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2.6 Center of mass and gravity
For every system and at every instant in time, there is a unique location in space that
is the average position of the system’s mass. This place is called the center of mass,
commonly designated by cm, c.o.m., COM, G, c.g., or .

One of the routine but important tasks of many real engineers is to find the center
of mass of a complex machine 1©. Just knowing the location of the center of mass of1© Nowadays this routine work is often

done with CAD (computer aided design)
software. But an engineer still needs to
know the basic calculation skills, to make
sanity checks on computer calculations if
nothing else.

a car, for example, is enough to estimate whether it can be tipped over by maneuvers
on level ground. The center of mass of a boat must be low enough for the boat to be
stable. Any propulsive force on a space craft must be directed towards the center of
mass in order to not induce rotations. Tracking the trajectory of the center of mass of
an exploding plane can determine whether or not it was hit by a massive object. Any
rotating piece of machinery must have its center of mass on the axis of rotation if it
is not to cause much vibration.

Also, many calculations in mechanics are greatly simplified by making use of a
system’s center of mass. In particular, the whole complicated distribution of near-
earth gravity forces on a body is equivalent to a single force at the body’s center of
mass. Many of the important quantities in dynamics are similarly simplified using
the center of mass.

The center of mass of a system is the point at the position ⇀
rcm defined by

⇀
rcm =

∑
⇀
rimi

mtot
for discrete systems (2.30)

=
∫

⇀
r dm

mtot
for continuous systems

where mtot =
∑

mi for discrete systems and mtot =
∫

dm for continuous systems.
See boxes 2.5 and ?? for a discussion of the

∑
and

∫
sum notations.

Often it is convenient to remember the rearranged definition of center of mass as

mtot
⇀
rcm =

∑
mi

⇀
ri or mtot

⇀
rcm =

∫
⇀
r dm.

For theoretical purposes we rarely need to evaluate these sums and integrals, and
for simple problems there are sometimes shortcuts that reduce the calculation to a
matter of observation. For complex machines one or both of the formulas ?? must
be evaluated in detail.

Example: System of two point masses

Intuitively, the center of mass of the two masses shown in figure ?? is
between the two masses and closer to the larger one. Referring to
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⇀
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Figure 2.68: Center of mass of a system
consisting of two points.

(Filename:tfigure3.com.twomass)

equation ??,

⇀
rcm =

∑
⇀
rimi

mtot

=
⇀
r1m1 + ⇀

r2m2

m1 + m2

=
⇀
r1(m1 + m2)− ⇀

r1m2 + ⇀
r2m2

m1 + m2
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= ⇀
r1 +

(
m2

m1 + m2

)
︸ ︷︷ ︸

✂✂✍

the fraction of the distance
that the cm is from ⇀

r1 to ⇀
r2

(
⇀
r2 − ⇀

r1

)︸ ︷︷ ︸
❇❇�

the vector from ⇀
r1 to ⇀

r2.

.

so that the math agrees with common sense — the center of mass is on
the line connecting the masses. If m2 � m1, then the center of mass is
near m2. If m1 � m2, then the center of mass is near m1. If m1 = m2
the center of mass is right in the middle at (

⇀
r1 + ⇀

r2)/2. ✷

Continuous systems

How do we evaluate integrals like
∫

(something) dm? In center of mass calculations,

(something) is position, but we will evaluate similar integrals where (something) is
some other scalar or vector function of position. Most often we label the material
by its spatial position, and evaluate dm in terms of increments of position. For 3D
solids dm = ρdV where ρ is density (mass per unit volume). So

∫
(something)dm

2.9
∫

means add

As discussed in box 2.5 on page 70 we often add things up in
mechanics. For example, the total mass of some particles is

mtot = m1 + m2 + m3 + . . . =
∑

mi

or more specifically the mass of 137 particles is, say, mtot =
137∑
i=1

mi .

And the total mass of a bicycle is:

mbike =
100,000,000,000,000,000,000,000∑

i=1

mi

where mi are the masses of each of the 1023 (or so) atoms of metal,
rubber, plastic, cotton, and paint. But atoms are so small and there
are so many of them. Instead we often think of a bike as built of
macroscopic parts. The total mass of the bike is then the sum of the
masses of the tires, the tubes, the wheel rims, the spokes and nipples,
the ball bearings, the chain pins, and so on. And we would write:

mbike =
2,000∑
i=1

mi

where now the mi are the masses of the 2,000 or so bike parts. This
sum is more manageable but still too detailed in concept for some
purposes.

An approach that avoids attending to atoms or ball bearings, is
to think of sending the bike to a big shredding machine that cuts it
up into very small bits. Now we write

mbike =
∑

mi

where the mi are the masses of the very small bits. We don’t fuss
over whether one bit is a piece of ball bearing or fragment of cotton
from the tire walls. We just chop the bike into bits and add up the
contribution of each bit. If you take the letter S, as in SUM, and

distort it ( S
∫

) and you get a big old fashioned German

‘S’ as in
∫
UM (sum). So we write

mbike =
∫

dm

to mean the
∫

um of all the teeny bits of mass. More formally we
mean the value of that sum in the limit that all the bits are infinitesimal
(not minding the technical fine point that its hard to chop atoms into
infinitesimal pieces).

The mass is one of many things we would like to add up, though
many of the others also involve mass. In center of mass calculations,
for example, we add up the positions ‘weighted’ by mass.

∫
⇀
r dm which means

∑
lim mi→0

⇀
rimi .

That is, you take your object of interest and chop it into a billion
pieces and then re-assemble it. For each piece you make the vector
which is the position vector of the piece multiplied by (‘weighted
by’) its mass and then add up the billion vectors. Well really you
chop the thing into a trillion trillion . . . pieces, but a billion gives the
idea.
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turns into a standard volume integral
∫

V
(something)ρ dV 1©. For thin flat things

1© Note: wri

nonsense beca
eter which labe
is no point at m

like metal sheets we often take ρ to mean mass per unit area A so then dm = ρd A
and

∫
(something)dm = ∫

A(something)ρ d A. For mass distributed along a line or
curve we take ρ to be the mass per unit length or arc length s and so dm = ρds and∫
(something)dm = ∫

curve(something)ρ ds.

Example. The center of mass of a uniform rod is naturally in the middle,
as the calculations here show (see fig. ??a). Assume the rod has length
L = 3 m and mass m = 7 kg.

⇀
rcm =

∫
⇀
r dm

mtot
=

∫ L
0 x ı̂

dm︷︸︸︷
ρdx∫ L

0 ρ dx
= ρ(x2/2)|L0

ρ(1)|L1
ı̂ = ρ(L2/2)

ρL
ı̂ = (L/2)ı̂

So ⇀
rcm = (L/2)ı̂, or by dotting with ı̂ (taking the x component) we get

x

y

d

s ds

O
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1 + 
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Figure 2.69: Where is the center of mass
of a uniform rod? In the middle, as you can
find calculating a few ways or by symmetry.

(Filename:tfigure1.rodcm)

that the center of mass is on the rod a distance d = L/2 = 1.5 m from
the end. ✷

The center of mass calculation is objective. It describes something about the object
that does not depend on the coordinate system. In different coordinate systems the
center of mass for the rod above will have different coordinates, but it will always be
at the middle of the rod.

Example. Find the center of mass using the coordinate system with s &
λ̂ in fig. ??b:

⇀
rcm =

∫
⇀
r dm

mtot
=

∫ L
0 sλ̂ ρds∫ L

0 ρ ds
λ̂ = ρ(s2/2)|L0

ρ(1)|L0
λ̂ = ρ(L2/2)

ρL
λ̂ = (L/2)λ̂,

again showing that the center of mass is in the middle. ✷

Note, one can treat the center of mass vector calculations as separate scalar equations,
one for each component. For example:

ı̂ ·
{

⇀
rcm =

∫
⇀
r dm

mtot

}
⇒ rxcm = xcm =

∫
x dm

mtot
.

Finally, there is no law that says you have to use the best coordinate system. One is
free to make trouble for oneself and use an inconvenient coordinate system.

Example. Use the xy coordinates of fig. ??c to find the center of mass
of the rod.

xcm =
∫

xdm

mtot
=

∫ 
2
−
1

x︷ ︸︸ ︷
s cos θ ρds∫ L
0 ρ ds

= ρ cos θ s2

2 |
2
−
1

ρ(1)|
2
−
1

= ρ cos θ
(
2

2−
2
1)

2

ρ(
1 + 
2)
= cos θ(
2 − 
1)

2

Similarly ycm = sin θ(
2 − 
1)/2 so

⇀
rcm =


2 − 
1

2
(cos θ ı̂ + sin θ ̂)

which still describes the point at the middle of the rod. ✷

The most commonly needed center of mass that can be found analytically but not
directly from symmetry is that of a triangle (see box ?? on page ??). You can
find more examples using integration to find the center of mass (or centroid) in your
calculus text.
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Center of mass and centroid
For objects with uniform material density we have

⇀
rcm =

∫
⇀
r dm

mtot
=

∫
V

⇀
rρdV∫

V ρdV
= ρ

∫
V

⇀
r dV

ρ
∫

V dV
=

∫
V

⇀
r dV

V

where the last expression is just the formula for geometric centroid. Analogous
calculations hold for 2D and 1D geometric objects. Thus for objects with density
that does not vary from point to point, the geometric centroid and the center of mass
coincide.

Center of mass and symmetry
The center of mass respects any symmetry in the mass distribution of a system. If the
word ‘middle’ has unambiguous meaning in English then that is the location of the
center of mass, as for the rod of fig. ?? and the other examples in fig. ??.

Point Mass

Person

Two Identical
Masses

Rod Triangle Circle Box

Rectangular Plate

Symmetric Blob

Figure 2.70: The center of mass and the geometric centroid share the symmetries of the object. (Filename:tfigure3.com.symm)

Systems of systems and composite objects
Another way of interpreting the formula

⇀
rcm =

⇀
r1m1 + ⇀

r2m2 + · · ·
m1 + m2 + · · ·

is that the m’s are the masses of subsystems, not just points, and that the ⇀
ri are the

positions of the centers of mass of these systems. This subdivision is justified in
box ?? on page ??. The center of mass of a single complex shaped object can be
found by treating it as an assembly of simpler objects.
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Example: Two rods

The center of mass of two rods shown in figure ?? can be found as

⇀
rcm =

⇀
r1m1 + ⇀

r2m2

m1 + m2

where ⇀
r1 and ⇀

r2 are the positions of the centers of mass of each rod and
m1 and m2 are the masses. ✷

Example: ‘L’ shaped plate

Consider the plate with uniform mass per unit area ρ.

⇀
rG =

⇀
rIm I + ⇀

rIIm I I

m I + m I I

= ( a
2 ı̂ + â)(2ρa2)+ ( 3

2 aı̂ + a
2 ̂)(ρa2)

(2ρa2)+ (ρa2)

= 5

6
a(ı̂ + ̂).

✷

O

cm

⇀
r 1 ⇀

r 2

⇀
r cm

Figure 2.71: Center of mass of two rods
(Filename:tfigure3.com.tworods)
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Figure 2.72: The center of mass of the
‘L’ shaped object can be found by thinking
of it as a rectangle plus a square.

(Filename:tfigure3.1.Lshaped)

Composite objects using subtraction

It is sometimes useful to think of an object as composed of pieces, some of which
have negative mass.

Example: ‘L’ shaped plate, again

Reconsider the plate from the previous example.

⇀
rG =

⇀
rIm I + ⇀

rIIm I I

m I + m I I

= (aı̂ + â)(ρ(2a)2)+ ( 3
2 aı̂ + 3

2 â)

m I I︷ ︸︸ ︷
(−ρa2)

(ρ(2a)2)+ (−ρa2)︸ ︷︷ ︸
m I I

= 5

6
a(ı̂ + ̂).

✷
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Figure 2.73: Another way of looking at
the ‘L’ shaped object is as a square minus a
smaller square in its upper right-hand cor-
ner.

(Filename:tfigure3.1.Lshaped.a)

Center of gravity
The force of gravity on each little bit of an object is gmi where g is the local gravita-
tional ‘constant’ and mi is the mass of the bit. For objects that are small compared to
the radius of the earth (a reasonable assumption for all but a few special engineering
calculations) the gravity constant is indeed constant from one point on the object to
another (see box A.1 on page A.1 for a discussion of the meaning and history of g.)
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Not only that, all the gravity forces point in the same direction, down. (For
engineering purposes, the two intersecting lines that go from your two hands to the
center of the earth are parallel. ). Lets call this the −k̂ direction. So the net force of
gravity on an object is:

⇀
Fnet =

∑ ⇀
Fi = ∑

mi g(−k̂) = −mgk̂ for discrete systems, and
= ∫

d
⇀
F = ∫ −gk̂ dm︸ ︷︷ ︸

d
⇀
F

= −mgk̂ for continuous systems.

That’s easy, the billions of gravity forces on an objects microscopic constituents add
up to mg pointed down. What about the net moment of the gravity forces? The answer
turns out to be simple. The top line of the calculation below poses the question, the
last line gives the lucky answer. 1© 1© We do the calculation here using the

∫
notation for sums. But it could be done just
as well using

∑
.⇀

MC =
∫

⇀
r × d

⇀
F The net moment with respect to C.

=
∫

⇀
r/C ×

(
−gk̂ dm

)
A force bit is gravity acting on a mass bit.

=
(∫

⇀
r/Cdm

)
×

(
−gk̂

)
Cross product distributive law (g, k̂ are constants).

= (
⇀
rcm/Cm)×

(
−gk̂

)
Definition of center of mass.

= ⇀
rcm/C ×

(
−mgk̂

)
Re-arranging terms.

2.10 THEORY
Why can subsystems be treated like particles when finding the center of mass?

⇀
r cm

⇀
r I

⇀
r II

⇀
r III

⇀
r 1

Lets look at the collection of 47 particles above and then think of it
as a set of three subsystems: I, II, and III with 2, 14, and 31 particles
respectively. We treat masses 1 and 2 as subsystem I with center of
mass ⇀

rI and total mass m I . Similarly, we call subsystem I I masses
m3 to m16, and subsystem I I I , masses m17 to m47. We can calcu-
late the center of mass of the system by treating it as 47 particles, or
we can re-arrange the sum as follows:

⇀
rcm =

⇀
r1m1 + ⇀

r2m2 + · · · + ⇀
r46m46 + ⇀

r47m47

m1 + m2 + · · · + m47

=
⇀
r1m1+

⇀
r2m2

m1+m2
(m1 + m2)

m1 + m2 + · · · + m47

+
⇀
r3m3+···+

⇀
r16m16

m3+···+m16
(m3 + · · · + m16)

m1 + m2 + · · · + m47

+
⇀
r17m17+···

⇀
r47m47

m17+···+m47
(m17 + · · · + m47)

m1 + m2 + · · · + m47

=
⇀
rIm I + ⇀

rIIm I I + ⇀
rIIIm I I I

m I + m I I + m I I I
, where

⇀
rI =

⇀
r1m1 + ⇀

r2m2

m1 + m2
,

m I = m1 + m2
⇀
rII etc.

The formula for the center of mass of the whole system reduces to
one that looks like a sum over three (aggregate) particles.

This idea is easily generalized to the integral formulae as well
like this.

⇀
rcm =

∫
⇀
r dm∫
dm

=
∫

region 1

⇀
r dm +

∫
region 2

⇀
r dm +

∫
region 3

⇀
r dm + · · ·∫

region 1
dm +

∫
region 2

dm +
∫

region 1
dm + · · ·

=
⇀
rIm I + ⇀

rIIm I I + ⇀
rIIIm I I I + · · ·

m I + m I I + m I I I + · · ·
.

The general idea of the calculations above is that center of mass
calculations are basically big sums (addition), and addition is ‘asso-
ciative.’
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= ⇀
rcm/C ×

⇀
Fnet Express in terms of net gravity force.

Thus the net moment is the same as for the total gravity force acting at the center of
mass.

The near-earth gravity forces acting on a system are equivalent to a single
force, mg, acting at the system’s center of mass.

For the purposes of calculating the net force and moment from near-earth (constant
g) gravity forces, a system can be replaced by a point mass at the center of gravity.
The words ‘center of mass’ and ‘center of gravity’ both describe the same point in
space.

Although the result we have just found seems plain enough, here are two things
to ponder about gravity when viewed as an inverse square law (and thus not constant
like we have assumed) that may make the result above seem less obvious.
• The net gravity force on a sphere is indeed equivalent to the force of a point

mass at the center of the sphere. It took the genius Isaac Newton 3 years to
deduce this result and the reasoning involved is too advanced for this book.
• The net gravity force on systems that are not spheres is generally not equivalent

to a force acting at the center of mass (this is important for the understanding
of tides as well as the orientational stability of satellites).

A recipe for finding the center of mass of a complex system
You find the center of mass of a complex system by knowing the masses and mass
centers of its components. You find each of these centers of mass by
• Treating it as a point mass, or
• Treating it as a symmetric body and locating the center of mass in the middle,

or
• Using integration, or
• Using the result of an experiment (which we will discuss in statics), or
• Treating the component as a complex system itself and applying this very

recipe.
The recipe is just an application of the basic definition of center of mass (eqn. ??)
but with our accumulated wisdom that the locations and masses in that sum can be
the centers of mass and total masses of complex subsystems.

One way to arrange one’s data is in a table or spreadsheet, like below. The first
four columns are the basic data. They are the x, y, and z coordinates of the subsystem
center of mass locations (relative to some clear reference point), and the masses of
the subsystems, one row for each of the N subsystems.

Subsys# 1 2 3 4 5 6 7

Subsys 1 x1 y1 z1 m1 m1x1 m1 y1 m1z1

Subsys 2 x2 y2 z2 m2 m2x2 m2 y2 m2z2
...

...
...

...
...

...
...

...

Subsys N xN yN zN m N m N xN m N yN m N zN

Row N+1 mtot =
sums

∑
mi

∑
mi xi

∑
mi yi

∑
mi zi

xcm ycm zcm

Result

∑
mi xi

mtot

∑
mi yi

mtot

∑
mi zi

mtot
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One next calculates three new columns (5,6, and 7) which come from each coor-
dinate multiplied by its mass. For example the entry in the 6th row and 7th column is
the z component of the 6th subsystem’s center of mass multiplied by the mass of the
6th subsystem. Then one sums columns 4 through 7. The sum of column 4 is the total
mass, the sums of columns 5 through 7 are the total mass-weighted positions. Finally
the result, the system center of mass coordinates, are found by dividing columns 5-7
of row N+1 by column 4 of row N+1.

Of course, there are multiple ways of systematically representing the data. The
spreadsheet-like calculation above is just one way to organize the calculation.

Summary of center of mass
All discussions in mechanics make frequent reference to the concept of center of mass
because

For systems with distributed mass, the expressions for gravitational mo-
ment, linear momentum, angular momentum, and energy are all simpli-
fied by using the center of mass.

Simple center of mass calculations also can serve as a check of a more complicated
analysis. For example, after a computer simulation of a system with many moving
parts is complete, one way of checking the calculation is to see if the whole system’s
center of mass moves as would be expected by applying the net external force to the
system. These formulas tell the whole story if you know how to use them:

⇀
rcm =

∑
⇀
rimi

mtot
for discrete systems or systems of systems

=
∫

⇀
r dm

mtot
for continuous systems

mtot =
∑

mi for discrete systems or systems of systems

=
∫

dm for continuous systems.
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2.11 The center of mass of a uniform triangle is a third of the way up from the base

The center of mass of a 2D uniform triangular region is the centroid
of the area.

First we consider a right triangle with perpendicular sides b and h

x

y

b

y

x h

dA=dxdy

y = b
h x

and find the x coordinate of the centroid as

xcm A =
∫

x d A

=
∫ h

0

[∫ b
h x

0
x dy

]
dx =

∫ h

0
[xy]

∣∣∣∣
y= b

h x

y=0

dx

xcm

(
bh

2

)
=

∫ h

0
x
(

b

h
x
)

dx = b

h

x3

3

∣∣∣∣h

0

= bh2

3

⇒ xcm = 2h

3
, a third of the way to the left of the ver-

tical base on the right. By similar reasoning, but in the y direction,
the centroid is a third of the way up from the base.

base

xhx cm= 2h
3

The center of mass of an arbitrary triangle can be found by treating
it as the sum of two right triangles

A A BB

C C C

DD

= _

so the centroid is a third of the way up from the base of any triangle.
Finally, the result holds for all three bases. Summarizing, the cen-
troid of a triangle is at the point one third up from each of the bases.

h1

h3

h1/3

h3/3

h2/3

h2

Non-calculus approach
Consider the line segment from A to the midpoint M of side BC.






C

B M

A

s

d

d

s

x'

y'

We can divide triangle ABC into equal width strips that are parallel
to AM. We can group these strips into pairs, each a distance s from
AM. Because M is the midpoint of BC, by proportions each of these
strips has the same length 
. Now in trying to find the distance of
the center of mass from the line AM we notice that all contributions
to the sum come in canceling pairs because the strips are of equal
area and equal distance from AM but on opposite sides. Thus the
centroid is on AM. Likewise for all three sides. Thus the centroid is
at the point of intersection of the three side bisectors.

That the three side bisectors intersect a third of the way up from
the three bases can be reasoned by looking at the 6 triangles formed
by the side bisectors.

G

A

B

M C

a a
b

bc

c

The two triangles marked a and a have the same area (lets call it a)
because they have the same height and bases of equal length (BM
and CM). Similar reasoning with the other side bisectors shows that
the pairs marked b have equal area and so have the pairs marked
c. But the triangle ABM has the same base and height and thus the
same area as the triangle ACM. So a + b + b = a + c + c. Thus
b = c and by similar reasoning a = b and all six little triangles have
the same area. Thus the area of big triangle ABC is 3 times the area
of GBC. Because ABC and GBC share the base BC, ABC must have
3 times the height as GBC, and point G is thus a third of the way up
from the base.

Where is the middle of a triangle?
We have shown that the centroid of a triangle is at the point that is at
the intersection of: the three side bisectors; the three area bisectors
(which are the side bisectors); and the three lines one third of the
way up from the three bases.

If the triangle only had three equal point masses on its vertices
the center of mass lands on the same place. Thus the ‘middle’ of
a triangle seems pretty well defined. But, there is some ambiguity.
If the triangle were made of bars along each edge, each with equal
cross sections, the center of mass would be in a different location
for all but equilateral triangles. Also, the three angle bisectors of a
triangle do not intersect at the centroid. Unless we define middle to
mean centroid, the “middle” of a triangle is not well defined.
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SAMPLE 2.39 Center of mass in 1-D: Three particles (point masses) of mass 2 kg,
.2 m .2 m

2 kg 3 kg 3 kg

Figure 2.74: (Filename:sfig2.cm.1D)

3 kg, and 3 kg, are welded to a straight massless rod as shown in the figure. Find the
location of the center of mass of the assembly.

Solution Let us select the first mass, m1 = 2 kg, to be at the origin of our co-ordinate
system with the x-axis along the rod. Since all the three masses lie on the x-axis, the
center of mass will also lie on this axis. Let the center of mass be located at xcm on
the x-axis. Then,

x

y


 


m1

xcm

m2 m3

Figure 2.75: (Filename:sfig2.cm.1Da)

mtotxcm =
3∑

i=1

mi xi = m1x1 + m2x2 + m3x3

= m1(0)+ m2(
)+ m3(2
)

⇒ xcm = m2
+ m32


m1 + m2 + m3

= 3 kg · 0.2 m+ 3 kg · 0.4 m

(2+ 3+ 3) kg

= 1.8 m

8
= 0.225 m.

xcm = 0.225 m

2 kg 3 kg 3 kg

6 kg

8 kg

.2 m

.225 m

.1 m≡

≡

Figure 2.76: (Filename:sfig2.cm.1Db)

Alternatively, we could find the center of mass by first replacing the two 3 kg masses
with a single 6 kg mass located in the middle of the two masses (the center of mass
of the two equal masses) and then calculate the value of xcm for a two particle system
consisting of the 2 kg mass and the 6 kg mass (see Fig. ??):

xcm = 6 kg · 0.3 m

8 kg
= 1.8 m

8
= 0.225 m.

SAMPLE 2.40 Center of mass in 2-D: Two particles of mass m1 = 1 kg and
m2 = 2 kg are located at coordinates (1m, 2m) and (-2m, 5m), respectively, in the
xy-plane. Find the location of their center of mass.

Solution Let ⇀
rcm be the position vector of the center of mass. Then,

mtot
⇀
rcm = m1

⇀
r1 + m2

⇀
r2

⇒ ⇀
rcm = m1

⇀
r1 + m2

⇀
r2

mtot
= m1

⇀
r1 + m2

⇀
r2

m1 + m2

= 1 kg(1 mı̂ + 2 m̂)+ 2 kg(−2 mı̂ + 5 m̂)

3 kg

= (1 m− 4 m)ı̂ + (2 m+ 10 m)̂

3
= −1 mı̂ + 4 m̂ .

Thus the center of mass is located at the coordinates(-1m, 4m).

x

y

(m)

(m)

1-1-2

2

4

5
m2

m1

cm

Figure 2.77: (Filename:sfig2.cm.2Da)

(xcm, ycm) = (−1 m, 4 m)

Geometrically, this is just a 1-D problem like the previous sample. The center of
mass has to be located on the straight line joining the two masses. Since the center of
mass is a point about which the distribution of mass is balanced, it is easy to see (see
Fig. ??) that the center of mass must lie one-third way from m2 on the line joining
the two masses so that 2 kg · (d/3) = 1 kg · (2d/3).
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SAMPLE 2.41 Location of the center of mass. A structure is made up of three point
m1

m2

m3

x

y

Figure 2.78: (Filename:sfig2.4.2)

masses, m1 = 1 kg, m2 = 2 kg and m3 = 3 kg, connected rigidly by massless rods.
At the moment of interest, the coordinates of the three masses are (1.25 m, 3 m), (2 m,
2 m), and (0.75 m, 0.5 m), respectively. At the same instant, the velocities of the three
masses are 2 m/sı̂, 2 m/s(ı̂ − 1.5̂) and 1 m/ŝ , respectively. Find the coordinates
of the center of mass of the structure.

Solution Just for fun, let us do this problem two ways — first using scalar equations
for the coordinates of the center of mass, and second, using vector equations for the
position of the center of mass.

(a) Scalar calculations: Let (xcm, ycm) be the coordinates of the mass-center.
Then from the definition of mass-center,

xcm =
∑

mi xi∑
mi
= m1x1 + m2x2 + m3x3

m1 + m2 + m3

= 1 kg · 1.25 m+ 2 kg · 2 m+ 3 kg · 0.75 m

1 kg+ 2 kg+ 3 kg

= 7.5 kg · m

6 kg
= 1.25 m.

Similarly,

ycm =
∑

mi yi∑
mi
= m1 y1 + m2 y2 + m3 y3

m1 + m2 + m3

= 1 kg · 3 m+ 2 kg · 2 m+ 3 kg · 0.5 m

1 kg+ 2 kg+ 3 kg

= 8.5 kg · m

6 kg
= 1.42 m.

Thus the center of mass is located at the coordinates (1.25 m, 1.42 m).

(1.25 m, 1.42 m)

(b) Vector calculations: Let ⇀
rcm be the position vector of the mass-center. Then,

mtot
⇀
rcm =

3∑
i=1

mi
⇀
ri = m1

⇀
r1 + m2

⇀
r2 + m3

⇀
r3

⇒ ⇀
rcm = m1

⇀
r1 + m2

⇀
r2 + m3

⇀
r3

m1 + m2 + m3

Substituting the values of m1, m2, and m3, and ⇀
r1 = 1.25 mı̂ + 3 m̂ ,

⇀
r2 = 2 mı̂ + 2 m̂ , and ⇀

r3 = 0.75 mı̂ + 0.5 m̂ , we get,

⇀
rcm = 1 kg · (1.25ı̂ + 3̂) m+ 2 kg · (2ı̂ + 2̂) m+ 3 kg · (0.75ı̂ + 0.5̂) m

(1+ 2+ 3) kg

= (7.5ı̂ + 8.5̂) kg · m

6 kg
= 1.25 mı̂ + 1.42 m̂

which, of course, gives the same location of the mass-center as above.

⇀
rcm = 1.25 mı̂ + 1.42 m̂
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SAMPLE 2.42 Center of mass of a bent bar: A uniform bar of mass 4 kg is bent in
1 m

.5 m

.5 m

Figure 2.79: (Filename:sfig2.cm.wire)

the shape of an asymmetric ’Z’ as shown in the figure. Locate the center of mass of
the bar.

Solution Since the bar is uniform along its length, we can divide it into three straight

x

y




2





c1

m1

m2

m3c2
c3

Figure 2.80: (Filename:sfig2.cm.wire.a)

segments and use their individual mass-centers (located at the geometric centers of
each segment) to locate the center of mass of the entire bar. The mass of each segment
is proportional to its length. Therefore, if we let m2 = m3 = m, then m1 = 2m; and
m1 + m2 + m3 = 4m = 4 kg which gives m = 1 kg. Now, from Fig. ??,

⇀
r1 = 
ı̂ + 
̂

⇀
r2 = 2
ı̂ + 


2
̂

⇀
r3 = (2
+ 


2
)ı̂ = 5


2
ı̂

So,
⇀
rcm = m1

⇀
r1 + m2

⇀
r2 + m3

⇀
r3

mtot

= 2m(
ı̂ + 
̂)+ m(2
ı̂ + 

2 ̂)+ m( 5


2 ı̂)

4m

= m
(2ı̂ + 2̂ + 2ı̂ + 1
2 ̂ + 5

2 ı̂)

4m
= 


8
(13ı̂ + 5̂)

= 0.5 m

8
(13ı̂ + 5̂)

= 0.812 mı̂ + 0.312 m̂ .

⇀
rcm = 0.812 mı̂ + 0.312 m̂

Geometrically, we could find the center of mass by considering two masses at a
time, connecting them by a line and locating their mass-center on that line, and then
repeating the process as shown in Fig. ??. The center of mass of m2 and m3 (each of

x

y

2m

m

m







/2


/4


/4
x

y

2m

ycm

xcm

d

2m
≡

d

Figure 2.81: (Filename:sfig2.cm.wire.b)

mass m) is at the mid-point of the line connecting the two masses. Now, we replace
these two masses with a single mass 2m at their mass-center. Next, we connect this
mass-center and m1 with a line and find their combined mass-center at the mid-point
of this line. The mass-center just found is the center of mass of the entire bar.
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SAMPLE 2.43 Shift of mass-center due to cut-outs: A 2 m × 2 m uniform square

2 m

2 m

O

.5 m

.25 m

Figure 2.82: (Filename:sfig2.cm.plate)

plate has mass m = 4 kg. A circular section of radius 250 mm is cut out from the
plate as shown in the figure. Find the center of mass of the plate.

Solution Let us use an xy-coordinate system with its origin at the geometric center

2 m

d

x

y

r
A

O

Figure 2.83: (Filename:sfig2.cm.plate.a)

of the plate and the x-axis passing through the center of the cut-out. Since the plate
and the cut-out are symmetric about the x-axis, the new center of mass must lie
somewhere on the x-axis. Thus, we only need to find xcm (since ycm = 0). Let m1
be the mass of the plate with the hole, and m2 be the mass of the circular cut-out.
Clearly, m1 +m2 = m = 4 kg. The center of mass of the circular cut-out is at A, the
center of the circle. The center of mass of the intact square plate (without the cut-out)
must be at O, the middle of the square. Then,

m1xcm + m2xA = mxO = 0

⇒ xcm = −m2

m1
xA.

Now, since the plate is uniform, the masses m1 and m2 are proportional to the surface
areas of the geometric objects they represent, i.e.,

m2

m1
= πr2


2 − πr2 =
π(



r

)2 − π
.

Therefore,

xcm = −m2

m1
d = − π(



r

)2 − π
d (2.31)

= − π( 2 m
.25 m

)2 − π
· 0.5 m

= −25.81× 10−3 m = −25.81 mm

Thus the center of mass shifts to the left by about 26 mm because of the circular
cut-out of the given size.

xcm = −25.81 mm

Comments: The advantage of finding the expression for xcm in terms of r and 
 as
in eqn. (??) is that you can easily find the center of mass of any size circular cut-out
located at any distance d on the x-axis. This is useful in design where you like to
select the size or location of the cut-out to have the center of mass at a particular
location.
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SAMPLE 2.44 Center of mass of two objects: A square block of side 0.1 m and

0.3 m

0.3 m

square block
(100mm x 100mm)

wedge

Figure 2.84: (Filename:sfig2.cm.2blocks)

mass 2 kg sits on the side of a triangular wedge of mass 6 kg as shown in the figure.
Locate the center of mass of the combined system.

Solution The center of mass of the triangular wedge is located at h/3 above the base

x

y

h

m1

m2

h/3

d/2

d/2




/3O

A

B

D

C1

E

F
C2

d√
2

d

√
d2

4 + d2

4 = d√
2

Figure 2.85: (Filename:sfig2.cm.2blocks.a)

and 
/3 to the right of the vertical side. Let m1 be the mass of the wedge and ⇀
r1 be

the position vector of its mass-center. Then, referring to Fig. ??,

⇀
r1 =




3
ı̂ + h

3
̂ .

The center of mass of the square block is located at its geometric center C2. From
geometry, we can see that the line AE that passes through C2 is horizontal since
 O AB = 45o (h = 
 = 0.3 m ) and  D AE = 45o. Therefore, the coordinates of C2
are ( d/

√
2, h ). Let m2 and ⇀

r2 be the mass and the position vector of the mass-center
of the block, respectively. Then,

⇀
r2 =

d√
2
ı̂ + ĥ .

Now, noting that m1 = 3m2 or m1 = 3m, and m2 = m where m = 2 kg, we find the
center of mass of the combined system:

⇀
rcm = m1

⇀
r1 + m2

⇀
r2

(m1 + m2)

=
3m( 


3 ı̂ + h
3 ̂)+ m( d√

2
ı̂ + ĥ)

3m + m

=
m[(
+ d√

2
)ı̂ + 2ĥ ]

4m
= 1

4
(

d√
2
+ 
)ı̂ + h

2
̂

= 1

4
(
0.1 m√

2
+ 0.3 m)ı̂ + 0.3 m

2
̂

= 0.093 mı̂ + 0.150 m̂ .

⇀
rcm = 0.093 mı̂ + 0.150 m̂

Thus, the center of mass of the wedge and the block together is slightly closer to the
side OA and higher up from the bottom OB than C1(0.1 m, 0.1 m). This is what we
should expect from the placement of the square block.

Note that we could have, again, used a 1-D calculation by placing a point mass
3m at C1 and m at C2, connected the two points by a straight line, and located the
center of mass C on that line such that CC2 = 3CC1. You can verify that the
distance from C1(0.1 m, 0.1 m) to C(.093 m, 0.15 m) is one third the distance from
C to C2(.071 m, 0.3 m).


