
CHAPTER 12
Constrained
straight-line
motion
Here is an introduction to kinematic constraint in its simplest context, systems that are

constrained to move without rotation in a straight line. In one dimension pulley problems

provide the main example. Two and three dimensional problems are covered, such as finding

structural support forces in accelerating vehicles and the slowing or incipient capsize of

a braking car or bicycle. Angular momentum balance is introduced as a needed tool but

without the complexities of rotatioinal kinematics.
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Figure 12.1: A truck or car running on
straight level road is in straight-line motion,
neglecting, of course, the wheel rotation, the
bouncing, the moving engine parts, and the
wandering eyes of the passengers.
Filename:TruckStraightLine5030

In the previous chapters you learned that it is straightforward to write the
equations of motion for a particle, or for a collection of a few particles, if
you have a model for the forces on the particles in terms of their positions,
velocities, and time. Putting aside the philosophical objection that the mi-
croscopic physics is not well represented by Newtonian particles, we now
address another class of issues.

• Sometimes, often actually, the simplest model of mechanical interac-
tion is not a law for force as a function of position, velocity and time,
but just a geometric restriction on the relative positions or velocities of
points. The reasons for this geometric, instead of force-based, approach
are two-fold:

– Sometimes the minute details of the motion are not of interest
and therefore not worth tracking (e.g., the vibrations of a solid, or
relative motions of atoms in a solid are not of interest), and

– Often one does not know an accurate force law (e.g., at the micro-
scopic level one does not know the details of atomic interactions;
or, at the machine level, one may not know exactly the relations
between the small play in an axle and the force on the axle, even
though one knows that the axle restricts the relative motion of a
train with its wheels and the ground).

Much mechanical modeling involves the replacement of force-interaction
rules with assumptions about the geometry of the motions. Idealization
the force interaction as causing a definite geometric restriction on motion
is called kinematic constraint.

The utility of free body diagrams, the principle of action and reaction, the
linear and angular momentum balance equations, and the balance of energy
apply to all systems, no matter how they are or are not constrained. But,
if objects are kinematically constrained the methods in mechanics have a
slightly different flavor. It is easiest to get the idea if we start with systems
that have simple constraints and that move in simple ways. In this short
chapter, we will discuss the mechanics of things where every point in the
body has the same velocity and acceleration as every other point (so called
parallel motion) and furthermore where every point moves in a straight line.

Example: Train on Straight Level Tracks
Consider a train on straight level tracks. If we focus on the body of the train, we can approx-
imate the motion as parallel straight-line motion. All parts move the same amount, with the
same velocities and accelerations in the same fixed direction.
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Figure 12.2: A schematic of one car pulling
another, or of a boat pulling a barge. Also
shown are FBDs of the bodies separately. Be-
cause our analysis is only in one spatial di-
mension, forces with no component in ı̂ di-
rection are not shown.
Filename:tfigure-boatpullsbarge

We start with 1-D mechanics and constraint with string and pulleys, and
then move on to 2-D and 3-D rigid objects.

12.1 1-D constrained motion and pulleys
The kinematic constraints we consider here are those imposed by connec-
tions with bars or ropes. Consider a car towing another with a strong light
chain. We may not want to consider the elasticity of the chain but instead
idealize the chain as an inextensible connection. This idealization of zero
deformation is a simplification. But it is a simplification that requires special
treatment. It is the simplest example of a kinematic constraint.

Figure 12.2 shows a schematic of one car pulling another. One-
dimensional free body diagrams are also shown. The force F is the force
transmitted from the road to the front car through the tires. The tension T is
the tension in the connecting chain. From linear momentum balance for each
of the objects (modeled as particles):

T = m1 ẍ1 and F − T = m2 ẍ2. (12.1)

But these equations are exactly the same as we would have if the cars were
connected by a spring, a dashpot, or any idealized-as-massless connector.
And all these systems have different motions. We need our equations to
somehow indicate that the two particles are not allowed to move indepen-
dently. We need something to replace the constitutive law that we would
have used for a spring or dashpot.

Kinematic constraint: two approaches
In the simplest example below we show two ways of dealing with kinematic
constraints:

1. Use separate free body diagrams and equations of motion for each par-
ticle and then add extra kinematic constraint equations, or

2. do something clever to avoid having to find the constraint forces.

Finding the constraint force with the accelerations

The geometric (or kinematic) restriction that two masses must move in lock-
step is

x1 = x2 + Constant.

We can differentiate the kinematic constraint twice to get

ẍ1 = ẍ2. (12.2)

If we take F and the two masses as given, equations 12.1 and 12.2 are three
equations for the unknowns ẍ1, ẍ2, and T . In matrix form,we have: m1 0 −1

0 m2 1
−1 1 0

  ẍ1

ẍ2

T

 =

 0
F
0

 .
We can solve these equations to find ẍ1, ẍ2, and T in terms of F .
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F

Figure 12.3: A free body diagram of the
whole system. Note that the unknown tension
(constraint) force does not show. As usual for
1D mechanics, vertical forces are left off for
simplicity (although it would be more correct
to include them).
Filename:tfigure-twocarstogether

∗
See figure 4.24 on page 177 and the related

text which shows why T1 = T2 for one round
pulley idealized as frictionless and massless.

Finessing the finding of the constraint force

On the other hand, if all we are interested in are the accelerations of the cars
it would be nice to avoid even having to think about the constraint force. One
way to avoid dealing with the constraint force is to draw a free body diagram
of the entire system as in figure 12.3. If we just call the acceleration of the
system ẍ we have, from linear momentum balance, that

F = (m1 + m2)ẍ,

which is one equation in one unknown.

Kinematic constraints

A generalization of the 1D inextensible-cable constraint example above is the
rigid-object constraint where not just two, but many particles are assumed to
keep constant distance from one another, and in two or three dimensions.
Another important constraint is an ideal hinge connection between two ob-
jects. Much of the theory of mechanics after Newton has been motivated by
a desire to deal easily with these and other kinematic constraints. In fact, one
way of characterizing the primary difficulty of dynamics is as the difficulty
of dealing with kinematic constraints.

Pulleys
Pulleys are used to redirect force to amplify or attenuate force and to amplify
or attenuate motion. Like a lever, a pulley system is an example of a me-
chanical transmission. Objects connected by inextensible ropes around ideal
pulleys are also examples of kinematic constraint.

Constant length and constant tension

Problems with pulleys are solved by using two facts about idealized strings.
First, an ideal string is inextensible so the sum of the string lengths, over the
different inter-pulley sections, adds to a constant (not varying in time).

`1 + `2 + `3 + `4 + ... = constant (12.3)

Second, for round pulleys of negligible mass and no bearing friction, tension
is constant along the length of the string∗.The tension on one side of a pulley
is the same as the tension on the other side. And this can carry on if a rope is
wrapped around several pulleys.

T1 = T2 = T3 . . . (12.4)
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Figure 12.4: One mass, one pulley, and one
string
Filename:tfigure3-pulleyex
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Figure 12.5: The four classic cases: (a) no
pulley, (b) a pulley system with no mechan-
ical advantage, (c) a pulley system that mul-
tiplies force and attenuates motion, and (d) a
pulley system that attenuates force and am-
plifies motion.
Filename:tfigure-pulley1

We use the trivial pulley example in figure 12.4 to show how to analyze
the relative motion of various points in a pulley system.

Example: Length of string calculation

Starting from point A, we add up the lengths of string

`tot = xA + πr + xB ≡ constant. (12.5)

The portion of string wrapped around the pulley contacts half of the pulley so that it’s length
is half the pulley circumference, πr . Even if xA and xB change in time and different portions
of string wrap around the pulley, the length of string touching the pulley is always πr .

We can now formally deduce the intuitively obvious relations between the velocities and
accelerations of points A and B. Differentiating equation 12.5 with respect to time once and
then again, we get

˙̀tot = 0 = ẋA + 0 + ẋB

⇒ ẋA = −ẋB

⇒ ẍA = −ẍB (12.6)

When point A is displaced to the right by an amount 1xA , point B is displaced exactly the
same amount but to the left; that is,1xA = −1xB . Note that in order to derive the kinematic
relations 12.6 for the pulley system, we never need to know the total length of the string, only
that it is constant in time. The constant-in-time quantities (the pulley half-circumference and
the string length) get ‘killed’ in the process of differentiation.

Commonly we think of pulleys as small and thus never account for the
pulley-contacting string length. Luckily this approximation generally leads
to no error because we most often are interested in displacements, velocities,
and accelerations in which cases the pulley contact length drops out of the
equations anyway.

The classic simple uses of pulleys
First imagine trying to move a load with no pulley as in Fig. 12.5a. The
force you apply goes right to the mass. This is like direct drive with no
transmission.

Now you would like to use pulleys to help you move the mass. In the
cases we consider here the mass is on a frictionless support and we are trying
to accelerate it. But the concepts are the same if there are also resisting forces
on the mass. What can we do with one pulley? Three possibilities are shown
in Fig. 12.5b-d which might, at a blinking glance, look roughly the same.
But they are quite different. Here we discuss each design qualitatively. The
details of the calculations are a homework problem.

In Fig. 12.5b we pull one direction and the mass accelerates the other
way. This illustrates one use of a pulley, to redirect an applied force. The
force on the mass has magnitude |

⇀

F| and there is no mechanical advantage.
Fig. 12.5c shows the most classic use of a pulley. A free body diagram of

the pulley at C will show you that the tension in rope AC is 2|
⇀

F| and we have
thus doubled the force acting on the mass. However, counting string length
and displacement you will see that point A moves only half the distance that
point B moves. Thus the force at B is multiplied by two to give the force at
A and the displacement at B is divided by two to give the displacement at A.
This result for Fig. 12.5c is most solidly understood using energy balance.
The power of the force at B goes eventually entirely into the mass; the string
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and pulley do not absorb any energy. On the other hand if we cut the string
AC, the same amount of power must be applied to the mass (it gains the
same energy). Thus the product of the tension and velocity at A must equal
the product of the tension and velocity at B,

TAvA = TBvB .

This is a general property of ideal transmissions, from levers to pulleys to
gear boxes:

If force is amplified then motion is equally attenuated.

Fig. 12.5d shows a use of a pulley opposite to the use in Fig. 12.5d. A free
body diagram of the pulley shows that the tension in AC is 1

2 |
⇀

F|. Thus the
force is attenuated by a factor of 2. A kinematic analysis reveals that the mo-
tion of A is twice that of B. Thus, as expected from energy considerations,
the motion is amplified when the force is attenuated.

Summarizing,

Relative to Fig. 12.5a the design Fig. 12.5b does nothing and the designs
Fig. 12.5c and Fig. 12.5d are opposite in their effects.

12.1 THEORY
The ‘effective mass’ of a point of force application

The feel of the machine is of concern for machines that people
handle. One aspect of feel is the effective mass. The effective mass
is defined by the response of a point when a force is applied.

meff =
|
⇀
FB|

|
⇀aB|

.

For the case of Fig. 12.5a and Fig. 12.5b the effective mass of point
B is the mass of the block, m. For the case of Fig. 12.5c the block
at A has 2|

⇀
F| acting on it and point B has twice the acceleration of

point A. So the acceeration of poing B is 4F/m = F/(m/4) and
the effective mass of point B is m/4. For the case of Fig. 12.5d,

the mass only has |
⇀
F|/2 acting on it and point B only has half the

acceleration of point A, so the effective mass is 4m.
These special cases exemplify the general rule:

The effective mass of one end of a transmission is the mass of the
other end multiplied by the square of the motion amplification
ratio.

In terms of the effective mass, the systems shown inFig. 12.5c and
Fig. 12.5d which look so similar to a novice, actually differ by a
factor of 22

· 22
= 16. With a given F and m point B in Fig. 12.5c

has 16 times the acceleration of point B in Fig. 12.5d.
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SAMPLE 12.1 Find the motion of two cars. One car is towing another of
equal mass on level ground. The thrust of the wheels of the first car is F . The
second car rolls frictionlessly. Find the acceleration of the system two ways:

1. using separate free body diagrams,
2. using a system free body diagram.

Solution

1. From linear momentum balance of the two cars, we get

T T

F

m m

x

Figure 12.6:
Filename:sfig4-1-twocars-fbda

mẍ1 = T (12.7)

F − T = mẍ2 (12.8)

The kinematic constraint of towing (the cars move together, i.e., no relative displace-
ment between the cars) gives

ẍ1 − ẍ2 = 0 (12.9)

Solving eqns. (12.7), (12.8), and (12.9) simultaneously, we get

ẍ1 = ẍ2 =
F

2m
(T =

F
2
)

2. From linear momentum balance of the two cars as one system, we get

F
m m

x

Figure 12.7:
Filename:sfig4-1-twocars-fbdb

mẍ + mẍ = F

ẍ = F/2m

ẍ = ẍ1 = ẍ2 = F/2m
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ĵ

A
B

Figure 12.9:
Filename:sfig3-3-DH2

∗
We have done an elaborate calculation of

`tot here. Usually, the constant lengths over
the pulleys and some constant segments such
as aa′ are ignored in calculating `tot . These
constant length segments can be ignored be-
cause they drop out of the equation when we
take time derivatives to relate velocities and
accelerations of different points, such as B
and D here.

SAMPLE 12.2 Pulley kinematics. For the masses and ideal-massless pul-
leys shown in figure 12.8, find the acceleration of mass A in terms of the
acceleration of mass B. Pulley C is fixed to the ceiling and pulley D is free to
move vertically. All strings are inextensible.
Solution Let us measure the position of the two masses from a fixed point, say the center of
pulley C. (Since C is fixed, its center is fixed too.) Let yA and yB be the vertical distances of
masses A and B, respectively, from the chosen reference (C). Then the position vectors of A
and B are:

⇀r A = yA ̂ and ⇀r B = yB ̂ .

Therefore, the velocities and accelerations of the two masses are

⇀
v A = ẏA ̂ ,

⇀
v B = ẏB ̂ ,

⇀a A = ÿA ̂ ,
⇀a B = ÿB ̂ .

Since all quantities are in the same direction (̂ ), we can drop ̂ from our calculations and just
do scalar calculations. We are asked to relate ÿA to ÿB .

In all pulley problems, the trick in doing kinematic calculations is to relate the variable

positions to the fixed length of the string. Here, the length of the string `tot is:
∗

`tot = ab + bc + cd + de + ef = constant

where ab = aa′︸︷︷︸
constant

+ a′b︸︷︷︸
(=cd=yD)

bc = string over the pulley D = constant

de = string over the pulley C = constant

ef = yB

thus `tot = 2yD + yB +

(aa′
+bc+de)︷ ︸︸ ︷

constant .

Taking the time derivative on both sides, we get

0 because `tot does not change
with time

��︷ ︸︸ ︷
d
dt
(`tot ) = 2ẏD + ẏB ⇒ ẏD = −

1
2

ẏB (12.10)

⇒ ÿD = −
1
2

ÿB . (12.11)

But yD = yA − AD and AD = constant

⇒ ẏD = ẏA and ÿD = ÿA.

Thus, substituting ẏA and ÿA for ẏD and ÿD in (12.10) and (12.11) we get

ẏA = −
1
2

ẏB and ÿA = −
1
2

ÿB

ÿA = −
1
2 ÿB
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Figure 12.10: A two-mass pulley system.
Filename:sfig3-3-1
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Figure 12.11: Pulley kinematics. Note that
the distance from c to a is minus the x coor-
dinate of a.
Filename:sfig3-3-1b

∗
You may be tempted to use angular mo-

mentum balance (AMB) to get an extra equa-
tion. In this case AMB could help determine
the vertical reactions, but offers no help in
finding the rope tension or the accelerations.

SAMPLE 12.3 A two-mass pulley system. The two masses shown in
Fig. 12.10 have frictionless bases and round frictionless pulleys. The inex-
tensible cord connecting them is always taut. Given that F = 130 N, m A =

m B = m = 40 kg, find the acceleration of the two blocks using:
1. linear momentum balance and
2. energy balance.

Solution

1. Using Linear Momentum Balance:

F B

mg

A

NA NA

mg

NB NB

T

T

T

T

T

ı̂

ĵ

Figure 12.12:
Filename:sfig3-3-1a

The free-body diagrams of the two masses A and B are shown in Fig. 12.12 above.
Linear momentum balance for mass A gives (assuming ⇀a A = aA ı̂ and ⇀a B = aB ı̂):

(2T − F)ı̂ + (2NA − mg)̂ = m⇀a A = −maA ı̂
(dotting with ̂ ) ⇒ 2NA = mg

(dotting with ı̂) ⇒ 2T − F = maA (12.12)

Similarly, linear momentum balance for mass B gives:

−3T ı̂ + (2NB − mg)̂ = m⇀a B = maB ı̂
⇒ 2NB = mg

and − 3T = maB . (12.13)

From (12.12) and (12.13) we have three unknowns: T, aA, aB , but only 2 equations!.

We need an extra equation to solve for the three unknowns.
∗

We can get the extra equation from kinematics. Since A and B are connected by a
string of fixed length, their accelerations must be related. For simplicity, and since
these terms drop out anyway, we neglect the radius of the pulleys and the lengths of
the little connecting cords. Using the fixed point C as the origin of our xy coordinate
system we can write

`tot ≡ length of the string connecting A and B

= 3xB + 2(−xA)

⇒

0︷︸︸︷
˙`tot = 3ẋB + 2(−ẋA)

⇒ ẋB = −
2
3
(−ẋA) ⇒ ẍB = −

2
3
(−ẍA)

(12.14)

Since
⇀
v A = vA ı̂ = −(−ẋ A)ı̂,
⇀a A = aA ı̂ = ẍA ı̂,
⇀
v B = vB ı̂ = ẋB ı̂, and
⇀a B = aB ı̂ = ẍB ı̂,



12.1. 1D motion and pulleys 553

F BA

T

ı̂

ĵ
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Figure 12.13: 1-D free body diagram of the
whole system. Note that except F , no other
forces do any work.
Filename:sfig3-3-1c

we get

aB =
2
3

aA. (12.15)

Substituting (12.15) into (12.13), we get

9T = −2m BaA. (12.16)

Now solving (12.12) and (12.16) for T , we get

T =
2F
13

=
2 · 130 N

13
= 20 N.

Therefore,

aA = −
9T
2m

= −
9 · 20 N
2 · 40 kg

= −2.25 m/s2

aB =
2
3

aA = −1.5 m/s2

⇀a A = −2.25 m/s2 ı̂, ⇀a B = −1.5 m/s2 ı̂.

2. Using Power Balance (III): We have,

P = ĖK.

The power balance equation becomes∑ ⇀
F ·

⇀
v = m aA vA + m B aB vB .

Because the force at A is the only force that does work on the system, when we apply
power balance to the whole system (see the FBD in Fig. 12.13), we get,

−FvA − T
=vc=0︷︸︸︷
vq = m AvAaA + mvBaB

or F = −maA − m
vB
vA

aB

= −aA(m + m
vB
vA

aB
aA
).

Substituting aB = 2/3aA and vB = 2/3vA from Eqn. (12.15),

aA =
−F

m +
4
9 m

=
−130 N

40 kg(1 +
4
9 )

= −2.25 m/s2,

and since aB = 2/3aA,
aB = −1.5 m/s2,

which are the same accelerations as found before.

aA = −2.25 m/s2 ı̂, aB = −1.5 m/s2 ı̂
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Figure 12.15: Free body diagram of the two
masses as one system when in static equilib-
rium (this special case could be skipped as it
follows from the free body diagram below).
Filename:sfig10-1-5a
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dividual masses.
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SAMPLE 12.4 In static equilibrium the spring in Fig. 12.14 is compressed
by ys from its unstretched length `0. Now, the spring is compressed by an
additional amount y0 and released with no initial velocity.

1. Find the force on the top mass m exerted by the lower mass M .
2. When does this force become minimum? Can this force become zero?
3. Can the force on m due to M ever be negative?

Solution

1. The free body diagram of the two masses is shown in Figure 12.15 when the system is
in static equilibrium. From linear momentum balance we have∑ ⇀

F =
⇀
0 ⇒ kys = (m + M)g. (12.17)

The free body diagrams of the two masses at an arbitrary position y during motion
are given in Figure 12.16. Since the two masses oscillate together, they have the same
acceleration. From linear momentum balance for mass m we get

mg − N = mÿ. (12.18)

We are interested in finding the normal force N . Clearly, we need to find ÿ to calculate
N . Now, from linear momentum balance for mass M we get

Mg + N − k(y + ys) = M ÿ. (12.19)

Adding eqn. (12.18) with eqn. (12.19) we get

(m + M)g − ky − kys = (m + M)ÿ.

But kys = (m + M)g from eqn. (12.17). Therefore, the equation of motion of the
system is

−ky = (m + M)ÿ

or ÿ +
k

(m + M)
y = 0. (12.20)

As you recall from your study of the harmonic oscillator, the general solution of this
differential equation is

y(t) = A sin λt + B cos λt (12.21)

where λ =

√
k

m+M and the constants A and B are to be determined from the initial
conditions. From eqn. (12.21) we obtain

ẏ(t) = Aλ cos λt − Bλ sin λt. (12.22)

Substituting the given initial conditions y(0) = y0 and ẏ(0) = 0 in eqns. (12.21) and
(12.22), respectively, we get

y(0) = y0 = B

ẏ(0) = 0 = Aλ ⇒ A = 0.

Thus,
y(t) = y0 cos λt. (12.23)

Now we can find the acceleration by differentiating eqn. (12.23) twice :

ÿ = −y0λ
2 cos λt.

Substituting this expression in eqn. (12.18) we get the force applied by mass M on the
smaller mass m:

mg − N = m

ÿ︷ ︸︸ ︷
(−y0λ

2 cos λt)

⇒ N = mg + my0λ
2 cos λt

= m(g + y0λ
2 cos λt) (12.24)
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N = m(g + y0λ
2 cos λt)

2. Since cos λt varies between ±1, the value of the force N varies between mg ± y0λ
2.

Clearly, N attains its minimum value when cos λt = −1, i.e., when λt = π . This
condition is met when the spring is fully stretched and the mass is at its highest vertical
position. At this point,

N ≡ Nmin = m(g − y0λ
2)

If y0, the initial displacement from the static equilibrium position, is chosen such that
y0 =

g
λ2 , then N = 0 when cos λt = −1, i.e., at the topmost point in the vertical

motion. This condition means that the two masses momentarily lose contact with each
other when they are about to begin their downward motion. �

3. From eqn. (12.24) we can get a negative value of N when cos λt = −1 and y0λ
2 > g.

However, a negative value for N is nonsense unless the blocks are glued. Without glue
the bigger mass M cannot apply a negative compression on m, i.e., it cannot “suck”
m. When y0λ

2 > g then N becomes zero before cos λt decreases to −1. That is,
assuming no bonding, the two masses lose contact on their way to the highest vertical
position but before reaching the highest point. Beyond that point, the equations of
motion derived above are no longer valid for unglued blocks because the equations
assume contact between m and M . eqn. (12.24) is inapplicable when N ≤ 0. �
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M = 50 kg

m = 10 kg
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Figure 12.17:
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mer and pile system. Fr is the total resistance
of the ground.
Filename:sfig3-5-DH2

SAMPLE 12.5 Driving a pile into the ground. A cylindrical wooden pile
of mass 10 kg and cross-sectional diameter 20 cm is driven into the ground
with the blows of a hammer. The hammer is a block of steel with mass 50
kg which is dropped from a height of 2 m to deliver the blow. At the nth
blow the pile is driven into the ground by an additional 5 cm. Assuming the
impact between the hammer and the pile to be totally inelastic (i.e., the two
stick together), find the average resistance of the soil to penetration of the
pile.
Solution Let Fr be the average (constant over the period of driving the pile by 5 cm) resis-
tance of the soil. From the free body diagram of the pile and hammer system, we have∑ ⇀

F = −mĝ − Mĝ + N ̂ + Fr ̂ .

But N is the normal reaction of the ground, which from static equilibrium, must be equal to
mg + Mg. Thus, ∑ ⇀

F = Fr ̂ .

Therefore, from linear momentum balance (
∑ ⇀

F = m⇀a),

⇀a =
Fr

M + m
̂ .

Now we need to find the acceleration from given conditions. Let v be the speed of the hammer
just before impact and V be the combined speed of the hammer and the pile immediately after
impact. Then, treating the hammer and the pile as one system, we can ignore all other forces
during the impact (none of the external forces: gravity, soil resistance, ground reaction, is
comparable to the impulsive impact force, see page ??). The impact force is internal to
the system. Therefore, during impact,

∑ ⇀
F =

⇀
0 which implies that linear momentum is

conserved. Thus

−Mv̂ = −(m + M)V ̂

⇒ V =

(
M

m + M

)
v =

50 kg
60 kg

v =
5
6
v.

The hammer speed v can be easily calculated, since it is the free fall speed from a height of 2
m:

v =
√

2gh =

√
2 · (9.81 m/s2) · (2 m) = 6.26 m/s ⇒ V =

5
6
v = 5.22 m/s.

The pile and the hammer travel a distance of s = 5 cm under the deceleration a. The
initial speed V = 5.22 m/s and the final speed = 0. Plugging these quantities into the one-
dimensional kinematic formula

v2
= v2

0 + 2as,

we get,

0 = V 2
− 2as (Note that a is negative)

⇒ a =
V 2

2s
=
(5.22 m/s)2

2 × 0.05 m
= 272.48 m/s2.

Thus ⇀a = 272.48 m/s2̂ . Therefore,

Fr = (m + M)a = (60 kg)·(272.48 m/s2) = 1.635 × 104 N

Fr ≈ 16.35 kN
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Figure 12.19: (a) shows a piston in a cylin-
der. (b) shows a free body diagram of the pis-
ton. To draw this FBD, we have assumed: (1)
a coefficient of friction µ between the piston
and cylinder wall, and (2) negligible mass for
the connecting rod, and (3) ignored the spa-
tial extent of the cylinder.
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12.2 1D motion: 2D and 3D forces
Even if all the motion is in a single direction, an engineer may still have to
consider two- or three-dimensional forces.

Example: Piston in a cylinder.
Consider a piston sliding vertically in a cylinder. For now neglect the spatial extent of the

cylinder. Let’s assume a coefficient of friction µ between the piston and the cylinder wall
and that the connecting rod has negligible mass so it can be treated as a two-force member
as discussed in section 4.2b.The free body diagram of the piston (with a bit of the connecting
rod) is shown in figure 12.19. We have assumed that the piston is moving up so the friction
force is directed down, resisting the motion. Linear momentum balance for this system is:∑ ⇀

Fi =
⇀̇
L

−N ı̂ − µN ̂ + T λ̂rod = m piston â .

If we assume that the acceleration â of the piston is known, as is its mass m piston , the
coefficient of friction µ, and the orientation of the connecting rod λ̂rod , then we can solve for
the rod tension T and the normal reaction N .

Even though the piston moves in one direction, the momentum balance equation is a
two-dimensional vector equation.

The kinematically simple 1-D motions we assume in this chapter simplify
the evaluation of the right hand sides of the momentum balance equations.
But the momentum balance equations are still vector equations.

Highly constrained bodies
This chapter is about rigid objects that do not rotate or deform. Most objects
will not agree to be the topic of such discussion without being forced into
doing so. In general, one expects bodies to rotate or move along a curved
path. To keep an object that is subject to various forces from rotating or
curving takes some constraint. The object needs to be rigid and held by
wires, rods, rails, hinges, welds, etc. that keep it from spinning, keeping it in
parallel motion. Of course the presence of constraint is not always associated
with the disallowance of rotation — constraints could even cause rotation.
But to keep a rigid object in straight-line motion usually does require some
kind of constraint.

Of common interest for constrained structures is making sure that static
and dynamic loads do not cause failure of the parts that enforce the con-
straints. For example, suppose a truck hauls a very heavy load that is held
down by chains or straps. When the truck accelerates, what is the tension
in the chains, and will it exceed the strength limit of the chains so that they
might break?

In this chapter, we assume all points of a system or body are moving in
a straight line with the same velocity and acceleration. Let’s consider a set
of points in the system of interest. Let’s call them A to G, or generically, P .
For convenience we distinguish a reference point O ′. O ′ may be the center-
of-mass, the origin of a local coordinate system, or a fleck of dirt that serves
as a marker. By parallel motion, we mean that the system happens to move
in such a way that ⇀aP =

⇀aO ′ , and ⇀
vP =

⇀
vO ′ (Fig. 12.20). That is,

⇀aA =
⇀aB =

⇀aC =
⇀aD =

⇀aE =
⇀aF =

⇀aG =
⇀aP =

⇀aO ′
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Figure 12.20: Parallel motion: all points on
the body have the same acceleration ⇀a =

aλ̂. For straight-line motion: λ̂(t)=constant
in time and ⇀

v = vλ̂.
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Figure 12.21: A swing showing instanta-
neous parallel motion which is curvilinear.
At every instant, each point has the same ve-
locity as the others, but the motion is not in a
straight line.
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Figure 12.22: A non-rotating body B with
points O ′ and P .
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at every instant in time. We also assume that ⇀
v A = . . . =

⇀
vP =

⇀
vO ′ .

A special case of parallel motion is straight-line motion.
a system moves with straight-line motion if it moves like a non-
rotating rigid body, in a straight line.

For straight-line motion, the velocity of the body is in a fixed unchanging
direction. If we call a unit vector in that direction λ̂, then we have

⇀
v(t) = v(t)λ̂, ⇀a(t) = a(t)λ̂ and ⇀r(t) =

⇀r 0 + s(t)λ̂

for every point in the system. ⇀r 0 is the position of a point at time 0 and s is
the distance the point moves in the λ̂ direction. Every point in the system has
the same s, v, a, and λ̂ as the other points. There are a variety of problems
of practical interest that can be idealized as fitting into this class, notably, the
motions of things constrained to move on belts, roads, and rails, like the train
in figure ??.

Example: Parallel swing is not straight-line motion
The swing shown does not rotate — all points on the swing have the same velocity. The

velocity of all particles are parallel but, since paths are curved, this motion is not straight-line
motion. Such curvilinear parallel motion will be discussed in Chapter 7.

A special way of analyzing straight-line motion is with one-dimensional
mechanics as we did in the previous chapter. For one-dimensional mechan-
ics, we assume that, in addition to the restricted kinematics, everything of
interest mechanically happens in the λ̂ direction, often taken to be the x di-
rection. That is, we ignore all torques and angular momenta, and only con-
sider the λ̂ components of the forces (i.e.,

⇀

F ·λ̂) and linear momentum (
⇀

L ·λ̂).
For example, if λ̂ is in the ı̂ direction, the components would be Fx and L x .

Before we proceed with discussion of the details of the mechanics of
straight-line motion we present some ideas that are also more generally ap-
plicable. That is, the concept of the center-of-mass allows some useful sim-

plifications of the general expressions for
⇀

L,
⇀̇

L,
⇀

HC,
⇀̇

HC and EK.

Velocity of a point

The velocity of any point P on a non-rotating rigid body (such as for straight-
line motion) is the same as that of any reference point on the body (see
Fig. 12.22).

⇀
vP =

⇀
vO′

A more general case, which you will learn in later chapters, is shown as 5b in
Table II at the back of the book. This formula concerns rotational rate which
we will measure with the vector ⇀

ω. For now all you need to know is that
⇀
ω =

⇀

0 when something is not rotating. In 5b in Table II, if you set ⇀
ωB = 0

and ⇀
vP/B =

⇀

0 it says that ⇀
vP =

⇀̇r O′/O or in shorthand, ⇀
vP =

⇀
vO′ , as we

have written above.
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∗
Calculating rate of change of angular mo-

mentum will get more difficult as the book
progresses. For a rigid body B in more gen-
eral motion, the calculation of rate of change
of angular momentum involves the angular
velocity ⇀

ωB , its rate of change ⇀̇
ωB , and the

moment of inertia matrix [Icm
]. If you look

in the back of the book at Table I, entries 6c
and 6d, you will see formulas that reduce to
the formulas below if you assume no rotation
and thus use ⇀

ω =
⇀
0 and ⇀̇

ω =
⇀
0 .

But rate of change of linear momentum is
simple, at least in concept, in this chapter, as
well as in the rest of this book, where

⇀̇
L = mtot

⇀a cm

always applies.

∗
Caution: Unfortunately, the special mo-

tions in this chapter are almost the only cases
where the angular momentum and its rate of
change are so easy to calculate.

Acceleration of a point

Similarly, the acceleration of every point on a non-rotating rigid body is the
same as every other point. The more general case, not needed in this chapter,
is shown as entry 5c in Table II at the back of the book.

Angular momentum and its rate of change,
⇀

HC and
⇀̇

HC for
straight-line motion

For the motions in this chapter, where ⇀ai =
⇀acm and thus ⇀ai/cm =

⇀

0, an-
gular momentum considerations are simplified, as explained in Box 12.2 on
page 559∗. But for straight-line motion (and for parallel motion), the calcu-
lations turn out to be the same as we would get if we put a single point mass
at the center-of-mass:∗

⇀

HC ≡
∑
(
⇀ri/C × mi

⇀
vi ) =

⇀r cm/C × (mtotal
⇀
vcm),

⇀̇

HC ≡
∑
(
⇀ri/C × mi

⇀ai ) =
⇀r cm/C × (mtotal

⇀acm).

Approach

To study systems in straight-line motion (as always) we:

• draw a free body diagram, showing the appropriate forces and couples
at places where connections are ‘cut’,

• state reasonable kinematic assumptions based on the motions that the
constraints allow,

• write linear and/or angular momentum balance equations and/or energy
balance, and

• solve for quantities of interest.

12.2 THEORY
Calculation of

⇀

HC and
⇀̇

HC for straight-line motion

For straight-line motion, and parallel motion in general, we can
derive the simplification in the calculation of

⇀
HC as follows:

⇀
HC ≡

∑
⇀ri/C × mi

⇀
v i ( definition)

=

∑
⇀ri/C × mi

⇀
vcm (since, ⇀v i =

⇀
vcm)

=

(∑
⇀ri/C mi

)
×

⇀
vcm,

=
⇀rcm/C × (mtot

⇀
vcm),

( since,
∑ ⇀ri/C mi ≡ mtot

⇀rcm/C).

The derivation that
⇀̇
HC =

⇀rcm/C × (m⇀a cm) follows from
⇀̇
HC ≡∑ ⇀ri/C × mi

⇀a i by the same reasoning.
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Figure 12.23: Uniform plate supported by a
hinge and a rod on an accelerating cart.
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Figure 12.24: A four-wheel drive car acceler-
ating but not tipping. See fig. 3.32 on page
148 for more about FBDs involving wheel
contact.
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Angular momentum balance about a judiciously chosen axis is a particularly
useful tool for reducing the number of equations that need to be solved.

Example: Plate on a cart
A uniform rectangular plate ABC D of mass m is supported by a light rigid rod DE and a

hinge joint at point B. The dimensions are as shown. The cart has acceleration ax ı̂ due to a
force F ı̂ and the constraints of the wheels. Referring to the free body diagram in figure 12.23
and writing angular momentum balance for the plate about point B, we can get an equation
for the tension in the rod TDE in terms of m and ax :

∑ ⇀
M/B =

⇀̇
H/B{

⇀r D/B × (TDE λ̂DE )+
⇀r G/B × (−mĝ) =

⇀r G/B × (max ı̂)
}

{ } · k̂ ⇒ TDE =

√
5

7
m(ax −

3
2

g).

Summarizing note:

angular momentum balance is important even when there is no rotation.

Sliding and pseudo-sliding objects
A car coming to a stop can be roughly modeled as a rigid body that translates
and does not rotate. That is, at least for a first approximation, the rotation
of the car due to the suspension and tire deformation, can be neglected. The
free body diagram will show various forces with lines of action that do not all
act through a single point so that angular momentum balance must be used
to analyze the system. Similarly, a bicycle which is braking or a box that is
skidding (if not tipping) may be analyzed by assuming straight-line motion.

Example: Car skidding
Consider the accelerating four-wheel drive car in figure 12.24. The motion quantities for

the car are
⇀̇
L = mcar

⇀a car and
⇀̇
HC =

⇀r cm/C ×
⇀a car mcar . We could calculate angular

momentum balance relative to the car’s center of mass in which case
∑ ⇀

Mcm =
⇀̇
Hcm =

⇀
0

(because the position of the center-of-mass relative to the center-of-mass is
⇀
0 ).

As mentioned, it is often useful to calculate angular momentum balance of
sliding objects about points of contact (such as where tires contact the road)
or about points that lie on lines of action of applied forces when writing
angular momentum balance to solve for forces or accelerations. To do so
usually eliminates some unknown reactions from the equations to be solved.
For example, the angular momentum balance equation about the rear-wheel
contact of a car does not contain the rear-wheel contact forces.

Wheels

The function of wheels is to allow easy sliding-like (pseudo-sliding) motion
between objects, at least in the direction they are pointed. On the other hand,
wheels do sometimes slip due to:
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• being overpowered (as in a screeching accelerating car),
• being braked hard, or
• having very bad bearings (like a rusty toy car).

How wheels are treated when analyzing cars, bikes, and the like depends on
both the application and on the level of detail one requires. In this chapter, we
will always assume that wheels have negligible mass. Thus, when we treat
the special case of un-driven and un-braked wheels our free body diagrams
will be as in figure 3.33 on page 148 and not like the one in figure ?? on
page ??. With the ideal wheel approximation, all of the various cases for
a car traveling to the right are shown with partial free body diagrams of a
wheel in figure 3.32. For the purposes of actually solving problems, we have
accepted Coulomb’s law of friction as a model for contacting interaction (see
pages ??-146).

3-D forces in straight-line motion
The ideas we have discussed apply as well in three dimensions as in two.
As you learned from doing statics problems, working out the details in 3D,
where vector methods must be used carefully, is more involved than in 2D. As
for statics, three dimensional problems often yield simple results and simple
intuitions by considering angular momentum balance about an axis.

Angular momentum balance about an axis

The simplest way to think of angular momentum balance about an axis is to
look at angular momentum balance about a point and then take a dot product
with a unit vector along an axis:

λ̂ ·

{∑
⇀

M/C =
⇀̇

H/C

}
.

Note that the axis need not correspond to any mechanical device in any way
resembling an axle. The equation above applies for any point C and any
vector λ̂. If you choose C and λ̂ judiciously many terms in your equations
may drop out.
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algebra in this problem will tell us that Fx <
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SAMPLE 12.6 Force in braking. A front-wheel-drive car of mass m =

1200 kg is cruising at v = 60 mph on a straight road when the driver slams
on the brake. The car slows down to 20 mph in 4 s while maintaining its
straight path. What is the average force (average in time) applied on the car
during braking?
Solution Let us assume that we have an xy coordinate system in which the car is traveling
along the x-axis during the entire time under consideration. Then, the velocity of the car
before braking, ⇀v1, and after braking, ⇀v2, are

⇀
v1 = v1 ı̂ = 60 mph ı̂
⇀
v2 = v2 ı̂ = 20 mph ı̂.

The linear impulse during braking is
⇀
Fave1t where

⇀
F ≡ Fx ı̂ (see free body diagram of the

car). Now, from the impulse-momentum relationship,

⇀
F1t =

⇀
L2 −

⇀
L1,

where
⇀
L1 and

⇀
L2 are linear momenta of the car before and after braking, respectively, and

⇀
F

is the average applied force. Therefore,

⇀
F =

1
1t
(
⇀
L2 −

⇀
L1)

=
m
1t
(
⇀
v2 −

⇀
v1)

=
1200 kg

4 s
(20 − 60)mphı̂

= −12000
kg
s

·
6mi
6hr

·
1600 m

1 6mi
·

1 6hr
3600 s

ı̂

= −
16, 000

3
kg · m/s2 ı̂

= −5.33 kNı̂.
Thus

Fx ı̂ = −5.33 kNı̂
⇒ Fx = −5.33 kN.

Fx = −5.33 kN
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SAMPLE 12.7 A suitcase skidding on frictional ground. A suitcase of
mass m is pushed and sent sliding on a horizontal surface. The suitcase slides
without any rotation. A and B are the only contact points of the suitcase with
the ground. If the coefficient of friction between the suitcase and the ground
is µ, find all the forces applied by the ground on the suitcase. Discuss the
results obtained for normal forces.
Solution As usual, we first draw a free body diagram of the suitcase. The FBD is shown in
Fig. 12.27. Assuming Coulomb’s law of friction holds, we can write

⇀
F1 = −µN1 ı̂ and

⇀
F2 = −µN2 ı̂. (12.25)

Now we write the balance of linear momentum for the suitcase:∑ ⇀
F = m⇀acm

⇒ − (F1 + F2)ı̂ + (N1 + N2 − mg)̂ = maC ı̂ (12.26)

where ⇀aC = aC ı̂ is the unknown acceleration. Dotting eqn. (12.26) with ı̂ and ̂ and substi-
tuting for F1 and F2 from eqn. (12.25) we get

−µ(N1 + N2) = maC (12.27)

N1 + N2 = mg. (12.28)

Equations (12.27) and (12.28) represent 2 scalar equations in three unknowns N1, N2 and a.
Obviously, we need another equation to solve for these unknowns.

We can write the balance of angular momentum about any point. Points A or B are good
choices because they each eliminate some reaction components. Let us write the balance of
angular momentum about point A: ∑ ⇀

MA =
⇀̇
HA

∑ ⇀
MA =

⇀r B/A × N2̂ +
⇀r D/A × (−mg)̂

= `ı̂ × N2̂ +
`

2
ı̂ × (−mg)̂

= (`N2 − mg
`

2
)k̂ (12.29)

and
⇀̇
HA =

⇀r C/A × m⇀aC

= (
`

2
ı̂ + ĥ)× maC ı̂

= −maC h k̂. (12.30)

Equating (12.29) and (12.30) and dotting both sides with k̂ we get the following third scalar
equation:

`N2 − mg
`

2
= −maC h. (12.31)

Solving eqns. (12.27) and (12.28) for a we get

aC = −µg

and substituting this value of aC in eqn. (12.31) we get

N2 =
mµgh + mg`/2

`

= mg
(

1
2

+
h
`
µ

)
.

Substituting the value of N2 in either of the equations (12.27) or (12.28) we get

N1 = mg
(

1
2

−
h
`
µ

)
.
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N1 = mg( 1
2 −

h
`
µ), N2 = mg( 1

2 +
h
`
µ), f1 = µN1, f2 = µN2.

Discussion: From the expressions for N1 and N2 we see that

1. N1 = N2 =
1
2 mg if µ = 0 because without friction there is no deceleration. The

problem becomes equivalent to a statics problem.

2. N1 = N2 ≈
1
2 mg if ` >> h. In this case, the moment produced by the friction forces

is too small to cause a significant difference in the magnitudes of the normal forces.
For example, take ` = 20h and calculate moment about the center-of-mass to convince
yourself.

Graphically, N1, N2 and their difference N1 − N2 are shown in the plot below as a func-
tion of h/` for a particular value of µ and mg. As the equations indicate, N1 − N2 in-
creases steadily as h/` increases, showing how the moment produced by the friction forces
makes a bigger and bigger difference between N1 and N2 as this moment gets bigger.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

h / 

N
1, N

2, a
nd

 N
1−N

2

N
1

N2

N
1
 −N

2

�

mg = 1,  µ = 0.5

Figure 12.28: The normal forces N1 and N2 differ from each other more and more as h/` increases.
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SAMPLE 12.8 Uniform acceleration of a board in 3-D. A uniform sign-
board of mass m = 20 kg sits in the back of an accelerating flatbed truck.
The board is supported with a ball-and-socket joint at O and a hinge at G.
A light rod from H to I keeps the board from falling over. The truck is
on level ground and has forward acceleration ⇀a = 0.6 m/s2 ı̂. The relevant
dimensions are b = 1.5 m, c = 1.5 m, d = 3 m, e = 0.5 m. There is
gravity (g = 10 m/s2).

1. Draw a free body diagram of the board.
2. Set up equations to solve for all the unknown forces shown on the FBD.
3. Use the balance of angular momentum about an axis to find the tension

in the rod.
Solution

1. The free body diagram of the board is shown in Fig. 12.30.

2. Linear momentum balance for the board:∑ ⇀
F = m⇀a, or

(Gx + Ox )ı̂ + (G y + Oy)̂ + (Gz + Oz − mg)k̂ + T λ̂H I = ma ı̂ (12.32)

where

λ̂H I =
d ı̂ + b̂ + ek̂√
d2 + b2 + e2

=
d ı̂ + b̂ + ek̂

`
,

and ` is the length of the rod HI.
Dotting eqn. (12.32) with ı̂, ̂ and k̂ we get the following three scalar equations:

Gx + Ox + T
d
`

= ma (12.33)

G y + Oy + T
b
`

= 0 (12.34)

Gz + Oz + T
e
`

= mg (12.35)

Angular momentum balance about point G:∑ ⇀
MG =

⇀̇
HG

∑ ⇀
MG =

⇀r C/G × (−mg k̂)+
⇀r O/G × (Ox ı̂ + Oz k̂)+

⇀r H/G × T λ̂H I

= (−
b
2
̂ +

c − e
2

k̂)× (−mg k̂)− b̂ × (Ox ı̂ + Oz k̂)

+[−b̂ + (c − e)k̂] ×
T
`
(d ı̂ + b̂ + ek̂)

=

(
b
2

mg − bOz − be
T
`

− (c − e)b
T
`

)
ı̂

+(c − e)d
T
`

̂ +

(
bOx + bd

T
`

)
k̂ (12.36)

and

⇀̇
HG =

⇀r C/G × ma ı̂

= (−
b
2
̂ +

c − e
2

k̂)× ma ı̂

=
b
2

ma k̂ +
c − e

2
mâ . (12.37)
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∗
Note that G y and Oy will always appear

together as the sum G y + Oy even if you
took the angular momentum balance about
some other point. This is because they have
the same line of action. Thus, they cannot
be found independently. This mathematical
problem corresponds to the physical reality
that the supports at points O and G could be
squeezing the plate along the line OG with,
say, Oy = 1000 N and G y = −1000 N even
if there were no gravity, and the truck was not
accelerating. To make prestress problems like
this tractable, people often make assumptions
like, ‘Assume G y = 0’, that is, they try to get
rid of the redundancy in supports to make the
problem statically determinate.

Equating (12.36) and (12.37) and dotting both sides with ı̂, ̂ and k̂ we get the fol-
lowing three additional scalar equations:

Oz +
c
`

T =
1
2

mg (12.38)

d
`

T =
1
2

ma (12.39)

Ox +
d
`

T =
1
2

ma (12.40)

Now we have six scalar equations in seven unknowns — Ox , Oy , Oz , Gx , G y ,Gz,
and T . From basic linear algebra, we know that we cannot find unique solutions for all
these unknowns from the given equations. A closer inspection of eqns. (12.33–12.35)
and (12.38–12.40) shows that we can easily solve for Ox , Oz , Gx ,Gz, and T , but
Oy and G y cannot be determined uniquely because they appear together as the sum

G y + Oy .
∗

Fortunately, we can find the tension in the wire H I without worrying
about the values of Oy and G y as we show below.

3. Balance of angular momentum about axis OG gives:

λ̂OG ·

∑ ⇀
MG = λ̂OG ·

⇀̇
HG

= λ̂OG · (
⇀r C/G × ma ı̂). (12.41)

Since all reaction forces and the weight go through axis OG, they do not produce any
moment about this axis (convince yourself that the forces from the reactions have no
torque about the axis by calculation or geometry). Therefore,

λ̂OG ·

∑ ⇀
MG = ̂ · (

⇀r H/G × T λ̂H I )

= T
d(c − e)

`
. (12.42)

λ̂OG · (
⇀r C/G × ma ı̂) = ̂ ·

[(
b
2
̂ +

c − e
2

k̂
)

× ma ı̂
]

= ma
(c − e)

2
. (12.43)

Equating (12.42) and (12.43), as required by eqn. (12.41), we get

T =
ma`
2d

=
20 kg · 0.6 m/s2

· 3.39 m
2 · 3 m

= 6.78 N.

TH I = 6.78 N



568 Straight line motion

∗
Be careful with units. Most computer pro-

grams will not take care of your units. They
only deal with numerical input and output.
You should, therefore, make sure that your
variables have proper units for the required
calculations. Either do dimensionless calcu-
lations or use consistent units for all quanti-
ties.

SAMPLE 12.9 Computer solution of algebraic equations. In the previous
sample problem (Sample 12.8), six equations were obtained to solve for the
six unknown forces (assuming G y = 0). (i) Set up the six equations in matrix
form and (ii) solve the matrix equation on a computer. Check the solution by
substituting the values obtained in one or two equations.
Solution

1. The six scalar equations — (12.33), (12.34), (12.35), (12.38), (12.39), and (12.40) are
amenable to hand calculations. We, however, set up these equations in matrix form
and solve the matrix equation on the computer. The matrix form of the equations is:

1 0 0 1 0 d
`

0 1 0 0 0 b
`

0 0 1 0 1 e
`

0 0 1 0 0 c
`

0 0 0 0 0 d
`

1 0 0 0 0 d
`





Ox
Oy
Oz
Gx
Gz
T


=



ma
0

mg
mg/2
ma/2
ma/2


. (12.44)

The above equation can be written, in matrix notation, as

A x = b

where A is the coefficient matrix, x is the vector of the unknown forces, and b is the
vector on the right hand side of the equation. Now we are ready to solve the system of
equations on the computer.

2. We use the following pseudo-code to solve the above matrix equation.
∗

m = 20, a = 0.6,
b = 1.5, c = 1.5, d = 3, e = 0.5, g = 10,
l = sqrt(bˆ2 + dˆ2 + eˆ2),

A = [1 0 0 1 0 d/l
0 1 0 0 0 b/l
0 0 1 0 1 e/l
0 0 1 0 0 c/l
0 0 0 0 0 d/l
1 0 0 0 0 d/l]

b = [m*a, 0, m*g, m*g/2, m*a/2, m*a/2]’

{Solve A x = b for x}
x = % this is the computer output

0
-3.0000
97.0000
6.0000

102.0000
6.7823

The solution obtained from the computer means:

Ox = 0, Oy = −3 N, Oz = 97 N, Gx = 6 N, Gz = 102 N, T = 6.78 N.

We now hand-check the solution by substituting the values obtained in, say, Eqns. (12.34) and
(12.39). Before we substitute the values of forces, we need to calculate the length `.

` =

√
d2 + b2 + e2

= 3.3912 m.
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Therefore,

Eqn. (12.34): Oy + T
b
`

= −3 N + 6.78 N ·
1.5 m

3.3912 m
√

= 0,

Eqn. (12.39):
d
`

T −
1
2

ma =
3 m

3.3912 m
6.78 N −

1
2

20 kg 0.6 m/s2

√

= 0.

Thus, the computer solution agrees with our equations.

Comments: We could have solved the six equations for seven unknowns without assuming
G y = 0 if our computer program or package allows us to do so. We will, of course, not get a
unique solution. For example, by taking the following A, a 6 × 7 matrix, and solving A x = b
for x = [Ox Oy Oz; Gx G y Gz T ]

T with the same b as input above, we get the solution as
shown below.

A = [1 0 0 1 0 0 d/l
0 1 0 0 1 0 b/l
0 0 1 0 0 1 e/l
0 0 1 0 0 0 c/l
0 0 0 0 0 0 d/l
1 0 0 0 0 0 d/l]

b = [m*a, 0, m*g, m*g/2, m*a/2, m*a/2]’

{Solve A x = b for x}
x = % this is the computer output

0
-3.0000
97.0000
6.0000

0
102.0000

6.7823

This is the same solution as we got before except that it includes G y = 0 in the solution.

Now, if we add a vector1 x = [0 α 0 0 − α 0 0]
T to x where α is any number, and compute

A (x+1x) , we get back b. That is, the six equilibrium conditions are satisfied irrespective of

the actual values of Oy and G y as long as the value of Oy + G y remains the same.



Problems for
Chapter 12
Constrained straight line motion

12.1 1-D constrained
motion and pulleys
12.1 A train engine of mass m pulls and
accelerates N cars each of mass m. The
power of the engine is Pt and its speed is
vt . Find the tension Tn between car n and
car n+1. Assume there is no resistance and
the ground is level. Assume the cars are
connected with rigid links.

n=1 n=2 n=N-2 n=N-1 n=N

m m m m m

problem 12.1:
Filename:pfigure-newtrain

12.2 Two blocks, each of mass m, are con-
nected together across their tops by a mass-
less string of length S; the blocks’ dimen-
sions are small compared to S. They slide
down a slope of angle θ . Do not neglect
gravity but do neglect friction.

a) Draw separate free body diagrams
of each block, the string, and the
system of the two blocks and string.

b) Write separate equations for linear
momentum balance for each block,
the string, and the system of blocks
and string.

c) What is the acceleration of the cen-
ter of mass of the two blocks?

d) What is the force in the string?
e) What is the speed of the center of

mass for the two blocks after they
have traveled a distance d down
the slope, having started from rest.
[Hint: You need to dot your mo-
mentum balance equations with a
unit vector along the ramp in order
to reduce this problem to a problem
in one dimensional mechanics.]

m

s

m

θ

problem 12.2:
Filename:pfigure-blue-27-1

12.3 Two blocks, each of mass m, are con-
nected together across their tops by a mass-
less string of length S; the blocks’ dimen-
sions are small compared to S. They slide
down a slope of angle θ . The materials are
such that the coefficient of dynamic fric-
tion on the top block is µ and on the bot-
tom block is µ/2.

a) Draw separate free body diagrams
of each block, the string, and the
system of the two blocks and string.

b) Write separate equations for linear
momentum balance for each block,
the string, and the system of blocks
and string.

c) What is the acceleration of the cen-
ter of mass of the two blocks?

d) What is the force in the string?
e) What is the speed of the center of

mass for the two blocks after they
have traveled a distance d down the
slope, having started from rest.

f) How would your solutions to parts
(a) and (c) differ in the following
two variations: i.) If the two blocks
were interchanged with the slippery
one on top or ii.) if the string were
replaced by a massless rod? Quali-
tative responses to this part are suf-
ficient.

m

s

m

θ

problem 12.3:
Filename:pfigure-blue-27-1a

12.4 A cart of mass M , initially at rest,
can move horizontally along a frictionless
track. When t = 0, a force F is applied
as shown to the cart. During the accelera-
tion of M by the force F , a small box of
mass m slides along the cart from the front
to the rear. The coefficient of friction be-
tween the cart and box is µ, and it is as-
sumed that the acceleration of the cart is
sufficient to cause sliding.

a) Draw free body diagrams of the
cart, the box, and the cart and box
together.

b) Write the equation of linear mo-
mentum balance for the cart, the
box, and the system of cart and box.

c) Show that the equations of motion
for the cart and box can be com-
bined to give the equation of motion
of the mass center of the system of
two bodies.

d) Find the displacement of the cart at
the time when the box has moved a
distance ` along the cart.

Fmm
M

no friction

�

problem 12.4:
Filename:pfigure-blue-28-1

12.5 A motor at B allows the block of
mass m = 3 kg shown in the figure to ac-
celerate downwards at 2 m/s2. There is
gravity. What is the tension in the string
AB?

A

B

m

problem 12.5:
Filename:pfigure-blue-12-2

12.6 For the mass and pulley system
shown in the figure, the point of applica-
tion A of the force moves twice as fast as
the mass. At some instant in time t , the
speed of the mass is ẋ to the left. Find the
input power to the system at time t .

F
A

m

problem 12.6:
Filename:pfig2-3-rp8

12.7 Pulley and masses. Two masses con-
nected by an inextensible string hang from
an ideal pulley.

a) Find the downward acceleration of
mass B. Answer in terms of any or
all of m A, m B , g, and the present
velocities of the blocks. As a check,
your answer should give aB = g
when m A = 0 and aB = 0 when
m A = m B . .

b) Find the tension in the string. As
a check, your answer should give
T = m B g = m Ag when m A = m B
and T = 0 when m A = 0.

570
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mA

mB

g

problem 12.7:
Filename:pfigure3-f95p1p2

12.8 The blocks shown are released from
rest. Make reasonable assumptions about
strings, pulleys, string lengths, and gravity.

a) What is the acceleration of block A
at t = 0+ (just after release)?

b) What is the speed of block B after it
has fallen 2 meters?

mA = mB = m

A

B

problem 12.8:
Filename:pfigure-blue-29-2

12.9 What is the acceleration of block A?
Use g = 10 m/s2. Assume the string is
massless and that the pulleys are massless,
round, and have frictionless bearings.

2 kg

32 kg

A

B

ı̂

ĵ

problem 12.9:
Filename:pfigure-f93q4

12.10 For the system shown in prob-
lem 12.7, find the acceleration of mass B
using energy balance (P = ĖK).

12.11 For the various situations pictured,
find the acceleration of mass A and point
B shown using balance of linear momen-
tum. Define any variables, coordinates or

sign conventions that you need to do your
calculations and to define your solution.

A
B

A
B

m A B

A
B

(a) ⇀
F

m
(b)

m
(c)

m
(d)

⇀
F

⇀
F

⇀
F

problem 12.11:
Filename:pulley1

12.12 For each of the various situations
pictured in problem 12.11 find the accel-
eration of the mass using energy balance
(P = ĖK). Define any variables, coordi-
nates, or sign conventions that you need to
do your calculations and to define your so-
lution.

12.13 What is the ratio of the acceleration
of point A to that of point B in each con-
figuration? In both cases, the strings are
inextensible, the pulleys massless, m = m
and F = F .

m

FA

FBm

problem 12.13:
Filename:sum95-p1-p3

12.14 Find the acceleration of points A
and B in terms of F and m. Assume that
the carts stay on the ground, have good
(frictionless) bearings, and have wheels of
negligible mass.

m mA B F

problem 12.14:
Filename:pfigure-s94q5p1

12.15 For the situation pictured in prob-
lem 12.14 find the accelerations of the two
masses using energy balance (P = ĖK).
Define any variables, coordinates, or sign
conventions that you need to do your cal-
culations and to define your solution.

12.16 For the various situations pictured,
find the acceleration of mass A and point B
shown using balance of linear momentum
(
∑ ⇀

F = m⇀a). Define any variables, coor-
dinates or sign conventions that you need
to do your calculations and to define your
solution.

a)
b)

A B

massless

(b)

(a)
A B

m1

m2

A

B

30o

60o

g

m

(c)

⇀
F

⇀
F

m

problem 12.16:
Filename:pulley4

12.17 For the various situations pictured
in problem 12.16 find the acceleration of
the mass using energy balance (P = ĖK).
Define any variables, coordinates, or sign
conventions that you need to do your cal-
culations and to define your solution.

12.18 A person of mass m, modeled as
a rigid body is sitting on a cart of mass
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M > m and pulling the massless inextensi-
ble string towards herself. The coefficient
of friction between her seat and the cart is
µ. All wheels and pulleys are massless and
frictionless. Point B is attached to the cart
and point A is attached to the rope.

a) If you are given that she is pulling
rope in with acceleration a0 relative
to herself (that is, ⇀a A/B ≡

⇀a A −

⇀a B = −a0 ı̂) and that she is not
slipping relative to the cart, find ⇀a A.
(Answer in terms of some or all of
m,M, g, µ, ı̂ and a0.)

b) Find the largest possible value of a0
without the person slipping off the
cart? (Answer in terms of some or
all of m,M, g and µ. You may as-
sume her legs get out of the way if
she slips backwards.)

c) If instead, m < M , what is the
largest possible value of a0 with-
out the person slipping off the cart?
(Answer in terms of some or all of
m,M, g and µ. You may assume
her legs get out of the way if she
slips backwards.)

M

m A

B

ideal pulley

ı̂

ĵ
g

problem 12.18: Pulley.
Filename:s97p2-2

12.19 Two blocks and a pulley. Two
identical blocks are stacked and tied to-
gether by the pulley as shown. All bear-
ings are frictionless. All rotating parts have
negligible mass. Find

a) the acceleration of point A, and
b) the tension in the line.

m

m

F 

B  

A 

C 


ı̂

̂

problem 12.19:
Filename:p-s96-p1-1

12.20 The pulleys are massless and fric-
tionless. Include gravity. x measures the
vertical position of the lower mass from
equilibrium. y measures the vertical po-
sition of the upper mass from equilibrium.
What is the natural frequency of vibration
of this system?

m

k

y

x
m

problem 12.20:
Filename:pfigure-s95q4

12.21 For the situation pictured, find the
acceleration of mass A and points B and C
shown. [Hint: the situation with point C is
tricky and the answer is genuinely subtle.]

A
BC

m

⇀
F

problem 12.21:
Filename:pulley2

12.22 For the situation pictured in prob-
lem 12.21, find the acceleration of point A
using energy balance (P = ĖK). Define
any variables, coordinates, or sign conven-
tions that you need to do your calculations
and to define your solution.

12.23 Design a pulley system. You are to
design a pulley system to move a mass.
There is no gravity. Point A has a force
⇀
F = F ı̂ pulling it to the right. Mass B
has mass m B . You can connect point A to
the mass with any number of ideal strings
and ideal pulleys. You can make use of
rigid walls or supports anywhere you like
(say, to the right or left of the mass). You
must design the system so that mass B ac-
celerates to the left with F

2m B
(i.e., ⇀a B =

−
F

2m B
ı̂).

a) Draw the system clearly. Justify
your answer with enough words or
equations so that a reasonable per-
son, say a grader, can tell that you
understand your solution.

b) Find the acceleration of point A.

12.24 Design a pulley system. You are
to design a pulley system to move a mass.
There is no gravity. Point A has a force
⇀
F = F ı̂ pulling it to the right. Mass B has
mass m B . You can connect the point A to
the mass with any number of ideal strings
and ideal pulleys. You can make use of
rigid walls or supports anywhere you like
(say, to the right or left of the mass). Draw
the system clearly. Justify your answer
with enough words or equations to con-
vince a skeptical person that your solution
is correct. You must design the system so
that the mass B accelerates .

a) to the left with F
m B

(i.e., ⇀a B =

−
F

m B
ı̂)

b) to the left with 2F
m B

c) to the left with F
2m B

d) to the right with 2F
m B

e) to the right with F
2m B

f) to the left with 8F
m B

g) to the right with F
5m B

12.25 Pulley and spring. For the hang-
ing mass find the period of oscillation. As-
sume a massless pulley with good bear-
ings. The massless string is inextensible.
Only vertical motion is of interest. There
is gravity.

m

k

g

problem 12.25:
Filename:pfigure-s94h4p4

12.26 The spring-mass system shown (m =
10 slugs (≡ lb · sec2/ f t), k = 10 lb/ f t) is
excited by moving the free end of the cable
vertically according to δ(t) = 4 sin(ωt) in,
as shown in the figure. Assuming that the
cable is inextensible and massless and that
the pulley is massless, do the following.
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a) Derive the equation of motion for
the block in terms of the displace-
ment x from the static equilibrium
position, as shown in the figure.

b) If ω = 0.9 rad/s, check to see if the
pulley is always in contact with the
cable (ignore the transient solution).

Static equilibrium
position at δ = 0 

and x = 0

x

δ(t)

g

m

problem 12.26:
Filename:pfigure-blue-151-1

12.27 The block of mass m hanging on the
spring with constant k and a string shown
in the figure is forced by F = A sin(ωt).
Do not neglect gravity. The pulley is mass-
less.

a) What is the differential equation
governing the motion of the block?
You may assume that the only mo-
tion is vertical motion.

b) Given A, m and k, for what values
of ω would the string go slack at
some point in the cyclical motion?
(The common assumption in such
problems, which you can use, is
to neglect the homogeneous solu-
tion to the differential equation. It
is assumed that the damping, small
enough to be neglected in the gov-
erning equations is large enough so
that the particular solution will have
damped out at the time of observa-
tion.)

m

F = A sin(ωt)

k

problem 12.27:
Filename:pfigure-blue-155-1

12.28 Block A, with mass m A, is pulled
to the right a distance d from the position
it would have if the spring were relaxed. It

is then released from rest. Assume ideal
string, pulleys and wheels. The spring has
constant k.

a) What is the acceleration of block A
just after it is released (in terms of
k, m A, and d)?

b) What is the speed of the mass when
the mass passes through the posi-
tion where the spring is relaxed?
.

D E G

B C

A

x ı̂

problem 12.28:
Filename:pfigure-f93q5

12.29 What is the static displacement
of the mass from the position where the
spring is just relaxed?

m

A

d

k, L0 g

problem 12.29:
Filename:pulley3-a

12.30 For the two situations pictured,
find the acceleration of point A shown us-
ing balance of linear momentum (

∑ ⇀
F =

m⇀a). Assuming both masses are de-
flected an equal distance from the posi-
tion where the spring is just relaxed, how
much smaller or bigger is the acceleration
of block (b) than that of block (a). De-
fine any variables, coordinate system ori-
gins, coordinates or sign conventions that
you need to do your calculations and to de-
fine your solution.

A

L

K,L0

(a)

m

A

d

K,L0

(b)

m

problem 12.30:
Filename:pulley3

12.31 For each of the situations pictured
in problem 12.30, find the acceleration of
the mass using energy balance (P = ĖK).
Define any variables, coordinates, or sign
conventions that you need to do your cal-
culations and to define your solution.

12.2 2D and 3D forces
even though the motion is
straight
12.32 The two blocks, m1 = m2 = m, are
connected by an inextensible string AB.
The string can only withstand a tension
Tcr . Find the maximum value of the ap-
plied force P so that the string does not
break. The sliding coefficient of friction
between the blocks and the ground is µ.

m2m1
PB

µ

g

problem 12.32:
Filename:Danef94s3q5

12.33 Mass pulled by two strings. F1
and F2 are applied so that the system
shown accelerates to the right at 5 m/s2

(i.e., a = 5 m/s2 ı̂ + 0̂ ) and has no rota-
tion. The mass of D and forces F1 and F2
are unknown. What is the tension in string
AB?

A

C

B

m D

4

4

3

3

F1

F2

ı̂

ĵ

problem 12.33:
Filename:pg9-1

12.34 A point mass m is attached to a pis-
ton by two inextensible cables. The piston
has upwards acceleration of ay ̂ . There is
gravity. In terms of some or all of m, g, d,
and ay find the tension in cable AB.
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9d

6d

5d
A

B

C

ı̂

ĵ
g

problem 12.34:
Filename:ch3-13

12.35 A point mass of mass m moves on
a frictional surface with coefficient of fric-
tion µ and is connected to a spring with
constant k and unstretched length `. There
is gravity. At the instant of interest, the
mass is at a distance x to the right from
its position where the spring is unstretched
and is moving with ẋ > 0 to the right.

a) Draw a free body diagram of the
mass at the instant of interest.

b) At the instant of interest, write the
equation of linear momentum bal-
ance for the block evaluating the left
hand side as explicitly as possible.
Let the acceleration of the block be
⇀a = ẍ ı̂.

x

m

ℓ

problem 12.35:
Filename:ch2-10a

12.36 Find the tension in two strings.
Consider the mass at B (2 kg) supported by
two strings in the back of a truck which has
acceleration of 3 m/s2. Use g = 10 m/s2.
What is the tension TAB in the string AB
in Newtons?

1m

1m

B

CA

x

y

problem 12.36:
Filename:pfigure-s94h2p8

12.37 Coin on a car on a ramp. A student
engineering design course asked students

to build a cart (mass = mc) that rolls down
a ramp with angle θ . A small weight (mass
mw � mc) is placed on top of the cart on a
surface tipped with respect to the cart (an-
gle φ). Assume the small mass does not
slide. Assume massless wheels with fric-
tionless bearings. ı̂ is horizontal and ̂ is
vertical up.

a) Find the acceleration of the cart.
Answer in terms of some or all of
mc, g, ı̂, θ and ̂ .

b) What coefficient of friction µ is re-
quired (the smallest that will work)
to keep the small mass from slid-
ing as the cart rolls down the slope?
Answer in terms of some or all of
mc,mw, g, θ, and φ.

c) What angle φ will allow a small
mass to ride on the cart with the
smallest coefficient of friction? An-
swer in terms of some or all of
mc,mw, g, and θ .

12.38 Guyed plate on a cart A uniform
rectangular plate ABC D of mass m is sup-
ported by a rod DE and a hinge joint at
point B. The dimensions are as shown.
There is gravity. What must the acceler-
ation of the cart be in order for massless
rod DE to be in tension?
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C E
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3� 4�

cart

ı̂

ĵ

problem 12.38: Uniform plate supported by a
hinge and a cable on an accelerating cart.

Filename:tfigure3-2D-a-guyed

12.39 A uniform rectangular plate of mass
m is supported by two inextensible cables
AB and C D and by a hinge at point E on
the cart as shown. The cart has accelera-
tion ax ı̂ due to a force not shown. There is
gravity.

a) Draw a free body diagram of the
plate.

b) Write the equation of linear mo-
mentum balance for the plate and
evaluate the left hand side as explic-
itly as possible.

c) Write the equation for angular mo-
mentum balance about point E and
evaluate the left hand side as explic-
itly as possible.

3a 3a
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G
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D
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problem 12.39:
Filename:ch2-12

12.40 A uniform rectangular plate of mass
m is supported by an inextensible cable
C D and a hinge joint at point E on the cart
as shown. The hinge joint is attached to
a rigid column welded to the floor of the
cart. The cart is at rest. There is gravity.
Find the tension in cable C D.
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problem 12.40:
Filename:ch3-11-b

12.41 A uniform rectangular plate of mass
m is supported by an inextensible cable
AB and a hinge joint at point E on the cart
as shown. The hinge joint is attached to
a rigid column welded to the floor of the
cart. The cart has acceleration ax ı̂. There
is gravity. Find the tension in cable AB.
(What’s ‘wrong’ with this problem? What
if instead point B were at the bottom left
hand corner of the plate?)
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problem 12.41:
Filename:ch3-11a
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12.42 A block of mass m is sitting on a
frictionless surface and acted upon at point
E by the horizontal force P through the
center of mass. Draw a free body diagram
of the block. There is gravity. Find the ac-
celeration of the block and reactions on the
block at points A and B.

b
2b

2d

d

C D

A B

G

PE

problem 12.42:
Filename:ch3-9

12.43 Reconsider the block in prob-
lem 12.42. This time, find the acceleration
of the block and the reactions at A and B
if the force P is applied instead at point D.
Are the acceleration and the reactions on
the block different from those found when
P is applied at point E?

12.44 A block of mass m is sitting on a
frictional surface and acted upon at point
D by the horizontal force P . The block
is resting on a sharp edge at point B and
is supported by an ideal wheel at point
A. There is gravity. Assuming the block
is sliding with coefficient of friction µ at
point B, find the acceleration of the block
and the reactions on the block at points A
and B.
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problem 12.44:
Filename:ch3-12

12.45 A force FC is applied to the corner
C of a box of weight W with dimensions
and center of gravity at G as shown in the
figure. The coefficient of sliding friction
between the floor and the points of contact
A and B is µ. Assuming that the box slides
when FC is applied, find the acceleration
of the box and the reactions at A and B in
terms of W , FC , θ , b, and d.

b

2b

b

dC

A B

G

FC

θ

problem 12.45:
Filename:Mikes92p3

12.46 Forces of rod on a cart. A uniform
rod with mass mr rests on a cart (mass mc)
which is being pulled to the right. The rod
is hinged at one end (with a frictionless
hinge) and has no friction at the contact
with the cart. The cart is rolling on wheels
that are modeled as having no mass and
no bearing friction (ideal massless wheels).
Answer in terms of g, mr , mc, θ and F .
Find:

a) The force on the rod from the cart at
point B.

b) The force on the rod from the cart at
point A.

θ

A

FB

problem 12.46:
Filename:pfigure-s94h3p3

12.47 At the instant shown, the mass is
moving to the right at speed v = 3 m/s.
Find the rate of work done on the mass.

h
m = 10 kg

frictionless

F = 50 N
ℓ

x

problem 12.47:
Filename:pfig2-3-rp9

12.48 A point mass ‘m’ is pulled straight
up by two strings. The two strings pull the
mass symmetrically about the vertical axis
with constant and equal force T . At an in-
stant in time t , the position and the velocity
of the mass are y(t)̂ and ẏ(t)̂ , respec-
tively. Find the power input to the moving
mass.

h

TT L

m

x

y

problem 12.48:
Filename:pfig2-3-rp2

12.49 The box shown in the figure is
dragged in the x-direction with a constant
acceleration ⇀a = 0.5 m/s2 ı̂. At the instant
shown, the velocity of (every point on) the
box is ⇀

v = 0.8 m/sı̂.
a) Find the linear momentum of the

box.
b) Find the rate of change of linear

momentum of the box.
c) Find the angular momentum of the

box about the contact point O .
d) Find the rate of change of angu-

lar momentum of the box about the
contact point O .

x

y

O

1m

m = 2 kg

2m

30o

problem 12.49:
Filename:pfigure3-mom-rp1

12.50 The groove and disk accelerate up-
wards, ⇀a = â . Neglecting gravity,
what are the forces on the disk due to the
groove?

θ1 θ2

x

y

r

problem 12.50:
Filename:ch2-5-ba
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12.51 The following problems concern a
box that is in the back of a pickup truck.
The pickup truck is moving forward with
acceleration of at . The truck’s speed is vt .
The box has sharp feet at the front and back
ends so the only place it contacts the truck
is at the feet. The center of mass of the
box is at the geometric center of the box.
The box has height h, length ` and depth
w (into the paper.) Its mass is m. There
is gravity. The friction coefficient between
the truck and the box edges is µ.

In the problems below you should ex-
press your solutions in terms of the vari-
ables given in the figure, `, h, µ, m, g, at ,
and vt . If any variables do not enter the ex-
pressions comment on why they do not. In
all cases you may assume that the box does
not rotate (though it might be on the verge
of doing so).

a) Assuming the box does not slide,
what is the total force that the truck
exerts on the box (i.e. the sum of
the reactions at A and B)?

b) Assuming the box does not slide
what are the reactions at A and B?
[Note: You cannot find both of them
without additional assumptions.]

c) Assuming the box does slide, what
is the total force that the truck exerts
on the box?

d) Assuming the box does slide, what
are the reactions at A and B?

e) Assuming the box does not slide,
what is the maximum acceleration
of the truck for which the box will
not tip over (hint: just at that criti-
cal acceleration what is the vertical
reaction at B?)?

f) What is the maximum acceleration
of the truck for which the block will
not slide?

g) The truck hits a brick wall and stops
instantly. Does the block tip over?
Assuming the block does not tip
over, how far does it slide on
the truck before stopping (assume
the bed of the truck is sufficiently
long)?

g

h
m cm

BA
x

y
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ĵ

µ at
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problem 12.51:
Filename:pfigure-blue-22-1

12.52 A collection of uniform boxes with
various heights h and widthsw and masses
m sit on a horizontal conveyer belt. The ac-
celeration a(t) of the conveyer belt gets ex-
tremely large sometimes due to an erratic
over-powered motor. Assume the boxes
touch the belt at their left and right edges
only and that the coefficient of friction
there is µ. It is observed that some boxes
never tip over. What is true about µ, g, w,
h, and m for the boxes that always main-
tain contact at both the right and left bot-
tom edges? (Write an inequality that in-
volves some or all of these variables.)

motor

problem 12.52:
Filename:pfigure-f93q3

12.53 After failure of her normal brakes, a
driver pulls the emergency brake of her old
car. This action locks the rear wheels (fric-
tion coefficient = µ) but leaves the well
lubricated and light front wheels spinning
freely. The car, braking inadequately as is
the case for rear wheel braking, hits a stiff
and slippery phone pole which compresses
the car bumper. The car bumper is mod-
eled here as a linear spring (constant = k,
rest length = l0, present length = ls ). The
car is still traveling forward at the moment
of interest. The bumper is at a height hb
above the ground. Assume that the car, ex-
cepting the bumper, is a non-rotating rigid
body and that the wheels remain on the
ground (that is, the bumper is compliant
but the suspension is stiff).

• What is the acceleration of the car
in terms of g, m, µ, l f , lr , k, hb,
hcm , l0, and ls (and any other pa-
rameters if needed)?

C D

hcm

lr lf ls

hb

x

y

problem 12.53:
Filename:pfigure-s94q4p1

12.54 Car braking: front brakes ver-
sus rear brakes versus all four brakes.

There are a few puzzles in dynamics con-
cerning the differences between front and
rear braking of a car. Here is one you can
deal with now. What is the peak deceler-
ation of a car when you apply: the front
brakes till they skid, the rear brakes till
they skid, and all four brakes till they skid?
Assume that the coefficient of friction be-
tween rubber and road is µ = 1 (about
right, the coefficient of friction between
rubber and road varies between about .7
and 1.3) and that g = 10 m/s2 (2% error).
Pick the dimensions and mass of the car,
but assume the center of mass height h is
above the ground. The height h, should
be less than half the wheel base w, the
distance between the front and rear wheel.
Further assume that the C M is halfway be-
tween the front and back wheels (i.e., l f =

lr = w/2). Assume also that the car
has a stiff suspension so the car does not
move up or down or tip during braking;
i. e., the car does not rotate in the xy-
plane. Neglect the mass of the rotating
wheels in the linear and angular momen-
tum balance equations. Treat this problem
as two-dimensional problem; i. e., the car
is symmetric left to right, does not turn left
or right, and that the left and right wheels
carry the same loads. To organize your
work, here are some steps to follow.

a) Draw a FBD of the car assuming
rear wheel is skidding. The FBD
should show the dimensions, the
gravity force, what you know a pri-
ori about the forces on the wheels
from the ground (i.e., that the fric-
tion force Fr = µNr , and that there
is no friction at the front wheels),
and the coordinate directions. Label
points of interest that you will use in
your momentum balance equations.
(Hint: also draw a free body dia-
gram of the rear wheel.)

b) Write the equation of linear mo-
mentum balance.

c) Write the equation of angular mo-
mentum balance relative to a point
of your choosing. Some particu-
larly useful points to use are:

• the point above the front
wheel and at the height of the
center of mass;

• the point at the height of the
center of mass, behind the
rear wheel that makes a 45
degree angle line down to
the rear wheel ground contact
point; and

• the point on the ground
straight under the front wheel
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that is as far below ground as
the wheel base is long.

d) Solve the momentum balance equa-
tions for the wheel contact forces
and the deceleration of the car. If
you have used any or all of the
recommendations from part (c) you
will have the pleasure of only solv-
ing one equation in one unknown at
a time.

e) Repeat steps (a) to (d) for front-
wheel skidding. Note that the ad-
vantageous points to use for angular
momentum balance are now differ-
ent. Does a car stop faster or slower
or the same by skidding the front
instead of the rear wheels? Would
your solution to (e) be different if
the center of mass of the car were at
ground level(h=0)?

f) Repeat steps (a) to (d) for all-wheel
skidding. There are some shortcuts
here. You determine the car de-
celeration without ever knowing the
wheel reactions (or using angular
momentum balance) if you look at
the linear momentum balance equa-
tions carefully.

g) Does the deceleration in (f) equal
the sum of the decelerations in (d)
and (e)? Why or why not?

h) What peculiarity occurs in the solu-
tion for front-wheel skidding if the
wheel base is twice the height of the
CM above ground and µ = 1?

i) What impossibility does the solu-
tion predict if the wheel base is
shorter than twice the CM height?
What wrong assumption gives rise
to this impossibility? What would
really happen if one tried to skid a
car this way?

x

y

lr lf

h
C D

problem 12.54:
Filename:pfigure-s94h3p6

12.55 Assuming massless wheels, an in-
finitely powerful engine, a stiff suspension
(i.e., no rotation of the car) and a coeffi-
cient of friction µ between tires and road,

a) what is the maximum forward ac-
celeration of this front wheel drive
car?

b) what is the force of the ground on
the rear wheels during this acceler-
ation?

c) what is the force of the ground on
the front wheels?
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y

lr lf

h
C D

problem 12.55:
Filename:pfigure-f00p1-3

12.56 At time t = 0, the block of mass m
is released from rest on the slope of angle
φ. The coefficient of friction between the
block and slope is µ.

a) What is the acceleration of the
block for µ > 0?

b) What is the acceleration of the
block for µ = 0?

c) Find the position and velocity of the
block as a function of time for µ >
0.

d) Find the position and velocity of the
block as a function of time for µ =

0.

φ

 m

µ

g

problem 12.56:
Filename:Danef94s1q5

12.57 A small block of mass m1 is re-
leased from rest at altitude h on a friction-
less slope of angle α. At the instant of re-
lease, another small block of mass m2 is
dropped vertically from rest at the same al-
titude. The second block does not interact
with the ramp. What is the velocity of the
first block relative to the second block after
t seconds have passed?

 m1
 m2

 h

d

t=0

α

g

problem 12.57:
Filename:ch8-7

12.58 Block sliding on a ramp with fric-
tion. A square box is sliding down a ramp
of angle θ with instantaneous velocity v ı̂ ′.
Assume it does not tip over.

a) What is the force on the block from
the ramp at point A? Answer in
terms of any or all of θ , `, m, g, µ,
v, ı̂ ′, and ̂ ′. As a check, your an-
swer should reduce to mg

2 ̂ ′ when
θ = µ = 0.

b) In addition to solving the problem
by hand, see if you can write a set
of computer commands that, if θ , µ,
`, m, v and g were specified, would
give the correct answer.

c) Assuming θ = 80◦ and µ = 0.9,
can the box slide this way or would
it tip over? Why?
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problem 12.58:
Filename:pfigure3-f95p1p1

12.59 A coin is given a sliding shove up
a ramp with angle φ with the horizontal.
It takes twice as long to slide down as it
does to slide up. What is the coefficient of
friction µ between the coin and the ramp.
Answer in terms of some or all of m, g, φ
and the initial sliding velocity v.

12.60 A skidding car. What is the braking
acceleration of the front-wheel braked car
as it slides down hill. Express your answer
as a function of any or all of the follow-
ing variables: the slope θ of the hill, the
mass of the car m, the wheel base `, and
the gravitational constant g. Use µ = 1.
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�/2
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problem 12.60: A car skidding downhill on a
slope of angle θ

Filename:pfigure3-car
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12.61 Two blocks A and B are pushed up
a frictionless inclined plane by an external
force F as shown in the figure. The coeffi-
cient of friction between the two blocks is
µ = 0.2. The masses of the two blocks
are m A = 5 kg and m B = 2 kg. Find
the magnitude of the maximum allowable
force such that no relative slip occurs be-
tween the two blocks.

30o

µ=0.2 µ=0

A

B

F

problem 12.61:
Filename:summer95f-1

12.62 A bead slides on a frictionless rod.
The spring has constant k and rest length
`0. The bead has mass m.

a) Given x and ẋ find the acceleration
of the bead (in terms of some or
all of D, `0, x, ẋ,m, k and any base
vectors that you define).

b) If the bead is allowed to move,
as constrained by the slippery rod
and the spring, find a differential
equation that must be satisfied by
the variable x . (Do not try to
solve this somewhat ugly non-linear
equation.)

c) In the special case that `0 = 0∗

find how long it takes for the block
to return to its starting position af-
ter release with no initial velocity at
x = x0.

D

x

m

k, ℓ0

problem 12.62:
Filename:p-s96-p1-2

12.63 A bead oscillates on a straight fric-
tionless wire. The spring obeys the equa-
tion F = k (`−`o), where ` = length of the
spring and `0 is the ’rest’ length. Assume

x(t = 0) = x0, ẋ(t = 0) = 0.

a) Write a differential equation satis-
fied by x(t).

b) What is ẋ when x = 0? [hint: Don’t
try to solve the equation in (a)!]

c) Note the simplification in (a) if
`o = 0 (spring is then a so-called
“zero–length” spring).

d) For this special case (`o = 0) solve
the equation in (a) and show the re-
sult agrees with (b) in this special
case.
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m

problem 12.63:
Filename:pfigure-blue-60-1

12.64 A cart on an elastic leash. A cart
B (mass m) rolls on a frictionless level
floor. One end of an inextensible string is
attached to the the cart. The string wraps
around a pulley at point A and the other
end is attached to a spring with constant k.
When the cart is at point O , it is in static
equilibrium. The spring relaxed length,
rope length, and room height h are such
that the spring would be relaxed if the end
of rope at B were diconnected from the
cart and brought up to point A. The grav-
itational constant is g. The cart is pulled a
horizontal distance d from the center of the
room (at O) and released.

a) Assuming that the cart never leaves
the floor, what is the speed of the
cart when it passes through the cen-
ter of the room, in terms of m, h, g
and d .

b) Does the cart undergo simple har-
monic motion for small or large
oscillations (specify which if ei-
ther)? (Simple harmonic motion
occurs when position varies inu-
soidally with time.)

problem 12.64:
Filename:cartosc

12.65 The cart moves to the right with
constant acceleration a. The ball has mass
m. The spring has unstretched length `0
and spring constant k. Assuming the ball
is stationary with respect to the cart find
the distance from O to A in terms of k, `0,
and a . [Hint: find θ first.]

problem 12.65:
Filename:Danef94s3q6

12.66 Consider a person, modeled as a
rigid body, riding an accelerating motor-
cycle (2-D). The person is sitting on the
seat and cannot slide fore or aft, but is free
to rock in the plane of the motorcycle (as
if there were a hinge connecting the mo-
torcycle to the rider at the seat). The per-
son’s feet are off the pegs and the legs are
sticking down and not touching anything.
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The person’s arms are like cables (they are
massless and only carry tension). Assume
all dimensions and masses are known (you
have to define them carefully with a sketch
and words). Assume the forward accelera-
tion of the motorcycle is known. You may
use numbers and/or variables to describe
the quantities of interest.

a) Draw a clear sketch of the problem
showing needed dimensional infor-
mation and the coordinate system
you will use.

b) Draw a Free Body Diagram of the
rider.

c) Write the equations of linear and
angular momentum balance for the
rider.

d) Find all forces on the rider from the
motorcycle (i.e., at the hands and
the seat).

e) What are the forces on the motorcy-
cle from the rider?

12.67 Acceleration of a bicycle on level
ground. 2-D . A very compact bicycler
(modeled as a point mass M at the bicy-
cle seat C with height h, and distance b
behind the front wheel contact), rides a
very light old-fashioned bicycle (all com-
ponents have negligible mass) that is well
maintained (all bearings have no frictional
torque) and streamlined (neglect air resis-
tance). The rider applies a force Fp to
the pedal perpendicular to the pedal crank
(with length Lc). No force is applied to the
other pedal. The radius of the front wheel
is R f .

a) Assuming no slip, what is the for-
ward acceleration of the bicycle? [
Hint: draw a FBD of the front wheel
and crank, and another FBD of the
whole bicycle-rider system.]

b) (Harder) Assuming the rider can
push arbitrarily hard but that µ = 1,
what is the maximum possible for-
ward acceleration of the bicycle.

Rf

h = 2Rf
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problem 12.67:
Filename:f-3

12.68 A 320 lbm mass is attached at the
corner C of a light rigid piece of pipe bent
as shown. The pipe is supported by ball-
and-socket joints at A and D and by ca-
ble E F . The points A, D, and E are fas-
tened to the floor and vertical sidewall of a
pick-up truck which is accelerating in the
z-direction. The acceleration of the truck
is ⇀a = 5 ft/s2 k̂. There is gravity. Find the
tension in cable E F .
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problem 12.68:
Filename:mikef91p1

12.69 A 5 ft by 8 ft rectangular plate of
uniform density has mass m = 10 lbm and
is supported by a ball-and-socket joint at
point A and the light rods C E ,B D, and
G H . The entire system is attached to a
truck which is moving with acceleration
⇀aT . The plate is moving without rota-
tion or angular acceleration relative to the
truck. Thus, the center of mass accelera-
tion of the plate is the same as the truck’s.
Dimensions are as shown. Points A, C ,
and D are fixed to the truck but the truck is
not touching the plate at any other points.
Find the tension in rod B D.

a) If the truck’s acceleration is acm =

(5 ft/s2)k, what is the tension or
compression in rod B D?

b) If the truck’s acceleration is ⇀acm =

(5 ft/s2)̂ + (6 ft/s2)k̂, what is the
tension or compression in rod G H?

problem 12.69:
Filename:Mikesp92p1

12.70 Hanging a shelf. A shelf with neg-
ligible mass supports a 0.5 kg mass at its
center. The shelf is supported at one corner
with a ball and socket joint and at the other
three corners with strings. At the moment
of interest the shelf is in a rocket in outer
space and accelerating at 10 m/s2 in the k
direction. The shelf is in the xy plane.

a) Draw a FBD of the shelf.
b) Challenge: without doing any cal-

culations on paper can you find one
of the reaction force components or
the tension in any of the cables?
Give yourself a few minutes of star-
ing to try this approach. If you
can’t, then come back to this ques-
tion after you have done all the cal-
culations.

c) Write down the linear momentum
balance equation (a vector equa-
tion).

d) Write down the angular momentum
balance equation using the center of
mass as a reference point.

e) By taking components, turn (b) and
(c) into six scalar equations in six
unknowns.

f) Solve these equations by hand or on
the computer.

g) Instead of using a system of equa-
tions try to find a single equa-
tion which can be solved for TE H .
Solve it and compare to your result
from before.

h) Challenge: For how many of the re-
actions can you find one equation
which will tell you that particular
reaction without knowing any of the
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other reactions? [Hint, try angu-
lar momentum balance about vari-
ous axes as well as linear momen-
tum balance in an appropriate di-
rection. It is possible to find five
of the six unknown reaction com-
ponents this way.] Must these so-
lutions agree with (d)? Do they?
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problem 12.70:
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12.71 A uniform rectangular plate of mass
m is supported by an inextensible cable
C D and a hinge joint at point E on the cart
as shown. The hinge joint is attached to
a rigid column welded to the floor of the
cart. The cart has acceleration ax ı̂. There
is gravity. Find the tension in cable C D.
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problem 12.71:
Filename:ch3-11

12.72 The uniform 2 kg plate DBFH is
held by six massless rods (AF, CB, CF,
GH, ED, and EH) which are hinged at their
ends. The support points A, C, G, and E are
all accelerating in the x-direction with ac-
celeration a = 3 m/s2 ı. There is no grav-
ity.

a) What is {
∑ ⇀

F} · ı̂ for the forces act-
ing on the plate?

b) What is the tension in bar CB?
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problem 12.72:

Filename:pfigure-s94q3p1

12.73 A massless triangular plate rests
against a frictionless wall of a pick-up
truck at point D and is rigidly attached to a
massless rod supported by two ideal bear-
ings fixed to the floor of the pick-up truck.
A ball of mass m is fixed to the centroid
of the plate. There is gravity. The pick-up
truck skids across a road with acceleration
⇀a = ax ı̂ + az k̂. What is the reaction at
point D on the plate?

a

b
c

d
d=c+(1/2)b

e
h

x

y

z

A

B

D

G

problem 12.73:
Filename:ch3-1a

12.74 Towing a bicycle. A bicycle on the
level xy plane is steered straight ahead and
is being towed by a rope. The bicycle and
rider are modeled as a uniform plate with
mass m (for the convenience of the artist).
The tow force F applied at C has no z com-
ponent and makes an angle α with the x
axis. The rolling wheel contacts are at A
and B. The bike is tipped an angle φ from
the vertical. The towing force F is the
magnitude needed to keep the bike accel-
erating in a straight line (along the y axis)
without tipping any more or less than the
angle φ. What is the acceleration of the bi-
cycle? Answer in terms of some or all of
b, h, α, φ,m, g and ̂ (Note: F should not
appear in your final answer.)

F

A

C

B

x

z
y

φ

φ π/2-α

α

bh

problem 12.74:
Filename:s97f3

12.75 An airplane is in straight level flight
but is accelerating in the forward direction.
In terms of some or all of the following pa-
rameters,

• mtot ≡ the total mass of the plane
(including the wings),

• D= the drag force on the fuselage,

• FD= the drag force on each wing,

• g= gravitational constant, and,

• T = the thrust of one engine.

a) What is the lift on each wing FL ?
b) What is the acceleration of the plane

⇀a P ?
c) A free body diagram of one wing

is shown. The mass of one wing
is mw . What, in terms of mtot ,
mw , FL , FD , g, a,b, c, and ` are
the reactions at the base of the wing
(where it is attached to the plane),
⇀
F = Fx ı̂ + Fy ̂ + Fz k̂ and

⇀
M =

Mx ı̂ + My ̂ + Mz k̂?
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i
j

k

FL

T

T

T

D

mtotg

FD

FL

Fy , My

Fz , Mz

Fx , Mx

FD

FD

FL

a
b

c

�

mwg

FBD of airplane

FBD of wing

problem 12.75:
Filename:pfigure3-airplane

12.76 A rear-wheel drive car on level
ground. The two left wheels are on per-
fectly slippery ice. The right wheels are on
dry pavement. The negligible-mass front
right wheel at B is steered straight ahead
and rolls without slip. The right rear wheel
at C also rolls without slip and drives the
car forward with velocity ⇀

v = v̂ and ac-
celeration ⇀a = â . Dimensions are as
shown and the car has mass m . What is
the sideways force from the ground on the
right front wheel at B? Answer in terms of
any or all of m, g, a, b, `, w, and ı̂.

ice

cartoon to show
dimensions

b
h

�

b
�

w w/2

C

m

B

C

B

ı̂

ĵ
k̂

w/2w

h

problem 12.76:
Filename:pfigure3-f95p1p3

12.77 A somewhat crippled car slams on
the brakes. The suspension springs at A,
B, and C are frozen and keep the car level

and at constant height. The normal force
at D is kept equal to ND by the only work-
ing suspension spring which is on the left
rear wheel at D. The only brake which is
working is that of the right rear wheel at
C which slides on the ground with fric-
tion coefficient µ. Wheels A, B, and D
roll freely without slip. Dimensions are as
shown.

a) Find the acceleration of the car in
terms of some
or all of m, w, `, b, h, g, µ, ̂ , and
ND .

b) From the information given could
you also find all of the reaction
forces at all of the wheels? If so,
why? If not, what can’t you find
and why? (No credit for correct an-
swer. Credit depends on clear ex-
planation.)

C

B
A

G

D

Suspension at left rear
wheel keeps normal
force equal to ND

Right rear wheel
locks with friction µ

Front wheels
roll without slip

b

�
w/2w

h A

D
C

B

ı̂

ĵ
k̂

g

problem 12.77:
Filename:s97p2-3

12.78 Speeding tricycle gets a branch
caught in the right rear wheel. A scared-
stiff tricyclist riding on level ground gets
a branch stuck in the right rear wheel so
the wheel skids with friction coefficient
µ. Assume that the center of mass of the
tricycle-person system is directly above the
rear axle. Assume that the left rear wheel
and the front wheel have negligible mass,
good bearings, and have sufficient friction
that they roll in the ̂ direction without
slip, thus constraining the overall motion
of the tricycle. Dimensions are shown in
the lower sketch. Find the acceleration of
the tricycle (in terms of some or all of
`, h, b, m, [I cm

], µ, g, ı̂, ̂ , and k̂).
[Hint: check your answer against special
cases for which you might guess the an-
swer, such as when µ = 0 or when h = 0.]

A

B

C

D

A

B

C

D

G

b

h

g

rolling

contact

rolling

contact

branch caught

in spokes, 

skidding

ℓ

ı̂

̂

k̂

ı̂

̂

k̂

problem 12.78:
Filename:p-f96-f-1

12.79 -3-wheeled robot. A 3-wheeled
robot with mass m is being transported on a
level flatbed trailer also with mass m. The
trailer is being pushed with a force F ̂ .
The ideal massless trailer wheels roll with-
out slip. The ideal massless robot wheels
also roll without slip. The robot steering
mechanism has turned the wheels so that
wheels at A and C are free to roll in the
̂ direction and the wheel at B is free to
roll in the ı̂ direction. The center of mass
of the robot at G is h above the trailer bed
and symmetrically above the axle connect-
ing wheels A and B. The wheels A and B
are a distance b apart. The length of the
robot is `.

Find the force vector
⇀
F A of the trailer

on the robot at A in terms of some or all of
m, g, `, F, b, h, ı̂, ̂ , and k̂ . [Hints: Use a
free body diagram of the cart with robot to
find their acceleration. With reference to a
free body diagram of the robot, use angular
momentum balance about axis BC to find
FAz .]

h

F

A

B

C

G

cart 
(mass = m)

�

b

ı̂

ĵ
k̂ g

problem 12.79:
Filename:pfigure-threewheelrobot
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9.87) hmax = e2h.

10.4a) ⇀
v(5 s) = (30ı̂ + 300̂)m/s.

b) ⇀a(5 s) = (6ı̂ + 120̂)m/s2.

10.5) ⇀r(t) =
(
x0 +

u0
�

−
u0
�

cos(�t)
)

ı̂ + (y0 + v0t) ̂ .

10.13) ⇀
v = 2t m/s2 ı̂ + e

t
s m/ŝ , ⇀a = 2 m/s2 ı̂ + e

t
s m/s2̂ .

10.48) T3 = 13 N

10.61) Equation of motion: −mĝ −b(ẋ2
+ ẏ2)

(
ẋ ı̂+ẏ̂

√
ẋ2+ẏ2

)
= m(ẍ ı̂ + ÿ̂).

10.62a) System of equations:

ẋ = vx

ẏ = vy

v̇x = −
b
m
vx

√
v2

x + v2
y

v̇y = −g −
b
m
vy

√
v2

x + v2
y

11.6) No. You need to know the angular momenta of the particles relative
to the center of mass to complete the calculation, information which
is not given.

11.17a) v0 =
1
m (mvB + m BvB + m AvA).

b) v1 =
(m+m B )

m vB .

c) (1) Eloss =
1
2 m

[
v2

0 −
(m+m B

m

)
v2

B

]
−

1
2 m Av

2
A. Eloss =

1
2 m

[
(m+m B )

2

m v2
B − (m + m B)v

2
B

]
.

11.18) vA =

√
m B kδ2

m2
A+m B m A

.

11.19) The trajectories should all be the same figure 8.

12.1) Tn =
Pt
vt

n
N .

12.7a) aB =

(
m B−m A
m A+m B

)
g

b) T = 2 m Am B
m A+m B

g.

12.11) (a) ⇀aA =
⇀aB =

F
m ı̂, where ı̂ is parallel to the ground and pointing

to the right., (b) ⇀aA =
2F
m ı̂, ⇀aB =

4F
m ı̂, (c) ⇀aA =

F
2m ı̂, ⇀aB =

F
4m ı̂, (d)

⇀aA =
F
m ı̂, ⇀aB = −

F
m ı̂.

12.13) aA
aB

= 81.

12.16a) ⇀aA =
5F
m ı̂, ⇀aB =

25F
m ı̂, where ı̂ is parallel to the ground and points

to the right.

b) ⇀aA =
g

(4m1+m2)
(2m2−

√
3m2)λ̂1, ⇀aB = −

g
2(4m1+m2)

(2m2−
√

3m2)λ̂2,

where λ̂1 is parallel to the slope that mass m1 travels along, pointing
down and to the left, and λ̂2 is parallel to the slope that mass m2

travels along, pointing down and to the right.

12.20) angular frequency of vibration ≡ λ =

√
64k
65m .
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12.27a) mẍ + 4kx = A sinωt + mg, where x is the distance measured from
the unstretched position of the center of the pulley.

b) The string will go slack if ω >
√

4k
m

(
1 −

A
mg

)
.

12.28a) ⇀aA = −
9kd
m A

ı̂.

b) v = 3d
√

k
m A

12.34) TAB =
5
√

39
28 m(ay + g)

12.38) ax >
3
2 g

12.41) Can’t solve for TAB .

12.54d) Normal reaction at rear wheel: Nr =
mgw

2(hµ+w)
, normal reaction at

front wheel: N f = mg −
mgw

2(hµ+w)
, deceleration of car: acar =

−
µgw

2(hµ+w)
.

e) Normal reaction at rear wheel: Nr = mg −
mgw

2(w−µh) , normal re-
action at front wheel: N f =

mgw
2(w−µh) , deceleration of car: acar =

−
µgw

2(w−µh) . Car stops more quickly for front wheel skidding. Car
stops at same rate for front or rear wheel skidding if h = 0.

f) Normal reaction at rear wheel: Nr =
mg(w/2−µh)

w
, normal reaction at

front wheel: N f =
mg(w/2+µh)

w
, deceleration of car: acar = −µg.

g) No. Simple superposition just doesn’t work.

h) No reaction at rear wheel.

i) Reaction at rear wheel is negative. Not allowing for rotation of the
car in the xy-plane gives rise to this impossibility. In actuality, the
rear of the car would flip over the front.

12.55a) Hint: the answer reduces to a = `r g/h in the limit µ → ∞.]

12.56a) ⇀a = g(sinφ−µ cosφ)ı̂, where ı̂ is parallel to the slope and pointing
downwards

b) ⇀a = g sinφ

c) ⇀
v = g(sinφ − µ cosφ)t ı̂, ⇀r = g(sinφ − µ cosφ) t2

2

d) ⇀
v = g sinφt ı̂, ⇀r = g sinφ t2

2 ı̂

12.58a)
⇀

RA =
(1−µ)mg cos θ

2 (̂
′
− µı̂ ′).

c) No tipping if NA =
(1−µ)mg cos θ

2 > 0; i.e., no tipping if µ < 1 since
cos θ > 0 for 0 < θ < π

2 .(Here µ = 0.9)

12.60) braking acceleration= g( 1
2 cos θ − sin θ).

12.64a) v = d
√

k
m .

b) The cart undergoes simple harmonic motion for any size oscillation.

12.67a) ⇀abike =
Fp Lc
M R f

.

b) max(⇀abike)=
ga

a+b+2R f
.

12.68) TE F = 640
√

2 lbf.
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12.69a) TB D = 92.6 lbm · ft/s2.

b) TG H = 5
√

61 lbm · ft/s2.

12.70b) TE H = 0

c) (RCx −TAB)ı̂+(RCy −
TG D√

2
)̂+(TH E +RCz +

TG D√
2
)k̂ = m⇀a = 10 Nk̂.

d)
∑ ⇀

Mcm = ( TG D√
2

− TH E − RCz )ı̂ + (RCz −
TG D√

2
− TH E)̂ + (TAB +

RCx − RCy −
TG D√

2
)k̂ =

⇀

0
e)

RCx − TAB = 0

RCy −
TG D
√

2
= 0

RCz +
TG D
√

2
+ TE H = 5 N

−TE H +
TG D
√

2
− RCz = 0

−TE H −
TG D
√

2
+ RCz = 0

TAB −
TG D
√

2
+ RCx − RCy = 0

f) RCx = 5 N, RCy = 5 N, RCz = 5 N, TG D =
10
√

2
N, TE H = 0 N,

TAB = 5 N.

g) Find moment about C D axis; e.g., (
∑ ⇀

MC =
⇀r cm/C × m⇀acm) · λ̂C D,

where λ̂C D is a unit vector in the direction of axis C D.

12.75a) FL =
1
2 m totg.

b) ⇀aP =
1

mtot
[2(T − FD)− D] ı̂.

c)
⇀

F =

[
mw

mtot
(2T − D − 2FD)− T + FD

]
ı̂+(mwg−FL)̂ and

⇀

M =

(bFL − amwg)ı̂ +

[
(bFD − cT )+ a mw

mtot
(2T − D − 2FD)

]
̂ .

12.76) sideways force = FB ı̂ =
wma

2` ı̂.




