector methods
based on the current configuration are not crippled by complexity.

Example: Four-bar linkage using relative velocities and accelerations
Assuming the configuration is known (i.e., that � , �1, and �2 are known), we can
proceed with the 4-bar linkage just as we did for the slider crank. We enforce
closure by picking a point and thinking about its velocity two different ways 2 .
We could pick any point, say C. From the fixed frame we know that the velocity
of C is zero. Working around the linkage, link by link, we know it is the sum of
relative velocities as

*vC D *vC
*
0 D *vA=0 C*vB=A C*vC=B

D
�
P� Ok
�
�*rA=0 C

�
P�1 Ok

�
�*rB=A C

�
P�2 Ok

�
�*rC=B

which is equivalent to two scalar equations in the two unknowns P�1 and P�2. This
equation can be solved directly for P�2 by taking the dot product of both sides with
a vector perpendicular to *rB=A (such as O|00 or Ok �*rB=A) and for P�1 by taking the
dot product of both sides with for a vector perpendicular to *rC=B (such as O|000 or
Ok �*rC=B) to get

P�1 D � P�

�
Ok �*rA=0

�
� O|000�

Ok �*rB=A

�
� O|000

and

P�2 D � P�

�
Ok �*rA=0

�
� O|00�

Ok �*rC=B

�
� O|00

:

The dot product with Ok is used to get a scalar on the top and bottom of the fraction,
both vectors are already only in the Ok direction. Now that P�1 and P�2 are known the
velocity of any point on the mechanism is known. For example

*vB D
�
P�2 Ok

�
�*rB=C:

The angular accelerations of the two links are found by the same method. For
simplicity lets assume that the driving crank 0A spins at constant rate so R� D 0.
Looking at the acceleration of point C two ways we have

*aC D *aC
*
0 D *aA=0 C*aB=A C*aC=B

D
�
R� Ok
�

����
0

�*rA=0 � P�2*rA=0

C
�
R�1 Ok

�
�*rB=A � P�21*rB=A

C
�
R�2 Ok

�
�*rC=B � P�22*rC=B
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Because P�1 and P�2 are already known, this is one equation in the two unknowns R�1
and R�2. They can be solved for R�1 by taking the dot product of both sides with O|000
and for R�2 by taking the dot product of both sides with O|00.

At this point you know � , P� , �1, P�1, R�1, �2, P�2, and R�2 and can thus calculate
the position, velocity and acceleration of any point in the mechanism.
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θêθ ê R
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êθ
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3 We have,
OeR D cos � O{C sin � O|,
Oe� D � sin � O{C cos � O|,
O� D cos� O{C sin� O|,
On D � sin� O{C cos� O|.
Therefore,
OeR � O� D cos.� � �/;
OeR � On D sin.� � �/;
Oe� � O� D sin.� � �/;
Oe� � On D cos.� � �/:

SAMPLE 17.12 Two rods connected in a one-DOF mechanism. A
mechanism consists of two rods AB and CD connected together at P with
a collar pinned to AB but free to slide on CD. Rod AB is driven with
*
!AB D 10 rad=s Ok and P*!AB D 4 rad=s2 Ok. At the instant shown, � D 45

�

and � D 30
�
. The length of rod AB is R D 0:4m. At the instant shown,

1. Find the angular velocity and angular acceleration of rod CD.

2. Find the velocity and acceleration of the collar with respect to rod CD.

Solution Here, we are interested in instantaneous kinematics of this mechanism. Since point
P is on rod AB as well as on rod CD, its velocity and acceleration can be expressed in terms
of the angular motion of rod AB or that of rod CD. Let us consider rod AB first. Let OeR
and Oe� be basis vectors attached to rod AB that rotate with the rod. Since P is fixed on rod
AB, it executes simple circular motion about A with *!AB D P� Ok and P*!AB D R� Ok where
P� D 10 rad=s and R� D 4 rad=s2, respectively. Then

*vP D R P� Oe� (17.46)
*aP D �R P�2 OeR CR R� Oe� : (17.47)

Now let us consider rod CD and express the velocity and acceleration of point P in terms of
motion of rod CD. Let the angular velocity and angular acceleration of rod CD be*!CD D P� Ok
and P*!CD D R� Ok, respectively. Let O� and On be basis vectors attached to rod CD. Let the
instantaneous position of point P on CD be*rP D r O�. Since the collar can slide along CD, we
can write the velocity and acceleration of point P as

*vP D Pr O�C r P� On (17.48)
*aP D . Rr � r P�2/ O�C .2 Pr P� C r R�/ On: (17.49)

From eqn. (17.46) and 17.48 we get,

Pr O�C r P� On D R P� Oe�
) Pr D R P�. Oe� � O�/

P� D .1=r/R P�. Oe� � On/
Similarly, from eqn. (17.47) and 17.49 we get,

Rr � r P�2 D �R P�2. OeR � O�/CR R�. Oe� � O�/
r R� C 2 Pr P� D �R P�2. OeR � On/CR R�. Oe� � On/:

Thus, to find all kinematic quantities of interest, all we need now is to figure out a few dot
products between the two sets of basis vectors. This is easily done by writing out OeR; Oe� ; O�,
and On. 3 Substituting the dot products in the expressions for Pr; P�; Rr , and R� we get

Pr D R P� sin.� � �/;
P� D r�1R P� cos.� � �/
Rr D r P�2 �R P�2 cos.� � �/CR R� sin.� � �/;
R� D r�1��R P�2 sin.� � �/CR R� cos.� � �/ � 2 Pr P��:

Substituting the given values of PR; P�; R�;R; �; �, and r D R sin �= sin�, we get

Pr D �1:04m=s; P� D 6:83 rad=s; Rr D �12:66m=s2; R� D 9:43 rad=s2:

(a) *!CD D 6:83 rad=s Ok; P*!CD D 9:43 rad=s2 Ok
(b) *v=CD D �1:04m=s O�; *a=CD D �12:66m=s2 O�
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SAMPLE 17.13 Kinematics of a Link rod in a one-DOF mechanism.
In machines we often encounter mechanisms and links in which the ends of
a link or a rod are constrained to move on a specified geometric path. A
simplified typical link AB is shown in Fig. 17.60.

Link AB is a uniform rigid rod of length ` D 2m. End A of the rod is
attached to a collar which slides on a horizontal track. End B of the rod is
attached to a uniform disk of radius R D 0:5m which rotates about its center
O. At the instant shown, when � D 30

�
, end A is observed to move at 2m=s

to the left.
1. Find the angular velocity of the rod.

2. Find the angular velocity of the disk.

3. Find the velocity of the center-of-mass of the rod.

Solution Let the angular velocities of the rod and the disk be *!AB D P� Ok and *!D D P� Ok
respectively, where P� and P� are unknowns. We are given*vA D �vA O{ where vA D 2m=s.

1. Point B is on the rod as well as the disk. Hence, the velocity of point B can be found
by considering either the motion of the rod or the disk. Considering the motion of the
rod we write,

*vB D *vA C*vB=A

D *vA C*!AB �*rB=A

D �vA O{C P� Ok � `.cos � O{C sin � O|/
D �vA O{C P�` cos � O| � P�` sin � O{
D �.vA C P�` sin �/O{C P�` cos � O|: (17.50)

Now considering the motion of the disk we write,

*vB D *!D �*rB=O

D P� Ok �R.� sin � O{C cos � O|/
D � P�R sin � O| � P�R cos � O{: (17.51)

But*vB D*vB , therefore, from equations (17.50) and (17.51) we get

�.vA C P�` sin �/O{C P�` cos � O| D � P�R sin � O| � P�R cos � O{
By equating the O{ and O| components of the above equation we get

�.vA C P�` sin �/ D � P�R cos �; (17.52)

and P�` cos � D � P�R sin �

) P� D � P�R
`

tan �: (17.53)

Dividing Eqn. (17.52) by (17.53) we get

�
�
vA
P�
C ` sin �

�
D ` cos �

tan �
D `

cos2 �
sin �

) � vA
P�

D `

 
cos2 �
sin �

C sin �

!
D `

 
cos2 � C sin2 �

sin �

!
D `

sin �

) P� D �vA
`

sin � D �vA
`

sin 30
�

D �2m=s
2m

� 1
2
D �0:5 rad=s:

*!AB D �0:5 rad=s Ok
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4 Substituting P� D �0:5 rad=s in
Eqn. (17.50) and plugging in the given
values of other variables we get

*vB D �. 3
2
O{C

p
3

2
O|/m=s:

Similarly, substituting P� D 2
p
3 rad=s

in Eqn. (17.50) and plugging in the other
given values we get

*vB D �. 3
2
O{C

p
3

2
O|/m=s;

which checks with the*vB found above.

2. From eqn. (17.53)

P� D �
P�`

R tan �
D �

P�� �� �
�vA
`

sin � `

R sin �
cos �

D vA
R

cos �

D �2m=s
0:5m

p
3

2
D 2

p
3 rad=s:

Thus *!D D P� Ok D 3:46 rad=s Ok:
*!D D 3:46 rad=s Ok

[At this point, it is a good idea to check our algebra by substituting the values of P� and
P� in equations (17.50) and (17.51) to calculate*vB .] 4

3. Now we can calculate the velocity of the center-of-mass of the rod by considering
either point A or point B as a reference:

*vG D *vA C*vG=A

D *vA C*!AB �*rG=A

D �vA O{C P� Ok � `

2
.cos � O{C sin � O|/

D �.vA C P� `
2

sin �/O{C P� `
2

cos � O|

D �.2m=s � 0:5 rad=s � 2m
2
� 1
2
/O{C .�0:5 rad=s � 2m

2
�
p
3

2
/ O|

D �7
4

m=sO{ �
p
3

4
m=s O|:

*vG D �.1:75O{C 0:43 O|/m=s

We could easily check our calculation by taking point B as a reference and writing

*vG D *vB C*vG=B

D *vB C*!AB �*rG=B

By plugging in appropriate values we get, of course, the same value as above.

Comment: We used the standard basis vectors O{ and O| for all our vector calculations in this

sample. We can shorten these calculations by choosing other appropriate basis vectors as we

show in the following samples.
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SAMPLE 17.14 A two-DOF mechanism. A two degree-of-freedom mecha-
nism made of three rods and two sliders is shown in the figure. At the instant
shown, the crank AB is rotating with angular velocity *

!AB D 12 rad=s Ok
and angular acceleration P*!AB D 10 rad=s2 Ok. At the same instant, the col-
lar at end C of the link rod CD is sliding on the vertical rod with velocity
*
vC D 0:5m=s O| and acceleration *

aC D 10m=s2 O|. Find the angular velocity
and angular acceleration of the link rod CD.
Solution Once again, we are interested in instantaneous kinematics — we wish to find the
angular velocity and acceleration of rod CD at the given instant. This problem is just like the
previous sample problem except that end C of the link rod CD is not fixed but free to slide on
the vertical bar. But the velocity and acceleration of point C is given; so it is exactly like the
previous sample (there, the velocity and acceleration of point C was identically zero). So, we
adopt the same line of attack. We figure out the velocity and acceleration of point B using the
kinematics of rod AB. We then write the velocity and acceleration of the same point using the
kinematics of rod CD (this will involve the unknown angular velocity and acceleration of CD
that we are interested in). Equate the two and solve for the unknowns we are interested in.

Let the angular velocity and acceleration of rod CD be *!CD D P� Ok and P*!CD D R� Ok,
respectively. Let OeR and Oe� be base vectors rotating with rod AB, and O� and On be the base
vectors rotating with rod CD (see fig. 17.62). Considering rod AB, we have

*vB D R P� Oe� (17.54)
*aB D �R P�2 OeR CR R� Oe� : (17.55)

Considering rod CD, we have

*vB D*vC C*vB=C D vC O| C Pr O�C r P� On (17.56)

*aB D*aC C*aB=C D aC O| C . Rr � r P�2/ O�C .2 Pr P� C r R�/ On: (17.57)

Now equating eqn. (17.54) and (17.56), and dotting both sides with O� and On, we get

Pr D R P�
� sin.���/� �� �
. Oe� � O�/ �vC

sin�����
. O| � O�/ D �R P� sin.� � �/ � vC sin� (17.58)

r P� D R P� . Oe� � On/� �� �
cos.���/

�vC . O| � On/����
cos�

D R P� cos.� � �/ � vC cos� (17.59)

where the dot products among the basis vectors are easily found from either their geometry
(see fig. 17.63) or from their component representation (see previous sample). Following
exactly the same procedure, we get, from eqn. (17.55) and 17.57,

Rr D �R P�2 cos.� � �/CR R�.� sin.� � �// � aC sin� C r P�2 (17.60)

r R� D �R P�2 sin.� � �/CR R� cos.� � �/ � aC cos� � 2 Pr P�: (17.61)

Now, note that although we are only interested in finding P� and R�. So, we only need
eqn. (17.59) and eqn. (17.61). But, eqn. (17.61) requires Pr on the right hand side and, there-
fore, we do need eqn. (17.58). We can, however, happily ignore eqn. (17.60).

Now, to find the numerical values of P� and R�, we need to find r and � in addition to all
other given values. Consider triangle ABC in fig. 17.62. Using the law of sines ( R

sin� D
r

sin � D d
sin.���/ ), we get r D 0:7m and � D 79:45

�
. Now, substituting all known numerical

values in eqns. (17.58), (17.59), and (17.61), we get

Pr D �3:75m=s; P� D 6:61 rad=s; R� D 8:43 rad=s2:

*!CD D .6:61 rad=s/ Ok; P*!CD D .8:43 rad=s2/ Ok
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ê R

n̂ λ̂

r

Figure 17.62:

Filename:sfig10-4-rods2dof-b

yy

xx

ê
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17.5 Advanced kinematics of planar
motion

In this section we consider three types of problems where the kinematics in-
volves solution of differential equations. In most cases this means computer
solution is involved for this type of problem. Here are the three problem
types:

� I. Closed kinematic chains. The main simple example is a 4-bar link-
age with one bar grounded. This system has one degree of freedom, but
it is difficult to directly calculate the positions, velocities and accelera-
tions of all points in terms of one variable. Instead, the constraint that
the linkage is closed is sometimes most-easily expressed as a differen-
tial equation.

� II. Rolling contact with not-round objects. For non-round rollers
and cams solving for configuration, velocity and acceleration can
sometimes be best done with integration. A side benefit from study-
ing this topic is the observation that all non-translational motions are
equivalent to rolling of some kind.

� III. Contact with ideal wheels and skates, looking down. Cars, tri-
cycles, trailers, grocery carts and sleighs have wheels and have dynam-
ics that is sometimes well characterized by planar analysis, where the
plane is the horizontal plane. In this view the simple model of a wheel
is as something that prevents sideways motion but allows motion in the
direction of travel (like for some of the trike and car problems in 1-
D constrained motion). Such problems are called non-holonomic (see
box 17.3 on page 914).

Closed kinematic chains
When a series of mechanical links is open you can not go from one link to
the next successively and get back to your starting point. Such chains include
a pendulum (1 link), a double pendulum (2 links), a 100 link pendulum, and
a model of the human body (so long as only one foot is on the ground). A
closed chain has at least one loop in it. You can go from link to next and get
back to where you started. A slider-crank, a 4-bar linkage, and a person with
two feet on the ground are closed chains.

Closed chains are kinematically difficult because they have fewer degrees
of freedom than do they have joints. So some of the joint angles depend on
the others. The values of any minimal set of configuration variables, say
some of the joint angles, determines all of the joint angles, but by geometry
that is difficult or impossible to express with formulas.

Example: Four bar linkage: configuration variables
It is impractically difficult to write the positions velocities and accelerations of a
4-bar linkage in terms of � , P� and R� of any one of its joints.

However, given a configuration, the constraint on the rates and accelerations
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is relatively easy to express, always yielding linear equations.
Example: Four bar linkage: configuration rates
If you write the relative velocities of the ends of the bars in terms of configura-
tion rates P�1; P�2; and P�3 and then write the chain closure equation you get a linear
equation in the rates. Likewise if you write the closure condition in terms of accel-
eration. The coefficients in these equations are likely to be complex functions of the
configuration, so integrating these equations requires numerics. But the constraint
is linear.

Thus, as shown in the last sample of Sect. 10.4, one way to calculate the
evolving configurations of a closed chain is to integrate the velocity relations
numerically.

Rolling of not round objects
When two objects roll on each other they maintain contact and do not slip
relative to each other. That is to say rolling of one rigid curve B on another
A means:

� The instantaneous relative motion of B with respect toA is a rota-
tion about the contact point at the common tangent C, and

� The sequence of points C moves the same distance on both curves.

For simplicity let’s take A to be a curve fixed in space on which rigid curve
B rolls. Take a reference point of interest fixed on body B to be O’. So,

*
vO0 D *

!B �*
rO0=C where *

! D P�B Ok (17.66)

and �B is, say, the rotation of a O{0 axis fixed in B relative to a O{ axis fixed in
A. If we use the rotation �B of body B as our configuration variable, we now
know how to find the velocity of all points in terms of their positions and the
rotation rate. Thus we can find the rate of change of the configuration. To
proceed as time progresses we also need to know how the position of point C
evolves. Not the material point C on either body, but the location of mutual
contact.

If we assume that both curves are parameterized by arc-length going
counter-clock wise, if we take curvature as positive if directed towards the
interior of each curve’s body, then the condition of maintaining contact re-
quires that

*
vC D Ps Oet where Oet is the tangent to fixed curve A.

and s is the advance along curve A. To maintain tangency, the angles must
be maintained so

Ps D 1

�B C �A
P�:

Altogether this gives

*
vC D

1

�B C �A
P� Oet (not the velocity of any material point).
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17.3 Skates, wheels and non-holonomic constraints
Of the words in this book “non-holonomic” is probably the most

obscure. This is because the subject of mechanics was mostly stolen
from engineers by physicists about 100 years ago. And physicists,
the authors of most introductions to mechanics, had no use for non-
holonomic mechanics as it wasn’t useful for the development of
quantum mechanics. So many people are unaware of the word, the
subject or its utility.

In two dimensions the word non-holonomic in effect means
the mechanics of objects constrained by ideal skates or massless
ideal wheels. Often these decades non-holonomic constraints are
described as “non integrable”. Literally, the word non-holonomic
means “not whole”. But in what sense is a rolling ideal wheel “non-
integrable” or less “whole” than anything else?
A constrained rigid body. Consider a rigid body that is free

to slide on a plane. It has three degrees of freedom described by
xO0 ; yO0 and � , all measured relative to a fixed reference frame
O O{ O|. Point C on the body has relative position *rC=O0 D x0

C
O{0 C

y0
C
O|0 where x0

C
and y0

C
are constants. Now lets constrain the body

at point C one of these two different ways:
� a) Pin the body to the ground with an ideal hinge at point

C. This keeps point C from moving but allows the body to
rotate (holonomic).

� b) Put an ideal wheel or skate under the body at C that pre-
vents sliding sideways to the skate but allows point C to
move parallel to the skate and also allows rotation about the
skate (non-holonomic).

Pin Constraint. In the first case, for the pin, we could describe the
constraint with the phrase ‘point C on the body can have no velocity’
and the write and calculate:

*
0 D *vC
*
0 D *vO0 C*!�*rC=O0 (17.62)
*
0 D PxO0 O{C PyO0 O|C P� Ok� �x0C O{0 C y0C O|0��*
0 D PxO0 O{C PyO0 O|C

� P�x0C O|0 � P�y0C O{0
� 	

�	 �O{ ) PxO0 � P� sin �x0C � P� cos �y0C D 0

�	 � O| ) PyO0 C P� cos �x0C � P� sin �y0C D 0:

) d

dt

�
xO0 C cos �x0C � sin �y0C

� D 0

) d

dt

�
yO0 C sin �x0C C cos �y0C

� D 0

The last two equations are two differential equations in the three vari-
ables xO0 ; yO0 and � . They are “integrable” in the sense that they
are equivalent to

xO0 C cos �x0C � sin �y0C D C1

and yO0 C sin �x0C C cos �y0C D C2 (17.63)

where C1 and C2 are integration constants that need to be set by the
starting configuration. Solving for xO0 and yO0 in terms of � :

xO0 D C1 � cos �x0C C sin �y0C
yO0 D C2 � sin �x0C � cos �y0C :

Here we have derived the obvious, that a pinned body has one inde-
pendent configuration variable � , but we did so starting with a vector
expression of constraint in terms of velocities (eqn. (17.62)). Then
we wrote the constraint as two scalar constraints on the derivatives
of configuration variables and then “integrated” them to write con-
straints on the configuration variables, finally eliminating two of the
configuration variables.

Skate constraint. Now consider the same body constrained by a
skate or ideal wheel at C instead of a pin. The skate is aligned with
the O{0 so point C can only move in the O{0 direction. The body is still
free to rotate about the point C (to steer). Thus,

0 D *vC � O|0
0 D �

*vO0 C*!�*rC=O0

� � O|0 (17.64)

0 D
�
PxO0 O{C PyO0 O|C P� Ok� �x0C O{0 C y0C O|0�� � O|0

0 D �PxO0 sin � C PyO0 cos � C P�x0C
) 0 D d

dt
F .xO0 ; yO0 ; �/ �

As for the hinge where we found 2 constant functions, we might want
to find the function F.xO0 ; yO0 ; �/ that satisfies the differential
equation above, namely

d

dt
F .xO0 ; yO0 ; �/ D �PxO0 sin �C PyO0 cos �C P�x0C : (17.65)

Another math nightmare. How do we find this F ? You can’t find
one. This is the crux of the matter. Neither your calculus professor
nor Ramanujan could find one either. No computer can find one, or
even a numerical approximation of a solution. There is no function
F.xO0 ; yO0 ; �/ that solves eqn. (17.65). The solution fundamen-
tally does not exist. That is why we say the skate/wheel constraint
eqn. (17.64) is “non-integrable”.
Parallel parking We can use physical reasoning to show that no
function F can solve eqn. (17.65). If such an F did exist it would
mean that only the set of configurations with position xO0 ; yO0 and
angles � consistent with F D constant would be allowed by the
skate constraint (assuming F depends nontrivially on at least one
of the variables). This means there would be some angles and po-
sitions that the body couldn’t get to. Remember, we are not doing
mechanics, just kinematics. So we can see what configurations are
geometrically allowed while still respecting the constraint. The sim-
ple observation that motivates the answer is this:

Even though the skate constrains *vC to not have a sideways
component, point C can get to a point that is straight side-
ways.

How? Like a car can move sideways into a parking space without
skidding sideways; by parallel parking. More generally, the body
can get to any position and any orientation by the following moves.
First rotate the body so the skate aims to its new goal. Then slide the
skate to its new goal. And finally rotate the body to its new desired
orientation.

Thus, the skate constraint does not disallow any configurations!
Yet the constraint does disallow some velocities (the skate can’t go
sideways). In this way, the skate constraint is not “whole”. It con-
strains velocities without constraining configurations.
Counting degrees of freedom. How many degrees of freedom
does a body with a skate constraint have? There are two different
answers. By counting possible configurations there are three degrees
of freedom (it takes three variables to describe all possible configu-
rations). But at any configuration the velocity can be described by 2
numbers ( P� and vO{0 ). Whenever the number of configuration degrees
of freedom is greater than the number of velocity degrees of freedom
(for example, 3¿2) there are non-holonomic constraints.

One might like more examples. But besides artificial mathemat-
ical ones, there are none. The only smooth non-holonomic constraint
in 2D mechanics is the ideal skate or wheel.
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To find the acceleration of material point O’ on B we differentiate
eqn. (17.66) with respect to time:

*
aO0 D d

dt

*
vO0

D d

dt

�
*
!B �*

rO0=C
�

D d

dt
.*!B � .*rO0 �*

rC//

D P*!B �*
rO0=C C *

!B �*
vO0 � *

! �*
vC

D P*!B �*
rO0=C � !2B

*
rO0=C � *

! �
�

1

�B C �A
P� Oet
�

D P*!B �*
rO0=C � !2B

*
rO0=C C

 P�2B
�B C �A

Oen
!

where Oen is normal to the curves and directed towards the interior of B. Thus
the acceleration of all points on B is the same as if the body were pinned at C
plus an acceleration due to rolling. This rolling acceleration is small if either
of the bodies is sharp (has very large �) and large if the bodies are nearly
conformal.

Body curve and space curve

As one rigid body moves arbitrarily on a plane with some non-zero rotation
rate we can find a point at relative position *

rC=O0 where *
rC D *

0. That is a
place where the velocity due to rotation about O’ exactly cancels the velocity
of O’.

*

0 D*
vO0 C *

!B �*
rC=O0

Crossing both sides with Ok and using that *! D ! Ok we get

*
rC=O0 D

Ok �*
vO0

!B

as the point “on” the body that has no velocity. This point does not literally
have to be on the body, rather it is fixed to the reference frame defined by the
body.

As motion progresses a sequence of such points C is traced on the ground.
Similarly a sequence of points is traced on the body. These two sequences are
called the space curve and the body curve (or “polohodie” and “herpolhodie”
in older books). The motion of body B is thus a rolling of the body curve on
the space curve.

As a machine designer this means you can generate any desired motion
by rolling of appropriate shapes. Move the object in the desired manner,
draw the space curve and body curve, make parts with those shapes, and the
desired motion occurs by a rolling of those shapes.
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Ideal wheels and skates, looking down
If we look down on an ideal skate or wheel at point C on a rigid body and
assume that the skate is oriented with the positive O{0 axis at point C on the
body then we know that

*
vC D vC O{0

and hence the velocity of any point G on the body of interest is

*
vG D *

vC C*
vG=C

D vc O{0 C P� Ok �*
rG=C:

The acceleration is found by differentiating this expression as

*
aG D

d

dt

*
vG D *

vC C*
vG=C

D d

dt

�
vc O{0 C P� Ok �*

rG=C

�
D PvC O{0 C vC

PO0{C R� Ok �*
rG=C � P�2*rG=C

D PvC O{0 C vC
P� O|0� �� �

*
aC

CC R� Ok �*
rG=C � P�2*rG=C� �� �
*
aG=C

:

It is interesting to note that the Coriolis-like term vC
P� O|0 does not have the

usual factor of 2 one encounters in holonomic problems. To find the trajec-
tory of the point C, say, one needs to integrate the velocity like this:

Px D *
vC � O{

D vC O{0 � O{
D vC cos �

Py D *
vC � O|

D vC O{0 � O|
D vC sin �:
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SAMPLE 17.15 Kinematics of a four bar linkage. A four bar linkage
ABCD is shown in the figure (fourth bar is the ground AD) at some instant
t0. The driving bar AB rotates with angular velocity *

!AB D P�.t/ Ok. Find the
angular velocities of rods BC and CD as a function of P� . How can you solve
for the positions of the bars at any t if the initial configuration is as shown in
the figure?
Solution Let the angles that rods AB, BC, and CD make with the horizontal (x-axis) be �; �,
and �, respectively. Then, we can write *!BC D P� Ok and *!CD D P� Ok. We have to find P� and
P�.

Note that the motion of point C is a simple circular motion about point A with given
angular velocity *!AB . Thus, the velocity of point B is known. Now, we can find the velocity
of point C two ways: (i) by considering rod CB: *vC D *vB C*vC=B D *vB C*!BC �*rC=B,
and (ii) by considering rod CD: *vC D *!CD �*rC=D: Either way the velocity must be the
same. Thus, we have a 2-D vector equation with two unknowns P� and P�. We can get two
independent scalar equations from the vector equation and thus we can solve for the desired
unknowns.

Let us use the rotating base vectors . O�1; On1/; . O�2; On2/; and . O�3; On3/ with rods AB, BC,
and CD, respectively. Note that these base vectors are basically the . OeR; Oe� / pairs; we use
. O�; On/ just for the sake of easy subscripting. Now,

*vB D *!AB �*rB=A D `1
P� On1

*vC D *vB C*!BC �*rC=B D `1
P� On1 C `2

P� On2 (17.67)

also, *vC D *!CD �*rC=D D `3 P� On3 (17.68)

Thus, from eqn. (17.67) and (17.68), we have,

`1
P� On1 C `2

P� On2 D `3 P� On3 (17.69)

Dotting eqn. (17.69) with O�2 (to eliminate P� term), we get

`1
P�. On1 � O�2/ D `3 P�. On3 � O�2/

) P� D `1
`3

. On1 � O�2/

. On3 � O�2/
P�: (17.70)

Similarly, dotting eqn. (17.69) with O�3 (to eliminate P� term), we get

P� D �`1
`2

. On1 � O�3/

. On2 � O�3/
P�: (17.71)

We are practically done at this point with the kinematics — we have found P� and P� as func-
tions of P� . The various dot products are just geometry and vector algebra. To write them ex-
plicitly, we note that O�1 D cos � O{C sin � O|; On1 D � sin � O{Ccos � O|, O�2 D cos� O{C sin� O|,
etc. Thus,

On1 � O�2 D � sin � cos� C cos � sin� D sin.� � �/
On3 � O�2 D sin.� � �/
On1 � O�3 D sin.� � �/; On2 � O�3 D sin.� � �/:

Substituting the appropriate expressions in eqn. (17.71) and (17.70), we get

P� D �`1
`2

sin.� � �/
sin.� � �/

P�; P� D `1
`3

sin.� � �/
sin.� � �/

P�:

*!BC D � `1
`2

sin.���/
sin.���/ P� Ok;

*!CD D `1
`3

sin.���/
sin.���/ P� Ok
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Note that the expressions for P� and P� are coupled, nonlinear, first order ordinary differential
equations. To be able to find P�; �.t/ and �.t/, we need to integrate P�; P�, and P�. Here, we
set up these differential equations for numerical integration. Although, we can use any given
P�.t/ (e.g., �t or P�0 sin.
t/ or whatever), for definiteness in our numerical integration, let us
take a constant P� , that is, let P� D C D 10 rad=s (say). So, our equations are,

P� D C; P� D `1
`2

sin.� � �/
sin.� � �/C;

P� D `1
`3

sin.� � �/
sin.� � �/C;

and the initial conditions are �.0/ D �=2; �.0/ D �=4; �.0/ D 3�=4:

Here is a pseudocode that we use to integrate these equations numerically for a period of
2�=C D �=5 seconds (one complete revolution of AB).

ODEs = {thetadot = C,
betadot = (l1/l2)*sin(phi-theta)/sin(beta-phi)*C,
phidot = (l1/l3)*sin(beta-theta)/sin(beta-phi)*C}

IC = {theta(0) = pi/2, beta(0) = pi/4, phi(0) = 3*pi/4}
Set C=10, l1=.4, l2=.4*sqrt(2), l3=.8*sqrt(2)
Solve ODEs with IC for t=0 to t=pi/5

After we get the angles, we can compute the xy coordinates of points B and C at each instant
and plot the mechanism at those instants. Plots thus obtained from our numerical solution are
shown in fig. 17.66 where the configuration of the mechanism is shown at 9 equally spaced
times between t D 0 to t D �=5.
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Figure 17.66: Several configurations of the mechanism at equal intervals of time during one
complete revolution of the driving link. After t8 the mechanism returns to the initial configu-
ration.
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Problems for
Chapter 17
Kinematics using time-varying basis vec-
tors

17.1 Polar coordinates
and path coordinates
17.1.1 A particle moves along the two
paths (1) and (2) as shown.

a) In each case, determine the velocity
of the particle in terms of b, � , and
P� . �

b) Find the x and y coordinates of the
path as functions of b and r or b and
� . �
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Problem 17.1.1

17.1.2 For the particle path (1) in prob-
lem 17.1.1, find the acceleration of the par-
ticle in terms of b, � , and P� .

17.1.3 For the particle path (2) in prob-
lem 17.1.1, find the acceleration of the par-
ticle in terms of b, � , and P� .

17.1.4 A body moves with constant veloc-
ity V in a straight line parallel to and at a
distance d from the x-axis.

a) Calculate P� in terms of V; d , and � .

b) Calculate the Oe� component of ac-
celeration.

Carefully define, using a sketch and/or
words, any variables, coordinate systems,
and reference frames you use. Express
your answers using any convenient coordi-
nate system (just make sure its orientation
has been clearly defined).
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Problem 17.1.4

17.1.5 Picking apart the polar coordi-
nate formula for velocity. This prob-
lem concerns a small mass m that sits in
a slot in a turntable. Alternatively you can
think of a small bead that slides on a rod.
The mass always stays in the slot (or on the
rod). Assume the mass is a little bug that
can walk as it pleases on the rod (or in the
slot) and you control how the turntable/rod
rotates. Name two situations in which one
of the terms is zero but the other is not in
the two term polar coordinate formula for
velocity, PR OeR C R P� Oe� . You should thus
gain some insight into the meaning of each
of the two terms in that formula. �
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Problem 17.1.5

17.1.6 Picking apart the polar coordi-
nate formula for acceleration. Recon-
sider the configurations in problem 17.1.5.
This time, name four situations in which

all of the terms, but one, in the four term
polar coordinate formula for acceleration,
*a D . RR � R P�2/ OeR C .2 PR P� C R R�/ Oe� , are
zero. Each situation should pick out a dif-
ferent term. You should thus gain some in-
sight into the meaning of each of the four
terms in that formula. �

17.1.7 The two differential equations:

RR �R P�2 D 0

2 PR P� CR R� D 0

have the general solution

R D
q
d2 C .v.t � t0//2

� D �0 C tan�1.v.t � t0/=d/
where �0, d , t0, and v are arbitrary con-
stants. This solution could be checked by
plugging back into the differential equa-
tions — you need not do this (tedious) sub-
stitution. The solution describes a curve in
the plane. That is, if for a range of values
of t , the values of R and � were calculated
and then plotted using polar coordinates, a
curve would be drawn. What can you say
about the shape of this curve?

[Hints:

a) Actually make a plot using some
random values of the constants and
see what the plot looks like.

b) Write the equation F D ma for
a particle in polar coordinates and
think of a force that would be rele-
vant to this problem.

c) The answer is something simple. ]

17.1.8 A car driver on a very boring
highway is carefully monitoring her speed.
Over a one hour period, the car travels on
a curve with constant radius of curvature,
� D 25mi, and its speed increases uni-
formly from 50mph to 60mph. What is
the acceleration of the of the car half-way
through this one hour period, in path coor-
dinates?

17.1.9 Find expressions for Oet , at , an, Oen,
and the radius of curvature �, at any po-
sition (or time) on the given particle paths
for

a) problem 11.1.11, �

b) problem 11.1.12,
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920 Chapter 17. Homework problems 17.3 General expressions for velocity and acceleration

c) problem 17.2.4,

d) problem 11.1.14,

e) problem 11.1.13, and

f) problem 11.1.10.

17.1.10 A particle travels at non-constant
speed on an elliptical path given by y2 D
b2.1 � x2

a2
/. Carefully sketch the ellipse

for particular values of a and b. For var-
ious positions of the particle on the path,
sketch the position vector *r.t/; the polar
coordinate basis vectors Oer and Oe� ; and the
path coordinate basis vectors Oen and Oet . At
what points on the path are Oer and Oen par-
allel(or Oe� and Oet parallel)?

17.2 Rotating reference
frames
17.2.1 Express the basis vectors (O{0; O|0) as-
sociated with axes x0 and y0 in terms of the
standard basis (O{; O|) for � D 30

�
.
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Problem 17.2.1

17.2.2 Body frames are frames of refer-
ence attached to a body in motion. The ori-
entation of a coordinate system attached to
a body frame B is shown in the figure at
some moment of interest. For � D 60

�
,

express the basis vectors . Ob1; Ob2/ in terms
of the standard basis (O{; O|).
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Problem 17.2.2

17.2.3 Find the components of (a) *v D
3m=sO{ C 2m=s O| C 4m=s Ok in the ro-
tated basis (O{0; O|0; Ok0) and (b) *a D

�0:5m=s2 O|0C 3:0m=s2 Ok0 in the standard
basis (O{; O|; Ok). (y and y0 are in the same di-
rection and x0 and z0 are in the xz plane.)
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Problem 17.2.3

17.2.4 A particle travels in a straight line
in the xy-plane parallel to the x-axis at a
distance y D ` in the positive x direction.
The position of the particle is denoted by
*r.t/. The angle of *r measured positive
counter-clockwise from the x axis is de-
creasing at a constant rate with magnitude
!. If the particle starts on the y axis at
� D �=2, what is*r.t/ in cartesian coordi-
nates?

17.2.5 Given that *r.t/ D ct2 O{0 and that
�.t/ D d sin.�t/ , find*v.t/

a) in terms of O{ and O|,
b) in terms of O{0 and O|0.
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Problem 17.2.5

17.2.6 A bug walks on a turntable. In po-
lar coordinates, the position of the bug is
given by

*
R D R Oer , where the origin of

this coordinate system is at the center of
the turntable. The . Oer ; Oe� / coordinate sys-
tem is attached to the turntable and, hence,
rotates with the turntable. The kinematical
quantities describing the bugs motion are
PR D � PR0, RR D 0, P� D !0, and R� D 0.

A fixed coordinate system Oxy has origin
O at the center of the turntable. As the bug
walks through the center of the turntable:

a) What is its speed?

b) What is its acceleration?

c) What is the radius of the osculating
circle (i.e., what is the radius of cur-
vature of the bug’s path?).

17.3 General expressions
for velocity and
acceleration
17.3.1 A bug walks on a straight line en-
graved on a rotating turntable (the bug’s
path in the room is not a straight line).
The line passes through the center of the
turntable. The bug’s speed on this line
is 1 in=s (the bug’s absolute speed is not
1 in=s). The turntable rotates at a constant
rate of 2 revolutions every � s in a positive
sense about the z-axis. It’s surface is al-
ways in the xy-plane. At time t D 0, the
engraved line is aligned with the x-axis,
the bug is at the origin and headed towards
the positive x direction.

a) What is the x component of the
bug’s velocity at t D � s?

b) What is the y component of the
bug’s velocity at t D � seconds?

c) What is the y component of the
bug’s acceleration at t D �?

d) What is the radius of curvature of
the bug’s path at t D 0?

17.3.2 Actual path of bug trying to walk
a straight line. A straight line is inscribed
on a horizontal turntable. The line goes
through the center. Let � be angle of ro-
tation of the turntable which spins at con-
stant rate P�0. A bug starts on the out-
side edge of the turntable of radius R and
walks towards the center, passes through
it, and continues to the opposite edge of
the turntable. The bug walks at a constant
speed vA, as measured by how far her feet
move per step, on the line inscribed on the
table. Ignore gravity.

a) Picture. Make an accurate draw-
ing of the bug’s path as seen in the
room (which is not rotating with the
turntable). In order to make this
plot, you will need to assume val-
ues of vA and P�0 and initial values
of R and �. You will need to write
a parametric equation for the path
in terms of variables that you can
plot (probably x and y coordinates).
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You will also need to pick a range
of times. Your plot should include
the instant at which the bug walks
through the origin. Make sure your
x and y- axes are drawn to the same
scale. A computer plot would be
nice.

b) Calculate the radius of curvature of
the bug’s path as it goes through the
origin.

c) Accurately draw (say, on the com-
puter) the osculating circle when
the bug is at the origin on the pic-
ture you drew for (a) above.

d) Force. What is the force on the
bugs feet from the turntable when
she starts her trip? Draw this force
as an arrow on your picture of the
bug’s path.

e) Force. What is the force on the
bugs feet when she is in the mid-
dle of the turntable? Draw this force
as an arrow on your picture of the
bug’s path.

17.3.3 A small bug is crawling on a
straight line scratched on an old record.
The scratch is a distance ` D 6 cm from
the center of the turntable. The turntable
is turning clockwise at a constant angu-
lar rate ! D 2 rad=s. The bug is walk-
ing, relative to the turntable, at a constant
rate vB=T D 12 cm=s, straight along the
scratch in the y-direction. At the instant of
interest, everything is aligned as shown in
figure. The bug has a mass mB D 1 gram.

a) What is the bug’s velocity?
b) What is the bug’s acceleration?
c) What is the sum of all forces acting

on the bug?
d) Sketch the path of the bug in the

neighborhood of its location at the
time of interest (indicate the direc-
tion the bug is moving on this path).
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Problem 17.3.3

17.3.4 Arm OC rotates with constant rate
!1. Disc D of radius r rotates about point
C at constant rate !2 measured with re-
spect to the arm OC. What are the absolute
velocity and acceleration of point P on the
disc,*vP and*aP ? (To do this problem will
require defining a moving frame of refer-
ence. More than one choice is possible.)
�

a) Pick a suitable moving frame and
do the problem.

b) Pick another suitable moving frame
and redo the problem. Make sure
the answers are the same.
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Problem 17.3.4

17.3.5 For the configuration in prob-
lem 17.3.4 what is the absolute angular ve-
locity of the disk, D? �

17.3.6 For the configuration in prob-
lem 17.3.4, taking !2 to be the angular ve-
locity of disk D relative to the rod, what
is the absolute angular acceleration of the
disk, D? What is the absolute angular ac-
celeration of the disk if !1 and !2 are not
constant?

17.3.7 A turntable oscillates with displace-
ment *xC .t/ D A sin.st/O{. The disc of the
turntable rotates with angular speed and
acceleration !D and P!D . A small bug
walks along lineDE with velocity vb rela-
tive to the turntable. At the instant shown,
the turntable is at its maximum amplitude
x D A, the line DE is currently aligned
with the z-axis, and the bug is passing
through point B on line DE. Point B is a
distance a from the center of the turntable,
point C . Find the absolute acceleration of
the bug,*ab . �
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Problem 17.3.7

17.3.8 A small 0:1 kg toy train engine is
going clockwise at a constant rate (relative
to the track) of 2m=s on a circular track of
radius 1m. The track itself is on a turntable
B that is rotating counter- clockwise at a
constant rate of 1 rad=s. The dimensions
are as shown. At the instant of interest the
train is pointing due south (�j) and is at
the center O of the turntable.

a) What is the velocity of the train rel-
ative to the turntable*v=B?

b) What is the absolute velocity of the
train*v ?

c) What is the acceleration of the train
relative to the turntable*a=B?

d) What is the absolute acceleration of
the train*a?

e) What is the total force acting on the
train?

f) Sketch the path of the train for
one revolution of the turntable (sur-
prise)?
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Problem 17.3.8

17.3.9 A giant bug walks on a horizontal
disk. An xyz frame is attached to the disk.
The disk is rotating about the z axis (out
of the paper) and simultaneously translat-
ing with respect to an inertial frame XYZ
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plane. In each of the cases shown in the
figure, determine the total force acting on
the bug. In each case, the dotted line is
scratched on the disk and is the path the
bug follows walking in the direction of the
arrow. The location of the bug is marked
with a dot. At the instants shown, the
xyz coordinate system shown is aligned
with the inertial XYZ frame (which is not
shown in the pictures). In this problem:

*r = the position of the center of the disk,
*v = the velocity of the center of the disk,
*a = the acceleration of the center of the
disk,

 the angular velocity of the disk (i.e.,
*

 D 
k),
P
 = the angular acceleration of the disk,
u = the speed of the bug traversing the dot-
ted line (arc length on the disk per unit
time),
Pu = du=dt , and
m D 1 kg = mass of the bug.
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Problem 17.3.9

17.3.10 Repeat questions (a)-(f) for the
toy train in problem 17.3.8 going counter-
clockwise at constant rate (relative to the
track) of 2m=s on the circular track.

17.3.11 A honeybee, sensing that it can
get a cheap thrill, alights on a phonograph
turntable that is being carried by a carni-
val goer who is riding on a carousel. The
situation is sketched below. The carousel
has angular velocity of 5 rpm, which is in-
creasing (accelerating) at 10 rev=min2; the

phonograph rotates at a constant 33 1/3
rpm. The honeybee is at the outer edge
of the phonograph record in the position
shown in the figure; the radius of the record
is 7 inches. Calculate the magnitude of the
acceleration of the honeybee.
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Problem 17.3.11

17.3.12 Consider a turntable on the back
of a pick-up truck. A bug walks on a line
on the turntable. The line may or may
not be drawn through the center of the
turntable. The truck may or may not be
going at constant rate. The turntable may
or may not be spinning, and, if it spins, it
may or may not go at a constant rate. The
bug may be anywhere on the line and may
or may not be walking at a constant rate.

a) Draw a picture of the situation.
Clearly define all variables you are
going to use. What is the mov-
ing frame, and what is the reference
point on that frame?

b) One term at a time. For each term
in the five term acceleration for-
mula, find a situation where all but
one term is zero. Use the turntable
as the moving frame, the bug as the
particle of interest. �

c) Two terms at a time. (harder) How
many situations can you find where
a pair of terms is not zero but all
other terms are zero? (Don’t try
to do all 10 cases unless you really
think this infamous formula is fun.
Try at least one or two.) �
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Problem 17.3.12: Picking apart the five
term acceleration formula.

17.4 Kinematics of 2-D
mechanisms
17.4.1 Slider crank kinematics (No FBD
required!). 2-D . Assume R; `; �; P�; R� are
given. The crank mechanism parts move
on the xy plane with the x direction be-
ing along the piston. Vectors should be ex-
pressed in terms of O{; O|; and Ok components.

a) What is the angular velocity of the
crank OA? �

b) What is the angular acceleration of
the crank OA? �

c) What is the velocity of point A? �

d) What is the acceleration of point A?
�

e) What is the angular velocity of
the connecting rod AB? [Geometry
fact: *rAB D

p
`2 �R2 sin2 � O{ �

R sin � O|] �

f) For what values of � is the angular
velocity of the connecting rod AB
equal to zero (assume P� ¤ 0)? (you
need not answer part (e) correctly to
answer this question correctly.) �
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Problem 17.4.1

17.4.2 Slider-Crank. Consider a slider-
crank mechanism. Given � , P� , R� , L, and
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R, can you find the velocity and accelera-
tion of B? There are many ways to do this
problem.
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Problem 17.4.2

17.4.3 The crank AB with length LAB D
1 inch in the crank mechanism shown ro-
tates at a constant rate P�AB D !AB D
2� rad=s counter-clockwise. The initial
angle of rotation is � D 0 at t D 0.
The connecting rod BC has a length of
LBC D 2 in.

a) What is the velocity of point B at
the end of the crank when � D
�=2 rad?

b) What is the velocity of point C at
the end of the connecting rod when
� D �=2 rad?

c) What is the angular velocity of
the connecting rod BC when � D
�=2 rad?

d) What is the angular velocity of the
connecting rod BC as a function of
time?
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Problem 17.4.3

17.4.4 The two rods AB and DE, con-
nected together through a collar C, rotate
in the vertical plane. The collar C is pinned
to the rod AB but is free to slide on the
frictionless rod DE. At the instant shown,
rod AB is rotating clockwise with angular
speed ! D 3 rad=s and angular accelera-
tion � D 2 rad=s2. Find the angular veloc-
ity of rod DE. �
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Problem 17.4.4

17.4.5 Reconsider problem 17.4.4. The
two rods AB and DE, connected together
through a collar C, rotate in the vertical
plane. The collar C is pinned to the rod
AB but is free to slide on the friction-
less rod DE. At the instant shown, rod AB
is rotating clockwise with angular speed
! D 3 rad=s and angular acceleration � D
2 rad=s2. Find the angular acceleration of
rod DE. �
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Problem 17.4.5

17.4.6 CollarA is constrained to slide on a
horizontal rod to the right at constant speed
vA. It is connected by a pin joint to one
end of a rigid bar AB with length ` which
makes an angle � with the horizontal at the
instant of interest. A second collar B con-
nected by a pin joint to the other end of the
rigid bar AB slides on a vertical rod.

a) Find the velocity of point B . An-
swer in terms of vA, � , `, O{ and O|.

b) Find the angular speed P� of the rod?
Answer in terms of vA, � , `, O{ and
O|.
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Problem 17.4.6

17.4.7 A bar of length ` D 5 ft, body
D, connects sliders A and B on an L-
shaped frame, bodyL, which itself is rotat-
ing at constant speed about an axle perpen-
dicular to the plane of the figure through
the point O and relative to a fixed frame
F , *!L=F D 0:5 rad=sk . At the instant
shown, body L is aligned with the x � y
axes, slider A is xA D 4 ft from point
O , slider B is yB D 3 ft from O . The
speed and acceleration of slider B relative
to the frame L are *vB=L D �2 ft=s O| and
*aB=L D �2 ft=s2 O|, respectively.

Determine:
a) The absolute velocity of the slider

A,*vA=F , and
b) The absolute angular velocity of bar

AB, body D, *!D=F .
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Problem 17.4.7

17.4.8 The link AB is supported by a
wheel at D and its end A is constrained
so that it only has horizontal velocity. No
slipping occurs between the wheel and the
link. The wheel has an angular velocity !
and radius r . The distance OA D `.

Given: !, r , and `. .� D sin�1 r
`
/.

Determine the angular velocity of the link
AB and velocity of the point A.
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Problem 17.4.8

17.4.9 A solid cylinder of radius R
and mass M rolls without slip along the
ground. A thin rod of mass m and length
L is attached by a frictionless pin P to the
cylinder’s rim and its right end is dragged
at a constant speed *vA along the (friction-
less) horizontal ground.

a) For the position shown (where P
is directly above the contact point),
find P’s velocity *vP and the rod’s
angular velocity *!.
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b) Find P’s acceleration*aP and the an-
gular acceleration*� of the rod.
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Problem 17.4.9

17.4.10 The slotted link CB is driven in an
oscillatory motion by the link ED which
rotates about D with constant angular ve-
locity P� D !D . The pin P is attached to
ED at fixed radius d and engages the slot
on CB as shown. Find the angular veloc-
ity and acceleration P� and R� of CB when
� D �=2.
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Problem 17.4.10

17.4.11 The rod of radius r D 50mm
shown has a constant angular velocity of
! D 30 rad=s counterclockwise. Knowing
that rod AD is 250mm long and distance
d D 150mm, determine the acceleration
of collar D when � D 90�.
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17.5 Advance kinematics
of planar motion
17.5.1 Double pendulum. The double
pendulum shown is made up of two uni-
form bars, each of length ` and mass m.
At the instant shown, �1, P�1, �2, and P�2
are known. For the instant shown, answer
the following questions in terms of `, �1,
P�1, �2, and P�2.

a) What is the absolute velocity of
point A?

b) What is the velocity of point B rel-
ative to point A?

c) What is the absolute velocity of
point B?
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Problem 17.5.1

17.5.2 Double pendulum, Again. For the
double pendulum in problem 17.5.1, R�1
and R�2 are also known at the instant shown.
For the instant shown, answer the follow-
ing questions in terms of `, �1, P�1, R�1, �2,
P�2, and R�2.

a) What is the absolute acceleration of
point A?

b) What is the acceleration of point B
relative to point A?

c) What is the absolute acceleration of
point B?
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CHAPTER 18
Mechanics of constrained
particles and rigid objects

The dynamics of particles and rigid objects is studied using the relative-
motion kinematics ideas from chapter 15. This is the capstone chapter for a
two-dimensional dynamics course. After this chapter a good student should
be able to navigate through and use most of the skills in the concept map
inside the back cover.

Contents
18.1 Mechanics of a constrained particle . . . . . . . . . . . . . . 928

Box 18.1 Some brachistochrone curiosities . . . . . . . . . 934
18.2 One-degree-of-freedom 2-D mechanisms . . . . . . . . . . . 950

Box 18.2 Ideal constraints and workless constraints . . . . 951
Box 18.3 1 DOF systems oscillate at EP minima . . . . . . 956

18.3 Multi-degree-of-freedom 2-D mechanisms . . . . . . . . . . 964
Problems for Chapter 18 . . . . . . . . . . . . . . . . . . . . . . . 982
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We have studied the mechanics of particles and rigid bodies with constraints
that require progressively more involved kinematics. We now proceed to
study the mechanics of more complex systems: particles with constrained
paths, particles moving relative to moving frames, and mechanisms with sev-
eral parts.

The basic strategy throughout is to use, in combination, the following
skills:

1. Basic modeling. Describe a system in an appropriate way using the
language of particle and rigid body mechanics. As described in Chapter
2, the force modeling and kinematic modeling are coupled. Where
relative motion is freely allowed there is no force. And where motion
is caused or prevented there is a force. Here is where you decide the
constitutive (force) laws you are using for springs, contact, gravity, etc.

2. Draw free body diagrams of the system of interest and of its parts.
These diagrams should show what you do and do not know about the
constraint forces (e.g., at a pin connection cut free in a free body dia-
gram the FBD should show an arbitrary force and no moment). These
are exactly the same free body diagrams that one would draw for stat-
ics.

3. Kinematics calculations. Pick appropriate configuration variables, as
many as there are degrees of freedom. Then write the velocities, ac-
celerations, angular velocities and angular accelerations of interest in
terms of the configuration variables and their first and second time
derivatives, possibly using methods from Chapter 10. Often this is the
hardest part of the analysis.

4. Use appropriate balance equations: linear momentum, angular momen-
tum, or power balance equations.

5. Solve the balance equations for unknown forces or accelerations of in-
terest. Sometimes this can be done by hand by writing out components
and solving simultaneous equations or by using appropriate dot prod-
ucts. And sometimes it is best done on by setting up a matrix equation
and solving on the computer.

6. Solve the differential equations to find how the basic configuration vari-
ables change with time. For some special problems this can be done by
hand, but most often involves computer solution.

7. Plug the ODE solution from (6) above into the equations from kine-
matics (3 above) and the balance laws (4 above). This is not a different
skill from (3) or (4), it is just applied at a different time in the work.
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928 Chapter 18. Constrained particles and rigid objects 18.1. Mechanics of a constrained particle

8. Make plots of how forces, positions and velocities change with time, or
of trajectories. Animations are also often nice.

These skills are used to solve dynamics problems which often fall into one
of these 4 categories.

a. Kinematics. These are problems where only geometry is used, where
the kinematics constraints determine what you are interested in, inde-
pendent of the forces or time history. A classic example is determining
the path of a point on a given four-bar linkage. More basic examples
include finding position or acceleration from a given velocity history.

b. Instantaneous dynamics. These are problems where the positions and
velocities of all points are given and you need to find forces or acceler-
ations. Often these are “first-motion” problems: what are accelerations
and forces immediately after something is released from rest?

c. “Inverse dynamics.” These problems are called “inverse” because they
are backwards of the original hard dynamics problems ((d) below). In
these problems the motion is given as a function of time, and you have
to calculate the forces. These problems are easier than non “inverse”
problems because the differential equations from the balance laws don’t
need to be solved. A classic example is a slider-crank where the motion
of the crank is known a priori to be at constant rate and you need to find
the torque required to keep that motion. Usually in science “inverse”
problems are harder. In dynamics this kind of “inverse” problem is
easier than the non “inverse” problems.

d. Dynamics analysis. You are given some information about forces and
constraints and you have to find the motion and more about the forces.
These are the capstone problems that require use of all the skills.

A flow chart showing how these problem types are solved using the basic
skill components ideas is shown in the chart in the inside back cover. As you
solve a problem, at any instant in time you should be able to place your work
on this chart.

In the sense of putting all the basic ideas together, this chapter completes
the book. But in this chapter we only consider two dimensional models and
motions. Three dimensional models and motions involve the same assembly
of basic ideas, but more difficult kinematics, so are postponed.

18.1 Mechanics of a constrained particle
The kinematics of time-varying base vectors help us deal with some more
difficult particle motion mechanics problems. For one point mass it is easy
to write balance of linear momentum. It is:

*

F D m*
a:

The mass of the particle m times its vector acceleration *
a is equal to the total

force on the particle
*

F . No problem.
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Now, however, we can write this equation in five somewhat distinct ways.
1. In general abstract vector form:

*

F D m*
a.

2. In cartesian coordinates: Fx O{C Fy O| C Fz Ok D m� Rx O{C Ry O| C Rz Ok�.
3. In polar coordinates:

FR OeR C F� Oe� C Fz Ok D m�. RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� C Rz Ok�.
4. In path coordinates: Ft Oet C Fn Oen D m� Pv Oet C .v2=�/ Oen�

All of these equations are always right. Additionally, for a given particle
moving under the action of a given force there are many more correct equa-
tions that can be found by shifting the origin and orientation of the coordinate
systems. For example for a moving frame B with origin 00, rotation rate *

!B
and angular acceleration *

�B:

5.
*

F D m
n
*
a00 � !2B

*
r C*

�B �*
r C*

a=B C 2*!B �*
v=B

o
where, to simplify the notation, all motions are relative to F and positions
relative to 0 unless explicitly indicated by a =B or =00. This is quite a collec-
tion of kinematic tools. In general we want to choose the best tools for the
job. But to get a sense lets first look at a simple problem using each of these
kinematic approaches, some of which are rather inappropriate.

A particle that moves with no net force
In the special case that a particle has no force on it we know intuitively, or
from the verbal statement of Newton’s First Law, that the particle travels in
a straight line at constant speed. As a first example, let’s try to find this re-
sult using the vector equations of motion five different ways: in the general
abstract form, in cartesian coordinates, in polar coordinates, in path coordi-
nates, and relative to a moving frame (see fig. 18.1).

General abstract form. The equation of linear momentum balance is
*

F D
m*
a or, if there is no force, *a D *

0, which means that d*v=dt D *

0. So *
v is

a constant. We can call this constant *v0. So after some time the particle is
where it was at t D 0, say, *r0, plus its velocity *

v0 times time. That is:

*
r D*

r0 C*
v0t: (18.1)

This vector relation is a parametric equation for a straight line. The particle
moves in a straight line, as expected.

Cartesian coordinates. If instead we break the linear momentum balance
equation into cartesian coordinates we get

Fx O{C Fy O| C Fz Ok D m. Rx O{C Ry O| C Rz Ok/:

Because the net force is zero and the net mass is not negligible,

Rx D 0; Ry D 0; and Rz D 0:
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Figure 18.1: A particle P moves. One
can track its motion using the general
vector form *r , Cartesian coordinates in
the fixed frame F D 0O{ O|, Polar coor-
dinates using OeR& Oe� , path coordinates
Oet& Oen and cartesian coordinates in a ro-
tating frame B D 00 O{0 O|0.
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930 Chapter 18. Constrained particles and rigid objects 18.1. Mechanics of a constrained particle

These equations imply that Px, Py, and Pz are all constants, lets call them vx0,
vy0, vz0. So x, y, and z are given by

x D x0 C vx0t; y D y0 C vy0t; & z D z0 C vz0t:

We can put these components into their place in vector form to get:
*
r D x O{Cy O|C z Ok D .x0Cvx0t /O{C .y0Cvy0t / O|C .z0Cvz0t / Ok: (18.2)

Note that there are six free constants in this equation representing the initial
position and velocity. Equation 18.2 is a cartesian representation of equa-
tion 18.1; it describes a straight line being traversed at constant rate.

Polar/cylindrical coordinates. When there is no force, in polar coordi-
nates we have:

FR����
0

OeRC F�����
0

Oe�C Fz����
0

Ok D m�. RR�R P�2/ OeRC .2 PR P�CR R�/ Oe�C Rz Ok�:

This vector equation leads to the following three scalar differential equations,
the first two of which are coupled non-linear equations (neither can be solved
without the other).

RR �R P�2 D 0

2 PR P� CR R� D 0

Rz D 0

A tedious calculation will show that these equations are solved by the fol-
lowing functions of time:

R D
q
d2 C �v0.t � t0/�

2 (18.3)

� D �0 C tan�1�v0.t � t0/=d �

z D z0 C vz0t;

where �0, d , t0, v0, z0, and vz0 are constants. Note that, though eqn. (18.4)
looks different than eqn. (18.2), there are still 6 free constants. From the
physical interpretation you know that eqn. (18.4) must be the parametric
equation of a straight line. And, indeed, you can verify that picking arbi-
trary constants and using a computer to make a polar plot of eqn. (18.4) does
in fact show a straight line. From eqn. (18.4) it seems that polar coordinates’
main function is to obfuscate rather than clarify. For the simple case that a
particle moves with no force at all, we have to solve non-linear differential
equations whereas using cartesian coordinates we get linear equations which
are easy to solve and where the solution is easy to interpret.

But, if we add a central force, a force like earth’s gravity acting on an
orbiting satellite (the force on the satellite is directed towards the center of
the earth), the equations become almost intolerable in cartesian coordinates.
But, in polar coordinates, the solution is almost as easy (which is not all that
easy for most of us) as the solution 18.4. So the classic analytic solutions of
celestial mechanics are usually expressed in terms of polar coordinates.
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Path coordinates. When there is no force,
*

F D m*
a is expressed in path

coordinates as

Ft����
0

Oet C Fn����
0

Oen D m. Pv Oet C .v2=�/ Oen� �� �
v2
*
�

/:

That is,
Pv D 0 and v2=� D 0:

So the speed v must be constant and the radius of curvature � of the path
infinite. That is, the particle moves at constant speed in a straight line.

Relative to a rotating reference frame Let’s look at the equations using a
frame B that shares an origin with F but is rotating at a constant rate *

!B D
! Ok relative to F . Thus

*
�B D

*

0 and *
a00=0 D

*

0

and we have that
*

F D m*
a is written as

*

F D m*
a

*

0 D m
�

*
a00����
*
0

�!2B*r C *
�B����
*
0

�*r C*
a=B C 2*!B �*

v=B
	

D �!2*r C*
a=B C 2! Ok �*

v=B: (18.4)

Now, using the rotating base vectors O{0 and O|0, we have that Fx0 O{0C Fy0 O|0 D
0O{0 C 0 O|0 and

*
r D x0 O{0 C y0uj 0; *

vB D Px0 O{0 C Py0 O|0; and *
aB D Rx0 O{0 C Ry0 O|0

so eqn. (18.4) can be rewritten as
*

0 D �!2.x0 O{0 C y0uj 0/C . Rx0 O{0 C Ry0 O|0/C 2! Ok � . Px0 O{0 C Py0 O|0/
which in turn can be broken into components and written as:

Rx0 D !2x0 C 2! Py0 (18.5)

Ry0 D !2y0 � 2! Px0

which makes up a pair of second order linear differential equations. With
some work, someone good at ODEs can solve this with pencil and paper. But
most of us would use a computer for such a system. If, in some consistent
units, we had

y0.0/ D 0; Py0.0/ D 0; x0.0/ D 0; Px0.0/ D 1; ! D 1

then the solution turns out to be

x0 D t cos.!t/

y0 D �t sin.!t/

as you can check by substituting into eqn. (18.6). That is, a particle which
goes in a straight line away from the origin goes, in spirals as seen in the
rotating frame 1.

1And the straight line motion could
have been more complicated yet, as seen
in the rotating frame, with variable rate
rotation and acceleration.This is why we
are lucky the earth is not spinning fast or
at highly variable rates. Otherwise the
motion we would see, us humans here
on the rotating earth, would be particles
with no force on them spiraling around
all over the place. And that’s what Isaac
Newton would have seen. And he would
have written “A particle in motion tends
to go in crazy spirals, and a particle that
is initially at rest also goes bonkers” and
the equations we use through out this
book would have been much harder to
discover.
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Figure 18.2: A point-mass bead slides
on a rigid immobile frictionless wire.
The free body diagram shows that the
only force on the bead is in the direction
normal to the wire.

Constrained motion
A particle in a plane has 2 degrees of freedom. There is basically only one
kind of constraint — to a path. When constrained to a path the particle has
one remaining degree of freedom so its configuration can be described with
one variable. For a given problem you must think about

� What force(s) constrain the motion to the path?

� What do you want to use for a configuration variable?

You use these ideas to

� draw an appropriate free body diagram, and then

� calculate the velocity and acceleration in terms of the configuration
variable and its derivatives.

After these key first steps you plug into equations of motion and solve for
what you are interested in. Of course the needed math could be difficult
or impossible, but the work is somewhat routine from a mechanics point of
view.

Example: Bead on frictionless wire
A bead slides on a frictionless wire with a crazy but smooth shape. No forces are
applied to the bead besides the constraint force (see fig. 18.2).

Fig. 18.2b shows a free body diagram where On is the normal to the wire at the
point of interest. It doesn’t matter if you use for On D Oen, or On D a vector always,
say, to the left, just so long as you know what you mean by On. The free body
diagram shows that you know that the constraint force is normal to the path (the
frictionless wire) but that you don’t know how big it is (F is an unknown scalar).

For some purposes, especially general problems like this where no specific path
is given, the most appropriate configuration variable is s, the arc length along the
path. If the path is given we assume we know the position at any given arc length
by the functions

x.s/ and y.s/:

So
*r D*r.s/;*v D Ps Oet ; and *a D .Ps2=�/ Oen C Rs Oet :

Now we can write linear momentum balance
*
F D m*a (18.6)�
F On D m

�
.Ps2=�/ Oen C Rs Oet

�	�	 � Oet ) Pv D 0 and�	 � Oen ) F D mv2=�:

Eqn. 18.6 tells us that the bead moves at constant speed, no matter what the shape
of the wire. It also tells us that the more curved the wire, the bigger the constraint
force needed to keep the bead on the wire.

Because this is a 1 DOF system, any one equation of motion should give us the
result. Instead of linear momentum balance we could have used power balance to
get the same result like this:

P D PEK

) *
Ftot �*v D d

dt

� 1
2
mv2

	
) F Oen � v Oet D mv Pv

) 0 D Pv:
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This is natural enough. The only force on the particle is perpendicular to its motion,
so does no work. So the particle must have constant kinetic energy and its speed
must be constant.

The example above doesn’t seem that applicable; how often does one see
beads on frictionless wires? It is a bit more useful than it appears. For ex-
ample, if a car is coasting on an open road and tire resistance and sideslip
can be ignored, the reasoning above shows that the car is neither speeded
nor slowed by turning. Similarly, an idealization of an airplane wing is as
something which only causes force perpendicular to motion. So in quick
maneuvers where the gravity force is relatively small, the plane maintains its
speed.

Example: The hard brachistochrone problem.
Here is a puzzle proposed by Johann Bernoulli on January 1, 1669 2: given that

a roller coaster has to coast from rest at one place to another place that is no higher,
what shape should the track be to make the trip as quick as possible.

The solution. Finding the solution, or even verifying it, is a problem in the cal-
culus of variations, i.e., too advanced for this book. The solution turns out to be
the brachistochrone curve that obeys the following relationship between arc-length
s from the origin and vertical position y (drawn accurately in fig. 18.3):

y D 1

2
cs2 .forjsj � 1=c/: (18.7)

Starting at the origin this curve is close to y D cx2=2 but gets a bit higher (bigger
y) because for a given value of x, s is greater than x. The curve terminates at
vertical tangents at s D �1=c where y D 1=2c. (see fig. 18.3). To solve the puzzle
this curve is scaled (by choosing a value of c) and displaced so that it has a vertical
tangent at A and also so the curve goes through B. The idea that the hard math
seems to be expressing, is that the particle should first build up as much speed as it
can (by going straight down) and then head off in the right direction (see fig. 18.4).

On the other hand, here is an easier problem that is a virtual setup for the
techniques now at hand.

Example: The easy brachistochrone problem
How long does it take for a particle to slide back and forth on a frictionless wire
with y D cs2=2 as driven by gravity? (see fig. 18.3)

Let’s use s as our configuration variable. The power balance equation is:

P D PEK

.F Oen/ � .v Oet / D 0 ) �mg O| � . Px O{C Py O|/ D d

dt

� 1
2
mv2

	
) �mg Py D m

d

dt

Ps2
2

) �mgcs Ps D mPs Rs
Assuming Ps ¤ 0 ) Rs C gcs D 0:

This, remarkably, is the simple harmonic oscillator equation with general solution

s D A cos.
p
gc t/C B sin.

p
gc t/:

Thus the period of oscillation (T such that
p
gcT D 2�) is

T D 2�p
gc
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Figure 18.3: A bead slides on a friction-
less wire on the curve implicitly defined
by y D cs2=2, where s is arc-length
along the curve measured from the ori-
gin.
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which is independent of the amplitude of oscillation 3.
The key to this quick solution was using a configuration variable that made

the expression for the velocity simple, and using an equation of motion that didn’t
involve the unknown reaction force F which we also didn’t care about. We could
have got the same equation of motion by writing

*
F D m*a and eliminated F Oen by

dotting both sides with a convenient vector orthogonal to F Oen, say*v.
The brachistochrone is a famous curve that has various interesting properties

(e.g., Box 18.1 on page 934).

.
Example: A collar on two rotating rods
Consider a pair of collars hinged together as a point mass m at P. Each slides

frictionlessly on a rod about whose rotation everything is known (see fig. 18.5.
What is the force of rod 1 on the mass? For this 2 degree of freedom system lets
use configuration variables �1 and �2, and two sets of rotating base vectors: O�1 On1
and O�2 On2. These rotating base vectors can be written in terms of the �s, O{ and O| in
the standard manner. Assume we know `1 and `2 in this configuration. First find

18.1 Some brachistochrone curiosities
The brachistochrone is a cycloid. There is no straightforward
way to draw the curve y D cs2=2 because the formula doesn’t tell
you the x coordinates of the points. You could find them by integrat-
ing dx D p

ds2 � dy2 numerically or with calculus tricks. But it
turns out (see below) that the curve with y D cs2=2 is described by
the parametric equations

x D r.� C sin�/ with r D 1
4c

.
y D r.1� cos�/.
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This is the path of a particle on the perimeter of a wheel that rolls
against a horizontal ceiling a distance 2r above the origin, as you
can verify by adding up distances in the picture above (see page
865). We will show below that the upside down cycloid and the
curve y D cs2=2 are one and the same.

Note that the osculating circle of this cycloid at its lowest point
has radius 4r D 1=c, just the length of a simple pendulum that, for
small oscillations, has the same frequency of oscillation as the bead
on the brachistochrone. A point mass swinging on a string is like a
bead on a frictionless circular wire and this, in turn, is close to the
motion of a bead on a brachistochrone wire for small oscillations.
Galileo (1564-1642). Well before Bernoulli’s challenge, Galileo
was interested in things rolling and sliding on ramps. He knew that
the shortest distance between two points is a straight line, and had
noted that a ball rolling down an appropriately curved ramp gets to its
destination faster than a ball traveling the shortest route. A ball go-
ing on a straight ramp just doesn’t pick up much speed, and when it
finally has its greatest speed the trip is over. Imagine sliding straight

sideways; it takes forever on a straight-line route. Better, he must
have reasoned, to get the ball rolling fast at the start and then go fast
for most of its journey, possibly slowing at the end. Galileo thought
the best shape was the bottom of a circle (or fraction thereof), which
isn’t far off either in shape or concept, but isn’t quite right. Galileo
was apparently obsessed with cycloids for other reasons but didn’t
see their connection to this problem.
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A constant period pendulum. For clock time keeping, a pendu-
lum is better than a bead on a wire because the friction of sliding
is avoided. Unfortunately, a simple pendulum has a period which
is longer if the amplitude is bigger. Not much longer, 18% if the
swinging is �90�

and only 1.7% longer if the amplitude is �30�

,

(continued...)
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P̀
1 and P̀

2 by thinking of the velocity of the collar two different ways:
*v D *v (18.8)� P̀

1
O�1 C P�1`1 On1 D P̀

2
O�2 C P�2`2 On2

	
�	 � On2 ) P̀

1 D
P�2`2 � P�1`1 On1 � On2

O�1 � On2�	 � On1 ) P̀
2 D

P�1`1 � P�2`2 On2 � On1
O�2 � On1

:

Having found P̀
1 and P̀

2 we can find the velocity *v by evaluating either side of
eqn. (18.8). Now we apply identical reasoning with the acceleration. The result
looks messy, but the approach is straightforward:

*a D *a (18.9)� R̀
1
O�1 C R�1`1 On1 C 2 P̀1 P�1 On1 D R̀

2
O�2 C R�2`2 On2 C 2 P̀2 P�2 On2

	
�	 � On2 ) R̀

1 D
R�2`2 C 2 P̀2 P�2 � R�1`1 On1 � On2 � 2 P̀1 P�1 On1 � On2

O�1 � On2�	 � On1 ) R̀
2 D

R�1`1 C 1 P̀1 P�1 � R�2`2 On2 � On1 � 2 P̀2 P�2 On2 � On1
O�2 � On1

18.1 Some brachistochrone curiosities (continued)
but enough to annoy clock designers. A bead sliding frictionlessly
on the path y D s2=2 has the nice property that the period does
not depend on the amplitude. But any real bead sliding on any real
wire has substantial friction. So, at first blush the brachistochrone
curve, despite its nice constant-period property, cannot be used to
keep time.

But Huygens, one of the smart old timers, looked for a curve
that, when a string wraps around it, makes the end follow the brachis-
tochrone curve. To this day you can see fancy old clocks with this
wrapping device, a solid piece with two cuspoidal shapes at the hinge
of the swinging (“isochronous” or “tautochrone”) pendulum which
wraps around it.
Geometry. The two key features discussed above, that the curve
y D cs2=2 is a cycloid, and that a cycloid can be generated by
wrapping a string around another cycloid, can be found from the
geometric construction below. Two cycloids are shown, one from
wheel 1 rolling under line L1 and another from wheel 2 rolling under
line L2 a distance 2r below. Both wheels have radius r . Imagine
that the cycloids A1M1B and A2M2B are drawn by wheels always
arranged with vertically aligned rolling contact points C1 and C2 and
with points M1 and M2 initially aligned vertically a distance 4r apart
at A1 and A2.

The two cycloids are thus the same shape but are displaced with
one being 2r below and �r sideways from the other.

Because both wheels have rolled the same distance (A1C1) they
have rotated the same amount and M2 is as far forward of C1C2D as
M1 is behind. Similarly M1 is as far above L2 as M2 is below. So
the line M1M2 is bisected by the point C2.

Because C1C2 is the diameter of a circle with M1 on the perime-
ter, angle C1M1C2 is a right angle. Because material point C1 on the
wheel has zero velocity the velocity of M1 (and thus the tangent to
the curve) is orthogonal to C1M1. Thus the line M1M2 is tangent to
the upper cycloid.

The rolling of wheel 2 instantaneously rotating about C2 makes

the tangent to the lower cycloid orthogonal to M1M2, the condition
for the motion of M2 to be from the wrapping of an inextensible
line around the curve A1M1B. This shows that cycloid A2M2B is
generated by the wrapping of a line anchored at A1 about the upper
cycloid. And this is Huygen’s wrapping mechanism for making a
pendulum bob follow a cycloid. Because of this wrapping genera-
tion, the arc-length s0 C s of A1M1B must be 4r and the arc length
s of M1B is M1M2 so the length M1C2 is s=2. By the similarity of
the two right triangles that share the length s=2 of M1C2:

y

s=2
D s=2

2r
) y D 1

4r

s2

2
D c

s2

2
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which shows that the upper cycloid is the curve y D cs2=2 if
c D 1=4r , where s is measured from B. This was the equation
used to show the constant period nature of the sliding motion of a
bead on a frictionless cycloidal curve using power balance.
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2 The original brachistochrone
(least time) puzzle:
“I, Johann Bernoulli, greet the most
clever mathematicians in the world.
Nothing is more attractive to intelli-
gent people than an honest, challenging
problem whose possible solution will
bestow fame and remain as lasting
monument. Following the example set
by Pascal, Fermat, etc., I hope to earn
the gratitude of the entire scientific
community by placing before the finest
mathematicians of our time a problem
which will test their methods and the
strength of their intellect. If someone
communicates to me the solution of the
proposed problem, I shall then publicly
declare him worthy of praise.

“Let two points A and B be given
in a vertical plane. Find the curve
that a point M, moving on a path AMB
must follow such that, starting from A,
reaches B in the shortest time under its
own gravity.”

Newton. Besides Bernoulli’s son
Dan, one of the people to solve the
puzzle was 55 year old Isaac Newton.
He attempted to keep his solution, said
to have been worked out in one evening
while he also invented the calculus of
variations, anonymous. But Bernoulli
supposedly saw through this deception,
commenting “I recognize the lion by his
paw print”, which was presumably not a
comment about Newton’s handwriting.

3 Actually, the amplitude can’t be ar-
bitrarily large. The solution to the defin-
ing eqn. (18.7) only makes sense for
jsj < 1=c. For jsj > 1=c there is no
curve satisfying eqn. (18.7).

We use the results from eqn. (18.8) for P̀1 and R̀
2 to evaluate the right hand sides of

the expressions for R̀2 and R̀
3 in eqn. (18.9). So now either the left hand side or the

right hand side of the second of Eqns. 18.9 can be used to evaluate the acceleration
*a, all the terms in both expressions have been found.

To find the forces we use linear momentum balance and the free body diagram
*
Ftot D m*a (18.10)�

F1 On1 C F2 On2 D mf R̀1 O�1 C R�1`1 On1 C 2 P̀1 P�1 On1g
	

�	 � O�2 ) F2 D
f R̀1 O�1 C R�1`1 On1 C 2 P̀1 P�1 On1g � O�2

On1 � O�2�	 � O�1 ) F2 D
f R̀1 O�1 C R�1`1 On1 C 2 P̀1 P�1 On1g � O�1

On2 � O�1

When actually evaluating the expressions above one can write the base vectors in
terms of O{ and O| or use geometry.

Often when working out a problem it is best to not substitute numbers until
the end of a problem. This example shows the opposite. If we left the expressions
for P̀1 and P̀

2 with letters and substituted that into the expressions for R̀1 and R̀
2

and left those expressions intact while substituting for the acceleration*a we would
have large expressions for the force components F1 and F2. On the other hand, by
using numbers as the calculation progresses the formulas do not grow so much in
complexity.

As is the case with most mechanism-mechanics problems, the hard work in
getting the dynamics equations is in the kinematics. Generally there are no great
short-cuts. There are alternative methods. In this case the location of the base points
and the two angles determine the base and two angles of a triangle. This triangle
can be solved for the location of the point P. Once that position is known in terms
of �1 and �2 the velocity and acceleration can be found by differentiation.

As a robot manipulator, this design has the advantage that no motors need to be
displaced. It has the disadvantage of requiring good sliding joints.

An alternative solution of the kinematics of this problem would be to use
trigonometry to find the position of point P in terms of the angles �1 and �2. Then
the acceleration of point P is found by taking two time derivatives. The result is
approximately equal in the complexity of its appearance to the results used above.
That method requires more cleverness at the start (solving an angle-side-angle tri-
angle) and then just brute force differentiation using the chain rule and the product
rule.

Example: Inverted pendulum with a vibrating base
Assume that the base 00 of an inverted point-mass pendulum of length ` is vibrated
according to (see fig. 18.6)

*r00 D d sin!t O{:
The point P thus has acceleration

*aP D *a00 C*aP=00

D �d!2 sin!t O{C R�` Oe� � P�2` OeR
Now apply linear momentum balance as

*
Ftot D m*aP� �mg O{C�T OeR D mf�d!2 sin!t O{C R�` Oe� � P�2` OeRg

	
�	 � Oe� ) � g O{ � Oe� D �d!2 sin!t O{ � Oe� C R�`

) g sin � D d!2 sin!t sin � C R�`
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which you write as

R� C .d!2 sin!t � g/ sin �=` or R� D .g � d!2 sin!t/ sin �=`

depending on whether you are analytically or numerically inclined. This is a second
order non-linear ordinary differential equation. If ! D 0 or d D 0 then this is the
classic inverted pendulum equation and has solutions that show that the pendulum
doesn’t stay near upright. But, you can find by analytic cleverness or numerical
integration that for some values of d and ! that the pendulum does not fall down!
Just shaking the base keeps the pendulum up (!2d > g for all cases where this
is possible). This isn’t just academic nonsense, the device can be built and the
balancing demonstrated.

One alternative to using linear momentum balance in the equations above
would be to use angular momentum balance about the point 0’. The resulting vector
equation

` OeR � .�mg O{/ D*rP=00 � .m*a/
yields the same second order scalar ODE.

The vibrating mechanism shown is a “Scotch yoke”. An eccentric disk is
mounted to the shaft of a constant angular velocity motor. The rectangular slot
moves up and down sinusoidally as the disk wobbles.
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SAMPLE 18.1 A bead on a straight wire. A straight wire is hung between
points A and B in the xy plane as shown in the figure. A bead slides down
the wire from point A. Write the geometric constraint equation for the bead’s
motion and derive the conditions on velocity and acceleration components of
the bead due to the constraint.
Solution The constraint on the bead’s motion is that its path must be along the wire, i.e., a
straight line between points A and B. Thus the geometric constraint on the motion is expressed
by the equation of the path which is

y D h � h

`
x:

Since the bead is constrained to move on this path, its velocity and acceleration vectors are
also constrained to be directed along AB. This imposes conditions on their x and y compo-
nents that are easily derived by differentiating the geometric constraint equation with respect
to t . Thus,

Py D �h
`
Px;

Ry D �h
`
Rx:

y D h � h
`
x; Py D �h

`
Px; Ry D �h

`
Rx

SAMPLE 18.2 A particle sliding on a parabolic path. A particle slides
on a parabolic trough given by y D ax2 where a is a constant. Write the
geometric constraints of motion (on the path, velocity, and acceleration) of
the particle. Write the velocity and acceleration of the particle at a generic
location .x; y/ on its path.
Solution The geometric constraint on the path of the particle is already given, y D ax2.
Differentiating the path constraint with respect to time, we get the constraint on velocity and
acceleration components.

Py D 2ax Px;
Ry D 2ax Rx C 2a Px2:

Now, at a point .x; y/, we can write the velocity and acceleration of the particle as

*v D Px O{C Py O| D Px O{C 2ax Px O|;
*a D Rx O{C Ry O| D Rx O{C .2ax Rx C 2a Px2/ O|:

*v D Px O{C 2ax Px O|; *a D Rx O{C .2ax Rx C 2a Px2/ O|
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SAMPLE 18.3 Circular motion of a particle. A particle is constrained to
move on a frictionless circular path of radius R0 with constant angular speed
P� . There is no gravity. Find the equation of motion of the particle in the
x-direction and show that this motion is simple harmonic.
Solution This is simple problem that you have solved before, probably a few times. Here,
we do this problem again just to show how it works out with the constraint machinery in evi-
dence. The geometric constraint on the path of the particle is R D R0 (in polar coordinates).
This constraint gives us PR D 0 and RR D 0. Then the acceleration of the particle (in polar
coordinates),*a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oet reduces to*a D �R P�2 OeR, (of course).

The free-body diagram of the particle shows that there is only one force acting on the
particle, the normal reaction N of the path acting in the OeR direction. Therefore, the linear
momentum balance gives,

N OeR D m*a D m.�R P�2 OeR/ ) N D �mR P�2:

But, to write the equation of motion in the x-direction, we need to write the linear momentum
balance in the x-direction. We can write

P *
F D m*a using mixed basis vectors as N OeR D

m. Rx O{C Ry O|/. Dotting this equation with O{, we get

Rx D N

m
. OeR � O{/ D

�mR P�2
m

cos � D � P�2.R cos �/ D � P�2x

or, RxC P�2x D 0, which is the equation of simple harmonic motion in x. You can easily show
that the motion in the y-direction is also simple harmonic ( Ry C P�2y D 0).

SAMPLE 18.4 A bead slides on a straight wire. Consider the problem
of the bead sliding on a straight, inclined, frictionless wire of Sample 18.1
again. Find the position of the bead x.t/ and y.t/ assuming it slides under
gravity starting from rest at A.
Solution To find the position of the bead, we need to write the equation of motion and solve
it. This is single DOF system and, therefore, one scalar equation of motion should suffice.

The free-body diagram of the bead is shown in fig. 18.11. Using basis vectors . O�; On/ and
.O{; O|/ we write the LMB for the bead as

�mg O| CN On D m*a D m. Rx O{C Ry O|/:

We can easily eliminate the constraint force N from this equation by dotting this equation
with O�, which gives

�6mg. O| � O�/ D 6m� Rx.O{ � O�/C Ry. O| � O�/�
) g sin � D Rx cos � � Ry sin �:

But, from the geometric constraint y D h � .h=`/x, we have Ry D �.h=`/ Rx D �.tan �/ Rx.
Therefore,

g sin � D Rx cos � C Rx tan � sin � ) Rx D g sin � cos �:

Since g sin � cos � is constant, we integrate the equation of motion easily to find x.t/ D
1
2g sin � cos � t2 since x.0/ D 0; Px.0/ D 0. And, since y D h � x tan � , we have y.t/ D
h � 1

2g sin2 � t2:

x.t/ D 1
2ght

2 sin � cos �; y.t/ D h � 1
2gt

2 sin2 �
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ĵ

n̂

ˆλ

θ

Figure 18.11:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



940 Chapter 18. Constrained particles and rigid objects 18.1. Mechanics of a constrained particle

Filename:sfig11-1-parabola

y =ax2

y

x

Figure 18.12:

Filename:sfig11-1-parabola-a

mg

m
N

ı̂

ĵ
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SAMPLE 18.5 A bead sliding down a parabolic trough. Consider the
problem of Sample 18.2 again. Find the equation of motion of the bead.
Solution This is, again, a one DOF system. Therefore, we will get a single scalar equation
of motion. The free-body diagram shown in fig. 18.13 shows two forces acting on the bead.
The constraint force N acts normal to the path. Let Oet and Oen be unit vectors tangential and
normal to the path, respectively. Then the linear momentum balance gives

�mg O| CN Oen D m*a D m. Rx O{C Ry O|/:

To eliminate the unknown constraint forceN from this equation, we can take a dot product of
this equation with Oet . However, we must first find Oet . Now Oet is the unit tangent vector. So,
we can find it by finding a tangent vector to the path (remember gradient of a function rf ?)
and then dividing it by the length of the vector. That is doable but a little complicated. All
we need here is the dot product with a vector normal to Oen. Why not use the velocity vector
*v D Px O{ C Py O|? The velocity vector is always tangential to the path. Furthermore, we know
that from the geometric constraint (y D ax2), Py D 2ax Px and Ry D 2ax RxC2a Px2. Therefore,
*v D Px O{C 2ax Px O|. Now, dotting the LMB equation with*v we get,

�6mg
2ax Px����
. O| �*v/ D 6m � Rx

Px����
.O{ �*v/ C Ry

2ax Px����
. O| �*v/ �

�2gax6 Px D Rx6 Px C 2a Ry6 Px
D Rx C 2a .2ax Rx C 2a Px2/� �� �

Ry
D Rx.1C 4a2x/C 4a2 Px2:

Rearranging the terms above, we get the required equation of motion:

Rx C 4a2

1C 4a2x
Px2 C 2gax

1C 4a2x
D 0:

As you can see, this is a nonlinear ODE. Analytical solution of this equation is rather difficult.
We can, however, always solve it numerically. Note that a solution of this equation only gives
you x.t/, i.e., the x coordinate of the position of the bead. But, you can always find the y
coordinate since y D ax2.

Rx C 4a2

1C4a2x Px
2 C 2gax

1C4a2x D 0

Comment: Note that if we consider x and Px to be very small so that we can ignore the Px2
term completely and take 1C 4a2x � 1, then the equation of motion becomes

Rx C .2ga/ x D 0

which is the equation of simple harmonic motion with frequency
p
2ga. Thus, if we consider

a shallow parabola, and release the bead close to the origin, it executes simple harmonic

motion, much like a simple pendulum. This is an intuitively realizable motion.
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SAMPLE 18.6 Constrained motion of a pin. During a small interval of its
motion, a pin of 100 grams is constrained to move in a groove described by
the equation R D R0 C k� where R0 D 0:3m and k D 0:05m. The pin is
driven by a slotted arm AB and is free to slide along the arm in the slot. The
arm rotates at a constant speed ! D 6 rad=s. Find the magnitude of the force
on the pin at � D 60

�
.

Solution Let
*
F denote the net force on the pin. Then from the linear momentum balance

*
F D m*a

where*a is the acceleration of the pin. Therefore, to find the force at � D 60
�

we need to find
the acceleration at that position.

From the given figure, we assume that the pin is in the groove at � D 60
�
. Since the equa-

tion of the groove (and hence the path of the pin) is given in polar coordinates, it seems natural
to use polar coordinate formula for the acceleration. For planar motion, the acceleration is

a D . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� :

We are given that P� � ! D 6 rad=s and the radial position of the pin R D R0 C k � .
Therefore, 4

R� D d P�
dt

D 0 ( since P� D constant)

PR D d

dt
.R0 C k�/ D k P� and

RR D k R� D 0:

Substituting these expressions in the acceleration formula and then substituting the numerical
values at � D 60

�
, (remember, � must be in radians!), we get

*a D �
R P�2� �� �

.R0 C k�/ P�2 OeR C
2 PR P�����
2k P�2 Oe�

D �.0:3mC 0:05m � �
3
/ � .6 rad=s/2 OeR C 2 � 0:05m � .6 rad=s/2 Oe�

D �13:63m=s2 OeR C 3:60m=s2 Oe� :

Therefore the net force on the pin is
*
F D m*a

D 0:1 kg � .�13:63 OeR C 3:60 Oe� /m=s2

D .�1:36 OeR C 0:36 Oe� /N

and the magnitude of the net force is

F D j*F j D
q
.1:36N/2 C .0:36N/2 D 1:41N:

F D 1:41N
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4 Note that R is a function of � and
� is a function of time, therefore R is a
function of time. Although we are in-
terested in finding PR and RR at � D 60

�
,

we cannot first substitute � D 60
�

in the
expression for R and then take its time
derivatives (which will be zero).
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ĵ

ω

FBD

Figure 18.16: A partial free-body dia-
gram of the puck. For linear momen-
tum balance we need to consider only
the forces acting in the plane of motion.

SAMPLE 18.7 A puck sliding on a frictional rotating table. A horizontal
turntable rotates with constant angular speed ! D 100 rpm. A puck of mass
m D 0:1 kg gently placed on the rotating turntable. The puck begins to slide.
The coefficient of friction between the puck and the turntable is 0.25. Find
the equation of motion of the puck using

1. A fixed reference frame with cartesian coordinates

2. A rotating reference frame with cartesian coordinates

Solution

1. Equation of motion using a fixed reference frame: The puck has two DOF on the
turntable. So, we will need two configuration variables, say x and y, and we will have
to find equation of motion for each variable.
Let us use a fixed cartesian coordinate system with the origin at the center of the
turntable. Let *rP D x O{C y O| be the position of the puck at some instant t , so that its
velocity is*vP D Px O{C Py O| and acceleration is*aP D Rx O{C Ry O|.
The free-body diagram of the puck should show three forces — the force of gravity
(in �Ok direction), the normal reaction of the turntable (in Ok direction) and the friction
force

*
F . Since, there is no motion in the vertical direction, we know thatN D mg and

that F D j*F j D �N D �mg. But, what is the direction of the friction force? Well,
we know that it acts in the opposite direction of the relative slip, so that

*
F D ��N

*vrel
j*vrelj

:

So, we need to find*vrel. Now*vrel is the velocity of the puck relative to the turntable,
or more precisely, relative to the point on the turntable just underneath the puck. Let
us denote that point by P 0. Clearly, P 0 goes in circles with constant speed, so that its
velocity is

*vP0 D*! �*rP0 D P� Ok � .x O{C y O|/ D P�x O| � P�y O{:
Therefore, the relative velocity,*vrel is

*vrel D*vP �*vP0 D . Px C P�y/O{C . Py � P�x/ O|

Now the linear momentum balance for the puck in the xy plane gives

�� 6mg
*vrel
j*vrelj

D 6m. Rx O{C Ry O|/

) Rx D ��g
j*vrelj

.*vrel � O{/ D � �g. Px C P�y/q
. Px C P�y/2 C . Py � P�x/2

and Ry D ��g
j*vrelj

.*vrel � O|/ D � �g. Py � P�x/q
. Px C P�y/2 C . Py � P�x/2

:

These are coupled nonlinear ODEs that represent the equations of motion of the puck.

Rx D � �g. PxC P�y/q
. PxC P�y/2C. Py� P�x/2

; Ry D � �g. Py� P�x/q
. PxC P�y/2C. Py� P�x/2

Note that these equations are valid only as long as there is relative slip between the
puck and the turntable. If the puck stops sliding due to friction, it simply goes in circles
with the turntable and, therefore, its equations of motion then are Rx D � P�2x; Ry D
� P�2y.
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2. Equation of motion using a rotating reference frame: Now we derive the equations
of motion using a rotating reference frame, B, with .x0; y0/ coordinate axes, fixed to
the rotating turntable. Let the position of the puck in the rotating frame be *rP=O0 D
x0 O{0Cy0 O|0. Note that the velocity of the puck in the rotating reference frame is*vP=B D
Px0 O{0 C Py0 O|0, and acceleration is*aP=B D Rx0 O{0 C Ry O|0.
Now, from the linear momentum balance (

P *
F D m*a) for the puck, we get

��6mg
*vrel
j*vrelj

D 6m.*aP0 C*aP=B C 2*!B �*vP=B/

where we have used the three term acceleration formula for*aP. Here,

*aP0 D � P�2.x0 O{0 C y0 O|0/
*aP=B D Rx0 O{0 C Ry0 O|0

2*!B �*vP=B D �2 P� Py0 O{0 C 2 P� Px0 O|0

Note that the point P 0, coincident with P and fixed on the turntable, is stationary with
respect to the rotating frame. Therefore, the relative velocity of P as observed in the
rotating frame is *vrel D *vP=B D Px0 O{0 C Py0 O|0. Substituting these terms in the LMB
equation above, we have

��g Px0 O{0 C Py0 O|0p
Px02 C Py02

D .� P�2x0 C Rx0 � 2 P� Py0/O{0 C .� P�2y0 C Ry0 C 2 P� Px0/ O|0

Dotting this equation with O{0 and O|0, respectively, we get

Rx0 D P�2x0 � �g Px0p
Px02 C Py02

C 2 P� Py0

Ry0 D P�2y0 � �g Py0p
Px02 C Py02

� 2 P� Px0

These are the required equations of motion for the puck in the rotating frame.

Rx0 D P�2x0 � �g Px0p
Px02C Py02 C 2 P� Py0; Ry0 D P�2y0 � �g Py0p

Px02C Py02 � 2
P� Px0

Once we find a solution x0.t/ and y0.t/ of these equations, we can find the solution in
the fixed frame by transforming (x0; y0) to (x; y) through�

x.t/

y.t/

�
D
�

cos. P� t/ � sin. P� t/
sin. P� t/ cos. P� t/

��
x0.t/
y0.t/

�

Also, note that when the solution of the equations of motion in the rotating reference
frame brings the puck to halt, the puck stops with respect to the rotating turntable. To
an observer in the fixed frame, the puck will be going in circles with a constant P� .
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Figure 18.17: Axes .x0; y0/ represent
the rotating frame B fixed to the rotating
turntable; ie .x0; y0/ rotate with angular
velocity *!B D P� Ok.
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ĵ

k̂

ωθ

�
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5If we assume a solution of the form
R.t/ D e�t with some unknown �

and plug back into the given differen-
tial equation, we get an algebraic equa-
tion in � which is called the characteris-
tic equation. For more information, see
box 10.1 on page 501, eqn. (10.9).

SAMPLE 18.8 A collar sliding on a frictional rod. A collar of mass
m D 0:5 lbm slides on a massless rigid rod OA of length ` D 8 ft. The rod
rotates counterclockwise with a constant angular speed P� D 5 rad=s. The
coefficient of friction between the rod and the collar is � D 0:3. At time
t D 0 s, the bar is horizontal, the collar is at R0 D 1 ft and has radial speed
PR0 D � P�R0 towards the pivot O. Ignore gravity.

1. How does the position of the collar change with time (i.e., what is the
equation of motion of the collar)?

2. Plot the path of the collar starting from t D 0 s till the collar shoots off
the end of the bar.

3. How long does it take for the collar to leave the bar?

Solution

1. A Free-Body Diagram of the the collar at a general position .R; �/ is shown in
Fig. 18.19. The geometry of the position vector and basis vectors is shown in
Fig. 18.20. In vector notation, the forces on the collar are

*
N D N Oe� acting nor-

mal to the rod and the force of friction
*
Fs D ��N OeR acting along the rod. Thus

linear momentum balance for the collar is:X
*
F D m*a

��N OeR CN Oe� D m�. RR �R P�2/ OeR C .2 PR P� CR R�����
0

/ Oe� (18.11)

Note that R� D 0 because the rod is rotating at a constant rate. Dotting both sides of
eqn. (18.11) with OeR and Oe� we get

�Eqn. (18.11)� � OeR ) � �N D m. RR �R P�2/
or RR �R P�2 D ��N

m

�Eqn. (18.11)� � Oe� ) N D 2m PR P�:

Eliminating N from the last two equations we get

RRC 2� P� PR � P�2 R D 0:

Since P� D ! is constant, the above equation is of the form

RRC C PR � !2 R D 0 (18.12)

where C D 2�! and ! D P� .

Note that we could derive eqn. (18.12) from eqn. (18.11) in a single step by taking a dot
product of eqn. (18.11) with OeRC� Oe� . Why? Look at the left hand side of eqn. (18.11).
The net reaction force is N.�� OeR C Oe� / acting in the direction .�� OeR C Oe� /. If we
dot the reaction force with a vector normal to its direction, we get rid of the reaction
force. A vector normal to .�� OeR C Oe� / is OeR C � Oe� .

�Eqn. (18.11)� � . OeR C � Oe� / ) 0 D m�. RR �R P�2/ OeR C 2 PR P� Oe� � � . OeR C � Oe� /
) 0 D RRC 2� P� PR � P�2 R

which is the same equation as eqn. (18.12).
Solution of equation (18.12): The characteristic equation 5associated with
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Eqn. (18.12) is

�2 C C� � !2 D 0

) � D �C �
p
C 2 C 4!2

2

D !.���
q
�2 C 1/:

Therefore, the solution of Eqn. (18.12) is

R.t/ D Ae�1t C Be�2t

D Ae.��C
p
�2C1/!t C Be.���

p
�2C1/!t :

Substituting the given initial conditions: R.0/ D R0 D 1 ft and PR.0/ D �� P�R0, we
get 6

R.t/ D 1 ft
2

�
e.��C

p
�2C1/!t C e.���

p
�2C1/!t

�
: (18.13)

R.t/ D 1 ft
2

h
e.��C

p
�2C1/!t C e.���

p
�2C1/!t

i
:

2. To draw the path of the collar we need bothR and � . Because P� D 5 rad=s D constant,

� D P� t D .5 rad=s/ t:

Now we can take various values of t from 0 s to, say, 1 s, and calculate values of � and
R. Plotting all these values ofR and � , however, does not give us the correct path after
the collar reaches the end of the bar, at R D length of the bar D 8 ft. So we need to
find the time tf when R.tf / D 8 ft. Equation (18.13) is a nonlinear algebraic equation
for t which we can solve iteratively on a computer, or with some patience, even on a
calculator. One way to find tf would be to simply plot R.t/ and find the intersection
with R D 8 (see fig. 18.21) and read the corresponding value of t . Following either
of these methods we find that tf � 0:74518 s here. Now, we can plot the path of the
collar by computing R and � from t D 0 to t D tf and making a polar plot on a
computer as follows (pseudocode).

tf = 0.74518 % final value of t
t = 0:tf/100:tf; % take 101 points in [0 tf]
R0 = 1; w = 5; mu = .3; % initialize variables
f1 = -mu + sqrt(muˆ2 +1); % first partial exponent
f2 = -mu - sqrt(muˆ2 +1); % second partial exponent
R = 0.5*R0*(exp(f1*w*t) + exp(f2*w*t)); % calculate R
theta = w*t; % calculate theta
polarplot(theta,r)

The plot produced thus is shown in Fig. 18.22.

3. The time tf computed above was

tf D 0:7452 s:

By plugging this value in the expression for R.t/ (Eqn. (18.13) we get, indeed,

R D 8 ft:

tf D 0:7452 s

Note, although we have not checked it explicitly, the increase in kinetic energy of the particle
comes from the work of the force from the rod on the particle:

�EK D
Z

*
F �*v dt

6From the general solution and the
given initial conditions, we have:

R0 D AC B

��!R0 D A�1 C B�2

Solving these two equations simultane-
ously, we getA D �2C�!

�2��1 R0, and B D
��1C�!

�2��1 R0. Substituting the values of

�1 and �2, we getA D B D R0
2 D 1 ft

2 :
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Figure 18.21: Finding the final time
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Figure 18.23: A collar of mass m slides
on a massless and frictionless bar, bent
at an angle � with the vertical axis.
The bar is rotating at a constant angular
speed ! about the z-axis.

SAMPLE 18.9 A collar sliding on a rotating rod in 3-D. A massless and
frictionless rod AB is rotating about the vertical axis through point A. The
rod is bent at an angle � from the vertical and is rotating with a constant
angular speed ! about the vertical axis. A small collar of mass m slides on
the rod. Assume that at time t D 0 the collar is released from a rest position
with respect to the rod at a distance R0 from the axis of rotation. There is no
gravity.

1. Find the equation of motion for the collar (a differential equation for
the position of the collar).

2. How does the distance of the collar from the vertical axis change with
time?

3. For � D �=2, show that the solution obtained in (ii) above is the same
as that obtained in Sample 18.8 for � D 0.

Solution Since the bar is bent and it rotates about the vertical axis, it sweeps a conical surface
about the axis of rotation. As the collar slides on the rod, it traces a path on this surface. Let
.R; �; z/ be the cylindrical coordinates of the collar at any general time t (Fig. 18.24(a)).
Since the rod is frictionless and there is no gravity, the only force acting on the collar is the
normal reaction from the rod. This force is shown in the free-body diagram of the collar in
Fig. 18.24(b). Note that there are a lot of possible directions for a normal to the rod at the
collar. In fact, any vector in the plane perpendicular to the rod at the collar is normal to the
rod. So, at this point let us write

*
N D N On

where On is a unit normal to the rod. Thus, if O� is a unit vector along the rod, then

O� � On D 0 (18.14)

where
O� D

*rAB
j*rABj

D sin� OeR C cos� Ok:
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Figure 18.24: (a) Cylindrical coordinates R and z of the collar (� is not shown) and the
orientation of the cylindrical basis vectors. (b) Free-body diagram of the collar (there is no
gravity). (c) Instantaneous R-theta plane of the collar.

1. Equation of Motion: We now write the linear momentum balance for the collar:X
*
F D m*a
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where X
*
F D N On
*a D . RR �R P�2/ OeR C .2 PR P� CR R�����

0

/ Oe� C Rz Ok

Dotting both sides of the equation
P *
F D m*a by O� we get

N On � O�����
0

D m�. RR �R P�2/ OeR � O�����
sin�

C2 PR P� Oe� � O�����
0

CRz Ok � O�����
cos�

�

) . RR �R P�2/ sin� C Rz cos� D 0:

This expression is an equation of motion of the collar. However, it is only a single
equation in terms of derivatives of two variables R and z. Now, from geometry

R D z tan� ) Rz D RR= tan�:

Substituting this relationship in the equation of motion we get

RR.sin� C cos�
tan�

/ �R P�2 D 0:

Noting that P� D ! D a constant, we may write the above equation, with some trigono-
metric simplifications, as

RRC .! sin�/2R D 0 (18.15)

which is an equation of motion of the collar in terms of its distance R from the vertical
axis.

2. Solution of the equation of motion: The solution of Eqn. (18.15) is given by 7

R.t/ D C1e
.! sin�/t C C2e

�.! sin�/t

where C1 and C2 are arbitrary constants to be determined from the initial conditions.
Substituting the given initial conditions: R.0/ D R0 and PR.0/ D 0 we get

C1 D C2 D
R0
2
:

Therefore, the solution may be written as

R.t/ D R0
2

h
e.! sin�/t C e�.! sin�/t

i
: (18.16)

3. Special case, � D �=2: Substituting � D �=2 in Eqn. (18.16) we get

R.t/ D R0
2

�
e!t C e�!t

�
which is the same solution as obtained in Eqn. (18.16) in Sample 18.8 for � D 0 and
R0 D 1 ft.

7 You may find the solution by solving
the corresponding characteristic equa-
tion (see the solution of Eqn. (18.15) in
Sample 18.8, for example), or by look-
ing up the table of “The Simplest ODEs
and Their Solutions” on page 22 of the
text, or by guessing a solution yourself if
you have some experience with ODEs.
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SAMPLE 18.10 Osculating circle in 3-D. A small bead is driven down a
a wire-frame bent in the shape of a conical helix by a tiny motor imbedded
in the bead. The combined mass of the bead and the motor is m D 200

gm. The shape of the helix is given: R D R0�; z D 2R0� and where
R0 D 0:3m. At the instant when � D 2 radians, the angular speed and the
angular acceleration of the bead are P� D 1 rad=s and R� D 2 rad=s2. Find

1. the net normal force on the bead and

2. the radius of the osculating circle at the instant given.

Solution

1. We can find the net normal force on the bead from the linear momentum balance of
the bead (see the free body diagram of the bead):X

*
F D m*a

N Oen C T Oet �mg Ok D m.at Oet C an Oen/
) Fn �

X
*
F � Oen D man:

Thus we need to find the normal acceleration of the bead. We can write the position of
the bead as

*r D R����
R0�

OeR C z����
2R0�

Ok

) *v � PR OeR CR P� Oe� C Pz Ok
D R0

P� OeR CR0�
P� Oe� C 2R0

P� Ok
D R0

P�. OeR C � Oe� C 2 Ok/;
and *a � . RR �R P�2/ OeR C .2 PR P� CR R�/ Oe� C Rz Ok

D .R0
R� �R0� P�2/ OeR C .2R0

P�2 CR0�
R�/ Oe� C 2R0

R� Ok
D R0�.

R� � � P�2/ OeR C . P�2 C � R�/ Oe� C 2 R� Ok�

Substituting the given numerical values for �; P�;R0 and R� in the above expressions for
*v and*a we get the velocity and the acceleration of the bead at the moment of interest:

*v D 0:3m=s. OeR C 2 Oe� C 2 Ok/
*a D 1:2m=s2.2 Oe� C Ok/:

In path coordinates,
*a D*at C*an D at Oet C an Oen

where

Oet D
*v

j*vj (18.17)

D 0:3m=s. OeR C 2 Oe� C 2 Ok/
0:3
p
1C 4C 4 m=s

(18.18)

D 1

3
. OeR C 2 Oe� C 2 Ok/: (18.19)
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Therefore,

*at D .*a � Oet / Oet
D .

4:8C 2:4

3
m=s2/ Oet

D 0:8m=s2. OeR C 2 Oe� C 2 Ok/
*an D *a �*at

D �2:4 Oe� C 1:2 Ok � 0:8m=s2. OeR C 2 Oe� C 2 Ok/�
D .�0:8 OeR C 0:8 Oe� � 0:4 Ok/m=s2

an D j*anj D 1:2m=s2

Oen D
*an

an

D �2
3
OeR C

2

3
Oe� �

1

3
Ok:

Hence, the net normal force on the bead
*
Fn D man Oen

D 0:2 kg � 1:2m=s2 � 1
3
.�2 OeR C 2 Oe� � Ok/

D .�0:16 OeR C 0:16 Oe� � 0:08 Ok/N:

*
Fn D 0:08N.�2 OeR C 2 Oe� C Ok/

2. For calculating the radius � of the osculating circle, we note that

an D v2

�

) � D v2

an
D .0:9m=s/2

1:2m=s2
D 0:675m:

� D 0:675m
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1No physical system can move in only
one way. The idea that a machine has
one degree of freedom is an idealization
that takes the rigid-object description of
the parts and the ideal nature of the con-
nections literally. In fact, all parts de-
form at least a little, and no connec-
tions are so precise as to be exact ge-
ometric constraints. It may be reason-
able to respect the standard rigid-object
idealizations and consider a machine as
one-degree-of-freedom for basic analy-
sis, as we do in this section. When, for
example, trying to figure out why a ma-
chine vibrates in an undesirable way it
may also be reasonable to relax some of
the assumptions we make here and con-
sider more degrees of freedom.
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Figure 18.27: A frictionless hinge is a
workless constraint. The net fork of the
interaction force on the two contacting
bodies is zero.

18.2 Mechanics of one-degree-of-freedom
2-D mechanisms

A one-degree-of-freedom mechanism is a collection of parts linked together
so that they can move in only one way 1. The word “freedom” has to be
taken lightly here because in practice even the one “freedom” is often con-
trolled or restricted. Frankly, most machine designers don’t trust the laws
of mechanics to enforce motions that they want. Instead they choose kine-
matic restrictions that enforce the desired motions and then use a motor, a
computer controlled actuator or big flywheel to keep that motion moving at
a prescribed rate.

We consider here machines that can move in just one way, whether or not
that one motion is free. So in this sense, “one”-degree-of-freedom machines
include machines with no freedom at all, just so long as they move in only
one way.

Some familiar examples of one-degree-of-freedom mechanisms are a 1-D
spring and mass, a pendulum, a slider-crank, a grounded 4-bar linkage, and
a gear train.

Most ideal constraints are workless constraints
A fruitful equation for studying one-degree-of-freedom mechanisms is power
balance, or for conservative systems, energy balance. The reason these equa-
tions are so useful is because most ideal connections are workless. That is:

the net work of the interaction forces (and moments) of a pair of parts
that are connected with the standard ideal connections is zero. This
includes welds, frictionless hinges, frictionless sliding contact, rolling
contact, or parts connected by a massless inextensible link.

Example: A frictionless hinge is a workless constraint
Body A is connected to body B by a frictionless hinge at C (see fig. 18.27). The

force on body B at C from A is
*
FC and the force on A from body B at C is �*

FC .
The power of the interaction force on body B is PBonA D *

FC �*vC . This power
contributes to the increase in the kinetic energy of B. The power of the interaction
force on A is PaonB D �*

FC �*vC D �PB. So the contribution to the increase in
the kinetic energy of bodyA is minus the contribution to body B and the net power
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on the system of two bodies is zero. Writing this out,

The net power of the pair
of interaction forces on the
pair of bodies

BBN����
Ptotal D PBonA C PAonB

D *
FC �*vC C .�*

FC / �*vC

D .
*
FC � *

FC / �*vC

D 0:

Basically the same situation holds for all the standard ideal connections as
explained in the box on page 951.

If one of two interacting bodies is known to be stationary, like the ground,
then the work of the constraint forces is zero on both of the bodies. Thus the
work of the hinge force on a pendulum, and the ground reaction forces on a
frictionlessly sliding body or the ground force on a perfectly rolling body is
zero. But be careful with the words “workless constraint forces”, however.

The workless constraint connecting moving bodiesA and B is likely to
do positive work on one of the bodies and negative work on the other.

It is just the net work on the two bodies which is zero.

Energy method: single degree of freedom systems
Although linear and angular momentum balance apply to a single degree of
freedom system and all of its parts, often one finds what one wants with a
single scalar equation, namely energy or power balance.

Imagine a complex machine that only has one degree of freedom, mean-
ing the position of the whole machine is determined by a single configura-
tion variable, call it q. Further assume that the machine has no motion when

18.2 Ideal constraints and workless constraints
All of the ideal constraints we consider are interactions between two
bodies A and B. One of these could be the ground. Let’s take the
interaction force

*
F and moment

*
M to be the force and moment

of A on B. The point of interaction is A on A and B on B. By
the principle of action and reaction, the net power of the interaction
force on the two bodies is

P D *
F �*vB C

*
M �*!B C .�

*
F / �*vA C .�

*
M/ �*!A

D *
F �*vB=A C

*
M �*!B=A:

All of our ideal constraints are designed to exactly make these dot
products zero. The ideal hinge is considered in the text. Another

example is perfect rolling. In that case the interaction moment is
assumed to be zero. The no-slip condition means that*vB=A. On the
other hand for frictionless sliding there*vB=A can have a component
tangent to the surfaces. But that is exactly the direction where the
friction force is assumed to be zero.

And so it is for all of the ideal “workless” constraints.
Examples of non-workless constraints, that is, interactions that

contribute to the energy equations are: sliding with non-zero friction,
joints with non-zero friction torques, joints with motors, or interac-
tions mediated by springs, dampers or actuators.
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2The cancellation of the factor Pq from
equation 18.20 depends on Pq being other
than zero. While moving, Pq is not zero.
Strictly we cannot cancel the Pq term
from the equation at the instants when
Pq D 0. However, to say that a differ-
ential equation is true except for certain
instants in time is, in practice to say that
it is always true, at least if we make rea-
sonable assumptions about the smooth-
ness of the motions.

Pq D 0. The variable q could be, for example, the angle of one of the linked-
together machine parts. Also, assume that the machine has no dissipative
parts: no friction, no collisions, no inelastic deformation. Because q char-
acterizes the position of all of the parts of the system we can, in principal,
calculate the potential energy of the system as a function of q,

EP D EP.q/:

We find this function by adding up the potential energies of all the springs in
the machine and the gravitational potential energies of the parts. Similarly
we can write the system’s kinetic energy in terms of q and its rate of change
Pq. Because at any configuration the velocity of every point in the system is
proportional to Pq we can write the kinetic energy as:

EK DM.q/ Pq2=2

whereM.q/ is a function that one can determine by calculating the machine’s
total kinetic energy in terms of q and Pq and then factoring Pq2 out of the
resulting expression.

Now, if we accept the equation of mechanical energy conservation we
have

constant D ET conservation of energy,

) 0 D d

dt
ET taking one time derivative,

D d

dt
�EP CEK� total energy is potential plus kinetic

D d

dt
�EP.q/C

1

2
M.q/ Pq2� substituting from paragraphs above

) 0 D d

dq
�EP.q/� Pq C

1

2

d

dq
�M.q/� Pq Pq2 CM.q/ Pq Rq

0 D d

dq
�EP.q/�C

�
1

2

d

dq
�M.q/�

�
Pq2 CM.q/ Rq cancelling Pq

0 D f1.q/C f2.q/ Pq2 C f3.q/ Rq (18.20)

with f1.q/ �
d

dq
�EP.q/�;

f2.q/ �
1

2

d

dq
�M.q/�; and

f3.q/ �M.q/:

The cancellation of Pq above lacks mathematical rigor, but doesn’t cause
problems 2.The equation of motion is complicated because when we take
the time derivative of a function of M.q/ and EP.q/ we have to use the chain
rule. Also, because we have products of terms, we had to use the product rule.
Eqn. 18.20 is the general equation of motion of a conservative one-degree-
of-freedom system. It is really just a special case of the equation of motion
for one-degree-of-freedom systems found from power balance. Rather than
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memorizing eqn. (18.20) it is probably best to look at its derivation as an
algorithm to be reproduced on a problem by problem basis.

Example: Spring and mass
Although the motion of a spring and mass system can be found easily enough

from linear momentum balance, it is also a good example for energy balance (see
fig. 18.28). Using conservation of energy for the spring and mass system:

ET D constant

0 D d

dt
ET

D PEK C PEP

D d

dt
.mv2=2/C d

dt
.kx2=2/

D mv Pv C kx Px
v D Px ) 0 D m Rx C kx:

Similarly power balance could have been used to get the same result, looking at just
the mass

P D d

dt
EK

.�kx/. Px/ D d

dt
.mv2=2/ D mv Pv

) 0 D kx Cm Rx
as before.

Example: Pendulum
Consider a rigid body with massm and moment of inertia I o about a hinge which is
a distance ` from the center-of-mass (see fig. 18.29). The familiar simple pendulum
is another single degree of freedom system for which the equation of motion can be
found from conservation of energy.

ET D constant

! 0 D d

dt
ET D PEK C PEP

D d

dt
.I o!2=2/C d

dt
.�mg` cos �/

D I o! P! C�mg`.� sin �/ P�
! D P� ) 0 D R� C mg`

I o
sin �:

the pendulum equation that we have derived before by this and other means (angular
momentum balance about point o).

The above examples are old friends which are handled easily with other tech-
niques. Here is a problem which is much more difficult without the energy
method.

Example: Three bars act like a simple pendulum
Assume all three bars in the structure shown in fig. 18.30are of equal length ` and

have mass m uniformly distributed along their length. It is intuitively obvious that
this device swings back and forth something like a simple pendulum. But how can
we get the laws of mechanics to tell us this? One approach, which will work in
the end, is to draw free body diagrams of all the parts, write linear and angular
momentum balance for each, and then add and subtract equations to eliminate the
unknown constraint forces at the various hinges.

Filename:tfigure-springmassas1DOF
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Figure 18.28: The familiar one degree
of freedom spring and mass system.
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Figure 18.29: A rigid body suspended
from a frictionless hinge is an en-
ergy conserving one-degree-of-freedom
mechanism.
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Figure 18.31: A person rides a bike.
The pedaling leg is idealized as a pair of
equal and opposite forces acting on the
seat and pedal.

The more direct approach is to write the energy equation, adding up the poten-
tial and kinetic energies of the parts, all evaluated in terms of the single configura-
tion variable � . Taking the potential energy to be zero at � D �=2 (when all centers
of mass are at hinge height) we have

ET D constant

0 D d

dt
ET D PEP C PEK

D d

dt

�
.I o!2=2/C .I o!2=2/C .m.`!/2=2/

�
C d

dt

�
.�gm.`=2/ cos �

�gm.`=2/ cos �/ � gm` cos �
�

I o D m`2=3 ) 0 D d

dt

�
5m`2!2=6

� C d

dt

� �2gm` cos �
�

D .5m`2! P!=3C 2gm`! sin �
�

) 0 D 5` P!=3C 2g sin �

) 0 D R� C 6g

5`
sin �

which is the same governing equation as for a point-mass pendulum with length
5`=6. This is just half way between the following two cases. If the side links had
no mass the equation would have been the same as for a point mass pendulum with
length `

0 D R� C g

`
sin �

and if the bottom link had no mass the equation would be the same as a stick hang-
ing from one end which goes back and forth like a point mass pendulum with length
2`=3 according to

0 D R� C 3g

2`
sin �:

Example: One on the rim is like two on the frame.
A bicycle transmission is such that the speed of the bike relative to the ground is n
times the speed pedal relative to the frame :

vbike D nvpedal=bike

Assume the kinetic energy of the relative motion of a rider’s legs can be neglected,
as can be the weight of the rider’s leg. At the moment in question the velocity of the
pedal is parallel to the direction from the seat to the leg. Thus the free body diagram
of the bike/person system, leaving out the pedaling leg is as shown in fig. 18.31.
Let’s assume the bike and rider have mass M and that the wheels have mass mr

and mf concentrated on the rim (the hubs are considered part of the frame and the
spokes are neglected). Neglecting air resistance etc.the power balance equation is:

P D PEK (18.21)

Let’s do some side calculations for evaluating the terms in eqn. (18.21). First, the
only forces that do work on the system as drawn are the force on the pedal and the
force on the seat.

P D �*
FP �*vseat C

*
FP �*vpedal

D �*
FP �*vseat C

*
FP�

�
*vbike C*vpedal=bike

�
D �*

FP �*vseat C
*
FP �*vbike� �� �

0

C *
FP �*vpedal=bike� �� �
FP vpedal=bike

D FP vbike=n
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The net power of the leg is expressed by the compression it carries times its ex-
tension rate. The kinetic energy of the wheel comes from both its rotation and its
translation. The moment of inertia of a hoop about its center is I D mr2. For
rolling contact j!Rj D v so, for one wheel:

EKwheel D mv2bike=2C I!2=2

D mv2bike=2C .mR2/.v=R/2=2

D mv2bike:

The kinetic energy of a rolling hoop is twice that of a point mass moving at the
same speed. Putting these results back in to eqn. (18.21) we have

P D PEK (18.22)

FP vbike=n D d

dt

�
Mv2bike=2C .mr Cmf /v

2
bike

�
(18.23)

D �
M Pvbike C 2.mr Cmf / Pvbike

�
vbike (18.24)

) FP =n D .M C 2.mr Cmf // Pvbike (18.25)

) Pvbike D FP
n.M C 2.mr Cmf //

: (18.26)

The bigger the pedal force, the bigger the acceleration, obviously. The higher the
gear ratio, the less the acceleration; the faster gears let you pedal slower for a given
bike speed, but demand more pedal force for a given acceleration. A heavier bike
accelerates less. But the contribution to slowing a bike is twice as much for mass
added to the rim as for mass added to the frame or body.

Some comments. n typically ranges from about 1.7 to 8 for a new 21 speed bike
and is about 5 for an adult European, Indian or Chinese 1-speed. For a given speed
of bicycle riding your feet go n times slower relative to your body than for walking
or running at that speed. This calculation is for accelerating a bike on level ground
with no wind and rolling resistance. The net speed of a bike in a bike race is not
so dependent on weight, because the main enemy is wind resistance. To the extent
that weight is a problem it is for steady uphill travel. In this case the mass on the
rim makes the same contribution as mass on the frame.

Vibrations
The preponderance of systems where vibrations occur is not due to the fact
that so many systems look like a spring connected to a mass, a simple pen-
dulum, or a torsional oscillator. Instead there is a general class of systems
which can be expected to vibrate sinusoidally near some equilibrium posi-
tion. These systems are one-degree -of-freedom (one DOF) near an energy
minimum.

In detail why this works out is explained in Box 18.3.

Examples of 1 DOF harmonic oscillators
In the previous section, we have shown that any non-dissipative one-degree-
of-freedom system that is near a potential energy minimum can be expected
to have simple harmonic motion. Besides the three examples we have given
so far, namely,

� a spring and mass,
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� a simple pendulum, and

� a rigid body and a torsional spring,

there are examples that are somewhat more complex, such as

� a cylinder rolling near the bottom of a valley,

� a cart rolling near the bottom of a valley, and a

� a four bar linkage swinging freely near its energy minimum.

The restriction of this theory to systems with only one-degree-of-freedom is
not so bad as it seems at first sight. First of all, it turns out that simple har-
monic motion is important for systems with multiple-degrees-of-freedom.
We will discuss this generalization in more detail later with regard to nor-
mal modes. Secondly, one can also get a good understanding of a vibrating
system with multiple-degrees-of-freedom by modeling it as if it has only
one-degree-of-freedom.

Example: Cylinder rolling in a valley
Consider the uniform cylinder with radius r rolling without slip in an cylindrical

‘ideal’ valley of radius R.

18.3 One degree of freedom systems near a potential energy
minimum are harmonic oscillators

In order to specialize to the case of oscillations, we want to look at
a one degree of freedom system near a stable equilibrium point, a
potential energy minimum.

At a potential energy minimum we have, as you will recall from
‘max-min’ problems in calculus, that dEP.q/=dq D 0. To keep
our notation simple, let’s assume that we have defined q so that
q D 0 at this minimum. Physically this means that q measures
how far the system is from its equilibrium position. That means that
if we take a Taylor series approximation of the potential energy the
expression for potential energy can be expressed as follows:

EP � constC dEP

dq����
0

�qC 1

2

d2EP

dq2� �� �
Kequiv

�q2 C : : :

) dEP

dq
� Kequiv � q (18.27)

Applying this result to equation( 18.20) we get:

0 D KequivqC
1

2

d

dq
�M.q/� Pq2 CM.q/ Rq: (18.28)

We now writeM.q/ in terms of its Taylor series. We have

M.q/ DM.0/C dM=dqj0 � qC : : : (18.29)

and substitute this result into equation 18.28. We have not finished
using our assumption that we are only going to look at motions that
are close to the equilibrium position q D 0 where q is small. The

nature of motion close to an equilibrium is that when the deflections
are small, the rates and accelerations are also small. Thus, to be
consistent in our approximation we should neglect any terms that in-
volve products of q; Pq; or Rq. Thus the middle term involving Pq2 is
negligibly smaller than other terms. Similarly, using the Taylor se-
ries forM.q/, the last term is well approximated byM.0/ Rq, where
M.0/ is a constant which we will callMequiv. Now we have for the
equation of motion:

0 D d

dt
ET ) 0 D KequivqCMequiv Rq; (18.30)

which you should recognize as the harmonic oscillator equation. So
we have found that for any energy conserving one degree of freedom
system near a position of stable equilibrium, the equation governing
small motions is the harmonic oscillator equation. The effective stiff-
ness is found from the potential energy by Kequiv D d2EP=dq

2

and the effective mass is the coefficient of Pq2=2 in the expansion for
the kinetic energy EK. The displacement of any part of the system
from equilibrium will thus be given by

A sin.� t/CB cos.� t/ (18.31)

with �2 D Kequiv=Mequiv, andA andB determined by the initial
conditions. So we have found that all stable non-dissipative one-
degree-of-freedom systems oscillate when disturbed slightly from
equilibrium and we have found how to calculate the frequency of
vibration.
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For this problem we can calculate EK and EP in terms of � . Briefly,

EP D �mg.R � r/ cos �

EK D 1

2

�
3

2
mr2

� P�.R � r/
r

!2

D 3

4
m.R � r/2 P�2

So we can derive the equation of motion using the fact of constant total energy.

0 D d

dt
.ET / D

d

dt
.EK CEP/

D d

dt

0
BBB@�mg.R � r/ cos �� �� �

EP

C 3

4
m.R � r/2 P�2� �� �

EK

1
CCCA

D .mg.R � r/ sin �/ P� C 3

2
.R � r/2 P� R�

) 0 D mg.R � r/ sin � C 3

2
.R � r/2m R�

Now, assuming small angles, so � � sin � , we get

g.R � r/� C 3

2
.R � r/2 R� D 0 (18.32)

R� C
�
2

3

g

.R � r/

�
� �� �

�2

� D 0 (18.33)

This is, naturally, our old friend the harmonic oscillator equation. The period is a
funny combination of terms. If r � R it looks like a point mass pendulum with
length 3R=2, more than R. That is, the rolling effect doesn’t go away and make the
roller act like a point mass even when the radius goes to zero. See page 818 for the
angular momentum approach to this problem.

Although, in some abstract way the energy approach always works, practi-
cally speaking it has limitations for systems where the configuration is not
easily found from one configuration variable.

Example: A four bar linkage using with energy methods
Although probably not usually the best approach, energy methods can be used to
find the motions of a 4-bar linkage. Take a four-bar linkage with one bar grounded.
Assume the bars all have different lengths. This is a one-DOF system which can
use the angle � of one of the links as a configuration variable. But finding the
potential energy as a single formula in terms of all of the links in terms of � is more
trigonometry than most of us like. And then finding the kinetic energy in terms of
� and P� is close enough to impossible that people don’t do it.

So, though it is true that there are functions EP.�/ and EK.�;
P�/ and that the

equations of motion could be written in terms of them, it is really not practical to
do so.

How do you find the motions of a 4-bar linkage in practice? It’s more tricky.
One approach is to solve the kinematics by integrating kinematic differential equa-
tions, as in Sample 17.5 on page 917. Then you set up and solve the balance equa-
tions of the separate parts as in Sample 18.21 on page 978

Filename:tfigure12-bigcyl-smallcyl
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Figure 18.32: Cylinder rolling without
slip in a cylinder. This gives the pen-
dulum equation, but the effective pendu-
lum length does not tend to R as r ! 0

(see text).
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SAMPLE 18.11 A plate pendulum. A 2a � 2b rectangular plate of mass
m hangs from two parallel, massless links EA and FD of length ` each. The
links are hinged at both ends so that when the plate swings, its edges AD and
BC remain horizontal at all times. The only driving force present is gravity.
Find the equation of motion of the plate.

Solution The given system is a single DOF system. So, we need just one configuration
variable and the equation of motion be just one scalar equation in this variable. Let us take
angle � (fig. 18.34) as our configuration variable.

The free-body diagram of the plate is shown in fig. 18.35. Note that the link forces
*
F1

and
*
F2 act along the links because massless links are two force bodies. Let .x; y/ be the

coordinates of the center-of-mass. Then the linear momentum balance for the plate gives
*
F1 C

*
F2 �mg O| D m*a D m. Rx O{C Ry O|/:

Now, we can eliminate both the unknown link forces from this equation by dotting the equa-
tion with On D cos � O{C sin � O|, a unit vector normal to the links. Then, we have

�mg. O| � On/ D m
� Rx.O{ � On/C Ry. O| � On/�

�g sin � D Rx cos � C Ry sin �: (18.34)

Now we need to find a relationship between x and � , and y and � , so that we can write Rx and
Ry in terms of our configuration variable � and its derivatives. From fig. 18.34, we have

*rG D
x� �� �

.` sin � C a/ O{C
y� �� �

.�` cos � � b/ O|
) Rx D `.cos � � R� � sin � � P�2/

Ry D `.sin � � R� C cos � � P�2/

Substituting these expressions for Rx and Ry in eqn. (18.34) , we get

�g sin � D ` R�
) R� C g

`
sin � D 0:

R� C g
`

sin � D 0

This is the equation of a simple pendulum! Well, the plate does behave just like a simple
pendulum in the given mechanism. From the expressions for the x and y coordinates of the
center-of-mass, we have

x � a D ` sin �

y C b D �` cos �

) .x � a/2 C .y C b/2 D `2

that is, the center-of-mass follows a circle of radius ` centered at .�a; b/. Since the orientation

of the plate never changes (AD and BC always remain horizontal), the plate has no angular

velocity. Thus the motion of the plate is equivalent to the motion of a particle of mass m

going in a circle centered at .�a; b/ and driven by gravity. That is the simple pendulum.
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SAMPLE 18.12 Equation of motion from power balance. A slider crank
mechanism is shown in fig. 18.36 where the crank is a uniform wheel of
mass m and radius R anchored at the center and the connecting rod AB is a
massless rod of length `. The rod is driven by a piston at B with a known
force F.t/ D F0 cos
t . There is no gravity. Find the equation of motion of
the wheel.

Solution The given mechanism is a one DOF system. So, let us choose a single configu-
ration variable, � for specifying the configuration of the system and derive an equation that
determines � . Since the applied force is given and the point of application of the force has a
simple motion (vertical), it will be easy to calculate power of this force. Also, the connect-
ing rod is massless, so it does not enter into dynamic calculations. The wheel rotates about
its center and, therefore, it is easy to calculate its kinetic energy. So, we use the power bal-
ance, PEK D P , here to find the equation of motion of the wheel. Since EK D 1

2I
cm
zz
P�2 and

P D *
F �*vB, we have

I cm
zz
R� P� D F.t/ O| � vB O| D F.t/vB (18.35)

Now, we need to find vB and express it using the configuration variable � and its derivatives.
There are several ways we could find vB . Vectorially, we could write, *vB � vB O| D *vA C
*!AB �*rB=A where *!AB D P� Ok. Dotting both sides of this equation with O{ and O| we can find
� in terms of � and vB in terms of � and P� . But, for a change, let us use geometry here.

See fig. 18.37. From triangle ABO, we have

R

sin.90o � �/ D `

sin.90o C �/

) ` cos� D R cos �

) � ` sin� � P� D �R sin � � P�
P� D R sin �

` sin�
P�

Now,
yB D R sin � � ` sin�

) vB � PyB D R cos � � P� � ` cos� � P�

D R P� cos � �R cos � � R sin �
` sin�

P�

D R P�
�

cos � � R sin � cos �p
`2 �R2 cos2 �

�

Substituting this expression for vB in power balance eqn. (18.35), we get

I cm
zz
R� 6 P� D F.t/ �R6 P�

 
cos � � sin 2�

2
p
.`=R/2 � cos2 �

!

R� D RF0 cos
t �
1
2mR

2

 
cos � � sin 2�

2
p
.`=R/2 � cos2 �

!
:

This is the required equation of motion. As is evident, it is a nonlinear ODE which requires
numerical solution on a computer if we would like to plot �.t/.

R� D 2F0 cos
t �
mR

�
cos � � sin2�

2
p
.`=R/2�cos2 �

�

Filename:sfig11-2-sliderenergy

x

y

A

O

R

m

B

F(t)

θ

�

Figure 18.36:

Filename:sfig11-2-sliderenergy-a

A
y

B

yB

x

R   −

O θ

θ

�

φ

φ

Figure 18.37:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



960 Chapter 18. Constrained particles and rigid objects 18.2. One-degree-of-freedom 2-D mechanisms

Filename:sfig7-3-2

A

B

m

   = 30

R
O

ωD

θ

  = 4R
�
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SAMPLE 18.13 Instantaneous dynamics of slider crank. A uniform rigid
rod AB of mass m and length ` D 4R has one of its ends pinned to the rim
of a disk of radius R. The other end of the bar is free to slide on a frictionless
horizontal surface. A motor, connected to the center of the disk at O, keeps
the disk rotating at a constant angular speed !D . At the instant shown, end
B of the rod is directly above the center of the disk making � to be 30o.

1. Find all the forces acting on the rod.

2. Is there a value of !D which makes end A of the rod lift off the hori-
zontal surface when � D 30o?

Solution The disk is rotating at constant speed. Since end B of the rod is pinned to the
disk, end B is going in circles at constant rate. The motion of end B of the rod is completely
prescribed. Since end A can only move horizontally (assuming it has not lifted off yet), the
orientation (and hence the position of each point) of the rod is completely determined at any
instant during the motion. Therefore, the rod represents a zero degree of freedom system.

1. Forces on the rod: The free-body diagram of the rod is shown in Fig. 18.39. The
pin at B exerts two forces Bx and By while the surface in contact at A exerts only a
normal forceN because there is no friction. Now, we can write the momentum balance
equations for the rod. The linear momentum balance (

P *
F D m*a) for the rod gives

Bx O{C .By CN �mg/ O| D m*aG : (18.36)

The angular momentum balance about the center-of-mass G (
P *
M=G D P*

H=G ) of the
rod gives

*rA=G �N O| C*rB=G � .Bx O{C By O|/ D Izz=G �rod
Ok: (18.37)

From these two vector equations we can get three scalar equations (the Angular Mo-
mentum Balance gives only one scalar equation in 2-D since the quantities on both
sides of the equation are only in the Ok direction), but we have six unknowns —
Bx ; By ; N;

*aG (counts as two unknowns), and �rod . Therefore, we need more equa-
tions. We have already used the momentum balance equations, hence, the extra equa-
tions have to come from kinematics.

*vA D *vB C

*vA=B� �� �
*!rod �*rA=B

or vA O{ D !DRO{C !rod
Ok � `.� cos � O{ � sin � O|/

D .!DRC !rod ` sin �/O{ � !rod ` cos � O|
Dotting both sides of the equation with O| we get

0 D !rod ` cos � ) !rod D 0:

Also,

*aA D *aB C

*
aA=B� �� �

P*! �*rA=B C *!rod����
*
0

�.*!rod �*rA=B /

or aA O{ D �!2DR O| C P!rod Ok � `.� cos � O{ � sin � O|/
D �.!2DRC P!rod ` cos �/ O| C P!rod ` sin � O{:

Dotting both sides of this equation by O| we get

P!rod D � !2
D
R

` cos �
: (18.38)
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Now, we can find the acceleration of the center-of-mass:

*aG D *aB C

*aG=B� �� �
P*! �*rG=B C *!rod����

*
0

�.*!rod �*rG=B /

D �!2DR O| C P!rod Ok �
1

2
`.� cos � O{ � sin � O|/

D �.!2DRC
1

2
P!rod ` cos �/ O| C 1

2
P!rod ` sin � O{:

Substituting for P!rod from eqn. (18.38) and 30o for � above, we obtain

*aG D �1
2
!2DR.

1p
3
O{C O|/:

Substituting this expression for*aG in eqn. (18.36) and dotting both sides by O{ and then
by O| we get

Bx D � 1

2
p
3
m!2DR;

By CN D �1
2
m!2DRCmg (18.39)

From eqn. (18.37)

1

2
`�.By �N/ cos � � Bx sin �� Ok D 1

12
m`2.� !2

D
R

` cos �
/ Ok

or By �N D �1
6

m!2
D
R

cos2 �
C Bx tan �

D �2
9
m!2DR �

1

6
m!2DR

D � 7

18
m!2DR (18.40)

From eqns. (18.39) and (18.40)

By D
1

2

�
mg � 8

9
m!2DR

�
and

N D 1

2

�
mg � 1

9
m!2DR

�
:

2. Lift off of end A: End A of the rod loses contact with the ground when normal force
N becomes zero. From the expression for N from above, this condition is satisfied
when

2

9
m!2DR D mg

) !D D 3

r
g

R
:
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SAMPLE 18.14 A bar sliding on a sliding wedge. A bar AB of mass m
and length ` is hinged at end A rests on a wedge of mass M at the other end
B. The contact at B is frictionless. The wedge is free to slide horizontally
without any friction. The motion of the system is driven only by gravity.
Find the equation of motion of the bar using

1. momentum balance

2. energy (or power) balance.

Solution (a) Momentum Balance: The bar and the wedge make up a single DOF system.
To derive the equations of motion of the bar, let us choose � as the configuration variable.
The free-body diagram of the bar and the wedge are shown in fig. 18.41. Note that the normal
reaction at B is normal to the wedge surface, i.e.,

*
N D N On. Now, the angular momentum

balance for the bar about point A gives,

P*
HA D

X
*
MA

IAzz
R� Ok D `

2
OeR � .�mg O|/C ` OeR �N On

D �1
2
mg` cos � OkCN` cos.� � �/ Ok (18.41)

where the last line follows from the fact that OeR D cos � O{ C sin � O|, the unit normal On D
� sin� O{ C cos� O|, and so, OeR � O| D cos � Ok and OeR � On D cos.� � �/ Ok. We now need
to eliminate the unknown normal reaction N from the above equation. Since the wedge is
constrained to move only horizontally, we can write the linear momentum balance for the
wedge as

N On � O{ DM Rx ) N D M Rx
On � O{ D

M Rx
sin�

(18.42)

Thus, we have found N in terms of Rx that we can use in eqn. (18.41) to get rid of N . But, we
now need to express Rx in terms of our configuration variable � and its derivatives. Consider
the triangle ABC formed by the bar and the slanted edge of the wedge. Let x D AC denote
the horizontal position of the wedge. Then, from the law of sines, we have x

sin.���/ D `
sin� ,

so that

x D `

sin�
sin.� � �/

) Px D `

sin�
cos.� � �/ � .� P�/ (18.43)

) Rx D `

sin�

� R� cos.� � �/C P�2 sin.� � �/�: (18.44)

Now, substituting for N in eqn. (18.41) from eqn. (18.42), using the expression for Rx from
above, and dotting the resulting equation with Ok, we get

1

3
m`2 R� D �mg`

2
cos � C M`2 cos.� � �/

sin2 �

� R� cos.� � �/C P�2 sin.� � �/�
) R� D �3mg sin2 � cos � C 3M` P�2 sin 2.� � �/

2m` sin2 � C 6M` cos2.� � �/

D �3
�
.g=`/ sin2 � cos � C .M=m/ P�2 sin 2.� � �/�

2
�

sin2 � C 3.M=m/ cos2.� � �/� (18.45)

R� D �3
�
.g=`/ sin2 � cos �C.M=m/ P�2 sin2.���/

�
2
�

sin2 �C3.M=m/ cos2.���/
�
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(b) Power balance: Now we derive the equation of motion for the bar using power balance
PEK D P . For power balance, we have to consider both the bar and the wedge. The bar

rotates about the fixed point A, therefore, its kinetic energy is .1=2/IAz z P�2. The wedge
moves with horizontal speed Px, therefore, its kinetic energy is .1=2/M Px2. Thus, EK D
1=2/IAz z

P�2 C .1=2/M Px2. The only force that contributes to power is the force of gravity
on the rod because *vG � .�mg O|/ is non-zero. The sliding contact at B is frictionless and
hence the net power due to the contact force there is zero. Now, *vG D 1

2`
P� Oe� . So, P D

�1
2mg`

P�. Oe� � O|/ D �1
2mg`

P� cos � . Thus the power balance for the system gives

IAzz
R� P� CM Rx Px D �1

2
mg` P� cos �: (18.46)

We can simplify this equation further. Note that, R� P� D d
dt
.12
P�2/ and Rx Px D d

dt
.12 Px2/. So

that we can write the above equation as

d

dt

�
1

2
IAzz

P�2
�
C d

dt

�
1

2
M Px2

�
D �1

2
mg` P� cos �

or
Z
d
�
IAzz

P�2 CM Px2� D �mg`
Z

cos � d�

) IAzz
P�2 CM Px2 D C �mg` sin �

where C is a constant of integration to be determined from initial conditions. For example,
when the bar begins to slide from rest, we have, at t D 0, Px D 0 and P� D 0. At that instant,
if �.0/ D �0, then C D mg` sin �0. So, we can write

IAzz
P�2 CM Px2 D mg`.sin �0 � sin �/:

Now, replacing Px in this equation with the expression we obtained in eqn. (18.43), we have

IAzz
P�2 CM`2 P�2 cos2.� � �/

sin2 �
D mg`.sin �0 � sin �/

) P�2 D mg`.sin �0 � sin �/

IAzz CM`2 cos2.���/
sin2 �

D mg` sin2 �.sin �0 � sin �/

.1=3/m`2 sin2 � CM`2 cos2.� � �/

) P� D
r
3g

`
sin�

s
sin �0 � sin �

sin2 � C 3.M=m/ cos2.� � �/ :

This is a first order, nonlinear, ODE compared to the second order equation we got in
eqn. (18.45). However, again, we need to resort to numerical solution if we wish to solve
for �.t/, in which case, this reduction to the first order equation does not save much work.

P� D
q

3g
`

sin�
r

sin �0�sin �
sin2 �C3.M=m/ cos2.���/
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1A car has one degree-of-freedom?
For studying the acceleration of a car
going straight one might ignore the flex-
ibility of the drive shaft and the bounce
of the suspension, etc.thus leading to a 1
DOF model. But if you want to see how
acceleration causes the car to tip back,
or how the car oscillates when the en-
gine lugs, then a 2, or more, DOF model
would be appropriate.

18.3 Dynamics of
multi-degree-of-freedom 2-D
mechanisms

A typical machine has many parts. They may work in concert as a one
degree-of-freedom system or they may be designed to move independently.

One degree-of-freedom machines. Some mechanisms are designed so the
parts work together to do something, one thing, well. A car going straight
down a road has dozens of moving parts: cylinders, connecting rods, crank
shaft, cam shaft, transmission gears, drive shaft, differential, wheel axles,
wheels and the car itself. All of these parts move, each in its own differ-
ent way, approximately like a rigid object. But in the simplest description 1

they move as a one-degree-of freedom mechanism towards the end of fight-
ing friction and moving the car down the road. If the crankshaft rotates a
small amount, each part moves a corresponding amount; the amount of ro-
tation of the crank shaft determines the position of all of the parts. And
all of the velocities and accelerations of all of the bits of mass in the car
can be determined by the rotation �crank and its derivatives ( dot�crank and
ddot�crank). Thus a car, even with lots of pieces moving this way and that,
might be well-modeled for some purposes as a one degree-of-freedom mech-
anism. For one-degree-of-freedom mechanisms the methods of Section 18.2
may be appropriate.

Multi DOF systems In some modeling of machines it is important to keep
track of multiple degrees of freedom (See fig. 17.51 on page 900 for examples
of simple mechanisms). There are various reasons that a multi-DOF analysis
is relevant:

� Some machines intentionally have various ways of moving that are con-
trolled by various motors. Classic examples include:

– Robots,
– Animal bodies.

� Some systems intentionally have various degrees of freedom so as to
respond smoothly to disturbances, for example the suspensions on the
bottoms of cars and washing machines.

� Some systems have undesirable degrees of freedom do to the parts
which are nominally rigid actually being elastic. Thus a machine which
is intended to have one degree of freedom might have various undesir-
able vibration modes.

Mechanical analysis of multi-DOF systems. To solve problems with mul-
tiple degrees of freedom the basic strategy is, as described at the start of the
chapter:

1. Draw FBDs of each object,
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2. Pick configuration variables,

3. Write linear and angular momentum balance equations

4. Solve the equations for variables of interest (usually forces and second
derivatives of the configuration variables).

5. Set up and solve the resulting differential equations (if you are trying
to find the motion).

There are two basic approaches to these multi-object problems which, for
lack of better language we call “brute-force” and “clever”.

A. In the brute force approach you write three times as many scalar bal-
ance equations as you have objects (limiting attention to 2D where each
object has 3 DOFs and 3 independent momentum balance equations).
That is, for example, for each free body diagram you write linear mo-
mentum balance and angular momentum balance about the center of
mass. Then you take this set of 3n equations and add and subtract them
to solve for variables of interest.

This approach is quite suitable for computers so most commercial gen-
eral purpose dynamic simulators use a variant of this approach. For
individual use with packaged software, the brute-force approach is gen-
erally both more reliable and more time consuming.

B. In the clever approach you write as many scalar momentum balance
equations as you have unknowns. For example, if you have 2 degrees
of freedom and you are concerned with motions and not reaction forces,
you write 2 equations. You do this by finding momentum balance equa-
tions that do not include the variables you are not interested in. Usually
this involves using angular momentum balance about hinge points, or
linear momentum balance orthogonal to sliding contacts.

The clever approach does not always work; the four-bar linkage is the
classic problem case. However the desire to find such minimal sets of
equations of motion it is historically important 2.

At this point in the subject there are no quick simple problems. All problems
are involved, especially if taken from start all the way to plotting solutions
to the differential equations. The examples that follow emphasize getting to
the equations of motion. The skills for numerically solving the differential
equations and plotting the solutions are the same as from the start of dynam-
ics so are not discussed until the sample problems which show all the work
from setup to solution.

Example: Block sliding on sliding block: clever approach
Block 1 with mass m1 rolls without friction on ideal massless wheels at A and B
(see fig. 18.43). Block 2 with massm2 rolls down the tipped top of block 1 on ideal
massless rollers at C and D. The locations of G1 relative to A and B, and of G2

relative to C and D are known. How do blocks 1 and 2 move?

2 Attempts to automate the clever ap-
proach, that is to quickly find minimal
equations of motion, led to Lagrange
equations which led to Hamilton’s equa-
tions which led to quantum mechanics
(but we won’t be that clever here).
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Figure 18.43: Block 2 rolls on block 1
which rolls on the ground. All rollers
are ideal (frictionless and massless).
The moving O{0 O|0 frame moves with the
lower block and is oriented with the
slope.

First look at the free body diagram of the system and not that there are no
unknown forces in the O{ direction. So, for the systemnX

*
Fi D P*

L
o
�O{

) 0 D m1 Rx Cm2. Rx O{C Ry0 O|0/ � O{
D .m1 Cm2/ Rx � Ry0m2 cos �: (18.47)

Looking at the free body diagram of mass 2 note that there are no unknown forces
in the O|0 direction, so nX

*
Fi D P*

L
o
� O|0

) m2g sin � D m2. Rx O{C Ry0 O|0/ � O|0
m2g sin � D m2.� cos � Rx C Ry0/: (18.48)

Eqns. 18.47 and 18.47 are a system of two equations in the two unknowns Rx and Ry0

.m1 Cm2/ Rx �m2 cos � Ry0 D 0

�m2 cos � Rx Cm2 Ry0 D m2g sin �

which can be solved for Rx and Ry by hand or on the computer. Finding x.t/ and
y0.t/ is then easy because both Rx and Ry0 are constants.

Now we look at the same example, but proceed in a more naive manner.
Example: Block sliding on sliding block: brute force approach
Now we look at the free body diagrams of the two separate blocks. We will use
3 balance equations from each free body diagram, taking account of the kinematic
constraints.

For the lower block we have

AMBG1 )
X

*
M=G1

D P*
H=G1

(18.49)

where
X

*
M=G1

D *rD=G1
� .�FD O{0/

C*rC=G1
� .�FC O{0/

C*rB=G1
� FB O|

C*rA=G1
� FA O|

and P*
H=G1

D*
0 ( *!1 D

*
0)

and LMB )
X

*
Fi D P*

L (18.50)

where
X

*
Fi D �FD O{0 � FC O{0 C FB O| C FA O| �m1g O|

and P*
L D m1 Rx O{
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Similarly for the upper block:

AMBG2 )
X

*
M=G2

D P*
H=G2

(18.51)

where
X

*
M=G1

D *rD=G2
� FD O{0

C*rC=G2
� FC O{0

and P*
H=G2

D*
0 ( *!1 D

*
0)

and LMB )
X

*
Fi D P*

L (18.52)

where
X

*
Fi D FD O{0 C FC O{0 �m2g O|0

and P*
L D m2. Rx O{C Ry0 O|0/

Eqns. 18.49-18.52 can be written as scalar equations by dotting the LMB equations
with O{ and O| and the AMB equations with Ok. All is known in these 6 equations
but the six scalars: FA; FB ; FC ; FD ; Rx; and Ry0. These could be set up as a matrix
equation and solved on the computer, or you could try to find your way through by
adding and subtracting equations. In any case you could solve for Rx and Ry0 and thus
have differential equations to solve to find the motions.

One quick inference one can make is from looking at the equations: no term in
the coefficients of the unknowns depends on x; Px; y; or Py0. So all of the reactions
FA; FB ; FC ; and FD as well as the accelerations Rx and Ry0 are constants in time
(until the upper mass hits the ground).

Example: Block sliding on sliding block: even more brute force
This “multi-body” problem can be solved in an even more naive and more brute
force manner. The method is the same as shown in Section 13.1 on page 621 for a
one dimensional problem.

We would use 6 configuration variables: the x and y coordinates of G1 and G2
and the rotations of the two bodies:

x1; y1; �1; x2; y2; and �2

That the two bodies don’t rotate would be expressed indirectly by noting that the
velocities of points A and B on the lower mass must have acceleration in the O{
direction. These two equations would be added to the 6 linear and angular mo-
mentum balance equations. Similar constraint equations would be written for the
interactions at C and D. Altogether there are now 6 configuration variables and 4
constraint forces. But there are 6 differential equations of motion and 4 constraint
equations. Thus at one instant in time a set of 10 simultaneous equations needs to
be solved. Then these are used to evaluate the right hand sides in the differential
equations.

These 10 equations are an impractical mess for solving one simple problem like
this. But these equations lend themselves to easy automation and this is closest to
the approach used by general purpose dynamics simulators.

The example above is particularly simple because block 1 moves in a straight
line without rotating and block 2 moves in a straight line without rotating rel-
ative to block 1. Even for a system of just two objects the situation could be
much more complex if the first object had a complex motion and the second
a complex motion relative to the first. But because of the preponderance of
hinges in the world, circular motion, and motion relative to circular motion,
is the most complex motion that need be considered by many engineers. Here
is a version of the most common example of that class.
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Figure 18.44: A two link robot arm.
Free body diagrams are shown of the
whole system (including the motor
torque at the shoulder Ms) and of the
fore-arm (including the motor torque at
the elbow Me) .

Example: A two link robot arm: finesse the finding of reactions
A robot arm has two links. There are motors that apply known torque Ms at

the shoulder (reacted by the base and a torque Me at the elbow (reacted by the
upper arm). Dimensions are as marked. This system has 2 degrees of freedom. So
we need 2 configuration variables and 2 independent balance equations to find the
motion.

The natural configuration variables are the angles of the upper arm relative to a
fixed reference and the angle of the lower arm relative to a fixed reference. It would
also be natural to instead use the angle of the lower arm relative to the upper arm.
This leads to simpler equations in the end, but more work in set up.

Angular momentum balance for the system about the shoulder contains no un-
known reaction forces, nor does angular momentum balance of the fore-arm about
the hinge. So we base our work on these two equations:

System AMB=O )
X

*
M=O D P*

H=O (18.53)

Forearm AMB=E )
X

*
M=E D P*

H=E: (18.54)

The goal, equations of motion, is reached by evaluating the left and right sides of
these equations in terms of known geometric and mass quantities as well as the

configuration variables When we write
P *
M=O and

P P*
H
=O we implicitly mean

for the whole system. And
P *
M=E and P*

H
=E apply just to the forearm.

At each step in the calculations below imagine the results can be substituted
into the later steps. We don’t do that here because the expressions grow in size.
Further, if the angles and their rates of change are known, as they are when doing
most dynamics problems, the intermediate calculations will result in numbers, and
these do not become more numerous as the calculation proceeds.

O�1 D cos �1 O{C sin �1 O| and O�2 D cos �2 O{C sin �2 O|
*rG1=O D `1

O�1; *rE=O D `3
O�1 and *rG2=E D `2

O�2
and *rG2=O D*rE=O C*rG2=E:

*aG1=O D � P�21*rG1=O C R�1 Ok �*rG1=O ;

*aE=O D � P�21*rE=O C R�1 Ok �*rE=O ;

*aG2=E D � P�22*rG2=E C R�2 Ok �*rG2=E and *aG2=O D*aE=O C*aG2=E:

These terms are all we need to evaluate the 4 terms in Eqns. 18.53 and 18.54.X
*
M=O D*rG1=O � .m1g O{/C*rG2=O � .�m2g O|/CMs

Ok;X
*
M=E D*rG2=E � .m2g O{/CMe

Ok;

P*
H=O D m1

*rG1=O �*aG1=O C R�1I1 OkCm2
*rG2=O �*aG2=O C R�2I2 Ok;

and P*
H=E D m2

*rG2=E �*aG2=O C R�2I2 Ok:

Once these are substituted into Eqns. 18.53 and 18.54 one has 2 vector equations
with only Ok components. In other words we have two scalar equations in the two
unknowns R�1 and R�2. One can go through the algebra and solve for them explicitly,
but the expressions are quite complex, even when simplified. At given values of
�1;

P�1; �2; and P�2 however these are just two linear equations in two unknowns.
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Closed kinematic chains
When a series of mechanical links is open you can not go from one link to
the next successively and get back to your starting point. Such chains include
a pendulum (1 link), a double pendulum (2 links), a 100 link pendulum, and
a model of the human body (so long as only one foot is on the ground). A
closed chain has at least one loop in it. You can go from link to next and get
back to where you started. A slider-crank, a 4-bar linkage, and a person with
two feet on the ground are closed chains.

Closed chains are kinematically difficult because they have fewer degrees
of freedom than they have joints. So some of the joint angles depend on the
others. The values of any minimal set of configuration variables, say some
of the joint angles, determines all of the joint angles, but by geometry that is
difficult or impossible to express with formulas.

Example: Four bar linkage.
It is impractically difficult to write the positions velocities and accelerations of a
4-bar linkage in terms of � , P� and R� of any one of its joints. Why? Because finding
all of the bar angles from one angle is a trigonometric mess. And differentiating
that mess once (for velocities) and then once again (for accelerations) makes a huge
mess.
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SAMPLE 18.15 Dynamics of sliding wedges. A wedge shaped body of
mass m2 sits on a frictionless ground. Another wedge shaped body of mass
m1 is gently placed on the inclined face of the stationary wedge. The top
wedge starts to slide down. The coefficient of friction between the two
wedges is �. Find the sliding acceleration of the top wedge along the in-
cline (i.e., the relative acceleration of m1 with respect to m2).

Solution The free-body diagrams of the two wedges are shown in fig. 18.46. Note that the
friction force is �N since the wedges are sliding with respect to each other (if they were
not sliding already then the friction force is an unknown force F � �N ). Let the absolute
acceleration of m2 be*a2 D a2 O{. Then, the absolute acceleration of m1 is*a1 D*a2 C*a1=2 D
a2 O{C arel

O�. Now, we can write the linear momentum balance for m1 and m2 as follows.

N On �m1g O| � �N O� D m1.a2 O{C arel
O�/ (18.55)

.R �m2g/ O| �N OnC �N O� D m2a2 O{ (18.56)

where O� D cos� O{ � sin� O| and On D sin� O{ C cos� O|. Here, we have 4 independent scalar
equations (from the two 2-D vector equations) in four unknownsN;R; a2, and arel. Thus, we
can certainly solve for them. We are, however, only interested in arel. So, we should try to
find the answer with fewer calculations. Dotting eqn. (18.55) with O�, we have

m1arel D �m1a2 cos� � �N Cm1g sin� (18.57)

So, to find arel, we need a2 and N . Dotting eqn. (18.55) with On, we have

m1a2 sin� D N �m1g cos�; (18.58)

and dotting eqn. (18.56) with O{, we have

m2a2 D �N sin� C �N cos�: (18.59)

Solving eqn. (18.58) and (18.59) simultaneously, and using new variables (for convenience)
M D m1=m2; C D cos�, and S D sin�, we get

a2 D
MC.�C � S/

1 �MS.�C � S/ g; N D m1g
C

1 �MS.�C � S/
Substituting these expression in eqn. (18.57), we get

arel D gS � gC
�
MC.�C � S/ � ��
1 �MS.�C � S/

arel D g sin� �
g cos�

�m1
m2

cos�.� cos��sin�/��
�

1�m1
m2

sin�.� cos��sin�/

Note that when there is no friction .� D 0/, the expression for arel reduces to

arel D gS C gMC 2S

1CMS2

and if we let m2 ! 1 (i.e., m2 represents fixed ramp) so that M ! 0, then arel D g sin�

which is the acceleration of a point mass down a frictionless ramp of slope tan�.
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SAMPLE 18.16 Dynamics of a new gun. A new gun consists of a uniform
rod AB of mass m1 and a small collar C of mass m2 that slides freely on the
rod. A motor at A rotates the rod with constant torque T .

1. Find the equations of motion of the collar.

2. Show that if T D 0 then the equations of motion imply conservation of
angular momentum about point A.

Solution

1. Let us denote the configuration of the collar with R, the radial distance from the fixed
point A along the rod, and � , the angular displacement of the rod. We need to find
differential equations that determine R and � as functions of time. The free-body
diagram of the whole system (rod and collar together) and that of the collar is shown
in fig. 18.48. We can write angular momentum balance for the whole system about
point A so that the unknown reaction force F at A does not enter the equations. Noting
that the acceleration of the collar is*aC D . RR�R P�2/ OeR C .2 PR P� CR R�/ Oe� , and letting
I1 � IAz z be the moment of inertia of the rod about A, we have,X

*
MA D P*

HA

T Ok D I1
R� OkCR OeR �m2

�
. RR �R P�2/ OeR C .2 PR P� CR R�/ Oe�

�
D I1

R� OkCm2R
2 R� OkC 2m2R

PR P� Ok

Dotting this equation with Ok, we have

R� D T

I1 Cm2R
2
� 2m2R

I1 Cm2R
2
PR P�: (18.60)

Thus we have obtained the equation of motion for � . Now we consider the free-body
diagram of the collar alone and write the linear momentum balance for it in the OeR
direction, i.e., OeR � .

P *
F D m*a/, so that we do not have to care about the unknown

normal reaction
*
N . So, we have,

0 D OeR �m2

�
. RR �R P�2/ OeR C .2 PR P� CR R�/ Oe�

�
D m2.

RR �R P�2/
) RR D R P�2: (18.61)

Thus we have the required equations of motion. Note that eqn. (18.60) and (18.61) are
coupled nonlinear differential equations. So, to find �.t/ and R.t/ we need to solve
them numerically.

R� D T
I1Cm2R2 �

2m2R

I1Cm2R2
PR P�; RR D R P�2

2. Now we set T D 0 in our equations of motion. Note that the equation for R is
independent of T . The equation for � becomes

R� D � 2m2R

I1 Cm2R
2
PR P�: ) .I1 Cm2R

2/ R� C 2m2R
PR P� D 0

But the last expression is simply PHA for the system. Thus we have PHA D 0 which
implies that HA D constant. That is conservation of angular momentum about point
A.
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êθ

θ

Figure 18.48:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



972 Chapter 18. Constrained particles and rigid objects 18.3. Multi-degree-of-freedom 2-D mechanisms

Filename:sfig11-3-newgunRth

  0.23

  0.47

  0.70

30

210

60

240

90

270

120

300

150

330

180 0

Figure 18.49:

SAMPLE 18.17 Numerical solutions of new gun equations. Consider
Sample 18.16 again. Set up the equations of motion for numerical solution.
Take T D 1N�m; ` D 1m; m2 D 1 kg, and m1 D m2=3. Carry out numeri-
cal solutions for the following cases.

1. Let the system start from rest at � D 0 and R D 0:1m. Find the
solution from t D 0 to t D 1 s. Plot R.t/; �.t/ and R.�/ (in polar
coordinates).

2. Find the solution till the collar leaves the rod. What is the speed of the
collar at this instant?

3. Compute and plot the total energy of the system as a function of time.
Also, plot the work done by the torque as a function of time and show
that the work done is equal to the total energy of the system at each
instant.

4. Vary torque T and carry out solutions for several values of T . Find the
terminal value of �f (when the collar leaves the rod) for each T . Justify
your observation about �f by plotting PR= P� as a function of T .

Solution We first need to write the equations of motion, eqn. (18.60) and (18.61), as a set of
first order ODEs. We can easily do so by introducing new variables ! � P� and vR � PR, so
that we have, 0

BB@
P�
P!
PR
PvR

1
CCA D

0
BBB@

!
T

I1Cm2R2 �
2m2R

I1Cm2R2 vR!
vR
R!2

1
CCCA

Given the values of all constants, we only need to specify the initial conditions for �; !;R,
and vR for solving these equations numerically.

1. We use the following pseudocode to carry out the numerical solution.

Set T = 1, L = 1, m2 = 1, m1 = m2/3
Let I1 = m1*Lˆ2/3, I2 = m2*Rˆ2,
ODEs = {thetadot = w,

wdot = (T-2*m2*R*vR*w)/(I1+I2),
Rdot = vR,
vRdot = R*wˆ2}

IC = {theta = 0, w = 0, R = 0.1, vR = 0}
Solve ODEs with IC for t=0 to t=1
Plot t vs R, Plot t vs theta,
Polarplot theta vs R
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The R.t/ and �.t/ plots obtained from the numerical solution are shown in fig. 18.50
and the polar plot of R.�/ is shown in fig. 18.49.

2. We do not know apriori the value of t at which the collar leaves the rod. So, we have
to carry out the solution for some assumed tf which gives us R.tf / > ` so that we
know the collar has gone past the end of the rod. We then plot R.t/, including the
unreal value of R.tf / > `, and find the time t at which R.t/ D `, either by zooming
into the graph or by interpolation (although, there are various sophisticated algorithms
to find this t). Following the method of zooming into the graph (see fig. 18.51) we
find the terminal value of t to be 1.147 s. We carry out the numerical solution again
from t D 0 to tf D 0:147 s and find that R.tf / D 1m; vR.tf / D 2:13m=s, and

!.tf / D 1:03 rad=s, so that vf D
q
PR2 C .R P�/2 D 2:37m=s: This is the terminal

speed of the collar.
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3. The work done by the torque is W D T � at any instant. The system only possesses
kinetic energy. So the energy of the system at any instant is E D E1 C E2 where
E1 D 1

2I1!
2 and E2 D 1

2m2.
PR2CR2!2/. Computing these quantities for the solu-

tion obtained above, we plot W and E vs t as shown in fig. 18.52. Clearly, W D E.
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Figure 18.52: Work done by the torque and the kinetic energy of the system.

4. Now we take several values of T (0.1, 0.5, 1, 1.5, 2, 2.5, and 3) and carry out the
numerical solutions for each T . We note the terminal values of �; !.D P�/, and vR.DPR/. By plotting the terminal value of � against T (fig. 18.53), we see that the collar
leaves the rod at exactly the same � D 2:86 rad for each T ! But this is possible only if
PR and P� both change in the same proportion for each T . So, plot the ratio PR= P� just for

the terminal values against T and find that the ratio is indeed constant (see fig. 18.53).
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SAMPLE 18.18 Dynamics of a sliding-base pendulum. A cart of mass M
slides down a frictionless inclined plane as shown in the figure. A simple
pendulum of mass m and length ` hangs from the center-of-mass of the cart.
Find the equation of motion of the pendulum.

Solution Let us measure the angular displacement of the pendulum with respect to the cart
with angle � measured anticlockwise from the normal to the inclined plane. Let s be the
position of the cart along the inclined plane from some reference point. Then, the acceleration
of the cart can be written as *aC D Rs O� and the acceleration of the pendulum mass as *a D
*aC C*arel D Rs O�C ` R� Oe� � ` P�2 OeR.

The free-body diagram of the cart and the pendulum system is shown in fig. 18.55. Writ-
ing angular momentum balance of the system about point C, we get

*
MC D P*

HC

` OeR � .�mg O|/ D ` OeR �m.Rs O�C ` R� Oe� � ` P�2 OeR/
�mgl sin.� � �/ Ok D mRs` cos � OkCm`2 R� Ok

) R� D �g
`

sin.� � �/ � Rs
`

cos �: (18.62)

To find Rs, we write the linear momentum balance for the whole system in the O� (so that we
do not involve the unknown normal reaction N ) direction.

O� � .�Mg O| �mg O|/ D O� � �M Rs O�Cm.Rs O�C ` R� Oe� � ` P�2 OeR/
�

) .M Cm/g sin sin� D .M Cm/Rs Cm` R� cos � �m` P�2 sin �

) Rs D g sin� � m`

M Cm
. R� cos � C P�2 sin �/

(18.63)

Substituting eqn. (18.63) in eqn. (18.62) and rearranging terms, we get

R� D �g
`

sin �
.1C m

M
/ cos�

1C m
M

sin2 �
C

m
M
P�2 sin � cos �

1C m
M

sin2 �

R� D �g
`

sin � .1C
m
M / cos�

1C m
M sin2 �

C
m
M

P�2 sin � cos �
1C m

M sin2 �

Note that if we set � D 0 and let M ! 1 so that the cart behaves like a fixed ground, then
we recover the equation of simple pendulum, R� D �g

`
sin � , from the equation of motion

above. It is a good practice to carry out such simple checks wherever possible.

Remarks: We could write the equations of motion, eqn. (18.62) and eqn. (18.63) in the
coupled form as�

` cos �
m` cos � M Cm

�� R�
Rs
�
D
� �g

`
sin.� � �/

.M Cm/g sin� �m` P�2 sin �

�

and leave it at that, since for most computational purposes, it is enough. It is not so hard to

find expressions for R� and Rs from here by solving the matrix equation, even by hand.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 18. Constrained particles and rigid objects 18.3. Multi-degree-of-freedom 2-D mechanisms 975

SAMPLE 18.19 Resonant capture. A slightly unbalanced motor mounted
on an elastic machine part is modeled as a spring mass system with a simple
pendulum of mass m and length � driven by a constant torque T as shown in
the figure. The spring has stiffness k and the motor has mass M . There is no
friction between mass M and the horizontal surface.

1. Find the equation of motion of the system.

2. Take M D m D 1 kg; k D 1N=m; T D 15 � 10�3 N�m. Solve
(numerically) the equations of motion with zero initial conditions and
plot x.t/ and �.t/ for t D 0 to 100 s.

Solution

1. The free-body diagram of the system is shown in fig. 18.57. Let the angular dis-
placement of the eccentric mass m at some instant t be � . At the same instant,
let the displacement of the motor be x from the relaxed state of the spring. Then
we can write the acceleration of the motor as Rx O{ and that of the eccentric mass as
*aP D Rx O{C � R� Oe� � � P�2 OeR. Now, we can write the angular momentum balance for the
system about point C (fixed in the stationary frame of reference but instantly coincident
with the center-of-mass of motor M) as

T Ok D � OeR �m. Rx O{C � R� Oe� � � P�2 OeR/
D m� Rx. OeR � O{/Cm�2 R�. OeR � Oe� /
D m�.� Rx sin � C � R�/ Ok

) � R� � sin � Rx D T

m�
(18.64)

This is just one scalar equation in R� and Rx. We need one more independent equation
R� and Rx without involving any other unknowns. So, we write the linear momentum
balance for the system in the x-direction:

�kx D M Rx Cm. Rx O{C � R� Oe� � � P�2 OeR/ � O{
D .M Cm/ Rx �m� R� sin � �m� P�2 cos �

) � sin � R� �
�M Cm

m

�
Rx D k

m
x � � P�2 cos �: (18.65)

Thus we have the required equations of motion. We can write eqn. (18.64) and (18.65)
compactly as �

� � sin �
� sin � �mCM

M

�� R�
Rx
�
D
 

T
m�

k
mx � � P�2 cos �:

!

2. We use the following pseudocode to solve the equations of motion. Note that we first
convert the two second order ODEs into four first order ODEs by introducing new
variables ! D P� and u D Px.

Set T = 0.015, m = 1, M = 1, k = 1, e = 1
A=[e -sin(theta); e*sin(theta) -(1+M/m)];
b = [T/(m*e); k/m*x-e*omegaˆ2*cos(theta)];
solve A*acln = b for acln % acln = accelerations
ODEs = {omega = thetadot, u = xdot,

omegadot = acln(1), udot = acln(2)}
IC = {theta = 0, x = 0, omega = 0, u = 0}
Solve ODEs with IC for t=0 to t=100

The plots of x.t/ and �.t/ obtained from the numerical solution are shown in fig. 18.58
and fig. 18.59, respectively. Note the resonance of M for the given values of the
system.
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SAMPLE 18.20 Dynamics using a rotating and translating coordinate
system. Consider the rotating wheel of Sample 17.11 which is shown here
again in Figure 18.60. At the instant shown in the figure find

1. the linear momentum of the mass P and

2. the net force on the mass P.
For calculations, use a frame B attached to the rod and a coordinate system
in B with origin at point A of the rod OA.

Solution We attach a frame B to the rod. We choose a coordinate system x0y0z0 in this
frame with its origin O0 at point A. We also choose the orientation of the primed coordinate
system to be parallel to the fixed coordinate system xyz (see Fig. 18.61), i.e., O{0 D O{; O|0 D
O|; and Ok0 D Ok:

1. Linear momentum of P: The linear momentum of the mass P is given by
*
L D m*vP :

Clearly, we need to calculate the velocity of point P to find
*
L. Now,

*vP D *vP 0 C*vrel D*vO0 C*vP 0=O0� �� �
*vP 0

C*vrel:

Note that O0 and P0 are two points on the same (imaginary) rigid body OAP0. There-
fore, we can find*vP 0 as follows:

*vP 0 D

*vO0� �� �
*!B �*rO0=O C

*vP 0=O0� �� �
*!B �*rP 0=O0

D !1
Ok � `.cos � O{C sin � O|/C !1

Ok � r.cos � O{ � sin � O|/
D !1�.`C r/ cos � O| � .` � r/ sin � O{�
D 3 rad=s � �2:5m � cos 30

� O| � 1:5m � sin 30
� O{�

D .6:50 O| � 2:25O{/m=s (same as in Sample 17.11.);

*vrel D *vP=B

D �!2 Ok0 � r.cos � O{0 � sin � O|0/
D �!2r.cos � O|0 C sin � O{0/
D �.2:16 O|0 C 1:25O{0/m=s

D �.2:16 O| C 1:25O{/m=s:

Therefore,

*vP D *vP 0 C*vrel

D .4:34 O| � 3:50O{/m=s and
*
L D m*vP

D 0:5 kg � .4:34 O| � 3:50O{/m=s

D .�1:75O{C 2:17 O|/ kg�m=s:

*
L D .�1:75O{C 2:17 O|/ kg�m=s

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 18. Constrained particles and rigid objects 18.3. Multi-degree-of-freedom 2-D mechanisms 977

2. Net force on P: From the X
*
F D m*a

for the mass P we get
P *
F D m*aP . Thus to find the net force

P *
F we need to find

*aP . The calculation of *aP is the same as in Sample 17.11 except that *aP 0 is now
calculated from

*aP 0 D*aO0 C*aP 0=O0

where

*aO0 D *!B � .*!B �*rO0=O /

D �!21*rO0=O

D �!21`.cos � O{C sin � O|/
D �.3 rad=s/2 � 2m � .cos 30

� O{C sin 30
� O|/

D �.15:59O{C 9:00 O|/m=s2;

*aP 0=O0 D *!B � .*!B �*rP 0=O0/

D �!21*rP 0=O0

D �!21r.cos � O{ � sin � O|/
D �.3 rad=s/2 � 0:5m � .cos 30

� O{ � sin 30
� O|/

D �.3:90O{ � 2:25 O|/m=s2:

Thus,
*aP 0 D �.19:49O{C 6:75 O|/m=s2

which, of course, is the same as calculated in Sample 17.11. The other two terms,*acor
and *arel, are exactly the same as in Sample 17.11. Therefore, we get the same value
for*aP by adding the three terms:

*aP D �.17:83O{C 3:63 O|/m=s2:

The net force on P isX
*
F D m*aP

D 0:5 kg � .�17:83O{ � 3:63 O|/m=s2

D �.8:92O{C 1:81 O|/N:

P *
F D �.8:92O{C 1:81 O|/N
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SAMPLE 18.21 Inverse dynamics of a four bar mechanism. A four bar
mechanism ABCD consists of three uniform bars AB, BC, and CD of length
`1; `2; `3, and mass m1; m2; m3, respectively. The mechanism is driven by
a torque T applied at A such that bar AB rotates at constant angular speed.
Write equations to find the torque T at some instant t .

Solution This is an inverse dynamics problem, that is, we are given the motion and we are
supposed to find the forces (torque T in this case) that cause that motion. We are given that
rod AB rotates at constant angular speed, say P� . From kinematics, we can find out angular
velocities and angular accelerations of the other two bars as well as the accelerations of center-
of-mass of each rod. Then we can write the momentum balance equations and compute the
forces and moments required to generate this motion. So, in contrast to what we usually do,
let us do the kinematics first. Please see Sample 17.5 on page 917. We found the angular
velocities, P� (eqn. (17.71)) and P� (eqn. (17.70)), of rods BC and CD, respectively, in terms of
P� . We can rewrite those equations as� �`2 sin� `3 sin�

�`2 cos� `3 cos�

�� P�
P�
�
D P�

�
`1 sin �
`1 cos �

�
(18.66)

We wrote this equation in matrix form to make it easier for us to find the angular accelerations
which we do by simply differentiating this equation once:� �`2 cos� P� `3 cos� P�

`2 sin� P� �`3 sin� P�
�� P�

P�
�

C
� �`2 sin� `3 sin�
�`2 cos� `3 cos�

�� R�
R�
�

D `1

� R� sin � C P�2 cos �
R� cos � � P�2 sin �

�

Rearranging terms we get� �`2 sin� `3 sin�
�`2 cos� `3 cos�

�� R�
R�
�

D �
� �`2 cos� `3 cos�

`2 sin� `3 sin�

�� P�2
P�2

�

C`1
�

sin � cos �
cos � � sin �

�� R�
P�2

�
(18.67)

Thus, we can find the angular accelerations of BC and CD, R� and R�, because the quantities
on the right hand side are known ( R�.D 0/ and P� are given, and P� and P� are determined by
eqn. (18.66)). Now, we can find the accelerations of center-of-mass of each rod as follows.

*aG1
D �`1

2
P�2 O�1 (18.68)

*aG2
D *aB C*aG2=B D �`1 P�2 O�1 �

`2
2
P�2 O�2 C `2

R� On2 (18.69)

*aG3
D �`3

2
P�2 O�3 (18.70)

We are now ready to write momentum balance equations. Since we are only interested in find-
ing the torque T , we should try to write equations involving minimum number of unknown
forces. So, we draw free-body diagrams of the whole mechanism, of part BCD, and of bar
CD alone; and write angular momentum balance equations about appropriate points so that
we involve only the unknown torque T and the unknown reaction

*
RD at D. Thus, we will

have only three scalar unknowns T , RDx
and RDy (since

*
RD D RDx

O{ C RDy O|). So, we
will need only three independent equations.

Consider the free-body diagram of the whole mechanism. We cab write angular momen-
tum balance about point A for the whole mechanism as

T OkC*rD=A �
*
RD D P*

HA D P*
H1=A C

P*
H2=A C

P*
H3=A (18.71)
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where

P*
H1=A D I1

R� OkC*rG1
�m1

*aG1

P*
H2=A D I2

R� OkC*rG2
�m2

*aG2
D I2

R� OkC .*rB C*rG2=B/ �m2
*aG2

P*
H3=A D I3 R� OkC*rG3

�m3
*aG3

D I3 R� OkC .*rD C*rG3=D/ �m3
*aG3

:

Similarly, the angular momentum balance about point B for BCD gives

*rD=B �
*
RD D P*

H2=B C
P*
H3=B (18.72)

where

P*
H2=B D I2

R� OkC*rG2=B �m2
*aG2

P*
H3=B D I3 R� OkC*rG3=B �m3

*aG3

and angular momentum balance of bar CD about point C gives

*rD=C �
*
RD D P*

H3=C D I3 R� OkC*rG3=C �m3
*aG3

: (18.73)

Note that we can easily write the position vectors in terms of `1; `2; `3 and the unit vectors
. O�1; On1/, . O�2; On2/ and . O�3; On3/ where

O�1 D cos � O{C sin � O|; On1 D � sin � O{C cos � O|
O�2 D cos� O{C sin� O|; On2 D � sin� O{C cos� O|
O�1 D cos� O{C sin� O|; On1 D � sin� O{C cos� O|:

We can put all the three angular momentum balance equations, (18.71), (18.72), and
(18.73), in one matrix equation by dotting both sides of the equations with Ok and assembling
them as follows.2
4 1 0 `4
0 Ok � .`2 O�2 � `3 O�3/ � O{ Ok � .`2 O�2 � `3 O�3/ � O|
0 Ok � .�`3 O�3 � O{/ Ok � .�`3 O�3 � O|/

3
5
0
@ T

RDx

RDy

1
A D

0
@ PH123=APH23=BPH3=C

1
A
(18.74)

where PH123=A D Ok � . P*H1=A C
P*
H2=A C

P*
H3=A/,

PH23=B D Ok � . P*H2=B C
P*
H3=B/, and PH3=C D

Ok � P*H3=C.

Note that we know the P*
H ’s on the right hand side and the matrix on the left side can be

evaluated for any given .�; �; �/. Thus we can solve for T;RDx
, and RDy .

Filename:sfig11-4-fourbar-fbd2

B

C

D

G2

G3

  D

  B

 

β
⇀
R

⇀
R

φ

Figure 18.66:

Filename:sfig11-4-fourbar-fbd3

C

 C

D

G3

φ

⇀
R

 D
⇀
R

Figure 18.67:

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



980 Chapter 18. Constrained particles and rigid objects 18.3. Multi-degree-of-freedom 2-D mechanisms

SAMPLE 18.22 Numerical solution of the inverse dynamics problem.
Consider Sample 18.21 again. Using numerical solutions on a computer,
find and plot torque T against � for one complete cycle of the drive arm AB.
Take m1 D m2 D m3 D 1 kg and `1 D 400mm; `2 D 400

p
2mm; `3 D

800
p
2mm, and `4 D 1200mm.

Solution
Since we have to plot T against � for one complete revolution, we need to find angular

velocities, angular accelerations and center-of-mass accelerations for several values of � and
then solve for T for each of those � ’s. We can do this several ways. One way would be to
first solve kinematic equations to find �.t/; �.t/, and �.t/ at discrete times over one complete
cycle and then compute all other quantities at each .�.ti /; �.ti /; �.ti // where ti represents a
discrete time. So, let us follow this method step by step with pseudocodes. Here, we assume
that we have vector functions called dot and cross that compute the dot product and the
cross product of two vectors that are given as input arguments.

Step-1: solve for angular positions. Specify the given geometry

L1=0.4, L2=0.4*sqrt(2), L3=0.8*sqrt(2), L4=1.2

and use the pseudocode of Sample 17.5 to find �.ti /; �.ti /; �.ti / for, say, 100 values
of ti between 0 and 1 sec. Now, for each triad of .�.ti /; �.ti /; �.ti //, follow all the
steps below.

Step-2: solve for angular velocities. Since P� D 2�rad=s is given, we only need to solve for
P� and P�. We use eqn. (17.71) and eqn. (17.70) to compute P� and P� as follows (or

modify the pseudocode of Sample 17.5 to save P� and P� along with the values for �
and �.

define thdot=thetadot, bdot=betadot, pdot=phidot
thdot = 2*pi % this is given
set th = theta(ti), b = beta(ti), p = phi(ti)
set unit vectors
l1=[cos(th) sin(th) 0]’, n1=[-sin(th) cos(th) 0]’
l2=[cos(b) sin(b) 0]’, n2=[-sin(b) cos(b) 0]’
l3=[cos(p) sin(p) 0]’, n3=[-sin(p) cos(p) 0]’

bdot = -(L1/L2)*(cross(n1,l3)/cross(n2,l3))*thdot
pdot = (L1/L3)*(cross(n1,l2)/cross(n3,l2))*thdot

Step-3: solve for angular accelerations. Now that we have .�; �; �/ and the corresponding
values of . P�; P�; P�/, we can use eqn. (18.67) to calculate R� and R� (we are given R� D 0).

define thddot=thetaddot, bddot=betaddot,
pddot=phiddot

thddot = 0 % this is given
B = [-L2*sin(b) L3*sin(p); -L2*cos(b) L3*cos(p)]
C = L1*[sin(th) cos(th); cos(th) -sin(th)]
D = [-cos(b) cos(p); sin(b) -sin(p)]
c = [thddot thdotˆ2]’, d = [L2*bdotˆ2 L3*pdotˆ2]’
assume w = [bddot pddot]’
solve B*w = C*c + D*d for w

So, now we know R�; R�; R� also. We are now ready to compute P*
H ’s required for dy-

namic calculations.

Step-4: set up equations and solve for unknown forces. We need to set up and solve
eqn. (18.74). Note that we need to compute several quantities for this equation but
the vector computations are more or less straightforward.
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% set mass and inertia properties
m1 = 1, m2 = 1, m3 = 1
I1 = m1*L1ˆ2/12, I2 = m2*L2ˆ2/12, I3 = m3*L3ˆ2/12
% set fixed unit vectors

i = [1 0 0]’, j = [0 1 0]’, k = [0 0 1]’
% compute position vectors
rA = [0;0;0], rB = rA+L1*l1
rC = rB+L2*l2, rD = L4*l4
rG1 = L1/2*l1
rG2 = rB+L2/2*l2
rG3 = rD+L3/2*l3
% compute center-of-mass accelerations
aG1 = 0.5*L1*(tddot*n1-tdotˆ2*l1)
aG2 = 2*aG1+0.5*L2*(bddot*n2-bdotˆ2*l2) % aB = 2*aG1
aG3 = 0.5*L3*(pddot*n3-pdotˆ2*l3)

% compute Hdot_cms

Hdot_cm1 = I1*tddot*uk
Hdot_cm2 = I2*bddot*uk
Hdot_cm3 = I3*pddot*uk
% compute Hdots
Hdot_123_A = Hdot_cm1 + cross(rG1, m1*aG1)

+ Hdot_cm2 + cross(rG2, m2*aG2)
+ Hdot_cm3 + cross(rG3, m3*aG3)

Hdot_23_B = Hdot_cm2 + cross(rG2-rB, m2*aG2)
+ Hdot_cm3 + cross(rG3-rB, m3*aG3)

Hdot_3_C = Hdot_cm3 + cross(rG3-rC, m3*aG3)
% set up the linear eqns for torque and RD
b = [dot(Hdot_123_A,k) dot(Hdot_23_B,k) dot(Hdot_3_C,k)]
A = [1 dot(k,cross(rD,i)) dot(k,cross(rD,j))

0 dot(k,cross(rD-rB,i)) dot(k,cross(rD-rB,j))
0 dot(k,cross(rD-rC,i)) dot(k,cross(rD-rC,j))]

% let forces = [T RDx RDy]’
solve A*forces = b for forces

Step-5, repeat calculations. Now repeat Step-2 – Step-4 for each triad .�; �; �/ obtained in
Step-1 and save the corresponding values of T in a vector. Finally,

plot T vs theta

The plot thus obtained is shown in fig. 18.67. We can also plot T vs time (as shown
in fig. 18.68), and, of course, expect to see the same graph of T since � is just a linear
function of t . Note that the area under the graph of T over one complete cycle must
equal zero since the net impulse must be zero over one cycle.
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Problems for
Chapter 18
Constrained particles and rigid objects

18.1 Mechanics of a
constrained particle
18.1.1 A bead slides on a frictionless cir-
cular hoop . The mass of the beadmbead D
2 grams, mass of hoop mhoop D 1 kg and
radius of hoopRhoop D 3m. Neglect grav-
ity. The center of the circular hoop is the
origin O of a fixed (Newtonian) coordi-
nate system Oxyz. The hoop is on the
xy plane. The hoop is kept from mov-
ing by little angels who let the bead slide
by unimpeded. At t D 0, the speed of
the bead is 4m=s, it is traveling counter-
clockwise (looking down the z-axis), and
it is on the Cx-axis. There are no other
external forces applied.

a) At t D 0 what is the bead’s kinetic
energy ?

b) At t D 0 what is the bead’s linear
momentum ?

c) At t D 0 what is the bead’s angular
momentum about the origin?

d) At t D 0 what is the bead’s acceler-
ation?

e) At t D 0 what is the radius of the
osculating circle of the bead’s path
�?

f) At t D 0 what is the force of the
hoop on the bead?

g) At t D 0 what is the net force of the
angel’s hands on the hoop?

h) At t D 27s what is the x-
component of the bead’s linear mo-
mentum?

18.1.2 A warehouse operator wants to
move a crate of weightW D 100 lb from a
6 ft high platform to ground level by means
of a roller conveyer as shown. The rollers
on the inclined plane are well lubricated
and thus assumed frictionless; the rollers
on the horizontal conveyer are frictional,
thus providing an effective friction coeffi-
cient �. Assume the rollers are massless.

a) What are the kinetic and potential
energies(pick a suitable datum) of
the crate at the elevated platform,
point A?

b) What are the kinetic and potential
energies of the cart at the end of the
inclined plane just before it moves
onto the horizontal conveyor, point
B.

c) Using conservation of energy, cal-
culate the maximum speed attained
by the crate at point B, assuming it
starts moving from rest at point A.

d) If the crate slides a distance x, say,
on the horizontal conveyor, what is
the energy lost to sliding in terms of
�, W , and x?

e) Calculate the value of the coeffi-
cient of friction, �, such that the
crate comes to rest at point C.
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18.1.3 On a wintry evening, a student of
mass m starts down the steepest street in
town, Steep Street, which is of height h and
slope � . At the top of the slope she starts
to slide (coefficient of dynamic friction �).

a) What is her initial kinetic and po-
tential energy?

b) What is the energy lost to friction as
she slides down the hill?

c) What is her velocity on reaching the
bottom of the hill? Ignore air resis-
tance and all cross streets (i.e. as-
sume the hill is of constant slope).

d) If, upon reaching the bottom of the
street, she collides with another stu-
dent of mass M and they embrace,
what is their instantaneous mutual
velocity just after the embrace?

e) Assuming that friction still acts on
the level flats on the bottom, how
much time will it take before they
come to rest?
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18.1.4 Reconsider the system of blocks in
problem 3.3.14, this time with equal mass,
m1 D m2 D m. Also, now, both blocks
are frictional and sitting on a frictional sur-
face. Assume that both blocks are slid-
ing to the right with the top block moving
faster. The coefficient of friction between
the two blocks is �1. The coefficient of
friction between the lower block and the
floor is �2. It is known that �1 > 2�2.

a) Draw free body diagrams of the
blocks together and separately.

b) Write the equations of linear mo-
mentum balance for each block.

c) Find the acceleration of each block
for the case of frictionless blocks.
For the frictional blocks, find the
acceleration of each block. What
happens if �1 >> �2?

18.1.5 An initially motionless roller-
coaster car of mass 20 kg is given a hor-
izontal impulse

R *
F dt D P O{ at position

A, causing it to move along the track, as
shown below.

a) Assuming that the track is perfectly
frictionless from point A to C and
that the car never leaves the track,
determine the magnitude of the im-
pulse I so that the car “just makes
it” over the hill at B.

b) In the ensuing motion, assume that
the horizontal track C-D is fric-
tional and determine the coefficient
of friction required to bring the car
to a stop at D.
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18.1.6 Masses m1 D 1 kg and m2 kg
move on the frictionless varied terrain
shown. Initially, m1 has speed v1 D
12m=s and m2 is at rest. The two masses
collide on the flat section. The coefficient
of restitution in the collision is e D 0:5.
Find the speed of m2 at the top of the
first hill of elevation h1 D 1m. Does m2
make it over the second hill of elevation
h2 D 4m?
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18.1.7 A Scotch yoke is a device for con-
verting rotary motion into linear motion.
In this case it is used to make a horizon-
tal platform go up and down. The motion
of the platform is y D A sin.!t/ with con-
stant !. A dead bug with mass m is stand-
ing on the platform. Her feet have no glue
on them. There is gravity.

a) Draw a free-body diagram of the
bug.

b) What is the acceleration of the plat-
form and, hence, the bug?

c) Write the equation of linear mo-
mentum balance for the bug.

d) What condition must be met so that
the bug does not bounce the plat-
form?

e) What is the maximum spin rate !
that can be used if the bug is not to
bounce off the platform?
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18.1.8 A bug of mass m walks straight-
forwards with speed vA and rate of change
of speed PvA on a straight light (assumed to
be massless) stick. The stick is hinged at
the origin so that it is always horizontal but
is free to rotate about the z axis. Assume
that the distance the bug is from the origin,
`, the angle the stick makes with the x axis,
�, and its rate of change, P�, are known at
the instant of interest. Ignore gravity. An-
swer the following questions in terms of �,
P�, `, m, vA, and PvA.

a) What is R�?

b) What is the force exerted by the rod
on the support?

c) What is the acceleration of the bug?
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Problem 18.1.8

18.1.9 A new kind of gun. Assume ! D
!0 is a constant for the rod in the figure.
Assume the mass is free to slide. At t D 0,
the rod is aligned with the x-axis and the
bead is one foot from the origin and has no
radial velocity .dR=dt D 0/.

a) Find a differential equation for
R.t/. �

b) Turn this equation into a differential
equation for R.�/. �

c) How far will the bead have moved
after one revolution of the rod?
How far after two? �

d) What is the speed of the bead after
one revolution of the rod (use !0 D
2� rad=s D 1 rev=sec)? �

e) How much kinetic energy does the
bead have after one revolution and
where did it come from? �
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Problem 18.1.9

18.1.10 The new gun gets old and rusty.
Reconsider the bead on a rod in prob-
lem 18.1.9. This time, friction cannot be
neglected. The friction coefficient is �. At
the instant of interest the bead with massm
has radius R0 with rate of change PR0. The
angle � is zero and ! is a constant. Neglect
gravity.

a) What is RR at this instant? Give your
answer in terms of any or all of R0,
PR0, !, m, �, Oe� , OeR, O{, and O|. �

b) After a very long time it is observed
that the angle � between the path
of the bead and the rod/trough is
nearly constant. What, in terms of
�, is this �? �

18.1.11 A newer kind of gun. As an
attempt to make an improvement on the
‘new gun’ demonstrated in problem 18.1.9,
a person adds a length ` to the shaft on
which the bead slides. Assume there is no
friction between the bead (mass m) and the
wire. Assume the bead starts at s D 0 with
Ps D v0. The rigid rod, on which the bead
slides, rotates at a constant rate ! D !0.
Find s.t/ in terms of `;m; v0, and !0.
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18.1.12 Slippery bead on straight rotat-
ing stick. A long stick with mass ms ro-
tates at a constant rate and a bead, modeled
as a point mass, slides on the stick. The
stick rotates at constant rate *! D ! Ok. Ne-
glect gravity. The bead has mass mb . Ini-
tially the mass is at a distance R0 from the
hinge point on the stick and has no radial
velocity ( PR D 0). The initial angle of the
stick is � D 0, measured counterclockwise
from the positive x axis.

a) What is the torque, as a function of
the net angle the stick has rotated,
� , required in order to keep the stick
rotating at a constant rate ?

b) What is the path of the bead in the
xy-plane? (Draw an accurate pic-
ture showing about one half of one
revolution.)

c) How long should the stick be if the
bead is to fly in the negative x-
direction when it gets to the end of
the stick?

d) Add friction. How does the speed
of the bead over one revolution de-
pend on �, the coefficient of fric-
tion between the bead and the wire?
Make a plot of j*vone revolutionj
versus �. �Note, you have been
working with � D 0 in the prob-
lems above.�
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18.1.13 Mass on a lightly greased slotted
turntable or spinning uniform rod. As-
sume that the rod/turntable in the figure is
massless and also free to rotate. Assume
that at t D 0, the angular velocity of the
rod/turntable is 1 rad=s, that the radius of
the bead is one meter, and that the radial
velocity of the bead, dR=dt , is zero. The
bead is free to slide on the rod. Where is
the bead at t D 5 sec?
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Problem 18.1.13

18.1.14 A bead slides in a frictionless slot
in a turntable. The turntable spins a con-
stant rate !. The slot is straight and goes
through the center of the turntable. If the
bead is at radius Ro with PR D 0 at t D 0,
what are the components of the acceler-
ation vector in the directions normal and
tangential to the path of the bead after one
revolution? Neglect gravity.

18.1.15 A bead of mass m D 1 gm bead
is constrained to slide in a straight friction-
less slot in a disk which is spinning coun-
terclockwise at constant rate ! D 3 rad=s
per second. At time t D 0, the slot is par-
allel to the x-axis and the bead is in the
center of the disk moving out (in the plus
x direction) at a rate PRo D :5m=s. Af-
ter a net rotation � of one and one eighth
(1:125) revolutions, what is the force

*
F of

the disk on the bead? Express this answer
in terms of O{ and O|. Make the unreasonable
assumption that the slot is long enough to
contain the bead for this motion.
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18.1.16 Bead on springy leash in a slot
on a turntable. The bead in the figure is
held by a spring that is relaxed when the
bead is at the origin. The constant of the
spring is k. The turntable speed is con-
trolled by a strong stiff motor.

a) Assume ! D 0 for all time. What
are possible motions of the bead?

b) Assume ! D !0 is a constant.
What are possible motions of the
bead? Notice there are two cases
depending on the value of !0. What
is going on here?
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Problem 18.1.16: Mass in a slot.

18.1.17 A small bead with mass m slides
without friction on a rigid rod which ro-
tates about the z axis with constant !
(maintained by a stiff motor not shown in
the figure). The bead is also attached to a
spring with constant K, the other end of
which is attached to the rod. The spring is
relaxed when the bead is at the center po-
sition. Assume the bead is pulled to a dis-
tance d from the center of the rod and then
released with an initial PR D 0. If needed,
you may assume that K > m!2.

a) Derive the equation of motion for
the position of the bead R.t/.

b) How is the motion affected by large
versus small values of K?

c) What is the magnitude of the force
of the rod on the bead as the bead
passes through the center position?
Neglect gravity. Answer in terms of
m, !, d , K.

d) Write an expression for the Corio-
lis acceleration. Give an example
of a situation in which this acceler-
ation is important and explain why
it arises.
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Problem 18.1.17

18.1.18 A small ball of mass mb D
500 grams may slide in a slender tube of
length l D 1:2m. and of mass mt D
1:5 kg. The tube rotates freely about a
vertical axis passing through its center C.
(Hint: Treat the tube as a slender rod.)

a) If the angular velocity of the tube
is ! D 8 rad=s as the ball passes
through C with speed relative to the
tube, v0, calculate the angular ve-
locity of the tube just before the ball
leaves the tube. �

b) Calculate the angular velocity of the
tube just after the ball leaves the
tube. �

c) If the speed of the ball as it passes
C is v D 1:8m=s, determine the
transverse and radial components of
velocity of the ball as it leaves the
tube. �

d) After the ball leaves the tube, what
constant torque must be applied to
the tube (about its axis of rotation)
to bring it to rest in 10 s? �
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Problem 18.1.18
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18.1.19 Toy train car on a turn-around.
The 0:1 kg toy train’s speedometer reads
a constant 1m=s when, heading west, it
passes due north of pointO . The train is on
a level straight track which is mounted on a
spinning turntable whose center is ‘pinned’
to the ground. The turntable spins at the
constant rate of 2 rad=s. What is the force
of the turntable on the train? (Don’t worry
about the z-component of the force.) �
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Problem 18.1.19

18.1.20 Due to forces not shown, the cart
moves to the right with constant accelera-
tion ax . The ball B has mass mB . At time
t D 0, the string AB is cut. Find

a) the tension in string BC before cut-
ting, �

b) the absolute acceleration of the
mass at the instant of cutting, �

c) the tension in string BC at the in-
stant of cutting. �
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Problem 18.1.20

18.1.21 The forked arm mechanism
pushes the bead of mass 1 kg along a fric-
tionless hyperbolic spiral track given by
r D 0:5�.m= rad/. The arm rotates about
its pivot point at O with constant angular
acceleration R� D 1 rad=s2 driven by a mo-
tor (not shown). The arm starts from rest
at � D 0

�
.

a) Determine the radial and transverse
components of the acceleration of
the bead after 2 s have elapsed from
the start of its motion.

b) Determine the magnitude of the net
force on the mass at the same in-
stant in time.
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Problem 18.1.21

18.1.22 A rod is on the palm of your hand
at point A. Its length is `. Its mass m is
assumed to be concentrated at its end at C .
Assume that you know � and P� at the in-
stant of interest. Also assume that your
hand is accelerating both vertically and
horizontally with *ahand D ahx O{ C ahy O|.
Coordinates and directions are as marked
in the figure.

a) Draw a Free Body Diagram of the
rod.

b) Assume that the hand is stationary.
Solve for R� in terms of g, `, m, � ,
and P� .

c) If the hand is not stationary but R�
has been determined somehow, find
the vertical force of the hand on the
rod in terms of R� , P� , � , g, `,m, ahx ,
and ahy .
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Problem 18.1.22: Rod on a Moving
Support(2-D).

18.1.23 Balancing a broom. Assume the
hand is accelerating to the right with ac-
celeration a D aO{. What is the force
of the hand on the broom in terms of
m; `; �; P�; a; O{; O|, and g? (You may
not have any OeR or Oe� in your answer.)
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Problem 18.1.23

18.2
One-degree-of-freedom
2-D mechanisms
18.2.1 A conservative vibratory system has
the following equation of conservation of
energy.

m.` P�/2�mg`.1�cos �/CK.a�/2 D E0

where E0 is a constant.

a) Obtain the differential equation of
motion of this system by differen-
tiating this energy equation with re-
spect to t .

b) Determine the circular frequency of
small oscillations of the system in
part (a). HINT: (Let sin � � � and
cos � � 1 � �2=2/.

18.2.2 A motor at O turns at rate !o whose
rate of change is P!o. At the end of a stick
connected to this motor is a frictionless
hinge attached to a second massless stick.
Both sticks have length L. At the end of
the second stick is a mass m. For the con-
figuration shown, what is R�? Answer in
terms of !o, P!o, L, m, � , and P� . Ignore
gravity.
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Problem 18.2.2

18.2.3 In problem 17.3.4, find
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a) the angular momentum about point
O , �

b) the rate of change of angular mo-
mentum of the disk about point O ,
�

c) the angular momentum about point
C , �

d) the rate of change of angular mo-
mentum of the disk about point C .
�

Assume the rod is massless and the disk
has mass m.
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Problem 18.2.3

18.2.4 Robot arm, 2-D . The robot arm
AB is rotating about point A with !AB D
5 rad=s and P!AB D 2 rad=s2. Mean-
while the forearm BC is rotating at a con-
stant angular speed with respect to AB of
!BC=AB D 3 rad=s. Gravity cannot be
neglected. At the instant shown, find the
net force acting on the object P which has
mass m D 1 kg. �
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Problem 18.2.4

18.2.5 A crude model for a column, shown
in the figure, consists of two identical rods
of massm and length ` with hinge connec-
tions, a linear torsional spring of stiffness
K attached to the center hinge (the spring
is relaxed when � D 0), and a load P ap-
plied at the top end.

a) Obtain the exact nonlinear equation
of motion.

b) Obtain the squared natural fre-
quency for small motions � .

c) Check the stability of the straight
equilibrium state � D 0 for all
P � 0 via minimum potential en-
ergy. How do these results compare
with those from part(b)?
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Problem 18.2.5

18.2.6 A thin uniform rod of mass m rests
against a frictionless wall and on a friction-
less floor. There is gravity.

a) Draw a free body diagram of the
rod.

b) The rod is released from rest at � D
�0 ¤ 0. Write the equation of mo-
tion of the rod. �

c) Using the equation of motion,
find the initial angular acceleration,
P!AB , and the acceleration of the
center of mass,*aG , of the rod. �

d) Find the reactions on the rod at
points A and B . �

e) Find the acceleration of point B . �

f) When � D �0
2 , find *!AB and the

acceleration of point A. �
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Problem 18.2.6

18.2.7 Bar leans on a crooked wall. A
uniform 3 lbm bar leans on a wall and floor
and is let go from rest. Gravity pulls it
down.

a) Draw a Free Body Diagram of the
bar.

b) Kinematics: find the velocity and
acceleration of point B in terms
of the velocity and acceleration of
point A

c) Using equations of motion, find the
acceleration of point A.

d) Do the reaction forces at A and B
add up to the weight of the bar?
Why or why not? (You do not need
to solve for the reaction forces in or-
der to answer this part.)
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Problem 18.2.7

18.2.8 Two blocks, each with mass m,
slide without friction on the wall and floor
shown. They are attached with a rigid
massless rod of length ` that is pinned at
both ends. The system is released from rest
when the rod makes an angle of 45�. What
is the acceleration of the block B immedi-
ately after the system is released?
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18.2.9 Slider Crank. 2-D . No gravity.
Refer to the figure in problem 17.4.2. What
is the tension in the massless rod AB (with
length L) when the slider crank is in the
position with � D 0 (piston is at maximum
extent)? Assume the crankshaft has con-
stant angular velocity !, that the connect-
ing rod AB is massless, that the cylinder
walls are frictionless, that there is no gas
pressure in the cylinder, that the piston has
mass M and the crank has radius R.
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Problem 18.2.9

18.2.10 In problem 17.4.8, find the force
on the wheel at point D due to the rod.
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18.2.11 In problem 17.4.9, find the force
on the rod at point P .
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Problem 18.2.11

18.2.12 Slider-Crank mechanism. The
slider crank mechanism shown is used to
push a 2 lbm block P. Arm AB and BC are
each 0:5 ft long. Given that arm AB ro-
tates counterclockwise at a constant 2 rev-
olutions per second, what is the force on P
at the instant shown? �
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18.2.13 The large masses m at C and A
were supported by the light triangular plate
ABC, whose corners follow the guide. B
enters the curved guide with velocity V .
Neglecting gravity, find the vertical reac-
tions (in the y direction) at A and B. (Hint:
for the rigid planar body ABC , find RyA
and RyB in terms of acmy and R� , assuming
P� D 0 initially.)
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Problem 18.2.13

18.2.14 An idealized model for a car com-
prises a rigid chassis of mass Mc and four
identical rigid disks (wheels) of mass Mw
and radius R, as shown in the figure. Ini-
tially in motion with speed v0, the car
is momentarily brought to rest by com-
pressing an initially uncompressed spring
of stiffness k. Assume no frictional losses.

a) Assuming no wheel slip, determine
the compression � of the spring re-
quired to stop the car. �

b) While the car is in contact with
the spring but still moving forward,
in which direction is the tangen-
tial force on any one of the wheels
(due to contact with the ground)
pointing? Why? (Illustrate with a
sketch). �

c) Repeat part (a) assuming now that
the ground is perfectly frictionless
from points A to B shown in the fig-
ure. �
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Problem 18.2.14

18.2.15 Assume Greg Lemond’s riding
“tuck” was so good that you can neglect
air resistance when you think about him
and his bike. Further, you can regard his
and the bike’s combined mass (all 70 kg/)
as concentrated at a point in his stomach
somewhere. Greg’s left foot has just fallen
off the pedal so he is only pedaling with his
right foot, which at the moment in ques-
tion is at its lowest point in the motion.
You note that, relative to the ground the
right foot is only going 3/4 as fast as the
bike (since it is going backwards relative
to the bike), though you can’t make out all
the radii of his frictionless gears and rigid
round wheels. Greg, ever in touch with his
body, tells you he is pushing back on the
pedal with a force of 70 N. You would like
to know Greg’s acceleration.

a) In your first misconceived experi-
ment you set up a 70 kg bicycle
in your laboratory and balance it
with strings that cause no fore or aft
forces. You tie a string to the verti-
cally down right pedal and pull back
with a force of 70 N. What acceler-
ation do you measure?

b) What is Greg’s actual acceleration?
[Hint: Greg’s massless leg is push-
ing forward on his body with a force
of 70 N] You can neglect the mass
of the wheels and other transmis-
sion parts (chain, crank, etc).
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18.2.16 Which way does the bike accel-
erate? A bicycle with all frictionless bear-
ings is standing still on level ground. A
horizontal force F is applied on one of
the pedals as shown. There is no slip be-
tween the wheels and the ground. The bi-
cycle is gently balanced from falling over
sideways. It is heavy enough so that both
wheels stay on the ground. Does the bi-
cycle accelerate forward, backward, or not
at all? Make any reasonable assumptions
about the dimensions and mass. Justify
your answer as clearly as you can, clearly
enough to convince a person similar to
yourself but who has not seen the experi-
ment performed.

Filename:pfigure-s94h14p2

F

No slip

Problem 18.2.16

18.3
Multi-degree-of-freedom
2-D mechanisms
18.3.1 Particle on a springy leash. A par-
ticle with mass m slides on a rigid hori-
zontal frictionless plane. It is held by a
string which is in turn connected to a lin-
ear elastic spring with constant k. The
string length is such that the spring is re-
laxed when the mass is on top of the hole
in the plane. The position of the particle is
*r D x O{ C y O|. For each of the statements
below, state the circumstances in which
the statement is true (assuming the parti-
cle stays on the plane). Justify your answer
with convincing explanation and/or calcu-
lation.

a) The force of the plane on the parti-
cle is mg Ok.

b) Rx C k
mx D 0

c) Ry C k
my D 0

d) Rr C k
m r D 0; where r D j*rj

e) r D constant

f) P� Dconstant

g) r2 P� D constant.

h) m. Px2 C Py2/C kr2 D constant

i) The trajectory is a straight line seg-
ment.
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j) The trajectory is a circle.

k) The trajectory is not a closed curve.
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Problem 18.3.1: Particle on a springy
leash.

18.3.2 “Yo-yo” mechanism of satellite
de-spinning. A satellite, modeled as a
uniform disk, is “de-spun” by the follow-
ing mechanism. Before launch two equal
length long strings are attached to the satel-
lite at diametrically opposite points and
then wound around the satellite with the
same sense of rotation. At the end of the
strings are placed 2 equal masses. At the
start of de-spinning the two masses are re-
leased from their position wrapped against
the satellite. Find the motion of the satel-
lite as a function of time for the two cases:
(a) the strings are wrapped in the same
direction as the initial spin, and (b) the
strings are wrapped in the opposite direc-
tion as the initial spin.

18.3.3 A particle with mass m is held by
two long springs each with stiffness k so
that the springs are relaxed when the mass
is at the origin. Assume the motion is pla-
nar. Assume that the particle displacement
is much smaller than the lengths of the
springs.

a) Write the equations of motion in
cartesian components. �

b) Write the equations of motion in po-
lar coordinates. �

c) Express the conservation of angu-
lar momentum in cartesian coordi-
nates. �

d) Express the conservation of angular
momentum in polar coordinates. �

e) Show that (a) implies (c) and (b)
implies (d) even if you didn’t note
them a-priori. �

f) Express the conservation of energy
in cartesian coordinates. �

g) Express the conservation of energy
in polar coordinates. �

h) Show that (a) implies (f) and (b)
implies (g) even if you didn’t note
them a-priori. �

i) Find the general motion by solving
the equations in (a). Describe all
possible paths of the mass. �

j) Can the mass move back and forth
on a line which is not the x or y
axis? �
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18.3.4 Cart and pendulum A massmB D
6 kg hangs by two strings from a cart with
mass mC D 12 kg. Before string BC is
cut string AB is horizontal. The length of
string AB is r D 1m. At time t D 0
all masses are stationary and the string BC
is cleanly and quietly cut. After some un-
known time tvert the string AB is vertical.

a) What is the net displacement of the
cart xC at t D tvert?

�

b) What is the velocity of the cart vC
at t D tvert?

�

c) What is the tension in the string at
t D tvert?

�

d) (Optional) What is t D tvert? [You
will either have to leave your an-
swer in the form of an integral you
cannot evaluate analytically or you
will have to get part of your solu-
tion from a computer.]
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Problem 18.3.4

18.3.5 A dumbbell slides on a floor. Two
point masses m at A and B are connected

by a massless rigid rod with length `.
Mass B slides on a frictionless floor so that
it only moves horizontally. Assume this
dumbbell is released from rest in the con-
figuration shown. [Hint: What is the ac-
celeration of A relative to B?]

a) Find the acceleration of point B just
after the dumbbell is released.

b) Find the velocity of point A just be-
fore it hits the floor
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Problem 18.3.5

18.3.6 After a winning goal one second
before the clock ran out a psychologically
stunned hockey player (modeled as a uni-
form rod) stands nearly vertical, stationary
and rigid. The players perfectly slippery
skates start to pop out from under her as
she falls. Her height is `, her mass m,
her tip from the vertical � , and the gravi-
tational constant is g.

a) What is the path of her center of
mass as she falls? (Show clearly
with equations, sketches or words.)

b) What is her angular velocity just
before she hits the ice, a millisec-
ond before she sticks our her hands
and brakes her fall (first assume her
skates remain in contact the whole
time and then check the assump-
tion)?

c) Find a differential equation that
only involves � , its time derivatives,
m, g, and `. (This equation could
be solved to find � as a function of
time. It is a non-linear equation and
you are not being asked to solve it
numerically or otherwise.)

18.3.7 Falling hoop. A bicycle rim (no
spokes, tube, tire, or hub) is idealized as a
hoop with massm and radiusR. G is at the
center of the hoop. An inextensible string
is wrapped around the hoop and attached
to the ceiling. The hoop is released from
rest at the position shown at t D 0.

a) Find yG at a later time t in terms of
any or all of m, R, g, and t .
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b) Does G move sideways as the hoop
falls and unrolls?
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Problem 18.3.7

18.3.8 A model for a yo-yo consists of a
thin disk of mass M and radius R and a
light drum of radius r, rigidly attached to
the disk, around which a light inextensible
cable is wound. Assuming that the cable
unravels without slipping on the drum, de-
termine the acceleration aG of the center
of mass.
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18.3.9 A uniform rod with mass mR piv-
ots without friction about point A in the
xy-plane. A collar with mass mC slides
without friction on the rod after the string
connecting it to point A is cut. There is no
gravity. Before the string is cut, the rod has
angular velocity !1.

a) What is the speed of the collar after
it flies off the end of the rod? Use
the following values for the con-
stants and initial conditions: mR D
1 kg, mC D 3 kg, a D 1m, ` D
3m, and !1 D 1 rad=s

b) Consider the special case mR D 0.
Sketch (approximately) the path of
the motion of the collar from the
time the string is cut until some time
after it leaves the end of the rod.
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Problem 18.3.9

18.3.10 Assume the rod in the figure for
problem 17.1.5 has polar moment of iner-
tia Iozz. Assume it is free to rotate. The
bead is free to slide on the rod. Assume
that at t D 0 the angular velocity of the
rod is 1 rad=s, that the radius of the bead
is one meter and that the radial velocity of
the bead, dR=dt , is zero.

a) Draw separate free body diagrams
of the bead and rod.

b) Write equations of motion for the
system. �

c) Use the equations of motion to
show that angular momentum is
conserved. �

d) Find one equation of motion for the
system using: (1) the equations of
motion for the bead and rod and
(2) conservation of angular momen-
tum. �

e) Write an expression for conserva-
tion of energy. Let the initial total
energy of the system be, say, E0. �

f) As t goes to infinity does the
bead’s distance go to infinity? Its
speed? The angular velocity of the
turntable? The net angle of twist of
the turntable? �
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Problem 18.3.10: Coupled motion of
bead and rod and turntable.

18.3.11 A primitive gun rides on a cart
(mass M ) and carries a cannon ball (of
massm) on a platform at a heightH above
the ground. The cannon ball is dropped
through a frictionless tube shaped like a
quarter circle of radius R.

a) If the system starts from rest, com-
pute the horizontal speed (relative
to the ground) that the cannon ball
has as it leaves the bottom of the
tube. Also find the cart’s speed at
the same instant.

b) Compute the velocity of the cannon
ball relative to the cart.

c) If two balls are dropped simultane-
ously through the tube, what speed
does the cart have when the balls
reach the bottom? Is the same final
speed also achieved if one ball is al-
lowed to depart the system entirely
before the second ball is released?
Why/why not?
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18.3.12 Numerically simulate the coupled
system in problem 18.3.10. Use the sim-
ulation to show that the net angle of the
turntable or rod is finite.

a) Write the equations of motion for
the system from part (b) in prob-
lem 18.3.10 as a set of first order
differential equations. �

b) Numerically integrate the equations
of motion.

18.3.13 Two frictionless prisms of simi-
lar right triangular sections are placed on
a frictionless horizontal plane. The top
prism weighs W and the lower one nW .
The prisms are held in the initial position
shown and then released, so that the upper
prism slides down along the lower one un-
til it just touches the horizontal plane. The
center of mass of a triangle is located at
one-third of its height from the base. Com-
pute the velocities of the two prisms at the
moment just before the upper one reaches
the bottom. �
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Problem 18.3.13

18.3.14 Mass slides on an accelerating
cart. 2D. A cart is driven by a powerful
motor to move along the 30� sloped ramp
according to the formula: d D d0C vot C
a0t

2=2 where d0, v0, and a0 are given
constants. The cart is held from tipping
over. The cart itself has a 30� sloped up-
per surface on which rests a mass (given
mass m). The surface on which the mass
rests is frictionless. Initially the mass is at
rest with regard to the cart.

a) What is the force of the cart
on the mass? [in terms of
g; d0; v0; t; a0; m; g; O{, and O|.] �

b) For what values of d0, v0, t and a0
is the acceleration of the mass ex-
actly vertical (i.e., in the O| direc-
tion)? �
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Problem 18.3.14

18.3.15 A thin rod AB of mass WAB D
10 lbm and length LAB D 2 ft is pinned to
a cart C of mass WC D 10 lbm, the latter
of which is free to move along a friction-
less horizontal surface, as shown in the fig-
ure. The system is released from rest with
the rod in the horizontal position.

a) Determine the angular speed of the
rod as it passes through the vertical
position (at some later time). �

b) Determine the displacement x of
the cart at the same instant. �

c) After the rod passes through verti-
cal, it is momentarily horizontal but
on the left side of the cart. How far
has the cart moved when this con-
figuration is reached?
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Problem 18.3.15

18.3.16 As shown in the figure, a block
of mass m rolls without friction on a rigid
surface and is at position x (measured from
a fixed point). Attached to the block is a
uniform rod of length ` which pivots about
one end which is at the center of mass of
the block. The rod and block have equal
mass. The rod makes an angle � with the
vertical. Use the numbers below for the
values of the constants and variables at the
time of interest:

` D 1m
m D 2 kg
� D �=2

d�=dt D 1 rad=s

d2�=dt2 D 2 rad=s2

x D 1m
dx=dt D 2m=s

d2x=dt2 D 3m=s2

a) What is the kinetic energy of the
system?

b) What is the linear momentum of the
system (momentum is a vector)?
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Problem 18.3.16

18.3.17 A pendulum of length ` hangs
from a cart. The pendulum is massless ex-
cept for a point mass of mass mp at the
end. The cart rolls without friction and
has mass mc . The cart is initially station-
ary and the pendulum is released from rest
at an angle � . What is the acceleration
of the cart just after the mass is released?
[Hints: aP D *aC C*aP =C . The answer
is *aC D .g=3/i in the special case when
mp D mc and � D �=4. ]
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Problem 18.3.17

18.3.18 Due to the application of some un-
known force F , the base of the pendulum
A is accelerating with*aA D aA{: There is
a frictionless hinge at A. The angle of the
pendulum � with the x axis and its rate of
change P� are assumed to be known. The
length of the massless pendulum rod is `.
The mass of the pendulum bob M . There
is no gravity. What is R�? (Answer in terms
of aA, `, M , � and P� .)
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18.3.19 Pumping a Swing Can a swing
be pumped by moving the support point up
and down?

For simplicity, neglect gravity and
consider the problem of swinging a rock in
circles on a string. Let the rock be mass m
attached to a string of fixed length `. Can
you speed it up by moving your hand up
and down? How? Can you make a quanti-
tative prediction? Let xS be a function of
time that you can specify to try to make the
mass swing progressively faster.
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Problem 18.3.19

18.3.20 Using free body diagrams and
appropriate momentum balance equations,
find differential equations that govern the
angle � and the vertical deflection y of the
system shown. Be clear about your datum
for y. Your equations should be in terms
of �; y and their time-derivatives, as well
as M;m; `, and g.
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Problem 18.3.20

18.3.21 The two blocks shown are re-
leased from rest at t D 0. There is no fric-
tion and the cable is initially taut. (a) What
is the tension in the cable immediately af-
ter release? (Use any reasonable value for
the gravitational constant). (b) What is the
tension after 5 s?
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Problem 18.3.21

18.3.22 Carts A and B are free to move
along a frictionless horizontal surface, and
bob C is connected to cart B by a massless,
inextensible cord of length `, as shown in
the figure. Cart A moves to the left at a
constant speed v0 D 1m=s and makes a
perfectly plastic collision (e D 0) with cart
B which, together with bob C, is stationary
prior to impact. Find the maximum vertical
position of bob C, hmax , after impact. The
masses of the carts and pendulum bob are
mA D mB D mC D 10 kg.
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Problem 18.3.22

18.3.23 A double pendulum is made of
two uniform rigid rods, each of length `.
The first rod is massless. Find equations
of motion for the second rod. Define any
variables you use in your solution.
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Problem 18.3.23

18.3.24 A model of walking involves two
straight legs. During the part of the mo-
tion when one foot is on the ground, the
system looks like the picture in the fig-
ure, confined to motion in the x � y plane.

Write two equations from which one could
find R�1; and R�2 given �1; �2;

P�1; P�2
and all mass and length quantities.2
64

Hint:P *
M=A D P*

H=A whole systemP *
M=B D P*

H=B for bar BC

3
75
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Problem 18.3.24

Advanced problems in 2D
motion
18.3.25 A pendulum is hanging from a
moving support in the xy-plane. The
support moves in a known way given by
*r.t/ D r.t/O{. For the following cases,
find a differential equation whose solution
would determine �.t/, measured clock-
wise from vertical; then find an expression
for d2�=dt2 in terms of � and r.t/:

a) with no gravity and assuming the
pendulum rod is massless with a
point mass of mass m at the end,

b) as above but with gravity,

c) assuming the pendulum is a uni-
form rod of mass m and length `.

18.3.26 Robotics problem: balancing a
broom stick by sideways motion. Try
to balance a broom stick by moving your
hand horizontally. Model your hand con-
tact with the broom as a hinge. You can
model the broom as a uniform stick or as
a point mass at the end of a stick — your
choice.

a) Equation of motion. Given the ac-
celeration of your hand (horizontal
only), the current tip, and the rate
of tip of the broom, find the angular
acceleration of the broom. �

b) Control? Can you find a hand ac-
celeration in terms of the tip and the
tip rate that will make the broom
balance upright? �
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Problem 18.3.26

18.3.27 Balancing the broom again: ver-
tical shaking works too. You can balance
a broom by holding it at the bottom and
applying appropriate torques, as in prob-
lem 15.4.45 or by moving your hand back
and forth in an appropriate manner, as in
problem 18.3.26. In this problem, you will
to try to balance the broom differently. The
lesson to be learned here is more subtle,
and you should probably just wonder at it
rather than try to understand it in detail.

In the previous balancing schemes,
you used knowledge of the state of the
broom (� and P� ) to determine what cor-
rective action to apply. Now balance the
broom by moving it in a way that ignores
what the broom is doing. In the language
of robotics, what you have been doing
before is ‘closed-loop feedback’ control.
The new strategy, which is simultaneously
more simple minded and more subtle, is
an ‘open loop’ control. Imagine that your
hand connection to the broom is a hinge.

a) Picture and model. Assume your
hand oscillates sinusoidally up and
down with some frequency and
some amplitude. The broom is in-
stantaneously at some angle from
vertical. Draw a picture which de-
fines all the variables you will use.
Use any mass distribution that you
like.

b) FBD. Draw a FBD of the broom.
c) Momentum balance. Write the

equation of angular momentum
balance about the point instanta-
neously coinciding with the hinge.

d) Kinematics. Use any geometry and
kinematics that you need to evalu-
ate the terms in the angular momen-
tum balance equation in terms of
the tip angle and its time derivatives
and other known quantities (take
the vertical motion of your hand as
‘given’). [Hint: There are many ap-
proaches to this problem.]

e) Equation of motion. Using the an-
gular momentum balance equation,
write a governing differential equa-
tion for the tip angle. �

f) Simulation. Taking the hand mo-
tion as given, simulate on the com-
puter the system you have found.

g) Stability? Can you find an am-
plitude and frequency of shaking
so that the broom stays upright if
started from a near upright posi-
tion? You probably cannot find lin-
ear equations to solve that will give
you a control strategy. So, this
problem might best be solved by
guessing on the computer. Success-
ful strategies require the hand accel-
eration to be quite a bit bigger than
g, the gravitational constant. The
stability obtained is like the stabil-
ity of an undamped uninverted pen-
dulum — oscillations persist. You
improve the stability a little by in-
cluding a little friction in the hinge.

h) Dinner table experiment
for nerdy eaters. If you put a table
knife on a table and put your finger
down on the tip of the blade, you
can see that this experiment might
work. Rapidly shake your hand
back and forth, keeping the knife
from sliding out from your finger
but with the knife sliding rapidly on
the table. Note that the knife aligns
with the direction of shaking (use
scratch-resistant surface). The knife
is different from the broom in some
important ways: there is no grav-
ity trying to ‘unalign’ it and there is
friction between the knife and table
that is much more significant than
the broom interaction with the air.
Nonetheless, the experiment should
convince you of the plausibility of
the balancing mechanism. Because
of the large accelerations required,
you cannot do this experiment with
a broom.
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Problem 18.3.27: The sketch of the knife
on the table goes with part (h).

18.3.28 Double pendulum. The double
pendulum shown is made up of two uni-
form bars, each of length ` and mass m.
The pendulum is released from rest at
�1 D 0 and �2 D �=2. Just after release
what are the values of R�1 and R�2? Answer
in terms of other quantities. �
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Problem 18.3.28

18.3.29 A rocker. A standing dummy is
modeled as having massless rigid circular
feet of radius R rigidly attached to their
uniform rigid body of length L and mass
m. The feet do not slip on the floor.

a) Given the tip angle �, the tip rate P�
and the values of the various param-
eters (m, R, L, g) find R�. [You may
assume � and P� are small.] �

b) Using the result of (a) or any other
clear reasoning find the conditions

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter 18. Homework problems 18.3 Multi-degree-of-freedom 2-D mechanisms 993

on the parameters (m, R, L, g)
that make vertical passive dynamic
standing stable. [Stable means that
if the person is slightly perturbed
from vertically up that their result-
ing motion will be such that they re-
main nearly vertically up for all fu-
ture time.] �
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Problem 18.3.29

18.3.30 Consider a rigid spoked wheel
with no rim. Assume that when it rolls a
spoke hits the ground and doesn’t bounce.
The body just swings around the contact
point until the next spoke hits the ground.
The uniform spokes have length R. As-
sume that the mass of the wheel is m, and
that the polar moment of inertia about its
center is I (use I D mR2=2 if you want
to get a better sense of the solution). As-
sume that just before collision number n,
the angular velocity of the wheel is !n�,
the kinetic energy is Tn�, the potential en-
ergy (you must clearly define your datum)
is Un�. Just after collision n the angular
velocity of the wheel is !nC. The Kinetic
Energy is TNC, the potential energy (you
must clearly define your datum) is UnC.
The wheel has k spokes (pick k D 4 if you
have trouble with abstraction). This prob-
lem is not easy. It can be answered at a
variety of levels. The deeper you get into
it the more you will learn.

a) What is the relation between !n�
and Tn�?

b) What is the relation between !n�
and !nC?

c) Assume ‘rolling’ on level ground.
What is the relation between !nC
and !nC1?

d) Assume rolling down hill at slope � .
What is the relation between !nC
and !nC1?

e) Can it be true that !nC = !.nC1/C?
About how fast is the wheel going
in this situation?

f) As the number of spokes m goes
to infinity, in what senses does
this wheel become like an ordinary
wheel?
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APPENDIX A
Units and dimensions

Some important things don’t fit in a homework-driven course. These appen-
dices are about some of those things.

This first appendix is about units and dimensions. Most important is this:
A quantity is the product of a number and a unit.

Thus units are part of a calculation. Some simple advice follows: a) balance
units, b) carry units and c) check units. Rules for changing units also follow.

Somewhere near the front many engineering books there is a tedious and
pedantic section about units and dimensions. This book is completely dif-
ferent. That section is here at the back. We don’t want to diminish the im-
portance of this topic, but discuss it back here because students are immune
to preaching. The only way a student will get good at managing units is by
imitation, or when forced to do so in a time of panic, or at a moment of idle
curiosity. As for imitation, we have tried to set a good example throughout
the book. As for panic and curiosity, this section is here for you.

Not everyone takes the care with units that we advise. Yet they still do
productive engineering. There are various ways people use, abuse, or don’t
use units and still make their ways to sensible results. We describe some of
these here.

A.1 Balancing and carrying units
The central rules which we advise that you follow are:

a) Balance your units and
b) Carry your units.

Where do these rules come from?
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Physical quantities that are dimensional are represented by a number
multiplying a unit.

Thus d D 7m means 7�(one meter). The 7 and the ‘m’ are of equal status
in any math you do.

Balance your units
Every line of every calculation should be dimensionally sensible. That is,
the dimensions on the left of the equal sign should be consistent with the
dimensions on the right the same way numbers have to balance. Otherwise
the equations are not equations.

For example, if two bicycles tied in a race you could say they were in
some way equal. But even if you noticed that the weight difference between
these equivalent bicycles was 10% more than 2 pounds you would not write

8 kg D 9 kg:

The equivalence between the two bikes in race times does not make eight
kilograms equal to nine kilograms. In this same way it would be wrong to
write

1 in D 1 s:

if you noticed that it takes a bug about a minute (60 seconds) to walk the
length of your body (say about 60 inches). The passing of a second corre-
sponds to the passing of an inch, so for some purposes an inch is equivalent
to a second. But that does not mean that an inch is a second. An inch has di-
mensions of length which cannot be equal to a second which has dimensions
of time. Length can equal time no more than 8 can equal 9.

But it is correct to write that

5:08 cm D 2 in:

Both centimeters and inches have dimensions of length and one inch is equiv-
alent to 2.54 centimeters always (fig. A.1). An equation where the units on
both sides of the equation are the same physical quantities (length in the ex-
ample above) is balanced with regard to units.

Carry your units
When you go from one line of a calculation to the next you should carry
(keep written track of) the units with as much care as any other numerical or
algebraic quantities. When you do arithmetic and don’t forget any terms you
have ‘carried’ the numbers from one line of calculation to the next. Similarly,
carrying the units just means not forgetting them in your calculations 1.

Example: Dividing meters by seconds.
A bicycle goes 7 meters in 2 seconds so

v D d

t
D 7m

2 s
D 3:5m=s:

Filename:tfigure1-a

1 inch

1 cm

Figure A.1: Relative size of an inch and
a centimeter.

1Caution: People often put units next
to their equations with a vague notion
that the units apply to the equation. This
sometimes works out in the end and
sometimes doesn’t. Better to include the
units as part of the equations. Because
the rules for manipulating units are the
same as those for manipulating num-
bers, things necessarily work out cor-
rectly if units are treated with equal sta-
tus as are the numbers.
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pdl, a Newton N, a pound force lbf,
and a kilogram force kgf . 1N D
7:24 pdl, 1 lbf D 4:45N, and 1 kgf D
1 kilopond D 9:81N D 2:2 lbf.

Here we have divided 7 by 2 and also divided m by s. But a meter ( m) is not a
number, nor is a second ( s). So the ratio m=s cannot be reduced more. In particular,
the m=s is not sitting next to the equation but is part of the equation: the velocity is
not v D 3:5 but rather v D 3:5m=s.

The rest of this section is, more or less, a discussion of how and why to ‘carry
your units.’

A.2 Dimensions, units and changing units
Distance has dimensions of length �L� that can be measured with various
units — centimeters ( cm), yards ( yd), or furlongs (an obsolete unit equal to
1=8 mile). A meter is the standard unit of length in the SI system. In answer
to the question ‘What is the length of a bicycle crank `?’ we say ‘` is seven
inches’ and write ` D 7 in or say ‘` is seventeen point seven centimeters’
and write ` D 17:7 cm. In each case, a number multiplies a dimensional
unit.

Force has dimension of mass times acceleration �m � a�. Because accel-
eration itself has dimensions of length over time squared �L=T 2�, force also
has dimensions of mass times length divided by time squared �M � L=T 2�.
Because force has such a central role in mechanics, it is often convenient to
think of force as having its own units. Force then has dimensions of, simply,
force �F �. The most common units for force are Newton ( N) and the pound
force ( lbf). The ‘f’ in the notation for the pound lbf is to distinguish a pound
force lbf from the pound mass lbm , 1 lbf D lbm �g � 1 lbm �32:2 ft=s2 �
32:2 lbm � ft=s2. Some people use lb to mean pound force or pound mass,
depending on context. To avoid confusion we use lbm for pound mass and
lbf for pound force (see box A.3 on page 1004).

Changing units

We can say ‘The typical force of a seated racing bicyclist on a bicycle pedal
is thirty pounds,’ and write any of the following:

F D 30 lbf

F D 30 lbf � .1/
F D 30 6lbf �

�
4:45 N
1 6lbf

�
� �� �

1

F D 133:5 N:

Here we have shown one way to change units. Multiply the expression of
interest by one (1) and then make an appropriate substitution for one. Any
table of units will tell us that 1 lbf is approximately 4:45N. So we can write
1 D .4:45Newtons=1 lbf/ and multiply any part of an equation by it without
affecting the equation’s validity. (See fig. A.2 to get a sense of the relation
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between a pound force, a Newton, and the less used force units, the poundal
and the kilogram-force.)

What if we had made a mistake and instead multiplied the right hand side
by the reciprocal expression 1 D .1 lbf =4:45Newton/? No problem. We
would then have

F D 30 lbf D 30 lbf � 1 lbf
4:45 Newton

D 30

4:45
lbf2=N:

This expression is admittedly weird, but it is correct. If you should end up
with such a weird but correct answer you can compensate by multiplying by
one again and again until the units cancel in a way that you find pleasing. In
this case we could get an answer in a more conventional form by multiplying
the right hand side by 12 using 1 D .4:45N= lbf/:

F D 30

4:45

lbf2

N
�12 D 3:0

4:45

6lbf2

N
�
�
4:45N
6lbf

�2
D 133:5N (as expected):

A trivial but surprisingly useful observation is that F D F . A quantity is
equal to itself no matter how it is represented. That is, 30 lbf D 133:5N even
though 30 ¤ 133:5. To summarize:

Units are manipulated in any and all calculations as if
they were numbers or algebraic symbols. For example, can-
celing equal units from the top and bottom of a fraction is the
same as canceling numbers or algebraic symbols.

An advertisement for careful use of units
Units and dimensions are part of scientific notation just as spelling, punctu-
ation, and grammar are parts of English composition. If used properly, they
aid both thinking and the communication of these thoughts to others. If units
and dimensions are used improperly they can impede communication, even
with oneself, and convey the wrong meaning.

Example: Breaking load
A gadget that breaks with a 300N .300Newtons/ load instead of a needed 300 lbf
(300 pounds force) load is exactly as bad as one that breaks with a 67 lbf load
instead of a needed 300 lbf load. An unsatisfied consumer will not be placated by
learning that the engineer’s calculation was ‘numerically correct’.

If anybody is ever to use your calculation, giving them the wrong units is just
as bad as giving them the wrong numerical value.

Although using units properly often seems annoyingly tedious, it also
often pays. If units are carried through honestly, not just tagged on to the end
of an equation for appearance, you can check your work for dimensional
consistency. If you are trying to find a speed and your answer comes out
13 kg�m= s, you know you have made a mistake — kg�m= s just isn’t a speed.
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1.1 lbf=1 pdl/2 � 1000. You can
easily generate errors of approximately
a factor of 1000 with English units if
you wishfully multiply or divide an-
swers by 32:2 (the value of g in ft=s2)
at the end of a sloppy calculation. If
you do it wrong you get an error of
a factor of 32:22 which is 3% greater
than 1000. Following sloppiness with
unscrupulousness, some are tempted to
then slide a decimal point three places
to the right or left to ‘fix’ things. The
decrepit insecurity that provokes such
crimes is avoided by going to a church,
temple or mosque regularly, or just by
carrying units.

Such dimensional errors in a calculation often reveal corresponding algebraic
or conceptual mistakes. Also, if a problem is based on data with mixed units,
such as cm and meters, or pound force and pound mass, you may often not
know the units of your answer unless you properly ‘carry’ your units 1.

Three ways to be fussy about units.
People are most pleased if you speak their language, speak correctly, and
make sense. Similarly, scientists and engineers with whom you communicate
will be most comfortable if you use the units they use and use them with
correct notation. But most importantly, you should use units in a way that
makes physical sense. Just as the United Nations argues over which language
to use for communication, educators, editors, and makers of standards have
argued for decades over conventions for units: whether they should come in
multiples of 10, whether they should use the standard international scientific
conventions, and whether they will be clear to someone who has worked in
the stock room of a supplier of 1

2
-inch bolts for 35 years and thinks SI might

be a friend of his cousin Amil.
Even if you are not fluent in someone’s favorite language, you can still say

sensible things. Similarly, no matter what you or your work place’s choice of
units (SI, English, or hodgepodge), no matter whether you use upper case and
lower case correctly, you should make sense. Physically sensible units — that
is, balanced units — should be used to make your equations dimensionally
correct. Then you should work on refining your notation so as to be more
professional.

So, in order of importance,

1. Use balanced units.
2. Use units of the type that are liked by your co-workers.
3. Spell and punctuate these units correctly.

If you are in a situation where your only problem is the third item on the list
you are doing fine, unless you are really fussy, or work for someone who is
really fussy. (e.g., the authors of this book only try for the first two items on
this list.)

A.3 Using units in practice
Units with calculators and computers
Calculators and computers generally do not keep track of units for you. In
order for your numerical calculations to make sense you have the following
choices.

Use dimensionless variables. Using dimensionless variables is the pre-
ferred method of scientists and theoretical engineers. The approach requires
that you define a new set of dimensionless variables in terms of your original
dimensional variables.
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Use a consistent unit system. Express all quantities in terms of units that
are consistent 1. For example, all lengths should be in the same units and the
unit of force should equal the unit of mass times the unit of distance divided
by the unit of time squared. Each row of the table below defines a consistent
set of units for mechanics.

Name length mass force time angle
mks meter kilogram Newton second radian
cgs centimeter gram dyne second radian
English1 foot lbm poundal second radian
English2 foot slug lbf second radian

The radian is the unit of angle in all consistent unit systems. Whether or
not a radian is a proper unit or not is an issue of some philosophical debate.
Practically speaking, you can generally replace 1 radian with the number 1.

Use numerical equations. If you are using the computer to evaluate a for-
mula that you trust, and you have balanced the units in a way that makes
you secure, you can have the computer do the arithmetic part of the calcula-
tion. It is easy to make mistakes, however, unless the formula is expressed in
consistent units.

Example: Force units conversion
What, in the SI system, is the net braking force when a 2000 lbm car skids to a
stop on level ground? For this units problem we skip the careful mechanics and just
work with the formula

F D �mg

where m is the mass of the car, g is the local gravitational constant and � is the
coefficient of friction for sliding between the tire and the road. We won’t be off
by more than a quarter of a percent using the standard rather than the local value
of the gravitational constant, g D 32:2 ft=s2. The coefficient of friction for rubber
and dry road is about one, so we use � D 1. We proceed by plugging in values
into the formula and then multiplying by 1 until things are in standard SI (Systémé
Internationale) form. We use a table of units to make the various substitutions for
1. A few of the detailed steps could be contracted. The approach below is only one,
albeit an awkward one, of many routes to the answer.

F D �mg

F D .1/ � .2000 lbm / � .32:2 ft=s2/

D .2000�32:2/ lbm � ft
s2

D .2000�32:2/ 6lbm �6 ft
s2

�
�

1 kg
2:2 6lbm

�
� �� �

1

�
�
30:48 6cm
16 ft

�
� �� �

1

�
�

1m
100 6cm

�
� �� �

1

D 8917
6kg�6m
6s2 �

�
16N

1 6kg�6m= 6s2
�

� �� �
1

�
�
1 kN
10006N

�
� �� �

1

D 8:92 kN

The net braking force is 8:92 kN. In each step of the calculation we accumulate
what we had from the previous step and then multiply by 1, where 1 is the ratio of
two quantities that have the same dimensions but different units.

1Caution: Doing a computer calcu-
lation using quantities from an inconsis-
tent unit system can easily lead to wrong
results. To be safe make sure that all
quantities are expressed in terms of only
one row of the table shown.
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2An excellent description of good
practice is the “Guide for the Use of
the International System of Units (SI)”
by Barry Taylor, 1998, NIST (National
Institute of Standards and Technology)
publication # 811.

Repeating, in engineering we do math not just with numbers, but with di-
mensional quantities. The bad habits of many of us not withstanding, there
are good and useful standards for how to deal with units in calculations 2.

Use of units in old-style handbooks.
Many standard empirical formulas, formulas based on experience and not
theory, are presented in an ‘undimensional’ or numerical form. The units are
not part of the equations. We present the approach here, not because we want
to promote it, we don’t. But we don’t want the more formal approach to units
we advocate here to stop you from reading and using empirical sources.

For example, Mark’s Handbook for Mechanical Engineers (8th edition,
page 8-138) presents the following useful formula to describe the working
life of commercially manufactured ball bearings:

L10 D
16; 700

N

�
C

P

�K
;

A.1 Examples of advised and ill-advised use of units
Good use of units Say a car has a constant speed of v D
50 mi= hr for half an hour. The following is true and expressed cor-
rectly.

The distance traveled in time t is x D vt , so

x D vt

D .50mi=hr/.30min/ D 50 � 30mi � min=hr

(Awkward but true!)

D 50 � 30mi� 6min=6 hr
�
16 hr
60 6min

�
� �� �

1

D 25mi

That is, unsurprisingly, the distance covered in half an hour is
25 mi.
Another good use of units. If we start with the dimensionally
correct formula x D .50mi=hr/t we can differentiate to get

v D dx

dt
D 50mi=hr:

The answer is dimensionally correct without having to think about
the units. v is speed and contains its units, x is distance and contains
its units. In any formula that contains t , x or v we can substitute any
time, distance or speed. How far does the car go in one minute? As

in the previous example,

x D vt

D .50mi=hr/.1min/

D .50mi=6 hr/.1 6min/
�
16 hr
60 6min

�
� �� �

1

D 5

6
mi

Not such good use of units It is common practice to write sen-
tences like ‘the distance the car travels is

x D 50t;

where x is the distance in miles and t is the time of travel in hours’,
although we discourage it. Why? Because the variables x and t are
ambiguously defined. We would like to use the fact that speed v is
the derivative of distance with respect to time:

v D dx

dt
D d

dt
.50t/ D 50:

But now we have a speed equal to a pure number, 50, rather than a
dimensional quantity. In this simple example, common sense tells us
that the speed v is measured in mi=hr. But if we want to think of v
as a speed, a variable with dimensions of length divided by time, the
formula misleads us and requires us to add the units. For this simple
example it is not much of a problem to determine what units to add.

But better is if units are included correctly in the equations; then
they take care of themselves whenever they are needed. The ‘not
such good’ use of units above is sometimes called using numerical
equations, that is equations that have numbers in them only. The
good use of units uses quantity equations, that is equations that use
dimensional quantities.
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where
L10 D the number of hours that pass before 10% of the bearings fail,
N D the rotational speed in revolutions per minute
C D the rated load capacity of the bearing in lbf,
P D the actual load on the bearing in lbf, and
K D 3 for ball bearings, 10=3 for roller bearings.

In this approach the idea of dimensional consistency has been disguised
for the sake of brevity. L10, N , C , and P are just numbers. Such an equation
is sometimes called a ‘numerical equation’. It is a relation between numerical
quantities. If you happen to know the rotation speed of the shaft in radians
per second instead of revolutions per minute you will have to first convert
before plugging in the formula. Unlike a dimensional formula, the formula
does not help you to convert these units. An alternative to this ‘numerical
formula’ approach for empirical formulas is in box A.2 on page 1001.

Tables of values
How can we write tables of values without the clutter of units in every entry?

The simplest way to use dimensionless variables, though not necessarily
the best, is to do something that involves notational compromise. For exam-
ple, let x represent dimensionless distance rather than distance. That is, x
represents distance divided by 1mi. Similarly, t is time divided by 1 hr. And
dx=dt is dimensionless distance differentiated with respect to dimensionless
time, which is, evidently, dimensionless speed. In this example, recovering
the dimensional speed is common sense: speed is in mi=hr. The notational
compromise is that v is being used to represent both dimensional and dimen-

A.2 An improvement to the old-style handbook approach
An alternative to the standard approach to empirical formulas is to
write a formula that makes sense with any dimensional variables.
The bearing life formula would be replaced with the formula below:

l10 D
16; 700

n

�
c

p

�K
hr� rev=min

where
l10 D the time that passes before 10% of the bearings fail,
n D the rotational speed,
c D the rated load capacity of the bearing,
p D the actual load on the bearing, and
K D 3 for ball bearings, 10=3 for roller bearings.

and the variables l10, n, c, and p are dimensional quantities. One
can use any dimensions one wants for all of the variables. For exam-
ple, using
n D 50 rev=sec
c D 1 kN
p D 100 lbf, and
K D 3 for the given ball bearing,

we can calculate the life of the bearing by plugging these values in

to the formula directly.

l10 D 16; 700

50 rev
6sec

�
1 kN
100 lbf

�3
hr� rev=min

D 16; 700

50 rev= 6sec

�
60sec
min

�
� �� �

1

�

0
BBB@ 1 6kN
100 6lbf

�
1 6lbf

4:4486 N
�

� �� �
1

�
16 N

1000 6kN

�
� �� �

1

1
CCCA
3

hr�min=rev

� 45000 hr

This approach has the advantage of precision if mixed units are used.
Any of the quantities can be measured with any units and the answer
always comes out right. Furthermore, the user is free to measure all
the quantities in those units which work out best, in this case using
the same units for c and p and measuring n in rev/min. But the user
is also free to use any units.
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sionless speed, with the precise meaning depending on context
Example: Table of values.
Using notational compromise we can use the formula x D vt with v D 50mi= hr
to do a set of calculations. Say we want to know the distance x every quarter of
an hour for two hours. So we multiply 50 by :25; :5; :75; : : : and thus make a table
with two columns labeled t . hr/ and x .mi/.

t (hr) x (mi)

0 0

:25 12:5

:5 25

:75 37:5

This approach has some ambiguity to some eyes. Here is a more clear way
to make the same table.

Example: Less ambiguous table of values.
The exact meaning of the columns in the above example are a little ambiguous. We
can make it more precise by labeling the columns as follows

t=(hr) x=(mi)

0 0

:25 12:5

:5 25

:75 37:5

That is, the columns of numbers are dimensionless. The first column, is the time
divided by one hour the second is distance divided by one mile.

Finally, the way things are most often done in science, and sometimes in
engineering practice, is to only use clearly defined and distinct dimensionless
variables (ie, not to use v both for the speed and for the speed as measured in
m=s. This approach is more precise, if cumbersome, than using v to be both
dimensional and dimensionless depending on context.

Example: Dimensionless table of values.
If we take x to be dimensional distance, t to be dimensional time, and v to be
dimensional speed, we can define new dimensionless variables. t� D t=.1 hr/,
x� D x=.1mi/, and v� D v=.1mi=hr/. Now there is no ambiguity: x is dimen-
sional and x� is dimensionless. Dividing the equation x D vt on both sides by one
mile, and multiplying the right side by 1, in the form of 1 D .1 hr=1 hr/ we get:

x

1mi
D v

1mi=hr
� t

1 hr

which is, using the dimensionless variables,

x� D v�t�:

Because v is 50mi= hr, v� D 50 as we can show formally as follows:

v� D v=.1mi=hr/ D .50mi=hr/=.1mi=hr/ D 50:
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The dimensionless speed v� is just the dimensionless number 50. Now we can
make a table by multiplying 50 by :25; :5; :75; : : : . The columns of the table can be
labeled t� and x� and all variables are clearly defined.

t� x�

0 0

:25 12:5

:5 25

:75 37:5

In practice most non-theoretiticians will not go to the trouble of defining a
whole set of dimensionless variables. But it can be helpful if you have got
confused with the difference between a pound force and a pound mass, or
from some variables being measured in meters and others in feet, etc.
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A.3 Force, mass, weight and the English and SI systems
The simplest way to measure force is to follow the “metric”/SI con-
vention, measure force with Newtons (N) and mass with kilograms
( kg).

Newtons. One Newton is defined in terms of a kilogram, meter
and second as

1N � 1 kg m
s2

:

Unfortunately, to most everyone’s confusion, there are other units of
force and mass, for example the kgf, the poundal and the slug.

Pound force. In the USA the unit of force most used is the pound
force, lbf. One lbf is the force of gravity (at the earth’s surface) on
one pound mass. Thus

1 lbf D g � 1 lbm � 32:2 lbm ft= s2:

Example: What is the force required to accelerate
10 lbm an amount of 5 ft/s2?

F D ma

D .10 lbm /.5 ft= s2/

D .10 lbm /.5 ft= s2/ �
�

1 lbf
1 lbm � g

�
� �� �

1

�
g

32 ft= s2

�
� �� �

1

:

� .10 � 5=32/ lbf � 1:6 lbf: (A.1)

Note, the surest way to change units is by systematic multiplication
by 1. All of the units in the above expression cancel (appear an equal
number of times on the top as the bottom of fractions), except for lbf.
If you pick the wrong version of the number 1, say the reciprocal of
one of the expressions above, you still get the right answer, but in a
strange mixture of units.

The pound force seems silly to those from Europe. But they
shouldn’t laugh.

Kilogram force. In Europe, outside physics classrooms the most
common unit of force, is the kilogram force. It’s for force of gravity
on a kilogram mass:

1 kgf D 1 kg � g:
That’s the official value of g . So 1 kgf =1 kilopond=9.80665 N. This
is precisely as confusing, no more and no less, than the pound force.
If you ask someone’s weight in France they won’t say, as they should
were they to practice what they preach, ‘490 N’. They will say, ‘cin-
quante kilogrammes’, which translates to ‘fifty kilograms’ by which
they mean 50 kgf(hypocrites!). Other names for the kilogram force
are kilopond, kp (not to be confused with a kip, which is 1000 lbf).

To stay out of trouble you could avoid use of the pound force
and kilogram force altogether. But then how would you measure
force in the English system?

The poundal. If the English system imitated the metric system it
would have a unit for the force needed to accelerate one pound mass
one foot per second squared. And it does. Its called the poundal,
abbreviated as pdl.

1 pdl D 1 lbm ft=s2:

Poundals are exactly as sensible and unconfusing in the English sys-
tem as Newtons are in SI. But because the poundal is unfamiliar, and
unfamiliar things are strange, and strange things seem confusing, the
poundal is generally catalogued as confusing. But really, the poundal
is just as simple as the Newton.

Statics vs Dynamics. The standard official units used in Europe
(meters, kilograms, Newtons and seconds) are easy if you are mostly
studying dynamics: a unit of mass is accelerated a unit amount with
a unit force. This works in Europe with Newtons and kilograms, and
in America with pounds mass and poundals. That’s basing force on
the equation F D ma.

But if the mechanics you do is statics, which is most of the
mechanics that is done, then the easier system is one based on
F D mg . The force of gravity on a kg is one kgf . And the
force of gravity on a lbm is one lbf.

Why can’t we keep it simple? Many students try to avoid this
confusion by sticking with SI. That’s the real SI that has no such
thing as a kilogram force (kgf). But this fights both traditions and
gravity-based intuitions. So, if we want to talk with a variety of peo-
ple we are stuck with the pound force ( lbf) and kilogram force (kp,
or kilopond). And then, if we want to rationalize the English system,
we have to understand poundals too.

How much stuff? Historically, people understood weight before
they understood mass: bigger things are harder to hold up so were
said to have more weight. And comparisons were made with gravity-
based balances. Weight is an easier concept for the pre-Newtonian
mind than our modern idea that bigger things are harder to acceler-
ate, i.e., have more mass. So people measured the amount of stuff by
weight. ‘How much flour?’ one would ask. ‘A pound of flour,’ mean-
ing one pound weight, might be the answer. A one pound weight is
pulled with a 1 lbf by gravity, or in the older notation where one did
not worry about mass, by 1 lb. People didn’t notice that it was a lit-
tle harder, i.e.. would stretch a given spring more, to hold something
up on the north pole than at the top of Mount Everest, so the earth’s
gravity force on an object was a fine measure of quantity.

When it became important to talk about mass, as opposed to
weight, the pound mass was defined as the mass of something that
weighed a pound. That is,

1 lbm � 1 lbf=g:

Then people thought ‘what is the mass that accelerates one foot per

(continued...)
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A.3 Force, mass, weight and the English and SI systems
(continued)

second squared if a one-pound force is applied?’ They found

m D F=a

D .1 lbf/=.1 ft=s2/ D 1
�

lbf= ft=s2
� 32:174 lbm ft=s2

lbf

!
� �� �

1

D 32:174 lbm:

The force of gravity on an object is its weight. But a given object
has different weight at different places, with up to 0:5% variation on
earth. That is, g , the earth’s gravitational ‘constant,’ varies from
about 9:78m=s2 at the equator to about 9:83m=s2 at the North
Pole. The official value of the ‘constant’ g is in between at exactly
9:80665m=s2 (this is about 32:1740486 ft=s2). Multiplying the
official g by the mass m will give you almost exactly the force it
takes to hold it up if you are in exactly the official place, somewhere
in Potsdam. Outside of Potsdam you have to accept an error of up
to 0:25% when calculating gravitational forces, unless you happen
to know the precise value of g in your neighborhood. The value of
a kgf and lbf does not vary from place to place, but the weight of a
kg or lbm mass does.

1=32:174 is awkward. It takes 1=32:174 lbf to accelerate one
lbm one ft=s2. As noted, this awkwardness was fixed by the inven-
tion of the poundal

F D ma

D .1 lbm /.1 ft=s2/
defD 1 pdl:

Now things are tidy. It takes one pdl to accelerate one lbm one
ft=s2. But we could also calculate that

F D ma

D .1 lbm /.1 ft=s2/ D 1
� 6lbm 6ft=s2

� � 1 lbf
32:174 6lbm 6ft=s2

�
� �� �

1

D
�

1

32:174

�
lbf:

So 1 pdl= 1 lbf/32.174 or 1 lbf = 32.174 pdl.

32:174 is also awkward. A unit of force, the lbf, accelerates a
unit of mass, the lbm, 32.174 ft=s2. People felt that if a unit force
causes something to accelerate at a unit rate, that thing should have a
unit mass. And the lbf was the natural unit of force. So they invented
a new unit of mass, the slug.

1 slug � 1 lbf=.1 ft=s2/:

What is the mass of something that has an acceleration of a D
1 ft=s2 when a force of 1 lbf is applied?

m D F=a

D .1 lbf/=.1 ft=s2/ D 1
�

lbf=ft=s2
� 32:174 lbm ft=s2

lbf

!
� �� �

1

defD 1 slug

That is, 1 slug accelerates 1 ft=s2 when 1 lbf is applied. How much
does a slug weigh? The force of gravity on a slug, in Potsdam, is
32:174 lbf. It’s less on Mount Everest and more on the North pole.

Poundals and slugs. Because English scientists and engineers of
old liked the number 1 better than both the number 32:174 and
the number 1=32:174 they left us two new units to worry about:
the poundal D 1 lbm ft=s2 D .1=32:174/ lbf, and the slug D
1 lbf=. ft=s2/ D 32:174 lbm . If you are used to the internationally
acceptable units for force and mass then you can convert like this

1 pdl D :138255N and 1 slug D 14:5939 kg:

Now-a-days there are more people, most likely you are amongst
these, who laugh at their confusion about slugs and poundals than
there are people who use them seriously.

Europe vs America? Americans and Europeans share the defect
of using lbf and kgf, respectively. What about the metric slug. What
is the answer to the inevitable question ‘What is the mass of a thing
which accelerates at 1 m=s2 when a force of 1 kgf is applied?” That
would be the 9.8065 kg, the metric slug, also called the mug.

One lbf isn’t the force of gravity on lbf! A kilopond is about the
force of gravity on a kilogram and a pound force is about the force of
gravity on a pound mass, exactly so somewhere in Potsdam — well,
not really. Confusingly,mg is not the force due to gravity for either
SI or English units. It is the force of the spring which holds up the
mass on a rotating earth! What is called g is the ‘effective’ gravity
which is the acceleration due to gravity minus the centripetal accel-
eration due to the earth’s rotation. In Potsdam. This differs from the
acceleration of gravity by almost 0.5%. Never mind how this varies
with the phases of the time of day or phases of the moon, which it
does (that’s why there are tides and why the tides are bigger at full
moons).

Engineering accuracy. Most engineering calculations involve
various approximations. Most of the time your answers won’t be
any worse than anyone else’s if you use any or all of these approxi-
mations:

� ghere D gthere for any two points on the earth.
� g is the force of gravity per unit mass
� the centripetal acceleration from the earth’s rotation is negli-

gible.
� g D 32 ft=s2 D 10m=s2 D 10N= kg.

To some, the list above reads like an invitation to sloppiness. But,
being precise about these things is generally either implying greater
accuracy than is indeed there, or is more trouble than it is worth. Of
course you should be precise in distinguishing a lbf from a lbm and
a kgf from a kg. But unless you really have to, maybe just don’t
worry too much about the (supposedly) exact value of g you use to
relate force to mass.
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APPENDIX B
Friction: perspectives on

friction laws
Here we include various friction topics too advanced for the main text. First,
what approximations are used in Coulomb’s law of friction? Second, why
is the concept of having a static friction coefficient higher than the dynamic
coefficient a problematic concept? Third, we show an alternative way of
writing the equations governing Coulomb friction.

This appendix is not about how to solve friction mechanics problems but
about the equations that describe friction. Unless one knows better, we have
advised using Coulomb’s law with a single friction coefficient � with

� D �k D �d D �s:

That is, use the approximation that one number � is the dynamic coefficient
�d , the kinetic coefficient �k and the static coefficient �s . Of course friction
does vary, even between a given pair of surfaces. One could write a PhD
thesis about that. But for this book, a single coefficient is a good enough
approximation.

Here are three equivalent descriptions of Coulomb’s law of friction. We
assume isotropic (same in all directions) friction.

1. Given this � Coulomb’s law of friction for body B contacting A with
normal force N and possibly sliding with relative velocity*

vB=A is this:

if *vB=A ¤
*

0 ) *

Ffriction on B fromA D ��N
*
vB=A

jB=Aj (B.1)

if *vB=A D
*

0 ) j*Ffriction on B fromAj � �N (B.2)

2. Friction resists relative motion with magnitude �N . The strength of a
non-sliding contact is also �N but the actual frictional force at a non-
sliding contact can be anything with magnitude up to �N .
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3. In 2D, the friction force F the normal force N and the relative sliding
speed P� must all lie on the curve of fig. 3.57 on page 167.

Most mechanics books at this level teach that static friction is higher than dy-
namic (or kinetic) friction. This idea, while catching a sometimes important
aspect of real friction, is problematic.

B.1 A problem with the concept of static
friction

A commonly used static friction law assumes that the friction force instantly
jumps from the static value �sN to a lower dynamic value �dN when slip
starts. We do not use that law in this book. Why not?

If the contacting surfaces have more than one contact point this jump from
static to dynamic friction implicitly makes use of two simultaneous limits.

1. That the body is infinitely stiff.

2. That the coefficient of friction instantly drops from the static value �s
to the dynamic value �k when slip starts.

The problem with simultaneous use of these limits is highlighted by con-
sidering a body that has finite stiffness and for which the friction gradually
drops as slip starts. We should then hope to recover the concept of static
friction and rigid body slip as a limit of this model. But, there is trouble.

Let’s get a little more specific.

Slip weakening friction law
The friction law we will employ is a ‘slip-weakening’ friction law described
by the graph below. Although this description is obviously incomplete if slip
occurs more than once or reverses direction, it suffices for our considerations.
Here the describing equations are:

F=N � �s if no slip has occurred

F=N D �s � .�s � �d /�=d if � � d

F=N D �d if � � d

If we keep �s and �d constant and look at the limit as d ! 0 this fric-
tion law becomes the classic ‘static-dynamic’ friction law which we are now
critiquing. There are other friction laws, such as those with rate dependence,
we could use that reduce to static-dynamic friction in some limit, but these
laws also would lead to problems something like those we discuss below.

Filename:tfigure11-slipweakening

slip, δd

partial FBD
F
N
µs

µd F N δ̇

Figure B.1: Friction as a function of dis-
placement, starting from rest.
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Filename:tfigure11-rigidmodel
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Figure B.2:
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Figure B.3:

Model of a rigid body
The model for a rigid body that we employ is: two point masses are con-
nected with a spring. In the limit as the spring constant k goes to infinity this
model becomes, at least in the common sense of the words, a ‘rigid body.’

A sliding problem
Now let’s consider the problem of initial slip of the system shown. For sim-
plicity and definiteness let’s assume the spring is relaxed in the configuration
shown. Now, we very slowly increase the applied force F until both masses
end up sliding. Here is the question:

What force does it take to start the pair of masses sliding?

There is no force causing block B to slide except the spring tension. But the
spring tension does not build until the spring stretches due to the slip of A.
So F increases until F D �smg=2 at which time block A starts to slide.
When the tension in the spring reaches �smg=2 then block B starts to slide.
What is the value of F at this time?

We could work out the details for every value of the parameters, but we
need not do this generality to make our point. First let’s take the limit that
the body is rigid k !1.

Rigid body, gradual friction drop
In this case the two masses always move together. As slip starts the two
masses both have a friction force of �smg=2 and the force required to cause
slip of both masses is

F D �smg at slip;

as expected. As motion progresses this force gradually reduces to �dmg at
a rate that depends on the frictional slip weakening distance d . But for any
finite value of d the applied force must first reach�smg before slip proceeds.

Compliant body, sudden friction drop
Now let’s take the limit the other way. Let’s assume that the spring has fixed
stiffness, possibly very high, and look at the limit d ! 0, the limit which
reduces the friction law to the classical law. In this case block A breaks
entirely free before there is any tension in the spring. Exactly when block B
will start to slip depends on the details of all the parameters, so it turns out
that finding the start of slip of block B is a genuinely complicated problem.
But, no matter what, the spring stretches some before block A comes to rest.
Block A may slip several times before the spring stretch is enough to cause
the slip of block B, again the details depend on the relative values of �s
and �d . But eventually block B will be excited into sliding. This slip will
most likely start when block A is already sliding. Thus the applied force
need only overcome the dynamic friction of block A �dmg=2 and the static
friction �smg=2 of block B. Due to the complex dynamics of the situation,
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it turns out that the two blocks can sometimes end up sliding if the applied
force is just a hair above �dmg, even when K is very large (but still finite).

F D� (something less than �smg)

The rigid-body static-friction paradox
If we take the limit k ! 1 and then d ! 0 we get an overall effective
coefficient of static friction �s for the whole body. If instead we take the
limit d ! 0 and then k !1 the effective static friction limit does not exist,
but for some arbitrarily large values of k it can be as low as �d . That is,

the problem of initial slip of a rigid body with more than one point of
contact and with static-dynamic friction is ill-defined

This paradox can be resolved a number of ways. One is to assume it away,
effectively taking the k ! 1 limit first. Another more complex solution,
beyond this book and beyond the level of detail that most people want to deal
with, is to only use more sophisticated friction laws and to keep track of solid
deformation.

Compromise
To avoid these issues by users of this text we just use one coefficient of fric-
tion �s D �d D �. May the user beware if using a more complex law than
this one.

B.2 A critique of Coulomb friction
This section is an aside, not needed for homework, about the place of
Coulomb friction amongst more general friction laws. First (below) a quick
outline and then more details (further below).

The good. In short, Coulomb’s law of friction is good because

� Coulomb’s law of friction is simple.

� Coulomb’s law usefully predicts many phenomena.

� It has some of the right trends: the friction force

– is roughly independent of slip rate, and
– is roughly proportional to the normal force.

� Other candidate laws sometimes suffer more from complexity than they
gain in accuracy or usefulness.

The bad. On the other hand,

� The friction coefficient is not stable, it may vary from day to day or
between samples of nearly identical materials.
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� Coulomb’s law, without a separate static coefficient of friction or an
explicit dependence on rate of slip, cannot be used to explain frictional
phenomena such as

– the squeaking of doors,
– the excitement of a violin string by a bow, and
– earthquakes from sliding rocks.

� For some materials the friction is noticeably not proportional to the
normal force. Rubber on road, for example, has more friction force
per unit normal force when the normal force is low; for a given normal
force, increasing the area increases the friction. This is why racing cars
have fat tires.

We expand on some of these points below.

The friction coefficient is not a stable property John Jaeger’s third em-
pirical friction friction law is said to be:

A friction experiment will make a monkey out of you.

For any pair of objects and any given experiment to measure the friction
coefficient, the measured value will likely vary from day to day. What’s
the source of this apparent violation of determinacy? It’s probably because
friction involves the interaction of surfaces. The chemistry of a surface can
be dramatically changed by very small quantities of material (a surface is a
very small volume!). So any change in humidity, or perhaps a random finger
touch, or a slight spray from here or there can dramatically change the surface
chemistry and hence the friction.

This problem of the non-constancy of friction from day to day or sam-
ple to sample cannot be overcome by a better friction law. Unless one un-
derstands the materials and their chemical environment extremely well, all
friction laws, however sophisticated, are doomed to large inaccuracy.

Coulomb’s friction law and “static” friction Most simple treatments of
friction immediately introduce two coefficients of friction: the dynamic coef-
ficient �d i (also sometimes called the kinetic coefficient �k) and the ‘static’
coefficient of friction �s . According to standard lore, each pair of bodies has
friction which is described by �s and �d , with the understanding that the
static coefficient of friction is greater than the dynamic coefficient of fric-
tion, �s > �d .

Static-Dynamic Friction. The relation between friction velocity and fric-
tion force is such that at all times the pair of values is found on the dark line
shown. This description is useful for roughly characterizing the following
phenomenon:

It is harder to start something sliding than it is to keep it sliding.
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If this drop in friction force is important in your problem, the static-dynamic
friction law is one attractive candidate. But be forewarned: although this law
is great for qualitatively explaining how a bow excites a violin string, or why
anti-lock brakes work better than all out skidding, it is not very accurate.

Experiments trying to learn in more detail how the friction force drops
from a higher value to (as slip starts) a lower one, reveal more subtle phenom-
ena that are not well captured with two simple friction coefficients. Further,
using two coefficients of friction leads to various paradoxes and indetermi-
nacies when one studies slightly more complex problems. (See page 1007.)

Friction is not always proportional to normal force The Coulomb fric-
tion equation, applicable during slip or at impending slip,

F D �N

is most directly translated into English as:

the friction force is proportional to the normal force.

This proportionality is, as far as we know, not fundamental, but rather is often
a reasonable approximation. Two effects that contribute to this proportion-
ality: 1) when rough surfaces touch (at a micro-scale all surfaces are rough)
the area of micro-contact grows as they are squeezed together, and 2) each
micro-contact grows in area as it yields to the contact pressure.

In some books you will see an additional law of friction stated as:

The friction force is independent of the area of contact.

By ‘area of contact’ is meant the area you would measure macroscopically.
For a 4 in � 8 in brick sliding on a pavement the area of contact is 32 in2

F independent of A, � independent of N That the friction force does
not depend on area is actually equivalent to the proportionality of friction
force with normal force. Here’s the gist of the argument. Imagine two iden-
tical blocks side by side on a plane as in the figure above. The force pushing
down on each is N and the friction force to cause slip is F D �N . The
act of glueing the two together side-by-side should have no effect. Now we
have one bigger block with twice the normal force, twice the friction force
and twice the area of contact. Assuming that friction force is proportional to
normal force, means that if we cut the normal force in half then the friction
force will be cut in half. But now we have a new block with twice the area
of contact as each of the original blocks with the same normal force and the
same friction force. Thus the friction force is unchanged by doubling the
area of contact.

Dependence of � on area and N . But in fact, some materials have friction
force which does depend on the normal force, or for a given normal force,
does depend on the area of contact. One example is the friction between
rubber and pavement. For a given weight car, a larger friction force can be
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Figure B.5: If the friction force is pro-
portional to normal force it must be in-
dependent of area. Why? Imagine two
blocks side by side each with the same
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generated with a fat tire than a narrow one. That is, for rubber on pavement
the ratio of the friction force to normal force decreases as the normal force
increases and increases as the area increases.

[Real area of contact. Another concept of area of contact is the actual
area of contact at all the little micro-bumps called asperities. This definition
of area of contact is useful for tribologists (people who study friction) but is
of little concern to people interested in the mechanics of macroscopic things.]

Alternatives to Coulomb’s law
Of course there are situations which one may want to understand where the
transition from static to dynamic friction is essential. For these cases a static-
dynamic friction model might provide some insight, but it may also cause
basic modeling problems.

Static-dynamic friction As mentioned in the discussion above, the fact
that it is generally harder to start sliding something than to keep it sliding is
most simply described using static �s and dynamic �d friction. However,
be warned

Static/dynamic friction is somewhat pathological.

See, for example, box B.1 on page 1007.

Velocity-dependent friction One problem with Coulomb friction is that in
computations one needs to have separate cases for sliding and not-sliding.
One approximation, more motivated by convenience than data, is to write the
friction law as

F D ��Nf .v/
where f(v) is a function of velocity with these properties:

� f .0/ D 0, when there is no sliding the force is zero,

� f .v/ D �f .�v/ for all v, sliding forwards has the same resistance as
sliding backwards, and

� f .v ! 1/ ! 1, the net friction force approaches �N as the sliding
speed gets high.

One candidate function for this purpose is the arctangent function

f .v/ D 2

�
arctan.v=vc/:

An alternative is the logistic function (offset and scaled):

f .v/ D 1 � ev=vc

1C ev=vc
:
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For either the arctangent or logistic function the constant vc has to be chosen
to be small enough so that for practical purposes the behavior is close to that
of Coulomb friction, but large enough so as to not cause numerical issues
(e.g., instability or ‘stiff’ equations). Note that with this velocity dependent
friction things don’t hold together in the long run, everything creeps; a block
on even a slight slope slowly slides down.

Stribeck velocity-dependent friction In the same spirit as above, where
a velocity dependence mimics Coulomb friction, Stribeck friction does the
same with the static-to-dynamic drop. Stribeck friction is again of the form

F D ��Nf .v/

and again

� f .0/ D 0

� f .v/ D �f .�v/ for all v,

� f .v !1/! 1.

but now the function f .v/ rather than being monotonic has a local maximum
at some small speed (and a corresponding minimum at minus that speed).
The descending branch, the part of the curve where the friction force de-
creases with increasing speed, mimics the drop from dynamic to static fric-
tion.

All things considered, Coulomb’s law, F D �N , is
alright
Coulomb’s law, the version with one coefficient of friction, is the simplest dry
friction constitutive law. It is reasonably accurate, considering that it is one
out of a mediocre crowd, and more elaborate laws often introduce complexity
with little or no gain in accuracy. Most often it is reasonable to assume
that static friction is close enough to dynamic friction that it is not worth
the trouble to distinguish them. So we generally use just one coefficient of
friction � in this book (�d D �s D �).

B.3 Another expression for Coulomb
friction: an advanced aside

The law of Coulomb friction is both simple and confusing. Part of the con-
fusion comes from the requirement of calculating the friction force with one
equation during slip and then not being able to find the friction force, at least
from the friction law, when there is no slip.

We would like to confuse the issue a little further now for the case of slip
on a plane. That is, slip can be in any direction on, say, the xy-plane, not
just to the right or to the left. If we define *

v to be the sliding velocity of the
point of contact of the body of interest relative to its partner in friction, and
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actual friction force is that point on or
in the friction circle that maximizes the
dissipation.

*

F to be the tangential contact force that it causes on its partner then we could
write the friction law with a pair of inequalities which must both be satisfied
at all times.

*
v � .*F � *

F �/ � 0

j*F j � �N

where*
v and

*

F are such that these inequalities are satisfied for every possible
*

F � that is tangent to the slip surface and has magnitude j*F �j � �N . The
force

*

F � is not any actual force in the problem. It is just a label for the set
of all possible friction forces consistent with the friction law.

The meaning of these inequalities can be seen in the figure below. If you
are a normal reader you will have two questions:

� How is this inequality the same as the Coulomb friction law described
in the text? And,

� why bother to write the friction law in this strange way?

The answer to the first question, how are these inequalities an expression
of Coulomb friction, is found by considering the various cases of slip and
no-slip. To show that these inequalities imply that friction directly opposes
motion during slip takes a little thought. The reason is that

*

F � can be any
point on or inside the circle shown. By considering the two cases that

*

F � is
on the limit-circle just clockwise and just counterclockwise from the actual
friction force you can see that for the inequality .

*

F � *

F �/ �*v � 0 for both
cases, *v must be perpendicular to the circle.

The answer to the second question, why bother, is: The pair of inequali-
ties shown allow the proof of various theorems about frictional sliding, allow
a simple description of friction on distributed contacts, and also allows a
simple generalization to friction that is anisotropic, that is, of different mag-
nitude in different directions of slip. For those who are going on to study
advanced solid mechanics, this expression for the friction law shows one of
the connections between friction and classical plasticity.
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APPENDIX C
The simplest ODEs and

their solutions
Here is a quick review of some of the most common simple ODES. These are
the ODEs that engineers should just know, like they know that the derivative
of sin.t/ is cos.t/.

C.1 Some intuitions about the simplest
ODEs

This section is not an aside. Know it well.
Here are some of the simplest useful ordinary differential equations

(ODEs) and their general solutions. Think of u as the distance an object
has moved to the right of its ‘home’ at u D 0 in time t . The velocity and
acceleration to the right are the derivatives of u.

position u

velocity du=dt D Pu
acceleration d2u=dt2 D Ru: (C.1)

If Pu < 0 the particle is moving to the left. If Ru < 0 the particle is accelerating
to the left.

In all cases below A and B are constants and � is a positive constant. C1,
C2, C3, and C4 are arbitrary (undetermined) constants in the solutions that
get pinned down (determined) by fixing the initial conditions. This section is
not about how to derive the solutions, it is about how to know them.
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Constant position: Pu D 0 ) u D C1

Pu D 0 means that the velocity is zero. This equation would arise in dynamics
if a particle has no initial velocity and no force is applied to it. The particle
doesn’t move. Its position must be constant. But it could be anywhere, say
at position C1. Hence the general solution u D C1, as can be found by direct
integration.

Constant velocity: Pu D A ) u D At C C1

Pu D A means the object has constant speed. This equation describes the
motion of a particle that starts with speed v0 D A and because it has no force
acting on it continues to move at constant speed. How far does it go in time
t? It goes v0t . Where was it at time t D 0? It could have been anywhere
then, say C1. So where is it at time t? It’s at its original position plus how
far it has moved, u D v0t C C1, as can also be found by direct integration.

Zero acceleration: Ru D 0 ) u D C1 C C2t

Ru D 0means the acceleration is zero. That is, the rate of change of velocity is
zero. This constant-velocity motion is the general equation for a particle with
no force acting on it. The velocity, if not changing, must be constant. What
constant? It could be anything, say C2. Now we have the same situation as in
case (b). So the position as a function of time is anything consistent with an
object moving at constant velocity: u D C1 C C2t , where the constants C1
and C2 depend on the initial position and initial velocity. If you know that
the position at t D 0 is u0 and the velocity at t D 0 is v0, then the position
is u D u0 C v0t .

Constant acceleration: Ru D A) u D At2=2C C1t C C2

This constant accelerationA, constant rate of change of velocity, is the classic
(all-too-often studied) case. This situation arises for vertical motion of an
object in a constant gravitational field as well as in problems of constant
acceleration or deceleration of vehicles. The velocity increases in proportion
to the time that passes. The change in velocity in a given time is thus At and
the velocity is v D Pu D v0 C At (given that the velocity was v0 at t D 0).
Because the velocity is increasing constantly over time, the average velocity
in a trip of length t occurs at t=2 and is v0 C At=2. The distance traveled
is the average velocity times the time of travel so the distance of travel is
t � .v0 C At=2/ D v0t C At2=2. The position is the position at t D 0, u0,
plus the distance traveled since time zero. So u D u0 C v0t C At2=2 D
C2 C C1t C At2=2. This solution can also be found by direct integration.

Exponential growth: Pu D �u ) u D C1e
�t

The displacement u grows in proportion to its present size. This equation
describes the initial falling of an inverted pendulum in a thick viscous fluid.
The bigger the u, the faster it moves. Such situations are called exponential
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growth (as in population growth or monetary inflation) for a good mathemat-
ical reason. The solution u is an exponential function of time: u.t/ D C1e

�t ,
as can be found by separating variables or guessing.

Exponential decay: Pu D ��u ) u D C1e
��t

The smaller u is, the more slowly it gets smaller. u gradually tapers towards
nothing: u decays exponentially. The solution to the equation is: u.t/ D
C1e

��t . This expression is essentially the same equation as in (e) above.

Accleration proportional to position: Ru D �2u

) u D C1e
� t C C2e

�� t

or ) u D C3 cosh.� t/ C C4 sinh.� t/

Note, sinh and cosh are just combinations of exponentials. For Ru D �2u,
the point accelerates more and more away from the origin in proportion to
the distance from the origin. This equation describes the initial falling of a
nearly vertical inverted pendulum when there is no friction. Most often, the
solution of this equation gives roughly exponential growth. The pendulum
accelerates away from being upright. The reason there is also an exponen-
tially decaying solution to this equation is a little more subtle to understand
intuitively: if a not quite upright pendulum is given just the right initial ve-
locity it will slowly approach becoming just upright with an exponentially
decaying displacement. This decaying solution is not easy to see experimen-
tally because, without the perfect initial condition, the exponentially growing
part of the solution eventually dominates and the pendulum accelerates away
from being just upright.

Harmonic oscillator: Ru D ��2u or RuC �2u D 0

) u D C1 sin.� t/C C2 cos.� t/.

This equation describes a mass that is restrained by a spring which is relaxed
when the mass is at u D 0. When u is positive, Ru is negative. That is, if the
particle is on the right side of the origin it accelerates to the left. Similarly,
if the particle is on the left it accelerates to the right. In the middle, where
u D 0, it has no acceleration, so it neither speeds up nor slows down in
its motion whether it is moving to the left or the right. So the particle goes
back and forth: its position oscillates. A function that correctly describes this
oscillation is u D sin.� t/, that is, sinusoidal oscillations. The oscillations
are faster if � is bigger. Another solution is u D cos.� t/. The general
solution is u D C1 sin.� t/ C C2 cos.� t/. A plot of this function reveals a
sine wave shape for any value of C1 or C2, although the phase depends on
the relative values of C1 and C2. The equation Ru D ��2u or RuC �2u D 0

is called the ‘harmonic oscillator’ equation and is important in almost all
branches of science. The solution may be found by guessing or other means
(which are usually guessing in disguise). In the context of this equation, � is
called the (angular) frequency of oscillation.
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More ODEs
Besides the ODEs listed here there are a few others that are often solved
by hand rather than with numerical simulation. Most famously there is the
damped oscillator equation A Ru C B Pu C Cu D 0 discussed in Box 10.1 on
page 501.

With the exception of the damped or forced oscillator, most engineers now-
a-days will use numerical integration if they want to solve an ODE not in this
appendix.

Learn, memorize, know, whatever
Conversely,

Anyone competent at dynamics knows all the equations and solutions
on these two pages outside, inside, and inside-out.

Whether you have or have not learned these in a calculus course you should
learn them every different way that you can.
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APPENDIX D
Center of mass theorems

for systems of particles
The center of mass allows simplifications for expressions for momentum, an-
gular momentum, and kinetic energy. Furthermore, the energy equations for
systems of particles provide foreshadowing for the first law of thermodynam-
ics.

D.1 Velocity and acceleration of the
center-of-mass of a system of particles

The average position of mass in a system is at a point called the center-of-
mass. The position of the center-of-mass is

*
rcm D

P
*
ri mi

mtot
:

Multiplying through by mtot, we get

*
rcmmtot D

X
*
ri mi :

By taking the time derivatives of the equation above, we get

*
vcmmtot D

X
*
vi mi and

*
acmmtot D

X
*
ai mi .
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for the velocity and acceleration of the center-of-mass. The results above are
useful for simplifying various momenta and energy expressions. Note, for
example, that

*

L D
X

*
vi mi D *

vcmmtot

P*
L D

X
*
ai mi D *

acmmtot:

Linear momentum *

L and its rate of change P*
L

One of our three basic dynamics equations is linear momentum balance:X
*

F D P*
L:

The first quantity of interest in this section is the linear momentum
*

L 1whose derivative, P*L, with respect to a Newtonian frame is so important.
Linear momentum is a measure of the translational motion of a system.

*

L����
linear momentum

�
X

mi
*
vi� �� �

summed over
all the mass particles

D mtot
*
vcm (D.1)

Example: Center of Mass position, velocity, and acceleration
A particle of massmA D 3 kg and another point of massmB D 2 kg have positions,
respectively,

*rA.t/ D
�
3O{C 5

�
t

s

�
O|
�

m; and*rB .t/ D
"
6

 
t2

s2

!
O{ � 4 O|

#
m

due to forces that we do not discuss here. The position of the center-of-mass of the
system of particles, according to equation 3.2 on page 134, is

*rcm.t/ D

P
mi
*ri� �� �

mA
*rA.t/CmB

*rB .t/

.mA CmB /� �� �
mtotD5 kg

*rcm.t/ D
" 

9

5
C 12

5

 
t2

s2

!!
O{C

�
3

�
t

s

�
� 8

5

�
O|
#

m:

To get the velocity and acceleration of the center-of-mass, we differentiate the po-
sition of the center-of-mass once and twice, respectively, to get 2

*vcm.t/ D P*rcm.t/ D
�
24

5

�
t

s2

�
O{C 3

s
O|
�

m D
�
24

5

�
t

s

�
O{C 3 O|

�
m=s

and

*acm.t/ D P*vcm.t/ D R*rcm.t/ D
�
24

5

�
1

s2

�
O{
�

m D
�
24

5

�
m=s2 O{:

In this example, the center-of-mass turns out to have constant acceleration in the
x-direction.

1In Isaac Newton’s language: ‘The
quantity of motion is the measure of
the same, arising from the velocity and
quantity of matter conjointly’. In other
words, Newton’s dynamics equations
for a particle were based on the product
of *v and m. This quantity, m*v, is now
called

*
L, the linear momentum of a par-

ticle.

2That is, particle A travels on the line
x D 3m with constant speed PrAy D
5m=s and particle B travels on the line
y D �4m at changing speed PrBx D
12t.m=s2/.

3Some books use the symbol
*
P for

linear momentum. Because
*
P is often

used to mean force or impulse and P for
power we use

*
L for linear momentum.
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Figure D.1: System composed of two
parts. The momentum of the whole is
the sum of the momentums of the two
parts.

4No slight of Sir Isaac is intended.

The second part of equation D.1 follows from the definition of the center-of-
mass (see box D.1 on page 1020). 3 The total linear momentum of a system
is the same as that of a particle that is located at the center-of-mass and
which has mass equal to that of the whole system. The linear momentum is
also given by

*

L D d

dt
.mtot

*
rcm/ :

We only consider systems of fixed mass, d
dt
.mtot/ D 0. Thus, for a fixed

mass system, the linear momentum of the system is equal to the total mass
of the system times the derivative of the center-of-mass position.

Finally, since the sum defining linear momentum can be grouped any
which way (the associative rule of addition) the linear momentum can be
found by dividing the system into parts and using the mass of those parts and
the center-of-mass motion of those parts. That is, the sum

P
mi

*
vi can be

interpreted as the sum over the center-of-mass velocities and masses of the
various subsystems, say the parts of a machine.

Example: System Momentum
See fig. D.1 for a schematic example of the total momentum of system being made
of the sum of the momenta of its two parts.

The reasoning for this allowed subdivision is similar to that for the center-of-
mass in box 3.5 on page 140.

The quantity P*
L figures a little more directly in our presentation of dynam-

ics than just plain
*

L 4The rate of change of linear momentum, P*L, is

P*
L D d

dt

*

L

D d

dt

X
mi

*
vi

D mtot
d*vcm

dt
P*
L D mtot

*
acm

The last three equations could be thought of as the definition of P*L. That P*L
turns out to be d

dt
.
*

L/ is, then, a derived result. Again, using the definition of
center-of-mass,

the total rate of change of linear momentum is the same as that of a
particle that is located at the center of mass which has mass equal to
that of the whole system.

The rate of change of linear momentum is also given by

P*
L D d

dt
.mtot

*
vcm/ D

d2

dt2
.mtot

*
rcm/:
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Chapter D. Theorems for Systems D.1. Velocity and acceleration of the center-of-mass 1023

The momentum
*

L and its rate of change P*
L can be expressed in terms of the

total mass of a system and the motion of the center-of-mass. This simpli-
fication holds for any system, however complex, and any motion, however
contorted and wild.

Angular momentum
*

H and its rate of change
P

*

H

After linear momentum balance, the second basic mechanics principle is an-
gular momentum balance: X

*

MC D P*
H=C;

where C is any point, preferably one that is fixed in a Newtonian frame.If
you choose your point C to be a moving point you may have the confusing

problem that the quantity we would like to call P*
H=C is not the time deriva-

tive of
*

H=C. The first quantity of interest in this sub-section is the angu-

lar momentum with respect to some point C,
*

H=C, whose rate of change
P*
H=C D d

*

H=C=dt is so important.

*

H=C����
angular momentum.

�
X

*
ri=C �mi

*
vi� �� �

summed over all
the mass particles

A useful theorem about angular momentum is the following (see box 15.9
on page 730), applicable to all systems

*

H=C D

angular momentum due to
center-of-mass motion

BBN� �� �
*
rcm=C �*

vcmmtotC

angular momentum rela-
tive to the center-of-mass
��� �� �X

*
ri=cm����
���

position of mi rela-
tive to the center-of-mass
*
ri=cm �*

ri �*
rcm

�*
vi=cm����
BBM

velocity of mi relative
to the center-of-mass
*
vi=cm �*

vi �*
vcm

mi : (D.2)

A system of particles is shown in fig. D.2. The angular momentum of any
system is the same as that of a particle at its center-of-mass plus the angular
momentum associated with motion relative to the center-of-mass.

The angular momentum about point C is a measure of the average rotation
rate of the system about point C. Angular momentum is not so intuitive as
linear momentum for a number of reasons:

� First, recall that linear momentum is the derivative of the total mass
times the center-of-mass position. Unfortunately, in general,

angular momentum is not the derivative of anything.
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Filename:tfigure3-ang-mom-bal
C

cm

mi

⇀
r cm/C

⇀
r i/C

⇀
r i/cm

Figure D.2: A system of particles show-
ing its center-of-mass and the ith parti-
cle of mass mi . The ith particle has po-
sition *ri=cm with respect to the center-
of-mass. The center-of-mass has posi-
tion*rcm=C with respect to the point C

� Second, the angular momentum of a given system at a given time de-
pends on the reference point C. So there is not one single quantity that
is the angular momentum. For different points C1, C2, etc., the same
system has different angular momentums.

� Finally, calculation of angular momentum involves a vector cross prod-
uct and many beginning dynamics students are intimidated by vector
cross products.

Despite these confusions, the concept of angular momentum allows the solu-
tion of many practical problems and eventually becomes somewhat intuitive.

Actually, it is P*
H=C which is the more fundamental quantity. P*

H=C is what

you use in the equation of motion. You can find P*
H=C from

*

H=C as shown in
the box on page 1025. But, in general,

P*
H=C �

X
*
ri=C � .mi

*
ai /:

A useful theorem about rate of change of angular momentum is the fol-
lowing (see box 15.9 on page 730), applicable to all systems:

P*
H=C D

rate of change of an-
gular momentum due to
center of mass motion

BBN� �� �
*
rcm=C �*

acmmtotC

rate of change of angu-
lar momentum relative
to the center of mass
��� �� �X

*
ri=cm����
���

*
ri=cm �*

ri �*
rcm

�*
ai=cm����
BBM

*
ai=cm �*

ai �*
acm

mi :

This expression is completely analogous to equation D.2 on page 1023 and is
derived in a manner nearly identical to that shown in box 15.9 on page 730.
The rate of change of angular momentum of any system is the same as that of
a particle at its center-of-mass plus the rate of change of angular momentum
associated with motion relative to the center-of-mass. A special point for any
system is, as we have mentioned, the center-of-mass. In the above equations
for angular momentum we could take C to be a fixed point in space that
happens to coincide with the center-of-mass. In this case we would most
naturally define

*

Hcm D R
*
r=cm �*

v dm with *
v being the absolute velocity.

But we have the following theorem:

*

Hcm D
Z

*
r=cm �*

v dm D
Z

*
r=cm �*

v=cm dm

where *
r=cm D*

r �*
rcm and *

v=cm D*
v �*

vcm. Similarly,

P*
Hcm D

Z
*
r=cm �*

a dm D
Z

*
r=cm �*

a=cm dm:
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with *
a=cm D*

a �*
acm. That is,

the angular momentum and rate of change of angular momentum
relative to the center-of-mass, defined in terms of the velocity and
acceleration relative to the center-of-mass, are the same as the
angular momentum and the rate of change of angular momentum
defined in terms of a fixed point in space that coincides with the
center-of-mass.

The angular momentum relative to the center-of-mass
*

Hcm can be cal-
culated with all positions and velocities calculated relative to the center-of-
mass. Similarly, the rate of change of angular momentum relative to the

center of mass P*
Hcm can be calculated with all positions and accelerations

calculated relative to the center-of-mass.
Combining the results above we get the often used result:

X
*

Mi=cm D P*
Hcm (D.3)

This formula is the version of angular momentum balance that many people

think of as being basic. In this equation, P*
Hcm can be found using either

the absolute acceleration *
a or the acceleration relative to the center-of-mass,

*
a=cm. The same P*

Hcm is found both ways. In this book, we do not give
equation D.3 quite such central status as equations III where the reference
point can be any point C not just the center-of-mass.

D.1 Relation between d
dt

*

H=C and
*

H=C

The expression for P*
H
=C follows from that for

*
H
=C but requires a

few steps of algebra to show. Like the rate of change of linear mo-

mentum, P*L, the derivative of
*
L, the derivative of angular momentum

must be taken with respect to a Newtonian frame in order to be useful
in momentum balance equations. Note that since we assumed that C
is a point fixed in a Newtonian frame that d

dt
*ri=C D *vi=C D *vi .

Starting with the definition of P*
H
=C, we can calculate as follows:

P*
H
=C D d

dt

*
H
=C

D d

dt

X
*ri=C � .mi

*vi /

D
X d

dt
*ri=C � .mi

*vi /C*ri=C � .mi

d

dt
*vi /

D
X *

0� �� �
*vi����

d
dt
*
ri=C

�.mi
*vi /C*ri=C � .mi

d

dt
*vi /

P*
H
=C D

X
*ri=C � .mi

*ai /;

We have used the fact that the product rule of differentiation works
for cross products between vector-valued functions of time. This

final formula, P*
H
=C D P

*ri=C � .mi
*ai /, or its integral form,

P*
H
=C D

R
*ri=C �*ai dm are always applicable. They can be sim-

plified in many special cases which we will discuss in this chapter
and those that follow.
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Kinetic energy EK

The equation of mechanical energy balance (III) is:

P D PEK C PEP C PEint :
For discrete systems, the kinetic energy is calculated as

1

2

X
mi v

2
i

and its rate of change as

d

dt

�
1

2

X
mi v

2
i

�
:

There is also a general result about the kinetic energy that takes advantage
of the center-of-mass. The kinetic energy for any system in any motion can
be decomposed into the sum of two terms. One is associated with the motion
of the center-of-mass of the system and the other is associated with motion
relative to the center-of-mass. Namely,

EK D 1

2
mtotv

2
cm� �� �

���

kinetic energy due to
center-of-mass motion

C 1

2

X
miv

2
i=cm� �� �

BBM

kinetic energy relative
to the center-of-mass

;

D 1

2
mtotv

2
cm CEK=cm

where

EK=cm D 1

2

X
miv

2
i=cm for discrete systems, and

D 1

2

Z
.v=cm/

2 dm for continuous systems.

D.2 Using
*

H=O and P*
H=O to find

*

H=C and P*
H=C

You can find the angular momentum
*
H
=C relative to a fixed point

C if you know the angular momentum
*
H
=O relative to some other

fixed point O and also know the linear momentum of the system
*
L

(which does not depend on the reference point). The result is:
*
H
=C D

*
H
=O C*rO=C � *

L:

The formula is similar to the formula for the effective moment of a
system of forces that you learned in statics:

*
MC D

*
MO C*rO=C �

*
Ftot . Similarly, for the rate of change of angular momentum we

have:

P*
H
=C D P*

H
=O C*rO=C � P*

L

So once you have found P*
L and also P*

H
=O with respect to some point

O you can easily calculate the right hand sides of the momentum
balance equations using any point C that you like.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.



Chapter D. Theorems for Systems D.1. Velocity and acceleration of the center-of-mass 1027

The results above can be verified by direct expansion of the basic definitions
of EK and the center-of-mass. To repeat,

the kinetic energy of a system is the same as the kinetic energy
of a particle with the system’s mass at the center-of-mass plus
kinetic energy due to motion relative to the center-of-mass.
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D.3 Deriving system momentum balance from the particle
equations

Inside the front cover we assume that the linear and angular momen-
tum balance equations apply to arbitrary systems. Another approach
to mechanics is to use the equation

*
F D m*a

for every particle in the system and then derive the system linear and
angular momentum balance equations. This derivation depends on
the following assumptions

1. All bodies and systems are composed of point masses.

2. These point masses interact in a pair-wise manner. For every
pair of point masses A and B the interaction force is equal
and opposite and along the line connecting the point masses.

We then look at any system, which we now assume is a system
of point masses, and apply

*
F D m*a to every point mass and

add the equations for all point masses in the system. For each
point mass we can break the total force into two parts: 1) the in-
teraction forces between the point mass and other point masses
in the system, these forces are ‘internal’ forces (

*
F int ), and 2)

the forces acting on the system from the outside, the ‘external’
forces. The situation is shown for a three particle system below.

Filename:tfigure3-intandext

F3
ext

F2
ext

F1
ext

internal

forces

F 12

F 21

ı̂

ĵ

System linear momentum balance
Now lets take the equation

P *
F D m*a for each particle and add

over all the particles.

X
all particles

2
4 X

each particle

*
F

3
5

� �� �
B
BM

The sum of all forces
on the system, internal
and external

D
X

all particles
mi

*ai

Because all the internal forces come in cancelling pairs we can
rewrite this equation as:

X
all external forces

*
F ext

� �� �
BBM

Only the external
forces, the ones acting
on the system from the
outside.

D
X

all particles
mi

*ai

That is, we have derived equation I in the front cover from
*
F D m*a

for a point mass by assuming the system is composed of point masses
with pair-wise equal and opposite forces.

System angular momentum balance
For any particle we can take the equationX

forces on particle i

*
F D mi

*ai

and take the cross product of both sides with the position of the par-
ticle relative to some point C:

*ri=C �
2
4 X

forces on particle i

*
F

3
5 D*ri=C � �mi

*ai
�
:

Now we can add this equation up over all the particles to get

X
particles

8<
:*ri=C �

2
4 X
on particle i

*
F

3
5
9=
;� �� �

BBM

r=C � *
F added up for

all forces on the sys-
tem, internal and exter-
nal

D
X�

*ri=C � �mi
*ai
�	
:

But, by our pair-wise assumption, for every internal force there is
an equal and opposite force with the same line of action. So all the
internal forces drop out of this sum and we have:X

all external forces

*ri=C � *
F ext
i

� �� �
B
BM

Only the external
forces, the ones acting
on the system from the
outside.

D
X

all particles

*ri=C �mi
*ai :

This equation is equation II, the system angular momentum balance
equation (assuming we do not allow the application of any pure mo-
ments).

The derivations above are classic and are found in essentially
all mechanics books. However, it is more reasonable to take the
system linear momentum balance and angular momentum balance
as postulates. That way the subject of mechanics does not depend on
the unrealistic view of matter being composed of point masses with
pairwise equal-and-opposite forces. The real microscopic physics is
more subtle than that.
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D.4 Rigid-object simplifications
We have formulas for the motion quantities

*
L, P*L,

*
H
=C, and P*

H
=C

and EK in terms of the positions, velocities, and accelerations of all
of the mass bits in a system. Most often in this book we deal with the
mechanics of rigid bodies, objects with negligible deformation. This
assumed simplification means that the relative motions of the 1023

or so atoms in a body are highly restricted. In fact, if one knows
these five vectors:

� *rcm, the position of the center-of-mass,

� *vcm, the velocity of the center-of-mass,

� *acm, the acceleration of the center-of-mass

� *!, the angular velocity of the body, and

� *�, the angular acceleration of the body,

then one can find the position, velocity, and acceleration of every
point on the body in terms of its position relative to the center-of-
mass,*r=cm D*r �*rcm.

We also use �Icm�, the moment of inertia matrix. For 2-D prob-
lems, �Icm� is just a number. For 3-D problems, �Icm� is a matrix;
hence, the square brackets [ ], our notation for a matrix.

These rigid-object concepts lead to a vast simplification over the
alternative — summing over 1023 particles or so.

Note that the formulas for linear momentum
*
L and rate of

change of linear momentum P*
L do not really look any simpler for

a rigid object than for the general case.
*
L D mtot

*vcm

P*
L D mtot

*acm

But, these expressions are actually simpler in the following sense.
For a general system, when we write *vcm, we are talking about an
abstract point that moves in a different way than any point on the
system. For example, consider the linked arms below, tumbling in
space.

Filename:tfigure2-tumbling

center of mass
of system

tumbling 
and distorting

The center-of-mass is not even on any point in the system and, al-
though it represents the average position in the system, it does not
move with any point on the system.

On the other hand, for a rigid body, the center-of-mass is fixed
relative to the body as the body moves,

Filename:tfigure2-tumbling1

rigidbody rig
id bo
dytumbling

even if the center-of-mass is not on the body, such as for this ‘L-
shaped’ object.

Filename:tfigure2-tumbling2

tumbling

In this case, the center-of-mass is not literally on the body but it
is fixed with respect to the body. If you were rigidly attached to the
body and fixed your gaze on the location of the center of mass, it
would not waver in your view as the body, with you attached, tum-
bled wildly. In this sense the center-of-mass is fixed “on” a rigid
body even if not on the body at all.
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Answers to *’d problems
2.1.41) One solution, given in sample 2.7, is

*
A D �16O{C8 O|

and
*
B D 15O{

2.2.17) rx D*r � O{ D .3 cos � C 1:5 sin �/ ft; ry D*r � O| D
.3 sin � � 1:5 cos �/ ft:

2.3.3) No partial credit.

2.3.7)
*
N 1000Np

3
.O{C O| C Ok/.

2.3.10) d D
q

3
2 .

2.3.14a) On D 1
3 .2O{C 2 O| C Ok/.

b) d D 1.

c) 1
3 .�2; 19; 11/.

2.3.16) `=
p
2

2.3.17) To get chicken road sin theta.

2.4.13a) O�OB D 1p
50
.4O{C 3 O| C 5 Ok/:

b) O�OA D 1p
34
.3 O| C 5 Ok/:

c)
*
F1 D 5Np

34
.3 O|C 5 Ok/; *

F2 D 7Np
50
.4O{C 3 O|C 5 Ok/:

d) �AOB D 34:45 deg :

e) F1x D 0

f) *rDO � *
F1 D

�
100p
34
O| � 60p

34
Ok
�

N�m:
g) M� D 140p

50
N�m:

h) M� D 140p
50

N�m:(same as (7))

2.4.16) Yes.

3.1.4) TAB D 75N

3.1.7)
*
FD D .15

p
3O{ � 15 O|/N;

*
MD D 30.1C

p
3/ OkN�m

3.1.10) M D 30
�p

3 � 3
�

N�m Ok
3.1.12)

*
FC D .�9O{ � 12 O|/N

3.1.12) Through B and also through a point 3m above A.

3.1.15a) *r2 D*r1 C
*
F1 � OkM1=j

*
F1j2,

*
F2 D

*
F1.

b) *r2 D*r1 C
*
F1 � OkM1=j

*
F1j2 C c

*
F1 where c is any real

number,
*
F2 D

*
F1.

c)
*
F2 D *

0 and
*
M2 D *

M1 applied at any point in the
plane.

3.1.16a) *r2 D *r1 C
*
F1 �

*
M1=j

*
F1j2,

*
F2 D *

F1,
*
M2 D *

M1 �
*
F1

*
F1=j

*
F1j2. If

*
F1 D

*
0 then

*
F2 D

*
0,

*
M2 D

*
M1, and

*r2 is any point at all in space.

b) *r2 D*r1 C
*
F1 �

*
M1=j

*
F1j2 C c

*
F1 where c is any real

number,
*
F2 D

*
F1,

*
M2 D

*
M1 �

*
F1

*
F1=j

*
F1j2. See above

for the special case of
*
F1 D

*
0.

3.2.1) .0:5m; �0:4m/

3.3.1a) The forces and moments that show on a free body
diagram, the external forces and moments.

b) The forces and moments that show on a free body
diagram, the external forces and moments. No “iner-
tial” or “acceleration” forces show.

3.3.2) You don’t.

3.3.19) Note, no couples show on any of the free body dia-
grams asked for.

4.1.7) T1 D Nmg, T2 D .N � 1/mg, TN D .1/mg, and in
general Tn D .N C 1 � n/mg

4.1.13) (a) is nonsense; others are fine

4.1.21) The cables happen to be co-planar and the force is
not in that plane. So there is no solution.

4.1.24) (a)TAB D 30N, (b) TAB D 300
17 N, (c)TAB D

5
p
26
2 N

4.3.12) � � tan�1
�
.1 � �2/=2��

4.3.15) For this device to hold, � � 1. (Demanding � � 1

is large for a practical device because typical rock
friction has � � 0:5. The too-large number follows
from the simplified geometry and numbers chosen for
a homework problem.)

4.3.19) TAB D
p
10�mg=.3C �/

4.3.19) Minimum tension if rope slope is � (instead of 1=3)

4.3.21a) m
M

D R sin �
R cos �Cr D 2 sin �

1C2 cos � .

b) T D mg D 2Mg sin �
1C2 cos � .

c)
*
FC D Mg

h
� 2 sin �
2 cos �C1 O{0 C O|0

i
(where O{0 and O|0 are

aligned with the horizontal and vertical directions)

c) tan� D sin �
2Ccos � . Needs somewhat involved

trigonometry, geometry, and algebra.

d) tan D m
M

D 2 sin �
1C2 cos � .

4.3.22a) m
M

D R sin �
R cos �r D 2 sin �

2 cos ��1 .

b) T D mg D 2Mg sin �
2 cos ��1 .

c)
*
FC D Mg

1�2 cos � �sin � O{C .cos � � 2/ O|�.
4.3.23a) F1

F2
D RoCRi sin�

Ro�Ri sin�
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b) For Ro D 3Ri and � D 0:2, F1
F2

� 1:14.

4.4.1) None are true. The tension is 100N.

4.5.6) Maximum overhang when n!1is`.
4.5.9) Assuming no side-loads from floor the support from

leg AB is 250N, TAB D �250N.

4.5.10) TCE D mg=2; TCH D TBH D �0; Az D
mg=2;Ay D Ax D 0

4.5.13g) TEH D 0 as you can find a number of ways.

4.5.14a) Use axis EC.

b) Use axis AH.

c) Use O| axis through B.

d) Use axis DE.

e) Use axis EH.

f) Can’t do in one shot.

4.5.15) TAC D �
p
2mg D �1000

p
2N � �1410N (the

bar is in compression)

4.5.15) TIP D 0

4.5.15) TKL D
p
2mg=6 D

�
1000

p
2=6

�
N � 408N (the

bar is in tension)

4.5.17) Hint: With reference to a free body diagram of the
robot, use moment balance about axis BC.

5.1.9) TAC D �1000N, (AC is in compression)

5.1.10) TAB D 173N

5.1.13) 12 of the 15 bars are zero-force members; all but BD,
DG, and GJ. The others carry no load but are needed
for stability.

5.2.14) TEB D �11F=2
5.2.14) THI D �11bF=2a
5.2.14) TJK D �35bF=2a, (more than 3 times the compres-

sion of HI)

6.1.1) 1000N

6.1.2) 0:08 cm

6.1.3) 1160N

6.1.4) 5 cm

6.1.5) ke D 66:7N=cm; � D 0:75 cm

6.1.7) k D 20N=cm

6.1.8) Middle spring: � D 1 cm; side-springs � D 0:5 cm

6.1.12) Surprise! This pendulum is in equilibrium for all val-
ues of � .

6.1.17) �L1 D ��L2 D F=.
p
2 k/

6.2.8) The force is so big because of the toggle mechanism:
because DB is nearly parallel to AC, to balance mo-
ments about C the force in DB has to be huge. Look
at the leg whose top is at D. That leg could only have
a big force on it at D if the bottom of the leg was re-
strained. So the big force would only occur if there
was, say, a cable connecting the bottoms of the two
legs.

6.2.19) 200N

6.3.2) N D .h.w C d/=d`/ Fh

6.3.9) Either by looking at part KAP or at part BAQ, if we
think of moment balance about A we see that the cut-
ting force has to fight about twice the torque in the
gear mechanism as in the ungeared mechanism. For
example KAP is aided in its cutting by the torque
from the force at G.

6.3.10) The mechanism multiplies the force at B and C by a
factor of 2 compared to having the handle hinged at
A. The force at G also gets (a shade less than) this
force but with half the lever arm. Together they give
a force multiplication of (a shade less than) 2+1=3.

6.3.11) FP D 125N

6.3.11) FP D 125N

6.3.11) For the load at I, FP D 75N. For the load at J,
FP D 250N .

6.3.11) With the welded handle there is just a simple lever
and the mechanical advantage comes from the hori-
zontal distance between the load and hinge A. For the
4 bar mechanism the force at C is the applied vertical
load, no matter where it is applied. So the lever arm
is the horizontal distance from A to C.

6.3.12) FD D `EC .`EH � d/F=d`CD
6.3.12) TCC 0 D .`EH =d � 1/ .`EC =`CD C 1/ F

6.3.12) As d ! 0; FD ! 1. Two problems: the amount
of motion goes to zero and the assumption of rigidity
becomes non-negligibly inaccurate.

6.3.13) FA D 500 lbf

6.3.14d) reduce the dimension marked “2 inches”. The
smaller the less the friction needed.

e) As the “2 inch” dimension is reduced to zero, the
needed coefficient of friction goes to zero and the
forces squeezing the pipe go to infinity. This is bad
because it can damage the pipe. It is also bad be-
cause a small pipe deformation will cause the hinge
on the wrench to snap through, like a so called “tog-
gle mechanism” and thus not grab at all.

6.3.15)
*
RA D*

0

6.3.15) T D 200 lbf

6.3.17) FN
�
b.a2 C b2/=a2/

�
F D 130F D 1300 lbf

6.3.17) The mechanism uses three tricks to multiply the
force: a lever, a wedge, and a toggle. Each of these
multiplies by about 5. Thus the nut-force FN is on
the order of 53 D 125 times as big as F .

7.1.14) FAy D �500N;MA D �500=3N�m
7.1.15) V.`=2/ D �w`=8;M.`=2/ D w`2=16;Mmax D

M.3`=8/ D 9wl2=128

7.1.17b) [Hint: at every height y the cross sectional area must
be big enough to hold the weight plus the wire below
that point. From this you can set up and a differential
equation for the cross sectional area A as a function
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of y. Find appropriate initial conditions and solve
the equation. Once solved, the volume of wire can be
calculated as V D R 1

0 0miA.y/dy and the mass as
�V .]

8.1.3) .117=2/m3 D 5:85 � 105 N

8.1.4) Water starts to spill at h D 3rAB D 3m.

8.1.4) Assuming no friction at B,
*
FA D 2:25 � 105 O{N

8.1.9a) �g�r2`

b) ��g�r2.h � `/, note the minus sign, it now takes
force to lift the can.

9.1.1) Some possibilities: a) a car with given thrust and
drag, b) a person falling vertically during bungy
jumping, c) a speaker cone oscillating due to mag-
netic forces on its coils and resistance from air pres-
sure.

9.1.2) All points have equal velocity so all have the same
velocity as the center of mass. Any point on the car
can be used to measure the car’s position.

9.1.3) No. You need also to know v.0/. Then v.T / D
v.0/C R T

0 a.t/ dt . Knowing a.t/ over a given time
interval determines the change of v over that interval,
but not the value v.T /.

9.1.4) b, changes linearly in time

9.1.5) a) a D v�2=.2d/; b) Assume a D a0 � ct . If you
knew a0 and c then you could find T D a0=c, d D
a30=.3c

2/, and v� D a20=.2c/. But you are given v�

and d and can solve to get a0 D 4v�2=3d .

9.1.6) Only c, the change in linear momentum. You could
find the displacement only if the initial velocity is
also given.

9.1.7) (b)

9.1.8) t D d=v D
.10 km/=.15mi= hr/ .1mi=1:61 km/� �� �

1

.60min= hr/� �� �
1

D

24:8min (What’s this, 7th grade again?)

9.1.11) x.3 s/ D 20m

9.1.15) (a) v.3 s/ D 2m=s in each case. (b) x.3 s/ D 3m for
case (a), x.3 s/ D 4m for case (b). During the one
second with no force, in case (b) it has already got up
to a higher speed.

9.1.16) b) Fs D �
4 FT . This is lower than for (a) because

for a given peak force the sinusoidal force is bigger
at every instant in time. So, to have the same effect
(same impulse) the peak must be lower.

9.2.10) 11 ft

9.3.6b) mg � k.x � `0/ D m Rx
c) Rx C k

mx D g C k`0
m

e) This solution is the static equilibrium position; i.e.,
when the mass is hanging at rest, its weight is exactly
balanced by the upwards force of the spring at this
constant position x.

f) ROx C k
m Ox D 0

g) x.t/ D �
D � �`0 C mg

k

��
cos

q
k
m t C .`0 C mg

k
/

h) period=2�
q

m
k

.

i) If the initial position D is more than `0 C 2mg=k,
then the spring is in compression for part of the mo-
tion. A floppy spring would buckle when in compres-
sion.

9.3.8a) periodD 2�q
k
m

D 0:96 s

b) maximum amplitude=0:75 ft

c) periodD 2
q

2h
g C

q
m
k

h
� C 2 tan�1

q
mg
2kh

i
�

1:64 s.

9.4.10) *aB D RxB O{ D 1
mB

��k4xB �k2.xB �xA/Cc1. PxD�
PxB /C k3.xD � xB /�O{.

9.4.11) *aB D RxB O{ D 1
mB

��k4xB � c1. PxB � PxA/C .k2 C
k3/.xD � xB /�.

9.4.12) vA D
r

mBk�
2

m2
A
CmBmA

.

9.5.3) Note: the mass ratio is so high that there is no real
loss of accuracy if you take the post-collision mass
m1 C m2 as 50 kg (the 0.004% error is surely much
smaller than the inaccuracy in any of the other num-
bers in the problem).

9.5.4) hmax D e2h.

9.5.9a) v0 D 1
m .mvB CmBvB CmAvA/.

b) v1 D .mCmB /
m vB .

c) (1) Eloss D 1
2m

�
v20 �

�
mCmB

m

�2
v2
B

�
� 1

2mAv
2
A

.

(2) Eloss D 1
2

�
.mCmB /2

m v2
B
� .mCmB /v

2
B

�
.

10.1.1) Time span D 3�
p
m=k=2

10.1.4) (a) m Rx C kx D F.t/, (b) m Rx C kx D F.t/, and (c)
m Ry C 2ky � 2k`0 yq

`2
0
Cy2

D F.t/

10.1.6) LHS of Linear Momentum Balance:
P *
F D

�.kx C b Px/O{C .N �mg/ O|.

10.3.1b) If we start off by assuming that each mass under-
goes simple harmonic motion at the same frequency
but different amplitudes, we will find that this two-
degree-of-freedom system has two natural frequen-
cies. Associated with each natural frequency is a
fixed ratio between the amplitudes of each mass.
Each mass will undergo simple harmonic motion at
one of the two natural frequencies only if the initial
displacements of the masses are in the fixed ratio as-
sociated with that frequency.

10.3.2a) Two normal modes.

b) x2 D const �x1 D const �.A sin.ct/CB cos.ct//,
where const D �1.
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c) !1 D
q

3k
m , !2 D

q
k
m .

10.3.5a) One normal mode: �1; 0; 0�.

b) The other two normal modes: �0; 1; 1�
p
17

4 �.

10.3.8a) ! D
q

2k
m .

11.1.3a) *v.5 s/ D .30O{C 300 O|/m=s.

b) *a.5 s/ D .6O{C 120 O|/m=s2.

11.1.5) *r.t/ D �
x0 C u0



� u0



cos.
t/

� O{C .y0 C v0t / O|:
11.1.11) *v D 2t m=s2 O{Ce ts m=s O|,*a D 2m=s2 O{Ce ts m=s2 O|.

11.1.21) T3 D 13N

11.1.29) Equation of motion:

�mg O| � b. Px2 C Py2/
 

Px O{C Py O|q
Px2C Py2

!
D m. Rx O{C Ry O|/.

11.1.30a) System of equations:

Px D vx

Py D vy

Pvx D � b
m
vx

q
v2x C v2y

Pvy D �g � b

m
vy

q
v2x C v2y

12.1.4) No. You need to know the angular momenta of the
particles relative to the center of mass to complete
the calculation, information which is not given.

12.1.9) The mass would stay on the z axis if the solution was
exact.

12.1.9) The solution would be exactly periodic if the ratio of
the masses was infinite rather than just 1000. There
are special initial conditions for which the motion is
periodic for any mass ratio, the oscillations of the
light mass need to be synchronous with the in-and-
out oscillations of the heavier nearly-circular-motion
masses.

12.1.10) These three trajectories are all parts of the same fig-
ure 8.

12.1.10) The trajectories trace and retrace the same figure 8.
If your integration is not accurate, the curves will not
exactly retrace.

12.1.10) The trajectories make a beautiful swirl resembling a
figure 8.

12.1.10) The trajectories get wild, possibly ejecting one or
more masses off to infinity.

12.2.10) One test problem is this: *v�1 D O{;*v�2 D *
0; m1 D

m2 D 1; e D 0; � D 0. This should have the solution
*vC1 D*vC2 D 0:5O{; *P D :5O{.

13.1.2a) aB D
�
mB�mA
mACmB

�
g

b) T D 2
mAmB
mACmB g.

13.1.4) *aA D �2m=s2 O|

13.1.6) (a)*aA D*aB D F
m O{, where O{ is parallel to the ground

and pointing to the right., (b)*aA D 2F
m O{,*aB D 4F

m O{,
(c) *aA D F

2m O{, *aB D F
4m O{, (d) *aA D F

m O{, *aB D
�F
m O{.

13.1.8) aA
aB

D 81.

13.1.9) aA D 2F=.5m/, aB D F=.5m/ to the right.

13.1.11) P D 2F Px
13.1.12) Tn D Pt

vt

n
N

.

13.1.13) displacement of cart D F��mg
F��.mCM/g

`

13.1.14a) *aA D 5F
m O{, *aB D 25F

m O{, where O{ is parallel to the
ground and points to the right.

b) *aA D g
.4m1Cm2/ .2m2 �

p
3m2/

O�1, *aB D
� g
2.4m1Cm2/ .2m1 �

p
3m2/

O�2, where O�1 is par-
allel to the slope that massm1 travels along, pointing
down and to the left, and O�2 is parallel to the slope
that mass m2 travels along, pointing down and to the
right.

13.1.14) aA D 5F
4m and aB D 25F

16m in the direction of F.

13.1.16) *aA D �a0
2 O{

13.1.18) angular frequency of vibration � � D
q

64k
65m .

13.1.19) The assembly at C has, with the idealizations given,
no mass and no net force acting on it. The equation
*
F D m*a says 0 D 0 and, within the assumptions
made, the acceleration is indeterminate. If you built
such a machine, the acceleration of C would be deter-
mined by the effects which are neglected here, such
as the mass of the central assembly and the friction
in the pulley bearings. If you built such an assembly
you would see that only small additional forces are
needed to move point C most any which way.

13.1.25a) m RxC 4kx D A sin!t Cmg, where x is the distance
measured from the mass position when the spring is
unstretched.

b) The string will go slack if ! >
r

4k
m

�
1 � A

mg

�
.

13.1.26a) *aA D �9kd
mA

O{.

b) v D 3d
q

k
mA

13.2.3) TAB D 5
p
13

28 m.ay C g/

13.2.8) a1 D a2 D g sin �

13.2.8) T D 0

13.2.8) v D
p
2dg sin �

13.2.9) acom D a1 D a2 D g.sin.�/ � 3
4�cos.�//

13.2.9) T D �
4mgcos.�/

13.2.9) v D
q
2dg.sin.�/ � 3

4�cos.�//

13.2.9) The upper block would push the lower one down the
ramp so the rod tension would be rod compression.
But the acceleration would be unchanged.
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13.2.11) ax >
3
2g

13.2.14) Can’t solve for TAB .

13.2.15) a) *aG D P
m O{ with O{ to the right. b) RA D RB D

mg
2 O|, with O| upwards

13.2.16) The acceleration is still*aG D P
m O{. But the reactions

are changed to RA D mg
2 � d

b
P
2 and RB D mg

2 C
d
b
P
2

13.2.25d) Normal reaction at rear wheel: Nr D mgw
2.h�Cw/ , nor-

mal reaction at front wheel: Nf D mg � mgw
2.h�Cw/ ,

deceleration of car: acar D � �gw
2.h�Cw/ .

e) Normal reaction at rear wheel: Nr D mg� mgw
2.w��h/ ,

normal reaction at front wheel: Nf D mgw
2.w��h/ , de-

celeration of car: acar D � �gw
2.w��h/ . Car stops

more quickly for front wheel skidding. Car stops at
same rate for front or rear wheel skidding if h D 0.

f) Normal reaction at rear wheel: Nr D mg.w=2��h/
w ,

normal reaction at front wheel: Nf D mg.w=2C�h/
w ,

deceleration of car: acar D ��g.

g) No. Simple superposition just doesn’t work.

h) No reaction at rear wheel.

i) Reaction at rear wheel is negative. Not allowing for
rotation of the car in the xy-plane gives rise to this
impossibility. In actuality, the rear of the car would
flip over the front.

13.2.26a) Hint: the answer reduces to a D `rg=h in the limit
�!1.]

13.2.27a) *a D g.sin� � � cos�/O{, where O{ is parallel to the
slope and pointing downwards

b) *a D g sin�

c) *v D g.sin� � � cos�/t O{,*r D g.sin� � � cos�/ t
2

2

d) *v D g sin�t O{,*r D g sin� t
2

2 O{
13.2.29a)

*
RA D .1��/mg cos �

2 . O|0 � �O{0/.
c) No tipping if NA D .1��/mg cos �

2 > 0; i.e., no tip-
ping if � < 1 since cos � > 0 for 0 < � < �

2 .(Here
� D 0:9)

13.2.31) braking accelerationD g.12 cos � � sin �/.

13.2.35a) v D d

q
k
m .

b) The cart undergoes simple harmonic motion for any
size oscillation.

13.2.38a) *abike D
FpLc
MRf

.

b) max(*abike/=
ga

aCbC2Rf .

13.2.39) TEF D 640
p
2 lbf.

13.2.40a) TBD D 92:6 lbm � ft=s2.

b) TGH D 5
p
61 lbm � ft=s2.

13.2.41b) TEH D 0

c) .RCx �TAB /O{C .RCy �
TGDp

2
/ O|C .THE CRCz C

TGDp
2
/ Ok D m*a D 10N Ok.

d)
P *
Mcm D .

TGDp
2
�THE �RCz /O{C.RCz �

TGDp
2
�

THE / O| C .TAB CRCx �RCy �
TGDp

2
/ Ok D*

0

e)

RCx � TAB D 0

RCy �
TGDp
2
D 0

RCz C
TGDp
2
C TEH D 5N

�TEH C TGDp
2
�RCz D 0

�TEH � TGDp
2
CRCz D 0

TAB � TGDp
2
CRCx �RCy D 0

f) RCx D 5N, RCy D 5N, RCz D 5N, TGD D
10p
2

N, TEH D 0N, TAB D 5N.

g) Find moment about CD axis; e.g., .
P *
MC D

*rcm=C � m*acm/ � O�CD , where O�CD is a unit vector
in the direction of axis CD.

13.2.46a) FL D 1
2mtotg.

b) *aP D 1
mtot

�2.T � FD/ �D� O{.

c)
*
F D

h
mw
mtot

.2T �D � 2FD/ � T C FD

i
O{ C

.mwg � FL/ O| and
*
M D .bFL � amwg/O{ Ch

.bFD � cT /C a
mw
mtot

.2T �D � 2FD/
i
O|.

13.2.47) sideways force = FB O{ D wma
2`

O{.
14.1.9) One solution is � D 0 for all t . Another set of so-

lutions is � D
�
c.t�t0/

2

�2
where t0 is an arbitrary

constant. To make sense of this second solution set
one needs to have � D 0 until t D t0.

14.2.1) F D 0:52 lbf D 2:3N

14.2.7b) For � D 0�,

Oer D O{
Oet D O|
*v D 2�r

�
O|

*a D �4�
2r

�2
O{;
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for � D 90�,

Oer D O|
Oet D �O{
*v D �2�r

�
O{

*a D �4�
2r

�2
O|;

and for � D 210�,

Oer D �
p
3

2
O{ � 1

2
O|

Oet D 1

2
O{ �

p
3

2
O|

*v D �
p
3�r

�
O| C �r

�
O{

*a D 2
p
3�2r

�2
O{C 2�2r

�2
O|:

c) T D 4m�2r
�2

.

d) Tension is enough.

14.2.10b) .
P*
H=O/I D

*
0; .

P*
H=O/II D 0:0080N�m Ok.

c) Position-A: .
*
H=O/I D 0:012N�m � s Ok,.

*
H=O/II D

0:012N�m � s Ok, Position-B: .
*
H=O/I 0:012N�m � s Ok,

.
*
H=O/II D 0:014N�m � s Ok.]

14.2.12) r D kro
k�m!2o

.

14.2.14) `0 D 0:2m

14.2.16b) T D 0:16�4N .

c)
*
H=O D 0:04�2 kg�m=s Ok

d) *r D �
p
2
2 � v cos.�t4 /�O{C �

p
2
2 C v sin.�t4 /� O|.

14.2.18a) 2mg.

b) ! D
p
99g=r

c) r � 1m .r > 0:98m/

14.2.21a) R� D �.g=L/ sin �

d) P! D �.g=L/ sin �; P� D !

f) Tmax D 30N

14.2.24b) The maximum tension is 3 times the person’s weight.

14.2.30a) Pv D �� v2

R
.

b) v D v0e
��� .

14.2.33a) The velocity

of departure is *vdep D
q

k.�`/2

m � 2GR O|, where
O| is perpendicular to the curved end of the tube.

b) Just before leaving the tube the net force on the pel-
let is due to the wall and gravity,

*
Fnet D �mg O| �

m
j*vdep j2

R
O{; Just after leaving the tube, the net force

on the pellet is only due to gravity,
*
Fnet D �mg O|.

15.1.4) �*rB�x0y0 D
�
1m
1m

�
; �*rB�xy D� �0:37m

1:37m

�
; R D

�
0:5 �0:87
0:87 0:5

�
15.2.11a) *vB=A D 4m=s.O{C

p
3 O|/

b) *aB=A D �40m=s2.
p
3O{ � O|/

15.2.20) *aB=A D .�0:353O{C 2:474 O|/m=s2

15.2.23) !min D 10 rpm and !max D 240 rpm

15.3.3) Izz D 0:125 kg � m2.

15.3.4a) 0:2 kg � m2.

b) 0:29m.

15.3.5) At 0:72` from either end

15.3.6a) .Izz/min D m`2=2, about the midpoint.

b) .Izz/max D m`2, about either end

15.3.7a) C

b) A

c) IAzz=I
B
zz D 2

d) smaller, rgyr D
q
ICzz=.3m/ D

p
2`

15.3.8a) Biggest: IOzz ; smallest: IOyy D IOxx .

b) IOxx D
3

2
m`2 D IOyy . IOzz D 3m`2.

d) rgyr D `.

15.3.12a) I cmzz D 2m`2

b) P � A; B; C; or D, often, but not always, diago-
nally opposite the corner with the largest mass

c) rgyr D `=
p
2

15.3.13) IOxx D IOyy D 0:3 kg � m2.

15.3.15a) IOzz D
2m

bh

Z b

0

Z hx=b

0
.x2 C y2/ dy dx.

15.3.19d) Exactly 1% .

15.4.9a) (a)
*
F D 0:33NO{ � 0:54N O|.

15.4.10a) Net force:
*
Fnet D �.3m!2L2 /O{ � .m!2L2 / O|, Net

moment:
*
Mnet D

*
0.

b) Net force:
*
Fnet D �.3m!2L2 /O{C .2mg� m!2L

2 / O|,
Net moment:

*
Mnet D 3mgL

2
Ok.

15.4.12a) T .r/ D m!2

2L
.L2 � r2/

b) at r D 0; i.e., at the center of rotation

c) r D L=
p
2

15.4.16a) Point at 2L=3 from A

b) mg=4 directed upwards.

15.4.18) Trev D
r

2MO`
2�

3FRp
.

15.4.22a) Pin D 7:33kilo-watts

b) 500 rpm

c) Mout D 140N�m
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15.4.24a) FB D 100 lbf.

c) vright D v.

15.4.26) *am D 0:188m=s2

15.4.33b)
(b) T D 2:29 s

(e) T D 1:99 s

(b) has a longer period than (e) does since in (b) the moment of
inertia about the center of mass (located at the same
position as the mass in (e)) is non-zero.

15.4.34c) T D 2�p
g=`

q
1

12.d=`/
C d

`

g) d D 0:29 `

15.4.37a) R� D 0 rad=s2.

b) R� D sin �
m`

.Dk �mg/.

15.4.43) period = �
q

2m
k

.

15.4.44a) !n D
s

gL.MCm
2 /CK

.MCm
3 /L

2CM R2

2

.

b) !n D
r

gL.MCm
2 /CK

.MCm
3 /L

2
. Frequency higher than in

(a)

15.4.45b) �F.t/` cos� �mg` sin� C Tm D �m`2 R�.

16.1.8b) *! D � v0 sin�
` cos.���/ Ok

16.2.3a) *acm D F
m O{.

b) *� D �6F
m`

Ok.

c) *aA D 4F
m O{.

d)
*
FB D F

2 O{
16.2.6a) *a D F

m O|.

b) *� D Fd

mR2

2

Ok.

16.2.16a) Fout D 3
7 lb.

b) Fout is always less than the Fin.

16.4.4a) *�Disk D �4
3 rad=s2 Ok.

b) *aA D 8
3 m=s2 O{.

16.4.6a) aC D .F=m/.1 �Ri=RO /O{.
b) .�Ri=RO /F O{.

16.4.11a) speed v D R P�
3 .

b) The energy lost to friction is Ef ric D
mR2 P�2

0
6 . The

energy lost to friction is independent of � for � >

0. Thus, the energy lost to friction is constant for
given m, R, and P�0. As �! 0, the transition time to
rolling !1. It is not true, however, that the energy
lost to friction ! 0 as � ! 0. Since the energy lost
is constant for any � > 0, the disk will slip for longer
and longer times so that the distance of slip goes to
infinity. The dissipation rate ! 0 since the constant
energy is divided by increasing transition time. The
energy lost is zero only for � D 0.

16.4.12) V D 2m=s.

16.4.13) vo D 2
p
2gR
3 .

16.4.19) Accelerations of the center of mass, where O{ is par-
allel to the slope and pointing down: (a) *acm D
g sin � O{, (b)*acm D 2

3g sin � O{, (c)*acm D 1
2g sin � O{,

(d)*acm D 2
3g sin � O{. So, the block is fastest, all uni-

form disks are second, and the hollow pipe is third.

16.5.8) h D 2L=3

17.1.1) plot(2): �.t/ D br.t/ and*v D P�
b
Oer C � P�

b
Oet .

17.1.1) plot(2): x D r cos.br/ and y D r sin br or x D
�
b

cos.�/ and y D �
b

sin �

17.1.5) One situation: *v D R P� Oe� ;the case of a particle con-
strained to move in a circle.

17.1.6) One situation: *a D RR OeR; the case of no rotation ( P� D
R� D 0).

17.1.9a)

Oet D
2t
s O{C e

t
s O|q

4 t
2

s2
C e

2t
s

at D
4t m

s3
C e

2t
s m=s2q

4 t
2

s2
C e

2t
s

*an D
.2 � 2 ts /e

2t
s m=s2 O{C .4 t

2

s2
� 4 ts /e

t
s m=s2 O|

4 t
2

s2
C e

2t
s

Oen D e
t
s O{ � 2 ts O|q
4 t

2

s2
C e

2t
s

� D
.4 t

2

s2
C e

2t
s /

.2 � 2 ts /e
t
s

m

17.3.4) *vP D !1L.cos � O| � sin � O{/C .!1 C !2/r O{,*aP D
�!21L.cos � O{C sin � O|/C .!1 C !2/

2 O|.

17.3.5) *!D D .!1 C !2/
Ok.

17.3.7) *ab D �.s2AC a!2
D
C 2!Dvb/O{ � a P!D Ok.

17.3.12b) One case: *aP D*aO0 , where P refers to the bug; the
bug stands still on the turntable, the truck accelerates,
and the turntable does not rotate.

c) One case: *aP D *aO0 C *aP=D , where D is the
turntable; the bug accelerates along a straight line on
the turntable, the truck accelerates, and the turntable
does not rotate.

17.4.1a) *!OA D P� Ok.

b) *�OA D R� Ok.

c) *vA D �R P� sin � O{CR P� cos � O|.

d) *aA D �.R P�2 cos � C R R� sin �/O{ C .R R� cos � �
R P�2 sin �/ O|.

e) *!AB D �R P� cos �p
`2�R2 sin2 �

.
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f) � D .2nC 1/�2 , n D 0;�1;�2; : : :.
17.4.4) *!DE D �!

2
Ok D �1:5 rad=s Ok

17.4.5) *�DE D 3:5 rad=s2 Ok
18.1.9a) RR.t/ � !2oR.t/ D 0.

b) d2R.�/

d�2
�R.�/ D 0.

c) R.� D 2�/ D 267:7 ft, R.� D 4�/ D 1:43 � 105 ft.

d) v D 1682:3 ft=s

e) EK D .2:83 � 106/ � .mass/. ft=s/2.

18.1.10a) RR D R0!
2 � 2� PR0!.

b) � D sin�1
"

1q
.
p
1C�2��/2C1

#
.

18.1.18a) !� D 4 rad=s, where the minus sign ‘-’ means ‘just
before leaving’.

b) !C D 4 rad=s, where the plus sign ‘+’ means ‘just
after leaving’.

c) vr D 3:841m=s, vt D 2:4m=s.

d) torque=0:072N�m
18.1.19)

*
F D �0:6N O|.

18.1.20a) TBC D m
p
34
13 .2ax C g/.

b) *a D 1
34 �.25ax C 15g/O{C .15ax � 25g/ O|�

c) TBC D m 1p
34
.5ax C 3g/.

18.2.3a)
*
H=O D

h
mL2!1 C 1

2mr
2.!1 C !2/

i
Ok.

b) P*
H=O D*

0.

c)
*
H=C D 1

2mr
2.!1 C !2/

Ok.

d) P*
H=C D

*
0.

18.2.4)
*
F D m*a D �109:3NO{ � 19:54N O|.

18.2.6b) R� D � 3g
2L

cos � .

c) From the diagram, we see P!AB D � R�.t D 0/ Ok D
3g
2L

cos �0,*aG D 3
4g cos �0�sin �0 O{ � cos �0 O|�.

d)
*
RA D 3

4mg sin �0 cos �0 O{,
*
RB D mg�1 �

3
4g cos2 �0� O|.

e) *aB D 3
2g sin �0 cos �0 O{.

f) At � D �0
2 , *!AB D

q
3g
L
.sin �0 � sin �0

2 /
Ok, *aA D

�3g
h
1
2 cos2 �0

2 C sin �0
2 .sin �0 � sin �0

2 /
i
O|.

18.2.12) There are many solution methods. �8�2 poundals to
the left. (Note: 1 poundal D 1 ft � lbm � s�2.)

18.2.14a) � D
r

.McC6Mw/v
2
0

k
.

b) Tangential forces point toward the wall!

c) � D
r

.McC4Mw/v
2
0

k
.

18.3.3a) �k.x O{C y O|/ D m. Rx O{C Ry O|/.

b) �kr Oer D m. Rr � r P�2/ Oer Cm.r R� C 2 Pr P�/ Oet .
c) d

dt
.x Py � y Px/ D 0.

d) d
dt
.r2 P�/ D 0.

e) dot equation in (a) with .x O|�y O{/ to get .x Ry�y Rx/ D
0 which can be rewritten as (c); dot equation in (b)
with Oet to get .r R�C2 Pr P�/ D 0which can be rewritten
as (d).

f) 1
2m. Px2 C Py2/C 1

2k.x
2 C y2/ D const .

g) 1
2m. Pr2 C .r P�/2/C 1

2kr
2=const.

h) dot equation in (a) with*v D Px O{C Py O| to get m. Rx Px C
Ry Py/Ck. PxxC Pyy/ D 0 which can be rewritten as (f).

i) x D A1 sin.!t CB1/, y D A2 sin.!t CB2/, where

! D
q

k
m . The general motion is an ellipse.

j) Yes. Consider B1 D B2 D 0, A1 D 1, and A2 D 2.

18.3.4a) 0:33mO{
b) *vC D 1:82m=sO{.
c) T � 240N.

18.3.10b)

RR �R P�2 D 0

.Izz CmR2/ R� C 2mR PR P� D 0

c) The second equation in part (b) can be rewritten in the
form d

dt

h
Izz CmR2/ P�

i
D 0. The quantity inside

the derivative is angular momentum; thus, it is con-
served and equal to a constant, say, .H=o/0, which
can be found in terms of the initial conditions.

d) RR �R
�

.Ho/
2
0

.IOzzCmR2/2
�
D 0.

e) E0 D 1
2m

PR2 C 1
2!.H=o/0.

f) The bead’s distance goes to infinity and its speed ap-
proaches a constant. The turntable’s angular velocity
goes to zero and its net angle of twist goes to a con-
stant.

18.3.12a)

P� D !

P! D � 2mRv!

Izz CmR2

PR D v

Pv D !2R

18.3.13) v2x D
s

2g.a�b/ tan�

.1C 1
nC

�
nC1
n

�2
tan2 �/

,

v2y D v2x
nC1
n tan�, v1x D � v2x

n , v1y D 0,
where 2 refers to the top wedge and 1 refers to the
lower wedge.

18.3.14a)
*
F D m.g C a0/

hp
3
4 O{C 3

4 O|
i
.

b) For a0 D �g, the acceleration of the mass is exactly
vertical; d0, v0, and t could be anything.
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Table of common connections
Here are some common models of connections. Fancier connections, such as universal joints and parallel mechanisms, are
built out of mixtures of objects connected using these connections. Every connection has jobs to do:

� Transmit some forces and moments.

� Allow some motions. These are the degrees of freedom (DOF).

� Prevent some motions. These are the restrictions. There is always a force or
moment associated with a restriction.

2D: # DOF + # Restr. = 3
3D: # DOF + # Restr. = 6

Name of
connection Sketch Forces on FBD # DOFs # Restrictions

Weld, glue joint,
lap-joint,
cut of solid piece

Filename:tfig-connect-weld

A

Filename:tfig-connect-weld-FBD

A

⇀
F

⇀
MA

A

2D: 2 force components
and 1 moment component
3D: 3 force components

and 3 moment components

0 DOF
(no rel. motion)

2D: 3 restr:
xA; yA; �

3D: 6 restr:
xA; yA; zA; �; �; �

No interaction.
(no contact & no
other mutual
forces)

Filename:tfig-cnct-nada

Filename:tfig-cnct-nada-FBD

0 force and 0 moment
components

2D: 3 DOF:
xA; yA; �

3D: 6 DOF:
xA; yA; zA; �; �; �

No restrictions
(none, zero, nada)

2D pin,
hinge,
rotary joint

Filename:tfig-connect-hinge

A

θ

Filename:tfig-connect-hinge-FBD

A
⇀
FA 1 DOF: � 2 restr.: xA; yA

3D ball& socket,
rod-end

Filename:tfig-cnct-ballands

ball

socket
Filename:tfig-cnct-ballands-FBD

⇀
F

3 force components,
no moment

3 DOF: �; �; � 3 restr.: xA; yA; zA

(continued on next page)
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(Common connections . . . continued)
2D: # DOF + # Restr. = 3
3D: # DOF + # Restr. = 6

Name of
connection Sketch Forces on FBD # Forces on DOFs # Restrictions

3D hinge

Filename:tfig-cnct-3Dhinge

A
Filename:tfig-cnct-3Dhinge-FBD

Fy

Fz

Fx

My
Mx

3 force components,
2 moment comps

1 DOF: � 5 restr.:
xA; yA; zA; �; �

Rod (massless,
hinged); taut
string, line, rope
or cable

Filename:tfig-cnct-rod

A

B
�

Filename:tfig-cnct-rod-FBD
T

If inextensible:
2D: 2 DOF

3D: 5 DOF

If inextensible:
2D:

1 restr.: P̀

3D:
1 restr.: P̀

Spring
(or dashpot or
gravitational
attraction)

Filename:tfig-cnct-spring
Filename:tfig-cnct-spring-FBD

T

2D: 3 DOF

3D: 6 DOF

2D: 0 restr.
3D: 0 restr.
No constraint
on motion

Filename:tfig-connect-touch-nofr

N

frictionless

2 DOF: `; � 1 restr.: N dir

2D point
contact,
non-conformal
touching

Filename:tfig-connect-touch

⇀
v

Filename:tfig-cnct-touch-frict

NF = µN

frictional slip

2 DOF: `; � 1 restr.: N dir

Filename:tfig-cnct-touch-noslip

θ

N
x

y

A

F  ≤ μN

no slip

1 DOF: �

(like a pin or
hinge)

2 restr.: xA; yA

(continued on next page)
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(Common connections . . . continued)

2D: # DOF + # Restr. = 3
3D: # DOF + # Restr. = 6

Name of
connection Sketch Forces on FBD # DOFs # Restrictions

Filename:tfig-cnct-3Dtouch-nofr
N

x

y

frictionless

5 DOF:
x; y; �; �; �

1 restr.: N dir

3D point
contact,
non-conformal
touching

Filename:tfig-cnct-3Dtouch

Filename:tfig-cnct-touch-3Dfrict
N

µN

frictional slip

5 DOF:
x; y; �; �; �

1 restr.: N dir

Filename:tfig-cnct-tch-3Dnoslip

no slip, j
*

F j � �N

3 DOF: �; �; �

(like a ball &
socket)

3 restr.: xA; yA; zA

2D keyed slot
with weld, glue
or lap joint
to prevent
rotation

Filename:tfig-cnct-2Dkey

y

Filename:tfig-cnct-2Dkey-FBD

M

N

1 DOF: y 2 restr.: xA; �

3D linear
bearing
with weld, glue
or lap joint,
piston in cylinder

Filename:tfig-cnct-3Drndkey

yv

ω

Filename:tfig-cnct-3Drndkey-FBD

2 DOF: y; � 4 restr.: x; z; �; �

3D keyed
bearing
with weld, glue
or lap joint,
cart on track

Filename:tfig-cnct-3Dsqrkey

yv

Filename:tfig-cnct-3Dsqrkey-FBD

1 DOF: y 5 restr.:
x; z; ��; �

(continued on next page)
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(Common connections . . . continued)
2D: # DOF + # Restr. = 3
3D: # DOF + # Restr. = 6

Name of
connection Sketch Forces on FBD # DOFs # Restrictions

3D block sliding,

Object confined
to a plane

Filename:tfig-cnct-3Dblckslip

Filename:tfig-cnct-3Dblckslp-FBD

If no friction, then only
normal forces

3 DOF: x; y; �

3 restr.: z; �; �

Statically inde-
terminate: there
are more reaction
components than
restrictions.

2D skate.
Ideal wheel,
looking down.
(Non-holonomic
system.)

Filename:tfig-cnct-2Dskate

θ

Filename:tfig-cnct-2Dskate-FBD

N

2 velocity DOF:
v; P�

3 config DOF:
x; y; �

1 restr.: vel. in N

direction.

3D skate.
Ideal wheel.
(Non-holonomic
system.)

Filename:tfig-cnct-3Dskate1

v

λ̂

Filename:tfig-cnct-3Dskate2

A
Filename:tfig-cnct-3Dskate-FBD

N

F

4 velocity DOF
5 config DOF:

x; y; �

2 restr.:
vA ? to path
& vertical pos.

3D bolt.

Filename:tfig-cnct-bolt

z

zv
v

= p 

Filename:tfig-cnct-bolt-FBD

M

z

z

Free to move in
screw direction

( p F  + M   = 0 )z z
F

1 DOF:
a mixture of z

displ & � rotation

5 restr.:
all but the screw
motion
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Filename:table1

Momenta and energy

Linear Momentum Angular Momentum Kinetic Energy

What system

⇀

L ˙⇀L =
d

dt

⇀

L
⇀

HC
˙⇀HC =

d

dt

⇀

HC
EK

In General

Lx ı̂ + L y ̂ + L z k̂

= mtot
⇀
vcm

= d
dt

.mtot
⇀
rcm/

L̇x ı̂ + L̇ y ̂ + L̇ z k̂

= mtot
⇀
acm

“F = ma”

HCx ı̂ + HCy ̂ + HCz k̂

=
⇀
r cm/C ×

⇀
vcmmtot +

⇀

H cm

= d
dt

.no such thing/

ḢCx ı̂ + ḢCy ̂ + ḢCz k̂

=
⇀
r cm/C ×

⇀
acmmtot + ˙⇀H cm

= (no simple general expression)

1

2
mtot v2

cm + EK/cm

One Particle P mP
⇀
vP mP

⇀
aP

⇀
r P/C ×

⇀
v P mP

⇀
r P/C ×

⇀
aPmP

1

2
mPv2

P

System of

Particles

∑

all particles i

mi
⇀
v i

∑

all particles i

mi
⇀
a i

∑

all particles

⇀
r i/C ×

⇀
v i mi

∑

all particles

⇀
r i/C ×

⇀
a i mi

1

2

∑

all particles

v2
i mi

Continuum

∫

all mass

⇀
v dm

∫

all mass

⇀
a dm

∫

all mass

⇀
r /C ×

⇀
v dm

∫

all mass

⇀
r /C ×

⇀
a dm

1

2

∫

all mass

v2 dm

System of Systems
(eg. rigid bodies)

∑

all sub-systems

mi
⇀
v i

∑

all sub-systems

mi
⇀
a i

∑

all sub-systems

⇀

HCi

∑

all sub-systems

˙⇀HCi

∑

all sub-systems

EKi

Rigid Bodies

One rigid body
(2D and 3D) mtot

⇀
vcm

mtot
⇀
acm

⇀
r cm/C ×

⇀
vcmmtot + [Icm] ·

⇀
ω

︸ ︷︷ ︸
⇀

H cm

⇀
r cm/C ×

⇀
acmmtot

+ [Icm] · ˙⇀ω +
⇀
ω ×

⇀

H cm
︸ ︷︷ ︸

⇀̇

H cm

1

2
mtot v2

cm

+
1

2

⇀
ω · [Icm] ·

⇀
ω

︸ ︷︷ ︸

EK/cm

2D rigid body

in xy plane

with
⇀
ω = ωk̂

mtot
⇀
vcm

mtot
⇀
acm

⇀
r cm/C ×

⇀
vcmmtot + I cm

zz ωk̂
︸ ︷︷ ︸

⇀

H cm

⇀
r cm/C ×

⇀
acmmtot + I cm

zz ω̇k̂
︸ ︷︷ ︸

⇀̇

H cm

1

2
mtot v2

cm

+
1

2
I cm
zz ω2

︸ ︷︷ ︸

EK/cm

One rigid body

if

C is a fixed point

if

C is a fixed point

(2D and 3D)

mtot
⇀
vcm mtot

⇀
acm [IC] ·

⇀
ω =

⇀

HC [IC] · ˙⇀ω +
⇀
ω ×

⇀

HC
1

2

⇀
ω · [I

C

] ·
⇀
ω

2D rigid body

with
⇀
ω = ωk̂

mtot
⇀
vcm mtot

⇀
acm I C

zzωk̂

I Co
zzω̇k̂

“M = Iα”
1

2
I C
zzω

2

TABLE I



(1)

(a) (b) (c) (d) (e)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

The table has used the following terms:

mtot =total mass of system,

mi = mass of body or subsystem i,
⇀
r cm/C = the position of the center of mass relative to

point C ,
⇀
v i = velocity of the center of mass of sub-system or

particle i ,
⇀
a i = acceleration of the center of mass of sub-system

i ,
⇀

HCi = angular momentum of subsystem i relative to

point C.
˙⇀HCi = rate of change of angular momentum of sub-

system i relative to point C.

⇀

H cm =
∑

⇀
ri/cm × .mi

⇀
v i/ angular momentum about

the center of mass
˙⇀H cm =

∑
⇀
ri/cm × .mi

⇀
a i/ rate of change of angular

momentum about the center of mass
⇀
ω is the angular velocity of a rigid body,
˙⇀ω =

⇀
α is the angular acceleration of the rigid body,

[Icm] is the moment of inertia matrix of the rigid body

relative to the center of mass, and

[Io] is the moment of inertia matrix of the rigid body

relative to a fixed point (not moving point) on the body.
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Filename:tfigure8-alt-app2c

x

y

x'

y'

P

⇀
r P

⇀
r P/O′

⇀
r O′/O

B

F
O

O'

Figure D.3:

Table II. Methods for calculating velocity and acceleration Some
facts about path coordinates
The path of a particle is *

r.t/.

Oet �
d*r.s/

ds
; Oet D

d*r.t/

dt

dt

ds
D

*
v

v
; *

� � d Oet
ds

D d Oet
dt

1

v
;

Oen D
*
�

j*�j ; eb � Oet � Oen; � D 1

j*�j :

Summary of the direct differentiation method
In the direct differentiation method, using moving frame B, we calculate *

vP
by using a combination of the product rule of differentiation and the facts
that PO0{ D *

!B � O{0, PO0| D *
!B � O|0, and PO 0k D *

!B � Ok0, as follows:

*
vP D d

dt

*
rP D d

dt

�
*
rO 0=O C*

rP=O 0

�
D d

dt

h
.x O{C y O| C z Ok/C .x0 O{0 C y0 O|0 C z0 Ok0/

i
D . Px O{C Py O| C Pz Ok/C . Px0 O{0 C Py0 O|0 C Pz0 Ok0/Ch
x0.*!B � O{0/C y0.*!B � O|0/C z0.*!B � Ok0/

i
but stop short of identifying these three groups of three terms as

*
vP D*

vO 0=O C P*rrel C *
!B �*

rP=O :

We would calculate *
aP similarly and would get a formula with 15 non-zero

terms (3 for each term in the ‘five-term’ acceleration formula).

Method Position Velocity Acceleration

In general, as measured relative to

the fixed frameF .

*r or *rP or *rP=O
*v or *vP or *vP=F

*a or *aP or *aP=F

Cartesian Coordinates rx O{C ry O|C rz
Ok

vx O{C vy O|C vz
Ok

D Prx O{C Pry O|C Prz Ok

ax O{C ay O|C az
Ok

D Pvx O{C Pvy O|C Pzz Ok

D Rrx O{C Rry O|C Rrz Ok

Polar Coordinates/

Cylindrical Coordinates

R OeRC z Ok
vR OeRC v� Oe� C vz

Ok

D PR OeRCR P� Oe� C Pz Ok

aR OeRC a� Oe� C az
Ok

D . RR�R P�2/ OeRC .R R�C 2 PR P�/ Oe� C Rz Ok

Path Coordinates not used v Oet

at Oet C an Oen

D Pv Oet C .v2=�/ Oen

Using data from a moving frame B
with origin at O0 and angular

velocity relative to the fixed frame

of*!B . The point P 0 is glued to

B and instantaneously coincides

with P .

*rO0=O C*rP=O0

*vP 0=F C*vP=B D

P*rO0=O C *!B �
*rP 0=O0� �� �

*
vP 0=F

CB P*rP=O0� �� �
*
vP=B

*aP 0=F C*aP=BC 2*!B �
*vP=B D

*
aP 0=F� �� �

R*rO0=O C*!B �
*!B �

*rP 0=O0 C P*!B �
*rP 0=O0

CB R*rP=O0� �� �
*
aP=B

C2*!B �
*vP=B

‘the 5-term acceleration formula’

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.
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Filename:table3

Object [I ]

[I cm] = m
0 0 0
0 0 0
0 0 0

[I O ] = m

⎡
⎣

y2 + z2 xy xz
xy x2 + z2 yz
xz yz x2 + y2

⎤
⎦

[I cm] =
⎡
⎣

y2
/cm + z2

/cm x/cm y/cm x/cm z/cm

x/cm y/cm x2
/cm + z2

/cm y/cm z/cm

x/cm z/cm y/cm z/cm x2
/cm + y2

/cm

⎤
⎦ d m

If the axes are principal axes of the body.

[I cm] =
A 0 0
0 B 0
0 0 C

With A, B, C ≥ 0 and A +
B ≥ C, B + C ≥ A, and
A + C ≥ B.

[I o] =
⎡
⎣

y2
/o + z2

/o x/o y/o x/oz/o

x/o y/o x2
/o + z2

/o y/oz/o

x/oz/o y/oz/o x2
/o + y2

/o

⎤
⎦ d m

[I o] = [I cm] + m

⎡
⎣

y2
cm/o + z2

cm/o xcm/o ycm/o xcm/ozcm/o

xcm/o ycm/o x2
cm/o + z2

cm/o ycm/ozcm/o

xcm/ozcm/o ycm/ozcm/o x2
cm/o + y2

cm/o

⎤
⎦

The 3D Parallel Axis Theorem

[I cm] =

⎡
⎢⎢⎢⎣

y2
/cm x/cm y/cm 0

x/cm y/cm x2
/cm 0

0 0 x2
/cm + y2

/cm

I cm
zz

⎤
⎥⎥⎥⎦ d m

If the axes are principal axes of the body.

[I cm] =
A 0 0
0 B 0
0 0 C

With A+B = C (The perpen-
dicular axis theorem). Also,
A ≥ 0, B ≥ 0.

[I o] =
⎡
⎣

y2
/o x/o y/o 0

x/o y/o x2
/o 0

0 0 x2
/o + y2

/o

⎤
⎦d m

[I o] = [I cm] + m

⎡
⎢⎢⎣

y2
cm/o xcm/o ycm/o 0

xcm/o ycm/o x2
cm/o 0

0 0 x2
cm/o + y2

cm/o

d2

⎤
⎥⎥⎦

The 3D Parallel Axis Theorem. The 2D thm concerns the lower right terms of these 3 matrices.

General moments of inertia.  The tableshows a point mass, a general 3-D body,
and a general 2-D body. The most general cases of the perpendicular axis theorem
and the parallel axis theorem are also shown..

Table III

x
O

y

z

Point mass

General 3D body

O x
z

O

y

General 2D Body

xO

y

z

d

O

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.
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Object [I ]

I cm
zz = 1

12
m�2, [I cm] = 1

12
m�2

[
0 0 0
0 1 0
0 0 1

]

I O
zz = 1

3
m�2, [I O ] = 1

3
m�2

[
0 0 0
0 1 0
0 0 1

]

I cm
zz = m R2, [I cm] = m R2

⎡
⎣ 1

2 0 0
0 1

2 0
0 0 1

⎤
⎦

I cm
zz = 1

2
m R2, [I cm] = m R2

⎡
⎣ 1

4 0 0
0 1

4 0
0 0 1

2

⎤
⎦

I cm
zz = 1

12
m(a2 + b2) [I cm] = 1

12
m

⎡
⎣ b2 0 0

0 a2 0
0 0 a2 + b2

⎤
⎦

[I cm] = 1

12
m

⎡
⎣ b2 + c2 0 0

0 a2 + c2 0
0 0 a2 + b2

⎤
⎦

[I cm] = 2

5
m R2

[
1 0 0
0 1 0
0 0 1

]

Table IV
Examples of Moment of Inertia

Moments of inertia of some simple objects. For the rod both the [I cm] and [I O ] (for
the end point at O) are shown. In the other cases only [I cm] is shown. To calculate [I O ]
relative to other points one has to use the parallel axis theorem. In all the cases shown the
coordinate axes are principal axes of the objects.

x

y

z

a

b

c

Solid Box

x

y

z

a

b

Rectangular plate

x

y

Uniform hoop

R

z

x

y

z

Uniform rod

O
�γ

R
x

y

z

Uniform sphere

x

y

z

Uniform disk

R
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    Basic modeling.
What things are rigid?
What things can move and how?
How are things connected? Kinematics modeling.

Description of constraints.

Choose basic configuration
variables

Solve for unknown positions,
velocities and accelerations
of points of interest (hinges, centers of 
mass) in terms of knowns, or 
configuration variables, Also find
rotational angles, rates and accelerations.

Force modeling.
Contact forces, friction,
hinges, gravity, springs,
etc.

           Draw 
Free body diagrams 
 of system and components.

          Balance equations.

                 

Solve the balance equations for forces,
and accelerations of interest either for

A  configuration of 
interest.         

or

General configuration

solve for second derivatives
of configuration variables.
Set up ODEs and initial
conditions, and either

Solve 
numerically

or
Solve with 
pencil and paper

Plug the now-known configuration variables
into the balance equations and kinematics 
equations to solve for other quantities of 
interest (e.g. forces)

Make plots:
F vs t, 
position vs t,
trajectories,
animations

b. Statics or Instantaneous 
dynamics  analysis complete

a. Kinematics analysis complete

d. Dynamics analysis 
complete

c. "Inverse dynamics"
analysis complete

if motion is unknown if motion is knownor

1

2 3

4

5

6

7 8

Use forces and 
moments from 
FBDs  

Use positions, 
velocities and 
accelerations
from  kinematics .

and

   I. Linear momentum [force balance],
 II. Angular momentum [moment balance],
III. Energy or Power.

(for dynamics only)

(for dynamics)

(for dynamics)

(for dynamics)

(for dynamics)

(for dynamics)

Basic flow chart for solving dynamics problems.
The methods (boxes 1-8) depend on the goal (ellipses a-d). Statics (b) only uses the solution route 1 ! 2 ! 4 ! 5 ! b.
Dynamics uses other boxes as needed. At first reading this chart shows you the logic of the subject. Later the flow chart in
this box should become self-evident.

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1994-2013.


