
CHAPTER 13
Circular motion
After movement on straight-lines the second important special case of motion is rotation on

a circular path. Polar coordinates and base vectors are introduced in this simplest possible

context. The primary applications are pendulums, gear trains, and rotationally accelerating

motors or brakes.
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Figure 13.1: All the points on a gear move in
circles, if the axle is not translating.
Filename:tfigure4-1a

Figure 13.2: All points on a flywheel move in
circles.
Filename:Flywheels0072

When considering the unconstrained motions of a particle, such as the mo-
tion of a thrown ball, we observed particles moving on curved paths. When
a rigid object moves, it translates and rotates and, generally, the points on
the body move on complicated curved paths. In some senses we can think
of any motion of a rigid object as a combination of translation and rotation.
We already understand well straight-line (translation) motion. Now we con-
sider motion on the archetypal curved path, a circle. This chapter concerns
the kinematics and mechanics of planar circular motion. Circular motion
deserves special attention because

• the most common connection between moving parts on a machine is
with a bearing (or hinge or axle) (Fig. 13.1), if the axle on one part is
fixed then all points on the part move in circles;

• circular motion is the simplest case of curved-path motion;
• circular motion provides a simple way to introduce time-varying base

vectors;
• in some sense circular motion includes all of the conceptual ingredients

of more general curved motions;
• at least in 2 dimensions, the only way two particles on one rigid body

can move relative to each other is by circular motion (no matter how
the body is moving); and

• circular motion is the simplest case with which to introduce two impor-
tant rigid body concepts:

– angular velocity, and
– moment of inertia.

Many useful calculations can be made by approximating the motion of
particles as circular. For example, a jet engine’s turbine blade, a car engine’s
crank shaft, a car’s wheel, a windmill’s propeller, the earth spinning about
its axis, points on a clock pendulum, a bicycle’s approximately circular path
when going around a corner, a satellite orbiting the earth or the points on a
spinning satellite going around the spin axis, might all be reasonably approx-
imated by the assumption of circular motion.

This chapter concerns only motion in two dimensions. The first two sec-
tions consider the kinematics and mechanics of a single particle going in
circles. The later sections concern the kinematics and mechanics of rigid ob-
jects. The next chapter discusses circular motion, which is always planar, in
a three-dimensional context.

For the systems in this chapter, we have, as always,

linear momentum balance,
∑

⇀

Fi =
⇀̇

L
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Trajectory of 
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Figure 13.3: Trajectory of particle for circu-
lar motion.
Filename:tfigure1-i

x

t

R

0

y

t

R

0

x = R cos.ω t/

y = R sin.ω t/

2π/ω

Figure 13.4: Plots of x versus t and y versus
t for a particle going in a circle of radius R at
constant rate. Both x and y vary as sinusoidal
functions of time: x = R cos(ωt) and y =

R sin(ωt).
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Figure 13.5: Plot of x and y versus time for
a particle going in circles. x versus t is the
cosine curve, y versus t is the sine curve.
Together they make up the helical curve in
three-dimensional space.
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Figure 13.6: A particle going in circles. The
position vector of the particle relative to the
center of the circle is

⇀
R. It makes an angle

θ measured counter-clockwise from the pos-
itive x-axis. The unit vectors êR and êθ are
shown in the radial and tangential directions,
the directions of increasing R and increasing
θ .
Filename:tfigure4-4

angular momentum balance,
∑

⇀

M i/C =
⇀̇

HC,

and power balance: P = ĖK + ĖP + Ėint.

The left hand sides of the momentum equations are found using the forces
and couples shown on the free body diagram of the system of interest; the
right sides are evaluated in terms of motion of the system. Because you
already know how to work with forces and moments (the left sides of the
top two equations), the primary new skill in this chapter is the evaluation of
⇀̇

L,
⇀̇

HC, and ĖK for a rotating particle or rigid body.

13.1 Kinematics of a particle in planar
circular motion

For evaluating linear and angular momenta and their rates of change, but also
more generally useful for kinematics, you need to understand the position,
velocity and accelerations of points on a rigid body in circular motion.

Consider a particle on the xy plane going in circles around the origin at a
constant rate. One way of representing this situation is with the equation:

⇀r = R cos(ωt)ı̂ + R sin(ωt)̂ ,

with R and ω constants. Another way is with the pair of equations:

x = R cos(ωt) and y = R sin(ωt).

How do we represent this motion graphically? One way is to plot the particle
trajectory, that is, the path of the particle. Figure 13.3 shows a circle of
radius R drawn on the xy plane. Note that this plot doesn’t show the speed
the particle moves in circles. That is, a particle moving in circles slowly and
another moving quickly would both would have the same plotted trajectory.

Another approach is to plot the functions x(t) and y(t) as in Fig. 13.4.
This figure shows how x and y vary in time but does not directly convey
that the particle is going in circles. How do you make these plots? Using a
calculator or computer you can evaluate x and y for a range of values of t .
Then, using pencil and paper, a plotting calculator, or a computer, plot x vs
t , y vs t , and y vs x .

If one wishes to see both the trajectory and the time history of both vari-
ables one can make a 3-D plot of xy position versus time (Fig. 13.4). The
shadows of this curve (a helix) on the three coordinate planes are the three
graphs just discussed. How you make such a graph with a computer depends
on the software you use.

Finally, rather than representing time as a spatial coordinate, one can use
time directly by making an animated movie on a computer screen showing a
particle on the xy plane as it moves. Move your finger around in circles on
the table. That’s it. These days, the solutions of complex dynamics problems
are often presented with computer animations.
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�êθ

êθ
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Figure 13.7: A close up view of the unit vec-
tors êR and êθ . They make an angle θ with
the positive x and y-axis, respectively. As the
particle advances an amount 1θ both êR and
êθ change. In particular, for small 1θ , 1êR
is approximately in the êθ direction and 1êθ
is approximately in the −êR direction.
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Figure 13.8: Projections of êR and êθ in the x
and y directions
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The velocity and acceleration of a point going in circles:
polar coordinates
Let’s redraw Fig. 13.4 but introduce unit base vectors êR and êθ in the direc-
tion of the position vector

⇀

R and perpendicular to
⇀

R. At any instant in time,
the radial unit vector êR is directed from the center of the circle towards the
point of interest and the transverse vector êθ , perpendicular to êR , is tangent
to the circle at that point. As the particle goes around, its êR and êθ unit vec-
tors change. Note also, that two different particles both going in circles with
the same center at the same rate each have their own êR and êθ vectors. We
will make frequent use the polar coordinate unit vectors êR and êθ .

Here is one of many possible ways to derive the polar-coordinate expres-
sions for velocity and acceleration. First, observe that the position of the
particle is (see figure 13.6)

⇀

R = R êR . (13.1)

That is, the position vector is the distance from the origin times a unit vector
in the direction of the particle’s position. Given the position, it is just a matter
of careful differentiation to find velocity and acceleration. First, velocity is
the time derivative of position, so

⇀
v =

d
dt

⇀

R =
d
dt
(R êR ) = Ṙ︸︷︷︸

0

êR + R ˙̂
Re.

Because a circle has constant radius R, Ṙ is zero. But what is ˙̂
Re, the rate of

change of êR with respect to time?
One way to find ˙̂

Re uses the geometry of figure 13.7 and the informal
calculus of finite differences (represented by 1). 1êR is evidently (about)
in the direction êθ and has magnitude 1θ so 1êR ≈ (1θ)êθ . Dividing by
1t , we have 1êR/1t ≈ (1θ/1t)êθ . So, using this sloppy calculus, we get
˙̂
Re = θ̇ êθ . Similarly, we could get ˙̂

θe = −θ̇ êR .
Alternatively, we can be a little less geometric and a little more algebraic,

and use the decomposition of êR and êθ into cartesian coordinates. These
decompositions are found by looking at the projections of êR and êθ in the x
and y-directions (see figure 13.8).

êR = cos θ ı̂ + sin θ ̂ (13.2)

êθ = − sin θ ı̂ + cos θ ̂

So to find ˙̂
Re we just differentiate, taking into account that θ is changing with

time but that the unit vectors ı̂ and ̂ are fixed (so they don’t change with
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Figure 13.9: The directions of velocity ⇀
v and

acceleration ⇀a are shown for a particle go-
ing in circles at constant rate. The velocity
is tangent to the circle and the acceleration is
directed towards the center of the circle.
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Figure 13.10:
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time).

˙̂
Re =

d
dt
(cos θ ı̂ + sin θ ̂) = −θ̇ sin θ ı̂ + θ̇ cos θ ̂ = θ̇ êθ

˙̂
θe =

d
dt
(− sin θ ı̂ + cos θ ̂) = −θ̇ êR

We had to use the chain rule, that is
d sin θ(t)

dt
=

d sin θ
dθ

dθ(t)
dt

= θ̇ cos θ.

Now, two different ways, we know

˙̂
Re = θ̇ êθ and ˙̂

θe = −θ̇ êR (13.3)

so we can find ⇀
v,

⇀
v =

⇀̇

R = R ˙̂
Re = Rθ̇ êθ . (13.4)

Similarly we can find
⇀̈

R by differentiating once again,

⇀a =
⇀̈

R =
⇀̇
v =

d
dt
(Rθ̇ êθ ) = Ṙθ̇ êθ︸︷︷︸

⇀

0

+Rθ̈ êθ + Rθ̇ ˙̂
θe (13.5)

The first term on the right hand side is zero because Ṙ is 0 for circular motion.
The third term is evaluated using the formula we just found for the rate of
change of êθ : ˙̂

θe = −θ̇ êR . So, using that
⇀

R = R êR ,

⇀a == −θ̇2 ⇀

R + Rθ̈ êθ . (13.6)

The velocity ⇀
v and acceleration ⇀a are shown for a particle going in circles

at constant rate in figure 13.9.
Example: A person standing on the earth’s equator

A person standing on the equator has velocity

⇀
v = θ̇R êθ ≈

(
2π rad
24 hr

)
4000 miêθ

≈ 1050 mphêθ ≈ 1535 ft/sêθ
and acceleration

⇀a = −θ̇2 R êR ≈ −

(
2π rad
24 hr

)2
4000 miêR

≈ −274 mi/ hr2 êR ≈ −0.11 ft/s2 êR .

The velocity of a person standing on the equator, due to the earth’s rotation, is about 1000 mph
tangent to the earth. Her acceleration is about 0.11 ft/s2

≈ 0.03 m/s2 towards the center of
the earth, about 1/300 of g, about 1/300 the acceleration of a an object in near-earth-surface
frictionless free-fall.
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Figure 13.11: The directions of velocity ⇀
v

and acceleration ⇀a are shown for a particle
going in circles at variable rate. The velocity
is tangent to the circle and the acceleration is
the sum of two components: one directed to-
wards the center of the circle and one tangent
to the circle.
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∗
Caution: Note that the rate of change of

speed is not the magnitude of the accelera-
tion: v̇ 6= |

⇀a | or in other words: d
dt |

⇀
v | 6=

|
d
dt
⇀
v |. Consider the case of a car driving in

circles at constant rate. Its rate of change of
speed is zero, yet it has an acceleration.

Another derivation of the velocity and acceleration
formulas
We now repeat the derivation for velocity and acceleration, but more con-
cisely. The position of the particle is

⇀

R = R êR . Recall that the rates of
change of the polar base vectors are ˙̂eR = θ̇ êθ and ˙̂e

θ
= −θ̇ êR . We find

the velocity by differentiating the position with respect to time, keeping R
constant.

⇀
v =

d
dt

⇀

R =
d
dt
(R êR ) = Ṙ︸︷︷︸

0

êR + R ˙̂eR

=
⇀̇

R = R ˙̂eR = Rθ̇ êθ

We find the acceleration ⇀a by differentiating again,

⇀a =
⇀̈

R =
⇀̇
v =

d
dt
(Rθ̇ êθ )

= (Ṙθ̇ êθ )+ (Rθ̈ êθ )+ (Rθ̇

−θ̇ êR︷︸︸︷
˙̂e
θ
)

= −(θ̇)2 R êR + θ̈R êθ = −(v2/R)êR + v̇ êθ .

Thus, the formulas for velocity and acceleration of a point undergoing vari-
able rate circular motion in 2-D are:

⇀
v = Rθ̇ êθ
⇀a = −

v2

R
êR + v̇ êθ ,

where v̇ is the rate of change of tangential speed∗.
The rotation θ can vary with t arbitrarily, depending on the problem at

hand.
For uniform rotational acceleration, d

dtω = α = constant, the following
formulas are useful for some elementary problems:

ω(t) = ω0 + αt, and (13.7)

θ(t) = θ0 + ω0t +
1
2
αt2. (13.8)

You can also write the above formulas in terms of θ̇ , θ̈ , etc., by simply sub-
stituting θ̇ for ω and θ̈ for α (see samples).

The motion quantities
We can use our results for velocity and acceleration to better evaluate the
momenta and energy quantities. These results will allow us to do mechanics
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problems associated with circular motion. For one particle in circular motion.

⇀

L =
⇀
vm = Rθ̇ êθm,

⇀̇

L =
⇀am = (−θ̇2 ⇀

R + Rθ̈ êθ )m,
⇀

HO =
⇀r /0 ×

⇀
vm = R2θ̇m k̂,

⇀̇

HO =
⇀r /0 ×

⇀am = R2θ̈m k̂,
EK =

1
2v

2m =
1
2 R2θ̇2m, and

ĖK =
⇀
v ·

⇀a m = m R2θ̇ θ̈

We have used the fact that êR × êθ = k̂ which can be verified with the right
hand rule definition of the cross product or using the Cartesian representation
of the polar base vectors.
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SAMPLE 13.1 The velocity vector. A particle executes circular motion in
the xy plane with constant speed v = 5 m/s. At t = 0 the particle is at
θ = 0. Given that the radius of the circular orbit is 2.5 m, find the velocity of
the particle at t = 2 sec.
Solution It is given that

R = 2.5 m

v = constant = 5 m/s

θ(t=0) = 0.

The velocity of a particle in constant-rate circular motion is:

⇀
v = Rθ̇ êθ

where êθ = − sin θ ı̂ + cos θ ̂ .

Since R is constant and v = |
⇀
v | = Rθ̇ is constant,

θ̇ =
v

R
=

5 m/s
2.5 m

= 2
rad

s

is also constant.

Thus ⇀
v (t=2 s) = Rθ̇︸︷︷︸

v

êθ |t=2 s = 5 m/s êθ(t=2 s).

Clearly, we need to find êθ at t = 2 sec.

Now θ̇ ≡
dθ
dt = 2 rad/s

⇒
∫ θ

0 dθ =

∫ 2 s

0
2 rad/s dt

⇒ θ = (2 rad/s) t |
2 s
0

= 2 rad/s·2 s

= 4 rad.

Therefore,

êθ = − sin 4ı̂ + cos 4̂

= 0.76ı̂ − 0.65̂ ,

and

⇀
v (2 s) = 5 m/s(0.76ı̂ − 0.65̂)

= (3.78ı̂ − 3.27̂)m/s.

⇀
v = (3.78ı̂ − 3.27̂)m/s
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∗
We use this formula because we need θ̇ at

different values of θ . In elementary physics
books, the same formula is usually written as

ω2
= ω2

0 + 2αθ

where α is the constant angular acceleration.
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Figure 13.13: Velocity of the mass at
θ = 0

◦
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, and 210

◦
.
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SAMPLE 13.2 Basic kinematics: A point mass executes circular motion
with angular acceleration θ̈ = 5 rad/s2. The radius of the circular path is
0.25 m. If the mass starts from rest at θ = 0

◦

, find and draw
1. the velocity of the mass at θ = 0

◦

, 30
◦

, 90
◦

, and 210
◦

,
2. the acceleration of the mass at θ = 0

◦

, 30
◦

, 90
◦

, and 210
◦

.

Solution We are given, θ̈ = 5 rad/s2, and R = 0.25 m.

1. The velocity ⇀
v in circular (constant or non-constant rate) motion is given by:

⇀
v = Rθ̇ êθ .

So, to find the velocity at different positions we need θ̇ at those positions. Here the
angular acceleration is constant, i.e., θ̈ = 5 rad/s2. Therefore, we can use the formula
∗

θ̇2
= θ̇2

0 + 2θ̈ θ

to find the angular speed θ̇ at various θ ’s. But θ̇0 = 0 (mass starts from rest), therefore
θ̇ =

√

2θ̈ θ . Now we make a table for computing the velocities at different positions:

Position (θ ) θ in radians θ̇ =

√

2θ̈ θ ⇀
v = Rθ̇ êθ

0
◦

0 0 rad/s
⇀
0

30
◦

π/6
√

10π/6 = 2.29 rad/s 0.57 m/sêθ

90
◦

π/2
√

10π/2 = 3.96 rad/s 0.99 m/sêθ

210
◦

7π/6
√

70π/6 = 2.29 rad/s 1.51 m/sêθ

The computed velocities are shown in Fig. 13.13.

2. The acceleration of the mass is given by

⇀a =

radial︷ ︸︸ ︷
aR êR +

tangential︷︸︸︷
aθ êθ

= −Rθ̇2 êR + Rθ̈ êθ .

Since θ̈ is constant, the tangential component of the acceleration is constant at all
positions. We have already calculated θ̇ at various positions, so we can easily calculate
the radial (also called the normal) component of the acceleration. Thus we can find the
acceleration. For example, at θ = 30

◦

,

⇀a = −Rθ̇2 êR + Rθ̈ êθ

= −0.25 m ·
10π

6
1
s2 êR + 0.25 m · 5

1
s2 êθ

= −1.31 m/s2 êR + 1.25 m/s2 êθ .

Similarly, we find the acceleration of the mass at other positions by substituting the
values of R, θ̈ and θ̇ in the formula and tabulate the results in the table below.
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Position (θ ) ar = −Rθ̇2 aθ = Rθ̈ ⇀a = ar êR + aθ êθ

0
◦

0 1.25 m/s2 1.25 m/s2 êθ

30
◦

−1.31 m/s2 1.25 m/s2 (−1.31êR + 1.25êθ )m/s2

90
◦

−3.93 m/s2 1.25 m/s2 (−3.93êR + 1.25êθ )m/s2

210
◦

−9.16 m/s2 1.25 m/s2 (−9.16êR + 1.25êθ )m/s2

The accelerations computed are shown in Fig. 13.14. The acceleration vector as
well as its tangential and radial components are shown in the figure at each position.

x

y

êR
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⇀
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Figure 13.14: Acceleration of the mass at θ = 0
◦
, 30

◦
, 90

◦
, and 210

◦
. The radial and tangential

components are shown with grey arrows. As the angular velocity increases, the radial component
of the acceleration increases; therefore, the total acceleration vector leans more and more towards
the radial direction.
Filename:sfig5-1-1b
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SAMPLE 13.3 In an experiment, the magnitude of angular deceleration of a
spinning ball is found to be proportional to its angular speed ω (ie., ω̇ ∝ −ω).
Assume that the proportionality constant is k and find an expression for ω as
a function of t , given that ω(t = 0) = ω0.
Solution The equation given is:

ω̇ =
dω
dt

= −kω. (13.9)

Let us guess a solution of the exponential form with arbitrary constants and plug into
Eqn. (13.9) to check if our solution works. Let ω(t) = C1eC2t . Substituting in Eqn. (13.9),
we get

C1C2eC2t
= −kC1eC2t

⇒ C2 = −k,

also, ω(0) = ω0 = C1eC2·0

⇒ C1 = ω0.

Therefore,

ω(t) = ω0e−kt . (13.10)

Alternatively,

dω
ω

= −k dt

or
∫ ω(t)

ω0

dω
ω

= −

∫ t

0
k dt

⇒ lnω|
ω(t)
ω0 = −kt

⇒ lnω(t)− lnω0 = −kt

⇒ ln
(
ω(t)
ω0

)
= −kt

⇒
ω(t)
ω0

= e−kt .

Therefore,
(13.11)

ω(t) = ω0 e−kt ,

which is the same solution as equation (13.10).

ω(t) = ω0 e−kt
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SAMPLE 13.4 Using kinematic formulae: The spinning wheel of a sta-
tionary exercise bike is brought to rest from 100 rpm by applying brakes over
a period of 5 seconds.

1. Find the average angular deceleration of the wheel.
2. Find the number of revolutions it makes during the braking.

Solution We are given,

θ̇0 = 100 rpm, θ̇final = 0, and t = 5 s.

1. Let α be the average (constant) deceleration. Then

θ̇final = θ̇0 − αt.

Therefore,

α =
θ̇0 − θ̇final

t

=
100 rpm − 0 rpm

5 s

=
100 rev

60 s
·

1
5 s

= 0.33
rev
s2 .

α = 0.33 rev
s2

2. To find the number of revolutions made during the braking period, we use the formula

θ(t) = θ0︸︷︷︸
0

+θ̇0t +
1
2
(−α)t2

= θ̇0t −
1
2
αt2.

Substituting the known values, we get

θ =
100 rev

60 s
· 5 s −

1
2

0.33
rev
s2 · 25 s2

= 8.33 rev − 4.12 rev

= 4.21 rev.

θ = 4.21 rev

Comments:

• Note the negative sign used in both the formulae above. Since α is deceleration, that
is, a negative acceleration, we have used negative sign with α in the formulae.

• Note that it is not always necessary to convert rpm in rad/s. Here we changed rpm to
rev/ s because time was given in seconds.
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SAMPLE 13.5 Non-constant acceleration: A particle of mass 500 grams
executes circular motion with radius R = 100 cm and angular acceleration
θ̈ (t) = c sinβt , where c = 2 rad/s2 and β = 2 rad/s.

1. Find the position of the particle after 10 seconds if the particle starts
from rest, that is, θ(0) = 0.

2. How much kinetic energy does the particle have at the position found
above?

Solution

1. We are given θ̈ (t) = c sinβt , θ̇ (0) = 0 and θ(0) = 0. We have to find θ(10 s).
Basically, we have to solve a second order differential equation with given initial con-
ditions.

θ̈ ≡
d
dt
(θ̇) = c sinβt

⇒

∫ θ̇ (t)

θ̇0=0
d θ̇ =

∫ t

0
c sinβτ dτ

θ̇(t) = −
c
β

cosβτ
∣∣∣∣t
0

=
c
β
(1 − cosβt).

Thus, we get the expression for the angular speed θ̇ (t). We can solve for the position
θ(t) by integrating once more:

θ̇ ≡
d
dt
(θ) =

c
β
(1 − cosβt)

⇒

∫ θ(t)

θ0=0
dθ =

∫ t

0

c
β
(1 − cosβτ)

θ(t) =
c
β

[
τ −

sinβτ
β

]t

0

=
c
β2 (βt − sinβt).

Now substituting t = 10 s in the last expression along with the values of other con-
stants, we get

θ(10 s) =
2 rad/s2

(2 rad/s)2
[2 rad/s · 10 s − sin(2 rad/s · 10 s)]

= 9.54 rad.

θ = 9.54 rad

2. The kinetic energy of the particle is given by

EK =
1
2

mv2
=

1
2

m(Rθ̇ )2

=
1
2

m R2
[

c
β
(1 − cosβt)︸ ︷︷ ︸

θ̇ (t)

]
2

=
1
2

0.5 kg · 1 m2
·

[
2 rad/s2

2 rad/s
· (1 − cos(20))

]2

= 0.086 kg · m2
· s2

= 0.086Joule.

EK = 0.086J
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Figure 13.15: Point mass spinning in circles.
Sketch of system and a free body diagram.
Filename:tfigure4-1-rockandstring

θ �

Figure 13.16: The simple pendulum.
Filename:tfigure5-spend
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Figure 13.17: Free body diagram of the sim-
ple pendulum.
Filename:tfigure5-spend-fbd

13.2 Dynamics of a particle in circular
motion

The simplest examples of circular motion concern the motion of a particle
constrained by a massless connection to be a fixed distance from a support
point.

Example: Rock spinning on a string
Neglecting gravity, we can now deal with the familiar problem of a point mass being held in

constant circular-rate motion by a massless string or rod. Linear momentum balance for the
mass gives: ∑ ⇀

Fi =
⇀̇
L

⇒ −T êR = m⇀a{
−T êR = m(−θ̇2`êR )

}
{} · êR ⇒ T = θ̇2`m = (v2/`)m

The force required to keep a mass in constant rate circular motion is mv2/` (sometimes re-
membered as mv2/R).

The simple pendulum
As a child’s swing, the inside of a grandfather clock, a hypnotist’s device,
or a gallows, the motion of a simple pendulum is a clear image to all of us.
Galileo studied the simple pendulum and it is a topic in freshman physics.
Now a days the pendulum is popular as an example of “chaos”; if you push a
pendulum periodically its motions can be wild. Pendula are useful as models
of many phenomena from the swing of leg joints in walking to the tipping
of a chimney in an earthquake. Pendula also serve as a simple example for
many concepts in mechanics.

For starters, we consider a 2-D pendulum of fixed length with no forcing
other than gravity. All mass is concentrated at a point. The tension in the
pendulum rod acts along the length since it is a massless two-force body.
Of primary interest is the motion of the pendulum. First we find governing
differential equations. Here are two ways to get the equation of motion.

Method One: linear momentum balance in cartesian coordinates

The equation of linear momentum balance is

∑
⇀

F =

m
⇀a︷︸︸︷
⇀̇

L

Evaluating the left side (using the free body diagram) and right side (using
the kinematics of circular motion), we get

−T êR + mg ı̂ = m[`θ̈ êθ − `θ̇2 êR ] (13.12)

From the picture (or recalling) we see that êR = cos θ ı̂ + sin θ ̂ and êθ =

cos θ ̂ − sin θ ı̂. So, upon substitution into the equation above, we get

−T
(
cos θ ı̂ + sin θ ̂

)
+mg ı̂ = m

[
`θ̈
(
cos θ ̂ − sin θ ı̂

)
− `θ̇2 (cos θ ı̂ + sin θ ̂

)]
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∗
As always when seeking equations of mo-

tion, we think of the rates and velocities as
knowns. Thus we take θ̇ as known. But how
do we know it? We don’t, but at any instant in
time we can find it as the integral of θ̈ . More
simply, regarding θ̇ as known helps us write
a set of differential equations in a form suit-
able for seeking a solution (analytically or by
computer integration).

Breaking this equation into its x and y components (by dotting both sides
with ı̂ and ̂ , respectively) gives

−T cos θ + mg = −m`
(
θ̈ sin θ + θ̇2 cos θ

)
and (13.13)

−T sin θ = m`
(
θ̈ cos θ − θ̇2 sin θ

)
(13.14)

which are two simultaneous equations that we can solve for the two
unknowns∗ T and θ̈ to get

θ̈ = −
g
`

sin θ (13.15)

T = m[`θ̇2
+ g cos θ ]. (13.16)

Method 2: linear momentum balance in polar coordinates

A more direct way to get the equation of motion is to take eqn. (13.12) and
dot both sides with êθ to get

−T êR · êθ︸ ︷︷ ︸
0

+mg ı̂ · êθ︸︷︷︸
− sin θ

= m`θ̈ êθ · êθ︸ ︷︷ ︸
1

−`θ̇2 êR · êθ︸ ︷︷ ︸
0

⇒ −mg sin θ = m`θ̈

so θ̈ = −
g
`

sin θ.

Method Three: angular momentum balance

Using angular momentum balance, we can ‘kill’ the tension term at the start.
Taking angular momentum balance about the point O , we get∑

⇀

MO =
⇀̇

HO

−mg` sin θ k̂ =

���

`êR

⇀r /O ×

BBM

`θ̈ êθ − `θ̇2 êR

⇀a m

−mg` sin θ k̂ = m`2θ̈ k̂

⇒ θ̈ = −
g
`

sin θ

since êR × êR = 0 and êR × êθ = k̂. So, the governing equation for a simple
pendulum is

θ̈ = −
g
`

sin θ

Small angle approximation (linearization)
For small angles, sin θ ≈ θ , so we have

θ̈ = −
g
`
θ

for small oscillations. This equation describes a harmonic oscillator with g
`

replacing the
√

k
m coefficient in a spring-mass system.
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The inverted pendulum

A pendulum with the mass-end up is called an inverted pendulum. By meth-
ods just like we used for the regular pendulum, we find the equation of mo-
tion to be

θ̈ =
g
`

sin θ

which, for small θ , is well approximated by
O

θ �

Figure 13.18: The inverted pendulum
Filename:tfigure5-spend-inv

θ̈ =
g
`
θ.

As opposed to the simple pendulum, which has oscillatory solutions, this
differential equation has exponential solutions (θ = C1egt/`

+ C2e−gt/`), one
term of which has exponential growth, indicating the inherent instability of
the inverted pendulum. That is it has tendency to fall over when slightly
disturbed from the vertical position∗.

∗
After the pendulum falls a ways, say past

30 degrees from vertical, the exponential so-
lution is not an accurate description, but the
actual motion (as viewed by an experiment, a
computer simulation, or the exact elliptic in-
tegral solution of the equations) shows that
the pendulum keeps falling.
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Figure 13.19: The motor rotates the structure
at a constant angular speed in the counter-
clockwise direction.
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Figure 13.20: The ball follows a circular path
of radius R. The position, velocity, and accel-
eration of the ball can be expressed in terms
of the polar basis vectors êR and êθ .
Filename:sfig4-1-1a

SAMPLE 13.6 Circular motion in 2-D. Two bars, each of negligible mass
and length ` = 3 ft, are welded together at right angles to form an ‘L’ shaped
structure. The structure supports a 3.2 lbf (= mg) ball at one end and is
connected to a motor on the other end (see Fig. 13.19). The motor rotates the
structure in the vertical plane at a constant rate θ̇ = 10 rad/s in the counter-
clockwise direction. Take g = 32 ft/s2. At the instant shown in Fig. 13.19,
find

1. the velocity of the ball,
2. the acceleration of the ball, and
3. the net force and moment applied by the motor and the support at O on

the structure.
Solution The motor rotates the structure at a constant rate. Therefore, the ball is going
in circles with angular velocity ⇀

ω = θ̇ k̂ = 10 rad/sk̂. The radius of the circle is R =√
`2 + `2 = `

√
2. Since the motion is in the xy plane, we use the following formulae to find

the velocity ⇀
v and acceleration ⇀a .

⇀
v = Ṙ êR + Rθ̇ êθ

⇀a = (R̈ − Rθ̇2)êR + (2Ṙθ̇ + Rθ̈ )êθ ,

where êR and êθ are the polar basis vectors shown in Fig. 13.20. In Fig. 13.20, we note that
θ = 45

◦

. Therefore,

êR = cos θ ı̂ + sin θ ̂

=
1

√
2
(ı̂ + ̂),

êθ = − sin θ ı̂ + cos θ ̂

=
1

√
2
(−ı̂ + ̂).

Since R = L
√

2 = 3
√

2 ft is constant, Ṙ = 0 and R̈ = 0. Thus,

1. the velocity of the ball is

⇀
v = Rθ̇ êθ

= 3
√

2 ft · 10 rad/sêθ

= 30
√

2 ft/s ·
1

√
2
(−ı̂ + ̂)

= 30 ft/s(−ı̂ + ̂).

⇀
v = 30 ft/s(−ı̂ + ̂)

2. The acceleration of the ball is

⇀a = −Rθ̇2 êR

= −3
√

2 ft · (10 rad/s)2 êR

= −300
√

2 ft/s2
·

1
√

2
(ı̂ + ̂)

= −300 ft/s2(ı̂ + ̂).

⇀a = −300 ft/s2(ı̂ + ̂)
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Figure 13.21: Free body diagram of the struc-
ture.
Filename:sfig4-1-1b

3. Let the net force and the moment applied by the motor-support system be
⇀
F and

⇀
M as

shown in Fig. 13.21. From the linear momentum balance for the structure,∑ ⇀
F = m⇀a

⇀
F − mĝ = m⇀a

⇒
⇀
F = m⇀a + mĝ

=

m︷ ︸︸ ︷
3.2 lbf

32 ft/s2 (−300
√

2 ft/s2)êR +

mg︷ ︸︸ ︷
3.2 lbf ̂

= −30
√

2 lbfêR + 3.2 lbf̂ .

= −30
√

2 lbf
1

√
2
(ı̂ + ̂)+ 3.2 lbf̂

= −30 lbfı̂ − 26.8 lbf̂ .

Similarly, from the angular momentum balance for the structure,∑ ⇀
MO =

⇀̇
HO,

where
∑ ⇀

MO =
⇀
M +

⇀r/O × mg(−̂)

=
⇀
M + R êR︸︷︷︸

`(ı̂+̂)

×mg(−̂)

=
⇀
M − mg`k̂,

and
⇀̇
HO =

⇀r/O × m⇀a

= R êR × m(−Rθ̇2 êR )

= −m R2θ̇2 (êR × êR )︸ ︷︷ ︸
⇀
0

=
⇀
0 .

Therefore,

⇀
M = mg`k̂

= 3.2 lbf︸ ︷︷ ︸
mg

· 3 ft︸︷︷︸
`

k̂

= 9.6 lbf· ftk̂.

⇀
F = −30 lbfı̂ − 26.8 lbf̂ ,

⇀
M = 9.6 lbf· ftk̂

Note: If there was no gravity, the moment applied by the motor would be zero.
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∗
Be warned that these formulae are valid

only for constant acceleration.

SAMPLE 13.7 A 50 gm point mass executes circular motion with angular
acceleration θ̈ = 2 rad/s2. The radius of the circular path is 200 cm. If the
mass starts from rest at t = 0, find

1. Its angular momentum
⇀

H about the center at t = 5 s.

2. Its rate of change of angular momentum
⇀̇

H about the center.
Solution

1. From the definition of angular momentum,

⇀
HO =

⇀r /0 × m⇀
v

= R êR × mθ̇R êθ
= m R2θ̇ (êR × êθ )

= m R2θ̇ k̂

On the right hand side of this equation, the only unknown is θ̇ . Thus to find
⇀
HO at

t = 5 s, we need to find θ̇ at t = 5 s. Now,

θ̈ =
d θ̇
dt

d θ̇ = θ̈ dt∫ θ̇ (t)

θ̇0

d θ̇ =

∫ t

0
θ̈ dt

θ̇ (t)− θ̇0 = θ̈ (tt − t0)

θ̇ = θ̇0 + θ̈ (t − t0)

Writing α for θ̈ and substituting t0 = 0 in the above expression, we get θ̇ (t) = θ̇0 +αt ,

which is the angular speed version of the linear speed formula v(t) = v0 + at .
∗

Substituting t = 5 s, θ̇0 = 0, and α = 2 rad/s2 we get θ̇ = 2 rad/s2
· 5 s = 10 rad/s.

Therefore,

⇀
HO = 0.05 kg · (0.2 m)2 · 10 rad/sk̂

= 0.02 kg.m2/ s = 0.02 N·m · s.

⇀
HO = 0.02 N·m · s.

2. Similarly, we can calculate the rate of change of angular momentum:

⇀̇
HO =

⇀r /0 × m⇀a

= R êR × m(Rθ̈ êθ − θ̇2 R êR )

= m R2θ̈ (êR × êθ )

= m R2θ̈ k̂
= 0.02 kg · (0.2m)2 · 2 rad/s2 k̂
= 0.004 kg · m2/ s2

= 0.004 N·m

⇀̇
HO = 0.004 N·m
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m = 0.2 kg

� = 1 m

θ

Figure 13.22:
Filename:sfig5-5-DH1

SAMPLE 13.8 The simple pendulum. A simple pendulum swings about its
vertical equilibrium position (2-D motion) with maximum amplitude θmax =

10
◦

. Find
1. the magnitude of the maximum angular acceleration,
2. the maximum tension in the string.

Solution

1. The equation of motion of the pendulum is given by (see equation 13.15 of text):

θ̈ = −
g
`

sin θ.

We are given that |θ | ≤ θmax . For θmax = 10
◦

= 0.1745 rad, sin θmax = 0.1736.
Thus we see that sin θ ≈ θ even when θ is maximum. Therefore, we can safely use
linear approximation (although we could solve this problem without it); i.e.,

θ̈ = −
g
`
θ.

Clearly, |θ̈ | is maximum when θ is maximum. Thus,

|θ̈ |max =
g
`
θmax =

9.81 m/s2

1 m
·(0.1745 rad) = 1.71 rad/s2.

|θ̈ |max = 1.71 rad/s2

2. The tension in the string is given by (see equation 13.16 of text):

T = m(`θ̇2
+ g cos θ).

This time, we will not make the small angle assumption. We can find Tmax and where
it is maximum as follows using conservation of energy. Let the position of maximum
amplitude be position 1. and the position at any θ be position 2. At the its maximum
amplitude, the mass comes to rest and switches directions; thus, its angular velocity
and, hence, its kinetic energy is zero there. Using conservation of energy, we have

EK1 + EP1 = EK2 + EP2

0 + mg`(1 − cos θmax ) =
1
2

m(`θ̇)2 + mg`(1 − cos θ). (13.17)

and solving for θ̇ ,

θ̇ =

√
2g
`
(cos θ − cos(θmax )).

Therefore, the tension at any θ is

T = m(`θ̇2
+ g cos θ) = mg(3 cos θ − 2 cos(θmax )).

To find the maximum value of the tension T , we set its derivative with respect to θ
equal to zero and find that, for 0 ≤ θ ≤ θmax , T is maximum when θ = 0, or

Tmax = mg
(
3 cos(0)− 2 cos(θmax )

)
= 0.2 kg · 9.81 m/s2(3 − 1.97

)
= 2.02 N.

The maximum tension corresponds to maximum speed which occurs at the bottom of
the swing where all of the potential energy is converted to kinetic energy.

Tmax = 2.02 N
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13.3 Kinematics of a rigid object in
planar circular motion

Figure 13.23: a) A object, b) rotated counter-
clockwise an angle θ about 0.
Filename:tfigure-circmot2D

The most common non-rigid attachment in machine design is a hinge or pin
connection (Fig. 13.23), or something well modeled as a pin. In this chapter
on circular motion we study machine parts hinged to structures which do
not move. If we take the hinge axis to be the z axis fixed at O, then the
hinge’s job is to make the part’s only possible motion to be rotation about
O. As usual in this book, we think of the part itself as rigid. Thus to study
dynamics of a hinged part we need to understand the position, velocity and
acceleration of points on a rigid object which rotates. This section discusses
the geometry and algebra of rotation, of rotation rate which we will call the
angular velocity, and of rate of change of the angular velocity.

The rest of the book rests heavily on the material in this section.

Fixed lines.

Rotating 2D
rigid body

Lines marked on 
the rigid body.

θ3

θ2

θ1

Figure 13.24: Rotation of lines on a rotat-
ing rigid object. Some real or imagined lines
marked on the rigid object are shown. They
make the angles θ1, θ2, θ3, . . . with respect to
various fixed lines which do not rotate. As the
object rotates, each of these angles increases
by the same amount.
Filename:tfigure4-2Domega

Rotation of a rigid object counterclockwise by θ
We start by imagining the object in some configuration which we call the
reference configuration or reference state. Often the reference state is one
where prominent features of the object are aligned with the vertical or hori-
zontal direction or with prominent features of another nearby part. The refer-
ence state may or may not be the start of the motion of interest. We measure
an object’s rotation relative to the reference state, as in Fig. 13.23 where a
object is shown and shown again, rotated. For definiteness, rotation is the
change, relative to the reference state, in the counterclockwise angle θ of a
reference line marked in the object relative to a fixed line outside. Which
reference line? Fortunately,

13.1 THEORY
Rotation is uniquely defined for a rigid object (2D)

We show here the intuitively clear result that, starting at a reference
orientation, all lines marked on a rigid object rotate by the same
angle θ .

Because the object is rigid, the act of rotation preserves all dis-
tances between pairs of points. That’s a geometric definition of the
word rigid. Thus, by the “similar triangle theorem” (side-side-side)
of elementary geometry, all relative angles between marked line seg-
ments are preserved by the rotation. Consider a pair of line segments
with each segment defined by two points on the object. First, ex-
tend the segments to their point of intersection. Such a pair of lines
is shown before and after rotation here with their intersection at B.

Initially BA makes and angle θ0 with a horizontal reference line.
BC then makes an angle of θABC + θ0. After rotation we measure
the angle to the line BD (displaced in a parallel manner). BA now
makes an angle of θ0 + θ where θ is the angle of rotation of the
object. By the addition of angles in the rotated configuration line BC
now makes an angle of θABC + θ0 + θ which is, because angle θABC
is unchanged, also an increase by θ in the angle made by BC with
the horizontal reference line. Both lines rotate by the same angle θ .

We could use one of these lines and compare with an arbitrary
third line and show that those have equal rotation also, and so on for
any lines of interest in the object. So all lines rotate by the same
angle θ . The demonstration for a pair of parallel lines is easy, they
stay parallel so always make a common angle with any reference
line.

Thus, all lines marked on a rigid object rotate by the same angle
θ and the concept of a object’s rotation from a given reference state
is uniquely defined.
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∗
In three dimensions the situation is more

complicated. Rotation of a rigid object is also
well defined, but its representation is more
complicated than a single number θ .

C

y′

x ′O

P
⇀
r
P

Figure 13.25: A rotating rigid object C with
rotating coordinates x ′y′ rigidly attached.
Filename:tfigure4-intro-rot-frames
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ĵ

ı̂
′ĵ

′

y′
y

x

x ′

Figure 13.26: Fixed coordinate axes and ro-
tating coordinate axes.
Filename:tfigure4-1-rot-coord

Figure 13.27: The x ′ and y′ coordinates of a
point fixed on a rotating object stay constant
while the base vectors ı̂ ′ and ̂ ′ change while
they rotate with the object.
Filename:tfigure-rotatepbytheta

All real or imagined lines marked on a rotating rigid object rotate by the
same angle.

(See box 13.1). Thus, once we have decided on a reference configuration, we
can measure the rotation of the object, and of all lines marked on the object,
with a single number, the rotation angle θ∗.

Rotated coordinates and base vectors ı̂ ′ and ̂
′

Often it is convenient two pick two orthogonal lines on a object and give
them distinguished status as body fixed rotating coordinate axes x ′ and y′.
The algebra we will develop is most simple if these axes are chosen to be
parallel with a fixed x and y axes when θ = 0 in the reference configuration.
Although much of the math is reminiscent of that with polar coordinates the
spirit is a bit different. Here we are not picking a coordinate system based
on the position of one particle of interest, but are picking a system to use for
any and all particles of interest.

We will follow a point P at ⇀rP. With this rotating coordinate axes x ′ and
y′ are associated rotating base vectors ı̂ ′ and ̂

′ (Fig. 13.25). The position
coordinates of P, in the rotating coordinates, are [

⇀r ]x ′ y′ = [x ′, y′
], which we

sometimes write as [
⇀r ]x ′ y′ =

[
x ′

y′

]
.

Example: A particle on the x ′ axis
If a particle of interest is fixed on the x ′-axis at position x ′

= 3 cm, then we have.
⇀rP = 3 cmı̂ ′

for all time, even as the object rotates.

For a general point P fixed to an object rotating about O it is always true that
⇀rP = x ′ ı̂ ′ + y′̂

′
, (13.18)

(13.19)

with the x ′ and y′ values not changing as θ increases. Obviously point P
moves, and the axes move, but the particle’s coordinates x ′ and y′ do not
change. The change in motion is expressed in eqn. (13.20) by the base vec-
tors changing as the object rotates. Thus we could write more explicitly that

⇀rP = x ′ ı̂ ′(θ)+ y′̂
′
(θ). (13.20)

In particular, just like for polar base vectors (see eqn. (13.3) on page 587)
we can express the rotating base vectors in terms of the fixed base vectors
and θ .

ı̂ ′ = cos θ ı̂ + sin θ ̂ , (13.21)

̂
′

= − sin θ ı̂ + cos θ ̂ .
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∗
Advanced aside. Sometimes a reference

frame is defined as the set of all coordinate
systems that could be attached to a rigid ob-
ject. Two coordinate systems, even if rotated
with respect to each other, then represent the
same frame so long as they rotate together at
the time of interest. Some of the results we
will develop only depend on this definition of
frame, that the coordinates are glued to the
object, and not on their orientation on the ob-
ject.

One also sometimes wants to know the fixed basis vectors in terms of the ro-
tating vectors,

ı̂ = cos θ ı̂ ′ − sin θ ̂ ′ (13.22)

̂ = sin θ ı̂ ′ cos θ ̂ ′
.

You should review the material in section 2.2 to see how these formulae can
be derived with dot products.

We will use the phrase reference frame or just frame to mean “a coordi-
nate system attached to a rigid object”. One could imagine that the coordinate
grid is like a metal framework that rotates with the object. We would refer to
a calculation based on the rotating coordinates in Fig. 13.25 as “in the frame
C” or “using the x ′y′ frame” or “in the ı̂ ′̂ ′ frame∗.

In computer calculations we most-often manipulate lists and arrays of
numbers and not geometric vectors. Thus we keep track of vectors by keep-
ing track of their components. Lets look at a point whose coordinates we
know in the reference configuration:

[
⇀rP

ref
]

xy
. Assuming the object axes and

fixed axes coincide in the reference configuration, the object coordinates of
a point

[
⇀rP
]

x ′ y′ are equal to the space fixed coordinates of the point in the

reference configuration
[
⇀rP

ref
]

xy
. We can think of the point as defined either

way, so [
⇀rP
]

x ′ y′ =

[
⇀rP

ref
]

xy

Coordinate representation of rotations using [R]

Here is a question we often need to answer, especially in computer animation:
What are the fixed basis coordinates of a point with coordinates [

⇀r ]x ′ y′ =[
x ′

y′

]
? Here is one way to find the answer:

⇀rP = x ′ ı̂ ′ + y′̂
′

= x ′(cos θ ı̂ + sin θ ̂)+ y′(− sin θ ı̂ + cos θ ̂)

=
(
(cos θ)x ′

− (sin θ)y′
)︸ ︷︷ ︸

x

ı̂ +
(
(sin θ)x ′

+ (cos θ)y′
)︸ ︷︷ ︸

y

̂ (13.23)

so we can pull out the x and y coordinates compactly as,

[
⇀rP]xy =

[
x
y

]
=

[
cos θ x ′

+ sin θ(−y′)

sin θ x ′
+ cos θ(y′)

]
. (13.24)

But this can, in turn be written in matrix notation as
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1 32 4
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1 32 4

x, x
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′

′

y

1

3
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4
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4

5
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y

′

′a) b)

c)

0 0

0

Figure 13.28: a) A house is drawn by con-
necting lines between 6 points, b) the house
and coordinate system are rotated, thus its co-
ordinates in the rotating system do not change
c) But the coordinates in the original system
do change
Filename:tfigure-rotatedhouse

[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x ′

y′

]
, or

[
⇀rP
]

xy =
[
R
] [

⇀rP
]

x ′ y′ . or (13.25)[
⇀rP
]

xy =
[
R
] [

⇀rP
ref
]

xy
,

The matrix [R] or [R(θ)] is the rotation matrix for counterclockwise rota-
tions by θ . If you know the coordinates of a point on an object before rota-
tion, you can find its coordinates after rotation by multiplying the coordinate
column vector by the matrix [R]. A feature of eqn. (13.25) is that the same
matrix [R] prescribes the coordinate change for every different point on the
object. Thus for points called 1, 2 and 3 we have[

x1

y1

]
=
[
R
] [ x ′

1
y′

1

]
,

[
x2

y2

]
=
[
R
] [ x ′

2
y′

2

]
and

[
x3

y3

]
=
[
R
] [ x ′

3
y′

3

]
.

A more compact way to write a matrix times a list of column vectors is
to arrange the column vectors one next to the other in a matrix. By multi-
plying this matrix by [R] we get a new matrix whose columns are the new
coordinates of various points. For example,[

x1 x2 x3

y1 y2 y3

]
=
[
R
] [ x ′

1 x ′

2 x ′

3
y′

1 y′

2 y′

3

]
. (13.26)

Eqn. 13.26 is useful for computer animation of rotating things in video games
(and in dynamics simulations too) where points 1,2, and 3 are vertices of the
polygonal drawing of some object.

Example: Rotate a picture
If a simple picture of a house is drawn by connecting the six points (Fig. 13.28a) with the

first point at (x, y) = (1, 2), the second at (x, y) = (3, 2), etc., and the sixth point on top of
the first, we have,

[
xy points BEFORE

]
≡

 1 3 3 2 1 1

2 2 4 5 4 2

 .
After a 30

◦
counter-clockwise rotation about O, the coordinates of the house, in a coordinate

system that rotates with the house, are unchanged (Fig. 13.28b). But in the fixed (non-rotating,
Newtonian) coordinate system the new coordinates of the rotated house points are,[

xy points AFTER
]

=
[
R
] [

xy points BEFORE
]

=
[
R
] [

x ′y′ points
]

=

 √
3/2 −.5

.5
√

3/2

 1 3 3 2 1 1

2 2 4 5 4 2


≈

 −0.1 1.6 0.6 −0.8 −1.1 −0.1

2.2 3.2 5.0 5.3 4.0 2.2


as shown in Fig. 13.28c.
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Angular velocity of a rigid object: ⇀
ω

Thus far we have talked about rotation, but not how it varies in time. Dynam-
ics is about motion, velocities and accelerations, so we need to think about
rotation rates and their rate of change.

In 2D, a rigid object’s net rotation is most simply measured by the change
that a line marked on the body (any line) makes with a fixed line (any fixed
line). We have called this net change of angle θ . Thus, the simplest measure
of rotation rate is θ̇ ≡

dθ
dt . Because all marked lines rotate the same amount

they all have the same rates of change, so θ̇1 = θ̇2 = θ̇3 = etc. So the concept
of rotation rate of a rigid object, just like the concept of rotation, transcends
the concept of rotation rate of this or that line. So we give it a special symbol
ω (omega),

For all lines marked on a rigid object,

ω ≡ θ̇1 = θ̇2 = θ̇3 = · · · = θ̇ . (13.27)

For calculation purposes in 2D, and necessarily in 3D, we think of angular
velocity as a vector. Its direction is the axis of the rotation which is k̂ for
bodies in the xy plane. Its scalar part is ω. So, the angular velocity vector is

⇀
ω ≡ ωk̂ (13.28)

with ω as defined in eqn. (13.27).

Rate of change of ı̂ ′, ̂
′

Our first use of the angular velocity vector ⇀
ω is to calculate the rate of change

of rotating unit base vectors. We can find the rate of change of, say, ı̂ ′, by
taking the time derivative of the first of eqn. (13.21), and using the chain rule
while recognizing that θ = θ(t). We can also make an analogy with polar
coordinates (page 587), where we think of êR as like ı̂ ′ and êθ as like ̂

′. We
found there that ˙̂

Re = θ̇ êθ and ˙̂
θe = −θ̇ êR . Either way,

˙
ˆ
′ı = θ̇ ̂

′ or ˙
ˆ
′ı =

⇀
ω × ı̂ ′ and

˙
ˆ
′

 = −θ̇ ı̂ ′ or ˙
ˆ
′

 =
⇀
ω × ̂

′
(13.29)

because ̂
′
= k̂

′

× ı̂ ′ and ı̂ ′ = −k̂
′

× ̂
′. Depending on the tastes of your

lecturer, you may find eqn. (13.29) one of the most used equations from this
point onward∗.

∗
Eqn. 13.29 is sometimes considered the

definition of ⇀
ω. In this view, ⇀ω is the vec-

tor that determines ˙
ˆ
′ı and ˙

ˆ
′ by the formulas

˙
ˆ
′ı =

⇀
ω× ı̂ ′ and ˙

ˆ
′ =

⇀
ω× ̂ ′. In that approach

one then shows that such a vector exists and
that it is ⇀ω = ı̂ ′ ×

˙
ˆ
′ı which happens to be the

same as our ⇀ω = θ̇ k̂.
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Figure 13.29: Velocity and acceleration of
two points on a rigid object rotating about 0.
Filename:tfigure-velandaccelofp

Velocity of a point fixed on a rigid object
Lets call some rotating object B (script capital B) to which is glued a coordi-
nate system x ′y′ with base vectors ı̂ ′ and ̂

′. Consider a point P at ⇀rP that is
glued to the object. That is, the x ′ and y′ coordinates of ⇀rP do not change in
time. Using the new frame notation we can write

Bd⇀rP
dt

≡
B⇀̇r P = ẋ ′ ı̂ ′ + ẏ′̂

′
=

⇀

0.

That is, relative to a moving frame, the velocity of a point glued to the frame
is zero (no surprise).

We would like to know the velocity of such a point in the fixed frame. We
just take the derivative, using the differentiation rules we have developed.

⇀rP = x ′ ı̂ ′ + y′̂
′

⇒
⇀
vP =

⇀̇r P =
d
dt

(
x ′ ı̂ ′ + y′̂

′
)

= x ′ ˙
ˆ
′ı + y′ ˙

ˆ
′

 = x ′(
⇀
ω × ı̂ ′)+ y′(

⇀
ω × ̂

′
)

=
⇀
ω × (x ′ ı̂ ′ + y′̂

′
)

where ⇀rP is the simple way to write
Fd

⇀rP
dt . Thus,

⇀
vP =

⇀
ω ×

⇀rP (13.30)

We can rewrite eqn. (13.30) in a minimalist or elaborate notation as

⇀
v =

⇀
ω ×

⇀r or
Fd⇀rP

dt
=

⇀
ωB/F ×

⇀rP/O.

In the first case you have to use common sense to know what point you are
talking about, that you are interested in the velocity of the same point and that

13.2 The fixed Newtonian reference frame F

Now we can reconsider the concept of a Newtonian frame, a concept
which we had to assume to write the equations of dynamics in the
first place. All of mechanics depends on the laws of mechanics
which are equations which involve, in part, the positions of things
as a function of time. Thus the terms in the equations depend on
reference frame. A frame in which Newton’s laws are accurate is
called a Newtonian frame. In engineering practice the frames we
use as approximations of a Newtonian frame often seem, loosely
speaking, somehow still. So we sometimes call such a frame the
fixed frame and label it with a script capital F . When we talk about
velocity and acceleration of mass points, for use in the equations of
mechanics, we are always talking about the velocity and acceleration
relative to a Fixed, or equivalently, Newtonian frame.

Assume x and y are the coordinates of a vector ⇀rP and F is a
fixed frame with fixed axis (with associated constant base vectors ı̂
and ̂ ). When we write ⇀̇rP we mean ẋ ı̂ + ẏ̂ . But we could be more

explicit (and notationally ornate) and write

F d⇀rP
dt

≡
F⇀̇r P by which we mean ẋ ı̂ + ẏ̂ .

The F in front of the time derivative (or in front of the dot) means
that when we calculate a derivative we hold the base vectors of F
constant. This is no surprise, because for F the base vectors are
constant. In general, however, when taking a derivative in a given
frame you

• write vectors in terms of base vectors stuck to the frame, and

• only differentiate the components.

We will avoid the ornate notation of labeling frames when we
can. If you don’t see any script capital letters floating around in front
of derivatives, you can assume that we are taking derivatives relative
to a fixed Newtonian frame.
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∗
Although the form eqn. (13.33) is not of

much immediate use, if you are going to con-
tinue on to the mechanics of mechanisms or
three dimensional mechanics, you should fol-
low the derivation of eqn. (13.33) carefully.

it is on a object rotating with absolute angular velocity ⇀
ω. In the second case

everything is laid out clearly (which is why it looks so confusing). On the
left side of the equation it says that we are interested in how point P moves
relative to, not just any frame, but the fixed frame F . On the right side we
make clear that the rotation rate we are looking at is that of object B relative
to F and not some other relative rotation. We further make clear that the
formula only makes sense if the position of the point P is measured relative
to a point which doesn’t move, namely 0.

What we have just found largely duplicates what we already learned in
section 7.1 for points moving in circles. The slight generalization is that the
same angular velocity ⇀

ω can be used to calculate the velocities of multiple
points on one rigid object. The key idea remains: the velocity of a point
going in circles is tangent to the circle it is going around and with magnitude
proportional both to distance from the center and the angular rate of rotation
(Fig. 13.29a).

Acceleration of a point on a rotating rigid object
Let’s again consider a point with position

⇀rP = x ′ ı̂ ′ + y′̂
′
.

Relative to the frame B to which a point is attached, its acceleration is zero
(again no surprise). But what is its acceleration in the fixed frame? We find
this by writing the position vector and then differentiating twice, repeatedly
using the product rule and eqn. (13.29).

Leaving off the ornate pre-super-script F for simplicity, we have

⇀aP =
⇀̇
vP =

d
dt

(
d
dt

(
x ′ ı̂ ′ + y′̂

′
))

=
d
dt

(
x ′(

⇀
ω × ı̂ ′)+ y′(

⇀
ω × ̂

′
)
)
. (13.31)

To continue we need to use the product rule of differentiation for the cross
product of two time dependent vectors like this:

d
dt

(
⇀
ω × ı̂ ′

)
=

⇀̇
ω × ı̂ ′ + ⇀

ω ×
˙
ˆ
′ı =

⇀̇
ω × ı̂ ′ + ⇀

ω × (
⇀
ω × ı̂ ′),

d
dt

(
⇀
ω × ̂

′
)

=
⇀̇
ω × ̂

′
+

⇀
ω ×

˙
ˆ
′

 =
⇀̇
ω × ̂

′
+

⇀
ω × (

⇀
ω × ̂

′
).

(13.32)
Substituting back into eqn. (13.31) we get

⇀aP =

(
x ′(

⇀̇
ω × ı̂ ′ + ⇀

ω × (
⇀
ω × ı̂ ′))+ y′(

⇀̇
ω × ̂

′
+

⇀
ω × (

⇀
ω × ̂

′
))
)

=
⇀̇
ω × (x ′ ı̂ ′ + y′ ı̂ ′)+

⇀
ω ×

(
⇀
ω ×

(
x ′ ı̂ ′ + y′ ı̂ ′)

))
=

⇀̇
ω ×

⇀rP +
⇀
ω ×

(
⇀
ω ×

⇀rP
)

(13.33)

which is hardly intuitive at a glance∗.Recalling that in 2D ⇀
ω = ωk̂ we

can use either the right hand rule or manipulation of unit vectors to rewrite
eqn. (13.33) as
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⇀aP = ω̇k̂ ×
⇀rP − ω2⇀rP (13.34)

where ω = θ̇ and ω̇ = θ̈ and θ is the counterclockwise rotation of any line
marked on the object relative to any fixed line.

Thus, as we found in section 7.1 for a particle going in circles, the acceler-
ation can be written as the sum of two terms, a tangential acceleration ω̇k̂×

⇀rP
due to increasing tangential speed, and a centrally directed (centripetal) ac-
celeration −ω2⇀rP due to the direction of the velocity continuously changing
towards the center (see Fig. 13.29b). The generalization we have made in
this section is that the same ⇀

ω can be used to calculate the acceleration for all
the different points on one rotating object. A second brief derivation of the
acceleration eqn. (13.34) goes like this (using minimalist notation):

⇀a =
⇀̇
v =

d
dt
(
⇀
ω ×

⇀r) =
⇀̇
ω ×

⇀r +
⇀
ω ×

⇀̇r =
⇀̇
ω ×

⇀r +
⇀
ω × (

⇀
ω ×

⇀r) =
⇀̇
ω ×

⇀r − ω2⇀r .
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⇀
r B/O

B

⇀
r B/A

⇀
r A/O

⇀
ωB

⇀
vB/A = ⇀

ωB × rB/A

A

B

O

Figure 13.30: The acceleration of B relative
to A if they are both on the same rotating rigid
object.
Filename:tfigure4-vel-accel-rel

Relative motion of points on a rigid object
As you well know by now, the position of point B relative to point A is
⇀rB/A ≡

⇀rB −
⇀rA. Similarly the relative velocity and acceleration of two points

A and B is defined to be

⇀
vB/A ≡

⇀
vB −

⇀
vA and ⇀aB/A ≡

⇀aB −
⇀aA (13.35)

So, the relative velocity (as calculated relative to a fixed frame) of two points
glued to one spinning rigid object B is given by

⇀
vB/A ≡

⇀
vB −

⇀
vA

=
⇀
ω ×

⇀rB/O −
⇀
ω ×

⇀rA/O
=

⇀
ω × (

⇀rB/O −
⇀rA/O)

=
⇀
ω ×

⇀rB/A,

where point O is the point in the Newtonian frame on the fixed axis of rota-
tion and ⇀

ω =
⇀
ωC is the angular velocity of C. Repeating,

⇀
vB/A =

⇀
ω ×

⇀rB/A (13.36)

Because points A and B are fixed on B their velocities and hence their rela-
tive velocity as observed in a reference frame fixed to C is

⇀

0. But, point A has
some absolute velocity that is different from the absolute velocity of point B.
So they have a relative velocity as seen in the fixed frame. And it is what you
would expect if B was just going in circles around A. Similarly, the relative
acceleration of two points glued to one rigid object spinning at constant rate
is

⇀aB/A ≡
⇀aB −

⇀aA =
⇀̇
ω ×

⇀r B/A +
⇀
ω × (

⇀
ω ×

⇀r B/A). (13.37)

Again, the relative acceleration is due to the difference in the points’ posi-
tions relative to the point O fixed on the axis. These kinematics results,
13.36 and 13.37, are useful for calculating angular momentum relative to the
center-of-mass. They are also sometimes useful for the understanding of the
motions of machines with moving connected parts.

Another definition of ⇀
ω

For two points on one rigid object we have that

⇀̇r B/A =
⇀
ω ×

⇀rB/A. (13.38)

This last equation (13.38) is generally considerred the most fundamental
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equation concerning the kinematics of rotation for dynamics. In three di-
mensions equation (13.38) is the defining equation for the angular velocity ⇀

ω

of a rigid object∗.

Calculating relative velocity directly, using rotating
frames
A coordinate system x ′y′ to a rotating rigid object C, defines a reference
frame C (Fig. 13.25). Recall, the base vectors in this frame change in time by

d
dt

ı̂ ′ =
⇀
ωC × ı̂ ′ and

d
dt

̂
′
=

⇀
ωC × ̂

′
.

If we now write the relative position of B to A in terms of ı̂ ′ and ̂
′, we have

⇀rB/A = x ′ ı̂ ′ + y′̂
′
.

Since the coordinates x ′ and y′ rotate with the object to which A and B are
attached, they are constant with respect to that object,

ẋ ′
= 0 and ẏ′

= 0.

So

d
dt
(
⇀r B/A) =

d
dt

(
x ′ ı̂ ′ + y′̂

′
)

= ẋ ′︸︷︷︸
0

ı̂ ′ + x ′
d
dt

ı̂ ′ + ẏ′︸︷︷︸
0

̂
′
+ y′

d
dt

̂
′

= x ′(
⇀
ωC × ı̂ ′)+ y′(

⇀
ωC × ̂

′
)

=
⇀
ωC × (x ′ ı̂ ′ + y′̂

′
)︸ ︷︷ ︸

⇀r B/A

=
⇀
ωC ×

⇀r B/A.

We could similarly calculate ⇀aB/A by taking another derivative to get

⇀aB/A =
⇀
ωC ×

(
⇀
ωC ×

⇀r B/A
)
+

⇀̇
ωC ×

⇀r B/A.

The concept of measuring velocities and accelerations relative to a rotating
frame will be of central interest chapters 10 and 11.

∗
Another more advanced approach to rota-

tions is to define rotations with a 3×3 matrix.
Then angular velocity is defined in terms of
the derivative of that matrix.
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13.3 Plato’s discussion of spinning in circles as motion (or not)

Plato imagines a discussion between Socrates and Glaucon about
how an object can maintain contradictory attributes simultaneously:

“ Socrates: Now let’s have a more precise agreement so that we won’t
have any grounds for dispute as we proceed. If someone were to say
of a human being standing still, but moving his hands and head, that
the same man at the same time stands still and moves, I don’t suppose
we’d claim that it should be said like that, but rather that one part of
him stands still and another moves. Isn’t that so?
Glaucon: Yes it is.
Socrates: Then if the man who says this should become still more
charming and make the subtle point that tops as wholes stand still
and move at the same time when the peg is fixed in the same place

and they spin, or that anything else going around in a circle on the
same spot does this too, we wouldn’t accept it because it’s not with
respect to the same part of themselves that such things are at the
same time both at rest and in motion. But we’d say that they have
in them both a straight and a circumference; and with respect to the
straight they stand still since they don’t lean in any direction –while
with respect to the circumference they move in a circle; and when
the straight inclines to the right the left, forward, or backward at the
same time that it’s spinning, then in no way does it stand still.
Glaucon: And we’d be right.”

This chapter is about things that are still with respect to their
own parts (they do not distort) but in which the points do move in
circles.
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SAMPLE 13.9 A uniform bar AB of length ` = 50 cm rotates counterclock-

x

y

A

B

C

 = 30¡

50 cm

ω

θ

Figure 13.31:
Filename:sfig4-4-1

wise about point A with constant angular speed ω. At the instant shown in
Fig. 13.31 the linear speed vC of the center-of-mass C is 7.5 cm/ s.

1. What is the angular speed of the bar?
2. What is the angular velocity of the bar?
3. What is the linear velocity of end B?
4. By what angles do the angular positions of points C and B change in 2

seconds?
Solution Let the angular velocity of the bar be ⇀

ω = θ̇ k̂.

1. Angular speed of the bar = θ̇ . The linear speed of point C is vC = 7.5 cm/ s. Now,

vC = θ̇ rC

⇒ θ̇ =
vC
rC

=
7.5 cm/ s

25 cm
= 0.3 rad/s.

θ̇ = 0.3 rad/s

2. The angular velocity of the bar is ⇀
ω = θ̇ k̂ = 0.3 rad/sk̂.

⇀
ω = 0.3 rad/sk̂

3. Point B goes around a circle of radius ` (see Fig. 13.33). Thus,

ω

ı̂

ĵ

k̂

Figure 13.32:
Filename:sfig4-4-1a

 = 30¡
A

B

x

y

êr

⇀
vB êθ

θ

Figure 13.33: From the given geometry, êr =

cos θ ı̂ + sin θ ̂ , êθ = − sin θ ı̂ + cos θ ̂ , and
⇀
v B = |

⇀
v B |êθ .

Filename:sfig4-4-1b

⇀
v B =

⇀
ω ×

⇀r B = θ̇ k̂ × `(cos θ ı̂ + sin θ ̂)

= θ̇`(cos θ ̂ − sin θ ı̂)

= 0.3 rad/s·50 cm(

√
3

2
̂ −

1
2

ı̂)

= 15 cm/ s(

√
3

2
̂ −

1
2

ı̂).

⇀
v B = 15 cm/ s(

√
3

2 ̂ −
1
2 ı̂)

We can also write ⇀
v B = 15 cm/ sêθ where êθ =

√
3

2 ̂ −
1
2 ı̂.

4. Let θ1 be the position of point C at some time t1 and θ2 be the position at time t2. We
want to find 1θ = θ2 − θ1 for t2 − t1 = 2 s.

dθ
dt

= θ̇ = constant = 0.3 rad/s.

⇒ dθ = (0.3 rad/s)dt.

⇒

∫ θ2

θ1

dθ =

∫ t2

t1
(0.3 rad/s)dt.

⇒ θ2 − θ1 = 0.3 rad/s(t2 − t1)

or 1θ = 0.3
rad
6 s

·26 s = 0.6 rad.

The change in position of point B is the same as that of point C. In fact, all points on
AB undergo the same change in angular position because AB is a rigid body.

1θC = 1θB = 0.6 rad
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A

B

Figure 13.34:
Filename:sfig4-4-3
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Figure 13.35:
Filename:sfig4-4-3a

SAMPLE 13.10 A flywheel of diameter 2 ft is made of cast iron. To avoid
extremely high stresses and cracks it is recommended that the peripheral
speed not exceed 6000 to 7000 ft/min. What is the corresponding rpm rating
for the wheel?
Solution

Diameter of the wheel = 2 ft.

⇒ radius of wheel = 1 ft.

Now,

v = ωr

⇒ ω =
v

r
=

60006 ft/min
16 ft

= 6000
rad
min

·
1rev

2π rad
= 955 rpm.

Similarly, corresponding to v = 7000 ft/min

ω =
70006 ft/min

16 ft

= 7000
rad
min

·
1rev

2π rad
= 1114 rpm.

Thus the rpm rating of the wheel should read 955 – 1114 rpm.

ω = 955 to 1114 rpm.

SAMPLE 13.11 Two gears A and B have the diameter ratio of 1:2. Gear A
drives gear B. If the output at gear B is required to be 150 rpm, what should
be the angular speed of the driving gear? Assume no slip at the contact point.
Solution Let C and C′ be the points of contact on gear A and B respectively at some instant
t . Since there is no relative slip between C and C′, both points must have the same linear
velocity at instant t . If the velocities are the same, then the linear speeds must also be the
same. Thus

vC = vC ′

⇒ ωArA = ωBrB

⇒ ωA = ωB ·
rB
rA

= ωB ·
26 r
6 r

= 2ωB

= (2)·(150 rpm)

= 300 rpm.

ωA = 300 rpm
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∗
We know that the rod rotates about the z-

axis but we do not know the sense of the ro-
tation i.e., +k̂ or −k̂. Here we have assumed
that ⇀ω is in the positive k̂ direction, although
just by sketching ⇀

v A we can easily see that
⇀
ω must be in the −k̂ direction.

x

y

O

R

A

⇀
vA

⇀
vA = ⇀

ω
⇀
r A

and ⇀
r A = R cos ı̂ ©R sin ĵ

θ

θ θ
×

Figure 13.37:
Filename:sfig4-4-4a

SAMPLE 13.12 A uniform rigid rod AB of length ` = 0.6 m is connected
to two rigid links OA and OB. The assembly rotates at a constant rate about
point O in the xy plane. At the instant shown, when rod AB is vertical,
the velocities of points A and B are ⇀

v A = −4.64 m/ŝ − 1.87 m/sı̂, and
⇀
vB = 1.87 m/sı̂ − 4.64 m/ŝ . Find the angular velocity of bar AB. What is
the length R of the links?

Solution Let the angular velocity of the rod AB be ⇀
ω = ωk̂.

∗
Since we are given the

velocities of two points on the rod we can use the relative velocity formula to find ⇀
ω:

⇀
v B/A =

⇀
ω ×

⇀r B/A =
⇀
v B −

⇀
v A

or ωk̂︸︷︷︸
⇀
ω

× `̂︸︷︷︸
⇀r B/A

= (1.87ı̂ − 4.64̂)m/s − (−4.64̂ − 1.87ı̂)m/s

or ω`(−ı̂) = (1.87ı̂ + 1.87ı̂)m/s − ( 64.64̂ − 64.64̂)m/s

= 3.74ı̂ m/s

⇒ ω = −
3.74 m/s

`

= −
3.74
0.6

rad/s

= −6.233 rad/s (13.39)

Thus, ⇀ω = −6.233 rad/sk̂.

⇀
ω = −6.23 rad/sk̂

Let θ be the angle between link OA and the horizontal axis. Now,

⇀
v A =

⇀
ω ×

⇀r A = ωk̂ × R(cos θ ı̂ − sin θ ̂)︸ ︷︷ ︸
⇀r A

or (−4.64̂ − 1.87ı̂)m/s = ωR(cos θ ̂ + sin θ ı̂)

Dotting both sides of the equation with ı̂ and ̂ we get

−1.87 m/s = ωR sin θ (13.40)

−4.64 m/s = ωR cos θ (13.41)

Squaring and adding Eqns (13.40) and (13.41) together we get

ω2 R2
= (−4.64 m/s)2 + (−1.187 m/s)2

= 25.026 m2/ s2

⇒ R2
=

25.026 m2/ s2

(−6.23 rad/s)2

= 0.645 m2

⇒ R = 0.8 m

R = 0.8 m
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SAMPLE 13.13 A dumbbell AB, made of two equal masses and a rigid
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Figure 13.38:
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rod AB of negligible mass, is welded to a rigid arm OC, also of negligible
mass, such that OC is perpendicular to AB. Arm OC rotates about O at a
constant angular velocity ⇀

ω = 10 rad/sk̂. At the instant when θ = 60
◦

, find
the relative velocity of B with respect to A.

Solution Since A and B are two points on the same rigid body (AB) and the body is spinning
about point O at a constant rate, we may use the relative velocity formula

⇀
v B/A ≡

⇀
v B −

⇀
v A =

⇀
ω ×

⇀r B/A (13.42)

to find the relative velocity of B with respect to A. We are given ⇀
ω = ωk̂ = 10 rad/sk̂. Let

O

A

B
C

x

y

ı̂

ĵ n̂ = cos θ ı̂ + sin θ ĵ

n̂

λ̂

θ
θ

θ θ

Figure 13.39:
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λ̂ and n̂ be unit vectors parallel to AB and OC respectively. Since OC⊥AB, we have n̂ ⊥ λ̂.
Now we may write vector ⇀r B/A as 1©

1© The vector ⇀r B/A may also be expressed
directly in terms of unit vectors ı̂ and ̂ , but it
involves a little bit more geometry. Note how
assuming λ̂ and n̂ in the directions shown
makes calculations easier and cleaner.

⇀r B/A = `λ̂.

Substituting ⇀
ω and ⇀r B/A in Eqn (13.42) we get

⇀
v B/A = ωk̂ × `λ̂

= ω` (k̂ × λ̂)︸ ︷︷ ︸
n̂

= ω`n̂
= ω`(cos θ ı̂ + sin θ ̂)

= 10 rad/s(0.8 m)·(
1
2

ı̂ +

√
3

2
̂)

= 4 m/s(ı̂ +
√

3̂).

⇀
v B/A = 4 m/s(ı̂ +

√
3̂)

O

A

B

⇀
vA

⇀
vB/A

⇀
vB

⇀
vB/A = ⇀

vB
⇀
vA-

Figure 13.40:
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Comments: ⇀
v B/A can also be obtained by adding vectors ⇀

v B and −
⇀
v A geometrically. Since

A and B execute circular motion with the same radius R = O A = O B, the magnitudes of
⇀
v B and ⇀

v A are the same (= ωR) and since the velocity in circular motion is tangential to

the circular path, ⇀v A ⊥ O A and ⇀
v B ⊥ O B. Then moving ⇀

v A to point B, we can easily find
⇀
v B −

⇀
v A =

⇀
v B/A. Its direction is found to be perpendicular to AB, i.e., along OC. Thus,

the velocity of B with respect to A is that of circular motion of point B about point A. That is,

if you sit at A, you will see B going around you in circles of radius ` and at angular rate ω.
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∗
If a body rotates in a plane, i.e., ⇀ω =

ωk̂, then ⇀
ω × (

⇀
ω ×

⇀r ) = −ω2⇀r . Using
this fact we can immediately write ⇀a B/A =

−ω2⇀r B/A = −ω2`λ̂.

θ

θ

θ
ı̂

ĵ

n̂

λ̂

Figure 13.41: The geometry of vectors ı̂ and
n̂. From the figure, λ̂ = − cos θ ̂ + sin θ ı̂.
Filename:sfig4-3-2
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SAMPLE 13.14 For the same problem and geometry as in Sample 13.13,
find the acceleration of point B relative to point A.
Solution Since points A and B are on the same rigid body AB which is rotating at a constant
rate ω = 10 rad/s, the relative acceleration of B is:

⇀a B/A =
⇀a B −

⇀a A =
⇀
ω × (

⇀
ω ×

⇀r B/A)

= ωk̂ × (ωk̂ × `λ̂)

= ωk̂ × ω`n̂ (since k̂ × λ̂ = n̂)

= ω2`(k̂ × n̂)
= ω2`(−λ̂).

∗
Now we need to express λ̂ in terms of known basis vectors ı̂ and ̂ . If you are good with

geometry, then by knowing that λ̂ ⊥ n̂ and n̂ = cos θ ı̂ + sin θ ̂ you can immediately write

λ̂ = sin θ ı̂ − cos θ ̂ (so that λ̂·n̂ = 0).

Or you may draw a big and clear picture of λ̂, n̂, ı̂ and ̂ and label the angles as shown in
Fig 13.41. Then, it is easy to see that

λ̂ = sin θ ı̂ − cos θ ̂ .

Substituting for λ̂ in the expression for ⇀a B/A, we get

⇀a B/A = −ω2`(sin θ ı̂ − cos θ ̂)

= −100
rad2

s2 ·

[
0.8 m(

√
3

2
ı̂ −

1
2
̂)

]
= −40 m/s2(

√
3ı̂ − ̂).

⇀a B/A = −40 m/s2(
√

3ı̂ − ̂)

Comments: We could also find ⇀aB/A using geometry and geometric addi-
tion of vectors. Since A and B are going in circles about O at constant speed,
their accelerations are centripetal accelerations. Thus, ⇀aA points along AO
and ⇀aB points along BO. Also |

⇀aA| = |
⇀aB | = ω2(OA). Now adding −

⇀aA to
⇀aB we get ⇀aB/A which is seen to be along BA.



620 Circular motion

A

B

motor

x

y

O

ω

L

L

Figure 13.43: An ‘L’ shaped bar rotates at
speed ω about point O.
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Figure 13.45: ⇀
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⇀
ω ×
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⇀
v B =

⇀
v A +

⇀
v B/A .
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Figure 13.46: ⇀v B =
⇀
ω ×

⇀r B .
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SAMPLE 13.15 Test the velocity formula on something you know. The
motor at O in Fig. 13.43 rotates the ‘L’ shaped bar OAB in counterclockwise
direction at an angular speed which increases at ω̇ = 2.5 rad/s2. At the
instant shown, the angular speed ω = 4.5 rad/s. Each arm of the bar is of
length L = 2 ft.

1. Find the velocity of point A.
2. Find the relative velocity ⇀

vB/A (=
⇀
ω ×

⇀r B/A) and use the result to find
the absolute velocity of point B (⇀vB =

⇀
v A +

⇀
vB/A).

3. Find the velocity of point B directly. Check the answer obtained in
part (b) against the new answer.

Solution

1. As the bar rotates, every point on the bar goes in circles centered at point O. Therefore,
we can easily find the velocity of any point on the bar using circular motion formula
⇀
v =

⇀
ω ×

⇀r . Thus,

⇀
v A =

⇀
ω ×

⇀r A = ωk̂ × L ı̂ = ωL ̂

= 4.5 rad/s · 2 ft̂ = 9 ft/ŝ .

The velocity vector ⇀
v A is shown in Fig. 13.44.

⇀
v A = 9 ft/ŝ

2. Point B and A are on the same rigid body. Therefore, with respect to point A, point B
goes in circles about A. Hence the relative velocity of B with respect to A is

⇀
v B/A =

⇀
ω ×

⇀r B/A

= ωk̂ × L ̂ = −ωL ı̂
= −4.5 rad/s · 2 ftı̂ = −9 ft/sı̂.

and ⇀
v B =

⇀
v A +

⇀
v B/A

= 9 ft/s(−ı̂ + ̂).

These velocities are shown in Fig. 13.45.

⇀
v B/A = −9 ft/sı̂, ⇀

v B = 9 ft/s(−ı̂ + ̂)

3. Since point B goes in circles of radius OB about point O, we can find its velocity
directly using circular motion formula:

⇀
v B =

⇀
ω ×

⇀r B

= ωk̂ × (L ı̂ + L ̂) = ωL(̂ − ı̂)
= 9 ft/s(−ı̂ + ̂).

The velocity vector is shown in Fig. 13.46. Of course this velocity is the same velocity
as obtained in part (b) above.

⇀
v B = 9 ft/s(−ı̂ + ̂)

Note: Nothing in this sample uses ω̇!
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counterclockwise and is slowing down.
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SAMPLE 13.16 Test the acceleration formula on something you know.
Consider the ‘L’ shaped bar of Sample 13.15 again. At the instant shown, the
bar is rotating at 4 rad/s and is slowing down at the rate of 2 rad/s2.

(i) Find the acceleration of point A.
(ii) Find the relative acceleration ⇀aB/A of point B with respect to point A

and use the result to find the absolute acceleration of point B (⇀aB =
⇀aA +

⇀aB/A).
(iii) Find the acceleration of point B directly and verify the result obtained

in (ii).
Solution We are given:

⇀
ω = ωk̂ = 4 rad/sk̂, and ⇀̇

ω = −ω̇k̂ = −2 rad/s2 k̂.

(i) Point A is going in circles of radius L. Hence,

⇀a A =
⇀̇
ω ×

⇀r A +
⇀
ω × (

⇀
ω ×

⇀r A) =
⇀̇
ω ×

⇀r A − ω2⇀r A

= −ω̇k̂ × L ı̂ − ω2L ı̂ = −ω̇L ̂ − ω2L ı̂
= −2 rad/s · 2 ft̂ − (4 rad/s)2 · 2 ftı̂
= −(4̂ + 32ı̂) ft/s2.

⇀a A = −(4̂ + 32ı̂) ft/s2

(ii) The relative acceleration of point B with respect to point A is found by considering the
motion of B with respect to A. Since both the points are on the same rigid body, point
B executes circular motion with respect to point A. Therefore,

⇀a B/A =
⇀̇
ω ×

⇀r B/A +
⇀
ω × (

⇀
ω ×

⇀r B/A) =
⇀̇
ω ×

⇀r B/A − ω2

= −ω̇k̂ × L ̂ − ω2L ̂

= ω̇L ı̂ − ω2L ̂ = 2 rad/s2
· 2 ftı̂ − (4 rad/s)2 · 2 ft̂

= (4ı̂ − 32̂) ft/s2,

and

⇀a B =
⇀a A +

⇀a B/A = (−28ı̂ − 36̂) ft/s2.

⇀a B = −(28ı̂ + 36̂) ft/s2

(iii) Since point B is going in circles of radius OB about point O, we can find the accelera-
tion of B as follows.

⇀a B =
⇀̇
ω ×

⇀r B +
⇀
ω × (

⇀
ω ×

⇀r B)

=
⇀̇
ω ×

⇀r B − ω2⇀r B

= −ω̇k̂ × (L ı̂ + L ̂)− ω2(L ı̂ + L ̂)

= (−ω̇L − ω2L)̂ + (ω̇L − ω2L)ı̂
= (−4 − 32) ft/s2̂ + (4 − 32) ft/s2 ı̂
= (−36̂ − 28ı̂) ft/s2.

This acceleration is, naturally again, the same acceleration as found in (ii) above.

⇀a B = −(28ı̂ + 36̂) ft/s2
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Figure 13.52: To draw the relative accelera-
tion of B, ⇀a B/A , consider point B going in
circles about point A.
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sin θ ı̂ − cos θ ̂ and êθ = cos θ ı̂ + sin θ ̂ .
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SAMPLE 13.17 Relative velocity and acceleration: The dumbbell AB
shown in the figure rotates counterclockwise about point O with angular ac-
celeration 3 rad/s2. Bar AB is perpendicular to bar OC. At the instant of
interest, θ = 45

◦

and the angular speed is 2 rad/s.
1. Find the velocity of point B relative to point A. Will this relative ve-

locity be different if the dumbbell were rotating at a constant rate of 2
rad/s?

2. Without calculations, draw a vector approximately representing the ac-
celeration of B relative to A.

3. Find the acceleration of point B relative to A. What can you say about
the direction of this vector as the motion progresses in time?

Solution

1. Velocity of B relative to A:

⇀
v B/A =

⇀
ω ×

⇀r B/A

= θ̇ k̂ × L(sin θ ı̂ − cos θ ̂)

= θ̇L(sin θ ̂ + cos θ ı̂)
= 2 rad/s · 0.5 m(sin 45

◦

̂ + cos 45
◦

ı̂)
= 0.707 m/s(ı̂ + ̂).

Thus the relative velocity is perpendicular to AB, that is, parallel to OC.
No, the relative velocity will not be any different at the instant of interest if the dumb-
bell were rotating at constant rate. As is evident from the formula, the relative velocity
only depends on ⇀

ω and ⇀r B/A, and not on ⇀̇
ω. Therefore, ⇀v B/A will be the same if at

the instant of interest, ⇀ω and ⇀r B/A are the same.

2. Relative acceleration vector: The velocity and acceleration of some point B on a
rigid body relative to some other point A on the same body is the same as the velocity
and acceleration of B if the body is considered to rotate about point A with the same
angular velocity and acceleration as given. Therefore, to find the relative velocity and
acceleration of B, we take A to be the center of rotation and draw the circular path of
B, and then draw the velocity and acceleration vectors of B.
Since we know that the acceleration of a point under circular motion has tangential
(⇀̇ω ×

⇀r or θ̈ R êθ in 2-D) and radial or centripetal (⇀ω × (
⇀
ω ×

⇀r ) or − θ̇2 R êR in
2-D ) components, the total acceleration being the vector sum of these components,
we draw an approximate acceleration vector of point B as shown in Fig. 13.52.

3. Acceleration of B relative to A:

⇀a B/A =
⇀̇
ω ×

⇀r B/A +
⇀
ω × (

⇀
ω ×

⇀r B/A)

= θ̈ k̂ × L êR + θ̇ k̂ × (θ̇ k̂ × L êR )

= L θ̈ êθ − L θ̇2 êR

= 0.5 m · 3 rad/s2(cos 45
◦

ı̂ + sin 45
◦

̂)

−0.5 m · (2 rad/s)2(sin 45
◦

ı̂ − cos 45
◦

̂)

= 1.061 m/s2(ı̂ + ̂)− 1.414 m/s2(ı̂ − ̂)

= (−0.353ı̂ + 2.474̂)m/s2.

⇀a B/A = (−0.353ı̂ + 2.474̂)m/s2
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13.4 Dynamics of a rigid object in planar
circular motion

Our goal here is to evaluate the terms in the momentum, angular momentum,
and energy balance equations for a planar object that is rotating about one
point, like a part held in place by a hinge or bearing. The evaluation of forces
and moments for use in the momentum and angular momentum equations is
the same in statics as in the most complex dynamics, there is nothing new or
special about circular motion. What we need to work out are the terms that
quantify the motion of mass.

Mechanics and the motion quantities
If we can calculate the velocity and acceleration of every point in a sys-
tem, we can evaluate all the momentum and energy terms in the equations of

motion (inside cover), namely:
⇀

L,
⇀̇

L,
⇀

HC,
⇀̇

HC, EK and ĖK for any reference
point C of our choosing. For rotational motion these calculations are a lit-
tle more complex than the special case of straight-line motion in chapter 6,
where all points in a system had the same acceleration as each other.

For circular motion of a rigid object, we just well-learned in the previous
section that the velocities and accelerations are

⇀
v =

⇀
ω ×

⇀r ,
⇀a =

⇀̇
ω ×

⇀r +
⇀
ω × (

⇀
ω ×

⇀r),
=

⇀̇
ω ×

⇀r − ω2⇀r

where ⇀
ω is the angular velocity of the object relative to a fixed frame and ⇀r

is the position of a point relative to the axis of rotation. These relations apply
to every point on a rotating rigid object.

Example: Spinning disk
The round flat uniform disk in figure 13.54 is in the xy plane spinning at the constant rate
⇀
ω = ωk̂ about its center. It has mass mtot and radius R0. What force is required to cause this
motion? What torque? What power?

From linear momentum balance we have:∑ ⇀
Fi =

⇀̇
L = mtot

⇀a cm =
⇀
0 ,

Which we could also have calculated by evaluating the integral
⇀̇
L ≡

∫ ⇀a dm instead of using

the general result that
⇀̇
L = mtot

⇀a cm . From angular momentum balance we have:∑ ⇀
Mi/O =

⇀̇
H/O

⇒
⇀
M =

∫
⇀r /O ×

⇀a dm

=

∫ R0

0

∫ 2π

0
(R êR )× (−Rω2 êR )

ρ︷ ︸︸ ︷(
mtot

πR2
O

) d A︷ ︸︸ ︷
R dθ d R︸ ︷︷ ︸

dm

=

∫ ∫
⇀
0 dθ d R

=
⇀
0 .



624 Chapter 13. Circular motion 13.4. Dynamics of planar circular motion

y

RO

R
x

dm

O

FBD

ω

êR
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Figure 13.54: A uniform disk turned by a mo-
tor at a constant rate. The free body diagram
shows a force and moment equivalent to the
force system that acts including gravity, bear-
ing forces, etc. A bit of mass dm occupies
the space between the radial lines at θ and
θ + dθ and between the circles at radii R and
R = d R.
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So the net force and moment needed are
⇀
F =

⇀
0 and

⇀
M =

⇀
0 . Like a particle that moves at

constant velocity with no force, a uniform disk rotates at constant rate with no torque (at least
in 2D).

We’d now like to consider the most general case that the subject of the sec-
tion allows, an arbitrarily shaped 2D rigid object with arbitrary ω and ω̇.

Linear momentum:
⇀

L and
⇀̇

L
For any system in any motion we know, as we have often used, that

⇀

L = m tot
⇀
vcm and

⇀̇

L = m tot
⇀acm.

For a rigid object, the center-of-mass is a particular point G that is fixed
relative to the object. So the velocity and acceleration of that point can be
expressed the same way as for any other point. So, for an object in planar
rotational motion about 0

⇀

L = m tot
⇀
ω ×

⇀rG/0

and

⇀̇

L = m tot

(
⇀̇
ω ×

⇀rG/0 − ω2⇀rG/0)
)
.

If the center-of-mass is at 0 the momentum and its rate of change are zero.
But if the center-of-mass is off the axis of rotation, there must be a net force
on the object with a component parallel to ⇀r0/G (if ω 6= 0) and a component
orthogonal to ⇀r0/G (if ω̇ 6= 0). This net force need not be applied at 0 or G or
any other special place on the object.

Angular momentum:
⇀

HO and
⇀̇

HO

The angular momentum itself is easy enough to calculate, using the short
hand notation that ⇀r is the position vector ⇀r/0 of a point relative to point O.

⇀

HO =

∫
all mass

⇀r ×
⇀
v dm (a)

=

∫
⇀r ×

(
⇀
ω ×

⇀r
)

dm (b)

= ωk̂
∫

r2 dm (c)

⇒ H0 = ω

∫
r2 dm. (d)

(13.43)

Here eqn. (13.43)c is the vector equation. But since both sides are in the
k̂ direction we can dot both sides with k̂ to get the scalar moment equation
eqn. (13.43)d, taking both Mnet and ω as positive when counterclockwise.

To get the all important angular momentum balance equation for this sys-
tem we could easily differentiate eqn. (13.43), taking note that the derivative
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is being taken relative to a fixed frame. More reliably, we use the general ex-

pression for
⇀̇

HO to write the angular momentum balance equation as follows.

Net moment/0 = rate of change of angular momentum/0 (a)
⇀

Mnet =
⇀̇

HO (b)

=

∫
all mass

⇀r ×
⇀a dm (c)

=

∫
⇀r ×

(
−ω2⇀r + ω̇k̂ ×

⇀r
)

dm (d)

=

∫
⇀r ×

(
ω̇k̂ ×

⇀r
)

dm (e)

=

∫
⇀r ×

(
ω̇k̂ ×

⇀r
)

dm (f)

⇀

Mnet = ω̇k̂
∫

r2 dm (g)

⇒ Mnet = ω̇

∫
r2 dm (h)

(13.44)
We get from eqn. (13.44)f to eqn. (13.44)g by noting that ⇀r is perpendicular
to k̂. Thus, using the right hand rule twice we get ⇀r × (k̂ ×

⇀r) = r2 k̂.
Eqn. 13.44g and eqn. (13.44)h are the vector and scalar versions of the

angular momentum balance equation for rotation of a planar object about 0.
Repeating,

⇀

Mnet = ω̇k̂
∫

r2 dm and Mnet = ω̇

∫
r2 dm. (13.45)

Power and Energy
Although we could treat distributed forces similarly, lets assume that there
are a set of point forces applied. And, to be contrary, lets assume the mass
is continuously distributed (the derivation for rigidly connected point masses
would be similar). The power balance equation for one rotating rigid object
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is (discussed below):

Net power in = rate of change of kinetic energy (a)
P = ĖK (b)∑

all applied forces

⇀

Fi ·
⇀
vi =

d
dt

∫
all mass

1
2
v2 dm (c)

∑
⇀

Fi ·
(
⇀
ω ×

⇀r i
)

=
d
dt

∫
1
2
(
⇀
ω ×

⇀r) · (
⇀
ω ×

⇀r) dm (d)∑
⇀
ω · (

⇀r i ×
⇀

Fi ) =
d
dt

∫
1
2
ω2r2 dm (e)

⇀
ω ·

∑
(
⇀r i ×

⇀

Fi ) =
d
dt

(
1
2
ω2
)∫

r2 dm (f)

⇀
ω ·

∑
⇀

M i = ω̇ω

∫
r2 dm (g)

⇀
ω ·

⇀

M tot =
⇀̇
ω ·

(
⇀
ω

∫
r2 dm

)
︸ ︷︷ ︸

⇀

H/0

(h)

(13.46)

When not notated clearly, positions and moments are relative to the hinge at
0. Derivation 13.46 is two derivations in one. The left side about power and
the right side about kinetic energy. Lets discuss one at a time.

On the left side of eqn. (13.46) we note in (c) that the power of each force
is the dot product of the force with the velocity of the point it touches. In (d)
we use what we know about the velocities of points on rotating rigid bodies.
In (e) we use the vector identity

⇀

A ·
⇀

B ×
⇀

C =
⇀

B ·
⇀

C ×
⇀

A from chapter 2.
In (f) we note that ⇀

ω is common to all points so factors out of the sum. In
(g) we note that ⇀r ×

⇀

Fi is the moment of the force about pt O. And in (g)
we sum the moments of the forces. So the power of a set of forces acting
on a rigid object is the product of their net moment (about 0) and the object
angular velocity,

P =
⇀
ω ·

⇀

M tot. (13.47)

On the right side of eqn. (13.46) we note in (c) that the kinetic energy is the
sum of the kinetic energy of the mass increments. In (d) we use what we
know about the velocities of these bits of mass, given that they are on a com-
mon rotating object. In (e) we use that the magnitude of the cross product of
orthogonal vectors is the product of the magnitudes (|

⇀

A×
⇀

B| = AB) and that
the dot product of a vector with itself is its magnitude squared (

⇀

A ·
⇀

A = A2).
In (f) we factor out ω2 because it is common to all the mass increments and
note that the remaining integral is constant in time for a rigid object. In (g)
we carry out the derivative. In (h) we de-simplify the result from (g) in order
to show a more general form that we will find later in 3D mechanics. Eqn.
(h) follows from (g) because ⇀

ω is parallel to ⇀̇
ω for 2D rotations.

Note that we started here with the basic power balance equation from the
front inside cover. Instead, we could have derived power balance from our
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angular momentum balance expression (see box 13.4 on 627).

13.4 THEORY
The relation between angular momentum balance and power balance

For this system, angular momentum balance can be derived from
power balance and vice versa. Thus neither is essentially more
fundamental than the other and both are reliable. First we can derive
power balance from angular momentum balance as follows:

⇀
Mnet = ω̇k̂

∫
r2 dm

⇀
ω ·

⇀
Mnet =

⇀
ω ·

(
ω̇k̂

∫
r2 dm

)
.

P = ĖK

(13.48)

That is, when we dot both sides of the angular momentum equation
with ⇀

ω we get on the left side a term which we recognize as the

power of the forces and on the right side a term which is the rate of
change of kinetic energy.

The opposite derivation starts with the power balance
Fig. 13.46(g)

⇀
ω ·

∑ ⇀
Mi = ω̇ω

∫
r2 dm (g)

⇒ ω
(

k̂ ·

∑ ⇀
Mi

)
= ω̇ω

∫
r2 dm

⇒

(
k̂ ·

∑ ⇀
Mi

)
= ω̇

∫
r2 dm

(13.49)

and, assuming ω 6= 0, divide by ω to get the angular momentum
equation for planar rotational motion.
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SAMPLE 13.18 A rod going in circles at constant rate. A uniform rod
of mass m and length ` is connected to a motor at end O. A ball of mass m
is attached to the rod at end B. The motor turns the rod in counterclockwise
direction at a constant angular speed ω. There is gravity pointing in the −̂
direction. Find the torque applied by the motor (i) at the instant shown and
(ii) when θ = 0◦, 90◦, 180◦. How does the torque change if the angular
speed is doubled?
Solution The FBD of the rod and ball system is shown in Fig. 13.56(a). Since the system is
undergoing circular motion at a constant speed, the acceleration of the ball as well as every
point on the rod is just radial (pointing towards the center of rotation O) and is given by
⇀a = −ω2r λ̂ where r is the radial distance from the center O to the point of interest and λ̂ is
a unit vector along OB pointing away from O (Fig. 13.56(b)).

Angular Momentum Balance about point O gives∑ ⇀
MO =

⇀̇
HO

∑ ⇀
MO =

⇀r G/O × (−mĝ)+
⇀r B/O × (−mĝ)+ M k̂

= −
`

2
cos θmg k̂ − ` cos θmg k̂ + M k̂

= (M −
3`
2

mg cos θ)k̂ (13.50)

⇀̇
HO =

(
⇀̇
HO)ball︷ ︸︸ ︷

⇀r B/O × m⇀a B +

(
⇀̇
HO)rod︷ ︸︸ ︷∫

m

⇀r dm/O ×
⇀adm dm

= `λ̂ × (−mω2`λ̂)+

∫
m

⇀r dm/O︷︸︸︷
sλ̂ ×

⇀a dm︷ ︸︸ ︷
(−ω2sλ̂) dm

=
⇀
0 (since λ̂ × λ̂ =

⇀
0) (13.51)

(i) Equating (13.50) and (13.51) we get

M =
3
2

mg` cos θ.

M =
3
2 mg` cos θ

(ii) Substituting the given values of θ in the above expression we get

M(θ = 0◦) =
3
2

mg`, M(θ = 90◦) = 0 M(θ = 180◦) = −
3
2

mg`

M(0◦) =
3
2 mg`, M(90◦) = 0 M(180◦) = −

3
2 mg`

The values obtained above make sense (at least qualitatively). To make the rod and the ball go
up from the 0◦ position, the motor has to apply some torque in the counterclockwise direction.
In the 90◦ position no torque is required for the dynamic balance. In 180◦ position the system
is accelerating downwards under gravity; therefore, the motor has to apply a clockwise torque
to make the system maintain a uniform speed.

It is clear from the expression of the torque that it does not depend on the value of the

angular speed ω! Therefore, the torque will not change if the speed is doubled. In fact, as long

as the speed remains constant at any value, the only torque required to maintain the motion is

the torque to counteract the moments at O due to gravity.
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SAMPLE 13.19 A compound gear train. When the gear of an input shaft,
often called the driver or the pinion, is directly meshed in with the gear of
an output shaft, the motion of the output shaft is opposite to that of the input
shaft. To get the output motion in the same direction as that of the input
motion, an idler gear is used. If the idler shaft has more than one gear in
mesh, then the gear train is called a compound gear train.

In the gear train shown in Fig. 13.57, the input shaft is rotating at 2000
rpm and the input torque is 200 N-m. The efficiency (defined as the ratio of
output power to input power) of the train is 0.96 and the various radii of the
gears are: RA = 5 cm, RB = 8 cm, RC = 4 cm, and RD = 10 cm. Find

1. the input power Pin and the output power Pout ,
2. the output speed ωout , and
3. the output torque.

Solution

1. The power:

Pin = Minωin = 200 N·m · 2000 rpm

= 400000 N·m ·
6rev
6min

·
2π

1 6rev
·

1 6min
60 s

= 41887.9 N m/s ≈ 42 kW.

⇒ pout = efficiency · Pin = 0.96 · 42 kW ≈ 40 kW

Pin = 42 kW, pout = 40 kW

2. The angular speed of meshing gears can be easily calculated by realizing that the linear
speed of the point of contact has to be the same irrespective of which gear’s speed and
geometry is used to calculate it. Thus,

vP = ωin RA = ωB RB

⇒ ωB = ωin ·
RA
RB

and vR = ωC RC = ωout RD

⇒ ωout = ωC ·
RC
RD

But ωC = ωB

⇒ ωout = ωin ·
RA
RB

·
RC
RD

= 2000 rpm ·
5
8

·
4

10
= 500 rpm.

ωout = 500 rpm

3. The output torque,

Mout =
Pout

ωout
=

40 kW
500 rpm

=
40
500

· 1000
N·m
6 s

·
6min
6rev

·
1 6rev
2π

·
606 s

1 6min
= 764 N·m.

Mout = 764 N·m



630 Circular motion

x

y

a = 4 ft

b = 2 ft G

O

Figure 13.59: A rectangular plate is released
from rest from the position shown.
Filename:sfig5-4-3

G

O

O

(a) 

(b) 

(c) 

⇀
F

G

O

êR
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Figure 13.60: (a) The free body diagram of
the plate. (b) Computation of the integral

in
⇀̇
HO = ω̇k̂

∫
m r2dm. (c) The geome-

try of motion. From the given dimensions,
êR =

a ı̂−b̂
√
(a2+b2)

, êθ =
b ı̂+â

√
(a2+b2)

, and

rG/O =

√
a2+b2

2 .
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SAMPLE 13.20 At the onset of motion: A 2′
× 4′ rectangular plate of

mass 20 lbm is pivoted at one of its corners as shown in the figure. The plate
is released from rest in the position shown. Find the force on the support
immediately after release.

Solution The free body diagram of the plate is shown in Fig. 13.60. The force
⇀
F applied on

the plate by the support is unknown.
The linear momentum balance for the plate gives∑ ⇀

F = m⇀aG
⇀
F − mĝ = m(θ̈ rG/O êθ − θ̇2 R êR )

= m θ̈ rG/O êθ (since θ̇ = 0 at t = 0). (13.52)

Thus to find
⇀
F we need to find θ̈ .

The angular momentum balance for the plate about the fixed support point O gives

⇀
M O =

⇀̇
HO

where
⇀
M O =

⇀r G/O × mg(−̂)

= (
a
2

ı̂ −
b
2
̂︸ ︷︷ ︸

⇀r G/O

)× mg(−̂) = −mg
a
2

k̂,

and

⇀̇
HO = ω̇k̂

∫
m

r2dm = θ̈ k̂
∫ b

0

∫ a

0

r2︷ ︸︸ ︷
(x2

+ y2)

dm︷ ︸︸ ︷
m
ab

dxdy

=
m(a2

+ b2)

3
θ̈ k̂.

Thus,

−mg
a
2

k̂ =
m(a2

+ b2)

3
θ̈ k̂

⇒ θ̈ = −
3ga

2(a2 + b2)

= −
3 · 32.2 ft/s2

· 4 ft

2(16 + 4) ft2
= −9.66 rad/s2.

From eqn. (13.52), the support force is now readily calculated:

⇀
F = mĝ + mθ̈ rG/O êθ

= mĝ + mθ̈

√
a2 + b2

2
b ı̂ + â√
(a2 + b2)

=
1
2

mθ̈b ı̂ + (mg +
1
2

mθ̈a)̂

Using the given numerical values of m, a, and b, θ̈ = −9.66 rad/s2, and g = 32.2 ft/s2, we
get

⇀
F = (−6ı̂ + 8̂) lbf.

⇀
F = (−6ı̂ + 8̂) lbf
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SAMPLE 13.21 The swinging stick. A uniform bar of mass m and length `
is pinned at one of its ends O. The bar is displaced from its vertical position
by an angle θ and released (Fig. 13.61).

1. Find the equation of motion using momentum balance.
2. Find the reaction at O as a function of (θ, θ̇ , g, m, `).

Solution First we draw a simple sketch of the given problem showing relevant geometry
(Fig. 13.61(a)), and then a free-body diagram of the bar (Fig. 13.61(b)).

G
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O

A

m mg 

G

O

A

ĵ

ı̂

�

Rx

Ry

θ

Figure 13.62: (a) A line sketch of the swinging rod and (b) free-body diagram of the rod.
Filename:sfig5-4-1b

We should note for future reference that

⇀
ω = ωk̂ ≡ θ̇ k̂
⇀̇
ω = ω̇k̂ ≡ θ̈ k̂

1. Equation of motion using momentum balance: We can write angular momentum
balance about point O as ∑ ⇀

MO =
⇀̇
HO.

Let us now calculate both sides of this equation:∑ ⇀
MO =

⇀r G/O × mg(−̂)

=
`

2
(sin θ ı̂ − cos θ ̂)× mg(−̂)

= −
`

2
mg sin θ k̂. (13.53)

⇀̇
HO = ω̇k̂

∫
m

r2dm

= θ̈ k̂
∫ `

0
s2 m
`

ds (dm = m/` · ds)

=
mθ̈
`

 s3

3

∣∣∣∣∣
`

0

 =
m`2

3
θ̈ k̂ (13.54)
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Equating (13.65) and (13.66) we get

−
`

2
6m g sin θ = 6m

`2

3
θ̈

or ω̇ +
3g
2`

sin θ = 0

or θ̈ +
3g
2`

sin θ = 0. (13.55)

θ̈ +
3g
2` sin θ = 0

2. Reaction at O: Using linear momentum balance∑ ⇀
F = m ⇀aG ,

where
∑ ⇀

F = Rx ı̂ + (Ry − mg)̂ ,

and ⇀aG =
`

2
ω̇(cos θ ı̂ + sin θ ̂)+

`

2
ω2(− sin θ ı̂ + cos θ ̂)

=
`

2
[(ω̇ cos θ − ω2 sin θ)ı̂ + (ω̇ sin θ + ω2 cos θ)̂ ].

Dotting both sides of
∑ ⇀

F = m ⇀aG with ı̂ and ̂ and rearranging, we get

Rx = m
`

2
(ω̇ cos θ − ω2 sin θ)

≡ m
`

2
(θ̈ cos θ − θ̇2 sin θ),

Ry = mg + m
`

2
(ω̇ sin θ + ω2 cos θ)

≡ mg + m
`

2
(θ̈ sin θ + θ̇2 cos θ).

Now substituting the expression for θ̈ from (13.67) in Rx and Ry , we get

Rx = −m sin θ
(

3
4

g cos θ +
`

2
θ̇2
)
, (13.56)

Ry = mg
(

1 −
3
4

sin2 θ

)
+ m

`

2
θ̇2 cos θ. (13.57)

⇀
R = −m( 3

4 g cos θ +
`
2 θ̇

2) sin θ ı̂ + [mg(1 −
3
4 sin2 θ)+ m `

2 θ̇
2 cos θ ]̂

Check: We can check the reaction force in the special case when the rod does not
swing but just hangs from point O. The forces on the bar in this case have to satisfy
static equilibrium. Therefore, the reaction at O must be equal to mg and directed
vertically upwards. Plugging θ = 0 and θ̇ = 0 (no motion) in Eqn. (13.56) and (13.57)
we get Rx = 0 and Ry = mg, the values we expect.
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SAMPLE 13.22 The swinging stick: energy balance. Consider the same
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Figure 13.64: Work done by the force of
gravity in moving from G′ to G

∫ ⇀
F · d⇀r =

−mĝ · ĥ = −mgh.
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Figure 13.65: The infinitesimal mass dm
considered in the calculation of EK.
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swinging stick as in Sample 13.21. The stick is, again, displaced from its
vertical position by an angle θ and released (See Fig. 13.61).

1. Find the equation of motion using energy balance.
2. What is θ̇ at θ = 0 if θ(t = 0) = π/2?
3. Find the period of small oscillations about θ = 0.

Solution

1. Equation of motion using energy balance: We use the power equation, ĖK = P ,
to derive the equation of motion of the bar. Now, the kinetic energy is given by

EK =
1
2

∫
m
v2dm

where v is the speed of the infinitesimal mass element dm. Refering to Fig. 13.65, we
can write, dm = (m/`)ds, and v = ωs ≡ θ̇s. Thus,

EK =
1
2

∫ `

0
θ̇2s2 m

`
ds

=
mθ̇2

2`

∫ `

0
s2ds

=
1
6

m`2θ̇2

and, therefore,

ĖK =
d
dt
(

1
6

m`2ω2) =
1
3

m`2ω ω̇ =
1
3

m`2θ̇ θ̈ .

Calculation of power (P): There are only two forces acting on the bar, the reaction
force,

⇀
R(= Rx ı̂ + Ry ̂) and the force due to gravity, −mĝ . Since the support point

O does not move, no work is done by
⇀
R. Therefore,

W = Work done by gravity force in moving from G′ to G.

= −mgh

Note that the negative sign stands for the work done against gravity. Now,

h = OG′
− OG′′

=
`

2
−
`

2
cos θ =

`

2
(1 − cos θ).

Therefore,

W = −mg
`

2
(1 − cos θ)

and P = Ẇ =
dW
dt

= −mg
`

2
sin θ θ̇ .

Equating ĖK and P we get

−6m g
`

2
sin θ6 θ̇ =

1
3
6m `2

6 θ̇ θ̈

or θ̈ +
3g
2`

sin θ = 0.

θ̈ +
3g
2` sin θ = 0

This equation is, of course, the same as we obtained using balance of angular momen-
tum in Sample 13.21.
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Figure 13.66: The total energy between posi-
tions (1) and (2) is constant.
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2. Find ω at θ = 0: We are given that at t = 0, θ = π/2 and θ̇ ≡ ω = 0 (released from
rest). This position is (1) shown in Fig. 13.66. In position (2) θ = 0, i.e., the rod is
vertical. Since there are no dissipative forces, the total energy of the system remains
constant. Therefore, taking datum for potential energy as shown in Fig. 13.66, we may
write

EK1︸︷︷︸
0

+V1 = EK2 + V2︸︷︷︸
0

or mg
`

2
=

1
2

∫
m
v2dm

=
1
6

m`2ω2 (see part (a))

⇒ ω = ±

√
3g
`

ω = ±

√
3g
`

3. Period of small oscillations: The equation of motion is

θ̈ +
3g
2`

sin θ = 0.

For small θ , sin θ ≈ θ

⇒ θ̈ +
3g
2` θ = 0 (13.58)

or θ̈ + λ2θ = 0

where λ2
=

3g
2` .

Therefore,

the circular frequency = λ =

√
3g
2`
,

and the time period T =
2π
λ

= 2π

√
2`
3g
.

T = 2π
√

2`
3g

[Say for g = 9.81 m/s2, ` = 1 m we get T
4 =

π
2

√
2
3

1
9.81 s = 0.4097 s]
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SAMPLE 13.23 The swinging stick: numerical solution of the equation
of motion. For the swinging stick considered in Samples 13.21 or 13.22, find
the time that the rod takes to fall from θ = π/2 to θ = 0 if it is released from
rest at θ = π/2?
Solution π/2 is a big value of θ – big in that we cannot assume sin θ ≈ θ (obviously 1 6=

1.5708). Therefore we may not use the linearized equation (13.58) to solve for t explicitly.
We have to solve the full nonlinear equation (13.67) to find the required time. Unfortunately,
we cannot get a closed form solution of this equation using mathematical skills you have at
this level. Therefore, we resort to numerical integration of this equation.

Here, we show how to do this integration and find the required time using the numerical
solution. We assume that we have some numerical ODE solver, say odesolver, available
to us that will give us the numerical solution given appropriate input.

The first step in numerical integration is to set up the given differential equation of second
or higher order as a set of first order ordinary differential equations. To do so for Eqn. (13.67),
we introduce ω as a new variable and write

θ̇ = ω (13.59)

ω̇ = −
3g
2`

sin θ (13.60)

Thus, the second order ODE (13.67) has been rewritten as a set of two first order ODE’s
(13.59) and (13.60). We may write these first order equations in vector form by assuming
[z] = [θ ω]

T . That is,

[z] =

[
z1
z2

]
=

[
θ

ω

]
⇒ [ż] =

[
θ̇

ω̇

]
=

[
z2

−
3g
2` sin z1

]

To use any numerical integrator, we usually need to write a small program which will compute
and return the value of [ż] as output if t and [z] are supplied as input. Here is such a program
written in pseudo-code, for our equations.

g = 9.81 % define constants
L = 1
ODES = { z1dot = z2

z2dot = -3*g/(2*L) * sin(z1) }
ICS = { z1zero = pi/2

z2zero = 0 }
solve ODES with ICS untill t = 4.
plot(t,z) % plots t vs. theta

% and t vs. omega together
xlabel(’t’),ylabel(’theta and omega’) % label axes

The results obtained from the numerical solution are shown in Fig. 13.67.
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Figure 13.67: Numerical solution is shown by plotting θ and ω against time.
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The problem of finding the time taken by the bar to fall from θ = π/2
to θ = 0 numerically is nontrivial. It is called a boundary value prob-
lem. We have only illustrated how to solve initial value problems. How-
ever, we can get fairly good estimate of the time just from the solution obtained.
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θ

Figure 13.68: Graphic output of the plot command
Filename:sfig5-4-4b

We first plot θ against time t to get the graph shown in Fig. 13.68. We find the values of
t and the corresponding values of θ that bracket θ = 0. Now, we can use linear interpolation
to find the value of t at θ = 0. Proceeding this way, we get t = 0.4833 (seconds), a little
more than we get from the linear ODE in sample 13.22 of 0.40975. Additionally, we can get
by interpolation that at θ = 0

ω = −5.4246 rad/s.

How does this result compare with the analytical value of ω from sample 13.22 (which did
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not depend on the small angle approximates)? Well, we found that

ω = −

√
3g
`

= −

√
3 · 9.81 m/s2

1 m
= −5.4249 s−1.

Thus, we get a fairly accurate value from numerical integration!
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SAMPLE 13.24 The swinging stick with a destabilizing torque. Consider
the swinging stick of Sample 13.21 once again.

1. Find the equation of motion of the stick, if a torque
⇀

M = M k̂ is applied
at end O and a force

⇀

F = F ı̂ is applied at the other end A.
2. Take F = 0 and M = Cθ . For C = 0 you get the equation of free

oscillations obtained in Sample 13.21 or 13.22 For small C , does the
period of the pendulum increase or decrease?

3. What happens if C is big?
Solution

1. A free body diagram of the bar is shown in Fig. 13.69. Once again, we can use∑ ⇀
MO =

⇀̇
HO to derive the equation of motion as in Sample 13.21. We calculated∑ ⇀

MO and
⇀̇
HO in Sample 13.21. Calculation of

⇀̇
HO remains the same in the present

problem. We only need to recalculate
∑ ⇀

MO.∑ ⇀
MO = M k̂ +

⇀r G/O × mg(−̂)+
⇀r A/O ×

⇀
F

= M k̂ −
`

2
mg sin θ k̂ + F` cos θ k̂

= (M + F` cos θ −
`

2
mg sin θ)k̂

and
⇀̇
HO = mθ̈

`2

3
k̂ (see Sample 13.21)

Therefore, from
∑ ⇀

MO =
⇀̇
HO

M + F` cos θ −
`

2
mg sin θ = mθ̈

`2

3

⇒ θ̈ +
3g
2`

sin θ −
3F
m`

cos θ −
3M
m`2 = 0.

θ̈ +
3g
2` sin θ −

3F
m` cos θ −

3M
m`2 = 0

2. Now, setting F = 0 and M = C θ we get

θ̈ +
3g
2`

sin θ −
3Cθ
m`2 = 0 (13.61)

Numerical Solution: We can numerically integrate (13.61) just as in the previous
Sample to find θ(t). Here is the pseudo-code that can be used for this purpose.

g = 9.81, L = 1 % specify parameters
m = 1, C = 4
ODES = { thetadot = omega

omegadot = -(3*g/(2*L)) * sin(theta)
+ 3*C/(m*Lˆ2) * theta }

ICS = { thetazero = pi/20
omegazero = 0 }

solve ODES with ICS untill t = 10

Using this pseudo-code, we find the response of the pendulum. Figure 13.70
shows different responses for various values of C . Note that for C = 0, it
is the same case as unforced bar pendulum considered above. From Fig. 13.70
it is clear that the bar has periodic motion for small C , with the period of
motion increasing with increasing values of C . It makes sense if you look
at Eqn. (13.61) carefully. Gravity acts as a restoring force while the applied
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torque acts as a destabilizing force. Thus, with the resistance of the applied
torque, the stick swings more sluggishly making its period of oscillation bigger.
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Figure 13.70: θ(t) with applied torque M = C θ for C = 0, 1, 2, 4, 4.905, 5. Note that for
small C the motion is periodic but for large C (C ≥ 4.4) the motion becomes aperiodic.
Filename:sfig5-4-5b

3. From Fig. 13.70, we see that at about C ≈ 4.9 the stability of the system changes
completely. θ(t) is not periodic anymore. It keeps on increasing at faster and faster
rate, that is, the bar makes complete loops about point O with ever increasing speed.
Does it make physical sense? Yes, it does. As the value of C is increased beyond a
certain value (can you guess the value?), the applied torque overcomes any restoring
torque due to gravity. Consequently, the bar is forced to rotate continuously in the
direction of the applied force.
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Figure 13.71: A bit of mass dm on a general
planar body.
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∗
In fact the moment of inertia for a given

object depends on what reference point is
used. Most commonly when people say
‘the’ moment of inertia they mean to use the
center-of-mass as the reference point. For
clarity this moment of inertia matrix is often
notated as [Icm

] in this book. If a different
reference point, say point O is used, the ma-
trix is notated as [IO

].

13.5 Polar moment of inertia
We know how to find the velocity and acceleration of every bit of mass on a
2-D rigid body as it spins about a fixed axis. So, as explained in the previous
section, it is just a matter of doing integrals or sums to calculate the various
motion quantities (momenta, energy) of interest. As the body moves and
rotates the region of integration and the values of the integrands change. So,
in principle, in order to analyze a rigid body one has to evaluate a different
integral or sum at every different configuration. But there is a shortcut. A
big sum (over all atoms, say), or a difficult integral is reduced to a simple
multiplication.

The moment of inertia matrix [I]
∗is defined to simplify the expressions

for the angular momentum, the rate of change of angular momentum, and
the energy of a rigid body. For study of the analysis of flat objects in planar
motion only one component of the matrix [I] is relevant, it is Izz , called just
I or J in elementary physics courses. Here are the results. A flat object
spinning with ⇀

ω = ωk̂ in the xy plane has a mass distribution which gives,
by means of a calculation which we will discuss shortly, a moment of inertia
I cm

zz or just ‘I ’ so that:

⇀

Hcm = Iωk̂ (13.62)
⇀̇

Hcm = I ω̇k̂ (13.63)

EK/cm =
1
2
ω2 I. (13.64)

The moments of inertia in 2-D : [Icm
] and [IO

].
We start by looking at the scalar I which is just the zz or 33 component of
the matrix [I] that we will study later. The definition of I cm is

I cm
≡

∫
x2

+ y2︸ ︷︷ ︸
r2

dm

=

∫ ∫
r2

dm︷ ︸︸ ︷(m tot

A

)
︸ ︷︷ ︸

BBM

The mass per unit area.

d A for a uniform planar object
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where x and y are the distances of the mass in the x and y direction measured
from an origin, and r = r/cm is the direct distance from that origin. If that
origin is at the center-of-mass then we are calculating I cm , if the origin is at
a point labeled C or O then we are calculating I C or I O .

The term Izz is sometimes called the polar moment of inertia, or polar
mass moment of inertia to distinguish it from the Ixx and Iyy terms which
have little utility in planar dynamics (but are all important when calculating
the stiffness of beams!).

What, physically, is the moment of inertia? It is a measure of the extent
to which mass is far from the given reference point. Every bit of mass con-
tributes to I in proportion to the square of its distance from the reference
point. Note from, say, eqn. (13.44) on page 625 that I is just the quantity we
need to do mechanics problems.

Radius of gyration

Another measure of the extent to which mass is spread from the reference
point, besides the moment of inertia, is the radius of gyration, rgyr . The
radius of gyration is sometimes called k but we save k for stiffness. The
radius of gyration is defined as:

rgyr ≡
√

I/m ⇒ r2
gyr m = I.

That is, the radius of gyration of an object is the radius of an equivalent ring
of mass that has the same I and the same mass as the given object.

Other reference points

For the most part it is I cm which is of primary interest. Other reference points
are useful

1. if the rigid body is hinged at a fixed point O then a slight short cut in
calculation of angular momentum and energy terms can be had; and

2. if one wants to calculate the moment of inertia of a composite body
about its center-of-mass it is useful to first find the moment of inertia
of each of its parts about that point. But the center-of-mass of the
composite is usually not the center-of-mass of any of the separate parts.

The box 13.6 on page 646 shows the calculation of I for a number of simple
2 dimensional objects.

The parallel axis theorem for planar objects
The planar parallel axis theorem is the equation

I C
zz = I cm

zz + m tot r2
cm/C︸ ︷︷ ︸
d2

.

In this equation d = rcm/C is the distance from the center-of-mass to a line
parallel to the z-axis which passes through point C . See box 13.5 on page
648 for a derivation of the parallel axis theorem for planar objects.
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Note that I C
zz ≥ I cm

zz , always.
One can calculate the moment of inertia of a composite body about its

center of mass, in terms of the masses and moments of inertia of the separate
parts. Say the position of the center of mass of mi is (xi , yi ) relative to a
fixed origin, and the moment of inertia of that part about its center of mass
is Ii . We can then find the moment of inertia of the composite Itot about its
center-of-mass (xcm, ycm) by the following sequence of calculations:

(1) m tot =
∑

mi

(2) xcm =
[∑

xi mi
]
/m tot

ycm =
[∑

yi mi
]
/m tot

(3) d2
i = (xi − xcm)

2
+ (yi − ycm)

2

(4) Itot =
∑[

I cm
i + mi d2

i

]
.

Of course if you are mathematically inclined you can reduce this recipe to
one grand formula with lots of summation signs. But you would end up
doing the calculation in about this order in any case. As presented here this
sequence of steps lends itself naturally to computer calculation with a spread
sheet or any program that deals easily with arrays of numbers.

The tidy recipe just presented is actually more commonly used, with
slight modification, in strength of materials than in dynamics. The need for
finding area moments of inertia of strange beam cross sections arises more
frequently than the need to find polar mass moment of inertia of a strange
cutout shape.

The perpendicular axis theorem for planar rigid bodies
The perpendicular axis theorem for planar objects is the equation

Izz = Ixx + Iyy

which is derived in box 13.5 on page 648. It gives the ‘polar’ inertia Izz in
terms of the inertias Ixx and Iyy . Unlike the parallel axis theorem, the per-
pendicular axis theorem does not have a three-dimensional counterpart. The
theorem is of greatest utility when one wants to study the three-dimensional
mechanics of a flat object and thus are in need of its full moment of inertia
matrix.
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SAMPLE 13.25 A pendulum is made up of two unequal point masses m
and 2m connected by a massless rigid rod of length 4r . The pendulum is
pivoted at distance r along the rod from the small mass.

1. Find the moment of inertia I O
zz of the pendulum.

2. If you had to put the total mass 3m at one end of the bar and still have
the same I O

zz as in (a), at what distance from point O should you put the
mass? (This distance is known as the radius of gyration).

Solution Here we have two point masses. Therefore, the integral formula for I O
zz (I

O
zz =∫

m r2
/O dm) gets replaced by a summation over the two masses:

I O
zz =

2∑
i=1

mi r
2
i/O

= = m1r2
1/O + m2r2

2/O

1. For the pendulum, m1 = m, m2 = 2m, r1/O = r, r2/O = 3r .

I O
zz = mr2

+ 2m(3r)2

= 19mr2

I O
zz = 19mr2

2. For the equivalent simple pendulum of mass 3m, let the length of the massless rod
(i.e., the distance of the mass from O) be rgyr .

(I O
zz )simple = (3m)·r2

gyr

Now we need (I O
zz )simple = I O

zz (from part (a))

⇒ 36mr2
gyr = 196mr2

⇒ rgyr =

√
19
3

r

= 2.52r

Thus the radius of gyration rgyr of the given pendulum is rgyr = 2.52 r .

rgyr = 2.52 r
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13.6 Some examples of 2-D Moment of Inertia

Here, we illustrate some simple moment of inertia calculations for
two-dimensional objects. The needed formulas are summarized, in
part, by the lower right corner components (that is, the elements in
the third column and third row (3,3)) of the matrices in the table on
the inside back cover.

One point mass

r

x

y

O

x2 + y2 = r2

If we assume that all mass is concentrated at one or more points,
then the integral

I o
zz =

∫
r2
/o dm

reduces to the sum

I o
zz =

∑
r2
i/omi

which reduces to one term if there is only one mass,

I o
zz = r2m = (x2

+ y2)m.

So, if x = 3 in, y = 4 in, and m = 0.1 lbm, then I o
zz = 2.5 lbm in2.

Note that, in this case, I cm
zz = 0 since the radius from the center-of-

mass to the center-of-mass is zero.

Two point masses

m1

m2

r2

r1

O x

y

In this case, the sum that defines I o
zz reduces to two terms, so

I o
zz =

∑
r2
i/omi = m1r2

1 + m2r2
2 .

Note that, if r1 = r2 = r , then I o
zz = mtot r2.

A thin uniform rod

x

y

d

s

ds

O�1

�1 + �2 = �

�2

� m = ρ�
dm = ρds
ρ = mass per

unit length

Consider a thin rod with uniform mass density, ρ, per unit
length, and length `. We calculate I o

zz as

I o
zz =

∫
r2

ρds︷︸︸︷
dm

=

∫ `2

−`1
s2ρds (s = r)

=
1
3
ρs3

∣∣∣∣ `2

−`1

(since ρ ≡ const.)

=
1
3
ρ(`3

1 + `3
2).

If either `1 = 0 or `2 = 0, then this expression reduces to I o
zz =

1
3 m`2. If `1 = `2, then O is at the center-of-mass and

I o
zz = I cm

zz =
1
3
ρ

((
`

2

)3
+

(
`

2

)3
)

=
ml2

12
.

We can illustrate one last point. With a little bit of algebraic histri-
onics of the type that only hindsight can inspire, you can verify that
the expression for I 0

zz can be arranged as follows:

I 0
zz =

1
3
ρ(`3

1 + `3
2)

= ρ(`1 + `2)︸ ︷︷ ︸
m

 `2 − `1
2︸ ︷︷ ︸
d


2

+ ρ
(`1 + `2)

3

12︸ ︷︷ ︸
m`2/12

= md2
+ m

`2

12
= md2

+ I cm
zz

That is, the moment of inertia about point O is greater than that about
the center of mass by an amount equal to the mass times the distance
from the center-of-mass to point O squared. This derivation of the
parallel axis theorem is for one special case, that of a uniform thin
rod.
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A uniform hoop

R

O x

y dm = ρRdθ

dθ

m = 2ρπ R

For a hoop of uniform mass density, ρ, per unit length, we might
consider all of the points to have the same radius R. So,

I o
zz =

∫
r2dm =

∫
R2dm = R2

∫
dm = R2m.

Or, a little more tediously,

I o
zz =

∫
r2dm

=

∫ 2π

0
R2ρRdθ

= ρR3
∫ 2π

0
dθ

= 2πρR3
= (2πρR)︸ ︷︷ ︸

m

R2
= m R2.

This I o
zz is the same as for a single point mass m at a distance R from

the origin O . It is also the same as for two point masses if they both
are a distance R from the origin. For the hoop, however, O is at the
center-of-mass so I o

zz = I cm
zz which is not the case for a single point

mass.

A uniform disk

R

rO x

y dm = ρ dA = ρr dr dθ

rdθ
dθ

dA dr

m = ρπ R2

Assume the disk has uniform mass density, ρ, per unit area. For
a uniform disk centered at the origin, the center-of-mass is at the
origin so

I o
zz = I cm

zz =

∫
r2dm

=

∫ R

0

∫ 2π

0
r2ρrdθdr

=

∫ R

0
2πρr3dr

= 2πρ
r4

4

∣∣∣∣∣
R

0

= πρ
R4

2
= (πρR2)

R2

2

= m
R2

2
.

For example, a 1 kg plate of 1 m radius has the same moment of
inertia as a 1 kg hoop with a 70.7 cm radius.

Uniform rectangular plate

a

b
O x

y

dm = ρdx dy

m = ρab

For the special case that the center of the plate is at point O , the
center-of-mass of mass is also at O and I o

zz = I cm
zz .

I o
zz = I cm

zz =

∫
r2dm

=

∫ b
2

−
b
2

∫ a
2

−
a
2

(x2
+ y2)

dm︷ ︸︸ ︷
ρdxdy

=

∫ b
2

−
b
2

ρ

(
x3

3
+ xy2

)∣∣∣∣∣
x=

a
2

x=−
a
2

dy

= ρ

(
x3 y

3
+

xy3

3

)∣∣∣∣∣
x=

a
2

x=−
a
2

∣∣∣∣∣∣
y=

b
2

y=−
b
2

= ρ

(
a3b
12

+
ab3

12

)
=

m
12
(a2

+ b2).

Note that
∫

r2dm =
∫

x2dm +
∫

y2dm for all planar objects (the
perpendicular axis theorem). For a uniform rectangle,

∫
y2dm =

ρ
∫

y2d A. But the integral y2d A is just the term often used for I ,
the area moment of inertia, in strength of materials calculations for
the stresses and stiffnesses of beams in bending. You may recall that∫

y2d A =
ab3
12 =

Ab2
12 for a rectangle. Similarly,

∫
x2d A =

Aa2
12 .

So, the polar moment of inertia J = I o
zz = m 1

12 (a
2

+ b2) can be
recalled by remembering the area moment of inertia of a rectangle
combined with the perpendicular axis theorem.



648 Chapter 13. Circular motion 13.5. Polar moment of inertia

13.5 THEORY
The 2-D parallel axis theorem and the perpendicular axis theorem

Sometimes, one wants to know the moment of inertia relative to the
center of mass and, sometimes, relative to some other point O , if
the object is held at a hinge joint at O . There is a simple relation
between these two moments of inertia known as the parallel axis
theorem.

2-D parallel axis theorem
For the two-dimensional mechanics of two-dimensional objects,

our only concern is I o
zz and I cm

zz and not the full moment of inertia
matrix. In this case, I o

zz =
∫

r2
/o dm and I cm

zz =
∫

r2
/cm dm. Now,

let’s prove the theorem in two dimensions referring to the figure.

O x

y

⇀
r /O

⇀
r cm/O

⇀
r /cm

dm

I O
zz =

∫
r2
/O dm

=

∫
(x2
/O + y2

/O )dm

=

∫
[(xcm/O + x/cm )︸ ︷︷ ︸

x/O

2
+ (ycm/O + y/cm )︸ ︷︷ ︸

y/O

2
]dm

=

∫
[(x2

cm/O + 2xcm/O x/cm + x2
/cm )+

(y2
cm/O + 2ycm/O y/cm + y2

/cm )]dm

= (x2
cm/O + y2

cm/O )

∫
dm︸ ︷︷ ︸

m

+2xcm/O

∫
x/cmdm︸ ︷︷ ︸

0

+

2ycm/O

∫
y/cmdm︸ ︷︷ ︸

0

+

∫
(x2
/cm + y2

/cm )dm

= r2
cm/O m +

∫
(x2
/cm + y2

/cm )dm︸ ︷︷ ︸
I cm
zz

= I cm
zz + r2

cm/O︸ ︷︷ ︸
d2

m

The cancellation
∫

y/cm dm =
∫

x/cm dm = 0 comes from the defi-
nition of center of mass.

Sometimes, people write the parallel axis theorem more simply
as

I 0
= I cm

+ md2 or JO = Jcm + md2

using the symbol J to mean Izz . One thing to note about the par-
allel axis theorem is that the moment of inertia about any point O
is always greater than the moment of inertia about the center of
mass. For a given object, the minimum moment of inertia is about
the center-of-mass.

Why the name parallel axis theorem? We use the name because
the two I ’s calculated are the moments of inertia about two parallel
axes (both in the z direction) through the two points cm and O .

One way to think about the theorem is the following. The mo-
ment of inertia of an object about a point O not at the center-of-mass
is the same as that of the object about the cm plus that of a point
mass located at the center-of-mass. If the distance from O to the
cm is larger than the outer radius of the object, then the d2m term
is larger than I cm

zz . The distance of equality of the two terms is the
radius of gyration, rgyr .

Perpendicular axis theorem (applies to
planar objects only)

For planar objects,

I O
zz =

∫
|
⇀r |

2 dm

=

∫
(x2
/O + y2

/O )dm

=

∫
x2
/O dm +

∫
y2
/O dm

= I O
yy + I O

xx

Similarly,
I cm
zz = I cm

xx + I cm
yy .

That is, the moment of inertia about the z-axis is the sum of the
inertias about the two perpendicular axes x and y. Note that the
objects must be planar (z = 0 everywhere) or the theorem would not
be true. For example, I o

xx =
∫
(y2
/O + z2

/O )dm 6=
∫

y2
/O dm for a

three-dimensional object.

O x

y

⇀
r /O

dm

x/O

y/O
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SAMPLE 13.26 A uniform rigid rod AB of mass M = 2 kg and length
3` = 1.5 m swings about the z-axis passing through the pivot point O.

1. Find the moment of inertia I O
zz of the bar using the fundamental defini-

tion I O
zz =

∫
m r2

/Odm.
2. Find I O

zz using the parallel axis theorem given that I cm
zz =

1
12 m`2 where

m = total mass, and ` = total length of the rod. (You can find I cm
zz for

many commonly encountered objects in the table on the inside back-
cover of the text).

Solution

1. Since we need to carry out the integral, I O
zz =

∫
m r2

/O dm, to find I O
zz , let us consider

an infinitesimal length segment d`′ of the bar at distance `′ from the pivot point O.
(see Figure 13.75). Let the mass of the infinitesimal segment be dm.
Now the mass of the segment may be written as

dm = (mass per unit length of the bar) · (length of the segment)

=
M
3`

d`′
(

Note:
mass

unit length
=

total mass
total length

)
.

We also note that the distance of the segment from point O, r/O = `. Substituting the
values found above for r/O and dm in the formula we get

I O
zz =

∫ 2`

−`
(`′)2︸︷︷︸
r2
/O

M
3`

d`′︸ ︷︷ ︸
dm

=
M
3`

∫ 2`

−`
(`′)2d`′ =

M
3`

[
`′3

3

]2`

−`

=
M
3`

[
8`3

3
−

(
−
`3

3

)]
= M`2

= 2 kg·(0.5 m)2 = 0.5 kg· m2.

I O
zz = 0.5 kg· m2

2. The parallel axis theorem states that

I O
zz = I cm

zz + Mr2
O/cm.

Since the rod is uniform, its center-of-mass is at its geometric center, i.e., at distance
3`
2 from either end. From the Fig 13.76 we can see that

rO/cm = AG − AO =
3`
2

− ` =
`

2

Therefore, I O
zz =

1
12

M(3`)2︸ ︷︷ ︸
I cm
zz

+M(
`

2
)2

=
9
12

M`2
+ M

`2

4
= M`2

= 0.5 kg· m2 (same as in (a), of course)

I O
zz = 0.5 kg· m2
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SAMPLE 13.27 A uniform rigid wheel of radius r = 1 ft is made eccentric
by cutting out a portion of the wheel. The center-of-mass of the eccentric
wheel is at C, a distance e =

r
3 from the geometric center O. The mass of the

wheel (after deducting the cut-out) is 3.2 lbm. The moment of inertia of the
wheel about point O, I O

zz , is 1.8 lbm· ft2. We are interested in the moment of
inertia Izz of the wheel about points A and B on the perimeter.

1. Without any calculations, guess which point, A or B, gives a higher
moment of inertia. Why?

2. Calculate I C
zz , I A

zz and I B
zz and compare with the guess in (a).

Solution

1. The moment of inertia I B
zz should be higher. Moment of inertia Izz measures the

geometric distribution of mass about the z-axis. But the distance of the mass from
the axis counts more than the mass itself (I O

zz =
∫

m r2
/O dm). The distance r/O of the

mass appears as a quadratic term in I O
zz . The total mass is the same whether we take the

moment of inertia about point A or about point B. However, the distribution of mass is
not the same about the two points. Due to the cut-out being closer to point B there are
more “dm’s” at greater distances from point B than from point A. So, we guess that

I B
zz > I A

zz

2. If we know the moment of inertia I C
zz (about the center-of-mass) of the wheel, we can

use the parallel axis theorem to find I A
zz and I B

zz . In the problem, we are given I O
zz . But,

I O
zz = I C

zz + Mr2
O/C (parallel axis theorem)

⇒ I C
zz = I O

zz − Mr2
O/C

= 1.8 lbm ft2 − 3.2 lbm
(

1 ft
3

)2

︸ ︷︷ ︸
rO/C =e= r

3

= 1.44 lbm· ft2

Now, I A
zz = I C

zz + Mr2
A/C = I C

zz + M
(

2r
3

)2

= 1.44 lbm· ft2 + 3.2 lbm
(

2 ft
3

)2

= 2.86 lbm· ft2

and I B
zz = I C

zz + Mr2
B/C = I C

zz + M
(

r +
r
3

)2

= 1.44 lbm· ft2 + 3.2 lbm
(

1 ft +
1 ft
3

)2

= 7.13 lbm· ft2

I C
zz = 1.44 lbm· ft2, I A

zz = 2.86 lbm· ft2, I B
zz = 7.13 lbm· ft2

Clearly, I B
zz > I A

zz , as guessed in (a).
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SAMPLE 13.28 A sphere or a point? A uniform solid sphere of mass
m and radius r is attached to a massless rigid rod of length `. The sphere
swings in the xy plane. Find the error in calculating I O

zz as a function of r/`
if the sphere is treated as a point mass concentrated at the center-of-mass of
the sphere.

Solution The exact moment of inertia of the sphere about point O can be calculated using
parallel axis theorem:

I O
zz = I cm

zz + m`2

=
2
5

mr2
+ m`2. (See Table IV on inside cover)

If we treat the sphere as a point mass, he moment of inertia I O
zz is

Ĩ O
zz = m`2.

Therefore, the relative error in I O
zz is

error =
I O
zz − Ĩ O

zz

I O
zz

=

2
5 mr2

+ m`2
− m`2

2
5 mr2 + m`2

=

2
5

r2

`2

2
5

r2

`2 + 1

From the above expression we see that for r � ` the error is very small.
From the graph of error in Fig. 13.80 we see that even for r = `/5, the er-
ror in I O

zz due to approximating the sphere as a point mass is less than 2%.
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Figure 13.80: Relative error in I O
zz of the sphere as a function of r/`.
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SAMPLE 13.29 The swinging stick again. A uniform bar of mass m and
length ` is pinned at one of its ends O. The bar is displaced from its vertical
position by an angle θ and released (Fig. 13.81). Find the equation of motion
of the stick.
Solution We repeat the problem solved in Sample 13.21 here with just one different step of
finding the rate of change of angular momentum with the help of moment of inertia formula.
As usual, we first draw a free-body diagram of the bar (Fig. 13.82). We assume, ⇀ω = ωk̂ ≡

θ̇ k̂, and ⇀̇
ω = ω̇k̂ ≡ θ̈ k̂ We can write angular momentum balance about point O as∑ ⇀

MO =
⇀̇
HO.

Let us now calculate both sides of this equation:∑ ⇀
MO =

⇀r G/O × mg(−̂)

=
`

2
(sin θ ı̂ − cos θ ̂)× mg(−̂)

= −
`

2
mg sin θ k̂. (13.65)

⇀̇
HO = Izz/G

⇀̇
ω +

⇀r G × m⇀aG

=
m`2

12
ω̇k̂ +

⇀r G × m(

⇀a G︷ ︸︸ ︷
ω̇k̂ ×

⇀r G − ω2⇀r G)

=
m`2

12
ω̇k̂ +

m`2

4
ω̇k̂,=

m`2

3
ω̇k̂ (13.66)

where the last step, ⇀r G ×m⇀aG =
m`2

4 ω̇k̂, should be clear from Fig. 13.83. Equating (13.65)
and (13.66) we get

−
`

2
6m g sin θ = 6m

`2

3
ω̇

or ω̇ +
3g
2`

sin θ = 0

or θ̈ +
3g
2`

sin θ = 0. (13.67)

θ̈ +
3g
2` sin θ = 0



Chapter 13. Circular motion 13.6. Using moment-of-inertia 653

dm

O

center of mass

x

y

ω

⇀
r

Figure 13.84: A two-dimensional body is ro-
tating around the point O at constant rate ω.
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13.6 Using moment-of-inertia in 2-D
circular motion dynamics

Once one knows the velocity and acceleration of all points in a system one
can find all of the motion quantities in the equations of motion by adding
or integrating using the defining sums from chapter 1.1. This addition or
integration is an impractical task for many motions of many objects where
the required sums may involve billions and billions of atoms or a difficult
integral. As you recall from chapter 3.6, the linear momentum and the rate
of change of linear momentum can be calculated by just keeping track of the
center-of-mass of the system of interest. One wishes for something so simple
for the calculation of angular momentum.

It turns out that we are in luck if we are only interested in the two-
dimensional motion of two-dimensional rigid bodies. The luck is not so great
for 3-D rigid bodies but still there is some simplification. For general motion
of non-rigid bodies there is no simplification to be had. The simplification
is to use the moment of inertia for the bodies rather than evaluating the mo-
menta and energy quantities as integrals and sums. Of course one may have
to do a sum or integral to evaluate I ≡ I cm

zz or [I cm
] but once this calcula-

tion is done, one need not work with the integrals while worrying about the
dynamics. At this point we will assume that you are comfortable calculating
and looking-up moments of inertia. We proceed to use it for the purposes
of studying mechanics. For constant rate rotation, we can calculate the ve-
locity and acceleration of various points on a rigid body using ⇀

v =
⇀
ω ×

⇀r
and ⇀a =

⇀
ω × (

⇀
ω ×

⇀r). So we can calculate the various motion quantities of

interest: linear momentum
⇀

L, rate of change of linear momentum
⇀̇

L, angular

momentum
⇀

H , rate of change of angular momentum
⇀̇

H , and kinetic energy
EK.

Consider a two-dimensional rigid body like that shown in figure 13.84.
Now let us consider the various motion quantities in turn. First the linear

momentum
⇀

L. The linear momentum of any system in any motion is
⇀

L =
⇀
vcmm tot . So, for a rigid body spinning at constant rate ω about point O (using
⇀
ω = ωk̂):

⇀

L =
⇀
vcmm tot =

⇀
ω ×

⇀r cm/om tot .

Similarly, for any system, we can calculate the rate of change of linear mo-

mentum
⇀̇

L as
⇀̇

L =
⇀acmm tot . So, for a rigid body spinning at constant rate,

⇀̇

L =
⇀acmm tot =

⇀
ω × (

⇀
ω ×

⇀r cm/o)m tot .

That is, the linear momentum is correctly calculated for this special motion,
as it is for all motions, by thinking of the body as a point mass at the center-
of-mass.

Unlike the calculation of linear momentum, the angular momentum turns
out to be something different than would be calculated by using a point mass
at the center of mass. You can remember this important fact by looking at
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∗
Note that the angular momentum about

some other point than O will not be constant
unless the center-of-mass does not accelerate
(i.e., is at point O).

the case when the rotation is about the center-of-mass (point O coincides
with the center-of-mass). In this case one can intuitively see that the angular
momentum of a rigid body is not zero even though the center-of-mass is not
moving. Here’s the calculation just to be sure:

⇀

HO =
∫

⇀r /O ×
⇀
v dm (by definition of

⇀

HO)

=
∫

⇀r /O × (
⇀
ω ×

⇀r /O) dm (using ⇀
v =

⇀
ω ×

⇀r )

=
∫
(x/O ı̂ + y/O ̂)×

[
(ωk̂)× (x/O ı̂ + y/O ̂)

]
dm (substituting ⇀r /O and ⇀

ω)

= {
∫
(x2
/O + y2

/O) dm}ωk̂ (doing cross products)

= {
∫

r2
/O dm}ωk̂

= I O
zz︸︷︷︸
B
BM

I O
zz is the ‘polar’ moment

of inertia.

ωk̂

We have defined the ‘polar’ moment of inertia as I o
zz =

∫
r2
/o dm. In order

to calculate I o
zz for a specific body, assuming uniform mass distribution for

example, one must convert the differential quantity of mass dm into a differ-
ential of geometric quantities. For a line or curve, dm = ρd`; for a plate or
surface, dm = ρd A, and for a 3-D region, dm = ρdV . d`, d A, and dV are
differential line, area, and volume elements, respectively. In each case, ρ is
the mass density per unit length, per unit area, or per unit volume, respec-
tively. To avoid clutter, we do not define a different symbol for the density
in each geometric case. The differential elements must be further defined
depending on the coordinate systems chosen for the calculation; e.g., for
rectangular coordinates, d A = dxdy or, for polar coordinates, d A = rdrdθ .

Since
⇀

H and ⇀
ω always point in the k̂ direction for two dimensional prob-

lems people often just think of angular momentum as a scalar and write the
equation above simply as ‘H = Iω,’ the form usually seen in elementary
physics courses.

The derivation above has a feature that one might not notice at first sight.
The quantity called I O

zz does not depend on the rotation of the body. That is,
the value of the integral does not change with time, so I O

zz is a constant. So,
perhaps unsurprisingly, a two-dimensional body spinning about the z-axis
through O has constant angular momentum about O if it spins at a constant
rate. ∗

⇀̇

HO =
⇀

0.

Now, of course we could find this result about constant rate motion of 2-D
bodies somewhat more cumbersomely by plugging in the general formula for
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rate of change of angular momentum as follows:

⇀̇

HO =
∫

⇀r /O ×
⇀a dm

=
∫

⇀r /O × (
⇀
ω × (

⇀
ω ×

⇀r /O)) dm

=
∫
(x/O ı̂ + y/O ̂)×

[
ωk̂ × (ωk̂ × (x/O ı̂ + y/O ̂))

]
dm

=
⇀

0.

(13.68)

Finally, we can calculate the kinetic energy by adding up 1
2 miv

2
i for all

the bits of mass on a 2-D body spinning about the z-axis:

EK =

∫
1
2
v2 dm =

∫
1
2
(ωr)2 dm =

1
2
ω2
∫

r2 dm =
1
2

I o
zzω

2 . (13.69)

If we accept the formulae presented for rigid bodies in the box at the end of
chapter 7, we can find all of the motion quantities by setting ⇀

ω = ωk̂ and
⇀
α =

⇀

0.
Example: Pendulum disk
For the disk shown in figure 13.85, we can calculate the rate of change of angular momentum

about point O as

⇀̇
HO =

⇀r G/O × m⇀a cm + I cm
zz α k̂

= R2mθ̈ k̂ + I cm
zz θ̈ k̂

= (I cm
zz + R2m)θ̈ k̂.

Alternatively, we could calculate directly

⇀̇
HO = I O

zz α k̂

= (I cm
zz + R2m)︸ ︷︷ ︸

BBM

by the parallel axis theorem

θ̈ k̂.

But you are cautioned against falling into the common misconception that
the formula M = Iα applies in three dimensions by just thinking of the
scalars as vectors and matrices. That is, the formula

⇀̇

HO = [I O
] ·

⇀̇
ω︸︷︷︸
⇀
α

(13.70)

is only correct when ⇀
ω is zero or when ⇀

ω is an eigen vector of [I/O]. To
repeat, the equation ∑

Moments about O = [I O
] ·

⇀
α (13.71)

is generally wrong, it only applies if there is some known reason to neglect
⇀
ω ×

⇀

H0. For example, ⇀
ω ×

⇀

H0 can be neglected when rotation is about a
principal axis as for planar bodies rotating in the plane. The term ⇀

ω ×
⇀

H0

can also be neglected at the start or stop of motion, that is when ⇀
ω =

⇀

0.
The equation for linear momentum balance is the same as always, we just

need to calculate the acceleration of the center-of-mass of the spinning body.

⇀̇

L = m tot
⇀acm = m tot

[
⇀
ω × (

⇀
ω ×

⇀r cm/O)+
⇀̇
ω ×

⇀r cm/O

]
(13.72)
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Finally, the kinetic energy for a planar rigid body rotating in the plane is:

EK =
1
2
⇀
ω · ([I cm

] ·
⇀
ω)+

1
2

m v2
cm︸︷︷︸
���

⇀
vcm =

⇀
ω ×

⇀r cm/O

.
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Figure 13.86: An accelerating compound
gear train.
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SAMPLE 13.30 An accelerating gear train. In the gear train shown in
Fig. 13.86, the torque at the input shaft is Min = 200 N·m and the an-
gular acceleration is αin = 50 rad/s2. The radii of the various gears are:
RA = 5 cm, RB = 8 cm, RC = 4 cm, and RD = 10 cm and the moments
of inertia about the shaft axis passing through their respective centers are:
IA = 0.1 kg m2, IBC = 5IA, ID = 4IA. Find the output torque Mout of the
gear train.
Solution Since the difference between the input power and the output power is used in
accelerating the gears, we may write

Pin − Pout = ĖK

Let Mout be the output torque of the gear train. Then,

Pin − Pout = Min ωin − Mout ωout . (13.73)

Now,

ĖK =
d
dt
(EK) (13.74)

=
d
dt
(

1
2

IA ω
2
in +

1
2

IBC ω
2
BC +

1
2

ID ω
2
out )

= IA ωin ω̇in + IBC ωBC ω̇BC + ID ωout ω̇out

= IA ωin αin + 5IA ωBC αBC + 4IA ωout αout . (13.75)

The different ω’s and the α’s can be related by realizing that the linear speed or the tangen-
tial acceleration of the point of contact between any two meshing gears has to be the same
irrespective of which gear’s speed and geometry is used to calculate it. Thus, using the linear
speed and tangential acceleration calculations for points P and R in Fig. 13.87, we find

vP = ωin RA = ωB RB

⇒ ωB = ωin ·
RA
RB

(aP )θ = αin RA = αB RB

⇒ αB = αin ·
RA
RB

.

Similarly,

vR = ωC RC = ωout RD

⇒ ωout = ωC ·
RC
RD

(aR)θ = αC RC = αout RD

⇒ αout = αC ·
RC
RD

.

But

ωC = ωB = ωBC

⇒ ωout = ωin ·
RA
RB

·
RC
RD

and

αC = αB = αBC

⇒ αout = αin ·
RA
RB

·
RC
RD

.
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Substituting these expressions for ωout , αout , ωBC and αBC in equations (13.73) and
(13.75), we get

Pin − Pout = Min ωin − Moutωin ·
RA
RB

·
RC
RD

= ωin

(
Min − Mout ·

RA
RB

·
RC
RD

)
.

ĖK = IA

[
ωinαin + 5ωinαin(

RA
RB

)2 + 4ωinαin(
RA
RB

·
RC
RD

)2
]

= IAωin

[
αin + 5αin(

RA
RB

)2 + 4αin(
RA
RB

·
RC
RD

)2
]
.

Now equating the two quantities, Pin − Pout and ĖK, and canceling ωin from both sides, we
obtain

Mout
RA
RB

·
RC
RD

= Min − IAαin

[
1 + 5(

RA
RB

)2 + 4(
RA
RB

·
RC
RD

)2
]

Mout
5
8

·
4

10
= 200 N·m − 5 kg m2

· rad/s2
[

1 + 5(
5
8
)2 + 4(

5
8

·
4

10
)2
]

Mout = 735.94 N·m

≈ 736 N·m.

Mout = 736 N·m
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SAMPLE 13.31 Drums used as pulleys. Two drums, A and B of radii

m

F
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Ri
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O
B

Figure 13.88: Two drums with strings
wrapped around are used to pull up a mass
m.
Filename:sfig5-6-2

Ro = 200 mm and Ri = 100 mm are welded together. The combined mass
of the drums is M = 20 kg and the combined moment of inertia about the
z-axis passing through their common center O is Izz/O = 1.6 kg m2. A string
attached to and wrapped around drum B supports a mass m = 2 kg. The
string wrapped around drum A is pulled with a force F = 20 N as shown in
Fig. 13.88. Assume there is no slip between the strings and the drums. Find

1. the angular acceleration of the drums,
2. the tension in the string supporting mass m, and
3. the acceleration of mass m.

Solution The free-body diagram of the drums and the mass are shown in Fig. 13.89 sepa-
rately where T is the tension in the string supporting mass m and Ox and Oy are the support
reactions at O. Since the drums can only rotate about the z-axis, let

⇀
ω = ωk̂ and ⇀̇

ω = ω̇k̂.

Now, let us do angular momentum balance about the center of rotation O:

F

O

T

Ox

Oy

T

mg

A

D

Mg

x

y

Figure 13.89: Free-body diagram of the
drums and the mass m. T is the tension in
the string supporting mass m and Ox and Oy
are the reactions of the support at O.
Filename:sfig5-6-2a

∑ ⇀
MO =

⇀̇
HO

∑ ⇀
MO = T Ri k̂ − F Ro k̂

= (T Ri − F Ro)k̂.

Since the motion is restricted to the xy-plane (i.e., 2-D motion), the rate of change of angular

momentum
⇀̇
HO may be computed as

⇀̇
HO = Izz/cm ω̇k̂ +

⇀r cm/O ×
⇀acm Mtotal

= Izz/O ω̇k̂ +
⇀r O/O︸ ︷︷ ︸

0

×
⇀acm︸︷︷︸

0

Mtotal

= Izz/O ω̇k̂.

Setting
∑ ⇀

MO =
⇀̇
HO we get

T Ri − F Ro = Izz/O ω̇. (13.76)

Now, let us write linear momentum balance,
∑ ⇀

F = m⇀a , for mass m:

(T − mg)̂︸ ︷︷ ︸∑ ⇀
F

= m⇀a .

Do we know anything about acceleration ⇀a of the mass? Yes, we know its direction (±̂ ) and
we also know that it has to be the same as the tangential acceleration (⇀a D)θ of point D on
drum B (why?). Thus,

⇀a = (
⇀a D)θ

= ω̇k̂ × (−Ri ı̂)
= −ω̇Ri ̂ . (13.77)
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Therefore,
T − mg = −mω̇Ri . (13.78)

1. Calculation of ω̇: We now have two equations, (13.76) and (13.78), and two un-
knowns, ω̇ and T . Subtracting Ri times Eqn.(13.78) from Eqn. (13.76) we get

−F Ro + mgRi = (Izz/O + m R2
i )ω̇

⇒ ω̇ =
−F Ro + mgRi

(Izz/O + m R2
i )

=
−20 N · 0.2 m + 2 kg · 9.81 m/s2

· 0.1m
1.6 kg m2 + 2 kg · (0.1 m)2

=
−2.038 kg m2/ s2

1.62 kg m2

= −1.258
1
s2

⇀̇
ω = −1.26 rad/s2 k̂

2. Calculation of tension T: From equation (13.78):

T = mg − mω̇Ri

= 2 kg · 9.81 m/s2
− 2 kg · (−1.26 s−2) · 0.1 m

= 19.87 N

T = 19.87 N

3. Calculation of acceleration of the mass: Since the acceleration of the mass is the
same as the tangential acceleration of point D on the drum, we get (from eqn. (13.77))

⇀a = (
⇀a D)θ = −ω̇Ri ̂

= −(−1.26 s−2) · 0.1 m

= 0.126 m/s2̂

⇀a = 0.13 m/s2̂

Comments: It is important to understand why the acceleration of the mass is the same as the

tangential acceleration of point D on the drum. We have assumed (as is common practice)

that the string is massless and inextensible. Therefore each point of the string supporting the

mass must have the same linear displacement, velocity, and acceleration as the mass. Now

think about the point on the string which is momentarily in contact with point D of the drum.

Since there is no relative slip between the drum and the string, the two points must have the

same vertical acceleration. This vertical acceleration for point D on the drum is the tangential

acceleration (⇀a D)θ .
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SAMPLE 13.32 Energy Accounting: Consider the pulley problem of Sam-
ple 13.31 again.

1. What percentage of the input energy (work done by the applied force
F) is used in raising the mass by 1 m?

2. Where does the rest of the energy go? Provide an energy-balance sheet.
Solution

1. Let Wi and Wh be the input energy and the energy used in raising the mass by 1 m,
respectively. Then the percentage of energy used in raising the mass is

% of input energy used =
Wh
Wi

× 100.

Thus we need to calculate Wi and Wh to find the answer. Wi is the work done by the
force F on the system during the interval in which the mass moves up by 1 m. Let s be
the displacement of the force F during this interval. Since the displacement is in the
same direction as the force (we know it is from Sample 13.31), the input-energy is

Wi = F s.

So to find Wi we need to find s.
For the mass to move up by 1 m the inner drum B must rotate by an angle θ where

1 m = θ Ri ⇒ θ =
1 m

0.1 m
= 10 rad.

Since the two drums, A and B, are welded together, drum A must rotate by θ as well.
Therefore the displacement of force F is

s = θ Ro = 10 rad · 0.2 m = 2 m,

and the energy input is

Wi = F s = 20 N · 2 m = 40J.

Now, the work done in raising the mass by 1 m is

Wh = mgh = 2 kg · 9.81 m/s2
· 1 m = 19.62J.

Therefore, the percentage of input-energy used in raising the mass

=
19.62 N·m

40
× 100 = 49.05% ≈ 49%.

2. The rest of the energy (= 51%) goes in accelerating the mass and the pulley. Let us
find out how much energy goes into each of these activities. Since the initial state of
the system from which we begin energy accounting is not prescribed (that is, we are
not given the height of the mass from which it is to be raised 1 m, nor do we know the
velocities of the mass or the pulley at that initial height), let us assume that at the initial
state, the angular speed of the pulley is ωo and the linear speed of the mass is vo. At
the end of raising the mass by 1 m from this state, let the angular speed of the pulley
be ω f and the linear speed of the mass be v f . Then, the energy used in accelerating
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the pulley is

(1EK)pulley = final kinetic energy − initial kinetic energy

=
1
2

Iω2
f −

1
2

Iω2
o

=
1
2

I (ω2
f − ω2

o)︸ ︷︷ ︸
BBM

assuming constant acceleration,
ω2

f = ω2
o + 2αθ , or ω2

f −ω2
o =

2αθ .

= Iα θ (from Sample 13.35, α = 1.258 rad/s2. )

= 1.6 kg m2
· 1.258 rad/s2

· 10 rad

= 20.13 N·m = 20.13 J.

Similarly, the energy used in accelerating the mass is

(1EK)mass = final kinetic energy − initial kinetic energy

=
1
2

mv2
f −

1
2

mv2
o

=
1
2

m(v2
f − v2

o︸ ︷︷ ︸
2ah

)

= mah

= 2 kg · 0.126 m/s2
· 1 m

= 0.25 J.

We can calculate the percentage of input energy used in these activities to get a better
idea of energy allocation. Here is the summary table:

Activities Energy Spent

in Joule as % of input energy

In raising the mass by 1 m 19.62 49.05%

In accelerating the mass 0.25 0.62 %

In accelerating the pulley 20.13 50.33 %

Total 40.00 100 %

So, what would you change in the set-up so that more of the input energy is used in raising the

mass? Think about what aspects of the motion would change due to your proposed design.
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SAMPLE 13.33 A uniform rigid bar of mass m = 2 kg and length ` = 1 m
is pinned at one end and connected to two springs, each with spring constant
k, at the other end. The bar is tweaked slightly from its vertical position.
It then oscillates about its original position. The bar is timed for 20 full
oscillations which take 12.5 seconds. Ignore gravity.

1. Find the equation of motion of the rod.
2. Find the spring constant k.
3. What should be the spring constant of a torsional spring if the bar is

attached to one at the bottom and has the same oscillating motion char-
acteristics?

Solution

1. Refer to the free-body diagram in figure 13.91. Angular momentum balance for the
rod about point O gives ∑ ⇀

MO =
⇀̇
HO

where
⇀
MO = −2k

` sin θ︷︸︸︷
x ·` cos θ k̂

= −2k`2 sin θ cos θ k̂,

and
⇀̇
HO = I O

zz θ̈ k̂ =
1
3

m`2︸ ︷︷ ︸
I O
zz

.

Thus
1
3

m`2 θ̈ = −2k`2 sin θ cos θ.

However, for small θ, cos θ ≈ 1 and sin θ ≈ θ ,

⇒ θ̈ +
6k 6̀

2

m 6̀
2 θ = 0. (13.79)

θ̈ +
6k
m θ = 0

2. Comparing Eqn. (13.79) with the standard harmonic oscillator equation ẍ + λ2x = 0,
we get

angular frequency λ =

√
6k
m
,

and the time period T =
2π
λ

= 2π
√

m
6k
.

From the measured time for 20 oscillations, the time period (time for one oscillation)
is

T =
12.5
20

s = 0.625 s
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Now equating the measured T with the derived expression for T we get

2π
√

m
6k

= 0.625 s

⇒ k = 4π2
·

m
6(0.625 s)2

=
4π2

·2 kg
6(0.625 s)2

= 33.7 N/m.

k = 33.7 N/m

3. If the two linear springs are to be replaced by a torsional spring at the bottom, we
can find the spring constant of the torsional spring by comparison. Let ktor be the
spring constant of the torsional spring. Then, as shown in the free body diagram (see
figure 13.92), the restoring torque applied by the spring at an angular displacement θ
is ktorθ . Now, writing the angular momentum balance about point O, we get∑ ⇀

MO =
⇀̇
HO

−ktorθ k̂ = I O
zz (θ̈ k̂)

⇒ θ̈ +
ktor

I O
zz
θ = 0.

Comparing with the standard harmonic equation, we find the angular frequency

λ =

√
ktor

I O
zz

=

√
ktor

1
3 m`2

.

If this system has to have the same period of oscillation as the first system, the two
angular frequencies must be equal, i.e.,√

ktor
1
3 m`2

=

√
6k
m

⇒ ktor = 6k·
1
3
`2

= 2k`2

= 2·(33.7 N/m)·(1 m)2

= 67.4 N·m.

ktor = 67.4 N·m
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∗
Here, we are considering a very small y so

that we can ignore the arc the point mass B
moves on and take its motion to be just verti-
cal (i.e., sin θ ≈ θ for small θ ).

SAMPLE 13.34 Hey Mom, look, I can seesaw by myself. A kid, modelled
as a point mass with m = 10 kg, is sitting at end B of a rigid rod AB of
negligible mass. The rod is supported by a spring at end A and a pin at point
O. The system is in static equilibrium when the rod is horizontal. Someone
pushes the kid vertically downwards by a small distance y and lets go. Given
that AB = 3 m, AC = 0.5 m, k = 1 kN/m; find

1. the unstretched (relaxed) length of the spring,
2. the equation of motion (a differential equation relating the position of

the mass to its acceleration) of the system, and
3. the natural frequency of the system.

If the rod is pinned at the midpoint instead of at O, what is the natural fre-
quency of the system? How does the new natural frequency compare with
that of a mass m simply suspended by a spring with the same spring constant?
Solution

1. Static Equilibrium: The FBD of the (rod + mass) system is shown in Fig. 13.94. Let
the stretch in the spring in this position be yst and the relaxed length of the spring be
`0. The balance of angular momentum about point O gives:∑ ⇀

M/o =
⇀̇
H/o =

⇀
0 (no motion)

⇒ (kyst )d1 − (mg)d2 = 0

⇒ yst =
mg
k

·
d2
d1

=
10 kg · 9.8 m/s2

· 2`
1000 N/m · `

= 0.196 m

Therefore, `0 = AC − yst

= 0.5 m − 0.196 m = 0.304 m.

`0 = 30.4 cm

2. Equation of motion: As point B gets displaced downwards by a distance y, point A

moves up by a proportionate distance ya . From geometry,
∗

y ≈ d2θ ⇒ θ =
y

d2

ya ≈ d1θ =
d1
d2

y

Therefore, the total stretch in the spring, in this position,

1y = ya + yst =
d1
d2

y +
d2
d1

mg
k

Now, Angular Momentum Balance about point O gives:∑ ⇀
M/o =

⇀̇
H/o∑ ⇀

M/o =
⇀r B × mĝ +

⇀r A × k1ŷ

= (d2mg − d1k1y)k̂ (13.80)
⇀̇
H/o =

⇀r B × m⇀a =
⇀r B × mÿ̂ (13.81)

= d2mÿ k̂ (13.82)
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Equating (13.80) and (13.82) we get

d2mg − d1k1y = d2mÿ

or d2mg − d1k
(

d1
d2

y +
d2mg
d1k

)
= d2mÿ

or 6d2mg − k
d2

1
d2

y − 6d2mg = d2mÿ

or ÿ +
k
m

(
d1
d2

)2
y = 0

ÿ +
k
m

(
d1
d2

)2
y = 0

3. The natural frequency of the system: We may also write the previous equation as

ÿ + λy = 0 where λ =
k
m

d2
1

d2
2
. (13.83)

Substituting d1 = ` and d2 = 2` in the expression for λ we get the natural frequency
of the system

√
λ =

1
2

√
k
m

=
1
2

√
1000 N/m

10 kg
= 5 s−1

√
λ = 5 s−1

4. Comparison with a simple spring mass system:

L

m 

L

m 

k≡

k

A

C

BO

Figure 13.95:
Filename:sfig3-4-3b

When d1 = d2, the equation of motion (13.83) becomes

ÿ +
k
m

y = 0

and the natural frequency of the system is simply

√
λ =

√
k
m

which corresponds to the natural frequency of a simple spring mass system shown in
Fig. 13.95.
In our system (with d1 = d2 ) any vertical displacement of the mass at B induces an
equal amount of stretch or compression in the spring which is exactly the case in the
simple spring-mass system. Therefore, the two systems are mechanically equivalent.
Such equivalences are widely used in modeling complex physical systems with simpler
mechanical models.
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∗
There are other external forces on the sys-

tem: the reaction force of the support point
O and the weight of the pulley—both forces
acting at point O. But, since point O is sta-
tionary, these forces do no work.

SAMPLE 13.35 Energy method: Consider the pulley problem of Sam-
ple 13.31 again. Use energy method to

1. find the angular acceleration of the pulley, and
2. the acceleration of the mass.

Solution In energy method we use speeds, not velocities. Therefore, we have to be careful
in our thinking about the direction of motion. In the present problem, let us assume that the
pulley rotates and accelerates clockwise. Consequently, the mass moves up against gravity.

1. The energy equation we want to use is

P = ĖK .

The power P is given by P =
∑ ⇀

Fi ·
⇀
v i where the sum is carried out over all external

forces. For the mass and pulley system the external forces that do work are
∗

F and
mg. Therefore,

P =
⇀
F ·

⇀
v A + m ⇀g ·

⇀
vm

= F ı̂ · vA ı̂ + (−mĝ) · vD ̂︸︷︷︸
⇀
v m

= FvA − mgvD .

The rate of change of kinetic energy is

ĖK =
d
dt
(

1
2

m v2
D︸ ︷︷ ︸

K.E. of the mass

+
1
2

I O
zzω

2︸ ︷︷ ︸
K.E. of the pulley

)

= m vD v̇D + I O
zz ω ω̇.

Now equating the power and the rate of change of kinetic energy, we get

F vA − mg vD = m vD v̇D + I O
zz ω ω̇.

From kinematics, vA = ωRo, vD = ωRi and v̇D ≡ (aD)θ = ω̇Ri . Substituting
these values in the above equation, we get

ω(F Ro − mgRi ) = ω ω̇(m R2
i + I O

zz)

⇒ ω̇ =
F Ro − mgRi

(I O
zz + m R2

i )

=
20 N · 0.2 m − 2 kg · 9.81 m/s2

· 0.1m
1.6 kg m2 + 2 kg · (0.1 m)2

= 1.258
1
s2 . (same as the answer before.)

Since the sign of ω̇ is positive, our initial assumption of clockwise acceleration of the
pulley is correct.

ω̇ = 1.26 rad/s2

2. From kinematics,
am = (aD)θ = ω̇Ri = 0.126 m/s2.

am = 0.13 m/s2
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z

Figure 13.96:
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SAMPLE 13.36 A flywheel of diameter 2 ft spins about the axis passing
through its center and perpendicular to the plane of the wheel at 1000 rpm.
The wheel weighs 20 lbf. Assuming the wheel to be a thin, uniform disk, find
its kinetic energy.

Solution The kinetic energy of a 2-D rigid body spinning at speed ω about the z-axis passing
through its mass center is

EK =
1
2

I cm
zz ω

2

where I cm
zz is the mass moment of inertia about the z-axis. For the flywheel,

I cm
zz =

1
2

m R2 (from table IV at the back of the book)

=
1
2

W
g

R2 (where W is the weight of the wheel)

=
1
2
·

(
20 lbf

g

)
︸ ︷︷ ︸

20 lbm

· (1 ft)2 = 10 lbm· ft2

The angular speed of the wheel is

ω = 1000 rpm

= 1000·
2π
60

rad/s

= 104.72 rad/s.

Therefore the kinetic energy of the wheel is

EK =
1
2
·(10 lbm· ft2)·(104.72 rad/s)2

= 5.483 × 104 lbm· ft2/ s2

=
5.483 × 104

32.2
lbf· ft

= 1.702 × 103 ft· lbf.

1.702 × 103 ft· lbf



13.1 Kinematics of a
particle in circular
motion
13.1 If a particle moves along a circle at
constant rate (constant θ̇ ) following the
equation

⇀r (t) = R cos(θ̇ t)ı̂ + R sin(θ̇ t)̂

which of these things are true and why? If
not true, explain why.

1. ⇀
v =

⇀
0

2. ⇀
v = constant

3. |
⇀
v | = constant

4. ⇀a =
⇀
0

5. ⇀a = constant
6. |

⇀a | = constant
7. ⇀

v ⊥
⇀a

13.2 The motion of a particle is described
by the following equations:

x(t) = 1 m · cos((5 rad/s) · t),
y(t) = 1 m · sin((5 rad/s) · t).

a) Show that the speed of the particle
is constant.

b) There are two points marked on the
path of the particle: P with coor-
dinates (0, 1 m) and Q with coor-
dinates (1 m, 0). How much time
does the particle take to go from P
to Q?

c) What is the acceleration of the par-
ticle at point Q?

13.3 A bead goes around a circular track
of radius 1 ft at a constant speed. It makes
around the track in exactly 1 s.

a) Find the speed of the bead.
b) Find the magnitude of acceleration

of the bead.

13.4 A 200 mm diameter gear rotates at a
constant speed of 100 rpm.

a) What is the speed of a peripheral
point on the gear?

b) If no point on the gear is to ex-
ceed the centripetal acceleration of
25 m/s2, find the maximum allow-
able angular speed (in rpm) of the
gear.

13.5 A particle executes circular motion
in the xy-plane at a constant angular speed
θ̇ = 2 rad/s. The radius of the circu-
lar path is 0.5 m. The particle’s motion is
tracked from the instant when θ = 0, i.e.,
at t = 0, θ = 0. Find the velocity and
acceleration of the particle at

a) t = 0.5 s and
b) t = 15 s.

Draw the path and mark the position of the
particle at t = 0.5 s and t = 15 s.

13.6 A particle undergoes constant rate
circular motion in the xy-plane. At
some instant t0, its velocity is ⇀

v (t0) =

−3 m/sı̂+4 m/ŝ and after 5 s the velocity
is v(t0 + 5 s) = 5/

√
2 m/s(ı̂ + ̂). If the

particle has not yet completed one revolu-
tion between the two instants, find

a) the angular speed of the particle,
b) the distance traveled by the particle

in 5 s, and
c) the acceleration of the particle at the

two instants.

13.7 A bead on a circular path of radius R
in the xy-plane has rate of change of angu-
lar speed α = bt2. The bead starts from
rest at θ = 0.

a) What is the bead’s angular position
θ (measured from the positive x-
axis) and angular speed ω as a func-
tion of time ?

b) What is the angular speed as func-
tion of angular position?

13.8 A bead on a circular wire has an an-
gular speed given by ω = cθ1/2. The
bead starts from rest at θ = 0. What is
the angular position and speed of the bead
as a function of time? [Hint: this problem
has more than one correct answer (one of
which you can find with a quick guess.)]

13.9 Solve ω̇ = α, given ω(0) = ω0 and α
is a constant.

13.10 Solve θ̈ = α, given θ(0) = θ0,
θ̇ (0) = ω̇0, and α is a constant.

13.11 Given ω̇ =
d θ̇
dt = α (a constant),

find an expression for ω as a function of θ
if ω(θ = 0) = w0.

13.12 Given that θ̈−λ2θ = 0, θ(0) = π/2,
and θ̇ (0) = 0, find the value of θ at t = 1 s.

13.13 Two runners run on a circular track
side-by-side at the same constant angular
rate ω = 0.25 rad/s about the center of the
track. The inside runner is in a lane of ra-
dius ri = 35 m and the outside runner is in
a lane of radius ro = 37 m. What is the ve-
locity of the outside runner relative to the
inside runner in polar coordinates?

13.14 A particle oscillates on the arc of a
circle with radius R according to the equa-
tion θ = θ0 cos(λt). What are the condi-
tions on R, θ0, and λ so that the maximum
acceleration in this motion occurs at θ = 0.
“Acceleration” here means the magnitude
of the acceleration vector.

13.2 Dynamics of a
particle in circular
motion
13.15 Force on a person standing on the
equator. The total force acting on an ob-
ject of mass m, moving with a constant an-
gular speed ω on a circular path with radius
r , is given by F = mω2r . Find the magni-
tude of the total force acting on a 150 lbm
person standing on the equator. Neglect the
motion of the earth around the sun and of
the sun around the solar system, etc. The
radius of the earth is 3963 mi. Give your
solution in both pounds ( lbf) and Newtons
( N).

13.16 The sum of forces acting on a mass
m = 10 lbm is

⇀
F = 100 lbfı̂ − 120 lbf̂ .

The particle is going in circles at constant
rate with r = 18 in and êr = cos 30

◦

ı̂ +

sin 30
◦

̂ . Using
∑ ⇀

F = m⇀a , find v.[Note,
the center of the circle is not at the origin.]

13.17 The acceleration of a particle in pla-
nar circular motion is given by ⇀a = αr êθ−

670
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ω2r êr , where α is the angular acceleration,
ω is the angular speed and r is the radius
of the circular path. Using

∑ ⇀
F = m⇀a ,

find the expressions for
∑

Fx and
∑

Fy
in terms of α, ω, r , and θ , given that êr =

cos θ ı̂ + sin θ ̂ and êθ = − sin θ ı̂ +cos θ ̂ .

13.18 Consider a particle with mass m in
circular motion. Let θ̈ = α, θ̇ = ω, and
⇀r = −r ı̂. Let

∑ ⇀
F =

∑
Fr êr +

∑
Fθ êθ ,

where êr = −ı̂ and êθ = k̂. Using
∑ ⇀

F =

m⇀a , express
∑

Fr and
∑

Fθ in terms of
α, ω, r , and m.

13.19 A bead of mass m on a circular
path of radius R in the xy-plane has rate
of change of angular speed α = ct3. The
bead starts from rest at θ = 0.

a) What is the angular momentum of
the bead about the origin at t = t1?

b) What is the kinetic energy of the
bead at t = t1.

13.20 A 200 gm particle goes in circles
about a fixed center at a constant speed
v = 1.5 m/s. It takes 7.5 s to go around
the circle once.

a) Find the angular speed of the parti-
cle.

b) Find the magnitude of acceleration
of the particle.

c) Take center of the circle to be the
origin of a xy-coordinate system.
Find the net force on the particle
when it is at θ = 30

◦

from the x-
axis.

13.21 A race car cruises on a circular
track at a constant speed of 120 mph. It
goes around the track once in three min-
utes. Find the magnitude of the centripetal
force on the car. What applies this force on
the car? Does the driver have any control
over this force?

13.22 A particle moves on a counter-
clockwise, origin-centered circular path in
the xy-plane at a constant rate. The radius
of the circle is r , the mass of the particle is
m, and the particle completes one revolu-
tion in time τ .

a) Neatly draw the following things:
1. The path of the particle.

2. A dot on the path when the
particle is at θ = 0◦, 90◦,
and 210◦, where θ is mea-
sured from the x-axis (posi-
tive counter-clockwise).

3. Arrows representing êR , êθ ,
⇀
v , and ⇀a at each of these
points.

b) Calculate all of the quantities in part
(3) above at the points defined in
part (2), (represent vector quantities
in terms of the cartesian base vec-
tors ı̂ and ̂ ).

c) If this motion was imposed by the
tension in a string, what would that
tension be?

d) Is radial tension enough to main-
tain this motion or is another force
needed to keep the motion going
(assuming no friction) ?

e) Again, if this motion was imposed
by the tension in a string, what is
Fx , the x component of the force in
the string, when θ = 210◦? Ignore
gravity.

13.23 The velocity and acceleration of a
1 kg particle, undergoing constant rate cir-
cular motion, are known at some instant t :

⇀
v = −10 m/s(ı̂+̂),

⇀a = 2 m/s2(ı̂−̂).

a) Write the position of the particle at
time t using êR and êθ base vectors.

b) Find the net force on the particle at
time t .

c) At some later time t∗, the net force
on the particle is in the −̂ direc-
tion. Find the elapsed time t − t∗.

d) After how much time does the force
on the particle reverse its direction.

13.24 A particle of mass 3 kg moves in the
xy-plane so that its position is given by

r(t) = 4 m[cos(
2π t

s
)ı̂ + sin(

2π t
s
)̂ ].

a) What is the path of the particle?
Show how you know what the path
is.

b) What is the angular velocity of the
particle? Is it constant? Show how
you know if it is constant or not.

c) What is the velocity of the particle
in polar coordinates?

d) What is the speed of the particle at
t = 3 s?

e) What net force does it exert on its
surroundings at t = 0 s? Assume
the x and y axis are attached to a
Newtonian frame.

f) What is the angular momentum of
the particle at t = 3 s about point O
located at the origin of the coordi-
nate system that the particle is ref-
erenced to?

13.25 A comparison of constant and
nonconstant rate circular motion. A
100 gm mass is going in circles of radius
R = 20 cm at a constant rate θ̇ = 3 rad/s.
Another identical mass is going in circles
of the same radius but at a non-constant
rate. The second mass is accelerating at
θ̈ = 2 rad/s2 and at position A, it happens
to have the same angular speed as the first
mass.

a) Find and draw the accelerations of
the two masses (call them I and II)
at position A.

b) Find
⇀̇
HO for both masses at position

A.
c) Find

⇀
HO for both masses at posi-

tions A and B. Do the changes in
⇀
HO between the two positions re-
flect (qualitatively) the results ob-
tained in (b)?

d) If the masses are pinned to the cen-
ter O by massless rigid rods, is ten-
sion in the rods enough to keep the
two motions going? Explain.

x

y

45o
R

(I)

A

B

O

θ̈ = 0

x

y

45o
R

(II)

A

B

O

θ̈ = 2 rad/s2

problem 13.25:
Filename:pfigure-s94h8p2
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13.26 A small mass m is connected to
one end of a spring. The other end of the
spring is fixed to the center of a circular
track. The radius of the track is R, the un-
stretched length of the spring is l0(< R),
and the spring constant is k.

a) With what speed should the mass be
launched in the track so that it keeps
going at a constant speed?

b) If the spring is replaced by another
spring of same relaxed length but
twice the stiffness, what will be the
new required launch speed of the
particle?

13.27 A bead of mass m is attached to a
spring with constant k. The bead slides
without friction in the tube shown. The
tube is driven at a constant angular rate ω0
about axis AA′ by a motor (not pictured).
There is no gravity. The unstretched spring
length is r0. Find the radial position r of
the bead if it is stationary with respect to
the rotating tube.

A

A'

r
0

ω0
m

problem 13.27:
Filename:Danef94s2q6

13.28 A particle of mass m is restrained
by a string to move with a constant angu-
lar speed ω around a circle of radius R on
a horizontal frictionless table. If the radius
of the circle is reduced to r , by pulling the
string with a force F through a hole in the
table, what will the particle’s angular ve-
locity be? Is kinetic energy is conserved?
Why or why not?

F

r

m

problem 13.28:
Filename:pfigure-blue-44-1

13.29 An ‘L’ shaped rigid, massless, and
frictionless bar is made up of two uniform
segments of length ` = 0.4 m each. A
collar of mass m = 0.5 kg, attached to a
spring at one end, slides frictionlessly on
one of the arms of the ‘L’. The spring is
fixed to the elbow of the ‘L’ and has a
spring constant k = 6 N/m. The struc-
ture rotates clockwise at a constant rate
ω = 2 rad/s. If the collar is steady at a
distance 3

4` = 0.3 m away from the el-
bow of the ‘L’, find the relaxed length of
the spring, `0. Neglect gravity.

.

motor

3/4

x

y

m

O

k

�

�

�

ı̂

ĵ

ω

problem 13.29: Forces in constant rate cir-
cular motion.

Filename:pfigure-Lbar

13.30 A massless rigid rod with length `
attached to a ball of mass M spins at a con-
stant angular rate ω which is maintained by
a motor (not shown) at the hinge point. The
rod can only withstand a tension of Tcr be-
fore breaking. Find the maximum angular
speed of the ball so that the rod does not
break assuming

a) there is no gravity, and
b) there is gravity (neglect bending

stresses).
M

ω

x

y

�

problem 13.30:
Filename:Danef94s2q5

13.31 A 1 m long massless string has a par-
ticle of 10 grams mass at one end and is

tied to a stationary point O at the other end.
The particle rotates counter-clockwise in
circles on a frictionless horizontal plane.
The rotation rate is 2π rev/sec. Assume an
xy-coordinate system in the plane with its
origin at O .

a) Make a clear sketch of the system.
b) What is the tension in the string (in

Newtons)?
c) What is the angular momentum of

the mass about O?
d) When the string makes a 45◦ angle

with the positive x and y axis on
the plane, the string is quickly and
cleanly cut. What is the position of
the mass 1 sec later? Make a sketch.

13.32 A ball of mass M fixed to an in-
extensible rod of length ` and negligible
mass rotates about a frictionless hinge as
shown in the figure. A motor (not shown)
at the hinge point accelerates the mass-rod
system from rest by applying a constant
torque MO . The rod is initially lined up
with the positive x-axis. The rod can only
withstand a tension of Tcr before breaking.
At what time will the rod break and after
how many revolutions? Include gravity if
you like.

M
γ

ω

x

y

�

problem 13.32:
Filename:pfigure5-mike-sum95

13.33 A particle of mass m, tied to one end
of a rod whose other end is fixed at point O
to a motor, moves in a circular path in the
vertical plane at a constant rate. Gravity
acts in the −̂ direction.

a) Find the difference between the
maximum and minimum tension in
the rod.

b) Find the ratio 1T
Tmax

where 1T =

Tmax − Tmin . A criterion for ig-
noring gravity might be if the vari-
ation in tension is less than 2% of
the maximum tension; i.e., when
1T
Tmax

< 0.02. For a given length
r of the rod, find the rotation rate ω
for which this condition is met. .

c) For ω = 300 rpm, what would be
the length of the rod for the condi-
tion in part (b) to be satisfied? .
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r

m

O

ı̂

ĵ

g

problem 13.33:
Filename:pfigure4-rph

13.34 A massless rigid bar of length L is
hinged at the bottom. A force F is applied
at point A at the end of the bar. A mass m
is glued to the bar at point B, a distance d
from the hinge. There is no gravity. What
is the acceleration of point A at the instant
shown? Assume the angular velocity is ini-
tially zero.

FA

B

d

�

x

y

problem 13.34:
Filename:pfigure-blue-10-1

13.35 The mass m is attached rigidly to the
rotating disk by the light rod AB of length
`. Neglect gravity. Find MA (the moment
on the rod AB from its support point at A)
in terms of θ̇ and θ̈ . What is the sign of
MA if θ̇ = 0 and θ̈ > 0? What is the sign
if θ̈ = 0 and θ̇ > 0?

m

O

A

B

θ(t)

�

R

problem 13.35:
Filename:pfigure-blue-84-2

13.36 Pendula using energy methods.
Find the equations of motion for the pen-
dula in problem 13.94 using energy meth-
ods.

.

13.37 Tension in a simple pendulum
string. A simple pendulum of length 2 m
with mass 3 kg is released from rest at
an initial angle of 60◦ from the vertically
down position.

a) What is the tension in the string just
after the pendulum is released?

b) What is the tension in the string
when the pendulum has reached 30◦

from the vertical?

13.38 Simply the simple pendulum. Find
the nonlinear governing differential equa-
tion for a simple pendulum

θ̈ = −
g
l

sin θ

as many different ways as you can.

θ �

problem 13.38: A simple pendulum.
Filename:spend

13.39 Tension in a rope-swing rope.
Model a swinging person as a point mass.
The swing starts from rest at an angle θ =

90◦. When the rope passes through vertical
the tension in the rope is higher (it is hard
to hang on). A person wants to know ahead
of time if she is strong enough to hold on.
How hard does she have to hang on com-
pared, say, to her own weight? You are to
find the solution two ways. Use the same
m, g, and L for both solutions.

a) Find θ̈ as a function of g, L , θ , and
m. This equation is the govern-
ing differential equation. Write it
as a system of first order equations.
Solve them numerically. Once you
know θ̇ at the time the rope is verti-
cal you can use other mechanics re-
lations to find the tension. If you
like, you can plot the tension as a
function of time as the mass falls.

b) Use conservation of energy to find θ̇
at θ = 0. Then use other mechanics
relations to find the tension.

m

A

B

θ L

problem 13.39:
Filename:pfigure-s94h8p5

13.40 Pendulum. A pendulum with a
negligible-mass rod and point mass m is
released from rest at the horizontal posi-
tion θ = π/2.

a) Find the acceleration (a vector) of
the mass just after it is released at
θ = π/2 in terms of `,m, g and any
base vectors you define clearly.

b) Find the acceleration (a vector) of
the mass when the pendulum passes
through the vertical at θ = 0 in
terms of `,m, g and any base vec-
tors you define clearly

c) Find the string tension when the
pendulum passes through the ver-
tical at θ = 0 (in terms of
`,m and g).

x

y

θ

�

m

g

problem 13.40:
Filename:s97p2-1

13.41 Simple pendulum, extended ver-
sion. A point mass M = 1 kg hangs on
a string of length L = 1 m. Gravity pulls
down on the mass with force Mg, where
g = 10 m/s2. The pendulum lies in a ver-
tical plane. At any time t , the angle be-
tween the pendulum and the straight-down
position is θ(t). There is no air friction.

a) Equation of motion. Assuming
that you know both θ and θ̇ , find
θ̈ . There are several ways to do this
problem. Use any ways that please
you.

b) Tension. Assuming that you know
θ and θ̇ , find the tension T in the
string.
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c) Reaction components. Assuming
you know θ and θ̇ , find the x and
y components of the force that the
hinge support causes on the pendu-
lum . Define your coordinate direc-
tions sensibly.

d) Reduction to first order equa-
tions. The equation that you found
in (a) is a nonlinear second order
ordinary differential equation. It
can be changed to a pair of first
order equations by defining a new
variable α ≡ θ̇ . Write the equa-
tion from (a) as a pair of first order
equations. Solving these equations
is equivalent to solving the original
second order equation.

e) Numerical solution. Given the ini-
tial conditions θ(t = 0) = π/2 and
α(t = 0) = θ̇ (t = 0) = 0, one
should be able to find what the posi-
tion and speed of the pendulum is as
a function of time. Using the results
from (b) and (c) one can also find
the reaction components. Using any
computer and any method you like,
find: θ(t), θ̇ (t)& T (t). Make a sin-
gle plot, or three vertically aligned
plots, of these variables for one full
oscillation of the pendulum.

f) Maximum tension. Using your
numerical solutions, find the maxi-
mum value of the tension in the rod
as the mass swings.

g) Period of oscillation. How long
does it take to make one oscillation?

h) Other observations. Make any ob-
servations that you think are inter-
esting about this problem. Some
questions: Does the solution to (f)
depend on the length of the string?
Is the solution to (f) exactly 30 or
just a number near 30? How does
the period found in (g) compare
to the period found by solving the
linear equation θ̈ + (g/ l)θ = 0,
based on the (inappropriate-to-use
in this case) small angle approxima-
tion sin θ = θ?

13.42 Bead on a hoop with friction. A
bead slides on a rigid, stationary, circular
wire. The coefficient of friction between
the bead and the wire is µ. The bead is
loose on the wire (not a tight fit but not
so loose that you have to worry about rat-
tling). Assume gravity is negligible.

a) Given v, m, R, & µ; what is v̇?
b) If v(θ = 0) = v0, how does v de-

pend on θ , µ, v0 and m?

O

R

m

θ

x

y

v

problem 13.42:
Filename:pfigure-s94h10p1

13.43 Particle in a chute. One of a mil-
lion non-interacting rice grains is sliding in
a circular chute with radius R. Its mass is
m and it slides with coefficient of friction
µ (Actually it slides, rolls and tumbles —
µ is just the effective coefficient of friction
from all of these interactions.) Gravity g
acts downwards.

a) Find a differential equation that is
satisfied by θ that governs the speed
of the rice as it slides down the
hoop. Parameters in this equation
can be m, g, R and µ [Hint: Draw
FBD, write eqs of mechanics, ex-
press as ODE.]

b) Find the particle speed at the bot-
tom of the chute if R = .5m, m =

.1 grams, g = 10 m/s2, and µ = .2
as well as the initial values of θ0 =

0 and its initial downward speed is
v0 = 10 m/s. [Hint: you are proba-
bly best off seeking a numerical so-
lution.]

R

θ

µ

m g

problem 13.43:
Filename:p-f96-p3-1

13.44 Due to a push which happened in
the past, the collar with mass m is sliding
up at speed v0 on the circular ring when
it passes through the point A. The ring is
frictionless. A spring of constant k and un-
stretched length R is also pulling on the
collar.

a) What is the acceleration of the col-
lar at A. Solve in terms of R, v0, m,
k, g and any base vectors you de-
fine.

b) What is the force on the collar from
the ring when it passes point A?
Solve in terms of R, v0, m, k, g and
any base vectors you define.

R

A

collar

g

problem 13.44:
Filename:s93q4Ruina

13.45 A toy used to shoot pellets is made
out of a thin tube which has a spring of
spring constant k on one end. The spring
is placed in a straight section of length `;
it is unstretched when its length is `. The
straight part is attached to a (quarter) cir-
cular tube of radius R, which points up in
the air.

a) A pellet of mass m is placed in the
device and the spring is pulled to the
left by an amount1`. Ignoring fric-
tion along the travel path, what is
the pellet’s velocity ⇀

v as it leaves
the tube?

b) What force acts on the pellet just
prior to its departure from the tube?
What about just after?

Rk

�

problem 13.45:
Filename:pfigure-blue-toygun

13.46 A block with mass m is moving to
the right at speed v0 when it reaches a cir-
cular frictionless portion of the ramp.

a) What is the speed of the block when
it reaches point B? Solve in terms of
R, v0, m and g.

b) What is the force on the block from
the ramp just after it gets onto the
ramp at point A? Solve in terms of
R, v0, m and g. Remember, force is
a vector.
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R

A

B

g

v0

problem 13.46:
Filename:s93q4Sachse

13.47 A car moves with speed v along
the surface of the hill shown which can
be approximated as a circle of radius R.
The car starts at a point on the hill at point
O . Compute the magnitude of the speed v
such that the car just leaves the ground at
the top of the hill.

R

O
g

problem 13.47:
Filename:pfigure-blue-65-1

13.3 Kinematics of a rigid
body in planar circular
motion
13.48 Find ⇀

v =
⇀
ω ×

⇀r , if ⇀
ω = 1.5 rad/sk̂

and ⇀r = 2 mı̂ − 3 m̂ .

13.49 A rod OB rotates with its end O
fixed as shown in the figure with angular
velocity ⇀

ω = 5 rad/sk̂ and angular accel-
eration ⇀

α = 2 rad/s2 k̂ at the moment of
interest. Find, draw, and label the tangen-
tial and normal acceleration of end point B
given that θ = 60

◦

.

r = 10 in

A

B

x

y

O

θ

problem 13.49:
Filename:efig1-2-18

13.50 A motor turns a uniform disc of ra-
dius R counter-clockwise about its mass
center at a constant rate ω. The disc lies in
the xy-plane and its angular displacement
θ is measured (positive counter-clockwise)
from the x-axis. What is the angular dis-
placement θ(t) of the disc if it starts at
θ(0) = θ0 and θ̇ (0) = ω? What are the
velocity and acceleration of a point P at
position ⇀r = x ı̂ + ŷ?

13.51 A disc rotates at 15 rpm. How many
seconds does it take to rotate by 180 de-
grees? What is the angular speed of the
disc in rad/s?

13.52 Two discsA and B rotate at constant
speeds about their centers. Disc A rotates
at 100 rpm and disc B rotates at 10 rad/s.
Which is rotating faster?

13.53 Find the angular velocities of the
second, minute, and hour hands of a clock.

13.54 A motor turns a uniform disc of ra-
dius R counter-clockwise about its mass
center at a constant rate ω. The disc lies in
the xy-plane and its angular displacement
θ is measured (positive counter-clockwise)
from the x-axis. What are the velocity
and acceleration of a point P at position
⇀r P = c ı̂ + d ̂ relative to the velocity and
acceleration of a point Q at position ⇀r Q =

0.5(−d ı̂+ĉ ) on the disk? (c2
+d2 < R2.)

13.55 A 0.4 m long rod AB has many
holes along its length such that it can be
pegged at any of the various locations. It
rotates counter-clockwise at a constant an-
gular speed about a peg whose location is
not known. At some instant t , the velocity
of end B is ⇀

v B = −3 m/ŝ . After π
20 s,

the velocity of end B is ⇀
v B = −3 m/sı̂. If

the rod has not completed one revolution
during this period,

a) find the angular velocity of the rod,
and

b) find the location of the peg along the
length of the rod.

B

A

ı̂

ĵ

problem 13.55:
Filename:pfigure4-3-rp9

13.56 A circular disc of radius r =

250 mm rotates in the xy-plane about a
point which is at a distance d = 2r away
from the center of the disk. At the instant
of interest, the linear speed of the center C
is 0.60 m/s and the magnitude of its cen-
tripetal acceleration is 0.72 m/s2.

a) Find the rotational speed of the
disk.

b) Is the given information enough to
locate the center of rotation of the
disk?

c) If the acceleration of the center has
no component in the ̂ direction at
the moment of interest, can you lo-
cate the center of rotation? If yes, is
the point you locate unique? If not,
what other information is required
to make the point unique?
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C

r

ı̂

ĵ

problem 13.56:
Filename:pfigure4-3-rp8

13.57 A disc C spins at a constant rate
of two revolutions per second counter-
clockwise about its geometric center, G,
which is fixed. A point P is marked on the
disk at a radius of one meter. At the mo-
ment of interest, point P is on the x-axis of
an xy-coordinate system centered at point
G.

a) Draw a neat diagram showing the
disk, the particle, and the coordinate
axes.

b) What is the angular velocity of the
disk, ⇀ωC?

c) What is the angular acceleration of
the disk, ⇀̇ωC?

d) What is the velocity ⇀
v P of point P?

e) What is the acceleration ⇀a P of
point P?

13.58 A uniform disc of radius r =

200 mm is mounted eccentrically on a mo-
tor shaft at point O . The motor rotates the
disc at a constant angular speed. At the in-
stant shown, the velocity of the center of
mass is ⇀

v G = −1.5 m/ŝ .
a) Find the angular velocity of the

disc.
b) Find the point with the highest lin-

ear speed on the disc. What is its
velocity?

O
G

r 2
3

r

x

y

problem 13.58:
Filename:pfigure4-3-rp4

13.59 The circular disc of radius R =

100 mm rotates about its center O . At a
given instant, point A on the disk has a
velocity vA = 0.8 m/s in the direction
shown. At the same instant, the tangent of
the angle θ made by the total acceleration
vector of any point B with its radial line to
O is 0.6. Compute the angular acceleration
α of the disc.

A
B

O
θ

R
⇀
aB

⇀
vA

problem 13.59:
Filename:pfigure-blue-43-2

13.60 Show that, for non-constant rate cir-
cular motion, the acceleration of all points
in a given radial line are parallel.

O

⇀
a

problem 13.60:
Filename:pfigure-DH-5-1a

13.61 A motor turns a uniform disc of ra-
dius R about its mass center at a vari-
able angular rate ω with rate of change
ω̇, counter-clockwise. The disc lies in
the xy-plane and its angular displacement
θ is measured from the x-axis, positive
counter-clockwise. What are the veloc-
ity and acceleration of a point P at posi-
tion ⇀r P = c ı̂ + d ̂ relative to the veloc-
ity and acceleration of a point Q at posi-
tion ⇀r Q = 0.5(−d ı̂ + ŷ ) on the disk?
(c2

+ d2 < R2.)

13.62 Bit-stream kinematics of a CD. A
Compact Disk (CD) has bits of data etched
on concentric circular tracks. The data
from a track is read by a beam of light
from a head that is positioned under the
track. The angular speed of the disk re-
mains constant as long as the head is po-
sitioned over a particular track. As the
head moves to the next track, the angular
speed of the disk changes, so that the lin-
ear speed at any track is always the same.

The data stream comes out at a constant
rate 4.32 × 106 bits/second. When the
head is positioned on the outermost track,
for which r = 56 mm, the disk rotates at
200 rpm.

a) What is the number of bits of data
on the outermost track.

b) find the angular speed of the disk
when the head is on the innermost
track (r = 22 mm), and

c) find the numbers of bits on the in-
nermost track.

13.63 A horizontal disk D of diameter
d = 500 mm is driven at a constant speed
of 100 rpm. A small disk C can be posi-
tioned anywhere between r = 10 mm and
r = 240 mm on disk D by sliding it along
the overhead shaft and then fixing it at the
desired position with a set screw (see the
figure). Disk C rolls without slip on disk
D. The overhead shaft rotates with disk
C and, therefore, its rotational speed can
be varied by varying the position of disk
C. This gear system is called brush gear-
ing. Find the maximum and minimum ro-
tational speeds of the overhead shaft.

r

r

set screw

100 rpm

Side View

Top View

bearing

D

C

C

D

problem 13.63:
Filename:pfigure4-rpc

13.64 Two points A and B are on the same
machine part that is hinged at an as yet un-
known location C. Assume you are given
that points at positions ⇀rA and ⇀rB are sup-
posed to move in given directions, indi-
cated by unit vectors as λ̂A and λ̂B . For
each of the parts below, illustrate your re-
sults with two numerical examples (in con-
sistent units): i) ⇀rA = 1ı̂, ⇀rB = 1̂ ,
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λ̂A = 1̂ , and λ̂B = −1ı̂ (thus ⇀rC =
⇀
0),

and ii) a more complex example of your
choosing.

a) Describe in detail what equations
must be satisfied by the point ⇀rC.

b) Write a computer program that
takes as input the 4 pairs of num-
bers [

⇀rA], [
⇀rB], [λ̂A] and [λ̂B ] and

gives as output the pair of numbers
[λ̂C ].

c) Find a formula of the form ⇀rC =

. . . that explicitly gives the position
vector for point C in terms of the 4
given vectors.

13.4 Dynamics of a rigid
body in planar circular
motion
13.65 The structure shown in the figure
consists of two point masses connected by
three rigid, massless rods such that the
whole structure behaves like a rigid body.
The structure rotates counterclockwise at
a constant rate of 60 rpm. At the instant
shown, find the force in each rod.

1m 45
o

m = 0.5 kg m

problem 13.65:
Filename:pfig4-1-rp10

13.66 The hinged disk of mass m (uni-
formly distributed) is acted upon by a force
P shown in the figure. Determine the ini-
tial angular acceleration and the reaction
forces at the pin O .

O

30o

30o

P

R

g

problem 13.66:
Filename:pfigure-blue-41-3

13.67 A thin uniform circular disc of mass
M and radius R rotates in the xy plane
about its center of mass point O . Driven
by a motor, it has rate of change of angu-
lar speed proportional to angular position,
α = dθ5/2. The disc starts from rest at
θ = 0.

a) What is the rate of change of angu-
lar momentum about the origin at
θ =

π
3 rad?

b) What is the torque of the motor at
θ =

π
3 rad?

c) What is the total kinetic energy of
the disk at θ =

π
3 rad?

13.68 A uniform circular disc rotates at
constant angular speed ω about the origin,
which is also the center of the disc. It’s
radius is R. It’s total mass is M .

a) What is the total force and moment
required to hold it in place (use the
origin as the reference point of an-
gular momentum and torque).

b) What is the total kinetic energy of
the disk?

M

O

R

ω

x

y

problem 13.68:
Filename:pfigure-blue-87a-1

13.69 Neglecting gravity, calculate α =

ω̇ = θ̈ at the instant shown for the system
in the figure.

F=10N

2 kg

pt. mass

4 cm

5 cm

4 cm

1 cm

rigid

massless

tubing


θ

problem 13.69:
Filename:pfigure-blue-20-1

13.70 Slippery money A round uniform
flat horizontal platform with radius R and
mass m is mounted on frictionless bear-
ings with a vertical axis at 0. At the mo-
ment of interest it is rotating counter clock-
wise (looking down) with angular veloc-
ity ⇀

ω = ωk̂. A force in the xy plane

with magnitude F is applied at the perime-
ter at an angle of 30◦ from the radial di-
rection. The force is applied at a location
that is φ from the fixed positive x axis. At
the moment of interest a small coin sits
on a radial line that is an angle θ from
the fixed positive x axis (with mass much
much smaller than m). Gravity presses it
down, the platform holds it up, and friction
(coefficient=µ) keeps it from sliding.

Find the biggest value of d for which
the coin does not slide in terms of some or
all of F,m, g, R, ω, θ, φ, and µ.

0

θγ

φγR

Support Bearing

problem 13.70:
Filename:pfigure-slipperymoney

13.71 A disk of mass M and radius R is
attached to an electric motor as shown. A
coin of mass m rests on the disk, with the
center of the coin a distance r from the cen-
ter of the disk. Assume that m � M , and
that the coefficient of friction between the
coin and the disk is µ. The motor delivers
a constant power P to the disk. The disk
starts from rest when the motor is turned
on at t = 0.

a) What is the angular velocity of the
disk as a function of time?

b) What is its angular acceleration?
c) At what time does the coin begin to

slip off the disk? (It will suffice here
to give the equation for t that must
be solved.)

G
R

r

coin,
mass = m

disk, mass = M
z

ω

IG = 1
2 M R2

g

problem 13.71:
Filename:pfigure-blue-45-1
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13.72 2-D constant rate gear train. The
angular velocity of the input shaft (driven
by a motor not shown) is a constant,
ωinput = ωA. What is the angular velocity
ωoutput = ωC of the output shaft and the
speed of a point on the outer edge of disc
C , in terms of RA, RB , RC , and ωA?

RA RB

RC

ωA

A B

C

no slip

ωC

problem 13.72: A set of gears turning at con-
stant rate.

Filename:ch4-3

13.73 2-D constant speed gear train.
Gear A is connected to a motor (not
shown) and gear B, which is welded to
gear C, is connected to a taffy-pulling
mechanism. Assume you know the torque
Minput = MA and angular velocity
ωinput = ωA of the input shaft. Assume
the bearings and contacts are frictionless.

a) What is the input power?
b) What is the output power?
c) What is the output torque

Moutput = MC , the torque that gear
C applies to its surroundings in the
clockwise direction?

RA

MA

RB

RC

ωA

A B

C

no slip

ωC

problem 13.73:
Filename:pfigure-s94h6p5

13.74 Accelerating rack and pinion. The
two gears shown are welded together and
spin on a frictionless bearing. The inner
gear has radius 0.5 m and negligible mass.
The outer disk has 1 m radius and a uni-
formly distributed mass of 0.2 kg. They
are loaded as shown with the force F =

20 N on the massless rack which is held in
place by massless frictionless rollers. At
the time of interest the angular velocity is
ω = 2 rad/s (though ω is not constant).
The point P is on the disk a distance 1 m
from the center. At the time of interest,
point P is on the positive y axis.

a) What is the speed of point P?
b) What is the velocity of point P?
c) What is the angular acceleration α

of the gear?
d) What is the acceleration of point P?
e) What is the magnitude of the accel-

eration of point P?
f) What is the rate of increase of the

speed of point P?

1m

.5m

no slip

P

x

y

ω

massless rack

massless
inner disk

uniform disk
m = 2kg

F=20N

problem 13.74: Accelerating rack and pinion
Filename:pg45-2

13.75 A 2-D constant speed gear train.
Shaft B is rigidly connected to gears G4
and G3. G3 meshes with gear G6. Gears
G6 and G5 are both rigidly attached to
shaft CD. Gear G5 meshes with G2 which
is welded to shaft A. Shaft A and shaft
B spin independently. The input torque
Minput = 500 N·m and the spin rate
ωinput = 150 rev/min.. Assume the bear-
ings and contacts are frictionless.

a) What is the input power?
b) What is the output power?
c) What is the an-

gular velocity ωoutputof the output
shaft?

d) What is the output torque Moutput?
x

y

z

C

A

D

G1

G2 G3
G4

G6

G5

B

C D

BA

G5

G1

G2 G3

G4

G6Front view

ωout

ωin

RG5
 = 3RG2

3RG3
 = 5RG6 ωinωout

problem 13.75:
Filename:pfigure-s94h6p6

13.76 Two gears rotating at constant
rate. At the input to a gear box a 100 lbf
force is applied to gear A. At the output,
the machinery (not shown) applies a force
of FB to the output gear. Gear A rotates at
constant angular rate ω = 2 rad/s, clock-
wise.

a) What is the angular speed of the
right gear?

b) What is the velocity of point P?
c) What is FB?
d) If the gear bearings had friction,

would FB have to be larger or
smaller in order to achieve the same
constant velocity?

e) If instead of applying a 100 lbf to
the left gear it is driven by a mo-
tor (not shown) at constant angular
speed ω, what is the angular speed
of the right gear?

RA

RC

RB

A B P

no slip

FA = 100 lb

FB = ?

C

problem 13.76: Two gears.
Filename:pg131-3

13.77 Two racks connected by a gear. A
100 lbf force is applied to one rack. At the
output the machinery (not shown) applies
a force FB to the other rack.

a) Assume the gear is spinning at con-
stant rate and is frictionless. What
is FB?

b) If the gear bearing had friction,
would that increase or decrease FB
to achieve the same constant rate?

uniform disk

m = 10 lbm

massless

racks
FB = ?



100 lbf

6 in

ω

problem 13.77: Two racks connected by a gear.
Filename:ch4-4

13.78 Constant rate rack and pinion.
The two gears shown are welded together
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and spin on a frictionless bearing. The in-
ner gear has radius 0.5 m and negligible
mass. The outer gear has 1 m radius and
a uniformly distributed mass of 0.2 kg. A
motor (not shown) rotates the disks at con-
stant rate ω = 2 rad/s. The gears drive
the massless rack which is held in place by
massless frictionless rollers as shown. The
gears and the rack have teeth that are not
shown in the figure. The point P is on the
outer gear a distance 1.0 m from the cen-
ter. At the time of interest, point P is on
the positive y axis.

a) What is the speed of point P?
b) What is the velocity of point P?
c) What is the acceleration of point P?

d) What is the velocity of the rack ⇀
v r ?

e) What is the force on the rack due to
its contact with the inner gear?

1m

.5m

no slip

P

x

y

⇀
vr

ω

problem 13.78: Constant rate rack and pinion
Filename:ch4-2

13.79 Belt drives are used to transmit
power between parallel shafts. Two par-
allel shafts, 3 m apart, are connected by a
belt passing over the pulleys A and B fixed
to the two shafts. The driver pulley A ro-
tates at a constant 200 rpm. The speed ratio
between the pulleys A and B is 1:2.5. The
input torque is 350 N·m. Assume no loss
of power between the two shafts.

a) Find the input power.
b) Find the rotational speed of the

driven pulley B .
c) Find the output torque at B.

3m

(driven) B
A (driver)

r = 100 mm

problem 13.79:
Filename:pfigure4-rpd

13.80 In the belt drive system shown, as-
sume that the driver pulley rotates at a con-
stant angular speed ω. If the motor applies
a constant torque MO on the driver pul-
ley, show that the tensions in the two parts,
AB and C D, of the belt must be different.
Which part has a greater tension? Does
your conclusion about unequal tension de-
pend on whether the pulley is massless or
not? Assume any dimensions you need.

driven pulley

B

driver pulley

A

D
C

MO

problem 13.80:
Filename:pfigure4-rpe

13.81 A belt drive is required to trans-
mit 15 kW power from a 750 mm diame-
ter pulley rotating at a constant 300 rpm to
a 500 mm diameter pulley. The centers of
the pulleys are located 2.5 m apart. The
coefficient of friction between the belt and
pulleys is µ = 0.2.

a) (See problem 13.102.) Draw a neat
diagram of the pulleys and the belt-
drive system and find the angle of
lap, the contact angle θ , of the belt
on the driver pulley.

b) Find the rotational speed of the
driven pulley.

c) (See the figure in problem 13.102.)
The power transmitted by the belt
is given by power = net tension ×

belt speed, i.e., P = (T1 − T2)v,
where v is the linear speed of the
belt. Find the maximum tension in
the belt. [Hint: T1

T2
= eµθ (see

problem 13.102).]
d) The belt in use has a 15 mm×5 mm

rectangular cross-section. Find the
maximum tensile stress in the belt.

13.82 A bevel-type gear system, shown
in the figure, is used to transmit power
between two shafts that are perpendicu-
lar to each other. The driving gear has a
mean radius of 50 mm and rotates at a con-
stant speed ω = 150 rpm. The mean ra-
dius of the driven gear is 80 mm and the
driven shaft is expected to deliver a torque
of Mout = 25 N·m. Assuming no power
loss, find the input torque supplied by the
driving shaft

driving gear

ı̂

ĵ

problem 13.82:
Filename:pfigure4-rpa

13.83 Disk pulleys. Two uniform disks
A and B of non-negligible masses 10 kg
and 5 kg respectively, are used as pulleys
to hoist a block of mass 20 kg as shown in
the figure. The block is pulled up by ap-
plying a force F = 310 N at one end of the
string. Assume the string to be massless
but ‘frictional’ enough to not slide on the
pulleys. Use g = 10 m/s2.

a) Find the angular acceleration of
pulley B.

b) Find the acceleration of block C.
c) Find the tension in the part of the

string between the block and the
overhead pulley.

C

60 cm

40 cm20 kg

10 kg

5 kg

F = 310 N

A

B

problem 13.83:
Filename:pfigure-s94h8p4

13.84 A pulley with mass M made of
a uniform disk with radius R is mis-
manufactured to have its hinge off of its
center by a distance h (shown exaggerated
in the figure). The system is released from
rest in the position shown.

a) Given α find the accelerations of the
two blocks in terms of α and the di-
mensions shown.

b) Find α.
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problem 13.84:
Filename:pfigure-crookedpulley

13.85 A spindle and pulley arrangement is
used to hoist a 50 kg mass as shown in the
figure. Assume that the pulley is to be of
negligible mass. When the motor is run-
ning at a constant 100 rpm,

a) Find the velocity of the mass at B.
b) Find the tension in strings AB and

C D.
motor r = 150 mm

r = 250 mm

50 kgA

B

C

D
spindle

r = 300 mm

problem 13.85:
Filename:pfigure4-rpg

13.86 Two racks connected by three con-
stant rate gears. A 100 lbf force is applied
to one rack. At the output, the machinery
(not shown) applies a force of FB to the
other rack.

a) Assume the gear-train is spinning
at constant rate and is frictionless.
What is FB?

b) If the gear bearings had friction
would that increase or decrease FB
to achieve the same constant rate?

c) If instead of applying a 100 lbf to
the left rack it is driven by a mo-
tor (not shown) at constant speed v,
what is the speed of the right rack?

massless
rack

massless
rack

no slip

FB = ?

RA

RC
REA b C d E

no slip

100 lb

Bx

y

problem 13.86: Two racks connected by three
gears.

Filename:ch4-5

13.87 Two racks connected by three ac-
celerating gears. A 100 lbf force is ap-
plied to one rack. At the output, the ma-
chinery (not shown) applies a force of FB
to the other rack.

a) Assume the gear-train is spinning
at constant rate and is frictionless,
what is FB?

b) If the gear bearings had friction
would that increase or decrease FB
to achieve the same constant rate?

c) If the angular velocity of the gear
is increasing at rate α does this in-
crease or decrease FB at the given
ω.

massless
rack

massless
rack

no slip

FB = ?

RA

RC
REA b C d E

no slip

100 lb

Bx

y

problem 13.87: Two racks connected by three
gears.

Filename:pg131-2

13.88 -3-D accelerating gear train. This
is really a 2-D problem; each gear turns
in a different parallel plane. Shaft B is
rigidly connected to gears G4 and G5. G3
meshes with gear G6. Gears G6 and G5
are both rigidly attached to shaft AD. Gear
G5 meshes with G2 which is welded to
shaft A. Shaft A and shaft B spin inde-
pendently. Assume you know the torque
Minput, angular velocity ωinput and the
angular acceleration αinput of the input
shaft. Assume the bearings and contacts
are frictionless.

a) What is the input power?
b) What is the output power?
c) What is the angular velocity
ωoutput of the output shaft?

d) What is the output torque Moutput?
x

y

z

C

A

D

G1

G2 G3
G4

G6

G5

B

C D

BA

G5

G1

G2 G3

G4

G6Front view

ωout

ωin

RG5
 = 3RG2

3RG3
 = 5RG6 ωinωout

problem 13.88: A 3-D set of gears turning at
constant rate.

Filename:3dgeartrain

13.89 A uniform disk of mass M and ra-
dius R rotates about a hinge O in the xy-
plane. A point mass m is fixed to the disk
at a distance R/2 from the hinge. A motor
at the hinge drives the disk/point mass as-
sembly with constant angular acceleration
α. What torque at the hinge does the motor
supply to the system?

13.90 The asymmetric dumbbell shown in
the figure is pivoted in the center and also
attached to a spring at one quarter of its
length from the bigger mass. When the bar
is horizontal, the compression in the spring
is ys . At the instant of interest, the bar is at
an angle θ from the horizontal; θ is small
enough so that y ≈

L
2 θ . If, at this position,

the velocity of mass ‘m’ is v̂ and that of
mass 3m is −v̂ , evaluate the power term
(
∑ ⇀

F ·
⇀
v ) in the energy balance equation.

massless

L

3m m

k

problem 13.90:
Filename:pfig2-3-rp4
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13.91 The dumbbell shown in the fig-
ure has a torsional spring with spring con-
stant k (torsional stiffness units are kN· m

rad ).
The dumbbell oscillates about the horizon-
tal position with small amplitude θ . At an
instant when the angular velocity of the bar
is θ̇ k̂, the velocity of the left mass is −L θ̇ ̂
and that of the right mass is L θ̇ ̂ . Find the
expression for the power P of the spring
on the dumbbell at the instant of interest.

torsional spring

constant k

LL

2m m

ı̂

̂

problem 13.91:
Filename:pfig2-3-rp10

13.92 A physical pendulum. A swing-
ing stick is sometimes called a ‘physical’
pendulum. Take the ‘body’, the system of
interest, to be the whole stick.

a) Draw a free body diagram of the
system.

b) Write the equation of angular mo-
mentum balance for this system
about point O .

c) Evaluate the left-hand-side as ex-
plicitly as possible in terms of the
forces showing on your Free Body
Diagram.

d) Evaluate the right hand side as com-
pletely as possible. You may use the
following facts:

⇀
v = l θ̇ cos θ ̂ + −l θ̇ sin θ ı̂
⇀a = −l θ̇2 [cos θ ı̂ + sin θ ̂

]
+l θ̈

[
cos θ ̂ − sin θ ı̂

]
where ` is the distance along the
pendulum from the top, θ is the an-
gle by which the pendulum is dis-
placed counter-clockwise from the
vertically down position, ı̂ is ver-
tically down, and ̂ is to the right.
You will have to set up and evaluate
an integral.

O

L

�

ı̂

ĵ

θ

problem 13.92:
Filename:ppend

13.93 Which of (a), (b), and (c) are two
force members?

uniform rigid 
bar, mass m 

uniform rigid 
bar, mass m

(a)

m
rigid, 

massless bar

Swinging rod
with mass

Massless
swinging rod 

(c)

Stationary rod
with mass

(b)

θ

θ

g g

g

problem 13.93:
Filename:pfigure2-two-force

13.94 For the pendula in the figure :
a) Without doing any calculations, try

to figure out the relative durations
of the periods of oscillation for the
five pendula (i.e. the order, slowest
to fastest) Assume small angles of
oscillation.

b) Calculate the period of small oscil-
lations. [Hint: use balance of angu-
lar momentum about the point 0].

c) Rank the relative duration of oscil-
lations and compare to your intu-
itive solution in part (a), and explain
in words why things work the way
they do.

(a)

(c) (d) (e)

(b)

rigid, 
massless bar

M

M

M

2m

1m

1m

1m

2m

M
M

M

θ
θ θ

g

rigid, 
massless bar

uniform bar
M = 1kg

rigid, 
massless

bar

rigid, 
massless

bar

θ θ

2m
2m

O O

O O O

problem 13.94:
Filename:pg144-1n

13.95 A massless 10 meter long bar is sup-
ported by a frictionless hinge at one end
and has a 3.759 kg point mass at the other
end. It is released at t = 0 from a tip an-
gle of φ = .02 radians measured from ver-
tically upright position (hinge at the bot-
tom). Use g = 10m s−2.

a) Using a small angle approximation
and the solution to the resulting lin-
ear differential equation, find the
angle of tip at t = 1s and t = 7s.
Use a calculator, not a numerical in-
tegrator.

b) Using numerical integration of the
non-linear differential equation for
an inverted pendulum find φ at t =

1s and t = 7s.
c) Make a plot of the angle versus time

for your numerical solution. In-
clude on the same plot the angle
versus time from the approximate
linear solution from part (a).

d) Comment on the similarities and
differences in your plots.

13.96 A spring-mass-damper system is de-
picted in the figure. The horizontal damp-
ing force applied at B is given by FD =

−cẏB
The dimensions and parameters are as fol-
lows:

rB/0 = 2 f t
rA/0 = ` = 3 f t

k = 2 lbf/ ft
c = 0.3 lbf · s/ ft

For small θ , assume that sin(θ) ≈ θ and
cos(θ) ≈ 1.
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a) Determine the natural circular fre-
quency of small oscillations
about equilibrium for the pendulum
shown. The static equilibrium po-
sition is θ = 0 (pendulum hanging
vertically), so the spring is at its rest
point in this position. Idealize the
pendulum as a point mass attached
to a rigid massless rod of length 1,
so I O

= m`2. Also use the “small
angle approximation” where appro-
priate.

b) Sketch a graph of θ as a function of
t (t ≥ 0) if the pendulum is released
from rest at position θ = 0.2 rad
when t = 0. Your graph should
show the correct qualitative behav-
ior, but calculations are not neces-
sary.

m

O

B

A

ck

x
y

θ

g

problem 13.96:
Filename:pfigure-blue-157-2

13.97 A rigid massless rod has two equal
masses m B and mC (m B = mC = m) at-
tached to it at distances 2` and 3`, respec-
tively, measured along the rod from a fric-
tionless hinge located at a point A. The
rod swings freely from the hinge. There is
gravity. Let φ denote the angle of the rod
measured from the vertical. Assume that φ
and φ̇ are known at the moment of interest.

a) What is φ̈? Solve in terms of m, `,
g, φ and φ̇.

b) What is the force of the hinge on the
rod? Solve in terms of m, `, g, φ,
φ̇, φ̈ and any unit vectors you may
need to define.

c) Would you get the same answers if
you put a mass 2m at 2.5`? Why or
why not?

rigid massless bar
m

m

φ

�

2�

problem 13.97:
Filename:pfigure-twomasspend

13.98 A zero length spring (relaxed length
`0 = 0) with stiffness k = 5 N/m supports
the pendulum shown.

a) Find θ̈ assuming θ̇ = 2 rad/s, θ =

π/2.
b) Find θ̈ as a function of θ̇ and θ (and

k, `, m, and g.)
[Hint: use vectors (otherwise it’s

hard)]
[Hint: For the special case, k D = mg,

the solution simplifies greatly.]

D = 4 m

m = 2 kg

�0 = 0
k = 5 N/m

g = 10 m/s

θ

x

y

� = 3 m
problem 13.98:

Filename:pfigure-blue-80-2

13.99 Robotics problem: Simplest bal-
ancing of an inverted pendulum. You
are holding a stick upside down, one end
is in your hand, the other end sticking up.
To simplify things, think of the stick as
massless but with a point mass at the up-
per end. Also, imagine that it is only a
two-dimensional problem (either you can
ignore one direction of falling for simplic-
ity or imagine wire guides that keep the
stick from moving in and out of the plane
of the paper on which you draw the prob-
lem).

You note that if you model your hold-
ing the stick as just having a stationary
hinge then you get φ̈ =

g
l sinφ. Assum-

ing small angles, this hinge leads to expo-
nentially growing solutions. Upside-down
sticks fall over. How can you prevent this
falling?

One way to do keep the stick from
falling over is to firmly grab it with your
hand, and if the stick tips, apply a torque
in order to right it. This corrective torque
is (roughly) how your ankles keep you bal-
anced when you stand upright. Your task
in this assignment is to design a robot that
keeps an inverted pendulum balanced by
applying appropriate torque.

Your model is: Inverted pendulum,
length `, point mass m, and a hinge at
the bottom with a motor that can apply a
torque Tm . The stick might be tipped an

angle φ from the vertical. A horizontal dis-
turbing force F(t) is applied to the mass
(representing wind, annoying friends, etc).

a) Draw a picture and a FBD
b) Write the equation for angular mo-

mentum balance about the hinge
point.

c) Imagine that your robot can sense
the angle of tip φ and its rate of
change φ̇ and can apply a torque
in response to that sensing. That is
you can make Tm any function of φ
and φ̇ that you want. Can you find
a function that will make the pen-
dulum stay upright? Make a guess
(you will test it below).

d) Test your guess the following way:
plug it into the equation of motion
from part (b), linearize the equation,
assume the disturbing force is zero,
and see if the solution of the dif-
ferential equation has exponentially
growing (i.e. unstable) solutions.
Go back to (c) if it does and find a
control strategy that works.

e) Pick numbers and model your sys-
tem on a computer using the full
non-linear equations. Use initial
conditions both close to and far
from the upright position and plot φ
versus time.

f) If you are ambitious, pick a non-
zero forcing function F(t) (say a
sine wave of some frequency and
amplitude) and see how that affects
the stability of the solution in your
simulations.

C

A

x

y

ℓ

φ

êθ êr

m

g

problem 13.99:
Filename:pfigure-s94h9p1

13.100 Balancing a system of rotating
particles. A wire frame structure is made
of four concentric loops of massless and
rigid wires, connected to each other by
four rigid wires presently coincident with
the x and y axes. Three masses, m1 =

200 grams, m2 = 150 grams and m3 =

100 grams, are glued to the structure as
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shown in the figure. The structure rotates
counter-clockwise at a constant rate θ̇ =

5 rad/s. There is no gravity.
a) Find the net force exerted by the

structure on the support at the in-
stant shown.

b) You are to put a mass m at an ap-
propriate location on the third loop
so that the net force on the support
is zero. Find the appropriate mass
and the location on the loop.

r1=10 cm

r2=20 cm

r3=30 cm

r4=40 cm

m1

m2 m345o
30o

x

y

ω

problem 13.100:
Filename:pfigure-s94h6p2

13.101 A rope of length ` and total mass m
is held fixed at one end and whirled around
in circular motion at a constant rate ω in
the horizontal plane. Ignore gravity.

a) Find the tension in the rope as a
function of r , the radial distance
from the center of rotation to any
desired location on the rope.

b) Where does the maximum tension
occur in the rope? .

c) At what distance from the center
of rotation does the tension drop to
half its maximum value? .

13.102 Assume that the pulley shown in
figure(a) rotates at a constant speed ω. Let
the angle of contact between the belt and
pulley surface be θ . Assume that the belt
is massless and that the condition of im-
pending slip exists between the pulley and
the belt. The free body diagram of an in-
finitesimal section ab of the belt is shown
in figure(b).

a) Write the equations of linear mo-
mentum balance for section ab of
the belt in the ı̂ and ̂ directions.

b) Eliminate the normal force N from
the two equations in part (a) and get
a differential equation for the ten-
sion T in terms of the coefficient of
friction µ and The contact angle θ .

c) Show that the solution to the equa-
tion in part (b) satisfies T1

T2
= eµθ ,

where T1 and T2 are the tensions in
the lower and the upper segments of
the belt, respectively.

a
b

θ

ωdθ

a

b

dθ
dθ/2

dN

T

dFf = µdN

T+dT

(a)

(b)

T2

T1

ı̂

ĵ

problem 13.102:
Filename:pfigure4-rpf

13.5 Polar moment of
inertia: I cm

zz and I O
zz

13.103 A point mass m = 0.5 kg is located
at x = 0.3 m and y = 0.4 m in the xy-
plane. Find the moment of inertia of the
mass about the z-axis.

13.104 A small ball of mass 0.2 kg is at-
tached to a 1 m long inextensible string.
The ball is to execute circular motion in the
xy-plane with the string fully extended.

a) What is value of Izz of the ball
about the center of rotation?

b) How much must you shorten the
string to reduce the moment of in-
ertia of the ball by half?

13.105 Two identical point masses are at-
tached to the two ends of a rigid massless
bar of length ` (one mass at each end). Lo-
cate a point along the length of the bar
about which the polar moment of inertia
of the system is 20% more than that cal-
culated about the mid point of the bar.

13.106 A dumbbell consists of a rigid
massless bar of length ` and two identical
point masses m and m, one at each end of
the bar.

a) About which point on the dumbbell
is its polar moment of inertia Izz a
minimum and what is this minimum
value?

b) About which point on the dumbbell
is its polar moment of inertia Izz
a maximum and what is this max-
imum value?

13.107 Think first, calculate later. A
light rigid rod AB of length 3` has a point
mass m at end A and a point mass 2m at
end B. Point C is the center of mass of the
system. First, answer the following ques-
tions without any calculations and then do
calculations to verify your guesses.

a) About which point A, B, or C , is
the polar moment of inertia Izz of
the system a minimum?

b) About which point is Izz a maxi-
mum?

c) What is the ratio of I A
zz and I B

zz?
d) Is the radius of gyration of the sys-

tem greater, smaller, or equal to the
length of the rod?

A

B

C

x

y

3�

2m

m

problem 13.107:
Filename:pfigure4-4-rp1

13.108 Do you understand the perpen-
dicular axis theorem? Three identical
particles of mass m are connected to three
identical massless rods of length ` and
welded together at point O as shown in the
figure.

a) Guess (no calculations) which of
the three moment of inertia terms
I O
xx , I O

yy , I O
zz is the smallest and

which is the biggest.
b) Calculate the three moments of in-

ertia to check your guess.
c) If the orientation of the system is

changed, so that one mass is along
the x-axis, will your answer to part
(a) change?

d) Find the radius of gyration of the
system for the polar moment of in-
ertia.
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m m

m

O
120o

120o�

�

�

x

y

problem 13.108:
Filename:pfigure4-4-rp3

13.109 Show that the polar moment of in-
ertia I O

zz of the uniform bar of length ` and
mass m, shown in the figure, is 1

3 m`2, in
two different ways:

a) by using the basic definition of
polar moment of inertia I O

zz =∫
r2 dm, and

b) by computing I cm
zz first and then us-

ing the parallel axis theorem.

m

O
x

y

�

problem 13.109:
Filename:pfigure4-4-rp5

13.110 Locate the center of mass of the ta-
pered rod shown in the figure and compute
the polar moment of inertia I cm

zz . [Hint:
use the variable thickness of the rod to
define a variable mass density per unit
length.]

m = 1 kg
 20 
mm

5 mm

100 mm

x

y

problem 13.110:
Filename:pfigure4-4-rp6

13.111 A short rod of mass m and length h
hangs from an inextensible string of length
`.

a) Find the moment of inertia I O
zz of

the rod.
b) Find the moment of inertia of the

rod I O
zz by considering it as a point

mass located at its center of mass.

c) Find the percent error in I O
zz in treat-

ing the bar as a point mass by com-
paring the expressions in parts (a)
and (b). Plot the percent error ver-
sus h/`. For what values of h/` is
the percentage error less than 5%?

O
x

y

h

m

�

problem 13.111:
Filename:pfigure4-4-rp11

13.112 A small particle of mass m is at-
tached to the end of a thin rod of mass M
(uniformly distributed), which is pinned at
hinge O, as depicted in the figure.

a) Obtain the equation of motion gov-
erning the rotation θ of the rod.

b) What is the natural frequency of the
system for small oscillations θ?

m

M

�/3

2�/3 θ

O
g

problem 13.112:
Filename:pfigure-blue-151-3

13.113 A thin rod of mass m and length
` is hinged with a torsional spring of stiff-
ness K at A, and is connected to a thin disk
of mass M and radius R at B. The spring is
uncoiled when θ = 0. Determine the nat-
ural frequency ωn of the system for small
oscillations θ , assuming that the disk is:

a) welded to the rod, and
b) pinned frictionlessly to the rod.

A

MR
B

K

m
�

θ

g

problem 13.113:
Filename:pfigure-blue-151-4

13.114 Do you understand the parallel
axis theorem? A massless square plate
ABC D has four identical point masses lo-
cated at its corners.

a) Find the polar moment of inertia
I cm
zz .

b) Find a point P on the plate about
which the system’s moment of iner-
tia Izz is maximum?

c) Find the radius of gyration of the
system.

m m

m m

A D

CB

x

y

�

problem 13.114:
Filename:pfigure4-4-rp2

13.115 Perpendicular axis theorem and
symmetry. For the massless square plate
with four point masses on the corners, the
polar moment of inertia I cm

zz = 0.6 kg· m2.
Find I cm

xx of the system.

m m

m m

A D

CB

x

y

�

problem 13.115:
Filename:pfigure4-4-rp4

13.116 A uniform square plate (2 m on
edge) has a corner cut out. The total mass
of the remaining plate is 3 kg. It spins
about the origin at a constant rate of one
revolution every π s.

a) What is the moment of inertia of the
plate about point O?

b) Where is the center of mass of the
plate at the instant shown?

c) What are the velocity and accelera-
tion of the center of mass at the in-
stant shown?
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d) What is the angular momentum of
the plate about the point O at the in-
stant shown?

e) What are the total force and mo-
ment required to maintain this mo-
tion when the plate is in the config-
uration shown?

f) What is the total kinetic energy of
the plate?

x

y

1m

2m

2m

1m
ω

O

problem 13.116:
Filename:pfigure-blue-87b-1

13.117 A uniform thin triangular plate of
mass m, height h , and base b lies in the
xy-plane.

a) Set up the integral to find the polar
moment of inertia I O

zz of the plate.

b) Show that I O
zz =

m
6
(h2

+ 3b2) by

evaluating the integral in part (a).
c) Locate the center of mass of the

plate and calculate I cm
zz .

m

O

h

b B

A

x

y

problem 13.117:
Filename:pfigure4-4-rp9

13.118 A uniform thin plate of mass m is
cast in the shape of a semi-circular disk of
radius R as shown in the figure.

a) Find the location of the center of
mass of the plate

b) Find the polar moment of inertia of
the plate, I cm

zz . [Hint: It may be eas-
ier to set up and evaluate the inte-
gral for I O

zz and then use the parallel
axis theorem to calculate I cm

zz .]

O

m
R

x

y

problem 13.118:
Filename:pfigure4-4-rp10

13.119 A uniform square plate of side ` =

250 mm has a circular cut-out of radius r =

50 mm. The mass of the plate is m =
1
2

kg.
a) Find the polar moment of inertia of

the plate.
b) Plot I cm

zz versus r/`.
c) Find the limiting values of I cm

zz for
r = 0 and r = `.

m

r
x

y

�

problem 13.119:
Filename:pfigure4-4-rp7

13.120 A uniform thin circular disk of ra-
dius r = 100 mm and mass m = 2 kg has
a rectangular slot of width w = 10 mm cut
into it as shown in the figure.

a) Find the polar moment of inertia I O
zz

of the disk.
b) Locate the center of mass of the

disk and calculate I cm
zz .

r

m

O
w

x

y

problem 13.120:
Filename:pfigure4-4-rp8

13.6 Using I cm
zz and I O

zz in
mechanics equations
13.121 Motor turns a dumbbell. Two
uniform bars of length ` and mass m are
welded at right angles. At the ends of the
horizontal bar are two more masses m. The
bottom end of the vertical rod is attached to
a hinge at O where a motor keeps the struc-
ture rotating at constant rate ω (counter-
clockwise). What is the net force and mo-
ment that the motor and hinge cause on the
structure at the instant shown?

m mm

m

O
x

y

ı̂

ĵ

ω

�

�

motor

problem 13.121:
Filename:pfigure-s94h5p5

13.122 An object consists of a massless
bar with two attached masses m1 and m2.
The object is hinged at O .

a) What is the moment of inertia of the
object about point O (I O

zz )?

b) Given θ , θ̇ , and θ̈ , what is
⇀
HO, the

angular momentum about point O?

c) Given θ , θ̇ , and θ̈ , what is
⇀̇
HO, the

rate of change of angular momen-
tum about point O?

d) Given θ , θ̇ , and θ̈ , what is T , the
total kinetic energy?

e) Assume that you don’t know θ , θ̇ or
θ̈ but you do know that F1 is applied
to the rod, perpendicular to the rod
at m1. What is θ̈? (Neglect gravity.)

f) If F1 were applied to m2 instead of
m1, would θ̈ be bigger or smaller?

O x

θ

F1
m2

m1

�1

�2

� = �1 + �2

problem 13.122:
Filename:pfigure-blue-82-1
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13.123 A uniform rigid rod rotates at con-
stant speed in the xy-plane about a peg
at point O . The center of mass of the
rod may not exceed a specified accelera-
tion amax = 0.5 m/s2. Find the maximum
angular velocity of the rod.

� = 0.5 m

x

y

O

problem 13.123:
Filename:pfigure4-3-rp3

13.124 A uniform one meter bar is hung
from a hinge that is at the end. It is allowed
to swing freely. g = 10 m/s2.

a) What is the period of small oscilla-
tions for this pendulum?

b) Suppose the rod is hung 0.4 m from
one end. What is the period of
small oscillations for this pendu-
lum? Can you explain why it is
longer or shorter than when it is is
hung by its end?

13.125 A motor turns a bar. A uni-
form bar of length ` and mass m is turned
by a motor whose shaft is attached to the
end of the bar at O. The angle that the bar
makes (measured counter-clockwise) from
the positive x axis is θ = 2π t2/s2. Ne-
glect gravity.

a) Draw a free body diagram of the
bar.

b) Find the force acting on the bar
from the motor and hinge at t = 1 s.

c) Find the torque applied to the bar
from the motor at t = 1 s.

d) What is the power produced by the
motor at t = 1 s?

motor O

�ı̂

ĵ

θ

problem 13.125:
Filename:pfigure-f93f1

13.126 The rod shown is uniform with to-
tal mass m and length `. The rod is pinned
at point 0. A linear spring with stiffness k
is attached at the point A at height h above
0 and along the rod as shown. When θ = 0,
the spring is unstretched. Assume that θ is
small for both parts of this problem.

a) Find the natural frequency of vibra-
tion (in radians per second) in terms
of m, g, h, ` and k.

b) If you have done the calculation
above correctly there is a value of
h for which the natural frequency
is zero. Call this value of h, hcri t .
What is the behavior of the system
when h < hcri t ? (Desired is a
phrase pointing out any qualitative
change in the type of motion with
some justification.)

L/2

L/2

Just as top
bar is grasped

L 

cm

upper
bar lower

bar

ω

θ

y
z

problem 13.126:
Filename:pfigure-blue-130-2

13.127 A uniform stick of length ` and
mass m is a hair away from vertically up
position when it is released with no angular
velocity (a ‘hair’ is a technical word that
means ‘very small amount, zero for some
purposes’). It falls to the right. What is the
force on the stick at point O when the stick
is horizontal. Solve in terms of `, m, g, ı̂,
and ̂ . Carefully define any coordinates,
base vectors, or angles that you use.

O

ı̂

ĵ

problem 13.127:
Filename:pfigure-s94q8p1

13.128 Acceleration of a trap door. A
uniform bar AB of mass m and a ball of
the same mass are released from rest from
the same horizontal position. The bar is
hinged at end A. There is gravity.

a) Which point on the rod has the same
acceleration as the ball, immedi-
ately after release.

b) What is the reaction force on the bar
at end A just after release?

L m m

A B C

problem 13.128:
Filename:pfigure-s94h8p3

13.129 A pegged compound pendulum.
A uniform bar of mass m and length `
hangs from a peg at point C and swings
in the vertical plane about an axis passing
through the peg. The distance d from the
center of mass of the rod to the peg can be
changed by putting the peg at some other
point along the length of the rod.

a) Find the angular momentum of the
rod as about point C.

b) Find the rate of change of angular
momentum of the rod about C.

c) How does the period of the pendu-
lum vary with d? Show the varia-
tion by plotting the period against
d
`

. [Hint, you must first find the
equations of motion, linearize for
small θ , and then solve.]

d) Find the total energy of the rod (us-
ing the height of point C as a datum
for potential energy).

e) Find θ̈ when θ = π/6.
f) Find the reaction force on the rod at

C, as a function of m, d , `, θ , and θ̇ .
g) For the given rod, what should be

the value of d (in terms of `) in or-
der to have the fastest pendulum?

h) Test of Schuler’s pendulum. The
pendulum with the value of d ob-
tained in (g) is called the Schuler’s
pendulum. It is not only the fastest
pendulum but also the “most accu-
rate pendulum”. The claim is that
even if d changes slightly over time
due to wear at the support point,
the period of the pendulum does not
change much. Verify this claim by
calculating the percent error in the
time period of a pendulum of length
` = 1 m under the following three
conditions: (i) initial d = 0.15 m
and after some wear d = 0.16 m,
(ii) initial d = 0.29 m and after
some wear d = 0.30 m, and (iii)
initial d = 0.45 m and after some
wear d = 0.46 m. Which pendu-
lum shows the least error in its time
period? Do you see any connection
between this result and the plot ob-
tained in (c)?
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A

C
d

G

B

m

�θ

problem 13.129:
Filename:pfigure-s94h8p6

13.130 Given θ̈ , θ̇ , and θ , what is the to-
tal kinetic energy of the pegged compound
pendulum in problem 13.129?

13.131 A slender uniform bar AB of mass
M is hinged at point O , so it can rotate
around O without friction. Initially the bar
is at rest in the vertical position as shown.
A bullet of mass m and horizontal velocity
Vo strikes the end A of the bar and sticks to
it (an inelastic collision). Calculate the an-
gular velocity of the system — the bar with
its embedded bullet, immediately after the
impact.

m

M

O

B

A
Vo

1/3 L

2/3 L

problem 13.131:
Filename:pfigure-blue-78-1

13.132 Motor turns a bent bar. Two uni-
form bars of length ` and uniform mass
m are welded at right angles. One end is
attached to a hinge at O where a motor
keeps the structure rotating at a constant
rate ω (counterclockwise). What is the net
force and moment that the motor and hinge
cause on the structure at the instant shown.

a) neglecting gravity
b) including gravity.

m

mO
x

y

ı̂

ĵ

ω

�

�

motor

problem 13.132: A bent bar is rotated by a mo-
tor.

Filename:pg85-3

13.133 2-D problem, no gravity. A uni-
form stick with length ` and mass Mo is
welded to a pulley hinged at the center
O . The pulley has negligible mass and ra-
dius Rp . A string is wrapped many times
around the pulley. At time t = 0, the pul-
ley, stick, and string are at rest and a force
F is suddenly applied to the string. How
long does it take for the pulley to make one
full revolution?

F

Rp

massless pulley

stick, mass = Mo

O

ℓ

problem 13.133: String wraps around a pulley
with a stick glued to it.

Filename:p2-3

13.134 A thin hoop of radius R and mass
M is hung from a point on its edge and
swings in its plane. Assuming it swings
near to the position where its center of
mass G is below the hinge:

a) What is the period of its swinging
oscillations?

b) If, instead, the hoop was set to
swinging in and out of the plane
would the period of oscillations be
greater or less?

R
frictionless

pivot

G

O

θ

problem 13.134:
Filename:pfigure-blue-145-1

13.135 The uniform square shown is re-
leased from rest at t = 0. What is α =

ω̇ = θ̈ immediately after release?

x

yup

θ

�

�

uniform
square,

mass=M

problem 13.135:
Filename:pfigure-blue-42-2

13.136 A square plate with side ` and mass
m is hinged at one corner in a gravitational
field g. Find the period of small oscilla-
tion.

ℓ

g

problem 13.136:
Filename:p-f96-p3-2

13.137 A wheel of radius R and moment
of inertia I about the axis of rotation has a
rope wound around it. The rope supports
a weight W . Write the equation of conser-
vation of energy for this system, and dif-
ferentiate to find the equation of motion in
terms of acceleration. Check the solution
obtained by drawing separate free-body di-
agrams for the wheel and for the weight,
writing the equations of motion for each
body, and solving the equations simultane-
ously. Assume that the mass of the rope is
negligible, and that there is no energy loss
during the motion.



688 Chapter 13. Circular motion 13.6. Using moment-of-inertia

W

Rθ

problem 13.137:
Filename:pfigure-blue-136-1

13.138 A disk with radius R has a string
wrapped around it which is pulled with a
force F . The disk is free to rotate about
the axis through O normal to the page. The
moment of inertia of the disk about O is Io.
A point A is marked on the string. Given
that xA(0) = 0 and that ẋA(0) = 0, what is
xA(t)?

R

hinge

O

Spool has mass moment of inertia, IO

A
F

xA(0) = 0
ẋA(0) = 0
xA(t) = ?

xA

Inextensible
string wound
around spool

problem 13.138:
Filename:pfigure-blue-42-1

13.139 Oscillating disk. A uniform disk
with mass m and radius R pivots around a
frictionless hinge at its center. It is attached
to a massless spring which is horizontal
and relaxed when the attachment point is
directly above the center of the disk. As-
sume small rotations and the consequent
geometrical simplifications. Assume the
spring can carry compression. What is the
period of oscillation of the disk if it is dis-
turbed from its equilibrium configuration?
[You may use the fact that, for the disk

shown,
⇀̇
HO =

1
2 m R2θ̈ k̂, where θ is the

angle of rotation of the disk.].
k

R

m

g

problem 13.139:
Filename:pg147-2

13.140 This problem concerns a narrow
rigid hoop. For reference, here are dimen-
sions and values you should use in this
problem: mass of hoop mhoop = 1 kg ra-

dius of hoop Rhoop = 3 m, and gravita-

tional acceleration g = 10 m/s2.
a) The hoop is hung from a point on

its edge and swings in its plane. As-
suming its swings near to the posi-
tion where its center of mass is be-
low the hinge.

b) What is the period of its swinging
oscillations?

c) If, instead, the hoop was set to
swinging in and out of the plane
would the period of oscillations be
greater or less?

13.141 The compound pulley system
shown in the figure consists of two pul-
leys rigidly connected to each other. The
radii of the two pulleys are: Ri = 0.2 m
and Ro = 0.4 m. The combined mo-
ment of inertia of the two pulleys about
the axis of rotation is 2.7 kg·m2. The two
masses, m1 = 40 kg and m2 = 100 kg,
are released from rest in the configuration
shown. Just after release,

a) find the angular acceleration of the
pulleys, and

b) find the tension in each string.

m1 m2

Ri

Ro

problem 13.141:
Filename:summer95p2-1

13.142 Consider a system of two blocks A
and B and the reel C mounted at the fixed
point O, as shown in the figure. Initially
the system is at rest. Calculate the velocity
for the block B after it has dropped a verti-
cal distance h. Given: h, mass of block A,
MA, coefficient of friction µ, slope angle
θ , mass of the reel, MC , moment of iner-
tia I about the center of mass at O, radius
of gyration of the reel KC , outer radius of
the reel RC , inner radius of the reel 1

2 RC ,
mass of the block B MB .

h

1/2 RC

MB

RC

MC,KC

V=2

At  t=0, VA=0

At  t=0, VB=0

θ

O

MA
µ

problem 13.142:
Filename:pfigure-blue-135-1

13.143 Gear A with radius RA = 400 mm
is rigidly connected to a drum B with
radius RB = 200 mm. The com-
bined moment of inertia of the gear and
the drum about the axis of rotation is
Izz = 0.5 kg · m2. Gear A is driven by
gear C which has radius RC = 300 mm.
As the drum rotates, a 5 kg mass m is
pulled up by a string wrapped around the
drum. At the instant of interest, The an-
gular speed and angular acceleration of the
driving gear are 60 rpm and 12 rpm/s, re-
spectively. Find the acceleration of the
mass m.

RCRB

RA

ωC,αC

CB

A

no slip

x

y

m

problem 13.143:
Filename:summer95f-2

13.144 Two gears accelerating. At the in-
put to a gear box a 100 lbf force is applied
to gear A. At the output the machinery (not
shown) applies a force of FB to the output
gear.

a) Assume the gear is spinning at con-
stant rate and is frictionless, what is
FB?

b) If the gear bearing had friction
would that increase or decrease FB?

c) If the angular velocity of the gear
is increasing at rate α does this in-
crease or decrease FB at the given
ω.
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RA

RB
RC

A
B

C

no slip

FA = 100 lb

FB = ?

problem 13.144: Two gears.
Filename:pg131-3-aa

13.145 Frequently parents will build a
tower of blocks for their children. Just
as frequently, kids knock them down. In
falling (even when they start to topple
aligned), these towers invariably break in
two (or more) pieces at some point along
their length. Why does this breaking oc-
cur? What condition is satisfied at the
point of the break? Will the stack bend
towards or away from the floor after the
break?

This? This?or
problem 13.145:

Filename:pfigure-blue-129-1

13.146 Massless pulley, dumbbell and
a hanging mass. A mass m falls ver-
tically but is withheld by a string which
is wrapped around an ideal massless pul-
ley with radius a. The pulley is welded
to a dumbbell made of a massless rod
welded to uniform solid spheres at A and
B of radius R, each of whose center is
a distance ` from O. At the instant in
question, the dumbbell makes an angle θ
with the positive x axis and is spinning
at the rate θ̇ . Point C is a distance h
down from O. In terms of some or all of
m,M, a, R, `, h, g, θ, θ̇ , and ̂ , find the
acceleration of the mass.

g

M h

MA

B

C

O

ı̂

ĵ

m

�

�

R

a

R
θ

problem 13.146:
Filename:s97p3-1

13.147 Two racks connected by a gear. A
100 lbf force is applied to one rack. At the
output the machinery (not shown) applies
a force FB to the other rack.

a) Assume the gear is spinning at con-
stant rate and is frictionless. What
is FB?

b) If the gear bearing had friction,
would that increase or decrease FB
to achieve the same constant rate?

c) If the angular velocity of the gear
is increasing at rate α, does this in-
crease or decrease FB at the given
ω.

d) If the output load FB is given then
the motion of the machine can be
found from the input load. Assume
that the machine starts from rest
with a given output load. So long
as rack B moves in the opposite di-
rection of the output force FB the
output power is positive.

1. For what values of FB is the
output power positive?

2. For what values of FB is the
output work maximum if the
machine starts from rest and
runs for a fixed amount of
time?

uniform disk
m = 10 lbm

massless
racks

FB = ?100 lbf

6 in

ω

problem 13.147: Two racks connected by a
gear.

Filename:pg131-1

13.148 2-D accelerating gear train. As-
sume you know the torque Minput = MA
and angular velocity ωinput = ωA of the
input shaft. Assume the bearings and con-
tacts are frictionless. Assume you also
know the input angular acceleration ω̇ and
the moments of inertia IA, IB and IC of
each of the disks about their centers .

a) What is the input power?
b) What is the output power?
c) What is the

angular velocity ωoutput = ωC of
the output shaft?

d) What is the output torque
Moutput = MC ?

RA

MA

RB

MC

RC

ωA

A B

C

no slip

ωC

problem 13.148: A set of gears turning at vari-
able rate.

Filename:pg129-1

13.149 A stick welded to massless gear
that rolls against a massless rack which
slides on frictionless bearings and is con-
strained by a linear spring. Neglect
gravity. The spring is relaxed when the
angle θ = 0. Assume the system is re-
leased from rest at θ = θ0. What is the
acceleration of the point P at the end of
the stick when θ = 0? Answer in terms
of any or all of m, R, `, θ0, k, ı̂, and ̂ .
[Hint: There are several steps of reasoning
required. You might want to draw FBD(s),
use angular momentum balance, set up a
differential equation, solve it, plug values
into this solution, and use the result to find
the quantities of interest.

P

k

R

m,ℓ

θ
ı̂

̂

problem 13.149:
Filename:p-f96-p2-2

13.150 A tipped hanging sign is repre-
sented by a point mass m. The sign sits
at the end of a massless, rigid rod which
is hinged at its point of attachment to the
ground. A taut massless elastic cord helps
keep the rod vertical. The tension T in the
very stretchy cord is idealized as constant
during small displacements. (Note also
that φ ≡ θ during such motions). Consider
all hinges to be frictionless and motions to
take place in the plane of the paper.

a) Write the angular momentum of the
mass about 0 when the rod has an
angular velocity θ̇ .

b) Find the differential equation that
governs the mass’s motion for small
θ .

c) Describe the motion for T >
mg
2 ,

T =
mg
2 , and T <

mg
2 . Inter-

pret the differences of these cases in
physical terms.
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y

z

1
B

d
O

A

1

1

x

ı̂
ĵ

k̂
⇀

A

⇀
B

problem 13.150:
Filename:pfigure-blue-1-3



Answers to *’d
problems
2.55) rx =

⇀r · ı̂ = (3 cos θ + 1.5 sin θ) ft, ry =
⇀r · ̂ = (3 sin θ −

1.5 cos θ) ft.

2.77) No partial credit.

2.78) To get chicken road sin theta.

2.83)
⇀

N 1000 N
√

3
(ı̂ + ̂ + k̂).

2.86) d =

√
3
2 .

2.90a) λ̂O B =
1

√
50
(4ı̂ + 3̂ + 5k̂).

b) λ̂O A =
1

√
34
(3̂ + 5k̂).

c)
⇀

F1 =
5 N
√

34
(3̂ + 5k̂),

⇀

F2 =
7 N
√

50
(4ı̂ + 3̂ + 5k̂).

d) 6 AO B = 34.45 deg .

e) F1x = 0

f) ⇀r DO ×
⇀

F1 =

(
100
√

34
̂ −

60
√

34
k̂
)

N·m.

g) Mλ =
140
√

50
N·m.

h) Mλ =
140
√

50
N·m.(same as (7))

2.92a) n̂ =
1
3(2ı̂ + 2̂ + k̂).

b) d = 1.

c) 1
3(−2, 19, 11).

2.94) `/
√

2

2.110) Yes.

2.122a) ⇀r2 =
⇀r1 +

⇀

F1 × k̂M1/|
⇀

F1|
2,

⇀

F2 =
⇀

F1.

b) ⇀r2 =
⇀r1 +

⇀

F1 × k̂M1/|
⇀

F1|
2

+ c
⇀

F1 where c is any real number,
⇀

F2 =
⇀

F1.

c)
⇀

F2 =
⇀

0 and
⇀

M2 =
⇀

M1 applied at any point in the plane.

2.123a) ⇀r2 =
⇀r1 +

⇀

F1 ×
⇀

M1/|
⇀

F1|
2,

⇀

F2 =
⇀

F1,
⇀

M2 =
⇀

M1 ·
⇀

F1
⇀

F1/|
⇀

F1|
2. If

⇀

F1 =
⇀

0 then
⇀

F2 =
⇀

0,
⇀

M2 =
⇀

M1, and ⇀r2 is any point at all in space.

703
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b) ⇀r2 =
⇀r1+

⇀

F1×
⇀

M1/|
⇀

F1|
2
+c

⇀

F1 where c is any real number,
⇀

F2 =
⇀

F1,
⇀

M2 =
⇀

M1 ·
⇀

F1
⇀

F1/|
⇀

F1|
2. See above for the special case of

⇀

F1 =
⇀

0.

2.124) (0.5 m, −0.4 m)

3.1a) The forces and moments that show on a free body diagram, the
external forces and moments.

b) The forces and moments that show on a free body diagram, the
external forces and moments. No “inertial” or “acceleration” forces
show.

3.2) You don’t.

3.12) Note, no couples show on any of the free body diagrams requested.

4.5) T1 = Nmg, T2 = (N − 1)mg, TN = (1)mg, and in general Tn =

(N + 1 − n)mg

4.23) (a)TAB = 30 N, (b) TAB =
300
17 N, (c)TAB =

5
√

26
2 N

4.59) θ ≥ tan−1
(
(1 − µ2)/2µ

)
4.62) For this device to hold, µ ≥ 1. (Demanding µ ≥ 1 is large for a

practical device because typical rock friction has µ ≈ 0.5. The too-
large number follows from the simplified geometry and numbers
chosen for a homework problem.)

4.66) TAB =
√

10µmg/(3 + µ)

4.66) Minimum tension if rope slope is µ (instead of 1/3)

4.68a) m
M =

R sin θ
R cos θ+r =

2 sin θ
1+2 cos θ .

b) T = mg = 2Mg sin θ
1+2 cos θ .

c)
⇀

FC = Mg
[
−

2 sin θ
2 cos θ+1 ı̂ ′ + ̂

′
]

(where ı̂ ′ and ̂
′ are aligned with the

horizontal and vertical directions)

c) tanφ =
sin θ

2+cos θ . Needs somewhat involved trigonometry, geometry,
and algebra.

d) tanψ =
m
M =

2 sin θ
1+2 cos θ .

4.69a) m
M =

R sin θ
R cos θr =

2 sin θ
2 cos θ−1 .

b) T = mg = 2Mg sin θ
2 cos θ−1 .

c)
⇀

FC =
Mg

1−2 cos θ

[
sin θ ı̂ + (cos θ − 2)̂

]
.

4.70a) F1
F2

=
Ro+Ri sinφ
Ro−Ri sinφ

b) For Ro = 3Ri and µ = 0.2, F1
F2

≈ 1.14.

4.75) None are true. The tension is 100 N.

4.90) Maximum overhang when n → ∞is`.

4.93) Assuming no side-loads from floor the support from leg AB is
250 N, TAB = −250 N.

4.94) TI E = mg/2, TC H =
√

2mg/2, TB H = −mg/2, Ax =

mg/2, Ay = mg/2, Az = mg

4.97g) TE H = 0 as you can find a number of ways.
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4.98a) Use axis EC.

b) Use axis AH.

c) Use ̂ axis through B.

d) Use axis DE.

e) Use axis EH.

f) Can’t do in one shot.

4.99) TAC = −
√

2mg = −1000
√

2 N ≈ −1410 N (the bar is in compres-
sion)

4.99) TI P = 0

4.99) TK L =
√

2mg/6 =

(
1000

√
2/6

)
N ≈ 408 N (the bar is in tension)

4.101) Hint: With reference to a free body diagram of the robot, use mo-
ment balance about axis BC.

5.9) TAC = −1000 N, (AC is in compression)

5.10) TAB = 173 N

5.13) 12 of the 15 bars are zero-force members; all but BD, DG, and GJ.
The others carry no load but are needed for stability.

5.36) TE B = −11F/2

5.36) TH I = −11bF/2a

5.36) TJ K = −35bF/2a, (more than 3 times the compression of HI)

6.1) 1000 N

6.2) 0.08 cm

6.3) 1160 N

6.4) 5 cm

6.5) ke = 66.7 N/cm, δ = 0.75 cm

6.7) k = 20 N/cm

6.8) Middle spring: δ = 1 cm; side-springs δ = 0.5 cm

6.12) Surprise! This pendulum is in equilibrium for all values of θ .

6.37) 200 N

6.48) N = (h(w + d)/d`) Fh

6.55) Either by looking at part KAP or at part BAQ, if we think of moment
balance about A we see that the cutting force has to fight about twice
the torque in the gear mechanism as in the ungeared mechanism.
For example KAP is aided in its cutting by the torque from the force
at G.

6.56) The mechanism multiplies the force at B and C by a factor of 2
compared to having the handle hinged at A. The force at G also gets
(a shade less than) this force but with half the lever arm. Together
they give a force multiplication of (a shade less than) 2+1=3.

6.57) FP = 125 N

6.57) FP = 125 N
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6.57) For the load at I, FP = 75 N. For the load at J, FP = 250N .

6.57) With the welded handle there is just a simple lever and the mechan-
ical advantage comes from the horizontal distance between the load
and hinge A. For the 4 bar mechanism the force at C is the applied
vertical load, no matter where it is applied. So the lever arm is the
horizontal distance from A to C.

6.58) FA = 500 lbf

6.59d) reduce the dimension marked “2 inches”. The smaller the less the
friction needed.

e) As the “2 inch” dimension is reduced to zero, the needed coeffi-
cient of friction goes to zero and the forces squeezing the pipe go
to infinity. This is bad because it can damage the pipe. It is also
bad because a small pipe deformation will cause the hinge on the
wrench to snap through, like a so called “toggle mechanism” and
thus not grab at all.

6.60)
⇀

RA =
⇀

0
6.60) T = 200 lbf

6.62) FD = `EC(`E H − d)F/d`C D

6.62) TCC ′ = (`E H/d − 1) (`EC/`C D + 1) F

6.62) As d → 0, FD → ∞. Two problems: the amount of motion goes
to zero and the assumption of rigidity becomes non-negligibly in-
accurate.

6.63) FN
(
b(a2

+ b2)/a2)
)

F = 130F = 1300 lbf

6.63) The mechanism uses three tricks to multiply the force: a lever, a
wedge, and a toggle. Each of these multiplies by about 5. Thus the
nut-force FN is on the order of 53

= 125 times as big as F .

7.3) (117γ /2)m3
= 5.85 ∗ 105 N

7.4) Water starts to spill at h = 3rAB = 3 m.

7.4) Assuming no friction at B,
⇀

F A = 2.25 ∗ 105 ı̂ N

7.9a) ρgπr2`

b) −ρgπr2(h − `), note the minus sign, it now takes force to lift the
can.

8.14) FAy = −500 N,MA = −500/3 N·m

8.15) V (`/2) = −w`/8,M(`/2) = w`2/16,Mmax = M(3`/8) =

9wl2/128

8.17b) [Hint: at every height y the cross sectional area must be big enough
to hold the weight plus the wire below that point. From this you
can set up and a differential equation for the cross sectional area
A as a function of y. Find appropriate initial conditions and solve
the equation. Once solved, the volume of wire can be calculated as
V =

∫ 1
0 0 miA(y)dy and the mass as ρV .]

9.11) x(3 s) = 20 m
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9.15) (a) v(3 s) = 2 m/s in each case. (b) x(3 s) = 3 m for case (a),
x(3 s) = 4 m for case (b).

9.16) Fs =
π
4 FT

9.48) Time span = 3π
√

m/k/2

9.51) (a) mẍ + kx = F(t), (b) mẍ + kx = F(t), and (c) mÿ + 2ky −

2k`0
y

√
`2

0+y2
= F(t)

9.53b) mg − k(x − `0) = mẍ

c) ẍ +
k
m x = g +

k`0
m

e) This solution is the static equilibrium position; i.e., when the mass
is hanging at rest, its weight is exactly balanced by the upwards
force of the spring at this constant position x .

f) ¨̂x +
k
m x̂ = 0

g) x(t) =
[
D −

(
`0 +

mg
k

)]
cos

√
k
m t + (`0 +

mg
k )

h) period=2π
√m

k .

i) If the initial position D is more than `0 + 2mg/k, then the spring
is in compression for part of the motion. A floppy spring would
buckle.

9.55a) period=
2π√

k
m

= 0.96 s

b) maximum amplitude=0.75 ft

c) period= 2
√

2h
g +

√m
k

[
π + 2 tan−1

√
mg
2kh

]
≈ 1.64 s.

9.56) LHS of Linear Momentum Balance:
∑ ⇀

F = −(kx + bẋ)ı̂ + (N −

mg)̂ .

9.70a) Two normal modes.

b) x2 = const ∗ x1 = const ∗ (A sin(ct)+ B cos(ct)),where const =

±1.

c) ω1 =

√
3k
m , ω2 =

√
k
m .

9.71b) If we start off by assuming that each mass undergoes simple har-
monic motion at the same frequency but different amplitudes, we
will find that this two-degree-of-freedom system has two natural
frequencies. Associated with each natural frequency is a fixed ra-
tio between the amplitudes of each mass. Each mass will undergo
simple harmonic motion at one of the two natural frequencies only
if the initial displacements of the masses are in the fixed ratio asso-
ciated with that frequency.

9.73) ⇀aB = ẍB ı̂ =
1

m B
[−k4xB−k2(xB−xA)+c1(ẋD−ẋB)+k3(xD−xB)]ı̂.

9.74) ⇀aB = ẍB ı̂ =
1

m B
[−k4xB − c1(ẋB − ẋA)+ (k2 + k3)(xD − xB)].

9.77a) ω =

√
2k
m .

9.81a) One normal mode: [1, 0, 0].

b) The other two normal modes: [0, 1, 1±
√

17
4 ].
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9.87) hmax = e2h.

10.4a) ⇀
v(5 s) = (30ı̂ + 300̂)m/s.

b) ⇀a(5 s) = (6ı̂ + 120̂)m/s2.

10.5) ⇀r(t) =
(
x0 +

u0
�

−
u0
�

cos(�t)
)

ı̂ + (y0 + v0t) ̂ .

10.13) ⇀
v = 2t m/s2 ı̂ + e

t
s m/ŝ , ⇀a = 2 m/s2 ı̂ + e

t
s m/s2̂ .

10.48) T3 = 13 N

10.61) Equation of motion: −mĝ −b(ẋ2
+ ẏ2)

(
ẋ ı̂+ẏ̂

√
ẋ2+ẏ2

)
= m(ẍ ı̂ + ÿ̂).

10.62a) System of equations:

ẋ = vx

ẏ = vy

v̇x = −
b
m
vx

√
v2

x + v2
y

v̇y = −g −
b
m
vy

√
v2

x + v2
y

11.6) No. You need to know the angular momenta of the particles relative
to the center of mass to complete the calculation, information which
is not given.

11.17a) v0 =
1
m (mvB + m BvB + m AvA).

b) v1 =
(m+m B )

m vB .

c) (1) Eloss =
1
2 m

[
v2

0 −
(m+m B

m

)
v2

B

]
−

1
2 m Av

2
A. Eloss =

1
2 m

[
(m+m B )

2

m v2
B − (m + m B)v

2
B

]
.

11.18) vA =

√
m B kδ2

m2
A+m B m A

.

11.19) The trajectories should all be parts of the same figure 8.

11.19) The trajectories trace and retrace the same figure 8.

11.19) The trajectories make a beautiful swirl resembling a figure 8.

11.19) The trajectories get wild, possibly ejecting one or more masses off
to infinity.

12.1) Tn =
Pt
vt

n
N .

12.7a) aB =

(
m B−m A
m A+m B

)
g

b) T = 2 m Am B
m A+m B

g.

12.11) (a) ⇀aA =
⇀aB =

F
m ı̂, where ı̂ is parallel to the ground and pointing

to the right., (b) ⇀aA =
2F
m ı̂, ⇀aB =

4F
m ı̂, (c) ⇀aA =

F
2m ı̂, ⇀aB =

F
4m ı̂, (d)

⇀aA =
F
m ı̂, ⇀aB = −

F
m ı̂.

12.13) aA
aB

= 81.

12.16a) ⇀aA =
5F
m ı̂, ⇀aB =

25F
m ı̂, where ı̂ is parallel to the ground and points

to the right.
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b) ⇀aA =
g

(4m1+m2)
(2m2−

√
3m2)λ̂1, ⇀aB = −

g
2(4m1+m2)

(2m2−
√

3m2)λ̂2,

where λ̂1 is parallel to the slope that mass m1 travels along, pointing
down and to the left, and λ̂2 is parallel to the slope that mass m2

travels along, pointing down and to the right.

12.20) angular frequency of vibration ≡ λ =

√
64k
65m .

12.27a) mẍ + 4kx = A sinωt + mg, where x is the distance measured from
the unstretched position of the center of the pulley.

b) The string will go slack if ω >
√

4k
m

(
1 −

A
mg

)
.

12.28a) ⇀aA = −
9kd
m A

ı̂.

b) v = 3d
√

k
m A

12.34) TAB =
5
√

39
28 m(ay + g)

12.38) ax >
3
2 g

12.41) Can’t solve for TAB .

12.54d) Normal reaction at rear wheel: Nr =
mgw

2(hµ+w)
, normal reaction at

front wheel: N f = mg −
mgw

2(hµ+w)
, deceleration of car: acar =

−
µgw

2(hµ+w)
.

e) Normal reaction at rear wheel: Nr = mg −
mgw

2(w−µh) , normal re-
action at front wheel: N f =

mgw
2(w−µh) , deceleration of car: acar =

−
µgw

2(w−µh) . Car stops more quickly for front wheel skidding. Car
stops at same rate for front or rear wheel skidding if h = 0.

f) Normal reaction at rear wheel: Nr =
mg(w/2−µh)

w
, normal reaction at

front wheel: N f =
mg(w/2+µh)

w
, deceleration of car: acar = −µg.

g) No. Simple superposition just doesn’t work.

h) No reaction at rear wheel.

i) Reaction at rear wheel is negative. Not allowing for rotation of the
car in the xy-plane gives rise to this impossibility. In actuality, the
rear of the car would flip over the front.

12.55a) Hint: the answer reduces to a = `r g/h in the limit µ → ∞.]

12.56a) ⇀a = g(sinφ−µ cosφ)ı̂, where ı̂ is parallel to the slope and pointing
downwards

b) ⇀a = g sinφ

c) ⇀
v = g(sinφ − µ cosφ)t ı̂, ⇀r = g(sinφ − µ cosφ) t2

2

d) ⇀
v = g sinφt ı̂, ⇀r = g sinφ t2

2 ı̂

12.58a)
⇀

RA =
(1−µ)mg cos θ

2 (̂
′
− µı̂ ′).

c) No tipping if NA =
(1−µ)mg cos θ

2 > 0; i.e., no tipping if µ < 1 since
cos θ > 0 for 0 < θ < π

2 .(Here µ = 0.9)

12.60) braking acceleration= g( 1
2 cos θ − sin θ).
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12.64a) v = d
√

k
m .

b) The cart undergoes simple harmonic motion for any size oscillation.

12.67a) ⇀abike =
Fp Lc
M R f

.

b) max(⇀abike)=
ga

a+b+2R f
.

12.68) TE F = 640
√

2 lbf.

12.69a) TB D = 92.6 lbm · ft/s2.

b) TG H = 5
√

61 lbm · ft/s2.

12.70b) TE H = 0

c) (RCx −TAB)ı̂+(RCy −
TG D√

2
)̂+(TH E +RCz +

TG D√
2
)k̂ = m⇀a = 10 Nk̂.

d)
∑ ⇀

Mcm = ( TG D√
2

− TH E − RCz )ı̂ + (RCz −
TG D√

2
− TH E)̂ + (TAB +

RCx − RCy −
TG D√

2
)k̂ =

⇀

0
e)

RCx − TAB = 0

RCy −
TG D
√

2
= 0

RCz +
TG D
√

2
+ TE H = 5 N

−TE H +
TG D
√

2
− RCz = 0

−TE H −
TG D
√

2
+ RCz = 0

TAB −
TG D
√

2
+ RCx − RCy = 0

f) RCx = 5 N, RCy = 5 N, RCz = 5 N, TG D =
10
√

2
N, TE H = 0 N,

TAB = 5 N.

g) Find moment about C D axis; e.g., (
∑ ⇀

MC =
⇀r cm/C × m⇀acm) · λ̂C D,

where λ̂C D is a unit vector in the direction of axis C D.

12.75a) FL =
1
2 m totg.

b) ⇀aP =
1

mtot
[2(T − FD)− D] ı̂.

c)
⇀

F =

[
mw

mtot
(2T − D − 2FD)− T + FD

]
ı̂+(mwg−FL)̂ and

⇀

M =

(bFL − amwg)ı̂ +

[
(bFD − cT )+ a mw

mtot
(2T − D − 2FD)

]
̂ .

12.76) sideways force = FB ı̂ =
wma

2` ı̂.
13.15) F = 0.52 lbf = 2.3 N
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13.22b) For θ = 0◦,

êr = ı̂
êt = ̂

⇀
v =

2πr
τ

̂

⇀a = −
4π2r
τ 2

ı̂,

for θ = 90◦,

êr = ̂

êt = −ı̂
⇀
v = −

2πr
τ

ı̂

⇀a = −
4π2r
τ 2

̂ ,

and for θ = 210◦,

êr = −

√
3

2
ı̂ −

1
2
̂

êt =
1
2

ı̂ −

√
3

2
̂

⇀
v = −

√
3πr
τ

̂ +
πr
τ

ı̂

⇀a =
2
√

3π2r
τ 2

ı̂ +
2π2r
τ 2

̂ .

c) T =
4mπ2r
τ 2 .

d) Tension is enough.

13.25b) (
⇀̇

HO)I =
⇀

0, (
⇀̇

HO)I I = 0.0080 N·mk̂.

c) Position-A: (
⇀

HO)I = 0.012 N·m · sk̂,(
⇀

HO)I I = 0.012 N·m · sk̂,
Position-B: (

⇀

HO)I 0.012 N·m · sk̂, (
⇀

HO)I I = 0.014 N·m · sk̂.]

13.27) r =
kro

k−mω2
o
.

13.29) `0 = 0.2 m

13.31b) T = 0.16π4 N .

c)
⇀

HO = 0.04π2 kg·m/sk̂

d) ⇀r = [

√
2

2 − v cos(π t
4 )]ı̂ + [

√
2

2 + v sin(π t
4 )]̂ .

13.33a) 2mg.

b) ω =
√

99g/r

c) r ≈ 1 m (r > 0.98 m)

13.36) (b) θ̈ +
3g
2L sin θ = 0

13.39b) The solution is a simple multiple of the person’s weight.
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13.41a) θ̈ = −(g/L) sin θ

d) α̇ = −(g/L) sin θ, θ̇ = α

f) Tmax = 30N

13.42a) v̇ = −µ v2

R .

b) v = v0e−µθ .

13.45a) The velocity of departure is ⇀
vdep =

√
k(1`)2

m − 2G R̂ , where ̂ is
perpendicular to the curved end of the tube.

b) Just before leaving the tube the net force on the pellet is due to

the wall and gravity,
⇀

Fnet = −mĝ − m |
⇀
v dep |

2

R ı̂; Just after leaving
the tube, the net force on the pellet is only due to gravity,

⇀

Fnet =

−mĝ .

13.63) ωmin = 10 rpm and ωmax = 240 rpm

13.75a) 7.85 kW

b) 7.85 kW

c) 750 rev/min

d) 100 N·m.

13.78a) vP = 2 m/s.

b) ⇀
vP = −2 m/sı̂.

c) ⇀aP = −4 m/s2̂ .

d) ⇀
vr = 1 m/sλ̂r , where λ̂r is a unit vector pointing in the direction of
the rack, down and to the right.

e) No force needed to move at constant velocity.

13.79a) Pin = 7.33kilo-watts

b) 500 rpm

c) Mout = 140 N·m

13.83a) αB = 20 rad/s2 (CW)

b) a = 4 m/s2 (up)

c) T = 280 N.

13.86a) FB = 100 lbf.

c) vright = v.

13.94b)
(b) T = 2.29 s
(e) T = 1.99 s

(b) has a longer period than (e) does since in (b) the moment of inertia about
the center of mass (located at the same position as the mass in (e))
is non-zero.

13.98a) θ̈ = 0 rad/s2.

b) θ̈ =
sin θ
m` (Dk − mg).

13.99b) −F(t)` cosφ − mg` sinφ + Tm = −m`2φ̈.
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13.100a)(a)
⇀

F = 0.33 Nı̂ − 0.54 N̂ .

13.101a)T (r) =
mω2

2L (L
2
− r2)

b)at r = 0; i.e., at the center of rotation

c)r = L/
√

2

13.103) Izz = 0.125 kg · m2.

13.104a)0.2 kg · m2.

b)0.29 m.

13.105) At 0.72` from either end

13.106a)(Izz)min = m`2/2, about the midpoint.

b)(Izz)max = m`2, about either end

13.107a)C

b)A

c) I A
zz/I B

zz = 2

d)smaller, rgyr =
√

I C
zz/(3m) =

√
2`

13.108a)Biggest: I O
zz ; smallest: I O

yy = I O
xx .

b)I O
xx =

3
2

m`2
= I O

yy . I O
zz = 3m`2.

d)rgyr = `.

13.113a)ωn =

√
gL(M+

m
2 )+K

(M+
m
3 )L2+M R2

2

.

b)ωn =

√
gL(M+

m
2 )+K

(M+
m
3 )L2 . Frequency higher than in (a)

13.114a) I cm
zz = 2m`2

b)P ≡ A, B, C, or D

c)rgyr = `/
√

2

13.115) I O
xx = I O

yy = 0.3 kg · m2.

13.117a) I O
zz =

2m
bh

∫ b

0

∫ hx/b

0
(x2

+ y2) dy dx .

13.128a)Point at 2L/3 from A

b)mg/4 directed upwards.

13.129c) T =
2π

√
g/`

√
1

12(d/`) +
d
`

g) d = 0.29 `

13.132a)Net force:
⇀

Fnet = −( 3mω2 L
2 )ı̂ − (mω2 L

2 )̂ , Net moment:
⇀

Mnet =
⇀

0.

b)Net force:
⇀

Fnet = −( 3mω2 L
2 )ı̂ + (2mg −

mω2 L
2 )̂ , Net moment:

⇀

Mnet =
3mgL

2 k̂.

13.133) Trev =

√
2MO`2π

3F Rp
.

13.139) period = π
√

2m
k .
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13.141a) ⇀α = θ̈ k̂ =? rad/s2 k̂ (oops).

b)T = 538 N.

13.142) ⇀
vB =

√
2gh[m B−2m A(sin θ+µ cos θ)][

4m A+m B+4mC

(
KC
RC

)2
] .

13.143) ⇀am = 0.188 m/s2


